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ABSTRACT 

Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a 

noninvasive means of causing selective tissue necrosis using high-power ultrasound and 

MR temperature imaging. Inhomogeneities in the medium of propagation can cause 

significant distortion of the ultrasound beam, resulting in changes in focal-zone 

amplitude, location and shape. Current ultrasound beam simulation techniques are either 

only applicable to homogeneous media or are relatively slow in calculating power 

deposition patterns in inhomogeneous media. Further, these techniques use table-value 

estimates of the acoustic parameters for predicting ultrasound beam propagation in 

inhomogeneous media, resulting in at best an approximate power deposition pattern. This 

work improves numerical analysis of ultrasound beam propagation by developing 

techniques for: 1) fast, accurate predictions of ultrasound beam propagation in 

inhomogeneous media, 2) noninvasive estimation of acoustic parameters (speed of sound 

and attenuation coefficient) of tissue types present in inhomogeneous media, 3) 

noninvasive determination of changes in tissue acoustic properties due to treatment. 

These beam simulation techniques utilizing subject-specific tissue parameters will rapidly 

predict power deposition patterns in real patient geometries and estimate changes in 

tissue acoustic parameters during treatment, leading to treatment-responsive patient-

specific treatment plans that will improve the safety, efficacy and effectiveness of 

MRgFUS. 
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CHAPTER 1 

INTRODUCTION 

 Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a 

noninvasive means of causing selective tissue necrosis using an ultrasound transducer run 

at high power together with MR temperature monitoring. Using a transducer with a large 

aperture and focusing the beam to a small volume causes tissue ablation at the region of 

interest while sparing the surrounding normal tissue. MRgFUS has applications in the 

brain [1] uterine fibroids [2], breast [3], [4], liver [5], and prostate [6]. Reflection, 

refraction and absorption of the ultrasound beam due to inhomogeneities in the medium 

of propagation can cause significant aberrations in the location and spatial extent of the 

beam's focus and may result in power deposition in undesirable and unsafe regions [7-

11]. Current numerical techniques for ultrasound beam simulation are either only 

applicable to homogeneous media [12], or are relatively slow in calculating beam 

propagation in inhomogeneous media [13]. The accuracy of beam propagation techniques 

depends largely on the accuracy of the acoustic parameters specified in the tissue model. 

Published tissue speeds of sound and attenuation coefficient values vary significantly 

[14], with a three-fold variation in reported values of ultrasound absorption coefficient of 
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liver at 1 MHz [15]. Beyond the innate inhomogeneities of tissue, it has been shown that 

attenuation coefficient values of tissue increase significantly (two-fold or more) and 

irreversibly at high temperatures, common in MRgFUS treatments [16-18]. The goal of 

this project is to develop advanced numerical techniques for modeling ultrasound beam 

propagation in complex inhomogeneous tissue geometries utilizing subject-specific tissue 

acoustic properties that will improve the safety, efficacy and effectiveness of MRgFUS. 

To achieve this goal, this work will focus of developing techniques for: 1) accurate and 

fast prediction of beam propagation in complex inhomogeneous media, 2) noninvasive 

estimation of subject-specific tissue acoustic properties, and 3) noninvasive measurement 

of changes in tissue attenuation coefficient with MRgFUS treatment.  

1.1.  Beam simulation techniques for MRgFUS 

The Rayleigh-Sommerfeld diffraction integral [19], [20], used extensively to 

model wave propagation in homogeneous media, calculates the pressure pattern at an 

output plane by calculating the effect of each point on the source plane on each point on 

the output plane. The number of calculations required for accurate results makes this is a 

relatively slow technique. For fast calculation of pressure patterns from rectangular [21], 

circular [22], triangular and irregular multisided polygon shaped sources [23], extensions 

of the Rayleigh-Sommerfeld technique have been developed. Although these methods 

result in fast calculation of the pressure patterns from specific shapes of transducers, they 

still assume that the medium of propagation is homogeneous, non-dissipative, and 

isotropic. Methods that convolve the spatial impulse response of the source and the 

source velocity function [24] are fast when calculating the transient pressure pattern at a 
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point. However, these techniques result in long computation times when used for 

calculating pressure pattern on a plane, since a separate calculation of the impulse 

response equation is required for each point in space (each point on-axis and off-axis has 

a unique impulse response). Although powerful, this method is restricted to cases where 

the impulse response can be easily calculated and is not tailored to calculate the pressure 

pattern at a plane or a volume [25].  

The angular spectrum (AS) [26-28] method has been used for fast prediction of 

wave propagation in homogeneous media for MRgFUS. It uses the fast Fourier transform 

(FFT) algorithm to translate from the space domain to the spatial-frequency domain and 

propagates the waves in the spatial-frequency domain. The numerical implementation 

and parameter selection for the AS method have been discussed extensively in the 

literature [26], [29-31] and the method has been shown to be fast and accurate for 

homogeneous tissue.  

The angular spectrum method and the Rayleigh-Sommerfeld technique have both 

been modified and extended to calculate pressure patterns in simple inhomogeneous 

models with layered media (layers of different homogeneous tissue) [32-34]. For 

inhomogeneous media with complex geometries similar to those found in the human 

body, the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation and the finite-difference 

time-domain techniques (FDTD) have been used. Marching scheme approaches [35], [36] 

using the KZK equation to evaluate the effects of diffraction, absorption and nonlinearity 

in successive steps have been developed; these methods are slow, with a full wave 3D 

calculation having a calculation time of the order of weeks. The FDTD technique has 

been used to model ultrasound beam propagation in inhomogeneous media [37], [38]; 
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although a powerful technique, the limits placed on voxel sizes and difficult boundary 

conditions make this a slow technique.  

1.1.1. Current limitations 

 1) Traditional techniques (like the Rayleigh-Sommerfeld and the angular 

spectrum technique) can only model beam propagation in homogenous isotropic media, 

or layers of homogeneous media. The complex inhomogeneous geometries of the human 

body cannot be modeled using these techniques. 2) Although the KZK and FDTD 

techniques can be applied to calculate beam propagation in complex inhomogeneous 

tissue geometries, the limits placed on voxel sizes and difficult boundary conditions make 

these techniques computationally intensive and lead to long calculation times.  

1.2.  Need for subject-specific acoustic tissue parameters in MRgFUS 

The latest compilation of tissue acoustic properties [14] cautions readers about the 

large variations in reported data due to different measurement techniques, tissue types 

and tissue preparations used by different investigators, and also tissue diversity due to 

age, abnormality and normal biological variation from subject-to-subject. Only 11% of 

the experiments reported in review [39] were in-vivo, and some values for tissue 

properties were reported using only one sample. Tissue ultrasound properties for 

clinically significant tissue types like pancreas, prostate and placenta were missing, while 

those for fat, breast, uterus and heart were not adequately investigated. Animal formalin-

fixed tissue samples with significantly different ultrasound properties than fresh tissues 
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[15] and with invasive thermocouples that cause errors due to viscous heating at the 

interface of the medium and the thermocouple [40-42] were frequently used.  

1.2.1. Current limitations 

 1) Tissue acoustic property data available are sparse, use invasive temperature 

measurement techniques, use ex-vivo tissue samples extensively, and are at best an 

estimate of the average tissue acoustic properties. 2) A noninvasive technique that 

accurately measures tissue acoustic properties in-vivo is not currently available.  

1.3.  Changing tissue acoustic properties with treatment in MRgFUS 

The power density deposited at the beam's focus depends on the value of the 

tissue absorption coefficient, with absorption being a large component of the tissue's 

attenuation property. Several published studies [17], [43]  have shown that attenuation 

coefficient values in tissue change significantly and irreversibly at the high temperatures 

that are common in MRgFUS, with a reported 1.8-fold increase in attenuation coefficient 

values at exposure of 70 ̊C [16], [44]. Changes in attenuation values reported in ex-vivo 

bovine liver [18], canine liver [45], and porcine kidney [46] have all shown similar 

increases (two-fold or more increase in attenuation coefficients) with high temperature. 

These irreversible changes in attenuation coefficient values are dependent on a complex 

set of treatment parameters: tissue type, heating time and maximum temperature 

achieved. There has been much interest in quantifying these relationships, with different 

investigators treating tissues to different temperatures or for different times [47], [48], 

[44] and measuring the resulting changes in attenuation. Due to the lack of a noninvasive 
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technique to measure attenuation change in-vivo, most studies have used the through-

transmission substitution technique to measure tissue attenuation values before and after 

heating. The through-transmission technique can only be used to measure the average 

attenuation coefficient over the thickness of the tissue and hence most studies have used 

thin strips of ex-vivo tissue. Additionally, the presence of a transmitting and receiving 

transducer on either side of the tissue sample is required for these measurements, and 

hence they cannot be made noninvasively during treatment.  

1.3.1. Current limitations 

 1) All studies rely on invasive thermocouple measurements or through-

transmission substitution measurements to measure the changes in attenuation coefficient 

with treatment. 2) Dynamic changes during treatment (without removing the sample from 

the MRgFUS setup) cannot be measured using any technique.  

1.4.  Overview of this work 

The work presented in this dissertation is aimed at addressing many of the 

limitations listed above. In particular, Chapter 2 describes a new technique called the 

hybrid angular spectrum (HAS) method for calculating pressure (and power deposition) 

patterns in complex inhomogeneous tissue geometries. It is an extension of the traditional 

angular spectrum method, and is a plane-by-plane propagation technique that utilizes the 

pressure pattern from the spherically curved transducer as specified on an intermediate 

plane before propagating further. Chapters 3 and 4 describe two techniques for 

calculating the pressure pattern from a curved transducer surface on an intermediate plane 
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in the homogenous propagating medium that usually occupies the region between the 

transducer and the treated object (e.g., water). Chapter 3 describes a technique for fast 

calculation of beam patterns at the intermediate plane using a Rayleigh-Sommerfeld-

based precalculation technique (called the element response function array technique, or 

ERFA). Chapter 4 describes an extension of the angular spectrum method to curved 

surfaces for calculation of pressure patterns at an intermediate plane without requiring 

any precalculation. Using the intermediate pressure patterns from either of these 

techniques, the HAS method results in rapid (~2 s) prediction of ultrasound power 

deposition patterns inside inhomogeneous tissue models (1-mm isotropic resolution) in 

the tissue volume of interest (10x10x10 cm
3
) typical for MRgFUS treatment. 

Chapter 5 combines these rapid numerical beam propagation techniques with 

thermal simulations to compare the effect of frequently used treatment paths, transducer 

geometries and steering protocols on prefocal heating in MRgFUS treatments. Chapter 6 

uses the fast beam simulation techniques in an optimization routine to estimate tissue 

acoustic properties noninvasively and uses this inverse parameter estimation technique to 

estimate changes in tissue attenuation with MRgFUS treatment in in-vivo rabbit thigh.  



CHAPTER 2 

2.  

ULTRASOUND BASICS 

Ultrasound waves are acoustic waves above the frequency 20 kHz. The general 

principles of a wave travelling through a medium are shown in Figure 1. The wave 

propagates in a medium due to cyclical motion (compression and rarefaction) of the 

particles of the medium. The wavelength (λ) of the acoustic waves is related to the 

frequency of operation f of the transducer, 

 
,

f

c
=λ  (1) 

where c is the speed of sound of the wave in the medium. The higher the frequency of 

operation of the transducer, the smaller is the wavelength of the wave in the medium. In 

magnetic resonance-guided focused ultrasound surgery (MRgFUS), a high intensity 

focused ultrasound beam is used to selectively necrose tissue. The focused nature of the 

beam allows for absorption of the beam preferentially at the focal zone, while the tissue 

surrounding it remains relatively unaffected. A large range of frequencies is used for 

different clinical applications in MRgFUS, from low frequencies around 500 kHz for 
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brain applications to high-frequency transducers around 5 MHz for head and neck 

tumors.  

In beam simulation studies intended for treatment planning for MRgFUS, only 

compressional waves are considered (particle motion in the direction of wave 

propagation) since shear waves attenuate rapidly in the body. The one-dimensional 

acoustic wave equation (in the z direction) for pressure p can be derived by using the 

Newton's law of motion and the conservation of mass principle as 
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where ρ0 is the average density and K is the adiabatic compressibility of the material. All 

functions of the general form )( kzwtfpp ±=
m , with fw π2= and λπ2=k , which 

satisfy the dispersion relationship Kwk 0
2 ρ=  are valid solutions of the wave equation.  

The material properties of a medium, the compressibility and density, can be used 

to derive the acoustic properties of the medium. The speed of sound of an acoustic wave 

can be calculated using the relationship 
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1
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The relationship between particle velocity u and pressure p, called the acoustic 

impedance, is denoted by Z and is 

 
.0
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p
Z

ρ
==

 
(4) 

The variation in acoustic properties encountered as the acoustic wave travels the 

body results in reflection, refraction and attenuation of the wave, as is described next. 
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These effects can lead to changes in the location and shape of the beam's focus and may 

result in undesirable heating at critical locations in the body. 

2.1.  Reflection and refraction 

 When an acoustic wave travels through the boundary between two regions with 

different acoustic impedances, a part of the wave striking the boundary gets reflected and 

some part gets transmitted (the refracted wave). Snells law (similar to optics) governs the 

angle of transmission, as shown in Figure 2.  
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The ratio of the reflected pressure and the incident pressure is given by the reflection 

ratio R, 
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(6) 

For normal incidence (frequently used to estimate power loss due to reflection) this 

equation reduces to 
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(7) 

2.2.  Attenuation 

As the acoustic wave travels in the body, power loss takes place due to two main 

mechanisms- scattering and absorption. Scattering includes reflections due to impedance 

mismatch at various interfaces and also partial beam redirection due to small impedance 



11 

 

 

 

variations in homogenous tissue regions. The majority of power loss as the wave travels 

in a medium is due to absorption of the wave. This absorption results in a temperature 

rise that can cause ablation in MRgFUS. The absorption coefficient α of the medium is 

frequency dependent, as follows: 

 
,0

bfαα =  (8) 

where α0 is the absorption coefficient at 1 MHz, f is the frequency of operation of the 

transducer, and b is the coefficient of frequency dependence of attenuation, which is 1 for 

most biological tissues. The mechanism resulting in absorption of ultrasound waves in a 

medium is related to its viscosity. Muscle has more absorbance than fat, and water has 

negligible absorption. As the wave travels in a medium, the particles in the medium 

oscillate around the center position; due to the viscosity of the medium, some of the 

wave's energy is lost to overcome the viscous drag due to the surrounding medium. Since 

the absorbance of a tissue depends on viscosity, the absorbance of muscle along the fibers 

and perpendicular to the fibers is different. 

 Quantifying scattering loss is difficult due to the fact that scattering results in a 

distribution of the wave in all directions and requires measurements in all directions. 

Therefore the attenuation coefficient, which includes effects of both absorption and 

scattering, is reported for most tissues. For biological media (except lung), scattering 

comprises about 20% of the attenuation coefficient. Since only the absorption coefficient 

of tissue results in temperature increase, separating the scattering coefficient from the 

absorption coefficient is very important for MRgFUS. 
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Figure 1. Schematic of a one-dimensional sinusoidal wave traveling through a 

medium at two instances of time, t1 and t2 (∆t=t2-t1), with wavelength λ and 

speed of sound c. 
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Figure 2. The angles of incidence, reflection and transmission as a wave strikes a 

boundary with an acoustic speed of sound mismatch. In this example, medium 2 has a 

slower speed of sound than medium 1, thus θt is less than θi.  
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CHAPTER 3 

3. ULTRASOUND BEAM SIMULATIONS IN INHOMOGENEOUS  

TISSUE GEOMETRIES USING THE HYBRID  

ANGULAR SPECTRUM METHOD 

3.1.  Introduction 

  Magnetic resonance-guided focused ultrasound surgery (MRgFUS) has 

received a great deal of attention in recent years because of its noninvasive nature, 

localized tissue effects and temperature feedback. For safe, effective and efficient 

treatment, controlling the energy deposited by the ultrasound beam is imperative. 

Refraction, reflection and particularly absorption of the ultrasound beam in 

inhomogeneous tissue geometries of the human body determine the specific power 

deposition pattern. Fast and accurate prediction of this pattern will help in control and 

guidance of the MRgFUS treatment.  

  Ultrasound beam simulation has been previously investigated using the 

Rayleigh-Sommerfeld integral [19]. This approach divides the source into points and 

finds the acoustic field from each point source at each point in the output plane, making 

this a flexible but relatively slow technique for calculating pressure fields from any type 
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of transducer geometry. Specializations of the Rayleigh-Sommerfeld method to calculate 

pressure fields from rectangular [21], circular [22], triangular and irregular multisided 

polygon shaped sources [23], have been proposed. Although these methods make it easier 

to calculate pressure fields from specific shapes of transducers, they still assume 

homogeneous, nondissipative and isotropic medium. The Rayleigh-Sommerfeld method 

has also been extended to calculate pressure fields through layered media (composed of 

homogeneous layers, each layer with different properties) .  

  Convolution methods that use convolution of the spatial impulse response of the 

source and the piston velocity function have also been employed [24]. The impulse 

response scheme requires that the source impulse response be separable, which is only 

possible for limited cases [20]. 

  The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation can model nonlinear 

wave propagation, diffraction and absorption. The absorption term in the KZK equation 

is proportional to the square of frequency, which is often not appropriate for biological 

tissues that usually have a linear dependence on frequency [49], [50]. Also parabolic 

approximations in the KZK equation assume that the wave is very close to a plane wave, 

which is not strictly applicable for focused beams and for wave propagation in an 

inhomogeneous medium [20], [49], [51]. Marching-scheme approaches [36], [52], [53] 

using the KZK equation to evaluate the effects of diffraction, absorption and nonlinearity 

in successive steps have been developed; these methods are relatively slow and can be 

used only for the same cases for which the parabolic approximation is valid. In another 

approach, a parabolic wave equation can be derived from the Helmholtz wave equation 

using infinitesimal (linear) approximations, leading to a parabolic marching method [54]. 
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  The finite-difference time-domain (FDTD) approach that uses numerical 

approximations of the spatial and temporal partial derivatives about each node of a grid 

has been implemented to model wave propagation in inhomogeneous media [38]. 

Although a powerful technique, limits on the maximum size of the voxels and time steps 

that can be used lead to long computation times.  

The Fourier split-step technique is used for modeling wave propagation in 

underwater acoustics [55] and seismic migration [56]. The technique calculates the effect 

of a varying velocity in the medium by alternating back and forth between the frequency-

wavenumber and frequency-space domains. The average value of velocity is calculated in 

the frequency-wavenumber domain and the difference from average is calculated in the 

frequency-space domain. The technique handles slowly changing values of velocity 

without taking into account changes due to attenuation.  

   To increase the speed of beam simulations, the angular spectrum method has 

been used extensively [26], [27], [57]. This approach assumes linear propagation and 

steady-state conditions. The numerical implementation and parameter selection for the 

angular spectrum method have been discussed in the literature [58], [26], [29], [57], [59] 

and the method has been shown to be fast and accurate for homogeneous tissue. The 

method has also been extended to model wave propagation in layers of homogeneous 

media [32], [33].  

  The hybrid angular spectrum (HAS) technique [60] presented here can model 

inhomogeneous tissue properties, including varying attenuation, and the irregular 

geometries of the human body. It is an extension of the traditional angular spectrum 
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method to account not only for layers of homogenous tissue but also within-layer 

differences in tissue properties.  

3.2.  Traditional angular spectrum method 

Figure 3 shows the traditional angular spectrum method, which assumes that the 

tissue between the initial and final pressure planes has homogeneous acoustic properties. 

Using the fast Fourier transform (FFT) algorithm, the pressure pattern on the initial plane 

p'(x,y,0) is encoded into a spectrum A'(α/λ, β/λ; 0) of traveling plane waves in the 

spatial-frequency domain [22]. These waves travel at different angles that depend on their 

spatial frequencies fx and fy according to direction cosines α = λfx and β = λfy. 

Propagation of the waves is then calculated in the spatial-frequency domain by 

multiplying the initial spectrum by a propagation transfer function    

 
zj

e
∆−− 221

2
βα

λ

π

 
(9) 

to account for the longitudinal path length ∆z between the two planes. An inverse fast 

Fourier transform (IFFT) of the angular spectrum of the propagated wave gives the 

pressure pattern p(x,y,∆z) at the final plane in the space domain. The use of FFT and 

IFFT makes this technique very fast.  

3.3.  Hybrid angular spectrum (HAS) method 

   In the hybrid angular spectrum method, the 3D inhomogeneous tissue geometry 

is segmented into rectangular voxels, each voxel having its own speed of sound, 

absorption coefficient and density, as shown in Figure 4a. The pressure pattern in the 
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model is calculated sequentially, plane-by-plane, using transverse planes of voxels 

progressing in the direction of propagation away from the transducer. Within each plane 

of voxels, the acoustic properties are allowed to change in the x- and y-directions; within 

each voxel the properties are considered constant. The calculation sequence alternates 

back-and-forth between the space domain and the spatial-frequency domain for each 

plane of voxels. Pressure is therefore calculated in two steps within each plane, one in the 

space domain and one in the spatial-frequency domain, as described shortly.  

The transmission of one of the plane-wave components (in the angular spectrum) 

of the pressure pattern through plane n can be described in the space domain by the 

transmission function 

 
,),(

),('),( ryxnaryxnjb
n eyxt

−=  (10) 

where the first term in the exponent represents phase change and the second term 

represents attenuation as functions of x and y. Here bn(x,y) is the propagation constant at 

various voxel locations (found from the specific speed of sound c(x,y) and temporal 

frequency f as 2πf/c), an(x,y) is the attenuation constant of the various voxels, r' is the 

perpendicular distance between parallel wave fronts of the tilted plane wave, and r is the 

oblique distance across the plane at the angle of the plane wave, as shown in Figure 4b. 

To facilitate the two-step process, the phase change across the plane of voxels is 

divided into two parts, the average phase shift b'nr' calculated for that plane, and the 

difference ∆bn(x,y)r' from the average phase shift for the various voxels inside the plane. 

Thus the transmission function becomes 

 ryxaryxbbj
n

nnn eeyxt
),(')),('(

),(
−∆+=

 
 



19 

 

 

 

.
),('),('' ryxnaryxnbjrnjb

eee
−∆=  (11) 

In determining the x-y-averaged propagation constant b'n, the averaging is 

weighted according to the magnitude of the pressure spatial pattern (that is, weighted 

according to where the beam is estimated to be). 

Then the two-step process proceeds as follows: propagation changes due to the 

term ryxaryxbj nn ee
),('),( −∆ are calculated in the space domain, while changes due to 

term 
'' rjb ne are calculated in the spatial-frequency domain. This may be best visualized 

conceptually by considering the x-y-varying portions of the plane's voxels (i.e., the phase 

shift difference and attenuation) to be collapsed into a thin layer at the front of each plane 

(still maintaining the values of r and r') through which the pressure pattern is transmitted 

in the space domain, after which the pattern is propagated to the next plane in the spatial-

frequency domain. This concept is illustrated in Figure 4b. 

In the space domain step, if pn-1(x,y) is the pressure at the entrance to plane n, then 

the pressure p'n(x,y) after passing through the thin layer in the space domain is 
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1
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As shown in Figure 4b, r and r' will vary depending on the angles of the various 

plane-wave components of the angular spectrum. In order to account for this variation, 

the values of r and r', which are constants in Eqn. (12) for a given plane, are calculated 

with a weighting factor based on the magnitude of the angular spectrum at this plane. 

In the spatial-frequency domain step, the resulting pressure pattern p'n(x,y) is then 

Fourier transformed to obtain the angular spectrum A'n(α/λ, β/λ; z) for propagation across 

the plane: 
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Propagation is accomplished in the spatial-frequency domain using the 

propagation transfer function incorporating the average propagation constant b'n: 
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where r' has been replaced with an equivalent geometric expression involving direction 

cosines α and β, effectively implementing the propagation transfer function of Eqn. (9). 

The pressure pn(x,y) at the entrance to the next plane of voxels in the space 

domain is found from an inverse Fourier transform: 
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 (15) 

This sequence is repeated for each subsequent plane of voxels to obtain the 

forward propagating pressure pattern in the 3D model. 

First-order reflections in the model are calculated in the space domain using the 

reflection coefficient at each interface Eqn. (7) (found from the acoustic impedances of 

the respective voxel pairs at the interface [61]), then propagating the reflected wave in the 

backward direction using the same back-and-forth approach between the space domain 

and the spatial-frequency domain. At each interface, the backward propagating pressure 

pattern composed of reflections from deeper interfaces is added to the reflection from that 

interface. Finally the forward and the backward propagating waves are added together in 

complex notation to give the final pressure pattern for the 3D inhomogeneous model.  
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3.4.  Implementation details 

 The effects of sampling in the space domain and the spatial-frequency domain in 

the traditional angular spectrum method have been described previously [62], [63]. 

Because of the use of the FFT and IFFT algorithms in the HAS technique, the sampling 

interval and extent of the spatial-frequency domain are linked to the sampling interval 

and extent of the space domain. 

3.4.1. Size of voxels 

 The size of the voxels in the space domain (∆x and ∆y) sets the overall size of the 

spatial-frequency domain, for example, Fxmax = 1/∆x, a consequence of the FFT 

algorithm. The maximum size of the voxels in the space domain, therefore, is limited by 

the highest spatial-frequency content of the beam's features. To eliminate aliasing due to 

under-sampling in the space domain, the sampling frequency in the space domain should 

be at least as high as the Nyquist criterion (1/∆x ≥ twice the highest desired frequency). 

The highest spatial-frequency components of the angular spectrum can be restricted using 

ray theory truncation [26] or angular restriction techniques [30]. (Frequencies higher than 

1/λ are effectively non-propagating since they are evanescent.) Smaller voxels result in 

longer calculation times but produce smoother beam patterns. Smaller voxels also reduce 

the stair-stepping effect at oblique interfaces that results from segmenting the model into 

rectangular voxels. For our application, which uses the beam simulation software to guide 

MRgFUS, the size of the voxels is normally set equal to the resolution of the MRI 

temperature images, usually on the order of 1-mm isotropic resolution. 

 



22 

 

 

 

3.4.2. Size of the space domain 

 The overall extent of the space domain (Lx and Ly) is at least as large as the 

model itself, but may need to be increased due to consideration of wraparound errors, a 

consequence of using too large a sampling interval ∆fx in the frequency domain. 

Wraparound errors, which are due to under-sampling in the frequency domain as 

explained in the Discussion section, can be eliminated by increasing the overall size of 

the space domain by zero padding, since ∆fx = 1/Lx. 

3.4.3. Number of voxels 

 The number of voxels in the model is set by the size of the voxels (∆x and ∆y) 

and the overall size of the space domain (Lx and Ly). The larger the numberof voxels the 

longer the calculation times (for e.g., computation times for model of size 201x201x201 

is 15 s while that for a model of size 101x101x101 is 5 s). In order to avoid the half-

sample phase-shift error [32] the number of the voxels in the model in the x- and y-

directions should be kept odd.  

3.4.4. Pressure on the initial plane 

 One of the requirements for both the angular spectrum method and the HAS 

technique is that the initial pressure pattern must be specified on a plane. When using 

curved transducers with either technique, a separate beam simulation method is required 

to calculate the pressure pattern from the curved transducer surface to the initial plane of 

the inhomogeneous model. A homogeneous beam propagation technique, such as the 

Rayleigh-Sommerfeld integral, can be used to calculate this initial pressure since the 
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space between the transducer and the front plane of the model in almost all simulations is 

comprised of water (or a similar homogeneous coupling liquid).  

To keep the overall calculation time of our simulation short we have developed a 

faster method to calculate the initial pressure field from a curved phased-array transducer 

using precalculated Rayleigh-Sommerfeld patterns, called the element response function 

array (ERFA) technique [28]. The response of each element of the phased array 

(normalized by assuming zero phase and unit amplitude) is precalculated and stored as 

one page in the ERFA. During run time, each page is multiplied by the appropriate 

element phase and amplitude (to account for electronic steering and an arbitrary 

excitation pattern) and all pages are summed in complex notation (a fast calculation) to 

get the resulting pressure pattern at the initial plane of the inhomogeneous model. This 

reduces the run-time calculation time by three orders of magnitude compared to a full 

Rayleigh-Sommerfeld calculation at run time. 

3.5.  Results 

To illustrate the technique in a clinically relevant situation, we chose an 

inhomogeneous model constructed from a segmented MRI image of a patient with breast 

cancer. The model was segmented by hand into three tissue types: breast fat, fibro-

glandular tissue and breast cancer. The ultrasound properties for these tissue types were 

set using values from [14], [61], given in Table 1. A 256-element, 1-MHz, spherically 

curved, 14.5-cm outer diameter phased-array transducer with its geometric focus at 13 cm 

was assumed for this model. The transducer was located 11 cm away from the initial 

plane of the breast model, which was divided into 85x85x45 voxels with 1.5-mm 
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isotropic resolution. The pressure pattern on the initial plane was calculated using the 

ERFA method, described above.  First-order reflections were included for all results. All 

numerical simulations were done on a 2-GB Windows laptop using MATLAB version 

7.8. 

Longitudinal slices of the pressure calculated by the HAS method through the 

beam's focal center are given in Figure 5a shows the magnitude of the pressure calculated 

at the geometric focal zone of the transducer with no electronic steering.  Figure 5b 

shows the magnitude of the calculated pressure pattern through the focus when the 

phased-array transducer is electronically steered 10 mm away from the geometric focus 

in both the y and z directions. Figure 5c shows the calculated pressure pattern through the 

center of the focal zone when the phased-array transducer is electronically steered 15 mm 

away from the geometric focus in all three directions. The 3D calculation time for each of 

these cases was approximately 5 s. 

For validation, the HAS technique was additionally compared to an FDTD 

simulation [15] using a finer three-medium inhomogeneous 3D model purposely 

configured to exhibit reflection, refraction and absorption. The validation model 

contained 141x141x121 voxels with 0.15-mm isotropic resolution, as shown in Figure 6, 

with the acoustic properties given in Table 2. Both techniques assumed a single-element, 

1.5-MHz transducer with an outer diameter of 10 cm and a geometric focus of 18 cm. 

The initial model plane was located 17 cm away from the transducer; the pressure at the 

initial plane was calculated using the Rayleigh-Sommerfeld integral.  

Longitudinal slices through the center of focus of the magnitude of the calculated 

pressure using the HAS and FDTD methods are shown in Figures 7a and 7b respectively. 
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(The FDTD pressure pattern was actually calculated for a model 25% longer in the 

direction of propagation than shown in Figure 7b, then truncated in order to avoid 

displaying reflections from the far boundary of the model, which did not employ 

radiating boundary conditions; the HAS technique inherently incorporates effective 

radiating boundary conditions at the far model boundary.) There was a significant 

difference in the calculation times for each method: the HAS technique took 9.5 s for the 

full 3D simulation, while the FDTD technique took 67 minutes.  

In order to quantify the comparison between the two methods, the normalized-

root-mean-square (nrms) difference between the two pressure patterns was calculated 

according to 
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where pHAS(i) and pFDTD(i) are the normalized pressures calculated using the HAS 

technique and the FDTD technique respectively, at each voxel i in the calculated 3D 

volume of n voxels. Each beam pattern was normalized to the highest pressure found in 

the 3D volume (i.e., at the beam focus). The root-mean-square error for the results shown 

in Figure 7 was found to be ∆nrms = 0.013.  

3.6.  Discussion 

 The traditional angular spectrum technique and hence the HAS approach are both 

plane-to-plane propagation techniques; a prerequisite for these methods is that the initial 

pressure pattern be calculated on the model's first plane using a homogeneous beam 
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propagation technique, such as the Rayleigh-Sommerfeld integral or the ERFA 

precalculation technique (discussed in Chapter 4) used in this paper, to account for 

propagation from the curved transducer to the first plane. The ERFA method has proven 

to be fast and can handle changing electronic beam-steering conditions at run time. 

The HAS technique does not require the user to explicitly set any boundary 

conditions, but the implicit boundary conditions for the model are: 1) a radiating 

boundary at the model's back face normal to the axis of propagation, since no reflections 

are implemented there; and 2) totally reflecting boundaries at the model's edges parallel 

to the axis of propagation, a consequence of spatial wraparound. Wraparound can be 

explained as follows: Due to the discrete frequency domain sampling employed in the 

HAS technique, (for example at intervals ∆fx in the fx-direction), the effective space 

domain pattern can be regarded as an infinitely large patchwork made up of repeating 

source planes at repeat distances equal to, in this example, Lx = 1/∆fx in the x-direction. 

As the plane waves of the angular spectrum propagate at various angles deeper into the 

model, high-angle (high-frequency) waves from adjacent source planes can enter the 

propagating space of the central volume. This results in wraparound in the space domain 

as the waves propagate deeper into the model, and is equivalent to total reflecting 

boundary conditions at the model edges parallel to the axis of propagation. 

Figure 5 shows that the HAS technique is able to calculate pressure patterns for an 

inhomogeneous 3D model by accounting for refraction, absorption, reflection and 

electronic steering of the ultrasound beam. It correctly predicts the location of the steered 

focus, and simulates details such as grating lobe clutter and power drop-off when the 
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phased-array transducer is electronically steered away from the geometric focus, as seen 

in Figures 5b and 5c.  

 Figure 7 displays the similarity between the pressure patterns calculated using the 

HAS and the FDTD techniques for the model of Figure 6. Because of the impedance 

mismatch at the wedge-water interface, reflections and a partial standing wave pattern 

can be seen in front of the oblique wedge interface in both the patterns. The angle of 

beam refraction due to the tilted wedge-water interface is essentially equal for both 

techniques. A high-pressure region can be seen just beyond the wedge in both patterns, 

due mainly to focusing of the beam, but attenuation by the highly absorbing cylinder 

significantly reduces the intensity in the beam propagating through and past the cylinder. 

The two techniques yielded effectively the same pressure patterns: the nrms difference in 

the magnitudes of the normalized pressures was only 1.3% over the entire 3D patterns. 

3.7. Conclusions 

  The HAS technique calculates the complex pressure pattern in an 

inhomogeneous 3D model assuming steady state and linear propagation conditions. The 

technique is rapid, resulting in a decrease in calculation time of more than two orders of 

magnitude compared to the FDTD technique, while giving essentially the same pressure 

pattern. 
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Table 1. Ultrasound tissue properties used in breast model 

 speed of sound 

m/s 

absorption 

Np/(cm•MHz) 

density 

kg/m
3
 

water 1500 0 1000 

breast cancer 1560 0.133 1064  

fibro-glandular 

tissue 
1480 0.091 937 

breast fat 1480 0.086 937 
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Table 2. Ultrasound tissue properties used in validation model 

 speed of sound 

m/s 

absorption 

Np/(cm•MHz) 

density 

kg/m
3
 

wedge 2000 0 600 

cylinder 1500 2.0 1000 

water 1500 0 1000 
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Figure 3. Traditional angular spectrum method with the angular 

spectrum expressed in terms of direction cosines α = λfx and β= λfy, 

where fx and fy are spatial frequencies. 
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Figure 4. Hybrid angular spectrum method a) The inhomogeneous model is 

divided into rectangular voxels and calculations are done plane-by-plane in 

the propagation direction, first in the space domain then in the spatial-

frequency domain; r and r' are usually tilted out-of-plane. b) To help 

conceptualize the two-step process at each plane, the variations in the voxels' 

acoustic properties from the planar average are collapsed into a thin layer 

through which the beam first travels in the space domain, then is propagated 

to the next plane by an average transfer function in the frequency domain. 
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Figure 6. Longitudinal slice of the 3D model used for comparing the results of the 

HAS technique with the FDTD technique. The acoustic properties of the three 

features are given in Table II. The model has 141x141x121 voxels with 0.15 mm 

isotropic resolution. The solid transducer is located 17 cm to the left of the figure 

with its focus located at F. 
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Figure 7. Longitudinal slices of the magnitude of the pressure pattern through the focus of 

the model shown in Figure 6, using a) the hybrid angular spectrum method, and b) the 

finite-difference time-domain method. Both patterns are normalized to the highest pressure 

calculated in each individual 3D volume. 

 



CHAPTER 4  

4. FAST BEAM SIMULATIONS FOR PHASED-ARRAY TRANSDUCERS  

USING A PRECALCULATION-BASED ELEMENT RESPONSE  

FUNCTION ARRAY (ERFA) TECHNIQUE  

4.1.  Introduction 

Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a 

noninvasive means of causing selective tissue necrosis using an ultrasound transducer 

operated at high power in conjunction with MR temperature monitoring. MRgFUS has 

applications in the brain [64], uterine fibroids [2], breast [3], [4], liver [5], and prostate 

[6]. Numerical beam simulation techniques are used to predict the location, shape and 

size of the beam's focal zone for transducer design studies [65] and for optimization of 

patient treatment plans [35] where the focal zone is repeatedly positioned inside the 

pathologic tissue while minimizing treatment time and keeping normal tissue temperature 

within safe levels. The use of phased-array transducers with multiple elements, each 

capable of operating at a unique phase and amplitude, allows the focal zone of the 

transducer to be steered electronically and enhances the flexibility of MRgFUS 

treatments. In this technical note we present a new technique employing a precalculated 
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element response function array (ERFA) for faster run-time calculation of pressure 

patterns from phased-array transducers. The Rayleigh-Sommerfeld integral  [19] is often 

used for beam simulations, and various techniques to speed up calculation times of this 

integral have divided the source into equally spaced arcs [66] or into rectangular elements 

[67] or have used the fast Fourier transform algorithm [57]. Here we demonstrate the 

ERFA technique, also based on the Rayleigh-Sommerfeld integral; however this concept 

can be easily applied to other numerical beam simulation methods used to model a 

phased-array transducer. 

4.2. Theory 

The Rayleigh-Sommerfeld integral giving the pressure pattern p from a source is  

 

 

(17) 

where ρ is the density, c is the speed of sound and k is the wavenumber in the medium 

between the transducer and the secondary ERFA plane (the plane where the pressure 

pattern is desired). S is the area over the transducer aperture, u(r') is the face velocity of 

the transducer and 'rr −  is the distance between the coordinates of points r' on the 

source plane and the points r on the ERFA plane. In the traditional Rayleigh-Sommerfeld 

calculation, the integral in Eqn. (17) is calculated for each point r' on the source plane 

and each point r on the final plane; due to the large number of points required by the 

Nyquist criterion [68], the run-time calculation time is relatively long. In the ERFA 

technique, each element's response on the entire final plane is separately precalculated 
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and stored as a page in a 3D array. Thus, for element n of the phased-array transducer, the 

element response is calculated as  

 

 

(18) 

where Sn is the surface over element n, r'n denotes the coordinates of various points 

within the transducer element n, and r denotes the coordinates of a point on the ERFA 

plane. The pressure pn(r) is stored as page n of the ERFA array, as shown in Figure 8. 

During this precalculation each element is assumed to be driven at zero phase and unit 

amplitude. The resulting ERFA array has N pages for an N-element phased-array 

transducer. During run-time the phase and amplitude to be applied to each element for the 

desired focal location is calculated, each page is multiplied with its respective phase 

nj
e

φ
 and amplitude An, and the array is collapsed (all the pages added together) to get the 

complex pressure pattern on the secondary plane p(r), 
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Thus the ERFA technique reduces the run-time calculation of the pressure patterns for 

changing phased-array steering conditions to a matrix multiplication and a summation, 

significantly reducing run-time computation time. 

4.3.  Implementation details 

The precalculation step for the ERFA technique is fixed for a set of ERFA 

parameters (transducer specifications, sampling interval on the source plane, and size and 

sampling interval on the secondary pressure plane); any change in these parameters 
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requires calculation of a new ERFA for the transducer. This section states some 

guidelines for efficient implementation of the ERFA technique that we have determined 

empirically. 

The sampling interval on the source plane, or equivalently the number of sample 

points within each element, is set by the Nyquist criterion. 

The dimensions of the secondary ERFA plane are determined by the extent of the 

region of interest of the beam pattern. 

The smaller the size of the pixels in the ERFA plane, the better the spatial 

resolution; the larger the size of each ERFA page, the longer the precalculation time. The 

final pressure pattern calculated using the ERFA technique is on a transverse plane 

parallel to the transducer. For calculating pressure patterns in a 3D homogenous or 

inhomogeneous model, the transverse pressure plane can be propagated further using 

other techniques such as finite-difference time-domain or angular-spectrum method. 

Before using the ERFA-calculated pressure pattern in models with different pixel sizes, 

interpolation of the pressure pattern calculated by the ERFA technique may be needed. In 

order to reduce errors caused by interpolation, the size of the ERFA pixels should ideally 

be less than the smallest pixel size to be used in all models.  

The pressure pattern on the ERFA plane is calculated at a fixed distance from the 

transducer. If this distance is changed, the angular spectrum method [13] can be used to 

forward or backward propagate the pressure pattern from the ERFA plane to the desired 

plane.  
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4.4.  Results 

The pressure pattern at a plane 8-cm away from a spherical 256-element 1-MHz 

phased-array transducer with its geometric focus at 13 cm was calculated using 1) the 

traditional calculation of the Rayleigh-Sommerfeld integral during run-time, and 2) the 

ERFA technique using a precalculated Rayleigh-Sommerfeld pages. Each approach used 

the same sampling intervals in the source and the secondary plane; the diameter of the 

transducer was 14.5 cm and the size of the secondary plane 11 cm x 11 cm, with either 

101x101 points or 201x201 points in either surface as shown in Table 3. Since the 

pressure patterns were calculated using the same Rayleigh-Sommerfeld integral formula 

in the two techniques, no difference between the two patterns was expected or found. 

However, a significant difference was noticed in the run-time calculation times for the 

two techniques. Precalculation of the ERFA technique is required only once for a 

particular transducer and sampling interval in the source and final plane, and once 

computed can be used to repeatedly calculate pressure patterns on the secondary plane 

plane for various beam steering conditions. The run-time calculations were between 8 

and 136 times faster than direct calculation of the Rayleigh-Sommerfeld integral. A 

higher reduction in computation time can be expected in an array with greater a number 

of elements. 

4.5.  Conclusions 

A new technique to rapidly calculate the pressure pattern on a plane from a 

phased-array transducer is presented. The ERFA technique is a general technique and can 
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be used with any numerical beam simulation technique that can separately precalculate 

the pressure pattern from each element of a phased-array transducer.   
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Table 3. Computation time for the ERFA technique and the traditional Rayleigh-

Sommerfeld technique 

Number 

of 

transducer 

elements 

Points on 

source 

surface 

Points on 

secondary 

plane 

ERFA 

precalculation 

time 

 

 

 

(sec) 

Run-time 

calculation 

using ERFA 

 

 

 

(sec) 

Run-time 

calculation  

using  

traditional 

Rayleigh-

Sommerfeld 

(sec) 

256 101x101 101x101 22 2 16.8 

256 101x101 201x201 77 2 66 

256 201x201 201x201 352 2 272 
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Figure 8.The steps of calculation required for a) the traditional Rayleigh-Sommerfeld 

integral, and, b) the element response function array technique. 



CHAPTER 5 

5. EXTENSION OF THE ANGULAR SPECTRUM METHOD TO CALCULATE 

PRESSURE FROM A SPHERICALLY CURVED ACOUSTIC SOURCE 

5.1.  Introduction 

   Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a 

technique for noninvasively producing selective tissue necrosis using a high-intensity 

focused ultrasound beam [64]. Numerical beam propagation techniques are needed to 

predict the location and spatial extent of the beam's focus to determine optimal treatment 

parameters for safe, efficient and accurate treatment. Since repeated simulations are 

required with different treatment parameters (transducer power, transducer locations, 

treatment paths, and electronic focusing of the transducer), it is highly desirable that the 

beam predictions be fast. In this paper we present a technique to rapidly calculate 

ultrasound beam propagation from a curved source to a given plane using purely 

frequency-domain concepts.   

  The angular spectrum (AS) method
 
[27], [28]

 
has been applied to a variety of 

problems for modeling wave propagation in the field of optics [28], electromagnetics [69] 

and acoustics [26].
 
The technique describes the spatial-frequency components of a 
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complex field distribution on a source plane in the form of plane waves travelling at 

different angles; the cosine of the angle of each plane wave is proportional to its spatial 

frequency. The field spectrum at a distant parallel plane is calculated by implementing 

wave propagation using a propagation transfer function (spectral propagator) in the 

spatial-frequency domain; the final field pattern is found from an inverse Fourier 

transform. In acoustics, the numerical implementation and parameter selection for the AS 

method has been discussed extensively [58], [26], [29], [60] and the method has been 

used for modeling wave propagation for MRgFUS applications in homogeneous tissue 

[12] as well as in layered [33] and inhomogeneous
 
[60]

 
media. The use of the 2D fast 

Fourier transform (FFT) makes this a fast technique and requires that the source field 

amplitude be specified on a plane [28]. In MRgFUS applications where curved 

transducers are extensively used, different techniques have been employed by authors to 

calculate the pressure pattern from the source to an intermediate plane before the angular 

spectrum method can be used with the FFT algorithm.   

    The Rayleigh-Sommerfeld integral
 
[19]

 
is a space-domain technique that is 

frequently used to calculate the pressure field from transducers of different geometries. 

Each point on the transducer is considered an elementary source and the contribution of 

each point source to the pressure at every point on the intermediate plane is calculated in 

the space domain. The large number of calculations required to calculate detailed 

pressure on a plane makes the implementation of this technique relatively slow.   

   The transient pressure pattern from a curved source can be obtained using the 

impulse response method [70], [71] such as employed in the Field II [23], [72]
 
technique 

and the Fast Near Field method [73]. Each point in space (on-axis and off-axis) has a 
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unique impulse response and to calculate the pressure pattern on a plane, every point 

requires a separate calculation of the impulse response equation. The angular spectrum 

method, on the other hand, calculates the complex pressure pattern on the complete plane. 

The impulse response method is better suited to calculate the time-dependent pressure 

field at a point, whereas the angular spectrum method is better suited to calculate the 

steady-state complex pressure field on a plane [25]. 

    Guyomar and Powers [74]
 
studied the extension of the angular spectrum to 

curved transducers by dividing the curved surface into planar transducers, each having a 

time delay. The technique assumes x-y source separability and calculates the time delay 

using the thin lens approximation. In the case of phased arrays with different phases on 

each element, a time delay under these approximations is not easily calculated.  

     Wu and Stepinski [59] applied two approaches to extend the AS method to 

cylindrically curved radiators. The first approach uses numerical integration and does not 

employ the FFT technique. The second approach, called the indirect angular spectrum 

approach, calculates the pressure field on an intermediate plane in front of the curved 

source by dividing the source into planar rectangular sub-elements using the rectangular 

radiator approach [67] and then applies the AS method to propagate beyond this plane.  

    In this paper we extend the angular spectrum method by introducing a new 

Ring-Bessel technique that implements frequency-domain concepts directly from the 

curved source to an intermediate plane perpendicular to the propagation axis, from where 

the fields can then be propagated by conventional AS methods. Using a frequency-

domain approach allows fast and efficient computer implementation with the FFT 

algorithm.    
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5.2.  Approach 

   Consider a spherically curved solid source with radius of curvature Rc, where 

the furthest point on the source is at a distance d from an intermediate plane, as shown in 

Figure 9. Using numerous planes parallel to the intermediate plane, the source is divided 

into a set of circular rings, where each ring has a small arc width ∆R that is the same for 

all rings. The ring width is small enough that the source surface within the ring can be 

considered to lie in a plane (parallel to the intermediate plane) that intercepts the center of 

each ring. For the i
th

 ring this plane is at a distance zi from the intermediate plane. In this 

plane, the ring has an inner radius ri
-
 and an outer ring radius ri

+
, with the radius of the 

ring at its center being Ri, as shown in Figure 10. The Fourier transform in spatial-

frequency polar coordinates ),( φρiV  of the source velocity ),( θrvi  within each ring is 

found according to a generalization of Eq. 2-29 in Goodman [28]:  
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   Since the width of each ring is small, the source velocity within each ring is 

approximately uniform as a function of r across the ring width and may therefore be 

represented by a function )(θiv  of angle only and attributed to a radius R at the center of 

the ring; Eqn. (20) then becomes 
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Here )(θiv  denotes the complex normal velocity of points on the ring and hence is 

a periodic (circular) function with a period of 2π. )(θiv  can be expressed as a 1D Fourier 

series: 
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where 
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Substituting Eqn. (22) into Eqn. (21), 
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Changing variables by letting φθη −=  and ηθ dd = in the integral, Eqn. (24) 

becomes 
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(25) 

   Since terms inside the integral are periodic over 2π, the sign of the first 

exponential can be reversed and the limits changed to (0 to 2π), resulting in 
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Using one form of a Bessel identity (Eqn. 9.1.21 in Abramowitz and Stegun [75]) 
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it can be easily seen that 
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so Eqn. (25) becomes 
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      Equation (28) is the angular spectrum of the i
th

 ring at the plane of that ring. 

By multiplying the angular spectrum of each ring by the spectral propagator from its 

plane to the intermediate plane, summing the propagated angular spectra of all rings, then 

using the inverse Fourier transform (IFFT), the overall pressure pattern at the 

intermediate plane can be obtained. To propagate each ring’s spectrum, the spectral 

propagator that converts from velocity to pressure given by  
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(29) 

is used, where ρc represents the acoustic impedance of the medium into which the waves 

are propagating.  

5.3.  Implementation details 

   This section states some guidelines for efficient implementation in MATLAB 

7.7 of the Ring-Bessel technique that we have determined empirically. 

5.3.1. Sampling the source surface in space 
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   Figure 11 illustrates the two stages of sampling performed on the source 

surface. First, the source is divided into N rings of equal arc widths by incrementing the 

angle subtended from the center of the sphere to the center of each successive ring. The 

angle increment is a constant δq, so the sampling interval along the arc is equal to 

.qRR cδ=∆
 

   Second, each ring is discretized into pi number of points to account for the 

velocity variations with angle within each ring. In practice, a circumferential sampling 

distance Sm is specified and pi is calculated using 

 
,
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S
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π
=  (30) 

where iR  is the radius of the ring. Since the technique uses the Fourier series to find 

coefficients for the frequency-domain representation [see Eqns. (23) and (28)], the 

number of sample points on each ring should be odd. Thus, the calculated pi is rounded to 

the nearest odd integer. Hence each ring may have a slightly different circumferential 

sampling interval, but this is accounted for with a normalizing step in the calculation 

algorithm.  

   In our practice we have found that the arc and the circumferential sampling 

intervals should be kept approximately equal to each other (set according to the Nyquist 

criterion) and should be no larger than the sample spacing on the intermediate plane for 

accurate results. 

 

5.3.2. Size and sampling of the intermediate plane  
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   The user establishes the size (Lh, Lv) and the number of samples (Nh, Nv) in the 

space domain for the intermediate plane in Cartesian coordinates to suit the particular 

problem being analyzed. Because the intermediate plane pressure in the space domain is 

calculated using the IFFT of the combined propagated angular spectra, the size and 

sampling intervals for the intermediate plane spatial-frequency content are in turn set by 

the size and intervals of the space variables. Therefore the intervals between spatial-

frequency values are ∆Fx=1/Lh and ∆Fy=1/Lv and the total widths of the spectrum at the 

intermediate plane are Fx=Nh/Lh and Fy=Nv/Lv. 

5.3.3. Size and sampling of the frequency-domain spectra 

   Since the source in space is sampled into rings using polar coordinates, the 

combined Fourier series of all rings results in the spatial-frequency content also being 

described in polar coordinates. After propagation to the intermediate plane, the angular 

spectrum must be converted from polar coordinates to Cartesian coordinates to match the 

Cartesian coordinate system chosen for the intermediate plane. The equations 

F'x=ρcos(φ) and F'y=ρsin(φ) are used for this conversion. Interpolation is then used to 

find the angular spectrum on the regularly spaced Cartesian grid (Fx, Fy) set by the user 

(see previous section) from the nonuniform Cartesian grid (F'x, F'y). For higher accuracy 

of interpolation, the sampling interval of the spatial-frequency polar coordinate grid is 

kept approximately equal to that set by the user in the regularly spaced Cartesian 

coordinate grid.  

   The maximum overall useful radius of the spatial-frequency polar coordinate 

grid is given by λmax. In order to avoid the singularity in the spectral propagator, λmax ≠ 
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1/λ. When λmax>1/λ, the waves are evanescent and essentially do not propagate. We have 

found that for our application in calculating pressure patterns away from the near-field of 

the transducer, λmax is preferably set at a  value very close to 1/λ, e.g., 0.999(1/λ) and all 

higher spatial frequency components are set to zero. In applications where accuracy of 

the near-field pressure is required, either the pressure-to-pressure spectral propagator [58]
 

can be implemented or the higher spatial frequencies can be modeled using a notch filter 

around the λmax=1/λ location. 

   For faster calculation times using MATLAB, we avoid explicit for loops (except 

for one incrementing through the rings), and arrange the matrix for calculating Jn(2πRiρ) 

in Eqn. (28) such that the Bessel function order n increases along each row while the 

argument ρ increases along each column. We also use a custom nearest-neighbor 

interpolation function that takes advantage of the monotonic nature and regular spacing 

of the spatial-frequency polar coordinate grid.  

5.3.4. Implementation of the Rayleigh-Sommerfeld and Field II techniques 

The Rayleigh-Sommerfeld and the Field II techniques were both implemented in 

MATLAB 7.7. Since both techniques require repeated calculations at each point on the 

intermediate plane nested for loops were avoided whenever possible. Our implementation 

of the Rayleigh-Sommerfeld technique had only one explicit for loop (as did the Ring-

Bessel technique for the solid transducer; in case of the phased-array transducer Ring-

Bessel had two for loops). In the case of a solid transducer the Rayleigh-Sommerfeld 

technique sampled the source using the spherical coordinate system with angular 

increments for each point in the Cartesian grid. Since Field II requires a function call for 
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each field point, its implementation used two for loops; the source was defined as a rigid 

baffle and sampled into rectangles with sampling frequency set at 100 MHz. The 

numbers of sampling points on the source surface were equal for all three techniques 

(about ¼ of the wavelength).   

5.4.  Results 

   In order to validate the accuracy of the Ring-Bessel (R-B) technique, simulation 

results calculated by R-B were compared to those determined using the Rayleigh-

Sommerfeld (R-S) integral and the Field II technique. The programs for all techniques 

were written in MATLAB 7.7 and implemented on a laptop computer with an Intel dual 

core 4-GHz processor. The times taken for each calculation to the intermediate plane and 

the normalized pressure distributions produced by all techniques were compared. 

Simulations in both a solid transducer and a steered phased-array transducer were used as 

examples. When beam simulations are used to support MRgFUS applications, it is 

important to obtain pressure distributions over the complete 3D volume in the region 

being treated. Therefore in the following examples, we calculated the 2D pressure pattern 

by each technique on a 7 cm x 7 cm intermediate plane located 8-cm away from the 

transducer surface, and then propagated the resulting waves through the volume 

containing the focus by the conventional AS method.  

5.4.1. Solid transducer 

   A solid spherically curved 1-MHz transducer with an aperture size of 14.5 cm 

and its geometric focus at 13 cm was modeled using the three techniques. The sampling 
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distance at the aperture surface was at 0.04 cm (about ¼ of the wavelength), the same for 

all three implementations. After propagation from the intermediate plane, the 3D pressure 

distributions were found around the focal region with 0.5-cm spatial resolution in the 

transverse direction and 0.1-cm resolution in the axial direction. Figure 12a shows a 

comparison of the absolute value of the pressure along a line perpendicular to the 

direction of propagation through the geometric focus for each of the three techniques. 

Similarly, Figure 12b compares the absolute values along a line through the geometric 

focus in the direction of propagation. The calculation times for each of the three methods 

to produce the initial pressure patterns on the intermediate plane are given in Table 4. The 

time required for the AS propagation was the same for all methods, 3.5 s, and is not 

included. 

5.4.2. Electronically steered phased-array transducer  

 To represent a class of transducers often used in MRgFUS applications, a 128-

element spherically curved 1-MHz phased-array transducer was also modeled. The 

transducer has an outer diameter of 10 cm and a radius of curvature of 13 cm. Each 

element was circular and curved with a diameter of 0.22 cm; they were arranged in a 

random fashion (to reduce grating lobe sharpness) as shown in Figure 13. For the R-B 

calculations the transducer surface was sampled into 251 rings. The sampling spacing of 

source points within each ring was approximately 0.04 cm. In order to directly compare 

the two approaches, the same source points, arranged in concentric circles as used in the 

R-B simulation, were used for the R-S calculation, except that all points outside the 
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active elements were excluded from the R-S calculation since they did not contribute to 

the radiated pressure.  

   The elements of the phased array were phased such that the beam was focused 

1-cm away from the geometric focal point in both the vertical and horizontal directions in 

the transverse plane (but not electronically steered in depth). Figure 14a shows a 

graphical image of the absolute pressure in an axial slice through the focus using the R-S 

method to obtain the pressure pattern on the intermediate plane. Figure 14b shows the 

same image using the R-B technique.  

Table 4 gives the calculation times for each approach (again not including the AS 

propagation times). 

5.5.  Discussion 

   To compare the results obtained by the R-B method to those from the traditional 

methods, a mean difference value was calculated as follows: 
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where pRB(i) and pRef(i) are the absolute pressures calculated by R-B method and by the 

method used for comparison, respectively, at each point i in any given 2D plane. Each 

beam pattern is normalized to the highest pressure found in the 3D volume, which occurs 

at the respective focal locations.  

         The comparisons given in Figures 12a and 12b for the solid transducer show 

that the R-B approach produces a pressure distribution very similar to those from the R-S 

and Field II simulations; all three techniques predict essentially the same focal zone 
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location, width and length. Away from main focus, some differences in the plots can be 

seen, but the amplitude of the discrepancies is small. As listed in Table 4, the mean 

difference across the transverse plane through the focal point is 0.7 % for both the 

comparisons, while the mean difference in the longitudinal plane through the focus is 

1.2% or less. There was a significant difference in calculation times, however, with the 

R-B method producing results a factor of 24 times faster than the R-S and 29 times faster 

than Field II. In an application where speed is a high priority and small errors are 

tolerable compared to other acoustic uncertainties, such as in MRgFUS planning and 

control, we believe the R-B method will prove very useful.  

   The comparisons for the electronically steered phased-array transducer shown in 

Figures 14a-d, exhibit slightly larger rms differences than for the solid transducer, likely 

due to the presence of grating lobe clutter around the focal zone. We have seen that the 

magnitude of the grating lobe clutter increases as the steered angle increases for a given 

phased array, and that the peak intensity at the focus decreases (not shown). The nature of 

the grating lobe features is sensitive the exact source and spatial-frequency sampling 

pattern, and this is probably why the mean differences are larger for the steered phased 

array, between 1.67 % and 1.50 %, as given in Table 4. The location and dimensions of 

the mean focus are very similar for the two simulations (Figures 14c and 14d) while some 

variation is seen in the regions away from the focus. It should be emphasized that the two 

techniques follow completely different strategies: the R-S method is a purely space-

domain approach employing an integral over the source points using spatial coordinates, 

while the R-B technique is a purely frequency-domain technique that transforms the 

source points into the frequency domain for propagation using a transfer function before 
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an inverse Fourier transform produces the final space pattern. The use of the FFT and 

multiplicative transfer function results in quicker calculation times, about 11 times faster, 

as seen in Table 4.   

   Our implementation of the R-B method used the velocity-to-pressure spectral 

propagator (transfer function) given in Eqn. (29) since both R-S and Field II techniques 

assume a velocity source. However, a pressure-to-pressure propagator is easily 

implemented if it is more appropriate for a given application.  

5.6.  Conclusions 

   Although the examples of this paper used spherically curved transducers to 

demonstrate the R-B technique, it is not restricted to the calculation of pressure fields 

from spherical surfaces; it can be applied to any surface of rotation around the axis of 

propagation. However, there are some limitations to the technique. It assumes 

independent propagation of the angular spectrum from each ring to the intermediate 

plane; it does not account for any interference or secondary diffraction due to the 

presence of the other rings, hence can be used only for transducers with strictly 

increasing ring radius in the direction of propagation (similar to the R-S approach). It also 

is applicable only to linear wave propagation in the steady state. For transient analysis, an 

impulse response method such as Field II or the Fast Near Field method should be used.  

   For applications where rapid simulations of the 3D patterns from curved 

transducers are needed, such as in the planning and control of MRgFUS treatments, the 

Ring-Bessel method may prove to be an attractive alternative to the Rayleigh-

Sommerfeld or Field II methods. 
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Table 4. Comparison of calculation times and mean differences 

Simulation 

method 

Calculation 

time 

Mean normalized difference from Ring-

Bessel 

  
transverse plane 

through focus 

longitudinal plane 

through focus 

Solid transducer 

Ring-Bessel 38 s - - 

Rayleigh-

Sommerfeld 
924 s 1.07 % 0.70 % 

Field II 1091 s 1.19 % 0.74 % 

Phased-array transducer (steered) 

Ring-Bessel 45 s - - 

Rayleigh-

Sommerfeld 
493 s 1.67 % 1.50 % 
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Figure 9. A set of planes parallel to the intermediate plane divides the source into a 

set of consecutive rings, with the center of each ring located on the dividing plane at a 

distance zi from the intermediate plane. The furthest point on the transducer is a 

distance d from the intermediate plane.    
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Figure 10. Ring-Bessel method dividing (a) solid or (b) phased-array transducer into 

rings of arc width ∆R. Shown between the dashed circles is the surface of the i
th

 ring 

rotated onto a plane parallel to the intermediate plane. The center of the ring has radius 

Ri. All rings are circular and fill the entire transducer surface. 
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Figure 11. Sampling of the transducer surface into rings (left), and points (right). When 

the ring intersects an element of a phased array, those points on the ring are given the 

velocity amplitude and phase of the element. Points outside an element are given values of 

zero. 
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Figure 12. Normalized pressure amplitude predicted by the R-B, R-S and Field II techniques 

along a center line through the focal zone in the (a) transverse plane and (b) axial plane for a 

spherical curved solid transducer.  

(a) 

(b) 
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Figure 13. Face view of the 128-element phased-array transducer with randomly placed 

circular elements. 
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 Figure 14. Axial slices of the magnitude of the pressure through the center of focus produced 

by steering  a 128-element phased-array transducer using (a) R-S and (b) R-B simulation from 

the source to the intermediate plane (at 8 cm), followed by an AS calculation.  

(a) 

(b) 



CHAPTER 6 

6. THE EFFECT OF ELECTRONICALLY STEERING A PHASED ARRAY ON  

NEAR-FIELD TISSUE HEATING 

6.1.  Introduction 

The manipulation of an ultrasound beam's shape and location possible with 

phased-array transducers offers significant advantages in Magnetic resonance-guided 

high-intensity focused ultrasound (MRgHIFU) treatments, allowing spatial and temporal 

switching between beam patterns, correcting for phase aberrations due to heterogeneous 

media, and reducing artifacts (such as fluid motion and susceptibility effects) in the MRI 

images that are often associated with mechanical transducer translation. Indeed, previous 

studies have indicated that MRgHIFU treatment times can be reduced through the use of 

phased-array transducers [76-78].  

For effective, accurate and fast thermal treatments, the design objectives for a 

phased-array transducer include a small focal size, eliminating grating lobes, suppressing 

side lobes, maximizing the range of electronic steering in 3D and achieving maximum 

pressure at the focal zone [79]. These objectives are achieved by manipulating the 

frequency of operation, radius of curvature, number of elements, interelement spacing, 
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and element size and aperture diameter of the transducer. Tradeoffs between these 

parameters, the cost of manufacturing and control electronics, and difficulty of 

fabrication constrain the HIFU phased-array transducer design. Current HIFU transducer 

configurations vary in the number of elements (256-element [65], [80], 512-element [81], 

[82], and 1000 element systems [64]), frequency of operation (670 kHz to 4 MHz [83]) 

and the interelement spacing (random, semirandom and fully sampled); each 

configuration represents a tradeoff between transducer complexity and the desired beam 

characteristics for a specific clinical application.  

This study concentrates on the analysis of near-field thermal buildup when using a 

phased-array transducer. Several investigators have noted that such thermal buildup 

occurs in the proximal tissues when executing a treatment with a phased array [78], [84], 

[85]. This paper extends those studies in two ways. First, it quantifies the extent of 

increase in the near-field tissue temperatures when electronically steering a phased-array 

transducer compared to mechanical motion using both simulated and experimental 

studies. Second, it compares the effect of manipulating transducer design parameters on 

near-field power deposition by simulating several different transducer configurations.  

6.2. Methods 

6.2.1. Simulation 

All acoustic beam simulations were performed using the Hybrid Angular 

Spectrum method [60]. The homogeneous tissue model was 10x10x10 cm with isotropic 

spatial resolution of 1 mm; the assumed tissue acoustic and thermal properties are listed 

in Table 5. The radius of curvature was fixed at 13 cm for all transducers analyzed, and 
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the furthest point on each transducer was located 8-cm away from the beginning of the 

tissue model. More detailed transducer parameters are given in Table 6. 

Thermal responses were calculated using a finite-difference approximation of the 

Pennes’ bio-heat transfer equation [86], 

 

 
(31) 

where ρ is the tissue density, ct and cb are the specific heats of tissue and blood, 

respectively, k is the thermal conductivity, Tb is the arterial blood temperature, w is the 

Pennes’ perfusion, and Qap is the applied power density. Spatial and temporal resolutions 

were 1 mm and 0.05 s for all thermal simulations. Thermal dose was calculated based on 

the formulation given in [86].  

6.2.2. Experiments 

Experiments were conducted using an MR-compatible 256-element phased-array 

(Transducer #1 in Table 6) HIFU system (Image Guided Therapy, Bordeaux, France) in a 

3T Siemens Trio MRI. The experimental setup is shown in Figure 15. Temperature 

measurements were acquired using the proton resonance frequency method [87]. A 3D 

segmented echo planar imaging (EPI) sequence (2x2x2 mm, 6.2-s resolution, TR/TE 

(ms): 20/9.5, FA: 20°, matrix: 64x128x32) was used to acquire the temperature data. 

Images were reconstructed using a referenceless technique [88] to reduce any 

susceptibility effects caused by transducer movement during mechanical translation. All 

images were postprocessed using zero-filled interpolation, resulting in an isotropic spatial 

resolution of 1 mm [89]. 

ρc t

∂T

∂t
= k∇ 2

T − wcb T −( Tb )+ Qap
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Two path trajectories were evaluated, as detailed in Figure 15.  Both linear raster 

[90] and circular path patterns [84], [91] are commonly used in focused ultrasound 

treatments. Here we used a single-plane, nine-position raster pattern with 1-cm spacing 

and a 1.6-cm diameter circular pattern composed of 12 discrete points. In the raster 

pattern trajectory, the ultrasound beam was steered either mechanically or electronically. 

During mechanical steering, the transducer was translated in the x-y plane through the 

nine points with a continuously applied power of 35 acoustic watts. During electronic 

steering, the transducer was centered directly beneath position 5 (Figure 15) and the 

ultrasound beam was steered electronically to treat the remaining eight points; the applied 

power was varied between 35 and 50 acoustic watts when steering away from the center 

position to compensate for known steering losses [84], depending upon location, that 

were determined during system calibration tests. Each point was sonicated for 30 s with 

no cooling period between points. 

For the circular path, only electronic steering was used in the experiment. Since 

fast temporal switching between points in the circle (faster than 200 ms), is not possible 

for the mechanically steered case, simulated results were substituted by translating the 

calculated beam pattern transversely corresponding to the respective raster points. For the 

experiment, the transducer was centered at the center of the circle and each point was 

sonicated by electronically steering the ultrasound beam at 235 acoustic watts. Within 

each circular cycle, each of the 12 points was sonicated for 200 ms. The trajectory was 

continuously repeated 25 times for a total sonication time of 60 s, meaning each point 

received cumulative sonication for a total of 5 s.  
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6.3.  Results 

The accumulated thermal dose from executing the nine-point raster pattern 

through either mechanical or electronic steering is displayed in Figure 16 for planes at 

various locations between the transducer and the focal plane. An increased amount of 

thermal dose is deposited in the proximal tissues at all locations when electronically 

steered. However, there is more than 50 times less thermal dose delivered in the focal 

zone for the electronically steered trajectory despite the increase of applied power when 

steering to off-axis points to compensate for calibrated steering losses. This effect is 

clearly seen in Figure 17. The mean of the 25 voxels containing the highest thermal dose 

in each x-y plane is plotted as a function of distance from the transducer’s distal face. 

Increased temperature rise in the near-field and therefore increased thermal dose 

accumulation, can also be seen when executing the 16-mm diameter circle trajectory. The 

thermal dose accumulated in several x-y planes along the ultrasound beam’s axis for both 

electronic and mechanical steering is shown in Figure 18. Experimental and simulated 

electronically steered results are compared to the simulated mechanically steered case. 

For the electronically steered case, the experimental results agree reasonably well with 

the simulation results, both resulting in a noticeable accumulation of thermal dose at a 

location approximately 1.5 cm proximal to the focal zone (at z=11.5 cm). The mean of 

the 25 voxels containing the highest thermal dose in various x-y planes perpendicular to 

the transducer’s axis is plotted for the electronically and mechanically steered cases in 

Figure 19. All above experiments and simulations were performed in a zero-perfusion 

environment using the same tissue-mimicking phantom [92]. Figure 20 displays 
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simulation results showing the effect of perfusion on the dose accumulated in various 

planes throughout phantom. 

Table 6 lists the different transducer configurations (changing aperture size, 

frequency of operation or number of elements) that were analyzed in order to decrease 

the effect of near-field heating, and compares the performance of these transducers to the 

transducer employed in the above tests (#1). The transducer beam characteristics used for 

comparison are near-field clutter, maximum specific absorption rate (SAR) deposited in 

the focal zone and focal zone size. The near-field clutter is quantified using a near-field 

deposition ratio γ defined as 

 
,

FZmax,

NFmax,

SAR

SAR
=γ  (32) 

where SARmax,FZ is the maximum SAR deposited in the focal zone and SARmax,NF  is the 

maximum SAR deposited in the near field with the near field defined as the region 

between the transducer face and the x-y plane 2.5 cm proximal to the focal zone in the 

axial direction. This ratio was calculated both for the case of a transducer focused at its 

geometric focus and electronically steered 1 cm in the vertical, horizontal and axial 

directions. Figure 21 displays the mean SAR deposited in the five voxels with the highest 

SAR value in various transverse planes for simulations of the four transducers. Two 

conditions are shown: (1) the beam focused at its geometric focus, and (2) the focal spot 

steered 1 cm in all three directions. The SAR for each transducer is normalized to the 

maximum SAR deposited at the geometric focus by the transducer #1 in Figures 21a and 

b, or normalized to each individual case in Figures 21c and d. 
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6.4.  Discussion 

The electronic steering capability of a phased array offers many advantages in 

MRgHIFU. It is well suited to the MRI environment where fluid motion and 

susceptibility artifacts should be minimized. It allows the user to vary the size and shape 

of the ultrasound spot and allows for very fast temporal switching between sonication 

points, offering more flexibility during a treatment. However, this study has shown that 

electronically steering a 256-randomized element phased array can significantly increase 

the thermal dose deposited in the near-field region.  

In order to compare mechanical and electronic steering scenarios, two trajectories 

were evaluated. Both studied trajectories show a local accumulation of thermal dose 

occurring approximately 1 to 2-cm proximal to the geometric focus (seen in Figure 17 

and, more noticeably, in Figure 19). During mechanical steering, the thermal build-up in 

the near field is due to beam overlap and prefocus absorption of the incident beam. 

Indeed this effect has been seen with a single-element focused transducer that was 

mechanically scanned through a defined trajectory [93]. However, the near-field thermal 

build-up is more pronounced for the electronically steered case both because beam 

overlap is greater when coming from a fixed, non-translating transducer center, and 

because of grating lobe clutter that is added to the main lobe overlaps. Grating lobe 

clutter also generally becomes worse as the steering angle is increased.  

When comparing mechanical and electronic steering trajectories, differences in 

the effective acoustic exposure window size will affect the thermal dose accumulation in 

the proximal tissues. The larger acoustic window concomitant with mechanical scanning 

provides more volume to dilute the effects of near-field thermal build-up. However, in 
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this study, the mechanical movement of the transducer was small compared to the 

diameter of the transducer (< 13%). This increase of acoustic window area does not fully 

account for the four-fold higher thermal dose in the near-field region when comparing 

mechanical to electronic steering as seen in Figures 17 and 19.  

Both trajectories were fairly simple, meaning they were not designed to ablate a 

defined volume of tissue. In other studies [84], [90], [91], both trajectory types have been 

extended to ablate defined volumes by adding additional points and planes. This 

extension would result in an increased total sonication time, exacerbating the effect of 

increased near-field build-up. 

The average interelement spacing in the transducer #1 is approximately 6λ. In 

order to decrease grating lobe clutter, this element spacing should be as close to λ as 

possible; the alternative transducer configurations investigate different techniques to 

reduce this spacing. Transducer #2 in Table 6 reduces the interelement spacing by 

reducing the aperture size of the transducer (hence packing the elements closer, reducing 

average interelement spacing to ~3λ). The tighter packing limits the radius of each 

element to 0.2 cm. Figures 21a and b show that transducer #2 deposits less power in the 

focal zone compared to transducer #1 because of the smaller element size and larger focal 

zone size (Table 6). Figures 21c and d show that, as expected from the tighter packing of 

elements, the percentage loss in SAR due to electronic steering for transducer #2 is lower 

than that seen in transducer #1; however transducer #1 still deposits more SAR during 

electronic steering in the focal zone (and the near-field) due to its larger element size. The 

reduction in aperture size decreases the interelement spacing and should in theory reduce 

the grating lobe clutter; however the effects of a larger focal zone, smaller area in the 
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exposure window and less total power output of the transducer lead to the near-field 

deposition ratio γ for transducer #2 being larger for transducer #1.  

Transducer #3 in Table 6 reduces the frequency of operation, thereby increasing 

the wavelength. Keeping the same absolute random element spacing as transducer #1, an 

increase in the wavelength reduces the average interelement spacing to 3λ at 0.5 MHz. 

This configuration retains the same element size (keeping total power output equal) and 

aperture size (keeping the exposure window equal) as transducer #1. Figures 21a and b 

show that transducer #3 deposits more SAR in the focal zone compared to transducer #2 

even with a lower frequency and with a larger focal size. Reducing the interelement 

wavelength spacing (decreasing the percentage power lost when steering) while 

maintaining a large aperture size (spreading the prefocal beam over a larger area) 

improves the near-field deposition ratio γ of transducer #3 compared to transducer #1 for 

the steered case, from 0.067 to 0.044. However, the lower frequency of transducer #3 

reduces the SAR deposited at the focal zone compared to the transducer #1 due to the 

dependence of absorption on frequency, and hence it has a worse near-field deposition 

ratio of 0.04 for an unsteered beam.  

Transducer #4 is fully sampled (with the interelement spacing equivalent to λ) 

with 2025 elements while keeping the operating frequency equal to 1.0 MHz. With an 

interelement spacing of 1.5 mm, the element radius is restricted to 0.07 cm. Figure 21   

shows that, as expected, this transducer loses substantially less power due to steering 

compared to transducer #1, and grating lobes are eliminated by an interelement spacing 

of λ. A larger focal size (due to a smaller aperture diameter) results in reduced SAR 

deposited in the focal zone. This effect is seen in the worse near-field deposition ratio for 
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transducer #4 compared to transducer #1. For a fully sampled transducer to have an equal 

size of focus as the transducer #1 (at 1.0 MHz), 10,205 elements are needed. While 

transducers have been constructed on this scale, it drastically increases the cost of 

fabrication, a tradeoff that needs to be considered during the design process.  

6.5.  Conclusions 

Phased-array transducers offer many advantages to MRgHIFU treatments. 

However, the simulation and experimental results in this study show that because of more 

pronounced near-field heating, there are some disadvantages to using electronic steering. 

These effects should be taken into account during the design and characterization of a 

HIFU transducer, as well as in the treatment planning and monitoring process.    
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Table 5. Tissue properties used in simulations 

Density ρ (kg/m
3
) 1000 

Specific heats ct, cb (kJ/kg-K) 4186 

Thermal conductivity k (W/m-K) 0.45 

Perfusion w (kg/m
3
-s) 0, 1, 5 

Attenuation (Np/cm-MHz) 0.05 

Speed of sound (m/s) 1538 
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Table 6. Transducers analyzed and summary of results 

 Transducer Configuration 

# 1 # 2 # 3 # 4 

Physical 

Configuratio

n 

radiating surface 

intensity (W/cm
2
) 

2.0 2.0 2.0 2.0 

radius of curvature (cm) 13 13 13 13 

aperture diameter (cm) 15.4 10.3 15.4 6.8 

frequency (MHz) 1.0 1.0 0.5 1.0 

number of elements 256 256 256 2025 

element radius (cm) 0.33 0.2 0.33 0.07 

element location random random random 
fully 

sampled 

average interelement 

spacing 
6λ 3λ 3λ 1λ 

Beam 

Characteristi

cs 

near-field 

deposition 

ratio γ 

unsteered 0.03 0.07 0.04 0.08 

steered 0.07 0.07 0.04 0.08 

maximum 

SAR at focus 

(x 10
8 

W/m
3
) 

unsteered 1.0 0.14 0.16 0.14 

steered 0.4 0.09 0.11 0.11 

focal size (transverse x 

axial) (mm) 

1.6 x 

7.2 

2.4 x 

15.3 

3.3 x 

14.5 
3.4 x 32 
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Figure 17. Log plot of the mean of the 25 voxels with the highest thermal dose accumulated 

in planes perpendicular to the ultrasound beam’s axis during the nine-position raster 

trajectory at various distances from the transducer. The thermal dose accumulation for 

mechanical steering (solid curve) and electronic steering (dashed curve) are both shown. 
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Figure 19. Mean of the 25 voxels with the highest thermal dose accumulated in planes 

perpendicular to the transducer’s axis for the 16-mm circle trajectory. The focal plane is at 13 

cm. Both experimental and simulated results are displayed for electronic steering, and simulated 

data for mechanical steering.  
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Figure 20. Effect of perfusion on the mean of the 25 voxels with the highest 

thermal dose accumulated in planes perpendicular to the transducer’s axis 

for the 16-mm circle trajectory. Pennes’ perfusion values of 0, 1 and 5 

kg/m
3
-s are shown.   
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Figure 21. Plots of mean SAR deposited at five maximum voxels in planes 

perpendicular to the transducer’s axis for four transducer configurations. 

Two cases are shown: (a) an unsteered beam; (b), a beam steered 1 cm in all 

directions. The SAR for each transducer is normalized to the SAR deposited 

at the geometric focus of transducer #1.  
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Figure 21. Plots of mean SAR deposited at five maximum voxels in 

planes perpendicular to the transducer’s axis for four transducer 

configurations. Two cases are shown: (a) an unsteered beam; (b), a beam 

steered 1 cm in all directions. The SAR for each transducer is normalized 

to the SAR deposited at its the geometric focus.  



CHAPTER 7 

7. NONINVASIVE PATIENT-SPECIFIC ACOUSTIC PROPERTY ESTIMATION  

FOR TREATMENT PLANNING IN MRI-GUIDED  

FOCUSED ULTRASOUND SURGERY 

7.1.  Introduction 

Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a means of 

causing noninvasive selective tissue necrosis using a high-intensity ultrasound beam and 

MR temperature monitoring. The location, shape and amplitude of the beam's focus is 

affected by the reflection, refraction and attenuation of the ultrasound beam due to 

variation of acoustic properties (speed of sound and attenuation coefficient) in the 

medium of propagation. Correction and control of these focal aberrations is accomplished 

using predictions from beam propagation techniques. The accuracy of these predictions 

depends primarily on the values of acoustic parameters used in the tissue model. 

Published tissue speed of sound and attenuation coefficient values vary significantly [14] 

with a three-fold variation in reported values of absorption coefficient of liver at 1 MHz 

[39]. The latest compilation of tissue acoustic properties [14] cautions readers about the 

large variations in data reported due to different measurement techniques, tissue types, 
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and tissue preparations used by different investigators, and also diversity in tissue due to 

age, abnormality, and normal biological variation from subject-to-subject. Only 11% of 

the experiments reported in review [39] were in-vivo and some values for tissue 

properties were reported using only one sample. Animal formalin fixed tissue samples 

with significantly different acoustic properties than fresh tissues [15], [61] and with 

invasive thermocouples that cause errors due to viscous heating at the interface of the 

medium and the thermocouple were frequently used [40-42].  

Several published studies [17], [43], [47], [44] have shown that tissue attenuation 

coefficient values increase significantly (two-fold or more) and irreversibly at the high 

temperatures, that are common in MRgFUS treatments. These irreversible changes in 

attenuation coefficient values are dependent on a complex set of treatment parameters: 

tissue type, heating time, rate of heating, and maximum temperature achieved. There has 

been much interest in quantifying these relationships, with different investigators treating 

tissues to different temperatures or for different times and measuring the resulting 

changes in attenuation [16], [17], [46], [48], [44]. The through-transmission technique 

used in these studies calculates an average attenuation coefficient over the tissue 

thickness. Additionally, the presence of a transmitting and receiving transducer on either 

side of the tissue sample is required and measurements cannot be made noninvasively 

during treatment.  

Recently, a method has been suggested that uses MRI calorimetry to measure 

absolute values of the tissue absorption coefficient [15]. A calorimeter constructed with 

the tissue sample (of a size smaller than the ultrasound beam) embedded inside a non-

absorbing gel is insonated using an ultrasound transducer. By measuring the energy 
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absorbed in the calorimeter using MR temperature imaging (MRTI), the absolute 

absorption of the tissue sample can be obtained. The technique requires construction of a 

gel block with the sample embedded inside the gel (with good acoustic coupling between 

the gel and sample) and assumes the beam profile in the gel block to be equal to the beam 

profile measured in water.  

Techniques that cause a small temperature rise in a tissue and use the heating or 

cooling segment of the temperature curve (measured using a thermocouple) have been 

used previously to measure the tissue absorption coefficient [17], [42], [94], [95]. In this 

paper we use the rate-of-temperature-increase technique [95] with an optimization 

routine, MRTI, and a fast beam propagation technique to noninvasively estimate subject-

specific tissue acoustic properties. 

7.2.  Methods 

The technique described in this paper minimizes the squared difference between 

an experimentally obtained power deposition pattern (SARexp obtained using MRTI of 

low-power interrogation pulses) and a simulated power deposition pattern (SARsim 

predicted using a fast beam simulation technique) to estimate tissue acoustic properties 

(speed of sound and attenuation coefficient). An optimization routine adjusts the acoustic 

properties used by the beam simulation technique for each prediction of SARsim: the 

acoustic properties in the beam simulation technique that result in the minimization of a 

cost function J are considered an estimate of the acoustic properties of the media, where 

 
  SARKSARJ isimi

N

i

i .)( 2
,

1

exp, ×−=∑
=  

(33) 
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A scaling factor Ki is multiplied to the SARsim pattern to take into account the 

efficiency of the transducer, the acoustic coupling in the experimental setup, and a 

thermal correction factor to correct for errors in the SARexp due to the restricted MRTI 

time step; i denotes a voxel in a region around the focus with N total voxels.  

It has been shown theoretically and experimentally that specific absorption rate 

(SAR) information can be obtained from the rate of temperature increase (before thermal 

conduction or perfusion effects become significant) immediately following a step change 

in applied power [95].  In order to obtain SARexp, a short, low-power interrogation pulse is 

applied to the sample and MRTI is used to measure the resulting temperature change. The 

first few points in the heating curve are used to calculate the SARexp in the sample as 

follows: 

 
,,

dt

dTc
SAR iip

iexp, =  (34) 

where ipc , is the specific heat of the voxel i.  

SARsim patterns are obtained using our previously developed hybrid angular 

spectrum (HAS) beam propagation technique [60] that accounts for the effects of 

reflection, refraction and attenuation of the ultrasound beam in complex inhomogeneous 

media: 

 
,

2
,

i

ii
isim

I
SAR

ρ

α
=  (35) 

where iα , iI and iρ denote the attenuation coefficient, intensity (power density), and 

density at voxel i respectively. The cost function J in Eqn. (33) is reduced to 
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(36) 

where efficiency denotes the efficiency of the transducer. Using anatomical MR scans, 

each sample is segmented into subdomains by tissue similarity, each subdomain having 

unique acoustic properties. Initial estimate of the speed of sound and attenuation 

coefficient value of each subdomain is set using average values given in literature [39], 

and a SARsim pattern is predicted using the HAS technique. In the subsequent iterations 

SARsim is modified by adjusting values of the attenuation coefficient and speed of sound 

of each subdomain (using a simplex-based optimization routine) until the cost function J 

is minimized. The input pressure pattern for the HAS technique (the pressure pattern 

from the curved transducer surface to the beginning of the segmented tissue model) is 

calculated using the element response function array technique [60] to reduce the run-

time calculation times.  

The SARexp calculated using Eqn. (34) assumes that thermal conduction and 

perfusion effects are insignificant during the initial slope of the temperature curve. Using 

MRTI with a finite time-step of around 4 s (as in this study) results in errors in the 

determined SARexp pattern, with the SARexp underestimated at the voxels in the focal zone 

and the over-estimated in the voxels neighboring the focal zone; this thermal effect is 

modeled by simulating a dispersed beam pattern in the HAS beam prediction. The SARsim 

pattern is calculated for a lower frequency (resulting in a larger λ and a larger beam); the 

frequency dependent attenuation coefficient value is increased to compensate for the 
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lower frequency in the simulation. In subsequent implementation, this correction factor 

should be determined using thermal simulations based on the Pennes' Bioheat equation, 

for the experimentally used MRTI time-step and thermal conduction and perfusion values 

(using table value estimates) of the sample.  

7.3.  Implementation details 

The implementation of the inverse parameter estimation technique involves the 

following steps: 

a) Employing a calibration pulse in a homogeneous phantom 

b) Segmenting the sample into subdomains 

c) Employing an interrogation pulse the sample 

d) Creating of region-of-interest and noise masks for optimization 

e) Optimizing using the HAS technique and the SARexp pattern  

7.3.1. Calibration pulse in homogeneous phantom 

The rate-of-temperature-increase technique can be used to estimate a combined 

variable, given by the right hand side of the following equation: 

.
pc

efficiency

dt

dT

×

×
∝

ρ

α
 

In order to separate the attenuation α  of the media from the combined variable, the 

transducer efficiency, ρ and cp values must be estimated. Further, the beam propagation 

technique requires a value for the distance of the transducer from the sample in order to 

accurately predict the speed of sound in the sample. In our implementation, ρ and cp of 
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the sample are set using table-value estimates, the efficiency of the transducer, the 

coupling in the experimental setup, and the distance of the transducer from the setup are 

estimated using a calibration pulse, as follows: Before the start of each experiment, a 

calibration pulse is applied to a homogeneous tissue-mimicking phantom placed in the 

MRgFUS setup. A step input of power is applied to the phantom and MRTI is used to 

obtain the SARexp. The acoustic properties (speed of sound and attenuation coefficient) of 

the calibration phantom are identified before the experiment using the though-

transmission substitution technique. SARexp and the known acoustic properties of the 

phantom are then used to calculate the efficiency and the location of the transducer in the 

MR temperature image (to determine the distance of the transducer from the sample). 

These values will remain constant for the duration of the experiment. When the same 

tissue-type is used for the calibration pulse as for the property measurements, the 

calibration pulse also scales efficiency (and hence K) to take into account the disparity 

between the assumed and true values of the tissue density and specific heat.  

7.3.2. Segmentation of sample into subdomains 

The calibration phantom is replaced by the sample in the MRgFUS setup and 

anatomical images from MR sequences are used to segment the tissue sample into 

different subdomains, each segmented subdomain assumed to posses unique acoustic 

properties (speed of sound and attenuation coefficient). The number of subdomains is 

based on tissue similarity (using k-means clustering [96]) and on user input as determined 

by the particular application. 
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7.3.3. Interrogation pulse 

A low-power interrogation pulse is applied to a tissue subdomain in the sample 

using the ultrasound transducer. SARexp (found using Eqn. (34)) is determined in all 

regions that achieved a measurable temperature rise due to the interrogation pulse. A 

separate interrogation pulse is required for estimating the tissue properties in each 

segmented subdomain. The acoustic power and duration of the interrogation pulse are 

selected such that the temperature rise at the focal zone in the sample does not deliver any 

appreciable thermal dose (less than 10 equivalent minutes at 43 ̊C) while maintaining 

sufficient temperature rise to overcome the background noise in the MRTI.   

7.3.4. Region-of-interest and noise masks 

A region-of-interest mask is created for the calculated SARexp pattern that includes 

the focal zone and any prefocal heating seen in the sample. The cost function is 

minimized over this region. This eliminates SARexp information from voxels where the 

expected ratio of ultrasound absorption-dependent temperature rise vs. temperature noise 

is low (occurring father from the main beam).  Inside this region-of-interest another mask 

is used to disregard temperature information from noise-dominated voxels or voxels that 

were segmented as fat voxels.  This is necessary since the PRF shift technique for 

measuring temperature does not provide reliable measurement in fat [97]. In this 

implementation, all voxels with a temperature fluctuation of more than 1.5 °C during the 

interval when the ultrasound transducer power is turned off (before heating and during 

cooling) are included in the noise mask and not included in the cost function calculation. 

The density values of all subdomains are assumed constant and set using table value 
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estimates [39]. The acoustic properties of water are considered constant (speed of sound 

1500 m/s, density 1000 kg/m
3 

and attenuation coefficient 0 Np/cm/MHz) and are not 

optimized. 

7.3.5. Optimization routine 

The SARexp and SARsim are both multiplied by the noise mask, and the squared 

difference between the two patterns (cost function) is calculated over the region-of-

interest. An optimization routine is used to iteratively minimize this cost function by 

changing the speed of sound and attenuation coefficient values for all the tissue 

subdomains in the path of the ultrasound beam. The density values of all subdomains are 

assumed constant and set using table value estimates [39]. The acoustic properties of 

water are considered constant and are not optimized. In this study the optimization 

routine was run using the optimization toolbox in MATLAB 7.7. A simplex technique 

that minimized the cost function given in Eqn. (36) was used (function- fminsearch in 

MATLAB). The initial parameters (speed of sound and attenuation coefficient) for all 

tissue types are selected from table values estimates given in literature [39], facilitating 

faster convergence of the optimization routine. 

7.4.  Results 

All experiments were performed in an MRgFUS system consisting of a Siemens 

TIM Trio 3T MR-scanner, a 256-element phased-array transducer (Imasonics, Bordeaux, 

France), and hardware and software for beam steering and data visualization (Image 

Guided Therapy, Bordeaux, France). The PRF technique [87] was used to measure 
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temperatures using transverse slices centered at the focal zone with a 2D gradient echo 

sequence with the parameters shown in Tables 7 and 8. Acoustic property measurements 

were made on the following samples: (a) homogenous tissue-mimicking phantoms, (b) 

ex-vivo porcine muscle, and (c) in-vivo rabbit thigh. The inverse parameter estimation 

technique was run on a 4-GB Windows laptop using MATLAB version 7.8 (with the 

optimization toolbox) and took about two minutes to converge for the homogeneous 

phantom and ex-vivo tissue studies, and one hour for the in-vivo study. Anatomical 

information for each sample was obtained using the 3-point Dixon sequences, which 

provide a ratio of adipose and non-adipose soft tissue within each voxel of the sample. 

For the validation study using the homogeneous tissue mimicking phantoms the 

segmented model had two subdomains: water and phantom. Tissue-mimicking 

homogeneous phantoms were made using original recipe given in [92], and a modified 

recipe that changed the attenuation coefficient by increasing the quantity of condensed 

milk added in the recipe (more condensed milk gives higher attenuation). The ex-vivo 

pork sample and the in-vivo rabbit model were segmented into three tissue types - water, 

fat and muscle. The ex-vivo porcine muscle samples were immersed in degassed water at 

room temperature for an hour before the experiment to remove any air absorbed in the 

sample. Fiduciary markers (nylon threads) were placed in the meat sample to assist in 

registration of the tissue between the MRTI and the TechniScan images (as described in 

later section). The ex-vivo tissue preparation was scanned in the TechniScan Whole 

Breast Ultrasound (WBU) Unit unit approximately one hour before interrogation pulses 

were applied in the MRgFUS setup. The Institutional Animal Care and Use Committee 

approved the animal experiment. One female white New Zealand rabbit was used for this 
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study. The thighs were shaved and depilatory cream was applied. The specific heat value 

for homogeneous phantoms (4186 kJK
−1

Kg
−1

), ex-vivo porcine muscle (3770 WK
−1

m
−1

), 

and in-vivo rabbit thigh (3770 WK
−1

m
−1

) were set using table value estimates [98]. The 

same initial parameters for the optimization routine were used for all the samples in the 

study (speed of sound 1500 m/s and attenuation coefficient 0.04 Np/cm/MHz).  

In order to validate the accuracy of the presented inverse parameter estimation 

technique, two validation methods were employed.  

7.4.1. Validation using the through-transmission substitution technique  

 The acoustic properties determined using the iterative parameter estimation 

technique were compared to those measured using an independent through-transmission 

substitution technique in homogeneous phantoms. The setup for the through-transmission 

technique is shown in Figure 22a. Two phantom recipes with different attenuation values 

were prepared and poured into separate molds. The acoustic properties of the phantoms 

measured using both techniques are given in Table 7. The ultrasound pulse power was 25 

W and time was 30 seconds for each interrogation using the inverse technique. 

7.4.2. Validation using the TechniScan ultrasound tomography system 

 Tissue acoustic properties of ex-vivo porcine muscle obtained using the iterative 

parameter estimation technique were compared to independent measurements from the 

TechniScan WBU tomography system [54], [99] (setup shown in Figure 22b). The 

TechniScan instrument uses inverse scattering tomography to calculate the acoustic 

properties in a given sample using a set of time-gated transmission and receiving 
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transducer arrays positioned on opposite sides of the sample. As the beams travel through 

the sample from the transmitting array to the receiving array, they are attenuated and 

reflected by the tissue inhomogeneities, providing data to enable a tomographic 

reconstruction of the tissue acoustic properties in each coronal plane of the scan. The 

TechniScan transducer arrays, operating at a center frequency of 1.25 MHz, rotate around 

the sample and also move along the axis of the sample, yielding a 3D map of the 

attenuation coefficient of the sample. The tomography unit results in a 3D property 

distribution with a spatial resolution of 0.4x0.4x2 mm. Interrogation pulses were applied 

to two locations in the sample in the MRgFUS setup and two values of attenuation 

coefficients were determined using the inverse parameter estimation technique. The 

average attenuation coefficient in a region (6x6x8 mm
3
) around the same locations was 

calculated from the 3D TechniScan images for comparison with the inverse parameter 

estimation technique.  

Previous authors have shown in in-vitro studies that the tissue's attenuation 

coefficient changes irreversibly with thermal dose due to treatment [17] (linearly with 

log10 of thermal dose). In this study we measured the changes in attenuation coefficient 

with log10 of thermal dose delivered during treatment in in-vivo rabbit thigh. The results 

are described below.  

7.4.3. Attenuation changes in-vivo after MRgFUS treatment 

A schematic of the experimental setup for the in-vivo study is shown in Figure 23. 

After the initial segmentation of the rabbit thigh into three tissue types (fat, muscle and 

water), a region in the rabbit muscle around the geometric focus of the beam (twenty-one 
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voxels in the slice centered at the focal zone, composed of three transverse voxels and 

seven axial voxels) was segmented into twenty-one different tissue types, to take into 

account the local inhomogeneities in the muscle. HIFU heating was monitored with a 2D 

gradient echo sequence with the following parameters: TR/TE = 45/10 ms, 2x2x3-mm 

spatial resolution (3-mm slice thickness) and 4.7-s temporal resolution. The following 

sequence of acoustic power was applied to each thigh: a low-power pretreatment 

interrogation pulse to estimate the initial attenuation coefficient (12 W acoustic for 30 s), 

a 10-minute cooling period, a high-power treatment pulse (31 W acoustic for 35 s) to 

cause change in attenuation due to thermal dose delivered [100], a 15-minute cooling 

period, and a posttreatment low-power interrogation pulse (12 W acoustic for 30 s) to 

measure the changed attenuation coefficient due to treatment. These experiments 

produced a total of 42 heated voxels (21 for each thigh). Due to the low Signal to Noise 

Ratio (SNR) during the animal experiment, the noise mask eliminated eighteen voxels. 

Pretreatment and posttreatment attenuation values at a total of twenty-four voxels were 

estimated using the optimization routine; the attenuation change ratio (posttreatment 

attenuation/pretreatment attenuation) was calculated for each voxel. Since the treatment 

pulse resulted in a heterogeneous distribution of thermal dose around the focal zone, each 

voxel had a unique value of thermal dose (with variation in log10 of thermal dose between 

neighboring voxels on the order of 0.01). In order to calculate the average change in 

attenuation with thermal dose, the data were divided into eight groups, each group with a 

range of log10 of thermal dose ± 0.2. Each group included three voxels; the average 

attenuation change ratio and the average log10 of thermal dose for each group were 

calculated and are plotted in Figure 24.  
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7.5.  Discussion 

A technique for noninvasive parameter estimation for MRgFUS is expected to be 

useful for developing treatment plans using subject-specific acoustic properties and also 

provide a means for making real-time treatment path decisions that can estimate and 

account for changes in attenuation coefficients with treatment. To validate the 

noninvasive inverse parameter estimation technique, the acoustic properties measured 

using this technique were compared to two independent techniques, the through-

transmission technique for homogeneous phantoms and the TechniScan Whole Breast 

Ultrasound unit for inhomogeneous ex-vivo porcine muscle. Values of acoustic properties 

for the noninvasive technique were within 5% of those measured using the independent 

techniques as shown in Tables 7 and 8. The inverse parameter estimation technique was 

also used to measure changes in attenuation coefficient due to MRgFUS treatment in in-

vivo rabbit thigh. A plot of the change in attenuation vs. log10 of thermal dose is shown in 

Figure 24. As shown by other researchers in vitro [17], the attenuation coefficient 

increases linearly with log10 of thermal dose and the slope (0.21) of the curve found using 

the noninvasive technique in in-vivo rabbit thigh (0.20) corresponds very well with the 

slope found by previous studies in in-vitro dog muscle [17].  

7.5.1. MR temperature measurements 

It has been shown that MRTI accuracy is a function of both spatial and temporal 

resolution [89]. Consequently, the voxel size and time step of the MR temperature 

measurements affect the accuracy of the experimentally determined SAR patterns and the 

estimated tissue acoustic properties. The rate of temperature increase technique assumes 
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that the initial slope of the temperature rise is calculated before the effects of thermal 

conduction and perfusion become dominant and hence the time-step of the MRTI should 

be as small as possible within the SNR constraints. While in the present implementation, 

this correction is modeled by predicting a broader beam using the HAS beam simulation, 

this thermal correction factor could be more accurately determined using  thermal 

simulations to estimate the error caused by the restricted step size of the MRTI. Further, 

the thermal correction factor assumes perfusion does not change in the location (when 

doing experiments of attenuation changes in in-vivo, the perfusion before and after 

attenuation may be different.) Different thermal correction factors could be used by 

assuming different perfusion before and after ablation. Due to high SNR in phantom and 

ex-vivo porcine muscle experiments, the noise mask did not remove any voxels close to 

the focal zone from the cost function calculation. In the in-vivo rabbit thigh studies, the 

SNR was lower and the noise mask removed a higher number of voxels around the focal 

zone from the cost function calculation in the optimization routine. Improved RF coil 

design will increase SNR, allowing improvements in speed and voxel resolution of MR 

temperature measurements and improving the performance of the inverse parameter 

estimation technique.  

7.5.2. Segmentation and convergence 

The number of subdomains that the tissue is segmented into depends on the 

sensitivity of the sequence used for the MR anatomical scan. The 3-point Dixon 

technique used in this study provides a ratio of adipose and nonadipose soft tissue within 

each voxel of the sample, resulting in a small number of tissue subdomains. This results 
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in faster convergence of the optimization routine, but interrogation shots at different 

locations of the same subdomain may result in different estimates of the acoustic 

properties. For treatment path optimization studies where acoustic properties are required 

over a larger region, an MRI sequence that has higher sensitivity to tissue inhomogeneity 

than the 3-point Dixon technique should be used for segmentation. Alternatively, the 

entire tissue region around the ultrasound beam may be segmented into different tissue 

types (as in the in-vivo study) and the attenuation values for each voxel estimated 

independently of the surrounding tissue. This will increase the computation time for the 

convergence of the optimization routine. Care must be taken to only estimate tissue 

properties in locations where the intensity of the beam is high enough to dominate the 

temperature rise seen due to noise. A tradeoff between the speed of the convergence and 

the accuracy of estimates should be considered for different applications.  

7.5.3. Calibration pulse 

A calibration pulse is used to determine the efficiency value used in Eqn. (36) to 

estimate the effect of the experimental coupling and transducer efficiency. When using 

the same tissue-type for the calibration pulse as for the noninvasive parameter estimation 

technique, efficiency also scales the simulation SAR to take into account the disparity 

between the specific heat and density values assumed in the calculations, and those of the 

actual tissue sample. So in cases where an absolute value of attenuation coefficient is 

required, an extra calibration pulse is needed before the interrogation pulse. Alternatively, 

when using this technique to estimate changes in attenuation coefficient due to treatment 
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(as in the in-vivo study), using pre and posttreatment identification pulses at the same 

location, the calibration pulse is not needed. 

7.5.4. Interrogation Pulse 

 A disadvantage of the inverse parameter estimation technique is the temperature 

rise that is required before acoustic properties can be estimated in a region. Although we 

have shown that the technique can be used in-vivo with very low-power interrogation 

pulses (giving a 6 to 8 ̊C temperature rise), a technique that can estimate subject-specific 

acoustic properties noninvasively without a temperature rise would be preferred. Despite 

this drawback, the authors feel that the significant advantage provided by the parameter 

estimation technique is its ability to noninvasively estimate changes in attenuation 

coefficient due to treatment.  For the in-vivo study presented herein, a 10 minute cooling 

period was added before the posttreatment identification pulse was applied (for the tissue 

to reach normal temperature); alternatively an interrogation pulse could also be applied 

immediately after the treatment pulse to measure the time-course of the change in 

attenuation coefficient of the tissue. Further, repeated application of interrogation pulses 

after the treatment can also be used to measure if the tissue properties change irreversibly 

after the application of thermal dose. 

7.5.5. Attenuation coefficient and absorption coefficient 

The temperature rise seen in the tissue sample due to a step input in power is a 

result of the ultrasound absorption coefficient, while the beam simulation technique 

models the beam profile based on the attenuation coefficient. Although the attenuation 
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coefficient can be assumed to be very close to the absorption coefficient in tissues with 

low scatter, further studies to differentiate the attenuation coefficient from the absorption 

coefficient of tissue will be valuable.  

7.6.  Conclusions 

A new technique to noninvasively estimate tissue acoustic properties in-vivo was 

presented and validated by comparing to two independent techniques in homogeneous 

and inhomogeneous phantoms. Subsequently, the technique was used to measure changes 

in tissue attenuation with log10 of thermal in in-vivo rabbit thigh. Future studies include 

applying this technique to different tissue types. 
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Table 7. Validation of optimization technique in homogeneous phantoms 

using through-transmission technique.  

Sample 
Experimental Parameters for Optimization 

Technique 
Through- 

transmission 

  

Temperature parameters 

Estimated Tissue 

Property Values 

TE 

 

ms 

TR 

 

ms 

Time 

Step 

sec 

Voxel 

Size 

mm 

Original 

Recipe
1
 

9 65 4.2 
1x1x3 

 

Speed of 

Sound (m/s) 
1540 1510 

Attenuation 

Coefficient 

(dB/m/MHz) 

5.5 5.6 

Modified 

Recipe 
9 65 4.2 1x1x3 

Speed of 

Sound (m/s) 
1540 1530 

Attenuation 

Coefficient 

(dB/m/MHz) 

6.3 6.3 
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Table 8.Validation of optimization technique in inhomogeneous porcine muscle 

using TechniScan WBU unit 

Sample Experimental Parameters for Optimization Technique 

 

 

WBU 

Unit 

Location 

Temperature 

parameters 

Interrogation 

Pulse 
Estimated Tissue 

Property Values 
TE 

 

ms 

TR 

 

ms 

Time 

Step 

sec 

Power 

 

Watts 

Time 

 

sec 

One 8 50 4.3 22 30 

Attenuation 

Coefficient 

(dB/m/MHz) 

5.5 5.2 

Two 8 50 4.3 25 30 

Attenuation 

Coefficient 

(dB/m/MHz) 

6.3 6.1 
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Figure 23. A schematic of the experimental setup for the inverse parameter 

estimation technique in in-vivo rabbit thigh. Three receiver coils are used, a 

single-channel shoot-though RF coil and two two-channel RF coils.  
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Figure 24.  In-vivo estimates of the change in the attenuation coefficient with log10 of 

thermal dose using the inverse parameter estimation technique. Each data point is an 

average of the attenuation coefficient of three voxels within ±0.2 log10 of thermal dose. 



CHAPTER 8 

8. CONCLUSIONS AND FUTURE WORK 

Use of numerical beam simulation techniques for treatment protocol planning in 

MRgFUS has particular trade-offs and challenges. A large number of simulations are 

required to optimize the beam's path, power, and time-per-position while accounting for 

tumor geometry and location, normal tissue constraints, and changes in tissue parameters 

due to treatment; consequently numerical techniques that can accurately and rapidly 

model ultrasound beam propagation are required. Simplifying assumptions (like use of 

homogeneous models and acoustic parameters from table-value estimates in simulations) 

are frequently used to speed up calculation times but affect the accuracy of predictions, 

while techniques using realistic models have been traditionally considerably slower. The 

numerical beam propagation techniques developed in this work (ERFA, Ring-Bessel and 

HAS) allow for rapid (~5 s)  and accurate prediction of ultrasound power deposition 

patterns inside complex inhomogeneous tissue models (1-mm isotropic resolution) inside 

the tissue volume of interest (10x10x10 cm
3
) for MRgFUS treatments.  
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8.1.  Beam simulation techniques for MRgFUS 

The HAS technique is an extension of the traditional angular spectrum method 

and models linear beam propagation in complex inhomogeneous models by taking into 

account the effect of reflection, refraction and attenuation of the beam. In validation 

studies the technique was shown to be rapid and accurate, with a decrease in calculation 

time of more than two orders of magnitude compared to the FDTD technique, while 

giving essentially the same pressure pattern (normalized root mean square difference of 

1.3% over the entire 3D volume). The technique's ability to rapidly model beam 

propagation in realistic models was demonstrated by using a segmented breast model 

from a patient; the total calculation time for prediction of the pressure and SAR pattern 

was 5 s.  The HAS technique assumes steady state and linear propagation conditions and 

only models first order reflections. When modeling beam propagation through highly 

reflecting interfaces (for e.g. with bone) multiple reflections should be calculated. Since 

the HAS technique requires the pressure pattern to be specified on a plane, two 

techniques, the ERFA technique and the Ring-Bessel technique, were developed. These 

techniques calculate beam propagation in homogeneous medium, such as water, from a 

curved transducer surface to an intermediate plane; subsequent propagation of the 

ultrasound beam in complex inhomogeneous geometries use the HAS technique. In cases 

where the element response array can be precalculated, using the ERFA technique speeds 

up run-time calculation times by as much as 135 times compared to the commonly used 

R-S technique. In cases where the fixed ERFA parameters (transducer specifications, 

spatial sampling-frequency of the source and distance of the transducer from the 

intermediate plane) need to be changed frequently and hence precalculation of the EFRA 
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is not appropriate, the  R-B technique results in reducing calculation times by 30 times 

compared to the R-S technique. 

The speed of the numerical beam propagation techniques developed here allows 

for complex treatment planning decisions to be made in patient-specific models. Using 

segmented tissue models of tumor shape, size and location, these techniques have been 

combined with thermal simulations to optimize the treatment path. Further, these 

techniques have been used conjunction with thermal simulations to optimize transducer 

design parameters for particular clinical applications and to explore the trade-offs of 

transducer design parameters on near-filed heating in MRgFUS. 

8.2.  Subject-specific acoustic tissue parameters in MRgFUS 

A technique that uses the fast beam propagation techniques developed previously 

in an optimization routine with the traditional rate-of-temperature-increase technique and 

MR-temperature imaging (MRTI) was presented to noninvasively estimate subject-

specific tissue acoustic properties. The tissue properties estimated using the iterative 

parameter estimation technique were validated by comparing to two independent 

techniques: the through-transmission technique for homogeneous phantoms and an 

inverse-scattering tomography technique for inhomogeneous ex-vivo porcine muscle. The 

parameter estimation technique resulted in attenuation coefficient values within 5% of 

those determined using the independent techniques. The inverse parameter estimation 

technique was used in in-vivo rabbit thigh to measure change in attenuation coefficient of 

tissue with MRgFUS treatment and a linear dependence of attenuation change with log10 

of thermal dose was found; the slope of the attenuation change found using the 
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noninvasive technique in-vivo corresponded well with the slope determined using 

invasive thermocouples in in-vitro results presented in previous studies. 

8.3.  Future work 

8.3.1. Modeling non-linear beam propagation 

  All techniques for beam simulation in this work assume linear propagation 

conditions. At high intensity levels, non-linear effects of the beam propagation cause 

waveform distortion resulting in production of higher harmonics. These higher harmonics 

are rapidly absorbed, resulting in higher power deposition in the region. In order to model 

this effect, the HAS technique can be modified to propagate higher spatial frequencies at 

each sub-step.  

8.3.2. Modeling multiple reflections 

The HAS technique calculates the effect of reflection by calculating the energy 

reflected at each interface and back propagating this reflected wave. Multiple reflections 

are not presently implemented. In cases where beam propagation is modeled in tissues 

containing interfaces with a high acoustic mismatch (e.g., bone-tissue interface) multiple 

reflections should be considered.  

8.3.3. Modeling absorption and scattering in the media 

The loss of power as the ultrasound beam travels deeper in the tissue is due to 

attenuation of the beam; this term combines two effects of the beam propagation: 
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absorption of the beam resulting in SAR deposition, and scattering of the beam due to 

inhomogeneities in the medium of propagation. Separation of these two effects in the 

HAS technique will be valuable when using tissue samples with high scatter.  

8.3.4. Measuring time-course of attenuation change 

Applying repeated interrogation pulses immediately after the treatment and 

obtaining the SARexp information from these pulses would allow for information on the 

time course of the change in attenuation with treatment. Further, repeated interrogation 

pulses can be applied with interspersed cooling to measure whether the changes in tissue 

attenuation values are irreversible.  

8.3.5. Changes in attenuation with treatment of different tissue types 

The noninvasive technique can be applied to different in-vivo tissue types to 

examine the change in attenuation coefficient with treatment in different tissue types.  

         The noninvasive technique can be used to measure the efficiency of the transducer 

by using interrogation pulses in a sample with known attenuation coefficient, speed of 

sound and specific heat. 

 

  



APPENDIX 

This section contains the MATLAB code used to derive the results described in this 

dissertation. Each program begins with the function call specification, followed by 

comments and the code itself.  

function pp=RSfieldsB1FF(fMHz,Pr,Dv,Dh,imax,kmax,R,d,c0,rho0,Lv,Lh,Cv,Ch,h,v,z,… 

lmax,mmax, activearea,relem, ElemLoc,FF) 

%RSfieldsB1FF Code for implementation of the Rayleigh-Sommerfeld equation for 

%phased array transducer with fudge factor. 3D program to calculate the Rayleigh-

%Sommerfeld integral for a SPHERICALLY curved transducer of radius of curvature R 

%and overall dimensions of Dv (vertical) x Dh (horizontal) as measured along an arc.  The 

%input pt(i,k) is the pressure pattern on the source transducer as function of angles theta 

%(i=elevation  index) and phi (k=azimuth index). Output pp(l,m) is the pressure on a 

%secondary plane as a function of Cartesian coordinates (l=vert index, m=horiz index), as 

%calculated on this plane, a distance d away from the furthest point of the transducer 

%curved face.  The secondary plane has size Lv (vertical) x Lh (horizontal), which is 

%almost always the same size and matched with the face of the Modl into which the 

%pressure propagates. The center of the transducer axis is located distances Cv (vert) and 

%Ch (horiz) from origin of the secondary plane. Thus the center of this plane is offset from 

%the center of the transducer axis by amounts Ov and Oh. The medium between the 

%transducer and secondary plane has speed of sound c0.  pp(l,m) then becomes the source 

%for the Hybrid Angular Spectrum method for finding the subsequent pressure in an 

%inhomogeneous region defined by the Modl, and is stored as a binary .mat file with a 

%name such as PP_test.mat. The desired focal point of the spherical transducer is 

%determined by the phasing of the pressure pattern on the transducer (via electronic 

%focusing and steering), as given by the function 'SteeringPhases1'. The focal point is 

%located a distance v, h, z away from the geometrical focus of the transducer (at R), and 

%therefore at a distance Fv,Fh,Fz (vert, horiz, depth) away from the origin of the 

%secondary plane (aligned with Modl). Note: In this program, x is in the vertical direction 

%and y is in the horizontal direction, which often is backwards from other programs that 

%generate models and view results.  But this orientation of x and y is transparent to other 
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%programs since the input and output are put in terms of 'vertical' and 'horizontal'. Calls 

%function 'SteeringPhases1' and uses parameter file such as 'paramRS_test'. This version 

B %is modified to use a 'for' loop for yp increments, thus avoiding all 4D arrays (which do 

%implicit integration--see RSfieldsA program). Avoiding 4D arrays allows larger values 

%for imax, kmax, lmax and mmax in the available memory, but is slower. 

 

f=(fMHz/FF)*1e6; % convert to Hz.  

Ov=(Lv/2)-Cv; % convert location of center of transducer axis wrt origin of secondary  

  % plane (Modl) to offsets wrt center of secondary plane. 

Oh=(Lh/2)-Ch;  

 i=1:imax; k=1:kmax; l=1:lmax; m=1:mmax; % set up indices. 

dth=Dv/(R*imax); dphi=Dh/(R*kmax); % incremental size of source angle (in radians). 

dxp=Lv/lmax ; 

dyp=Lh/mmax; % incremental size of steps in secondary plane (in m) 

th=dth*(i-round(imax/2)); % angle row vector, centered; imax and kmax should be  

   % odd for symmetry 

phi=dphi*(k-round(kmax/2)); % angle row vector, centered 

thmesh=repmat(th',1,kmax);  % imax x kmax matrix of theta values, 'meshgrid' style 

phimesh=repmat(phi,imax,1); % imax x kmax matrix of phi values, 'meshgrid' style 

Zm=rho0*c0; Arc=min(Dv,Dh);% impedance of medium; diameter along arc of a 

circular    

  % transducer 

XducerArea=2*pi*R*R*(1-cos(Arc/(2*R))); % area of spherical segment 

ptunif=sqrt(Zm*Pr/XducerArea);  % pressure consistent with radiated power, if uniform 

 pabs=(ptunif/sqrt(activearea))*ones(imax,kmax); % increase pressure to account for  

  % active area 

pt=zeros(imax,kmax); % start with blank final pressure field 

thvect=ElemLoc(:,1); phivect=ElemLoc(:,2); %column vectors of theta and phi 

ang=SteeringPhases1(v,h,z,R,thvect,phivect,f,c0); % column vector of phases 

numelem=size(thvect,1); 

for g=1:numelem % cycle through elements 

    pelem=pabs.*cos(ang(g))+j*pabs.*sin(ang(g)); % element g has uniform pressure &  

        % phase 

    distfromelem=R*acos((cos(thvect(g))*cos(thmesh)).*cos(phivect(g)-phimesh)... 
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        +sin(thvect(g))*sin(thmesh));   % great circle distance from center of element g. 

    indelem=find(distfromelem > relem); 

    xelem=find(distfromelem<=relem); 

    pelem(indelem) = 0; % set pressure to zero in areas outside of element 

    pt=pt+pelem; % add element pressure to overall pressure field 

    end 

ss5=R*(cos(thmesh).*sin(phimesh)); % 2D matrix: imax x kmax 

s=repmat(ss5,[1,1,lmax]);% now 3D array 

yp=dyp*(m-round(mmax/2))+Oh;% vector (offset by Oh) 

aa5=R*(cos(thmesh).*cos(phimesh)); 

a=repmat(aa5,[1,1,lmax]);% 3D array: imax x kmax x lmax 

b=R-a; 

tt= R*sin(thmesh); 

t=repmat(tt,[1,1,lmax]); % 3D array 

xxp(1,1,:)=dxp*(l-round(lmax/2))+Ov;    % turn into 'page' vector, lmax pages long 

(xp=repmat(xxp,[imax,kmax,1]);% 3D array 

term1=(t-xp).^2; 

term3=(d-b).^2;  

cth=cos(thmesh);% cos theta matrix for spherical integration 

ppc=pt.*cth;  % pt is transducer source matrix (must be imax x kmax) 

pc=repmat(ppc,[1,1,lmax]);% product of pressure and cos theta now 3D array 

kk=2*pi*f/c0;  

ppi=zeros(kmax,lmax,mmax); % pre-allocate storage for ppi 

for mi=1:mmax 

    r=sqrt(term1 + term3 + (s-yp(mi)).^2);  % r is 3D array for each value of yp 

    ppi(:,:,mi)=(f*R*R*dth*dphi/c0)*sum(pc.*exp(j*(-kk*r + (pi/2)))./r); % Rayleigh- 

 % Sommerfeld integral over  xp only here, for one value of yp 

end  

pp=shiftdim(sum(ppi)); % pp is secondary plane pressure, an lmax x mmax matrix 
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function Q = HASfields(pp,fMHz,Lv,Lh,Lz,Modl,rho0,c0,FF,Ax,Cx) 

 %HASfields: This is a modified version of the HASfielfs1 program. This is a function that 

%will be called by the program MainLoop. The input of this function is pp( which is 

%previously calculated by the function RSfieldsBf). The outputs of this function are pout 

%and Q. The function uses a parameter file called paramHAS_loop1.The function loads a 

%Modl called Modl_loop1.Function using Hybrid Angular Spectrum approach for 

%calculating propagation of an ultrasound beam through an inhomogeneous medium. 

%Input pp(l,m) is the pressure on the input plane as function of Cartesian coords   (l = vert 

%index, m = horiz index). Output pout(l,m,n) is the 3D pressure pattern throughout the 

%lmax, mmax, nmax extent of the model 'Modl' (lmax = vert extent, mmax = horiz extent, 

%nmax = extent in propagation direction). dv, dh, and dz are vertical, horizontal and axial 

%increments of model space.  

c(1)=1.5e3;a(1)=0;rho(1)=1e3; % 1 is water 

[lmax,mmax,nmax] = size(Modl);  % The size of the model (lmax,mmax,nmax) sets the   

% size of  the simulation space.  lmax is vertical; mmax is horizontal.  lmax and mmax are  

% therefore also the size of the secondary plane input matrix pp.  Note: lmax and mmax   

% should be ODD numbers to keep fftshift symmetrical with the dc term at exact center of 

% spectrum.  

dv=Lv/lmax; % dv,dh,dz = vert, horiz, longitudinal element size in [m] 

dh=Lh/mmax; 

dz=Lz/nmax;  

f=(fMHz/FF)*1e6;   % convert to Hz 

 A=zeros(size(Modl));  % initialize 3D angular spectrum array 

b=zeros(size(Modl));  % initialize 3D propagation constant array 

pout=zeros(size(Modl));  % initialize 3D resultant pressure array 

Q=zeros(size(Modl));  % initialize 3D Q array 

 pp=conj(pp);    % needed because exponent sign is opposite in R-S and Ang  

  % Spectrum assumptions.  

sizepp=size(pp);   % pp is the source pressure in the secondary source plane 

if (lmax~=sizepp(1)) | (mmax~=sizepp(2)) 

    error ('Initial pressure field dimensions do not match model dimensions. Correct and try 

again.') 

end 

pout(:,:,1)=pp;      

 bprime(1)=2*pi*f/c0; % assume layer 1 is water, so average bprime = omega/c0 

A(:,:,1)=fftshift(fft2(pout(:,:,1))); % wraparound fft 
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% Since dfx=1/xmax=1/(lmax*dv), then transverse increments of A--in units of alpha and 

      % beta--are  dalphadl=2*pi/(lmax*dv*bprime(1)), and  

  % dbetadm=2*pi/(mmax*dh*bprime(1)) 

    % Note that x is vertical (lmax, dv direction) in this program,  

  % and y is horizontal (mmax, dh) 

dalphadl=2*pi/(lmax*dv*bprime(1)); 

dbetadm=2*pi/(mmax*dh*bprime(1)); 

alphaindex=(1:lmax)';  % note transpose to put in column vector form 

alpha=(alphaindex-ceil(lmax/2))*dalphadl; 

alphasq=alpha.*alpha; 

alphasqmat=repmat(alphasq,1,mmax); 

betaindex=(1:mmax);  

beta=(betaindex-ceil(mmax/2))*dbetadm; 

betasq=beta.*beta; 

betasqmat=repmat(betasq,lmax,1);  

Amag=abs(A(:,:,1)); 

Denom=sum(sum(Amag))*dalphadl*dbetadm; % discrete integration 

Numer=sum(sum((alphasqmat+betasqmat).*Amag))*dalphadl*dbetadm; % discrete integration 

M2(1)=Numer/Denom;  % 2nd moment 

%------------ Start of increment in n (z propagation direction) ------------- 

for n=2:nmax 

     cmat=zeros(size(Modl(:,:,n))); 

    attmat=zeros(size(Modl(:,:,n))); 

    rhomat=zeros(size(Modl(:,:,n))); 

for g=1:max(max(Modl(:,:,n))) % fill in speed of sound and attenuation matrices with  

  % actual values 

        ind=find(Modl(:,:,n)==g); 

        cmat(ind)=c(g); 

        attmat(ind)=a(g); 

        rhomat(ind)=rho(g);  

    end  

    if min(min(cmat))==0; error ('Some speed of sound values are zero.'); end 

     attmat=attmat*1e-4*f; % convert units of a from [1/cm*MHz] to [1/m] 
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    b(:,:,n)=2*pi*f./cmat; 

    bprime(n)=mean(mean(b(:,:,n)));% propagation constant averaged over entire n plane  

    dkplus=b(:,:,n)-bprime(n) + j*attmat;% variation of prop. constant from average 

  % plus attenuation 

    dkminus=b(:,:,n)-bprime(n) - j*attmat;% variation of prop. constant from average 

  % minus attenuation 

    pprime=pout(:,:,n-1).*(exp(j*dkplus*dz).*(1-(j*dkminus*dz*M2(n-1)/2))); % Eq (6) 

    Aprime=fftshift(fft2(pprime)); % complex Eq (8)  

    dalphadl=2*pi/(lmax*dv*bprime(n)); 

    dbetadm=2*pi/(mmax*dh*bprime(n)); 

    alphaindex=(1:lmax)'; % note transpose to put in column vector form 

    alpha=(alphaindex-ceil(lmax/2))*dalphadl; 

    alphasq=alpha.*alpha; 

    alphasqmat=repmat(alphasq,1,mmax); 

    betaindex=(1:mmax);  

    beta=(betaindex-ceil(mmax/2))*dbetadm; 

    betasq=beta.*beta; 

    betasqmat=repmat(betasq,lmax,1); 

     A(:,:,n)=Aprime.*exp(j*bprime(n)*dz*sqrt(1-alphasqmat-betasqmat));  % Eq (9) 

    Amag=abs(A(:,:,n)); 

    Denom=sum(sum(Amag))*dalphadl*dbetadm;  % discrete integration. 

    Numer=sum(sum((alphasqmat+betasqmat).*Amag))*dalphadl*dbetadm;  % discrete  

    % integration 

    M2(n)=Numer/Denom;  % 2nd moment 

     pmat=ifft2(ifftshift(A(:,:,n))); % Eq (10) 

    pout(:,:,n)=pmat; 

    Q(:,:,n)=abs(attmat.*pmat.*conj(pmat)./(cmat.*rhomat)); % some extremely small imag 

  % values not valid, so abs 

    end 
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function diffQ= AttenSpeedParam(v)  

%AttenuationSpeedParam:  Function that calculates the speed of sound and attenuation 

%values minimizing the error in one row of Q using a predefined value of power and FF in 

%a slice. This code assumes that the number of tissue types (different from water) in the 

%model is one (tissue type 2, since 1 is water), when dealing with changing tissue 

%properties, the code will have to be extended to optimize over the attenuation of all tissue 

%types. Efficiency, d and Fudge Factor are inputs, one way of determining these terms is 

%using a phantom with known properties and optimizing over these values. Different error 

%measurement terms can be used, mean squared diff, sum squared difference. The region 

%where the mean difference is calculated over is user and application dependent, eg, in 

%phantoms we have good SNR and can normalize over the entire focal zone, but in-vitro 

%we might want to only minimize over the central slice. This code is shown without using 

%a Mask when using the mask (which makes sure the difference is calculated over only 

%the noise free voxels) the difference term shown in line 50-51 can be used. Also the 

%Mask should be truncated the same way the Q_rel was truncated as in line-43. 

 

load Q_60W; % loading the experimental SAR pattern 

speed1=v(2); 

atten1=v(1); 

d=.084;  % distance of the transducer from the model (m) 

FF=1;  % factor to be multiplied to the beam to broaden the beam, eg 1 

power=60; % acoustic power input into the beam simulation  

Modl=ones(31,19,45); % size of Model 

ParamRSf; % load parameter file for RS calculation 

ParamHASf; % load parameter file for HAS calculation 

ElementDAnglesSiemens; % element location file for Transducer 

pp=RSfieldsB1FFUrvif(fMHz,Pr,Dv,Dh,imax,kmax,R,d,c0,rho0,Lv,Lh,Cv,Ch,h,v,z,lmax,

mmax,activearea,relem,ElemLoc,FF); 

[Q]=HASfieldsReflectionF(pp,fMHz,Lv,Lh,Lz,Modl,rho0,c0,FF,atten1,speed1); 

Q_Urvi=Convert_Q(Q); % convert simulation Q to exp coordinates 

Q_rel1=Q_rel(12:56,20:50,:); % truncate experimental Q pattern when using Mask  

  %truncate the Mask in the same way. 

clear Q_rel; % clear to save memory 

Q_rel=Q_rel1; % check units, it should be W/m3 

Q_sim=Q_sim*efficiency; % multiplied by transducer efficiency 

Q_simN=Q_sim/max(max(max(abs(Q_sim)))); % normalised error calculation 
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Q_relN=Q_rel/max(max(max(abs(Q_rel)))); 

diffQ1=Q_rel(:,:,3)-Q_sim(:,:,3); % calculating difference 

% diffQ1=Q_relN(:,:,3)-Q_simN(:,:,3); % normalized error 

 sqdiffQ=diffQ1.^2; % Squared difference 

ssqdiffQ=squeeze(sum(sum(sum(sqdiffQ)))); % Sum squared difference  
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clear all;clc; 

ParamRingCases1;  

%RingBesselSolid:Code to calculate the pressure pattern on an intermediate plane using 

%ring theory for a SOLID spherical transducer. The program  calls a steering function 

%(SteeringPhasesRing3), so the beam can be steered. It generates the complex pressure 

%pattern pp on an intermediate plane a distance d   from the back of the transducer, which 

%is the first plane of the HAS Modl (and which is a distance (d-Rc) from the geometrical 

%focal plane). This version 5 reads in an arbitrary number of rings in the transducer and 

%keeps the spacing around the circumference close to the spacing dE between rings.  In 

%the frequency domain, the rho spacing drho matches dfx or dfy, which in turn are set by 

%the overall size of the final pp pattern (including offsets).  The pp space pattern is carved 

%out of the larger pp2 pattern to match the first plane of the Modl. This version uses the 

%much faster interpolation routine ringNNinterp to interpolate from polar to Cartesian 

%coordinates. 

Lambda=c0/f; 

rhomax=min([0.995*(1/Lambda), 1/(2*dh), 1/(2*dv)]); % closeness to 1/Lambda 

  % determined empirically 

xoffs=ceil(abs(offsetx)/dh)*dh; % these values are a little larger than offsetx, but they  

  % make sure that dv and dh in g space pattern are exact after ifft of G 

yoffs=ceil(abs(offsety)/dv)*dv; 

  %xoffs=0;yoffs=0; 

dfx=1/(Lx+2*xoffs); dfy=1/(Ly+2*yoffs); % set by overall size of pp pattern in space. 

Nfx=round((1/dh)/dfx); % should always be an odd integer if Nx is odd integer and dfx correct 

Nfy=round((1/dv)/dfy); 

  % if 2*round(Nfx/2)==Nfx || 2*round(Nfy/2)==Nfy; 

drhomatch=min(dfx,dfy); dphimatch=drhomatch/rhomax; %  approx match to dfx or dfy, 

  % whichever is smaller 

Nrho=round(rhomax/drhomatch); % drho will be close to drhomatch. 

Nphi=round(2*pi/dphimatch); % note that since Nphi is constant, freq samples get close  

% together near origin, but this allows a matrix into bessel function argument for speed 

Nrho=201;Nphi=501;                                       

  %rho=linspace(rhomax/Nrho,rhomax,Nrho);    

  %  legacy rho with no dc since slows down griddata 

rho=linspace(0,rhomax,Nrho); % radius values in radial spatial frequency, with dc 

phi=linspace(0,2*pi*(1-1/Nphi),Nphi); % angle values in spatial frequency 

  % don't repeat 0,2pi 
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Sum=zeros(Nphi,Nrho);  % initialize Sum 

dq=asin(Rimax/Rc)/Nrings; % increment in angle to rings 

dE=Rc*dq;   % arc width of each ring 

      

hwb=waitbar(0,'Evaluating RING calculations...'); 

for i=1:Nrings 

    qm=(i+0.5)*dq;  % angle from axis to ring center (infinitesimally thin ring) 

    Rm=Rc*sin(qm);  % radius of ring i. 

    zc=Rc*cos(qm);  % distance of ring from the geometrical focal point  

    zi=d1-Rc+zc; % distance from ring to the intermediate plane  

  % (d is dist from xducer to model) 

    p=2*round((2*pi*Rm/dE+1)*.5)-1; % odd number of circ. samples in ring  

  %spacing close to dE 

    dth=2*pi/p; % increment in theta angle in ring plane 

    q=ceil(-p/2):floor(p/2);    % index symmetrical around zero   

    th=linspace(0,2*pi-dth,p);  % angle to circ. samples 

    ang=SteeringPhasesRing3(h,v,z,Rc,Rm,zc,f,c0,th);  

  % get phases for steering from solid xducer 

    h1=Rc*(cos(qm-dq/2)-cos(qm+dq/2));  % 'height' of spherical segment 

    dSm=(2*pi*Rc*h1)/p;  

  % surface area around each point, to equalize contribution from each point 

    Vc=(dSm*Vabs).*(cos(ang)+j*sin(ang)); % complex velocity of transducer points 

    Cni=(1/p)*fft(Vc);  % Fourier transform in theta 

    Cni=fftshift(Cni); 

    E1=Rm*(j.^q).*Cni;  % see ring theory for coefficient definitions 

    E1f=repmat(E1',1,size(phi,2)); 

    expon=q'*phi;   % shortcut meshgrid of exponent 

    E2=cos(expon) + j*sin(expon);   % same as exp(j*q*phi), % but quicker 

    q1=q(find(q==0):end);   % non-negative q's 

    q2=q1(2:end);           % positive q's 

    [q1m,rhom]=meshgrid(q1,rho);    % row, column order to give fastest bessel calc. 

    rhom1=2*pi*Rm*rhom; 

    J=besselj(q1m,rhom1);   % bessel functions of non-negative order 
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    JJ=J(:,2:end); 

    aa=(-1).^q2; 

    aaf=repmat(aa,size(rho,2),1); 

    JJa=JJ.*aaf; 

    JJb=fliplr(JJa);    % calculate negative bessel functions for negative orders. 

    Jc=[JJb,J];     % combine. 

    V=Jc*(E1f.*E2); 

    Vi=V'; 

    s=j*2*pi.*sqrt(((1/Lambda)*(1/Lambda))-(rho.*rho)); 

    SP1=exp(s*zi)./s;   % spectral propagator to zi, velocity -> pressure. 

    SP=repmat(SP1,size(phi,2),1); 

    Vout=Vi.*SP;    % propagate to intermediate plane at zi. 

    Sum=Sum+Vout;   % add up angular spectrum of all rings. 

    waitbar(i/Nrings) 

end 

close(hwb); pause(.1);  

fx=cos(phi')*rho;   % convert to array in rectangular coordinates 

fy=sin(phi')*rho; 

fxmax=Nx/(2*Lx); 

fymax=Ny/(2*Ly); 

p1=linspace(-fxmax,fxmax,Nx);   % maximum rect. spatial freqs. can be larger  

q1=linspace(-fymax,fymax,Ny);   %  than rhomax 

w=griddata(fx,fy,Sum,p1,q1'); 

w(find(isnan(w)))=0;    %  zero out all freqs. outside circular rhomax 

[fxm,fym,w]=griddata(fx,fy,Sum,p1,q1','nearest'); % alternate griddata, faster? 

rads=sqrt(fxm.*fxm + fym.*fym); 

w(find(rads>rhomax))=0;   %   zero out all freqs. outside circular rhomax 

pp2=fftshift(ifft2(ifftshift(w))); 
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function [Q_rel, Mask]=PolyFit2D(temps,TimeStep,Baselines,NosPts) 

%PolyFit2dD: Function to find the SAR when given 4D temps. Right now finds SAR only 

%in a plane, should be extended to find the SAR in all voxels. A Mask removes noise 

%voxels and does not calculate SAR over these points. Temps should be smaller than the 

%exp temps because we do not want to calculate over the transducer for example. 

%INPUT VARIABLES 

%temps: experimental temps 

%TimeStep: MRI temperature slice time step in seconds. 

%Baseline: The number of baseline measurements taken, this will be used to create a mask 

%of the noisy voxels.  

%TempFluc: The temperature fluctuation that is acceptable for the case, eg smaller for 

%phantoms and bigger for in-vivo studies. 

%NosPts: The number of points you want to use to calculate the initial slope, eg if you 

%want to use 3 pts to fir the line set NosPts to 2.  

%OUTPUT VARIABLES 

%Q_rel: The SAR pattern calculated in the region of interest. 

%Mask: A Mask is created with noisy voxels =0 and other =1. This mask will be used in 

%the optimization to make sure the noisy voxels are not used to calculate the summed 

%difference. NOTE: To make sure the data is not affected by human bias, the Mask should 

%be calculated separately before Q_rel is calculated.  

sizet=size(temps); slice=2; 

TempFluc=2; %temp fuctuation on the basis of which noisy voxels are set 

D=((abs(double(squeeze(temps(:,:,slice,1:Baselines)))))>TempFluc);  

D1=squeeze(sum(D,3)); 

Ay=(D1==0); 

Mask(:,:)=Ay; 

% Mask(80:128,:)=0; 

Q_rel1=zeros(sizet(1),sizet(2)); 

time=0:TimeStep:(TimeStep*NosPts); 

for hh=1:sizet(1) 

    for vv=1:sizet(2) 

        temp=polyfit(time,(squeeze(temps(hh,vv,slice,Baselines:(Baselines+NosPts)))'),1); 

        Q_rel1(hh,vv)=temp(1); 

    end  

end 

Q_rel=Mask.*Q_rel1*4186*1e3; 
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