
E x p l o i t i n g E a g e r R e g i s t e r R e l e a s e i n a R e d u n d a n t l y M u l t i - T h r e a d e d P r o c e s s o r

Niti Madan, Rajeev Balasubramonian
School of Computing, University of Utah

{ n i t i , r a j e e v } @ c s . u t a h . e d u *

Abstract

Due to shrinking transistor sizes and lower supply volt­
ages, transient faults (soft errors) in computer systems are
projected to increase by orders o f magnitude. Fault detec­
tion and recovery can be achieved through redundancy. Re­
dundant multithreading (RMT) is one attractive approach
to detect and recover from these errors. However, redun­
dant threads can impose significant performance overheads
by competing with the main program fo r resources such as
the register file. In this paper, we propose using eager reg­
ister release in the main program thread by exploiting the
availablity o f register values in the trailing thread’s register
space. This performance optimization can help support a
smaller register file and potentially reduce register file ac­
cess time, power consumption, and increase its immunity
towards soft errors.

Keywords: Reliability, redundant-multithreading, regis­
ter file design

1. Introduction

Lower supply voltages and shrinking transistor sizes
have led to an exponential increase in soft errors in mod­
ern computer systems [21, 28, 36]. Soft errors do not cause
any permanent device damage but can result in incorrect
program execution for a brief period of time. Soft errors in
memory circuits have long been known as a huge concern
but immunity in logic circuits has become critical only very
recently. Reliability has become a first class design con­
straint in modern processor design along with power and
performance. Several solutions have been proposed to mit­
igate the effect of these errors at process, circuit, and archi­
tecture level. Circuit-level solutions require re-designing of
all components and can also add significant design com­
plexity. For this reason, several studies have focused on
architectural techniques [2, 8, 13, 18, 22, 23, 24, 25, 26,
30, 34, 35] for fault detection and recovery at modest per­
formance and complexity overheads. Most of these ap­
proaches utilize some variant of redundant multithreading
(RMT) where a redundant thread executes a copy of the

*This work was supported in part by NSF grant CCF-0430063 and by
an NSF CAREER award.

main program for verification either on the same or on sepa­
rate processor cores. In an era of multi-threaded and multi­
core processor technology, it is only natural that these de­
signs be extended to provide reliability, making RMT an
attractive choice.

The register file is an important resource that deter­
mines the size of the in-flight instruction window and hence,
instruction-level-parallelism (ILP). In an SMT processor,
the register file becomes an even bigger constraint as it has
to support logical registers for each thread in addition to
the rename registers [33]. Improving the efficiency of reg­
ister allocation will lead to performance improvements, es­
pecially for multi-threaded workloads. It can also allow a
processor to match a baseline system's throughput with a
smaller register file, potentially causing improvements in
power consumption, clock speed, temperature, and poten­
tially freeing up area to implement ECC/parity. The regis­
ter file is already a vulnerable structure for single event up­
sets [11,35] and increasing rates of multi-bit upsets [15, 31]
will require more aggressive ECC/parity schemes.

In certain RMT implementations, the redundant thread
(also known as trailing thread) co-executes on a single SMT
core with the main program thread (also known as leading
thread). Just as in any multi-threaded system, this exerts
pressure on shared processor resources such as the regis­
ter file and issue queue. To address this drawback of RMT,
recent papers have attempted to improve register file effi­
ciency in such processors. Abu-Ghazaleh et al. [1] avoid
allocating registers for transient short-lived values. Kumar
and Aggarwal [12] employ the following optimizations: (i)
two narrow operands share a single register, (ii) two identi­
cal register values share the same physical register. For pro­
cessors without RMT, in order to improve the register file's
resiliency to soft errors, Hu et al. [9] and Ergin et al. [7]
propose that a single register can store copies of a narrow
operand, while Memik et al. [17] use dead or free registers
to opportunistically create copies of register values.

In this paper, we propose a novel register allocation
mechanism that takes advantage of redundancy within an
RMT processor. In a traditional register file system, the
older mapping of a logical register is de-allocated only
when the overwriting instruction commits. This guarantees
that if the overwriting instruction gets squashed due to a
misprediction, then the older mapping can be used for rein­

stating the architectural state. If a copy of the older map­
ping exists outside the physical register file, the older map­
ping can be de-allocated early. By exploiting the availabil­
ity of register values in the trailing thread's register space,
we can employ eager release in the leading thread's register
file. This optimization can boost the leading thread's per­
formance while allowing a very small number of errors to
go un-detected. We quantify these effects for a number of
RMT processor models.

It must be noted that eager register release can yield per­
formance benefits in any processor model, not just in RMT
implementations. It is especially well suited to RMT im­
plementations because (i) copies of register values already
exist in the system, and (ii) RMT implementations are typi­
cally multi-threaded and are more prone to register file bot­
tlenecks.

The paper has been organized as follows. Section 2 de­
scribes the redundant multi-threading implementations that
serve as baseline processor models in this study. Section 3
describes the eager register release mechanism for the lead­
ing thread. The proposed ideas are evaluated in Section 4
and we contrast our approach with related work in Sec­
tion 5. Section 6 summarizes the conclusions of this study.

2. Baseline Reliable Processor Models

We first discuss design aspects that are common to all
the baseline RMT implementations studied in this paper.
The leading thread executes ahead of its counterpart trail­
ing thread by a certain amount of slack to enable check­
ing for errors. The leading thread communicates its com­
mitted register results to the trailing thread for comparison
of values to detect faults. Load values are also passed to
the trailing core so it can avoid reading values from mem­
ory that may have been recently updated by other devices.
Thus, the trailing thread never accesses the L1 data cache.
This implementation uses asymmetric commit to hide inter­
core communication latency (if leading and trailing threads
execute on separate cores) - the leading thread is allowed
to commit instructions before checking. The leading core
commits stores to a store buffer (StB) instead of to memory.
The trailing core commits instructions only after checking
for errors. This ensures that the trailing core’s state can be
used for a recovery operation if an error occurs. The trail­
ing core communicates its store values to the leading core’s
StB and the StB commits stores to memory after checking.
We have used asymmetric commit even when leading and
trailing threads execute in SMT fashion on the same core.
This enables reduced design complexity and improves per­
formance as the trailing thread need not verify the leader’s
speculative register values.

To facilitate communication of values between leading
and trailing threads, first-in-first-out register value queues
(RVQ) and load value queues (LVQ) are used. As a per­
formance optimization, the leading core also communicates
its branch outcomes to the trailing core (through a branch

outcome queue (BOQ)), allowing it to have perfect branch
prediction. If the slack between the two threads is at least as
large as the re-order buffer (ROB) size of the trailing thread,
it is guaranteed that a load instruction in the trailing thread
will always find its load value in the LVQ. When external
interrupts or exceptions are raised, the leading thread must
wait for the trailing thread to catch up before servicing the
interrupt. The ICOUNT fetch policy [32] is used to deter­
mine priority for co-scheduled threads on an SMT processor
as long as the slack value is within an acceptable range.

The assumed fault model is exactly the same as in [8,
22]. The following condition is required in order to detect a
single fault:

• The data cache, LVQ, and buses that carry load values
must be ECC-protected as the trailing thread directly
uses these load values.

Other structures in each core (including the RVQ) need not
have ECC or other forms of protection as disagreements
will be detected during the checking process. The BOQ
need not be protected as long as its values are only treated
as branch prediction hints and confirmed by the trailing
pipeline.

The following additional condition is required in order
to detect and recover from a single fault:

When an error is detected, the register file state of the
trailing thread is used to initiate recovery. The trailing
thread’s register file must be ECC-protected to ensure
that values do not get corrupted once they have been
checked and written into the trailer’s register file.

Similar to the baseline model in [8, 22], we assume that the
above condition is not met (i.e., the trailer’s register file is
not ECC-protected). Hence, a single fault in the trailer’s
register file can only be detected 1. All other faults can be
detected and recovered from.

We consider RMT implementations that make various
design choices along the following axes: (i) the cores that
leading and trailing threads execute on, (ii) power-efficient
execution of trailing threads when possible, and (iii) support
for single and multi-thread workloads.

• Simultaneously and Redundantly Threaded pro­
cessor with Recovery (SRTR) is based on the fault-
tolerant processor model proposed in [34]. In this im­
plementation, the leading and the trailing thread co­
execute in SMT fashion on the same core as shown in
Figure 1(a). We have changed the model proposed in
SRTR and added asymmetric commit to it. The hard­
ware cost of redundancy is relatively low in SRTR,
making it an attractive solution. However, SRTR suf­
fers from significant performance overheads as the
trailing thread puts pressure on shared resources.

1 If no ECC is provided within the register fi le, Triple Modular Redun­
dancy will be required to detect and recover from a single fault.

2

(a) SRTR (b) CRTR

Out-of-Order RVQ, LVQ, BOQ In-Order
CPU 1 - J 1 1 1 1 1 1 1 ► CPU 2

Trailing 1
Leading 1

(c) ST-P-CRTR (d) MT-P-CRTR

F ig u re 1. RMT Design Space

In-Order

T ra i l in g 1

C P U 2

In-Order

T ra i l in g 2

C P U 3

• Chip-level Redundantly-Threaded processor with
Recovery (CRTR) is the model proposed by [8, 22]
where each core is a dual-threaded SMT processor. In
the CRTR architecture, the trailing thread of one appli­
cation shares its core with the leading thread of a dif­
ferent application (shown in Figure 1(b). This archi­
tecture has been optimized for higher throughput for
multi-threaded workloads.

• Single-thread Power-efficient Chip-level
Redundantly-Threaded processor with Recovery
(ST-P-CRTR) is a power-efficient implementation of
a single-thread RMT processor [13, 14]. It extends
some of DIVA’s [2] concepts to general-purpose cores.
This model executes the leading thread on an aggres­
sive out-of-order processor and its trailing thread on
a simple in-order core as shown in Figure 1(c). An
in-order core by itself is not capable of matching the
leading thread’s throughput even with perfect caching
and branch prediction. The RVQ is therefore also
made to carry instruction source operands to enable
perfect value prediction at the trailing core. This
optimization does not compromise fault coverage
because the source operands are also verified at
the trailer. Even though this increases inter-core
bandwidth requirements, the net effect is a reduction
in power consumption because of the efficiency of a
low-frequency in-order checker core.

• MT-P-CRTR is a multi-threaded extension of ST-P-
CRTR. Two different leading threads execute in SMT

fashion on a single out-of-order core, while their cor­
responding trailing threads execute on separate simple
in-order cores [13, 14] as shown in Figure 1(d). CRTR
has higher performance than MT-P-CRTR. This is be­
cause each leading thread in CRTR is co-scheduled
with a trailing thread that does not execute speculative
instructions and therefore poses less contention for the
SMT core’s resources. MT-P-CRTR consumes much
lower power than CRTR. Both, ST-P-CRTR and MT-
P-CRTR, employ dynamic frequency scaling (DFS)
to allow the trailing core to match the leading core’s
throughput, while consuming the least possible power.

In this paper, we are not necessarily arguing for one base­
line implementation over the other. These models repre­
sent different points on the performance-power-complexity
curves and enable a more comprehensive evaluation of our
register allocation techniques.

3. Proposed Register Allocation Policies

It is a well-known result that register utilization in mod­
ern out-of-order processors is extremely inefficient. Reg­
isters are allocated long before a result is actually written
into them and de-allocated much after their last use. Many
papers have targeted both of the inefficiencies above (for
example, [3, 5, 19]). In a conventional processor, physi­
cal registers are conservatively de-allocated. When a logi­
cal (architectural) register is over-written by a new instruc­
tion, it is assigned a new physical register. However, the

3

old register mapping for that logical register cannot be de­
allocated immediately. If the new instruction is squashed
(because of a branch mis-speculation or exception), the old
mapping has to be re-instated. Therefore, the old mapping
can be freed only when the new instruction commits. It
has been proposed [3] that old mappings be copied away
into a larger second-level register file that is off the critical
path. This allows registers in the first-level register file to be
recycled sooner, improving their utilization and supporting
a larger in-flight instruction window. Since old mappings
are not discarded, the processor can still recover from mis-
speculations and exceptions.

Such a technique is especially well-suited to an RMT
processor. The RMT processor already maintains multiple
copies of register values. Hence, threads can quickly re­
cycle registers and be guaranteed of safe recovery in case
it is warranted. The only catch is that recovery may not be
possible if a redundant copy is already corrupted. The RMT
implementation is therefore no longer capable of detecting
every single fault. Since most systems do not expect zero
FIT rates, this may represent an acceptable performance-
reliability trade-off.

3.1. Implementation Details

We first describe our eager register release mechanism in
the context of the single-thread ST-P-CRTR model, where
leading and trailing threads execute on separate cores (Fig­
ure 1(c)). This basic design can be easily extended to other
RMT implementations.

In a baseline system, a physical register is de-allocated
when the instruction that over-writes the corresponding log­
ical register is committed. In the proposed system with
eager register release, a physical register P belonging to a
leading thread is de-allocated when the following condi­
tions are met:

the physical register value has been read by all con­
suming instructions in the pipeline,

the instruction that writes to the physical register (instr
A) has been committed by the leading thread and the
physical register value has been copied into the RVQ,

• a new instruction that over-writes the corresponding
logical register has entered the pipeline (instr B).

We chose to not implement a more aggressive release policy
in order to minimize the number of recoveries.

After being released eagerly, physical register P can be
assigned to a new instruction. If a branch mis-predict or
exception occurs between instr A and instr B, physical reg­
ister P is freed because all instructions after the branch are
squashed. The old value of physical register P must now be
re-instated. If the trailing thread has not executed instr A,
the value of register P will be found in the RVQ. The leader
re-instates this value into physical register P and continues.
Even if the result in the RVQ is corrupted, it will undergo a

check at the trailer and the error will be flagged. If the trail­
ing thread has already executed instr A , the checked value
will be found in the trailing thread's register file (in register
Q). Since the leading thread has not committed instr B, the
trailing thread would also not have executed instr B (note
that the trailer maintains a minimum slack). Hence, the
register value Q would not have been over-written and will
represent the most up-to-date mapping of the correspond­
ing logical register in the trailer. The value in register Q is
copied into register P and the leading thread resumes exe­
cution.

In the second case above, it is possible that an error may
go un-detected. When the trailing thread commits instr A , it
verifies the result in the RVQ before storing it into register
Q. If the value in Q then gets corrupted, the leading thread,
on recovery, will also adopt the incorrect value. The error
will never be detected as both threads will continue to agree
on all results. In a baseline RMT system, if Q does get cor­
rupted, an error will be flagged because the consumer of P
in the leader and the consumer of Q in the trailer will even­
tually dis-agree. However, the probability of an un-detected
error in the new system is extremely low. The following
conditions must be met: (i) the leader has not committed
instr B , (ii) the trailer has committed instr A , and (iii) the
specific register Q is corrupted. Since we maintain a large
slack and since successive writers to a logical register are
not greatly separated, the likelihood that (i) and (ii) are both
true is extremely small (quantified in the next section).

We now briefly examine the storage and control struc­
tures required to implement the above copy and recovery
operations. Each physical register in the leading core re­
quires a bit to track whether the corresponding logical reg­
ister has been over-written (overwrite bit) and another bit
to track if the value has been copied into the RVQ (inJZVQ
bit). If the register value has been copied into the RVQ,
then the corresponding RVQ address also needs to be stored
(RVQ-address field). Each physical register maintains a
counter for the number of outstanding consumers (pend-
ing-consumers). This counter is incremented when con­
sumers are dispatched and decremented when consumers
leave the issue queue. Each physical register also keeps
track of the instruction that it is assigned to. A usage ta­
ble structure does the above book-keeping for each physi­
cal register. The ROB entry of the over-writing instruction
(instr B in the example above) keeps track of the recovery
operations it must initiate if it is squashed. This includes
maintaining the instruction number inum (instr A in the ex­
ample above), logical register ID lreg for the physical regis­
ter (P) that it caused to be released eagerly and a de-allocate
bit.

Figure 3 shows a block level depiction of our eager re­
lease implementation. Our technique can release a physi­
cal register eagerly any time after the previously described
conditions are met. In our simulations, we check the usage
table every cycle to determine the registers that can be re­
leased eagerly. An alternative approach, not considered in

4

Leading Core Trailing core

F ig u re 2. Block-level Implementation of Eager Release in a ST-P-CRTR model

this study, can release physical registers eagerly when the
number of registers in the free pool falls below a certain
threshold.

These auxiliary structures and control logic can impose
a non-trivial complexity overhead. However, this overhead
may be justifiable as it enables significantly higher through­
put or the design of a small register file. SMT workloads
can especially benefit from eager release and potentially
tolerate the complexity overhead for these structures. For
example, the register file may now be small enough that it
can be implemented as a single-cycle structure or it has the
latency/power/area budget to implement ECC.

Since the auxiliary structures are outside the sphere of
replication, they are also vulnerable to soft errors. Luckily,
faults in these structures do not result in silent data corrup­
tion (SDC). Consider an example where a bit in the usage ta­
ble is affected and the pending .consumers field reaches zero
even though active consumers exist in the pipeline. If the
corresponding register is released eagerly and re-allocated,
the pending consumer may read an incorrect value and pro­
duce a wrong result. Such an error will be detected by the
redundant instruction in the trailing thread. This argument
holds true even when other fields in the usage table are cor­
rupted by soft errors.

For most of this paper, the eager register release mech­
anism is only applied to physical registers in the leading
thread. The technique may also apply to the trailing thread.
If a register value is eagerly discarded by the trailing thread,
it may be unable to recover from a branch mis-predict. Note
that a branch mis-predict in the trailer happens only when
a soft error manifests. A missing result in the trailing reg­
ister file can therefore hamper recovery. Secondly, an ILP
improvement in the trailer may be beneficial because the
trailer can further scale down its frequency and save power.
We evaluated this technique, but found that the ILP im­
provement of the trailing thread was marginal in most cases
because high-ILP threads are already efficient at re-cycling
registers. Because of the above two reasons, we only con­
sider eager register release for leading threads.

Branch Predictor Comb, of bimodal,2-level (per core)
Level 1 and 2 Predictor 16384 entries
Branch Mpred Latency 12 cycles
Instruction Fetch Queue 32 (per Core)

Fetch/Dispatch/Commit width 4 (fetch upto 2 branches)
IssueQ size 40 (Int) 30 (FP) (per Core)

Reorder Buffer Size 160 (per Thread)
LSQ size 200 (per Core)

(Single thread) LI D,I-cache 32KB 2-way (per Core)
(Multi-thread) LI D,I-cache 128KB 2-way (per Core)

L2 unifi ed cache 2MB 8-way, 20 cycles (per Core)
Memory Latency 300 cycles for the fi rst chunk

RVQ/BoQ/LVQ sizes 600/200/400 entries

T ab le 1. Simplescalar Simulation Parameters

4. Results

4.1. Performance Evaluation

We use a multi-threaded version of Simplescalar-3.0 [4]
for the Alpha AXP ISA for our simulations. The simula­
tor has been extended to implement both homogeneous and
heterogeneous CMP architectures. We have modeled each
core as a 2-way SMT or as an in-order processor. Table 1
shows relevant simulation parameters. CACTI-3.2 [27] has
been used to compute area, performance, and power results
for different register file configurations.

As an evaluation workload, we use the 8 integer and 8
floating point benchmark programs from the SPEC2k suite
that are compatible with our simulator. The executables
were generated with peak optimization flags. The programs
were fast-forwarded for 2 billion instructions, executed for
1 million instructions to warm up various structures, and
measurements were taken for the next 100 million instruc­
tions. To evaluate multi-threaded models, we have formed a
benchmark set consisting of 10 different pairs of programs.
Programs were paired to generate a good mix of high IPC,
low IPC, FP, and Integer workloads. Table 2 shows our
benchmark pairs. Multithreaded workloads are executed
until the first thread commits 100 million instructions.

5

Benchmark Set Set# IPC Pairing Benchmark Set Set# IPC Pairing
art-applu 1 FP/FP/Low/High bzip-fma3d 2 Int/FP/Low/FIigh

bzip-vortex 3 Int/Int/Low/Low eon-art 4 Int/FP/FIigh/Low
eon-vpr 5 Int/Int/High/High gzip-mgrid 6 Int/FP/Low/Low

mesa-equake 7 FP/FP/High/High swim-lucas 8 FP/FP/Low/Low
twolf-equake 9 Int/FP/FIigh/FIigh vpr-gzip 10 Int/Int/FIigh/Low

T ab le 2. Benchmark pairs for the multi-threaded workload.

4.2. Performance Evaluation

For all our experiments, we set the ROB size to 160 per
thread and attempt to fill the window with a much smaller
set of registers. We evaluate the effect of the baseline con­
ventional register de-allocation policy as well as the eager
register release policy as the register file size is gradually
increased. We initially assume that there is no performance
penalty for recovery of eagerly released register values, i.e.,
this recovery happens in parallel with the fetch of instruc­
tions from the correct branch path. Later, we show the effect
of non-zero recovery latencies.

Figure 3 shows the IPC curve for the SRTR model where
both leading and trailing threads execute on the same SMT
core. With eager register release, a physical register file
of 100 entries has performance equivalent to a base model
with 160 register entries. Compared to a baseline proces­
sor with a 100-entry register file, the eager release policy
enables a 10% performance improvement. For the CRTR
model (Figure 4), we see a similar result trend as SRTR,
where the eager release policy can match the baseline’s per­
formance with 37.5% fewer register entries. With a fixed
register file size of 100, the eager release policy yields a
34% performance improvement over the baseline policy. A
similar result is also seen for the MT-P-CRTR model (Fig­
ure 6) where the allocation of threads to cores is different
and the trailing threads are frequency-scaled. Finally, we
verify our results for the single-thread ST-P-CRTR model
(Figure 5). Since only a single thread context executes on
each core in this case, we find that a 50-entry register file
with eager release is equivalent in performance to an 80-
entry conventional register file. Floating-point programs ex­
hibit higher performance improvements with eager register
release - for a 50-entry register file, eager release causes an
improvement greater than 20% for five FP programs (swim,
art, mesa, mgrid, lucas) and one integer program (vpr). Pro­
grams with poor branch prediction accuracies do not benefit
as much from quick register re-cycling and larger in-flight
windows - gcc, equake, eon, and fm a3d show an improve­
ment of less than 3%. In general, we find that models that
execute two leading threads on the same core (MT-P-CRTR)
benefited much more from eager register release because of
the much higher pressure on the register file.

We observe that the cost of copying eager released val­
ues back to the leading thread on a recovery is not very high.
For a single-thread 100M instruction simulation, about 70
million registers are released eagerly, of which only 6% are
copied back as part of a branch mispredict recovery. The

without eager release for SRTR

without eager release for CRTR

without eager release for ST-P-CRTR

6

without eager release for MT-P-CRTR

head in all RMT models

Single Thread Register File
RF Size Energy (nj) Access time (ns) Area (cm2)

50 0.78 0.506 0.00764
60 0.805 0.527 0.00821
70 0.848 0.59 0.00958
80 0.879 0.627 0.0101

Multi-thread Register File
100 2.41 1.005 0.0421
120 2.617 1.145 0.0466
140 2.816 1.248 0.051
160 3.027 1.411 0.0555
200 3.432 1.72 0.0644

T ab le 3. Access time, energy and area results derived
from CACTI (90nm technology)

programs bzip and eon have the highest percentage (13%)
of copy-backs, while programs such as swim, lucas, and
mgrid have a low branch mispredict rate and much fewer
total copy-backs. The cost of copying results back depends
on the program’s branch prediction rate. On average, each
branch mispredict requires that 6.6 register values be copied
back to the leading thread. We expect that the cost of copy­
ing results back into the leader can be hidden by the cost to
fill the pipeline with correct-path instructions. As a sensitiv­
ity study, Figure 7 shows the average IPC loss for each RMT
implementation if the latency for a branch mispredict recov­
ery is increased by 5 and 10 cycles. For a 5-cycle penalty,
the maximum observed performance degradation is 4%. In
all our RMT implementations, the trailing thread continues
to execute while the leading thread recovers from a branch
mis-predict. If we pessimistically assume that branch re­
covery consumes all register ports and even trailing threads
are stalled during the recovery phase, the additional loss in
performance is less than 1% for all models.

4.3. Fault Injection Analysis

As described in Section 3, the eager release mechanism
can lead to un-detected faults. This can happen if the gap
between successive writes to a logical register is greater
than the slack between leading and trailing threads. We
computed the intervals between successive writes to a logi­
cal register and observed that 90% of the time, this interval
was less than 100 instructions. For most of our simulations,
the average slack hovers around 500 instructions. This en­
sures that for more than 99% of all cases, an eagerly re­
leased register value can be found in the RVQ, not in the
trailer’s register file. We evaluated the effect on error cover­
age by injecting faults into our Simplescalar simulations2.
Once every 1000 cycles, a valid bit is flipped in a random
register in the trailer. Only 0.0004% of all these incorrect
values were copied back into the leader, causing an error to
go un-detected. This analysis is conservative because some
errors will get architecturally masked and not lead to silent
data corruption (SDC).

4.4. Discussion

Our results so far have shown that eager register release
causes a minor decrease in fault coverage, but can improve
a fixed register file’s performance by up to 34%. Alterna­
tively stated, a 50-entry register file with eager release, can
match the performance of an 80-entry register file. We mod­
ified CACTI-3.2 to model access time, area, and energy of
various register file organizations at 90nm technology. The
move from an 80-entry register file to a 50-entry register file
has a number of favorable implications, quantified below.

2Not all faults at the transistor level manifest themselves at the microar­
chitectural level. The use of a functional simulator such as Simplescalar
allows us to carry out our analysis only for faults that manifest themselves
in data and control paths at the microarchitecture level modeled by Sim-
plescalar.

7

Table 3 shows CACTI results for both single- and multi­
threaded register files. We assume that a single-threaded
register file has 8 read ports and 4 write ports. The multi­
threaded register file has 16 read and 8 write ports. If the
register file is a cycle-time constraint, a 50-entry register
file can enable a 19% increase in clock speed, compared
to the 80-entry register file. The 50-entry register file also
consumes 11% less energy and 25% less area. Similar ob­
servations are made when the multi-threaded register file is
shrunk from 160 to 100 entries. It has been reported that
an ECC implementation imposes a 6% power and 16% area
overhead on the register file. By implementing a smaller
register file, we may have the power and area budget within
the register file to implement ECC [15, 31]. The computed
ECC overheads are for a SEC-DED (single error correc­
tion and double error detection) ECC scheme. Multi-bit
errors will require even more aggressive ECC/parity pro­
tection schemes such as DEC-TED (double error correction
and triple error detection). Note that a baseline RMT imple­
mentation can guarantee error detection and recovery only
if the trailing register file has ECC protection. Hence, the
ability to implement ECC in the register file has important
implications for error recovery.

In this preliminary study, we have not quantitatively
compared the benefits of the eager release mechanism with
other recent register file proposals, such as those that exploit
narrow-width operands (for example, [12]). We feel that the
eager-release strategy is orthogonal to narrow-width opti­
mizations as the two techniques target different sources of
register file inefficiency. We therefore expect that the two
techniques can be combined to yield significantly greater
speedups. The implementations of either technique entail
non-trivial complexity and will likely determine the com­
mercial feasibility of each approach.

5. Related Work

Many fault-tolerant architectures [2, 8, 22, 25, 26, 29,
34] have been proposed over the last few years. AR-
SMT [26] was the first design to use multi-threading for
fault detection. Mukherjee et al. proposed fault detection
using simultaneous multi-threading and chip-level redun­
dant multi-threading [22, 25]. Vijaykumar et al. augmented
the above techniques with recovery mechanisms [8, 34].
Some designs such as DIVA [2] use an in-order checker core
to verify the results of an aggressive superscalar processor.

Smolens et al. study the performance impact of redun­
dant execution on the issue logic and ROB [30]. Recently,
many researchers have looked into efficient techniques to
improve register file efficiency and reliability [1, 7, 9, 12,
16, 17]. Memik et al. [17] propose utilizing free registers
and predicted dead registers to store register value copies
for increasing the register file’s immunity to soft errors.
Memik et al. also present a reliability model that com­
putes the probability of soft error occurrence as a function
of the operating clock frequency [16]. They propose that a

register file can be overclocked for performance improve­
ment and the resulting increase in soft error rate can be mit­
igated by employing their earlier technique [17]. In [9, 12],
narrow-width operands are allocated a single register to re­
duce register file resource redundancy. Kumar and Aggar­
wal [12] apply register re-use and narrow-width operand
register sharing techniques to reduce the performance and
power overheads in simultaneous redundant multithreading.
Similarly, Hu et al. [9] eliminate the requirement of copy
registers by storing 2 copies of a narrow-width operand in a
single register.

A number of implementations for early register release
in non-RMT superscalars have been proposed in recent
years [3,6,10,20]. Continued interest in this area may well
produce a complexity-effective implementation in the near
future. Ergin et al. [6] introduce checkpointed register files
to implement early register release. Jones et al. [10] use a
compiler-assisted early register release technique. Balasub-
ramonian et al. [3] propose using a two-level register file
where the first level register file is smaller in size and ea­
gerly released registers are stored in a second level register
file. Our proposal is the first application of the eager release
technique to an RMT processor.

6. Conclusions

In this paper, we have shown that redundant copies of
a register in an RMT system make it a perfect candidate
for the eager register release policy. The quick re-cycling
of registers allows the register file to support a much larger
window of in-flight instructions. The impact on fault cov­
erage is marginal. We show that this technique is effective
for a number of RMT implementations, with multi-threaded
throughput being improved by up to 34%. We also show
that a 100-entry register file can match the throughput of a
160-entry register file. A smaller register file has favorable
implications on clock speed, power, area, and even reliabil­
ity by making ECC more affordable. For future work, we
plan to investigate more complexity-effective implementa­
tions of eager register release.

References

[1] N. Abu-Ghazaleh, J. Sharkey, D. Ponomarev, and K. Ghose.
Exploiting Short-Lived Values for Low-Overhead Transient
Fault Recovery. In Proceedings of Workshop on Architec­
tural Support for Gigascale Integration, June 2006.

[2] T. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In Proceedings of MICRO-32,
November 1999.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Re­
ducing the Complexity of the Register File in Dynamic Su­
perscalar Processors. In Proceedings of MICRO-34, pages
237-248, December 2001.

[4] D. Burger and T. Austin. The Simplescalar Toolset, Ver­
sion 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, June 1997.

8

[5] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham.
Multiple-Banked Register File Architectures. In Proceed­
ings of ISCA-27, pages 316-325, June 2000.

[6] O. Ergin, D. Balkan, D. V. Ponomarev, and K. Ghose. In­
creasing processor performance through early register re­
lease. In ICCD, 2004.

[7] O. Ergin, O. Unsal, X. Vera, and A. Gonzalez. Exploiting
Narrow Values for Soft Error Tolerance. Computer Archi­
tecture Letters, 5, June 2006.

[8] M. Gomaa, C. Scarbrough, and T. Vijaykumar. Transient-
Fault Recovery for Chip Multiprocessors. In Proceedings of
ISCA-30, June 2003.

[9] J. Hu, S. Wang, and S. Ziavras. In-Register Duplication:
Exploiting Narrow-Width Value for Improving Register File
Reliability. In DSN, 2006.

[10] T. M. Jones, M. F. P. O’Boyle, J. Abella, A. Gonzalez, and
O. Ergin. Compiler directed early register release. In IEEE
PACT, 2005.

[11] T. Karnik, P. Hazucha, and J. Patel. Characterization of Soft
Errors Caused by Single Event Upsets in CMOS Processes.
In IEEE Transactions on Dependable and Secure Comput­
ing, volume 01, pages 128-143, 2004.

[12] S. Kumar and A. Aggarwal. Reduced Resource Redundancy
for Concurrent Error Detection Techniques in High Perfor­
mance Microprocessors. In Proceedings of HPCA-12, Feb
2006.

[13] N. Madan and R. Balasubramonian. Power-Effi cient Ap­
proaches to Reliability. Technical Report UUCS-05-010,
University of Utah, December 2005.

[14] N. Madan and R. Balasubramonian. A First-Order Analy­
sis of Power Overheads of Redundant Multi-Threading. In
Proceedings of the Second Workshop on the System Effects
of Logic Soft Errors (SELSE-2), April 2006.

[15] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Charac­
terization of multi-bit soft error events in advanced SRAMs.
In Digest of International Electron Devices Meeting, 2003.

[16] G. Memik, M. H. Chowdhury, A. Mallik, and Y. I. Ismail.
Engineering over-clocking: Reliability-performance trade­
offs for high-performance register fi les. In DSN, pages 770­
779, 2005.

[17] G. Memik, M. Kandemir, and O. Ozturk. Increasing Reg­
ister File Immunity to Transient Errors. In Proceedings of
DATE-2005, Mar 2005.

[18] A. Mendelson and N. Suri. Designing High-Performance
and Reliable Superscalar Architectures: The Out-of-Order
Reliable Superscalar O3RS Approach. In Proceedings of
the International Conference on Dependable Systems and
Networks, June 2000.

[19] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and
V. Vinals. Delaying Physical Register Allocation through
Virtual-Physical Registers. In Proceedings of MICRO-32,
pages 186-192, November 1999.

[20] T. Monreal, V. Vinals, A. Gonzalez, and M. Valero. Hard­
ware schemes for early register release. In ICPP '02: Pro­
ceedings of the 2002 International Conference on Parallel
Processing (ICPP'02), 2002.

[21] S. Mukherjee, J. Emer, and S. Reinhardt. The soft-error
problem: An architectural perspective. In Proc. of 11th In­
ternational Symposium on High Performance Computer Ar­
chitecture HPCA, 2005.

[22] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed Design
and Implementation of Redundant Multithreading Alterna­
tives. In Proceedings ofISCA-29, May 2002.

[23] M. Rashid, E. Tan, M. Huang, and D. Albonesi. Exploiting
Coarse-Grain Verifi cation Parallelism for Power-Effi cient
Fault Tolerance. In Proceedings of PACT-14, 2005.

[24] J. Ray, J. Hoe, and B. Falsafi . Dual Use of Superscalar Dat­
apath for Transient-Fault Detection and Recovery. In Pro­
ceedings of MICRO-34, December 2001.

[25] S. Reinhardt and S. Mukherjee. Transient Fault Detection
via Simultaneous Multithreading. In Proceedings of ISCA-
27, pages 25-36, June 2000.

[26] E. Rotenberg. AR-SMT: A Microarchitectural Approach
to Fault Tolerance in Microprocessors. In Proceedings of
29th International Symposium on Fault-Tolerant Comput­
ing, June 1999.

[27] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model. Technical Report
TN-2001/2, Compaq Western Research Laboratory, August
2001.

[28] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the Effect of Technology Trends on
the Soft Error Rate of Combinatorial Logic. In Proceedings
of DSN, June 2002.

[29] T. J. Slegel, R. M. A. III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. Mac-
Dougall, T. J. McPherson, J. A. Navarro, E. M. Schwarz,
K. Shum, and C. F. Webb. IBM’s S/390 G5 Microprocessor
Design. In IEEE Micro, volume 19, pages 12-23, 1999.

[30] J. Smolens, J. Kim, J. Hoe, and B. Falsafi . Effi cient Resource
Sharing in Concurrent Error Detecting Superscalar Microar­
chitectures. In Proceedings of MICRO-37, December 2004.

[31] M. Spica and T. Mak. Do We Need Anything More Than
Single Bit Error Correction (ECC)? In Proceedings of In­
ternational Workshop on Memory Technology, Design and
Testing (MTDT'04), 2004.

[32] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting Choice: Instruction Fetch and Issue
on an Implementable Simultaneous Multithreading Proces­
sor. In Proceedings of ISCA-23, May 1996.

[33] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multi­
threading: Maximizing On-Chip Parallelism. In Proceed­
ings ofISCA-22, pages 392-403, June 1995.

[34] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault
Recovery via Simultaneous Multithreading. In Proceedings
of ISCA-29, May 2002.

[35] N. Wang, J. Quek, T. Rafacz, and S. Patel. Characterizing
the Effects of Transient Faults on a High-Performance Pro­
cessor Pipeline. In Proceedings of DSN, June 2004.

[36] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt. Tech­
niques to reduce to soft-error rate in high performance mi­
croprocessors. In Proc. of 31st Annual International Sympo­
sium on Computer Architecture ISCA, 2004.

9

