
EFFICIENT SUMMARIZATION TECHNIQUES FOR

MASSIVE DATA

by

Jeffrey Jestes

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2013

Copyright c© Jeffrey Jestes 2013

All Rights Reserved

T he U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Jeffrey Jestes

has been approved by the following supervisory committee members:

Feifei Li , Chair 7/30/2013

Date Approved

Ke Yi , Member 7/30/2013

Date Approved

Graham Cormode , Member 7/30/2013

Date Approved

Suresh Venkatasubramanian , Member 7/30/2013

Date Approved

Jeff M. Phillips , Member 7/30/2013

Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

We are living in an age where data are being generated faster than anyone has previously

imagined across a broad application domain, including customer studies, social media,

sensor networks, and the sciences, among many others. In some cases, data are generated

in massive quantities as terabytes or petabytes. There have been numerous emerging

challenges when dealing with massive data, including: (1) the explosion in size of data; (2)

data have increasingly more complex structures and rich semantics, such as representing

temporal data as a piecewise linear representation; (3) uncertain data are becoming a

common occurrence for numerous applications, e.g., scientific measurements or observations

such as meteorological measurements; (4) and data are becoming increasingly distributed,

e.g., distributed data collected and integrated from distributed locations as well as data

stored in a distributed file system within a cluster.

Due to the massive nature of modern data, it is oftentimes infeasible for computers

to efficiently manage and query them exactly. An attractive alternative is to use data

summarization techniques to construct data summaries, where even efficiently constructing

data summaries is a challenging task given the enormous size of data. The data summaries

we focus on in this thesis include the histogram and ranking operator. Both data summaries

enable us to summarize a massive dataset to a more succinct representation which can then

be used to make queries orders of magnitude more efficient while still allowing approximation

guarantees on query answers. Our study has focused on the critical task of designing efficient

algorithms to summarize, query, and manage massive data.

I dedicate this thesis to my family, who supported me each step of the way.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xii

ACKNOWLEDGEMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1

1.1 Main Results of Our Research . 3
1.2 Summaries for Massive Data . 3
1.3 Outline of Thesis . 6

2. BUILDING WAVELET HISTOGRAMS ON LARGE DATA 8

2.1 Introduction . 8
2.1.1 Contributions . 9

2.2 Preliminaries . 10
2.2.1 Wavelet basics . 10
2.2.2 Hadoop basics . 12

2.3 Exact Computation . 14
2.3.1 Baseline solutions . 14
2.3.2 A new algorithm . 14

2.3.2.1 Round 1 . 15
2.3.2.2 Round 2 . 15
2.3.2.3 Round 3 . 16
2.3.2.4 Communication issues . 16

2.3.3 Implementation details . 16
2.3.3.1 H-WTopk MapReduce Round 1 . 17
2.3.3.2 H-WTopk MapReduce Round 2 . 18
2.3.3.3 H-WTopk MapReduce Round 3 . 18

2.3.4 Multidimensional wavelets . 19
2.4 Approximate Computation . 19

2.4.1 Multidimensional wavelets . 24
2.4.2 System issues . 25
2.4.3 Implementation details of TwoLevel-S . 25

2.4.3.1 Map phase . 26
2.4.3.2 Reduce phase . 26
2.4.3.3 Remarks . 26

2.5 Experiments . 27
2.5.1 Setup and datasets . 27

2.5.2 Results on varying k . 29
2.5.3 Varying ε . 31
2.5.4 Comparing SSE . 32
2.5.5 Varying dataset size n . 33
2.5.6 Varying record size . 33
2.5.7 Varying domain size u . 35
2.5.8 Varying split size β . 36
2.5.9 Varying data skewness α . 37
2.5.10 Varying bandwidth B . 37
2.5.11 WorldCup dataset . 37
2.5.12 Experimental conclusion . 39

2.6 Related Work . 40
2.7 Closing Remarks . 41

3. RANKING LARGE TEMPORAL DATA . 42

3.1 Introduction . 42
3.1.1 Problem formulation . 42
3.1.2 Our contributions . 44

3.2 Exact Methods . 47
3.2.1 A forest of B+-trees . 48
3.2.2 Using one interval tree . 49
3.2.3 Remarks . 50

3.3 Approximate Methods . 51
3.3.1 Breakpoints . 53

3.3.1.1 Construction of BreakPoints1 . 54
3.3.1.2 Baseline construction of BreakPoints2 . 55
3.3.1.3 Efficient construction of BreakPoints2 . 56
3.3.1.4 Remarks . 56

3.3.2 Index breakpoints and queries . 56
3.3.2.1 Nested B+-tree queries . 57
3.3.2.2 Dyadic interval queries . 58

3.3.3 Combined approximate methods . 61
3.4 Other Remarks . 62

3.4.1 Updates . 62
3.4.2 General time series with arbitrary functions . 63
3.4.3 Negative values . 63
3.4.4 Other aggregates . 64

3.5 Experiments . 64
3.5.1 Datasets . 64
3.5.2 Setup . 65
3.5.3 Number of breakpoints . 65
3.5.4 Scalability . 70
3.5.5 Query time interval . 73
3.5.6 k and kmax . 74
3.5.7 Updates . 77
3.5.8 Meme dataset . 77

3.6 Related Work . 79
3.7 Conclusion . 79

vi

4. RANKING SEMANTICS FOR PROBABILISITC DATA 81

4.1 Introduction . 81
4.1.1 Our contributions . 83

4.2 Background . 84
4.3 Uncertain Data Models . 85

4.3.1 Attribute-level uncertainty model . 85
4.3.2 Tuple-level uncertainty model . 86
4.3.3 The possible world semantics . 87
4.3.4 Difference of the two models under ranking queries 88

4.4 Ranking Query Semantics . 89
4.4.1 Properties of ranking queries . 89
4.4.2 Discussion of value invariance . 90
4.4.3 Properties and probabilities . 91
4.4.4 Top-k queries on probabilistic data . 91

4.4.4.1 Ignore one dimension . 92
4.4.4.2 Combine two rankings . 92
4.4.4.3 Most likely top-k . 92
4.4.4.4 Most likely tuple at each rank . 93
4.4.4.5 Rank by top-k probability . 93
4.4.4.6 Expected score . 94

4.4.5 The rank distribution and expected ranks . 94
4.5 Attribute-Level Uncertainty Model . 98

4.5.1 Exact computation . 98
4.5.2 Pruning by expected scores . 99

4.6 Tuple-Level Uncertainty Model . 101
4.6.1 Exact computation . 101
4.6.2 Pruning . 102

4.7 Median and Quantile Ranks . 103
4.7.1 Definitions and properties . 103
4.7.2 Attribute-level uncertainty model . 104
4.7.3 The complexity of A-MQRank . 106
4.7.4 Pruning techniques . 106
4.7.5 Tuple-level uncertainty model . 108
4.7.6 Complexity of T-MQRank . 110

4.8 Other Issues . 110
4.8.1 Variance of the rank distribution: connection of expected

ranks, median ranks, and quantile ranks . 110
4.8.2 Scoring functions . 111
4.8.3 Continuous distributions . 112
4.8.4 Further properties of a ranking . 112
4.8.5 Rank of missing tuples . 113
4.8.6 Parametrized ranking function . 114
4.8.7 Approximate expected ranks . 114

4.9 Experiments . 115
4.9.1 Expected ranks . 116

4.9.1.1 Attribute-level uncertainty model . 116
4.9.1.2 Tuple-level uncertainty model . 118

4.9.2 Median and quantile ranks . 119
4.9.2.1 Attribute-level uncertainty model . 120

vii

4.9.2.2 Tuple-level uncertainty model . 120
4.9.3 Comparison of expected and median ranks . 123

4.10 Conclusion . 126

5. RANKING DISTRIBUTED PROBABILISTIC DATA 127

5.1 Introduction . 127
5.1.1 Our contributions. 128

5.2 Problem Formulation . 129
5.2.1 Uncertainty data model . 130
5.2.2 The possible world semantics . 130
5.2.3 The ranking definition . 130
5.2.4 Distributed top-k in uncertain data . 131
5.2.5 The straightforward solution . 132

5.3 Sorted Access on Local Rank . 132
5.4 Sorted Access on Expected Score . 135

5.4.1 The general algorithm . 135
5.4.2 Markov inequality-based approach . 135
5.4.3 Optimization with linear programming . 136

5.5 Approximate q(v): Reducing Computation at Distributed Sites 138
5.5.1 q∗(v): an approximate q(v) . 139
5.5.2 Updating the q∗i (v)s at the server . 143

5.6 Reducing Latency and Other Issues . 144
5.6.1 Reducing latency . 144
5.6.2 Continuous distributions . 145
5.6.3 Scoring function and other attributes . 145

5.7 Experiments . 145
5.7.1 Datasets . 145
5.7.2 Setup . 146
5.7.3 Results with different k . 147
5.7.4 Results with different N . 148
5.7.5 Results with different m . 148
5.7.6 Results with different b . 151
5.7.7 Results with different skewness of the pdfs . 151
5.7.8 Results with different η . 152
5.7.9 Results with different β . 153
5.7.10 Computation cost of solving the linear programs 154

5.8 Related Work . 155
5.9 Conclusion . 156

6. OTHER WORKS . 157

7. CONCLUSIONS . 159

REFERENCES . 161

viii

LIST OF FIGURES

1.1 Massive data spanning public and private sectors [1–4]. 1

1.2 Massive data challenges and proposed data summaries. 2

1.3 A summary-based approach for querying massive data: (a) building a sum-
mary and (b) querying the summary. 4

2.1 Wavelet coefficients. 11

2.2 An example MapReduce job with m = 4 and r = 2. 13

2.3 Two-level sampling at mapper. 22

2.4 Two-level sampling at reducer. 22

2.5 Cost analysis vary k: effect on (a) communication and (b) running time. 30

2.6 SSE: vary k. 30

2.7 SSE: vary ε. 31

2.8 Cost analysis vary ε: effect on (a) communication and (b) running time. 32

2.9 SSE versus (a) communication and (b) running time. 32

2.10 Cost analysis vary n: effect on (a) communication and (b) running time. 33

2.11 Cost analysis vary record size: effect on (a) communication and (b) running
time. 34

2.12 Cost analysis vary u: effect on (a) communication and (b) running time. 35

2.13 Cost analysis vary split size β: effect on (a) communication and (b) running
time. 36

2.14 Cost analysis vary skewness α: effect on (a) communication and (b) running
time. 37

2.15 Vary α SSE. 38

2.16 Vary B. 38

2.17 Cost analysis WorldCup dataset: effect on (a) communication and (b) running
time. 38

2.18 SSE on WorldCup. 39

2.19 SSE on WorldCup: versus (a) communication and (b) running time. 39

3.1 MesoWest data. 43

3.2 A top-2(t1, t2, sum) query example with answer {o3, o1} 44

3.3 Compute σi([t1, t2] ∩ [ti,j , ti,j+1]). 47

3.4 The method Exact2. 49

3.5 The method Exact3. 50

3.6 Outline of approximate methods. 52

3.7 Associated approximate interval. 57

3.8 Illustration of Query1. 59

3.9 Illustration of Query2. 60

3.10 Vary r for approximate methods on Temp: versus (a) ε, (b) time, (c) index
size, (d) build time. 66

3.11 Vary r for approximate methods on Temp: versus (a) recall/precision, (b)
ratio, (c) I/Os, (d) query time. 67

3.12 Vary number of objects m on Temp: versus (a) index size, (b) build time, (c)
query I/Os, (d) query time. 70

3.13 Vary average number of segments navg on Temp: versus (a) index size, (b)
build time, (c) query I/Os, (d) query time. 71

3.14 Approximation quality for Temp: m versus (a) precision/recall and (b) ratio;
navg versus (c) precision/recall and (d) ratio. 72

3.15 Vary size of (t2 − t1) as % of T on Temp: effect on (a) query I/Os, (b) query
time, (c) precision/recall, (d) ratio. 74

3.16 Vary k values on Temp: effect on (a) query I/Os, (b) query time, (c) preci-
sion/recall, (d) ratio. 75

3.17 Vary kmax on Temp: effect on (a) index size, (b) construction time, (c) query
I/Os, (d) query time. 76

3.18 Meme dataset evaluation: observed (a) index size, (b) build time, (c) I/Os,
(d) query time. 78

3.19 Quality of approximations on Meme: observed (a) precision/recall and (b)
approximation ratio. 78

4.1 Attribute-level model performance analysis: (a) running time of exact algo-
rithms and (b) A-ERank-Prune’s precision/recall. c©2011 IEEE 117

4.2 Attribute-level: Pruning of A-ERank-Prune. c©2011 IEEE 117

4.3 Tuple-level model performance analysis: (a) running time and (b) pruning of
T-ERank-Prune. c©2011 IEEE . 118

4.4 Impact of different correlations on T-ERank-Prune: (a) pruning power and
(b) running time. c©2011 IEEE . 119

4.5 Attribute-level model median and quantile ranks performance: effect of (a)
N, (b) s, (c) k while varying distributions on A-MQRank-Prune, (d) k while
varying correlated distributions on A-MQRank-Prune. c©2011 IEEE 121

4.6 Tuple-level model median and quantile ranks performance: effect of (a) N and
(b) ζ. c©2011 IEEE . 122

x

4.7 Tuple-level: Effect of ψ for median and quantile ranks. c©2011 IEEE 123

4.8 Kavg(τ1, τ2) for expected and median ranks with different k values: following
(a) attribute-level uncertainty model and (b) tuple-level uncertainty model.
c©2011 IEEE . 125

4.9 Kavg(τ1, τ2) for median and quantile ranks with different k values: following
(a) attribute-level uncertainty model and (b) tuple-level uncertainty model.
c©2011 IEEE . 125

5.1 Transform values in an unseen tuple X. 137

5.2 q∗(v): definition, optimal computation and update: (a) approximate q(v), (b)

base case and δj+1
q∗(i,j), (c) update q

∗
λ−1(v). 144

5.3 Communication cost while varying k: effect on (a) Synthetic Gaussian, (b)
Movie, (c) Temperature, (d) Chlorine. 147

5.4 Number of rounds while varying k: effect on (a) Synthetic Gaussian, (b) Movie,
(c) Temperature, (d) Chlorine. 149

5.5 Varying N on Chlorine dataset: effect on (a) communication and (b) number
of rounds. 150

5.6 Varying m on Movie dataset: effect on (a) communication and (b) number of
rounds. 150

5.7 Varying b on Synthetic Gaussian dataset: effect on (a) communication and
(b) number of rounds. 151

5.8 Varying ρ (skewness of the pdf) on Chlorine dataset: effect on (a) communi-
cation and (b) number of rounds. 152

5.9 Effect of η on approximate qi(v)s: effect on (a) communication and (b) number
of rounds. 153

5.10 Varying β on Chlorine dataset: effect on (a) communication and (b) number
of rounds. 154

xi

LIST OF TABLES

2.1 Coefficients by wavelet basis vectors . 12

3.1 Frequently used notations. 46

3.2 IO costs, with block size B . 46

4.1 Attribute-level uncertainty model. c©2011 IEEE . 86

4.2 An example of possible worlds for attribute-level uncertainty model.
c©2011 IEEE . 86

4.3 Tuple-level uncertainty model. c©2011 IEEE . 87

4.4 An example of possible worlds for tuple-level uncertainty model. c©2011 IEEE 87

4.5 Summary of ranking methods for uncertain data. c©2011 IEEE 92

4.6 Possible worlds where previous definitions do not satisfy faithfulness.
c©2011 IEEE . 113

4.7 An example where the expected rank does not satisfy the faithfulness.
c©2011 IEEE . 113

5.1 The uncertainty data model. 130

5.2 An example of possible worlds. 131

ACKNOWLEDGEMENTS

This thesis would not have been possible without my advisor, Feifei Li. I first met Feifei

by attending his undergraduate database course at Florida State University. Feifei taught in

a way which made me excited to learn more about database systems and data management

in general. He was always happy to meet with me both inside and outside of office hours to

discuss further details about topics discussed in class. He also exposed me to his research

and showed me how fun, exciting, and fulfilling data management research can be. Without

his guidance and recommendation to pursue a PhD in data management research, I would

have never embarked on the long journey which is now coming to a close. The past five

years have been extremely rewarding, and I would like to thank Feifei for opening my eyes

to the world of research and for being my advisor who always gave me advice on topics of

research and which directions to take when I was stuck or lost along the way.

I am honoured to have worked with some amazing researchers and would like to thank

Feifei Li, Ke Yi, Graham Cormode, and Jeff M. Phillips for all of their insights, efforts,

and advice during our collaborations. Each collaboration was a fun and exciting experience

for me and would not have been possible without everyone’s efforts and expertise. My

collaborators have also taught me a great deal and I feel have enriched my skills and expertise

as a researcher, as everyone challenged me to think in new ways to solve the problems on

which we worked.

I thank Suresh Venkatasubramanian for his insightful comments on my future as a

researcher as well as for his constructive comments and challenges on my talks in the data

group, which I feel have made me a better presenter.

Finally, I thank the GAANN program for funding my first two years of research and the

NSF for funding me during the final years of my research.

CHAPTER 1

INTRODUCTION

We are living in an age where data are being generated faster than anyone has previously

imagined across a broad application domain, as indicated by Figure 1.1. Given the recent

explosion of data we have witnessed within the past few years, it has become apparent that

many algorithms designed for these applications simply will not scale to the huge amounts

of data being generated. As we witness this explosion in data, there are numerous challenges

which are continuously arising and changing the face of data management research. Some

of the challenges we have observed and studied in this thesis include:

1) Coping with the ever-increasing size of data, for instance, which makes even simple

queries, such as range queries, extremely costly and intractable.

2) Dealing with the emergence of increasingly complex structures and rich semantics of

data; for instance, the MesoWest Project [5] represents various sensor measurements,

Meteorology

(WDCC)

6PB

weather data

Phone (AT&T)

323TB of phone

call information

Consumer

(Amazon.com)

42TB of

consumer &

product data

WEB (Google)

billions of

searches monthly

Space (NASA)

10TB per day per

robotic mission

Geography (bing)

1/2 PB+

geographic data

in bing maps

Figure 1.1. Massive data spanning public and private sectors [1–4].

2

such as temperature, it has been continuously recording from weather towers across

the United States since 1997 in a piecewise linear representation; there are clearly rich

semantics one needs to capture with respect to the temporal aspect of such data.

3) Managing uncertain data, e.g., uncertainties arising in scientific measurements, such

as temperature measurements collected by MesoWest, or observations such as the

analysis of DNA and proteins.

4) Handling distributed data, such as distributed data collected and integrated in a sensor

network as well as data stored in a distributed file system within a cluster.

With massive data, it is usually infeasible for computers to efficiently manage and query

it exactly. An attractive alternative is to use data summaries. There are many possibilities

when discussing data summaries, but for this thesis we focus on two types: (1) the histogram,

which can be used to gain quick insights on massive data stored in relational databases or

in a distributed file system within a cluster, (2) and ranking operators, where rankings are

used to summarize a massive dataset to a more succinct dataset containing only the top-k

most important records. An overview of the challenges faced with large data as well as the

data summaries used to address these challenges in this thesis is illustrated in Figure 1.2.

Our proposed summaries can make queries and data analytics tasks orders of magnitude

more efficient while still allowing approximation guarantees on answers. Our PhD study

has focused on the critical task of designing efficient algorithms, exploiting parallel and

distributed settings when possible, to summarize and query massive data.

Massive
Data

Emerging Challenges

Size

of Data

Probabilistic

Data

Complex Structure

Rich Semantics

Distributed

Data

Analytics
Applications

Proposed Summaries

Histograms

Ranking

Operator

Figure 1.2. Massive data challenges and proposed data summaries.

3

1.1 Main Results of Our Research

Querying a massive dataset can require extensive amounts of resources, including I/Os,

computation, and in some instances communication, and it can be unrealistic to issue

queries over the scale of data we are seeing nowadays, especially when there are restrictions

to resource utilization as well as complex structures and rich semantics in the data. The

common scenario we are seeing is that data are first broken up into chunks and then stored

in some form of distributed file system within a cluster, such as the Google File System [6]

or Hadoop Distributed File System [7]. Then, data analytics, e.g., database queries, used by

end-user applications are created as jobs and sent to the cluster for scheduling. Eventually,

the cluster executes these data analytics tasks over the entire massive dataset. The primary

problem with this approach is that it is extremely wasteful of resources within a cluster,

I/Os, CPU time, communication, and can also generate a lot of unnecessary heat, which

has become one of the biggest banes for data centers. Not to mention, queries may take an

excessive amount of time before returning any results to users.

Users are often willing, or in some instances required, to trade some of the accuracy

obtained in an exact solution for an approximate solution in order to save orders of mag-

nitude in computation, I/Os, and communication [8–10]. One particular and useful way of

obtaining approximate solutions is to first construct a data summary of the huge data in

the cluster, as seen in Figure 1.3(a), which provides quality guarantees for a particular set

of queries. A nice feature of data summaries is they typically are independent of the dataset

size and can be defined to depend only on the desired error in the query, resulting in data

summaries which are often only kilo- or megabytes in size (as we will see in Chapters 2-5).

Building a data summary is usually a one-time cost, and serves as a surrogate (as seen in

Figure 1.3(b)) for the original dataset residing in the cluster, allowing queries to be answered

much faster and at the same time potentially reducing heat and resource utilization.

1.2 Summaries for Massive Data

As discussed above, and summarized in Figure 1.2, we identify four challenges emerging

from massive data: (1) size; (2) complex structure and rich semantics; (3) uncertain data;

(4) and distributed data. We propose the use of the histogram and ranking operator to deal

with these emerging challenges and give a brief overview in this section of the results of our

work in the following chapters.

We begin our study in Chapter 2 of how to manage massive data by first investigating the

challenge of dealing with the ever-increasing size of data, e.g., such as weather measurements

collected by MesoWest [5] since 1997. For many applications using relational data, obtaining

4

Massive Data

Summary

Data Analytics

(a)

Massive Data

Summary

Data Analytics

(b)

Figure 1.3. A summary-based approach for querying massive data: (a) building a summary
and (b) querying the summary.

a compact and accurate summary of data is essential. Among various data summarization

tools, histograms have proven to be particularly important and useful for summarizing

data, and the wavelet histogram is one of the most widely used histograms [11]. Due to

its simplicity, good accuracy, small size, and a variety of applications in data analysis,

data visualization, query optimization, and its usefulness in approximating queries, wavelet

histograms have been extensively studied [11–14]. Surprisingly, the problem of constructing

wavelet histograms, in a scalable fashion, over truly massive relational data had not been

studied.

We investigate the problem of building wavelet histograms efficiently on large data in

parallel and distributed settings. We demonstrate straightforward adaptations of existing

exact and approximate methods for building wavelet histograms in a parallel and distributed

setting that are highly inefficient, in terms of both communication and computation. We

design new algorithms for computing exact and approximate wavelet histograms and discuss

their implementation in MapReduce. We illustrate our techniques in Hadoop, and compare

to baseline solutions with extensive experiments performed in a heterogeneous Hadoop

cluster of 16 nodes, using large real and synthetic datasets, up to hundreds of gigabytes. The

results show significant (often orders of magnitude) improvement by our new algorithms.

Next, we turn our focus to a second challenge, the management of large data with

complex structure and rich semantics in Chapter 3, namely how to efficiently manage and

5

summarize temporal data represented in a piecewise linear representation. In particular,

we are interested in an important query type typically performed over temporal data, e.g.,

given temporal data, such as sensors collecting temperature data over a long period of time

as in the MesoWest project [5], a typical query is to find which sensors have the highest

aggregate temperature in a given arbitrary time range.

With this particular query type in mind, we propose a novel ranking operator over

temporal data to rank objects based on the aggregation of their scores in a query interval,

which we dub the aggregate top-k query on temporal data. For example, return the top-10

weather stations having the highest average temperature from 10/01/2010 to 10/07/2010.

Chapter 3 presents a comprehensive study to this problem by first designing exact solutions

and then investigating techniques to summarize the data using both the ranking operator

and indexing techniques to produce approximate solutions (the approximate solutions all

have quality guarantees).

To study the effectiveness of our proposed techniques, we study real-world massive

datasets from the MesoWest project [5], which contains temperature measurements from

26,383 distinct stations across the United States from Jan 1997 to Oct 2011, and the

MemeTracker project [15], which had tracked 1.5 million distinct memes by 2012. We

demonstrate an orders of magnitude query performance gain when using our data summaries

over exact solutions which use I/O efficient indexing structures to query the original dataset.

We study the challenge of efficiently managing and querying uncertain data in Chapter

4. As data become increasingly large, uncertain data are becoming ubiquitous for many ap-

plications, such as applications collecting sensor data as well as many scientific applications.

This was made apparent to us by observing individual sensor readings from the MesoWest [5]

and SAMOS projects [16], which frequently reported uncertain measurements. In Chapter

4, we observe that recently, there have been several attempts to propose definitions and

algorithms for ranking queries on probabilistic data, in order to summarize it. However,

these lack many intuitive properties of a top-k over deterministic data.

Therefore, we task ourselves to define numerous fundamental properties, including exact-

k, containment, unique-rank, value-invariance, and stability, which are satisfied by ranking

queries on certain relational data. We argue these properties should also be carefully studied

in defining ranking queries in probabilistic data, and fulfilled by definition for ranking

uncertain data for most applications.

We propose intuitive new ranking definitions based on the observation that the ranks

of a tuple across all possible worlds represent a well-founded rank distribution. We studied

6

the ranking definitions based on the expectation, the median, and other statistics of this

rank distribution for a tuple and derived the expected rank, median rank and quantile rank

respectively. We are able to prove the expected rank, median rank and quantile rank satisfy

all these properties for a ranking query. We provide efficient solutions in centralized settings

to compute such rankings across major models of uncertain data, such as attribute-level

and tuple-level uncertainty. A comprehensive experimental study shows the effectiveness of

our approach.

In Chapter 5 we investigate the challenge of massive distributed data. In particular,

we extend our study of uncertain data in Chapter 4 by investigating the problem of rank-

ing uncertain data in a distributed setting. We observe that in many applications where

uncertainty and fuzzy information arise, data are collected from multiple sources in dis-

tributed, networked locations, e.g., distributed sensor fields with imprecise measurements,

multiple scientific institutes with inconsistency in their scientific data, or data generated

and distributed within a cluster. Due to the desire for efficient queries with low latency

coupled with resource restrictions such as limited communication bandwidth in a sensor

network or heat restrictions in a cluster, a fundamental problem we face when constructing

a summary in this setting is to reduce communication cost and computation costs to the

extent possible. Given this insight, we design both communication and computation efficient

algorithms which we show perform orders of magnitude better than the baseline technique

over both real and synthetic data. After designing such algorithms, uncertain data which

are either distributed in a sensor network or within a cluster can be efficiently summarized

to only the top-k most important records for consumption by users.

In conclusion, in Chapters 2-5, we study four challenges arising from massive data, the

ever-increasing size of data, emerging complex structures and rich semantics of data, uncer-

tain data, and distributed data. In all cases, we propose novel summarization techniques to

construct the histogram and ranking operator which allow queries and data analytics tasks

to be answered orders of magnitude faster while still providing quality guarantees.

1.3 Outline of Thesis

The remainder of our thesis is structured as follows:

• First, we study the challenge of dealing with the ever-increasing size of data in Chapter

2 and propose novel techniques for constructing wavelet histograms over this massive

data to summarize it.

• We then study the challenge of managing complex structures and rich semantics in

7

massive data in Chapter 3, in particular focusing on temporal data and how to answer

aggregate range ranking queries over a piecewise linear representation of these data.

• Next, we change our focus to the challenge of uncertain data in Chapter 4 by observing

its semantics and what this entails for massive data management. We propose novel

querying techniques using the ranking operator, with our contribution being the

median and quantile rank.

• We study the challenge of distributed data in Chapter 5 by extending our study of

uncertain data in Chapter 4 to the distributed and parallel case, and propose novel

techniques to use the Expected Rank, discussed in Chapter 4, to summarize it to the

most important top-k records.

• Finally, we discuss some of our other works in Chapter 6 and conclude in Chapter 7

CHAPTER 2

BUILDING WAVELET HISTOGRAMS ON

LARGE DATA

2.1 Introduction

One of the first challenges we face when dealing with massive data is the ever-increasing

size of data, as argued in Chapter 1. In traditional relational database systems and many

modern data management applications, an important useful summary for datasets is the

histogram [18], and this compact data structure is becoming increasingly important as the

size of data continues to grow. Given the importance of the histogram, in this chapter, we

study how to efficiently construct histograms, in particular the wavelet histogram [11].

Suppose the keys of a dataset are drawn from finite domain [u] = {1, · · · , u}. Broadly

speaking, a histogram on the dataset is any compact, possibly lossy, representation of

its frequency vector v = (v(1), . . . ,v(u)), where v(x) is the number of occurrences of

key x in the dataset. There are many different histograms depending on the form this

compact representation takes. One popular choice is the wavelet histogram. Treating v

as a signal, the wavelet histogram consists of the top-k wavelet coefficients of v in terms

of their magnitudes (absolute values), for a parameter k. As most real-world distributions

have few large wavelet coefficients with others close to zero, retaining only the k largest

yields a fairly accurate representation of v. Due to its simplicity, good accuracy, compact

size, and a variety of applications in data analysis, data visualization, query optimization,

and approximating queries, wavelet histograms have been extensively studied. Efficient

algorithms are well known for building a wavelet histogram on offline data [11, 12] and for

dynamically maintaining it in an online or streaming [12–14] fashion.

As data continue to increase in size, it is becoming infeasible to store it in a single

database or on a single machine. It has become increasingly common to store this massive

data in clusters and, currently, one of the most popular cluster frameworks for managing

*The work in this chapter appears in [17] c©2012 VLDB Endowment. Reprinted by Permission.

9

and querying large data is MapReduce. In this chapter, we use the MapReduce framework

to illustrate our ideas of how the wavelet histogram can be efficiently constructed in a

distributed and parallel fashion, although our techniques can be extended to other parallel

and distributed settings as well.

MapReduce has become one of the most popular cluster-based frameworks for storing

and processing massive data, due to its excellent scalability, reliability, and elasticity [19].

Datasets stored and processed in MapReduce, or any large data management platform, are

usually enormous, ranging from tens of gigabytes to terabytes [19, 20]. Hence, in many

applications with such massive data, obtaining a compact accurate summary of a dataset is

important. Such a summary captures essential statistical properties of the underlying data

distribution, and offers quick insight on the gigantic dataset, provided we can compute it

efficiently. For example, in the MapReduce framework, this allows other MapReduce jobs

over the same dataset to better partition the dataset utilizing its histogram, which leads to

better load-balancing in the MapReduce cluster [19].

In this chapter, we study how to efficiently build wavelet histograms for large data in

MapReduce. We utilize Hadoop [7], an open-source realization of MapReduce, to demon-

strate our ideas, which should extend to any other MapReduce implementation, as well as

other similar parallel and distributed platforms. We measure the efficiency of all algorithms

in terms of end-to-end running time (affected by the computation and IO costs) and

intracluster communication (since network bandwidth is also scarce in large data centers

running MapReduce [19], whose usage needs to be optimized). Note that communication

cost might not be significant when running only one particular MapReduce job (this is often

the case); however, in a busy data center/cluster where numerous jobs might be running

simultaneously, the aggregated effect from the total communications of these jobs is still

critical.

We show straightforward adaptations of both exact and approximate wavelet histogram

construction methods from traditional data management systems and data mining fields to

MapReduce clusters are highly inefficient, mainly since data are stored in a distributed file

system, e.g., the Hadoop Distributed File System (HDFS).

2.1.1 Contributions

We propose novel exact and approximation algorithms demonstrated in MapReduce

clusters, in particular Hadoop, which outperform straightforward adaptations of existing

methods by several orders of magnitude in performance. Specifically, we:

10

• present a straightforward adaptation of the exact method in Hadoop, and a new exact

method that can be efficiently instantiated in MapReduce in Section 2.3;

• show how to apply existing, sketch-based approximation algorithms in Hadoop, and

discuss their shortcomings. We design a novel random sampling scheme to compute

approximate wavelet histograms efficiently in Hadoop in Section 2.4;

• conduct extensive experiments on large (up to 400GB) data-sets in a heterogeneous

Hadoop cluster with 16 nodes in Section 2.5. The experimental results demonstrate

convincing results that both our exact and approximation methods have outperformed

their counterparts by several orders of magnitude.

We also introduce necessary background on MapReduce, Hadoop, and wavelet histograms

in Section 2.2, survey related work in Section 2.6, and conclude in Section 2.7.

2.2 Preliminaries

2.2.1 Wavelet basics

Suppose each record in the dataset has a key drawn from domain [u] = {1, · · · , u},
and we want to build a wavelet histogram on the keys. Define the frequency vector as

v = (v(1), . . . ,v(u)) where v(x) is the number of occurrences of key x in the dataset. The

idea of building a histogram using wavelets is to consider v as a signal and apply a wavelet

transformation. For most applications, one usually adopts the simplest Haar wavelet basis

[11–14,21], which is defined as follows. We first average values pairwise to obtain the average

coefficients, i.e., [(v(2) + v(1))/2, (v(4) + v(3))/2, . . . , (v(u) + v(u− 1))/2]. We also retain

the average difference of the pairwise values, i.e., [(v(2)−v(1))/2, . . . , (v(u)−v(u−1))/2],

which are called the detail coefficients. Clearly, given these vectors, one can reconstruct

the original signal v exactly. We recursively apply this pairwise averaging and differencing

process on the average coefficients vector until we reach the overall average for v. The Haar

wavelet coefficients of v are given by the overall average, followed by the detail coefficients

in a binary tree, as shown by example in Figure 2.1, where the leaf level of the tree (level

ℓ = log u) is the original signal. To preserve the energy of the signal (v’s L2 norm), one

must multiply coefficients in level ℓ by a scaling factor
√
u/2ℓ.

This transformation is lossless as we can reconstruct v exactly from all u wavelet coeffi-

cients. However, the main reason wavelets are popular and powerful in signal processing is,

for most real-world signals v, most of its wavelet coefficients are near zero. Thus, if for a pa-

rameter k we keep only the k wavelet coefficients of largest magnitude while assuming others

11

3 5 10 8 2 2 10 14

1 -1 0 2

2.5 5

0.3

6.8w1

w2

w3 w4

w5 w6 w7 w8 ℓ = 2

ℓ = 3

ℓ = 1

ℓ = 0

total average

scaling factor:
√

u/2ℓ

Figure 2.1. Wavelet coefficients.

are zero, we can still reconstruct the original signal reasonably well. Since energy is preserved

under the Haar wavelet transform after scaling, i.e., ‖v‖22 =
∑u

i=1 v(i)
2 =

∑u
i=1w

2
i , keeping

the k wavelet coefficients of largest magnitude minimizes energy loss for all k-term wavelet

representations of v [14]. The best k-term wavelet representation can be computed efficiently

in a centralized setting [11]: Assuming entries in frequency vector v are given in order, one

can compute all wavelet coefficients bottom-up in O(u) time. Then, using a priority queue

of size k, we can find the k coefficients of largest magnitude in one pass over all u coefficients,

taking time O(u log k).

Another method to compute wavelet coefficients, especially in streaming settings, is to

use wavelet basis vectors. The first wavelet basis vector is ψ1 = [1, . . . , 1]/
√
u. To define

the other u − 1 basis vectors, we first introduce, for j = 1, . . . , log u and k = 0, . . . , 2j − 1,

the vector φj,k(l) = 1 for k(u/2j) + 1 ≤ l ≤ k(u/2j) + u/2j , and 0 elsewhere. For j =

0, . . . , log u−1 and k = 0, . . . , 2j−1, we define the ith wavelet basis vector for i = 2j+k+1

as ψi = (−φj+1,2k + φj+1,2k+1)/
√
u/2j , where

√
u/2j is a scaling factor. The wavelet

coefficients are the dot products of v with these wavelet basis vectors, i.e., wi = 〈v, ψi〉, for
i = 1, . . . , u; see an illustration of this process in Table 2.1.

Wavelets provide a compact approximation of a data distribution and the wavelet

histogram serves a variety of data analysis tasks such as range selectivity estimation [11],

approximating queries [22], and many other data mining applications [23–25]. As we are

concerned with constructing a best k-term wavelet histogram, we will not talk about its

use, which has already been well studied [11].

Wavelet histograms also extend to multidimensional signals or datasets. Consider the

two-dimensional case where keys are drawn from two-dimensional domain [u]2, defining a

two-dimensional frequency array v = (v(x, y)), 1 ≤ x, y ≤ u. A 2D wavelet transform first

applies a standard 1D wavelet transform to each row of v. Then, using the 1D wavelet

12

Table 2.1. Coefficients by wavelet basis vectors

(v(1)+v(2)+v(3)+v(4)+v(5)+v(6)+v(7)+v(8))

2
√
2

(v(5)+v(6)+v(7)+v(8))−(v(1)+v(2)+v(3)+v(4))

2
√
2

(v(3)+v(4))−(v(1)+v(2))
2

(v(7)+v(8))−(v(5)+v(6))
2

v(2)−v(1)√
2

v(4)−v(3)√
2

v(6)−v(5)√
2

v(8)−v(7)√
2

v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)

coefficients as inputs, we apply a second round of 1D wavelet transforms to each column of

the array. This process can be similarly extended to d dimensions.

2.2.2 Hadoop basics

For this chapter, we assume Hadoop’s default file system HDFS. A cluster using HDFS

consists of multiple DataNodes, for storing file system data, and a single master node desig-

nated as the NameNode which oversees all file operations and maintains all file meta-data.

A file in HDFS is split into data chunks, 64MB in size by default, which are allocated

to DataNodes by the NameNode. Chunks are typically replicated to multiple DataNodes,

based on the file replication ratio, to increase data availability and fault tolerance. In this

chapter and many other studies where fault tolerance is not the main subject of interest,

the replication ratio is set to 1 and machine failure is not considered. The MapReduce core

consists of one master JobTracker task and many TaskTracker tasks. Typical configurations

run the JobTracker and NameNode on the same machine, called the master, and run

TaskTracker and DataNode tasks on other machines, called slaves.

Typical MapReduce jobs consist of three phases: Map, Sort-and-Shuffle, and Reduce.

The user may specifym, the desired number of Mapper tasks, and r, the number of Reducer

tasks before starting the job. Next, we look at the three phases in detail.

In the Map phase, themMappers run in parallel on different TaskTrackers over different

logical portions of an input file, called splits. Splits typically, but not always, correspond

to physical data chunks. Hadoop allows users to specify the InputFormat for a file, which

determines how splits are created and defines a RecordReader for reading data from a split.

After splits have been formed, the JobTracker assigns each available Mapper a split to

process. By default, the scheduler attempts to schedule Data-Local Mappers by assigning a

Mapper a locally stored split. There are also cases which call for Non-Data-Local Mappers,

13

i.e., when a node is idle and has no local split to process. Then, a MapRunner is started

which obtains a RecordReader and invokes the Map function for each record in the split.

A Mapper then maps input key-value pairs (k1, v1) from its split to intermediate key-value

pairs (k2, v2). As a Mapper proceeds, it maintains an in-memory buffer of the (k2, v2); for

each distinct k2 a list of values, list(v2), is maintained. When the buffer fills to threshold,

pairs are partitioned, sorted, and optionally processed by the Combine function, which

outputs locally aggregated (k2, v2) pairs (aggregation on v2s with the same key k2). Pairs

are then written to their corresponding logical partitions on the local disk. The partitions

are defined by a Partition function, typically a hash function like hash(k2) mod r, which

determines the Reducer task that will process a particular k2 later. When the Mapper ends,

all emitted (k2, v2) have been partitioned, sorted (w.r.t. k2), and optionally combined. One

can also define a Close interface which executes at the end of the Mapper.

In the Shuffle-and-Sort Phase, each Reducer copies all (k2, v2) for which it is responsible

(as designated by the Partition function) from all DataNodes. It then sorts all received

(k2, v2) by k2 so all occurrences of key k2 are grouped together. An external sort is needed

if the (k2, v2) do not fit in memory.

After all (k2, v2) are collected and sorted, a Reducer iterates over all its (k2, v2). For

each distinct key k2, the Reducer passes all corresponding v2 values to the Reduce function.

Then, the Reduce function produces a final key-value pair (k3, v3) for every intermediate

key k2. As in the Map phase, one can implement a Close interface which is executed at the

end of the Reducer. An example of a typical MapReduce job appears in Figure 2.2.

split 1
split 2
split 3
split 4

(k1, v1)

(k1, v1)

(k1, v1)

(k1, v1)

Mapper

Mapper

Mapper

Mapper

Map Phase

(k2, v2)

(k2, v2)

(k2, v2)

(k2, v2)

p1
p2

p1
p2

p1
p2

p1
p2

Reducer

Reducer

(k3, v3)

(k3, v3)

o1

o2

Reduce Phase

(k2, list(v2))
Combiner

(k2, list(v2))
Combiner

(k2, list(v2))
Combiner

(k2, list(v2))
Combiner

(k2, v2)

(k2, v2)

(k2, v2)

(k2, v2)

p1
p2

p1
p2

p1
p2

p1
p2

pi : i ’th partition
oi : i ’th output

Shuffle/Sort Phase

Figure 2.2. An example MapReduce job with m = 4 and r = 2.

14

2.3 Exact Computation

2.3.1 Baseline solutions

Let n be the total number of records in the entire dataset, where each record has a

key drawn from key domain [u]. Note either n ≫ u or n ≪ u is possible. Recall in

Hadoop the n records are partitioned into m splits, processed by m Mappers, possibly on

different machines, which emit intermediate key-value pairs for processing by Reducers.

Thus, one baseline solution to compute the wavelet representation is to compute, for each

split j = 1, . . . ,m, its local frequency vector vj , and emit a (x,vj(x)) pair for each key x

in the split.

After all local frequencies are computed, a Reducer can aggregate the local frequencies

producing the overall frequency vector v =
∑m

j=1 vj , where vj(x) = 0 if key x does not

appear in the jth split. Finally, we compute the best k-term wavelet representation of v

using the centralized algorithm (e.g., [11]).

We observe that each wavelet coefficient wi = 〈v, ψi〉 can be written as

wi =

〈
m∑

j=1

vj , ψi

〉
=

m∑

j=1

〈vj , ψi〉,

i.e., wi is the summation of the corresponding local wavelet coefficients of frequency vectors

for the m splits. Then, an alternate approach to compute the exact wavelet coefficients is

to compute, for each split j = 1, . . . ,m its local frequency vector vj . The local coefficients

wi,j = 〈vj , ψi〉 are computed for each split’s local frequency vector vj and a (i, wi,j) pair is

emitted for each nonzero wi,j . The Reducer can then determine the exact wi as
∑m

j=1wi,j

where wi,j = 0 if the Reducer does not receive a wi,j from the jth split. After computing

all complete wi the Reducer selects the best k-term wavelet representation, i.e., by selecting

the top-k coefficients of largest absolute value.

A big drawback of the baseline solutions is they generate too many intermediate key-

value pairs, O(mu) of them to be precise. This consumes too much network bandwidth,

which is a scarce resource in large data clusters shared by many MapReduce jobs [19].

2.3.2 A new algorithm

Since wi is the summation of the corresponding local wavelet coefficients of frequency

vectors for the m splits, if we first compute the local coefficients wi,j = 〈vj , ψi〉, the problem
is essentially a distributed top-k problem. For the standard distributed top-k problem, it

is assumed there are N total items and m distributed sites. Each of the m distributed sites

has a local score rj(x) for item x. The goal is to obtain the top-k items at a coordinator

15

which have the largest aggregate scores r(x) =
∑m

j=1 rj(x). The standard distributed top-k

problem assumes all local “scores” are nonnegative, while in our case, wavelet coefficients

can be positive and negative, and we want to find the top-k aggregated coefficients of

largest absolute value (magnitude). Negative scores and finding largest absolute values are

a problem for existing top-k algorithms such as Three-Phase Uniform Threshold (TPUT)

and others [26–28], as they use a “partial sum” to prune items which cannot be in the top-k.

That is, if we have seen (at the coordinator, e.g., in the MapReduce model the coordinator

is a single reducer responsible for producing the global top-k items) t local scores for an

item out of m total local scores, we compute a partial sum for it assuming its other m− t

scores are zero. When we see k such partial sums, we use the kth largest partial sum as a

threshold, denoted τ , to prune other items: If an item’s local score is always below τ/m at

all sites, it can be pruned as it cannot get a total score larger than τ to get in the top-k.

If there are negative scores and when the goal is to find largest absolute values, we cannot

compute such a threshold as unseen scores may be very negative.

We next present a distributed algorithm which handles positive and negative scores

(coefficients) and returns the top-k aggregated scores of largest magnitude. The algorithm

is based on algorithm TPUT [27], and can be seen as interleaving two instances of TPUT.

As TPUT, our algorithm requires three rounds. For an item x, r(x) denotes its aggregated

score and rj(x) is its score at node j.

2.3.2.1 Round 1

Each node first emits the k highest and k lowest (i.e., most negative) scored items. For

each item x seen at the coordinator, we compute a lower bound τ(x) on its total score’s

magnitude |r(x)| (i.e., |r(x)| ≥ τ(x)), as follows. We first compute an upper bound τ+(x)

and a lower bound τ−(x) on its total score r(x) (i.e., τ−(x) ≤ r(x) ≤ τ+(x)): If a node sends

out the score of x, we add its exact score to τ+(x) and τ−(x). Otherwise, for τ+(x), we add

the kth highest score this node sends out and for τ−(x) we add the kth lowest score. Then,

we set τ(x) = 0 if τ+(x) and τ−(x) have different signs and τ(x) = min{|τ+(x)|, |τ−(x)|}
otherwise. Doing so ensures τ−(x) ≤ r(x) ≤ τ+(x) and |r(x)| ≥ τ(x). Now, we pick the

kth largest τ(x), denoted as T1. This is a threshold for the magnitude of the top-k items.

2.3.2.2 Round 2

A node j next emits all local items x having |rj(x)| > T1/m. This ensures an item in

the true top-k in magnitude must be sent by at least one node after this round, because if

an item is not sent, its aggregated score’s magnitude can be no higher than T1. Now, with

16

more scores available from each node, we refine the upper and lower bounds τ+(x), τ−(x),

hence τ(x), as previously for each item x ∈ R, where R is the set of items ever received. If a

node did not send the score for some x, we can now use T1/m (resp. −T1/m) for computing

τ+(x) (resp. τ−(x)). This produces a new better threshold, T2 (calculated in the same way

as computing T1 with improved τ(x)’s), on the top-k items’ magnitude.

Next, we further prune items from R. For any x ∈ R, we compute its new threshold

τ ′(x) = max{|τ+(x)|, |τ−(x)|} based on refined upper and lower bounds τ+(x), τ−(x). We

delete item x from R if τ ′(x) < T2. The final top-k items must be in the set R.

2.3.2.3 Round 3

Finally, we ask each node for the scores of all items in R. Then, we compute the aggre-

gated scores exactly for these items, from which we pick the k items of largest magnitude.

A simple optimization is, in Round 2, to not send an item’s local score if it is in the local

top-k/bottom-k sets, even if |rj(x)| > T1/m; these scores were sent in Round 1. Also in

Round 3, a node can send an item’s local score only if it was not sent to the coordinator in

previous rounds (using simple local bookkeeping).

2.3.2.4 Communication issues

Our algorithm makes novel extensions to TPUT [27] to support both positive and

negative scores at distributed sites. The original TPUT algorithm has no nontrivial bound

on communication cost and its worst- and best-case bounds carry over to our algorithm.

In the worst case, the pruning of our algorithm may be completely ineffective and all local

scores rj(x) may need to be sent to the coordinator to compute the global top-k aggregate

scores r(x); however, we see this is not the case in practice through extensive experimental

results in Section 2.5. In the best case, our algorithm will only need to communicate O(mk)

local scores.

2.3.3 Implementation details

At a high-level, for a dataset in HDFS with m splits, we assign one Mapper task per

split and each Mapper acts as a distributed node. We use one Reducer as the coordinator.

We implement our three-round algorithm in three rounds of MapReduce in Hadoop. To be

consistent across rounds, we identify each split with its unique offset in the original input

file. Two technical issues must be dealt with when implementing the algorithm in Hadoop.

First, the algorithm is designed assuming the coordinator and distributed nodes are

capable of bidirectional communication. However, in MapReduce, data normally flow in one

17

direction, from Mappers to Reducers. In order to have two-way communication, we utilize

two Hadoop features: the Job Configuration and Distributed Cache. The Job Configuration

is a small piece of information communicated to every Mapper and Reducer task during task

initialization. It contains some global configuration variables for Mappers and Reducers.

The Job Configuration is good for communicating a small amount of information. If large

amounts of data must be communicated, we use Hadoop’s Distributed Cache feature. A file

can be submitted to the master for placement into the Distributed Cache. Then, Distributed

Cache content is replicated to all slaves during the MapReduce job initialization.

Second, the distributed nodes and the coordinator in the algorithm need to keep persis-

tent state across three rounds. To do so, at the end of a Mapper task handling an input split,

via its Close interface, we write all necessary state information to an HDFS file with a file

name identifiable by the split’s id. When this split is assigned to a Mapper in a subsequent

round, the Mapper can then restore the state information from the file. Note Hadoop always

tries to write an HDFS file locally if possible, i.e., state information is usually saved on the

same machine holding the split, so saving state information in an HDFS file incurs almost

no extra communication cost. For the Reducer which acts as the coordinator, since there is

no split associated to it, we choose to customize the JobTracker scheduler so the Reducer

is always executed on a designated machine. Thus, the coordinator’s state information is

saved locally on this machine.

We dub our new algorithm, tailored for Hadoop as discussed above, Hadoop wavelet

top-k, or H-WTopk for short. Below, we detail how we implement all three rounds of

H-WTopk in Hadoop.

2.3.3.1 H-WTopk MapReduce Round 1

In Round 1, a Mapper first computes local frequency vector vj for split j by using

a hashmap to aggregate the total count for each key encountered as the records in the

split are scanned. After vj is constructed, we compute its wavelet coefficients in the Close

interface of the Mapper. Since the number of nonzero entries in vj , denoted as |vj |, is
typically much smaller than u, instead of running the O(u)-time algorithm of [11], we use

the O(|vj | log u)-time and O(log u)-memory algorithm of [13]. During the computation, we

also keep two priority queues to store the top-k and bottom-k wavelet coefficients.

After all coefficients for split j have been computed, the Mapper emits an intermediate

key-value pair (i, (j, wi,j)) for each of the top-k and bottom-k wavelet coefficients wi,j of

the split. In the emitted pairs, the Mapper marks the kth highest and the kth lowest

18

coefficients using (i, (j +m,wi,j)) and (i, (j + 2m,wi,j)), respectively. Finally, the Mapper

saves all unemitted coefficients as state information to an HDFS file associated with split j.

After the Map phase, the Reducer receives the top-k and bottom-k wavelet coefficients

from all the splits, 2km of them in total. We denote by R the set of distinct indices of the

received coefficients. For each index i ∈ R, The Reducer passes the corresponding (j, wi,j)s

received to a Reduce function, which adds up these wi,js, forming a partial sum ŵi for

wi. Meanwhile we construct a bit vector Fi of size m such that Fi(j) = 0 if wi,j has been

received and Fi(j) = 1 if not. While examining the (j, wi,j)s in the Reduce function, if we

encounter a marked pair, we remember it so the kth highest and the kth lowest coefficient

from each split j, denoted as w̃+
j and w̃−

j , can be obtained.

After we have all partial sums ŵi for all i ∈ R, and w̃+
j , w̃

−
j for all j, we compute upper

bound τ+i (resp. lower bound τ−i) on wi, by adding
∑m

j=1 Fi(j)w̃
+
j (resp.

∑m
j=1 Fi(j)w̃

−
j) to

ŵi. Then we obtain a lower bound τi on |wi|, hence T1, as described in Section 2.3. Finally,

we save tuple (i, ŵi, Fi) for all i ∈ R, and T1 as state information in a local file on the

Reducer machine.

2.3.3.2 H-WTopk MapReduce Round 2

To start Round 2, T1/m is first set as a variable in the Job Configuration. In this round,

for the Map phase, we define an alternate InputFormat so a Mapper does not read an input

split at all. Instead, a Mapper simply reads state information, i.e., all wavelet coefficients

not sent in Round 1, one by one. For any wi,j such that |wi,j | > T1/m, a Mapper emits the

pair (i, (j, wi,j)).

The Reducer first reads tuple (i, ŵi, Fi) for all i ∈ R from the local file written in

Round 1. For each i, it passes all corresponding (j, wi,j)s received in this round to a

Reduce function. Now, we update partial sum ŵi by adding these new coefficients, and

update Fi correspondingly. We also refine upper bound τ+i (resp. lower bound τ−i) as

τ+i = ŵi + ‖Fi‖1 · T1/m (resp. τ−i = ŵi −‖Fi‖1 · T1/m), where ‖Fi‖1 denotes the number of

1s in Fi.

With the updated τ+i , τ
−
i , we obtain a new T2, which can be used to prune indices from

R as described in Section 2.3. Lastly, the Reducer writes updated ŵi for all i ∈ R in a local

file, and the set of candidate indices R in an HDFS file.

2.3.3.3 H-WTopk MapReduce Round 3

In Round 3, the master reads R from HDFS and adds it to the Distributed Cache.

Like in Round 2, the Mappers still do not read the input splits. During initialization, each

19

Mapper reads R from the distributed cache. Then, it reads from the state file storing the

wavelet coefficients. For any wi,j it checks if i ∈ R and |wi,j | ≤ T1/m. If so, it means it has

not been communicated to the Reducer yet, and thus we emit (i, (j, wi,j)).

On the Reducer side, similar to Round 2, the Reducer first reads R and ŵi for all i ∈ R’s

from the local file. Then for each i, the Reduce function adds all newly received wi,j ’s to

ŵi, yielding accurate wi. Finally, we return the top-k coefficients wi of largest magnitude

for i ∈ R as the best k-term representation for v.

2.3.4 Multidimensional wavelets

It is straightforward to extend our algorithms to build multidimensional wavelet his-

tograms. Consider the two-dimensional case. Recall in this case frequency vector v is a 2D

array. A 2D wavelet transform applies two rounds of 1D wavelet transforms on the rows and

then the columns of v. Since each wavelet transform is a linear transformation, the resulting

2D wavelet coefficients are still linear transformations of v. So if we apply a 2D wavelet

transform to each split, any 2D wavelet coefficient is still a summation of corresponding 2D

coefficients of all splits. Thus, we can still run the modified TPUT algorithm to find the

top-k coefficients of largest magnitude as before.

2.4 Approximate Computation

We observe that the exact computation of the best k-term wavelet representation in

Hadoop is expensive. Although our improved algorithm avoids emitting all local frequency

vectors, it could still be expensive due to the following: (1) The (modified) TPUT algorithm

could still send out a lot of communication, though better than sending all local frequency

vectors; (2) it needs 3 rounds of MapReduce, which incurs a lot of overhead; and (3)

most importantly, every split needs to be scanned to compute local frequency vector vj

and compute local wavelet coefficients wi,j . This motivates us to explore approximation

algorithms which compute a k-term wavelet representation which may not be the best one,

but still approximates the underlying data distribution reasonably well.

There are many design choices for approximate computation of wavelets. Here are some

natural attempts: (i) We can replace TPUT with an approximate top-k algorithm [28,29],

after appropriate modification to handle negative scores. This resolves issue (1) but not

(2) and (3). (ii) We can approximate local wavelet coefficients of each split using a sketch

as in [13, 14], and then send out and combine the sketches, due to the property that these

sketches are linearly combinable. This resolves issues (1) and (2), but not (3), as computing

a sketch still needs to scan the data once. (iii) Lastly, a generic approach is random sampling,

20

that is, we take a random sample of the keys and construct the wavelets on the sample,

as the sample approximates the underlying data distribution well for a sufficiently large

sample size. Then, a wavelet representation can be constructed on the frequency vector of

the sample.

Among the possibilities, only (iii) resolves all three issues simultaneously. It requires

only one round, clearing issue (2). It also avoids reading the entire dataset, clearing issue

(3). However, it may result in a lot of communication, as it is well known to approximate

each (global) frequency v(x) with a standard deviation of εn (recall n is the number of

records in the entire dataset), a sample of size Θ(1/ε2) is required [30]. More precisely,

for a sample probability p = 1/(ε2n) (a sample of expected size pn = 1/ε2), one can

show v̂(x) = s(x)/p is an unbiased estimator of v(x) with standard deviation O(εn) for

any x, where s is the frequency vector of the sample. After that, we construct a wavelet

representation on the estimated frequency vector v̂. As n is the size of the entire dataset,

which is usually extremely large (for MapReduce clusters), ε needs to be fairly small for

v̂ to approximate v well, usually on the order of 10−4 to 10−6. The total communication

cost of this basic sampling method is O(1/ε2), even with one-byte keys, this corresponds to

100MB to 1TB of data being emitted to the network!

A straightforward improvement is to summarize the sampled keys of a split before

emitting them, which is actually used as a simple optimization for executing any MapReduce

job [19]. We aggregate the keys with the Combine function, that is, if the split is emitting c

pairs (x, 1) for the same key, they are aggregated as one pair (x, c). This optimization indeed

reduces communication cost, but its effectiveness highly depends on the data distribution;

in the worst case it may not reduce the communication at all.

A slightly better idea is to ignore those sampled keys with low frequencies in a split,

which we denote as the improved sampling algorithm. More precisely, we only send out a

sampled key x and its sampled count sj(x) if sj(x) ≥ εtj , where tj is the total number of

sampled records in split j. Thus, the overall error in the total count of a sampled key x

from all splits is at most
∑m

j=1 εtj = εpn = 1/ε, which translates into an (1/ε)/p = εn error

in the estimated frequency v̂(x). Thus, it adds another εn to the standard deviation, which

is still O(εn). Note that the total number of key-value pairs sent out by one split is at

most tj/(εtj) = 1/ε. Hence, the total communication of this approach is at most O(m/ε),

which improves upon sending all the samples since usually we have m≪ 1/ε. However, an

undesired consequence is v̂(x) will not be unbiased any more: E[v̂(x)] could be εn away

from v(x), since this method ignores all the small sample counts sj(x) < εtj .

21

Below we detail a new, two-level sampling idea, which produces an unbiased estimator

v̂(x) for v(x) with standard deviation O(εn) as in the basic random sampling algorithm,

while improving communication cost to O(
√
m/ε). The idea is to obtain an unbiased

estimator ŝ(x) of s(x), instead of sending all sj(x)s to compute s(x) exactly. We then

use ŝ(x) to produce v̂(x). We perform another level of sampling on the local frequency

vector sj of sampled keys for each split j. Specifically, we sample each key x in the sample

with probability min{ε√m · sj(x), 1}. More precisely, for any x with sj(x) ≥ 1/(ε
√
m),

we emit the pair (x, sj(x)); for any x with 0 < sj(x) < 1/(ε
√
m), we sample it with a

probability proportional to sj(x), i.e., ε
√
m · sj(x), and emit the pair (x, null) if it is

sampled (for an example please see Figure 2.3). Note that in two-level sampling, we do not

throw away sampled items with small frequencies completely, as is done in the improved

sampling method. Rather, these items are still given a chance to survive in the second-level

sample, by sampling them proportional to their frequencies relative to the threshold 1/ε
√
m

(which is established from our analysis below).

Next, we show how to construct from the emitted pairs from all splits, an unbiased

estimator ŝ(x) of s(x) for any key x ∈ [u] with standard deviation at most 1/ε. As s(x) =
∑m

j=1 sj(x), we add up all sample count (x, sj(x)) pairs received for x. They do not introduce

any error, and we denote this partial sum as ρ(x). If a split has sj(x) < 1/(ε
√
m), the

mapper processing the split will not emit sj(x), but simply emit (x, null) if x is sampled.

Suppose we receive M such pairs for x. Then, our estimator is

ŝ(x) = ρ(x) +M/(ε
√
m) (2.1)

(for an example of how we compute ŝ(x) at the reducer please see Figure 2.4).

Theorem 2.1. ŝ(x) is an unbiased estimator of s(x) with standard deviation at most 1/ε.

Proof of Theorem 2.1: Without loss of generality, assume in the first m′ splits sj(x) <

1/(ε
√
m). Write M as M =

∑m′

j=1Xj where Xj = 1 if x is sampled in split j and 0

otherwise. Each Xj is an independent Bernoulli trial, so

E[Xj] = ε
√
m · sj(x), and

Var[Xj] = ε
√
m · sj(x)(1− ε

√
m · sj(x)) ≤ ε

√
m · sj(x). (2.2)

Thus, we have

E[M] =

m′∑

j=1

ε
√
m · sj(x) = ε

√
m(s(x)− ρ(x)), (2.3)

i.e., E[̂s(x)] = s(x) combining (2.1) and (2.3).

22

Split j samples tj = nj · p records using

Basic Sampling, where p = 1/ε2n.

nj : number of records in split j

sample sj

• If sj(x) ≥ 1/(ε
√
m), emit (x , sj(x)).

• Else emit (x , null) with probability ε
√
m · sj(x). sample sj and its frequency vector sj(x)

1
ε
√
m

sample them
proportional
to frequency
relative to
1/(ε

√
m)!

emit them
with their
frequency.

Figure 2.3. Two-level sampling at mapper.

Reducer

emitted pairs from s1

emitted pairs from sm

Construct

s(x)

2345
1897
1673

189
53

1762
1543
3451

237
43
1356

• If sj(x) ≥ 1/(ε
√
m), emit (x , sj(x)).

• Else emit (x , null) with probability ε
√
m · sj(x).

• initialize ρ(x) = 0, M = 0.

– If (x , sj(x)) received, ρ(x) = ρ(x) + sj(x).

– Else if (x , null) received, M = M + 1.

• s(x) = ρ(x) +M/ε
√
m.

null

null

nullnull
null

null : sampled below 1
(ε
√
m)

: not sampled

Figure 2.4. Two-level sampling at reducer.

23

Next, from (2.2), we have

Var[M] =
m′∑

j=1

Var[Xj] = ε
√
m ·

m′∑

j=1

sj(x). (2.4)

Since each sj(x) ≤ 1/(ε
√
m), Var[M] is at most m′. Thus, the variance of ŝ(x) is

Var[M/(ε
√
m)] = Var[M]/(ε2m). So Var[̂s(x)] ≤ m′/(ε2m) ≤ 1/ε2, namely, the standard

deviation is at most 1/ε.

From ŝ(x), we can estimate v(x) as v̂(x) = ŝ(x)/p (recall that p = 1/(ε2n) is the

sampling probability of the first level random sample in each split). It will be an unbiased

estimator of v(x) with standard deviation (1/ε)/p = εn.

Corollary 2.1. v̂(x) is an unbiased estimator of v(x) with standard deviation at most εn.

Corollary 2.1 gives a bound on the error of the estimated frequencies. Below, we also

analyze the error in the computed wavelet coefficients. Consider the coefficient wi = 〈v, ψi〉,
where ψi = (−φj+1,2k + φj+1,2k+1)/

√
u/2j is the corresponding wavelet basis vector (see

discussion in Section 2.2.1). From the estimated frequency vector v̂, we estimate wi as

ŵi = 〈v̂, ψi〉. Since v̂(x) for every x is unbiased, ŵi is also an unbiased estimator of wi.

Recall that ψi(x) = −1,+1 for x = 2ku/2j+1 + 1, . . . , (2k + 2)u/2j+1, so the variance of ŵi

is

Var[ŵi] =
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[v̂(x)]

=
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[̂s(x)]/p2

=
2j

u

(2k+2)u/2j+1∑

x=2ku/2j+1+1

Var[M]/(ε2mp2)

≤ 2jn

um

(2k+2)u/2j+1∑

x=2ku/2j+1+1

ε
√
ms(x) (by (2.4))

=
ε2jn

u
√
m

(2k+2)u/2j+1∑

x=2ku/2j+1+1

s(x). (2.5)

Note that
∑(2k+2)u/2j+1

x=2ku/2j+1+1
s(x) is just the total number of keys covered by the wavelet basis

vector. This discussion leads to the next result:

Theorem 2.2. The two-level sampling method provides an unbiased estimator ŵi for any

wavelet coefficient wi, and the variance of ŵi is bounded by (2.5).

24

Finally, it remains to bound its communication cost.

Theorem 2.3. The expected total communication cost of our two-level sampling algorithm

is O(
√
m/ε).

Proof of Theorem 2.3: The expected total sample size of first-level sampling is pn =

1/ε2. Thus, there are at most (1/ε2)/(1/(ε
√
m)) =

√
m/ε keys with sj(x) ≥ 1/(ε

√
m)

across all splits. These keys must be emitted for second-level sampling. For any key x in

any split j with sj(x) < 1/(ε
√
m), we emit it with probability ε

√
m · sj(x), so the expected

total number of sampled keys for this category is

∑

j

∑

x

ε
√
m · sj(x) ≤ ε

√
m · 1/ε2 = √

m/ε.

So the total number of emitted keys is O(
√
m/ε).

Consider typical values: m = 103, ε = 10−4 and 4-byte keys. Basic sampling emits

1/ε2 ≈ 400MB; improved sampling emits at most m/ε ≈ 40MB; while two-level sampling

emits about
√
m/ε ≈ 1.2MB of data—a 330-fold or 33-fold reduction, respectively!

Remark: In our second-level sampling, the sampling probability depends on the fre-

quency, so that “important” items are more likely to be sampled. This falls into the general

umbrella of “importance sampling” [31], and has been used for frequency estimation on dis-

tributed data [32,33]. However, its application to wavelet histograms and the corresponding

variance analysis are new.

2.4.1 Multidimensional wavelets

Our algorithm extends to constructing multidimensional wavelet histograms naturally.

In d dimensions, frequency vector v is a d-dimensional array, and frequency array s of a

random sample of the dataset still approximates v. So the problem boils down to how well

s approximates v (note our two-level sampling algorithm does not affect the approximation

error of the sample). However, because data are usually sparse in higher dimensions, the

quality of the sample may not be as good as in one dimension. In fact, the standard

deviation of the estimated frequency for any v(x) (x is now a cell in [u]d) from a sample

of size O(1/ε2) is still O(εn), but due to the sparsity of the data, all the v(x)s may be

small, so the relative error becomes larger. This is, unfortunately, an inherent problem

with sparse data: if all v(x)s are small, say 0 or 1, then random sampling, and in general

any sublinear method, cannot possibly achieve small relative errors [34]. One remedy is to

lower the granularity of the data, i.e., project the data to a smaller grid [u/t]d for some

appropriate t so as to increase the density of the data.

25

2.4.2 System issues

Among the three general approximation strategies mentioned at the beginning of Section

2.4, implementing the approximate TPUT methods (such as KLEE [28]) in Hadoop requires

at least three rounds of MapReduce, which involves too much overhead for just approxi-

mating a wavelet histogram. Wavelet sketches can be easily implemented in Hadoop. The

idea is to run one Mapper per split, which builds a local wavelet sketch for the split and

emits the nonzero entries in the sketch to the Reducer. The Reducer then combines these

m sketches and estimates the top-k coefficients from the combined sketch. There are two

wavelet sketches in the literature: the AMS sketch [13, 35] and the GCS sketch [14]. The

latter was shown to have better performance, so we choose it to implement in Hadoop.

There are some technical details in optimizing its implementation in Hadoop, which we

omit here.

The third strategy, random sampling, clearly has better performance as it avoids scan-

ning the entire dataset and is also easy to implement in Hadoop. Our two-level sampling

algorithm in addition achieves very low communication cost. We detail how we address

some system issues, overcome the challenges, and implement two-level sampling in Hadoop

in the following.

2.4.3 Implementation details of TwoLevel-S

We will have m Mappers, one per input split, and 1 Reducer. The first issue is how to

randomly read records from an input split. The default Hadoop RecordReader in InputFile

format is designed to sequentially scan an input split. Hence, we define our own InputFile

format RandomInputFile, assuming each record in the input files has a fixed size. The

RandomInputFile defines a custom RecordReader, called RandomRecordReader, which can

randomly sample records from an input split. A straightforward implementation is to simply

seek to a random offset in the split when the Mapper requests the next record, but this

requires seeking offset locations in both directions. Instead, we implement it as follows.

When the RandomRecordReader is first initialized, it determines nj , the number of

records in the split. Next, it randomly selects pnj offsets in the split, where p = 1/(ε2n)

is the sample probability of the first-level sampling, and stores them in a priority queue Q

sorted in ascending order.

Afterwords, every time the RandomRecordReader is invoked by the Mapper to retrieve

the next record from the split, it seeks to the record indicated by the next offset, and retrieves

the record there. We continue this process iteratively until all pnj random records have been

obtained. Note in Section 2.4, we assume coin-flip sampling for sake of simpler analysis; here

26

we use sampling without replacement. It has been observed coin-flip sampling and sampling

without replacement behave almost the same for most sampling-based methods [30], and

we observe this is also true for our sampling-based approaches.

Using RandomInputFile as the InputFile format, two-level sampling can be implemented

in one round of MapReduce, as follows.

2.4.3.1 Map phase

During initialization of the Map phase, we specify n and ε in the Job Configuration.

With the RandomRecordReader, the MapRunner reads the pnj random records one at a

time and invokes the Map function for each record, which simply maintains aggregated

counts for keys of the sampled records. After the MapRunner has processed all sampled

records, the Mapper’s Close routine is called. It iterates over all sampled keys and checks

their aggregate counts. If sj(x) ≥ 1/(ε
√
m), we emit the pair (x, sj(x)). Otherwise, we emit

(x, 0) with probability ε
√
m · sj(x).

2.4.3.2 Reduce phase

For each key x, the Reducer passes all corresponding (x, sj(x)) or (x, 0) pairs to the

Reduce function, which computes the estimated v̂(x) as described in Section 2.4. After all

keys are processed by the Reducer, its Close method is invoked, where approximate wavelet

coefficients are computed from approximate global frequency vector v̂. In the end, we emit

(i, wi) pairs for the top-k approximate coefficients (with the k largest magnitudes).

2.4.3.3 Remarks

In our discussion so far, our RandomRecordReader assumes fixed length records. How-

ever, it is easy to extend it to support variable length records as well. Instead, assume

records of variable length end with a delimiter character or byte sequence (e.g., a new line

character). As a preprocessing step, the offsets of all records within a split j are computed

and stored as fixed-length integer values in an HDFS file associated with split j. This

is easily accomplished with a single scan over all splits, which is a one-time cost. The

RandomRecordReader will now read from two files, the record offset file for split j and

split j. The RandomRecordReader first generates pnj random offsets within the record

offset file, reads the associated record offsets, and inserts them in a priority queue Q. Note,

the number of records nj within split j are easy to determine based on the size of the

record offset file associated with split j since each offset is a fixed-length integer value. The

27

RandomRecordReader then proceeds to process offsets from Q one at a time by seeking to

an offset within split j and scanning forward until it finds the record delimiter.

In the implementation of our exact and sampling methods, we choose to do the final

processing in the close method, instead of using the combiner. This is a technicality due to

the default behavior of Hadoop, which runs the Combine function continuously while keys

are being processed to save memory buffer space (leads to fewer disk writes). On the other

hand, the close method is guaranteed to run only once when all keys have been processed.

2.5 Experiments

We implement all algorithms in Hadoop and empirically evaluate their performance, in

both end-to-end running time and communication cost. For the exact methods, we denote

the baseline solution of sending all local frequency vectors (the vjs of all splits) in Section

2.3 as Send-V, the baseline solution of sending the local wavelet coefficients (the wi,js of all

splits) in Section 2.3 as Send-Coef, and our new algorithm as H-WTopk (meaning “Hadoop

wavelet top-k”). For the approximate algorithms, we denote the basic sampling method as

Basic-S, the improved sampling method as Improved-S, and the two-level sampling method

as TwoLevel-S. Note Improved-S is based on the same idea as Basic-S, but offers strictly

better performance, which we derived in Section 2.4. Given this fact, we choose to utilize

Improved-S as the default competitor of TwoLevel-S. We also implement the sketch-based

approximation method as discussed in Section 2.4. We use the GCS-sketch which is the

state-of-the-art sketching technique for wavelet approximations [14]. We denote this method

as Send-Sketch. We did not attempt to modify the approximate TPUT methods (such

as KLEE [28]) to work with negative values and adapt them to MapReduce, since they

generally require multiple rounds and scanning the entire datasets, which will be strictly

worse than other approximation methods.

2.5.1 Setup and datasets

All experiments are performed on a heterogeneous Hadoop cluster running the latest

stable version of Hadoop, version 0.20.2. The cluster consists of 16 machines with four

different configurations: (1) 9 machines with 2GB of RAM and one Intel Xeon 5120 1.86GHz

CPU, (2) 4 machines with 4GB of RAM and one Intel Xeon E5405 2GHz CPU, (3) 2

machines with 6GB of RAM and one Intel Xeon E5506 2.13GHz CPU, and (4) 1 machine

with 2GB of RAM and one Intel Core 2 6300 1.86GHz CPU. The Hadoop NameNode

and TaskTracker run on the same machine with configuration (2) and we select one of

the machines of configuration (3) to run the (only) Reducer. We configure Hadoop to use

28

300GB of hard drive space on each slave and allocate 1GB memory per Hadoop daemon.

We have one TaskTracker and one DataNode daemon running on each slave, and a single

NameNode and JobTracker daemon on the master. All machines are directly connected to

a 100Mbps switch.

For the datasets, clearly, the determining parameters are n, the total number of records,

which corresponds to the size of the input file, and u, the domain size, as well as the

skewness. Note it only makes sense to use a dataset which is at least tens of gigabytes and

has a domain size on the order of 220. Otherwise a centralized approach would work just

fine, and the overhead of running MapReduce could actually lead to worse performance [19].

That said, for real datasets, we test all algorithms on the WorldCup [36] dataset, which

is the access logs of 92 days from the 1998 World Cup servers, a total of approximately

1.35 billion records. Each record consists of 10 4-byte integer values including month, day,

and time of access as well as the client id, object id, size, method, status, and accessed

server. We assign to each record a 4-byte identifier clientobject, which uniquely identifies a

distinct client id and object id pairing. The object id uniquely identifies a URL referencing

an object stored on the World Cup servers, such as a page or image. The pairing of the

client id and the object id is useful to analyze the correlation between clients and resources

from the World Cup servers, under the same motivation as that in the more common

example of using the (src ip, dest ip) pairing in a network traffic analysis scenario. There

are approximately 400 million distinct client id object id combinations, so the domain of

this key value is approximately 229, i.e., u = 229. We store WorldCup in binary format, and

in total, the stored dataset is 50GB.

To model the behavior of a broad range of real large datasets, we also generate datasets

following the Zipfian distribution (since most real datasets, e.g., the clientobject in World-

Cup, are skewed with different levels of skewness), with various degrees of skewness α, as

well as different u and n. We randomly permute keys in a dataset to ensure the same keys

do not appear contiguously in the input file. Each dataset is stored in binary format and

contain records with only a 4-byte integer key. Unless otherwise specified, we use the Zipfian

dataset as our default dataset to vigorously test all approaches on a variety of parameters

on large-scale data.

We vary α in {0.8, 1.1, 1.4} and log2 u in { 8, 11, 14, 17, 20, 23, 26, 29, 32 }. We vary

input file size from 10GB to 200GB, resulting in different n from 2.7 to 54 billion. We

vary the size of a record from 4-bytes to 100kB. For all algorithms, we use 4-byte integers

to represent v(x) in a Mapper and 8-byte integers in a Reducer. We represent wavelet

29

coefficients and sketch entries as 8-byte doubles.

For all experiments, we vary one parameter while keeping the others fixed at their

default values. Our default α is 1.1 and log2 u is 29. The default dataset size is 50GB

(so the default n is 13.4 billion). The default record size is 4-bytes. We compute the best

k-term wavelet histogram with k = 30 by default, which also varies from 10 to 50. The

default split size β is 256MB, which varies from 64MB to 512MB. Note that the number of

splits is m = 4n/(10242β) (so the default m is 200). We also simulate a live MapReduce

cluster running in a large data center where typically multiple MapReduce jobs are running

at the same time, which share the network bandwidth. Thus, the default available network

bandwidth is set to 50% (i.e., 50Mbps) but we also vary it from 10% to 100%. Note, we

omit the results for Send-Coef on all experiments except for varying the domain u of the

input dataset as it performs strictly worse than Send-V for other experiments.

The exact methods have no parameters to tune. For Send-Sketch, we use a recommended

setting for the GCS-sketch from [14], where each sketch is allocated 20KB· log2 u space. We

use GCS-8 which has the overall best per-item update cost and a reasonable query time to

obtain the final coefficients. We also did the following optimizations: First, for each split,

we compute the local frequency vector vj , and then insert the keys into the sketch so we

update the sketch only once for each distinct key. Second, we only send nonzero entries in

a local sketch to the Reducer. For the two sampling methods, the default ε is 10−4, and we

vary it from 10−5 to 10−1.

2.5.2 Results on varying k

We first study the effect of k, i.e., the size of the wavelet histogram to be computed.

Figure 2.5 shows the effect of varying k on the communication cost and running time

of all algorithms. The results show k has little impact on performance, except for the

communication cost of H-WTopk. This is expected, as Send-V (resp. Send-Sketch) always

compute and send out all local frequency vectors (resp. their sketches). The sampling

methods are also unaffected by k as the sampling rate is solely determined by m and ε.

However, H-WTopk’s communication cost is closely related to k, as it determines thresholds

T1 and T2 for pruning items.

For the exact methods, H-WTopk outperforms Send-V by orders of magnitude, in both

communication and running time. It also outperforms Send-Sketch, which is an approximate

method. The two sampling algorithms are clearly the overall winners. Nevertheless, among

the two, in addition to a shorter running time, TwoLevel-S reduces communication to

10%–20% compared to Improved-S. Recall our analysis indicates an O(
√
m)-factor reduction

30

10 20 30 40 50

10
6

10
8

10
10

10
12

Number of Coefficients (k)

C
o
m

m
u
n
ic

a
ti
o
n
 (

B
y
te

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(a)

10 20 30 40 50
10

2

10
3

10
4

10
5

Number of Coefficients (k)

T
im

e
 (

S
e
c
o
n
d
s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.5. Cost analysis vary k: effect on (a) communication and (b) running time.

from Improved-S to TwoLevel-S; but this assumes arbitrary input data. Due to the skewness

of the Zipfian data distribution, Improved-S actually combines many keys into one key-value

pair, and thus typically does not reach its O(m/ε) upper bound on communication. Overall,

the sampling algorithms have impressive performance: On this 50GB dataset, TwoLevel-S

incurs only 1MB communication and finishes in less than 3 minutes. In contrast, Send-

Sketch takes about 10 hours (most time is spent updating local sketches), Send-V about 2

hours (mostly busy communicating data), and H-WTopk 33 minutes (scanning inputs plus

overhead for 3 rounds of MapReduce).

We must ensure the efficiency gain of the sampling methods does not come with a major

loss of quality. Thus, we examine the sum of squared error (SSE) between the frequency

vector reconstructed from the wavelet histogram and that of the original dataset. The

results are shown in Figure 2.6. Since Send-V and H-WTopk are exact methods, they

represent the best possible reconstruction using any k-term wavelet representation. So

10 20 30 40 50
10

14

10
15

10
16

10
17

10
18

Number of Coefficients (k)

S
S

E

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

Ideal SSE

Figure 2.6. SSE: vary k.

31

their curves are identical in Figure 2.6 and represent the ideal error for measuring the

accuracy of the approximation methods. Clearly, when k increases, the SSEs of all methods

decrease. Among the three approximate methods, TwoLevel-S returns wavelet histograms

which come very close to the ideal SSE. Improved-S has the worst SSE, as it is not an

unbiased estimator for v, and the gap from the ideal SSE widens as k gets larger, as it is

not good at capturing the details of the frequency vector. Send-Sketch’s SSE is between

TwoLevel-S and Improved-S. Even though the SSE looks large in terms of absolute values,

it is actually quite small considering the gigantic dataset size. When k ≥ 30, the SSE is

less than 1% of the original dataset’s energy.

2.5.3 Varying ε

Next, we explore the impact of ε on all sampling methods, by varying it from 10−5 to 10−1

in Figure 2.7. In all cases, TwoLevel-S consistently achieves significantly better accuracy

than Improved-S, as the first is an unbiased estimator of v while the latter is not. Both

methods have larger SSEs when ε increases, with ε = 10−4 achieving a reasonable balance

between the SSE and efficiency (to be shown next), hence it is chosen as the default. Figure

2.8 shows all sampling methods have higher costs when ε decreases (from right to left). In

all cases, TwoLevel-S has significantly lower communication cost than Improved-S, as seen

in Figure 2.8(a). In addition, as shown in Figure 2.8(b), it has a lower running time than

Improved-S. In a busy data center where network bandwidth is shared by many concurrent

jobs, the savings in communication by TwoLevel-S will prove to be critical and the gap for

the running time will widen even more.

In what follows, we omit the results on SSEs when we vary the other parameters, as

they have less impact on the SSEs of various methods, and the relative trends on SSEs for

10
−5

10
−4

10
−3

10
−2

10
−1

10
14

10
16

10
18

10
20

10
22

ε

S
S

E

H−WTopk
Improved−S
TwoLevel−S

Ideal SSE

Figure 2.7. SSE: vary ε.

32

10
−5

10
−4

10
−3

10
−2

10
−1

10
3

10
4

10
5

10
6

10
7

ε

C
o

m
m

u
n

ic
a

ti
o

n
 (

B
y
te

s
)

Improved−S
TwoLevel−S

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

10
1

10
2

10
3

ε

T
im

e
 (

S
e

c
o

n
d

s
)

Improved−S
TwoLevel−S

(b)

Figure 2.8. Cost analysis vary ε: effect on (a) communication and (b) running time.

all methods are always similar to those reported in Figures 2.6 and 2.7.

2.5.4 Comparing SSE

For the next experiment, we analyze the communication and computation overheads of

all approximation algorithms to achieve a similar SSE in Figure 2.9, where the defaults of all

algorithms are circled. In Figure 2.9(a), we see that the communication cost increases as the

SSE decreases for all algorithms. TwoLevel-S achieves the best SSE to communication cost,

and communicates at least an order of magnitude less than Improved-S and two orders of

magnitude less than Send-Sketch to achieve a similar SSE. Among the algorithms, TwoLevel-

S is the most efficient in terms of running time, achieving a similar SSE to Send-Sketch in

orders of magnitude less time and approximately 2-3 times less time than Improved-S, as

10
14

10
16

10
18

10
20

10
22

10
3

10
4

10
5

10
6

10
7

10
8

10
9

SSE

C
o

m
m

u
n

ic
a

ti
o

n
 (

B
y
te

s
)

Improved−S
TwoLevel−S
Send−Sketch

(a)

10
14

10
16

10
18

10
20

10
22

10
1

10
2

10
3

10
4

10
5

SSE

T
im

e
 (

S
e

c
o

n
d

s
)

Improved−S
TwoLevel−S
Send−Sketch

(b)

Figure 2.9. SSE versus (a) communication and (b) running time.

33

shown in Figure 2.9(b). These results also indicate the sketch size selected at 20kB * log2(u)

is most competitive against the sampling-based algorithms, justifying our choice for using

it as the default value for the GCS-sketch.

2.5.5 Varying dataset size n

Next, we analyze the scalability of all methods by varying n, or equivalently the dataset

size. Note as n increases, so does m, the number of splits. This explains the general trends

in Figure 2.10 for both communication and running times. There are two points worth

pointing out. First, TwoLevel-S outperforms Improved-S by a larger margin in terms of

communication cost for larger datasets due to the O(
√
m)-factor difference, which becomes

more than one order of magnitude when the data becomes 200GB. Second, the increase in

m leads to longer running times of all methods, but the two sampling algorithms are much

less affected. The reason is the sampling algorithms mainly have two kinds of running time

costs: overheads associated with processing each split (i.e., Mapper initialization), which

linearly depends on m, and sampling overheads where the sample size is always Θ(1/ε2),

which is independent of n. The net effect of these costs is a slow growth in running time.

Overall, H-WTopk and TwoLevel-S are clearly the best exact and approximate methods,

respectively.

2.5.6 Varying record size

In Figure 2.11 we analyze the effect varying the record size has on the performance of all

algorithms. We fix the number of records as 4,194,304 (which is the number of records when

the total dataset reaches 400GB with 100kB per record) for the default Zipfian dataset,

0 50 100 150 200
10

5

10
7

10
9

10
11

Dataset Size (GB)

C
o

m
m

u
n

ic
a

ti
o

n
 (

B
y
te

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(a)

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

Dataset Size (GB)

T
im

e
 (

S
e

c
o

n
d

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.10. Cost analysis vary n: effect on (a) communication and (b) running time.

34

10
1

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

10
10

Record Size (Bytes)

C
o

m
m

u
n

ic
a

ti
o

n
 (

B
y
te

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(a)

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

Record Size (Bytes)

T
im

e
 (

S
e

c
o

n
d

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.11. Cost analysis vary record size: effect on (a) communication and (b) running
time.

and vary the size of a record from 4 bytes (key only) to 100kB, which corresponds to a

dataset size of 16MB to 400GB consisting of 1 and 1600 splits, respectively. We see the

communication cost increases for all methods as the record size increases. This makes sense

since increasing the number of splits has a negative impact to all of their communication

costs. Nevertheless, even with 1600 splits when the record size is 100kB H-WTopk still

communicates less than Send-V; and TwoLevel-S still outperforms the other algorithms by

orders of magnitude with respect to communication.

The running time of all algorithms also increases as the record size increases, while the

total number of records is fixed. This is not surprising due to several factors when the

record size increases: 1) all algorithms communicate more data; 2) there are much more

splits than the number of slaves in our cluster; 3) the IO cost becomes higher. Note that

regardless of the record size H-WTopk still performs better than Send-V. We also note that

the clear winner is TwoLevel-S with a running time roughly an order of magnitude better

than Send-V. Finally, the performance gap between H-WTopk and Send-V, as well as the

gap between TwoLevel-S and Improved-S, are not as significant as in other experiments.

This is mostly due to the small number of records (only 4 million, in contrast to 13.4 billion

in the default zipfian dataset and 1.35 billion in the WorldCup dataset) we have to use

in this study, which is constrained by the number of records we can accommodate for the

maximum record size (100kB), while still keeping the total file size under control (400GB

when each record becomes 100kB).

35

2.5.7 Varying domain size u

We next examine how u affects all algorithms in Figure 2.12. Note as we increase u

while keeping n fixed, the tail of the data distribution gets longer while frequent elements get

slightly less frequent. Figure 2.12(a) shows that this affects Send-V, which is obvious as each

local frequency vector vj gets more entries. We note that Send-V performs better than Send-

Coef for all tested domains. Send-Coef reduces the computational burden at the reducer

by performing the wavelet transform in parallel over the local frequency vectors. However,

the results indicate that the potential savings from computing the wavelet transform in

parallel is canceled out by the increase in communication and computation cost of Send-Coef

over Send-V. The overheads in Send-Coef are caused by the fact that the number of local

wavelet coefficients grows linearly to the domain size, regardless of the size of each split

and how many records a local split contains. Thus, with the increasing domain size, the

communication cost and the overall running time of this approach quickly degrade. Indeed,

the total nonzero local wavelet coefficients are almost always much greater than the total

number of keys in the local frequency vector with a nonzero frequency. Since Send-V always

results in less communication and computation overheads than Send-Coef, we use Send-V

as our default baseline algorithm for all other experiments.

In terms of running time, larger u makes all methods slower except the sampling-based

algorithms. Send-V, Send-Coef, H-WTopk, and Send-Sketch all more or less linearly depend

on u: Send-V and Send-Coef are obvious; H-WTopk needs O(u) time to compute the wavelet

transformation for each vj ; while Send-Sketch needs to make O(u) updates to the sketch.

The two sampling algorithms are not affected as their sample size is independent of u.

10 15 20 25 30

10
6

10
8

10
10

10
12

10
14

log
2
 u

C
o
m

m
u
n
ic

a
ti
o
n
 (

B
y
te

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S Send−Coef

(a)

10 15 20 25 30
10

2

10
3

10
4

10
5

10
6

log
2
 u

T
im

e
 (

S
e
c
o
n
d
s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S Send−Coef

(b)

Figure 2.12. Cost analysis vary u: effect on (a) communication and (b) running time.

36

2.5.8 Varying split size β

Figure 2.13 shows the effect of varying the split size β from 64MB to 512MB while

keeping n fixed. The number of splits m drops for larger split sizes (varying from 800 to 100

for the 50GB dataset). Hence, the communication cost of all algorithms drop with a larger

split size. This is essentially the opposite of Figure 2.10(a) where we increase n (hence m)

for a fixed split size. The difference is, for Send-V, the communication is not reduced as

much, since as the split gets larger, there are more distinct keys in each split, which cancels

some benefit of a smaller m.

The running times of all methods reduce slightly as well for larger split size, because

Send-V has less communication overhead, H-WTopk has to perform less local wavelet

transformations, and Send-Sketch has less updates to the local sketches. For the two

sampling algorithms, although their sample size does not depend on m, the communication

(hence the cost of the Reducer who needs to process all the incoming messages) reduces as

m gets smaller.

All these seem to suggest we should use a split size as large as possible. However, there

is a limit on the split size, constrained by the available local disk space (so that a split does

not span over multiple machines, which would incur significant communication cost when

processing such a split). In addition, larger split sizes reduce the granularity of scheduling

and increase the overhead of failure recovery. On our cluster with 16 machines, these issues

do not manifest. But on large clusters with thousands of machines, the split size should not

be set too large. So the typical split size as recommended by most works in the literature

(e.g., [37–39]) is either 128MB or 256MB.

64 128 256 512

10
6

10
8

10
10

10
12

Split Size (MB)

C
o
m

m
u
n
ic

a
ti
o
n
 (

B
y
te

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(a)

64 128 256 512
10

2

10
3

10
4

10
5

10
6

Split Size (MB)

T
im

e
 (

S
e
c
o
n
d
s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.13. Cost analysis vary split size β: effect on (a) communication and (b) running
time.

37

2.5.9 Varying data skewness α

We also study the effect of data skewness α, with α as 0.8, 1.1, 1.4 and show results in

Figure 2.14 and 2.15. When data are less skewed, each split has more distinct key values.

As a result, the communication cost of Send-V is higher, leading to higher running time.

The running time of Send-Sketch becomes more expensive as more local sketch updates are

necessary. The communication and running time of other methods have little changes. The

SSE is analyzed in Figure 2.15. All methods’ SSE seem to improve on less skewed data.

Nevertheless, TwoLevel-S consistently performs the best among all approximation methods.

2.5.10 Varying bandwidth B

Finally, Figure 2.16 shows the effect the bandwidth B has on the running time of all

methods, by varying it from 10% to 100% of the full network bandwidth which is 100Mbps.

The communication cost of all algorithms are unaffected by B. Send-V enjoys an almost

linear reduction in running time when B increases as transmitting data dominates its

running time. Other methods see a slight reduction in their respective running times.

2.5.11 WorldCup dataset

Figure 2.17 analyzes the performance of all algorithms on WorldCup using default k,

ε, β, and B values, in which we attempt to compute the best k-term wavelet representation

over the clientobject attribute. Notice in Figure 2.17(a) the communication trends for

all algorithms are similar to our previous observations. We note the WorldCup dataset is

approximately 50GB with almost 229 distinct clientobject values, which are the defaults used

for the Zipfian datasets. Send-V’s communication cost is dependent on two primary factors:

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

α=0.8 α=1.1 α=1.4

C
o

m
m

u
n

ic
a

ti
o

n
 (

B
y
te

s
)

Send−V H−Topk Send−Sketch

Improved−S TwoLevel−S

(a)

10
0

10
2

10
4

10
6

10
8

α=0.8 α=1.1 α=1.4

T
im

e
 (

S
e

c
o

n
d

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.14. Cost analysis vary skewness α: effect on (a) communication and (b) running
time.

38

10
10

10
12

10
14

10
16

10
18

S
S

E

Send−V H−WTopk Send−Sketch

Improved−S

α=0.8 α=1.1 α=1.4

TwoLevel−S

Figure 2.15. Vary α SSE.

0 20 40 60 80 100
10

2

10
3

10
4

10
5

10
6

Bandwidth (% of 100Mbps)

T
im

e
 (

S
e

c
o

n
d

s
)

Send−V H−WTopk Send−Sketch

Improved−S TwoLevel−S

Figure 2.16. Vary B.

10
0

10
2

10
4

10
6

10
8

10
10

C
o
m

m
u
n
ic

a
ti
o
n
 (

B
y
te

s
)

Send−V

H−WTopk

Send−Sketch

Improved−S TwoLevel−S

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

S
e
c
o
n
d
s
)

Send−V

H−WTopk

Send−Sketch

Improved−S TwoLevel−S

(b)

Figure 2.17. Cost analysis WorldCup dataset: effect on (a) communication and (b)
running time.

the skewness of the data and the total number of distinct values. As the data become more

skewed, Send-V can leverage on the Combine function to reduce communication. However,

as we see in Figure 2.17(a), Send-V requires roughly the same amount of communication as

for the Zipfian datasets. This indicates that by varying α, u, and n for the Zipfian datasets,

we can approximate the distribution of real large datasets fairly well.

In Figure 2.17(b), we observe the running times of all approaches onWorldCup. Send-V’s

running time is mainly dependent on its communication cost. The data communicated

are about the same as the default Zipfian dataset so it is not surprising Send-V preforms

similarly on the WorldCup dataset. We would like to note TwoLevel-S saves almost 2 orders

of magnitude and H-WTopk saves about 0.5-1 order of magnitude over Send-V, indicating

our algorithms are effective on large real datasets.

We observe the SSE on WorldCup in Figure 2.18. The relative performance of various

algorithms is similar to the previously observed trends for Zipfian datasets in Figure 2.15.

39

10
0

10
5

10
10

10
15

S
S

E

Send−V

H−WTopk

Send−Sketch

Improved−S TwoLevel−S

Figure 2.18. SSE on WorldCup.

We also analyze the communication and running time of all algorithms versus the SSE

on WorldCup in Figure 2.19. The trends are again similar to that in Figure 2.9 for

Zipfian datasets. Notice the Send-Sketch method achieves a similar SSE, with at least

an order of magnitude more communication and orders of magnitude more computation

overheads than other methods. We observe that TwoLevel-S achieves the best overall SSE

to communication cost, requiring approximately an order of magnitude less communication

than other methods. In addition, TwoLevel-S is also 2-3 times or orders of magnitude faster

than other methods to achieve a similar SSE.

2.5.12 Experimental conclusion

These extensive results reach the clear conclusion that H-WTopk is the choice if we

wish to find exact top-k wavelet coefficients, outperforming the baseline exact method

Send-V by several orders of magnitude in communication, and 0.5-1 order of magnitude

in running time; when approximation is allowed, TwoLevel-S is the best method. Not only

10
10

10
12

10
14

10
16

10
2

10
4

10
6

10
8

10
10

SSE

C
o
m

m
u
n
ic

a
ti
o
n
 (

B
y
te

s
)

Improved−S
TwoLevel−S
Send−Sketch

(a)

10
10

10
12

10
14

10
16

10
1

10
2

10
3

10
4

10
5

SSE

T
im

e
 (

S
e

c
o

n
d

s
)

Improved−S
TwoLevel−S
Send−Sketch

(b)

Figure 2.19. SSE on WorldCup: versus (a) communication and (b) running time.

40

does it offer the cleanest solution, but it also achieves an SSE nearly as good as exact

methods for a tiny fraction of their communication cost and running time. In addition,

it achieves the best overall communication and running time to achieve an SSE similar to

other sampling and sketching techniques. It produces an approximate wavelet histogram of

high approximation quality for 200GB data of domain size of 229 in less than 10 minutes

with only 2MB communication!

2.6 Related Work

The wavelet histogram and wavelet analysis, introduced to data management for se-

lectivity estimation by Matias et al. [11], has quickly emerged as a widely used tool in

databases, data mining, and data analysis [22–25]. Matias et al. have also studied how

to dynamically maintain the wavelet histograms under updates [12]. Gilbert et al. [13]

extended the construction of the wavelet histogram to streaming data, using the AMS

sketch [35]. Cormode et al. [14] then improved the efficiency of the sketch with the

Group-Count Sketch (GCS).

Many types of histograms exist. Poosala et al. [18] presented an excellent discussion on

the properties of various histograms. How to efficiently build other types of histograms for

large data in MapReduce is an intriguing open problem we plan to investigate.

Since its introduction [19], MapReduce has quickly become a primary framework for

processing massive data. It represents the trend of going towards parallel and distributed

processing on shared-nothing commodity clusters [20, 40, 41]. Significant effort has been

devoted to improving the efficiency, the functionality and query processing in MapReduce,

e.g., Amazon EC2 [42], HadoopDB [43], Hadoop++ [44], Hadoop [7], MapReduce Online

[45], and many others [46]. To the best of our knowledge, efficient construction of wavelet

histograms in MapReduce has not been studied.

Our work is also related to finding distributed top-k and frequent items. The best exact

method for distributed top-k is TPUT [27]. However, it (and other methods, e.g., [28]) does

not support finding the aggregates with the largest absolute values over positive and negative

value sets. Our exact algorithm shares the basic principle in distributed query processing,

however, comes with novel designs in order to work for wavelets in MapReduce. The

approximate distributed top-k query has been studied in [28] and many others. However,

they also only support nonnegative scores and require multiple rounds, which introduce

considerable overhead in the MapReduce framework. As such, we did not attempt to

adapt them as approximation methods. Instead, for approximation methods, we focus on

algorithms that require only one round of MapReduce. The most related works are methods

41

for finding heavy hitters from distributed datasets [33]. However, they are not tailored for

the MapReduce environment, and use complicated heuristics that are hard to implement

efficiently in Hadoop. There is also a study on finding the top-k largest valued items in

MapReduce [47], where each item has a single total score, which is clearly different from

(and does not help) our case.

2.7 Closing Remarks

As the size of data continues to explode, they are increasingly being stored and processed

in parallel and distributed platforms, such as MapReduce clusters, and this chapter studies

how to summarize these massive data using wavelet histograms. We designed both exact and

approximation methods in MapReduce, which significantly outperform the straightforward

adaptations of existing methods to MapReduce. Our methods are also easy to implement,

in particular the two-level sampling method, making them appealing in practice.

Data summarization is an important technique for analyzing large relational data. The

wavelet histogram is merely one representative, and there are many other types of summaries

we may consider, such as other kinds of histograms (e.g., the V-optimal histogram [48]),

and various sketches and synopses. Another open problem is how to incrementally maintain

the summary when the data stored in the MapReduce cluster are being updated. Finally,

data summarization in MapReduce, and any parallel and distributed platform, is also an

intellectually challenging problem, requiring a good blend of algorithmic techniques and

system building.

CHAPTER 3

RANKING LARGE TEMPORAL DATA

3.1 Introduction

In this chapter, we turn our focus to the emerging challenge of increasingly complex

structure and rich semantics of data; in particular, we focus on temporal data and how to

efficiently query and summarize it using the ranking operator.

Temporal data have important applications in numerous domains, such as in the financial

market, in scientific applications, and in the biomedical field. Despite the extensive liter-

ature on storing, processing, and querying temporal data, and the importance of ranking

(which is considered as a first-class citizen in database systems [50]), ranking temporal

data has not been studied until recently [51]. However, only the instant top-k queries on

temporal data were studied in [51], where objects with the k highest scores at a query time

instance t are to be retrieved; it was denoted as the top-k(t) query in [51]. The instant

top-k definition clearly comes with obvious limitations (sensitivity to outliers, difficulty in

choosing a meaningful single query time t). A much more flexible and general ranking

operation is to rank temporal objects based on the aggregation of their scores in a query

interval, which we dub the aggregate top-k query on temporal data, or top-k(t1, t2, σ) for

an interval [t1, t2] and an aggregation function σ. For example, return the top-10 weather

stations having the highest average temperature from 10/01/2010 to 10/07/2010; find the

top-20 stocks having the largest total transaction volumes from 02/05/2011 to 02/07/2011.

Clearly, the instant top-k query is a special case of the aggregate top-k query (when

t1 = t2). The work in [51] shows that even the instant top-k query is hard!

3.1.1 Problem formulation

In temporal data, each object has at least one score attribute A whose value changes over

time, e.g., the temperature readings in a sensor database. An example of real temperature

data from the MesoWest project appears in Figure 3.1. In general, we can represent the

*The work in this chapter appears in [49] c©2012 VLDB Endowment. Reprinted by Permission.

43

8.52 8.524 8.528 8.532 8.536 8.54
330

340

350

360

370

380

390

400

t: time instance ×108(seconds)

T
em

p
er

a
tu

re

Figure 3.1. MesoWest data.

score attribute A of an object as an arbitrary function f : R → R (time to score), but

for arbitrary temporal data, f could be expensive to describe and process. In practice,

applications often approximate f using a piecewise linear function g [52–55]. The problem of

approximating an arbitrary function f by a piecewise linear function g has been extensively

studied (see [52–54,56] and references therein). Key observations are: 1) more segments in g

lead to better approximation quality, but also are more expensive to represent; 2) adaptive

methods, by allocating more segments to regions of high volatility and less to smoother

regions, are better than nonadaptive methods with a fixed segmentation interval.

In this chapter, for the ease of discussion and illustration, we focus on temporal data

represented by piecewise linear functions. Nevertheless, our results can be extended to other

representations of time series data, as we will discuss in Section 3.4. Note that a lot of work

in processing temporal data also assumes the use of piecewise linear functions as the main

representation of the temporal data [52–55,57], including the prior work on the instant top-k

queries in temporal data [51]. That said, how to approximate f with g is beyond the scope

of this chapter, and we assume that the data have already been converted to a piecewise

linear representation by any segmentation method. In particular, we require neither that

they have the same number of segments nor that they have the aligned starting/ending

time instances for segments from different functions. It is possible the data are collected

from a variety of sources, where each source may apply different preprocessing modules on

its respective data.

44

That said, formally, there are m objects in a temporal database; the ith object oi is

represented by a piecewise linear function gi with ni number of (linear line) segments. There

are a total of N =
∑m

i=1 ni segments from all objects. The temporal range of any object is in

[0, T]. An aggregate top-k query is denoted as top-k(t1, t2, σ) for some aggregation function

σ, which is to retrieve the k objects with the k highest aggregate scores in the range [t1, t2],

denoted as an ordered set A(k, t1, t2) (simply A when the context is clear). The aggregate

score of oi in [t1, t2] is defined as σ(gi(t1, t2)), or simply σi(t1, t2), where gi(t1, t2) denotes

the set of all possible values of function gi evaluated at every time instance in [t1, t2] (clearly

an infinite set for continuous time domain). For example, when σ = sum, the aggregate

score for oi in [t1, t2] is
∫ t2
t1
gi(t)dt. An example sum top-2 query is shown in Figure 3.2. For

ease of illustration, we assume nonnegative scores by default. This restriction is removed

in Section 3.4. We also assume a max possible value kmax for k.

3.1.2 Our contributions

A straightforward observation is that a solution to the instant top-k query cannot be

directly applied to solve the aggregate top-k query since: 1) the temporal dimension can

be continuous; and 2) an object might not be in the top-k set for any top-k(t) query for

t ∈ [t1, t2], but still belong to A(k, t1, t2) (for example, A(1, t2, t3) in Figure 3.2 is {o1},
even though o1 is never a top-1(t) object for any t ∈ [t2, t3]). Hence, the trivial solution

(denoted as Exact1) is for each query to compute σi(t1, t2) of every object and insert

them into a priority queue of size k, which takes O(m(N + log k)) time per query and is

clearly not scalable for large datasets (although our implementation slightly improves this

query time, as described in Section 3.2). Our goal is then to design IO and computation

efficient algorithms which can outperform the trivial solution and work well regardless

t1 t2

Score

Time

o1

o2

o3

t3

Figure 3.2. A top-2(t1, t2, sum) query example with answer {o3, o1}

45

of whether data fit in main memory or not. A design principle we have followed is to

leverage on existing indexing structures whenever possible (so these algorithms can be

easily adopted in practice). Our work focuses specifically on σ = sum, and we make the

following contributions:

• We design a novel exact method in Section 3.2, based on using a single interval tree

(Exact3).

• We present two approximate methods (and several variants) in Section 3.3. Each

offers an approximation σ̃i(t1, t2) on the aggregate score σi(t1, t2) for objects in any

query interval. We say X̃ is an (ε, α)-approximation of X if X/α − εM ≤ X̃ ≤
X + εM for user-defined parameters α ≥ 1, ε > 0 and where M =

∑m
i=1 σi(0, T).

Now, for i ∈ [1,m], [t1, t2] ⊆ [0, T], the Appx1 method guarantees that σ̃i(t1, t2)

is an (ε, 1)-approximation of σi(t1, t2), and the Appx2 method guarantees σ̃i(t1, t2)

is an (ε, 2 log(1/ε))-approximation of σi(t1, t2). We show an (ε, α)-approximation

on σi(t1, t2) implies an approximation Ã(k, t1, t2) of A(k, t1, t2) such that the ag-

gregate score of the jth ranked (1 ≤ j ≤ k) object in Ã(k, t1, t2) is always an

(ε, α)-approximation of the aggregate score of the jth ranked object in A(k, t1, t2).

• We extend our results to general functions f for temporal data, other possible aggre-

gates, negative scores, and deal with updates in Section 3.4.

• We show extensive experiments on massive real data sets in Section 3.5. The re-

sults clearly demonstrate the efficiency, effectiveness, and scalability of our methods

compared to the baseline. Our approximate methods are especially appealing when

approximation is admissible, given their better query costs than exact methods and

high-quality approximations.

We survey the related work in Section 3.6, and conclude in Section 3.7. Table 3.1

summarizes our notations. A summary of the upper bounds on the preprocessing cost, the

index size, the query cost, the update cost, and the approximation guarantee of all methods

appears in Table 3.2; note for simplicity, logB kmax terms are absorbed in O(·) notation in

Table 3.2.

46

Table 3.1. Frequently used notations.

Symbol Description

A(k, t1, t2) ordered top-k objects for top-k(t1, t2, σ).

Ã(k, t1, t2) an approximation of A(k, t1, t2).

A(j), Ã(j) the jth ranked object in A or Ã.

B block size.

B set of breakpoints (B1 and B2 are special cases).

B(t) smallest breakpoint in B larger than t.

gi the piecewise linear function of oi.

gi,j the jth line segment in gi, j ∈ [1, ni].

gi(t1, t2) the set of all possible values of gi in [t1, t2].

kmax the maximum k value for user queries.

ℓ(t) the value of a line segment ℓ at time instance t.

m total number of objects.

M M =
∑m

i=1 σi(0, T).

ni number of line segments in gi.

n, navg max{n1, n2, . . . , nm}, avg{n1, n2, . . . , nm}
N number of line segments of all objects.

oi the ith object in the database.

qi number of segments in gi overlapping [t1, t2].

r number of breakpoints in B, bounded O(1/ε).

(ti,j , vi,j) jth end-point of segments in gi, j ∈ [0, ni].

σi(t1, t2) aggregate score of oi in an interval [t1, t2].

σ̃i(t1, t2) an approximation of σi(t1, t2).

[0, T] the temporal domain of all objects.

Table 3.2. IO costs, with block size B

method index size construction cost query cost

Exact1 O(NB) O(NB logB N) O(logB N +
∑m

i=1
qi

B)

Exact2 O(NB) O(
∑m

i=1
ni

B logB ni) O(
∑m

i=1 logB ni)

Exact3 O(NB) O(NB logB N) O(logB N + m
B)

Appx1 O(r
2

B kmax) O(NB (logB N + r)) O(k
B + logB r)

Appx2 O(r
Bkmax) O(NB (logB N + log r)) O(k log r)

method update cost approximation

Exact1 O(logB N) (0, 1)

Exact2 O(logB n) (0, 1)

Exact3 O(logB N) (0, 1)

Appx1 O(1
B (logB N + r)) (ε, 1)

Appx2 O(1
B (logB N + log r)) (ε, 2 log r)

47

3.2 Exact Methods

As explained in Section 3.1, a trivial exact solution Exact1 is to find the aggregate

score of each object in the query interval and insert them into a priority queue of size k. We

can improve this approach by indexing line segments from all objects with a B+-tree, where

the key for a data entry e is the value of the time-instance for the left-end point of a line

segment ℓ, and the value of e is just ℓ. Given a query interval [t1, t2], this B+-tree allows

us to find the first leaf node with segments that contain t1 in O(logB N) IOs. Assuming

the leaf nodes are linked with forward pointers in the B+-tree, a forward scan of the leaf

nodes (till t2) then can retrieve all line segments whose temporal dimensions overlap with

[t1, t2] (either fully or partially). In this process, we simply maintain m running sums,

one per object in the database. Suppose the ith running sum of object oi is si and it is

initialized with the value 0. Given a line segment ℓ defined by (ti,j , vi,j) and (ti,j+1, vi,j+1)

from oi (see an example in Figure 3.3), we define an interval I = [t1, t2] ∩ [ti,j , ti,j+1], let

tL = max{t1, ti,j} and tR = min{t2, ti,j+1}, and update si = si + σi(I), where

σi(I) =

{
0, if t2 < tL or t1 > tR;
1
2(tR − tL)(ℓ(tR) + ℓ(tL)), else.

(3.1)

Note that ℓ(t) is the value of the line segment ℓ at time t. Note that if we follow the

sequential scan process described above, we will only deal with line segments that do overlap

with the temporal range [t1, t2], in which the increment to si corresponds to the second case

in (3.1). It is essentially an integral from tL = max{t1, ti,j} to tR = min{t2, ti,j+1} w.r.t.

ℓ, i.e.,
∫ tR
tL
ℓ(t)dt. This range [tL, tR] of ℓ also defines a trapezoid; hence, it is equal to the

area of this trapezoid, which yields the formula in (3.1).

When we have scanned all line segments up to t2 from the B+-tree, we stop and assign

σi(t1, t2) = si for i = 1 to m. Finally, we insert (i, σi(t1, t2)), for i = 1 to m, into a priority

t1 t2

Score

Time

o3

(t3,1, v3,1)

(t3,2, v3,2)

t3,1 t3,2I

σ3(I)

tL tR

ℓ(tR)
ℓ(tL)

Figure 3.3. Compute σi([t1, t2] ∩ [ti,j , ti,j+1]).

48

queue of size k sorted in the descending order of σi(t1, t2). The answer A(k, t1, t2) is the

(ordered) object ids in this queue when the last pair (m,σm(t1, t2)) has been processed.

This method Exact1 has a cost of O((N/B) logB N) IOs for building the B+-tree, an

index size of O(N/B) blocks, and a query cost of O(logB N +
∑m

i=1 qi/B + (m/B) logB k)

IOs where qi is the number of line segments from oi overlapping with the temporal range

[t1, t2] of a query q=top-k(t1, t2, sum). In the worst case, qi = ni for each i, then the query

cost becomes O(N/B)!

3.2.1 A forest of B+-trees

Exact1 becomes quite expensive when there are a lot of line segments in [t1, t2], and its

asymptotic query cost is actually O(N/B) IOs, which is clearly nonscalable. The bottleneck

of Exact1 is the computation of the aggregate score of each object. One straightforward

idea to improve the aggregate score computation is to leverage on precomputed prefix-sums

[58]. We apply the notion of prefix-sums to continuous temporal data by precomputing the

aggregate scores of some selected intervals in each object; this preprocessing helps reduce the

cost of computing the aggregate score for an arbitrary interval in an object. Let (ti,j , vi,j)

be the jth end-point of segments in gi, where j ∈ {0, . . . , ni}; clearly, the jth segment in

gi is then defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}, which we denote as gi,j .

Then, define intervals Ii,ℓ = [ti,0, ti,ℓ] for ℓ = 1, . . . , ni, and compute the aggregate score

σi(Ii,ℓ) for each.

Once we have (Ii,ℓ, σi(Ii,ℓ))s, we build a B+-tree to index them. Specifically, we make

a leaf-level data entry ei,ℓ for (Ii,ℓ, σi(Ii,ℓ)), where the key in ei,ℓ is ti,ℓ (the right end-point

of Ii,ℓ), and the value of ei,ℓ includes both gi,ℓ and σi(Ii,ℓ). Given {ei,1, . . . , ei,ni
} for oi,

we bulk-load a B+-tree Ti using them as the leaf-level data entries (see Figure 3.4 for an

example).

We do this for each object, resulting in m B+-trees. Given Ti, we can compute gi(t1, t2)

for any interval [t1, t2] efficiently. We first find the data entry ei,L such that its key value

ti,L is the first succeeding key value of t1; we then find the data entry ei,R such that its key

value ti,R is the first succeeding key value of t2. Next, we can calculate σi(t1, ti,L) using gi,L

(stored in ei,L), and σi(t2, ti,R) using gi,R (stored in ei,R), simply based on (3.1). Finally,

σi(t1, t2) = σi(Ii,R)− σi(Ii,L) + σi(t1, ti,L)− σi(t2, ti,R), (3.2)

where σi(Ii,R), σi(Ii,L) are available in ei,R, ei,L, respectively. Figure 3.4 also gives a query

example using o3.

49

t1 t2

Score

Time

o3

t3,1 t3,2 t3,3t3,0 t3,4

t3,5 t3,6

I3,1
I3,2

I3,3
I3,4
I3,5

I3,6

e3,ℓ = (t3,ℓ, (g3,ℓ, σ3(I3,ℓ)))

g3,2

g3,1

g3,3
g3,4

g3,5

g3,6σ3(t1, t3,2) σ3(t2, t3,4)

I3,L = I3,2, t3,L = t3,2; I3,R = I3,4, t3,R = t3,4

Figure 3.4. The method Exact2.

Once all σi(t1, t2)s are computed for i = 1, . . . ,m, the last step is the same as that in

Exact1.

We denote this method as Exact2. Finding ei,L and ei,R from Ti takes only logB ni cost,

and calculating (3.2) takes O(1) time. Hence, its query cost is O(
∑m

i=1 logB ni+m/B logB k)

IOs. The index size of this method is the size of all B+-trees, where Tis size is linear to

ni; so the total size is O(N/B) blocks. Note that computing {σi(Ii,1), . . . , σi(Ii,ni
)} can be

easily done in O(ni/B) IOs, by sweeping through the line segments in gi sequentially from

left to right, and using (3.1) incrementally (i.e., computing σi(Ii,ℓ+1) by initializing its value

to σi(Ii,ℓ)). Hence, the construction cost is dominated by building each tree Ti with cost

O((ni/B) logB ni). The total construction cost is O(
∑m

i=1(ni/B) logB ni).

3.2.2 Using one interval tree

When m is large (as is the case for the real data sets we explore in Section 3.5), querying

m B+-trees becomes very expensive, partly due to the overhead of opening and closing m

disk files storing these B+-trees. Hence, an important improvement is to somehow index

the data entries from all m B+-trees in a single disk-based data structure.

Consider any object oi, and let intervals Ii,1, . . . , Ii,ni
be the same as that in Exact2,

where Ii,ℓ = [ti,0, ti,ℓ]. Furthermore, we define intervals I−i,1, . . . , I
−
i,ni

, such that I−i,ℓ = Ii,ℓ −
Ii,ℓ−1 (let Ii,0 = [ti,0, ti,0]), i.e., I

−
i,ℓ = [ti,ℓ−1, ti,ℓ].

We define data entry ei,ℓ such that its key is I−i,ℓ, and its value is (gi,ℓ, σi(Ii,ℓ)), for

ℓ = 1, . . . , ni. An object oi yields ni such entries; an example is shown in Figure 3.5. When

we collect all entries from all objects, we end up with N entries in total. We denote these

50

Time

I3,1
I3,2

I3,3
I3,4
I3,5

I3,6

e3,ℓ = (I−
3,ℓ, (g3,ℓ, σ3(I3,ℓ)))

I−
3,1 I−

3,2 I−
3,3 I−

3,4 I−
3,5I

−

3,6

t1 t2

Figure 3.5. The method Exact3.

data entries as a set I−; and it is important to note that the key value of each data entry

in I− is an interval. Hence, we can index I− using a disk-based interval tree S [59–61].

Given this interval tree S, computing σi(t1, t2) can now be reduced to two stabbing

queries, using t1 and t2, respectively, which return the entries in S whose key values

(intervals in I−) contain t1 or t2, respectively. Note that each such stabbing query returns

exactly m entries, one from each object oi. This is because: 1) any two intervals I−i,x, I
−
i,y

for x 6= y from oi satisfies I
−
i,x ∩ I−i,y = ∅; 2) and I−i,1 ∪ I−i,2 ∪ · · · ∪ I−i,ni

= [0, T].

Now, suppose the stabbing query of t1 returns an entry ei,L from oi in S, and the

stabbing query of t2 returns an entry ei,R from oi in S. It is easy to see that we can

calculate σi(t1, t2) just as (3.2) does in Exact2 (see Figure 3.5). Note that using only these

two stabbing queries is sufficient to compute all σi(t1, t2)s for i = 1, . . . ,m.

Given N data entries, the external interval tree has a linear size, O(N/B) blocks, and

takes O((N/B) logB N) IOs to build [60] (building entries {ei,1, . . . , ei,ni
} for oi takes only

O(ni/B) cost). The two stabbing queries take O(logB N +m/B) IOs [60]; hence, the total

query cost, by adding the cost of inserting σi(t1, t2)s into a priority queue of size k, is

O(logB N + (m/B) logB k). We denote this method Exact3.

3.2.3 Remarks

One technique we do not consider is indexing temporal data with R-trees to solve

aggregate top-k queries. R-trees constructed over temporal data have been shown to

perform orders of magnitude worse than other indexing techniques for answering instant

top-k queries, even when branch-and-bound methods are used [51]. Given this fact, we do

not attempt to extend the use of R-trees to solve the harder aggregate top-k query.

Temporal aggregation with range predicates has been studied in the classic work [62,63],

however, with completely different objectives. Firstly, they dealt with multiversioned keys

51

instead of time-series data, i.e., each key is alive with a constant value during a time

period before it gets deleted. One can certainly model these keys as temporal objects with

constant functions following our model (or even piecewise constant functions to model also

updates to keys, instead of only insertions and deletions of keys). But more importantly,

their definitions of the aggregation [62,63] are fundamentally different from ours. The goal

in [63] is to compute the sum of key values alive at a time instance, or alive at a time interval

intersecting a query interval. The work in [62] extends [63] by allowing a range predicate

on the key dimension as well, i.e., its goal is to compute the sum of key values that 1) are

alive at a time instance, or alive at a time interval intersecting a query interval; 2) and are

within a specified query range in the key dimension.

Clearly, these aggregations [62,63] are different from ours. They want to compute a single

aggregation of all keys that “fall within” (are alive in) a two-dimensional query rectangle;

while our goal is to compute the aggregate score values of many individual objects over a

time interval (then rank objects based on these aggregations).

Zhang et al. [62] also extended their investigation to compute the sum of weighted

key values, where each key value (that is alive in a two-dimensional query rectangle) is

multiplied by a weight proportional to how long it is alive on the time dimension within

the query interval. This weighted key value definition will be the same as our aggregation

definition if an object’s score is a constant in the query interval. They also claimed that

their solutions can still work when the key value is not a constant, but a function with

certain types of constraints. Nevertheless, even in these cases, their goal is to compute a

single sum over all weighted key values for an arbitrary two-dimensional query rectangle,

rather than each individual weighted key value over a time interval. Constructing m such

structures, a separate one for each of the m objects in our problem, and only allowing

an unbounded key domain can be seen as similar to our Exact2 method, which on large

data corpuses is the least efficient technique we consider. These fundamental differences

make these works almost irrelevant in providing helpful insights for solving our temporal

aggregation problems.

3.3 Approximate Methods

The exact approaches require explicit computation of σi(t1, t2) for each of m objects,

and we manage to reduce the IO cost of this from roughly N/B to m to m/B. Yet, on real

datasets when m is quite large, this can still be infeasible for fast queries. Hence, we now

study approximate methods that allow us to remove this requirement of computing all m

52

aggregates, while still allowing any query [t1, t2] over the continuous time domain.

Our approximate methods focus on constructing a set of breakpoints B = {b1, b2, . . . , br},
bi ∈ [0, T] in the time domain, and snapping queries to align with these breakpoints. We

prove the returned value σ̃i(t1, t2) for any curve (ε, 1)-approximates σi(t1, t2). The size of

the breakpoints and time for queries will be independent of the total number of segments

N or objects m.

In this section, we devise two methods for constructing r breakpoints, BreakPoints1

and BreakPoints2. The first method BreakPoints1 guarantees r = Θ(1/ε) and is

fairly straightforward to construct. The second method requires more advanced techniques

to construct efficiently and guarantees r = O(1/ε), but can be much smaller in practice.

Then given a set of breakpoints, we present two ways to answer approximate queries on

them: Query1 and Query2. The first approach Query1 constructs O(r2) intervals, and

uses a two-level B+-tree to retrieve the associated top k objects list from the one interval

snapped to by the query. The second approach Query2 only builds O(r) intervals and

their associated kmax top objects, and on a query narrows the list of possible top k-objects

to a reduced set of O(k log r) objects. Figure 3.6 shows an outline of these methods.

We define the following approximation metrics.

Definition 3.1. G is an (ε, α)-approximation algorithm of the aggregate scores if for any

i ∈ [1,m], [t1, t2] ⊆ [0, T], G returns σ̃i(t1, t2) such that σi(t1, t2)/α − εM ≤ σ̃i(t1, t2) ≤
σi(t1, t2) + εM , for user-defined parameters α ≥ 1, ε > 0.

Definition 3.2. For A(k, t1, t2) (or Ã(k, t1, t2)), let A(j) (or Ã(j)) be the jth ranked object

in A (or Ã). R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) queries if for any

k ∈ [1, kmax], [t1, t2] ⊆ [0, T], R returns Ã(k, t1, t2) and σ̃
Ã(j)

(t1, t2) for j ∈ [1, k], s.t.

σ̃
Ã(j)

(t1, t2) is an (ε, α)-approximation of σ
Ã(j)

(t1, t2) and σA(j)(t1, t2).

N segments

m objects

BreakPoints1

BreakPoints2

Query1

Query2

Figure 3.6. Outline of approximate methods.

53

Definition 3.2 states that Ã will be a good approximation of A if (ε, α) are small, since

at each rank, the two objects from Ã and A, respectively, will have really close aggregate

scores. This implies that the exact ranking order in A will be preserved well by Ã unless

many objects have very close (smaller than the gap defined by (ε, α)) aggregate scores on

some query interval; and this is unlikely in real datasets when users choose small values of

(ε, α).

Lemma 3.1. An algorithm G that satisfies Definition 3.1 implies an algorithm R that

satisfies Definition 3.2.

Proof of Lemma 3.1: Algorithm G creates Ã(k, t1, t2) by finding the top k objects and

approximate scores ranked by σ̃i(t1, t2). By the definition of G, σ̃
Ã(j)

(t1, t2) is an (ε, α)-

approximation of σ
Ã(j)

(t1, t2). To see σ̃
Ã(j)

(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2),

note that all j objects A(j′) for j′ ∈ [0, j] satisfy that σ̃A(j′)(t1, t2) ≥ σA(j′)(t1, t2)/α −
εM ≥ σA(j)(t1, t2)/α − εM , so σ̃

Ã(j)
(t1, t2) is at least as large this lower bound. There

must be m − j − 1 objects i with σ̃i(t1, t2) ≤ σA(j)(t1, t2) + εM , implying σ̃
Ã(j)

(t1, t2)

≤ σA(j)(t1, t2) + εM .

Lemma 3.1 shows that an algorithm G satisfying Definition 3.1 implies an algorithm

R satisfying Definition 3.2. That said, for either BreakPoints1 or BreakPoints2,

Query1 is an (ε, 1)-approximation for σi(t1, t2) and A(k, t1, t2); Query2 is an (ε, 2 log r)-

approximation for σi(t1, t2) and A(k, t1, t2). Despite the reduction in guaranteed accuracy

for Query2, in practice its accuracy is not much worse than Query1, and it is 1-2 orders

of magnitude better in space and construction time; and Query1 improves upon Exact3,

the best exact method.

3.3.1 Breakpoints

Our key insight is that σi(t1, t2) does not depend on the number of segments between

the boundary times t1 and t2; it only depends on the aggregate σ applied to that range. So

to approximate the aggregate score of any object within a range, we can discretize them

based on the accumulated σ value. Specifically, we ensure that between no two consecutive

breakpoints in bj , bj+1 ∈ B does the value σi(bj , bj+1) become too large for an object. Both

sets of breakpoints B1 for BreakPoints1 and B2 for BreakPoints2 start with b0 = 0

and end with br = T . Given b0, they sweep forward in time, always constructing bj before

bj+1, and define:

bj+1 so

{∑m
i=1 σi(bj , bj+1) = εM, in BreakPoints1,

maxmi=1 σi(bj , bj+1) = εM, in BreakPoints2,

54

where M =
∑m

i=1 σi(0, T). Note that these breakpoints bj are not restricted to, and in

general will not, occur at the end points of segments of some oi.

Since the total aggregate
∑m

i=1 σi(0, T) =M , for BreakPoints1, there will be exactly

r = ⌈1/ε + 1⌉ breakpoints, as each (except for the last br) accounts for εM towards the

total integral. For ease of exposition, we will assume that 1/ε is integral and drop the

⌈·⌉ notation, hence 1/ε · εM = M . Next, we notice that BreakPoints2 will have at

most as many breakpoints as BreakPoints1 since maxmi=1Xi ≤
∑m

i=1Xi for any set of

Xi > 0. However, the inequality is not strict and these quantities could be equal; this

implies the two cases could have the same number of breakpoints. This is restricted to the

special case where between every consecutive pair bj , bj+1 ∈ B exactly one object oi has

σi(bj , bj+1) = εM and for every other object oi′ for i 6= i′ has zero aggregate σi′(bj , bj+1) = 0.

As we will demonstrate on real data in Section 3.5, in most reasonable cases, the size of

BreakPoints2 is dramatically smaller than the size of BreakPoints1.

3.3.1.1 Construction of BreakPoints1

We first need to preprocess all of the objects according to individual tuples for each

vertex between two line segments. Consider two line segments s1 and s2 that together

span from time tL to time tR and transition at time tM . If they are part of object oi,

then they have values vL = gi(tL), vM = gi(tM), and vR = gi(tR). Then, for the vertex

at (tM , vM), we store the tuple (tL, tM , tR, vL, vM , vR). Then, we sort all tuples across all

objects according to tM in ascending order and place them in a queue Q. The breakpoints

B1 will be constructed by popping elements from Q.

We need to maintain some auxiliary information while processing each tuple. For each

tuple, we can compute the slope of its two adjacent segments as wL = (vM − vL)/(tM − tL)

and wR = (vR − vM)/(tR − tM). Between each pair of segment boundaries, the value of

an object gi(t) varies linearly according to the slope wi,ℓ in segment gi,ℓ. Thus, the sum
∑m

i=1 gi(t) varies linearly according to W (t) =
∑m

i=1wi,ℓi if each ith object is currently

represented by segment gi,ℓi . Also, at any time t, we can write the summed value as

V (t) =
∑m

i=1 gi(t). Now, for any two time points t1 and t2 such that no segments starts

or ends in the range (t1, t2), and given V (t1) and W (t1), we can calculate in constant time

the sum
∑m

i=1 σi(t1, t2) =
1
2W (t1)(t2− t1)2+V (t1)(t2− t1); note this derivation comes from

similar observation from deriving Equation 3.1 that the range [t1, t2] defines trapezoids for

the objects. Thus, we always maintain V (t) and W (t) for the current t.

Since b0 = 0, to construct B1, we only need to show how to construct bj+1 given bj .

Starting at bj , we reset to 0 a running sum up to a time t ≥ bj written I(t) =
∑m

i=1 σi(bj , t).

55

Then, we pop a tuple (tL, tM , tR, vL, vM , vR) from Q and process it as follows. We update

the running sum to time tM as I(tM) = I(t)+ 1
2W (t)(tM−t)2+V (t)(tM−t). If I(tM) < εM ,

then we update V (tM) = V (t) +W (t)(tM − t), then W (tM) = W (t) − wL + wR, and pop

the next tuple off of Q.

If I(tM) ≥ εM , that means that the breakpoint bj+1 occurred somewhere between t and

tM . We can solve for this time bj+1 in the equation I(bj+1) = εM where

0 = (
1

2
W (t))(bj+1 − t)2 + (V (t))(bj+1 − t) + (I(t)− εM)

as

bj+1 = t− V (t)

W (t)
+

1

W (t)

√
(V (t))2 − 2W (t)(I(t)− εM).

The slope W (t) has not changed, but we have to update V (bj+1) = V (t)+W (t) · (bj+1− t).
Now, we reinsert the tuple at the top of Q to begin the process of finding bj+2. Since

each of N tuples is processed in linear time, the construction time is dominated by the

O((N/B) logB N) IOs for sorting the tuples.

3.3.1.2 Baseline construction of BreakPoints2

While construction of BreakPoints1 reduces to a simple scan over all segments (rep-

resented as tuples), computing BreakPoints2 is not as easy because of the replacement

of the sum operation with a max. The difficulties come in resetting the maintained data at

each breakpoint.

Again, we first need to preprocess all of the objects according to individual tuples for

each line segment. We store the ℓth segment of oi as the tuple si,ℓ = (tL, tR, vL, vR, i) which

stores the left and right endpoints of the segment in time as tL and tR, respectively, and

also stores the values it has at those times as vL = gi(tL) and vR = gi(tR), respectively.

Note for each segment si,ℓ we can compute its slope wi,ℓ = (vR − vL)/(tR − tL). Then, we

sort all tuples across all objects according to tL in ascending order and place them in a

queue Q. The breakpoints B2 will be constructed by popping elements from Q.

By starting with b0 = 0, we only need to show how to compute bj+1 given bj . We

maintain a running integral Ii(t) = σi(bj , t) for each object. Thus, at the start of a new

break point bj , each integral is set to 0. Then, for each new segment si,ℓ that we pop from

Q, we update Ii(t) to Ii(tR) = Ii(t) + (vR − vL)(tR − tL)/2. If Ii(tR) < εM , then we pop

the next tuple from Q and continue.

However, if the updated Ii(tR) ≥ εM , then it means we have an event before the

next segment will be processed from oi. As before with BreakPoints1, we calculate

56

b̂j+1,i = t+ gi(t)
wi,ℓ

+ 1
wi,ℓ

√
(gi(t))2 − 2wi,ℓ(Ii(t)− εM). This is not necessarily the location of

the next breakpoint bj+1, but if the breakpoint is caused by oi, then this will be it. We

call such objects for which we have calculated b̂j+1,i as dangerous. We let b̂j+1 = min b̂j+1,i

(where b̂j+1,i is implicitly ∞ if it is not dangerous). To determine the true next breakpoint,

we keep popping tuples from Q until for the current tuple tL > b̂j+1. This indicates no more

segment endpoints occur before some object oi reaches Ii(t) = εM . So we set bj+1 = b̂j+1,

and reset maintained values in preparation for finding bj+2.

Assuming Ω(m/B) internal memory space, this method runs in O((N/B) logB N) IOs,

as we can maintain m running sums in memory. We can remove this assumption in

O((N/B) logB N) IOs with some technical tricks which we omit. To summarize, after sorting

in O(logB N) passes on the data, we determine for each segment from each oi how many

segments occur again before another segment from oi is seen. We then keep the auxiliary

information for each object (e.g., running sums) in an IO-efficient priority queue [64] on the

objects sorted by the order in which a segment from each object will next appear.

However, with limited internal space or in counting internal runtime, this method is still

potentially slower than finding BreakPoints1 since it needs to reset each Ii(bj+1) = 0

when we reach a new breakpoint. This becomes clear when studied from an internal memory

runtime perspective, where this method may take O(rm+N logN) time.

3.3.1.3 Efficient construction of BreakPoints2

We can avoid the extra O(rm) term in the run time by using clever bookkeeping that

ensures we do not have to reset too much each time we find a breakpoint. The Appendix

(Section 9.1) of our technical report [65] shows:

Lemma 3.2. BreakPoints2 can be built in O(N logN) time (for N > 1/ε). Its size is

r = O(1/ε); and it takes O((N/B) logB N) IOs to construct.

3.3.1.4 Remarks

For specific datasets, there may be other specialized ways of choosing breakpoints. For

real-world datasets, such as the MesoWest data as shown in Figure 3.1, our methods are

both efficient and have excellent approximation quality (see Section 3.5).

3.3.2 Index breakpoints and queries

Given a set of breakpoints B (either B1 or B2), we show how to answer queries on the full

dataset approximately. The approximation guarantees are based on the following property

that holds for BreakPoints1 B1 and BreakPoints2 B2. For any query interval (t1, t2),

57

let (B(t1),B(t2)) be the associated approximate interval, where B(t1) (resp. B(t2)) is the

smallest breakpoints in B such that B(t1) ≥ t1 (resp. B(t2) ≥ t2); see Figure 3.7.

Lemma 3.3. For any query [t1, t2] and associated approximate interval [B(t1),B(t2)]: ∀oi,
|σi(t1, t2)− σi(B(t1),B(t2))| ≤ εM.

Proof of Lemma 3.3: Both B1 and B2 guarantee that between any two consecutive

breakpoints bj , bj+1 ∈ B that for any object σi(bj , bj+1) ≤ εM . This property is guaranteed

directly for BreakPoints2, and is implied by BreakPoints1 because for any object oi

it holds that σi(t1, t2) ≤
∑m

j=1 σj(t1, t2) for each σj(t1, t2) ≥ 0, which is the case since we

assume positive scores (this restriction is removed in Section 3.4).

Hence, by changing the query interval from [t1, t2] to [B(t1), t2], the aggregate can only

decrease, and can decrease by at most εM . Also, by changing the interval from [B(t1), t2] to
[B(t1),B(t2)], the aggregate can only increase, and can increase by at most εM . Thus, the

inequality holds since each endpoint change can either increase or decrease the aggregate

by at most εM .

We now present two query methods, and associate data structures, called Query1 and

Query2.

3.3.2.1 Nested B+-tree queries

For Query1, we consider all
(
r
2

)
intervals with a breakpoint from B at each endpoint.

For each of these intervals [bj , bj′], we construct the kmax objects with the largest aggregate

σi(bj , bj′). Now we can show that this nested B+-tree yields an (ε, 1)-approximation for

both the aggregate scores and A(k, t1, t2) for any k ≤ kmax.

Time

t1 t2

B(t2)B(t1)

Figure 3.7. Associated approximate interval.

58

To construct the set of kmax objects associated with each interval [bj , bj′], we use a

single linear sweep over all segments using operations similar to Exact1. Starting at each

breakpoint bj , we initiate a running integral for each object to represent the intervals with

bj as their left endpoint. Then at each other breakpoints bj′ , we output the kmax objects

with largest running integrals starting at each bj up to bj′ to represent [bj , bj′]. That is, we

maintain O(r) sets ofm running integrals, one for each left breakpoint bj we have seen so far

(to avoid too much internal space in processing all N segments, we use a single IO-efficient

priority queue as in constructing BreakPoints2, where each of m objects in the queue

now also stores O(r) running sums). We also maintain O(r) priority queues of size kmax

for each left endpoint bj , over each set of m running integrals on different objects. This

takes O((N/B)(logB(mr) + r logB kmax) + r(rkmax/B+1)) IOs, where the last item counts

for the output size (since we have O(r2) intervals and each interval stores kmax objects).

We assume rkmax < N (to simplify and so index size O(r2kmax) is feasible); hence, the last

term is absorbed in O(·).
To index the set of these intervals, we use a nested set of B+-trees. We first build a

B+-tree Ttop on the breakpoints B. Then for each leaf node associated with bj , we point to

another B+-tree Tj on B′
j , where B′

j = {b ∈ B | b > bj}. The top level B+-tree Ttop indexes

the left endpoint of an interval [bj , bj′] and the lower level B+-tree Tj pointed to by bj in

Ttop indexes the right end point bj′ (for all bj′ > bj). We build O(r) B+-trees of size O(r),

hence, this step takes O(r2/B) IOs (by bulkloading). Again, we assume r2 < N , and this

cost will also be absorbed in the construction cost.

Now we can query any interval in O(logB r) time, since each B+-tree requires O(logB r)

to query, and for a query top-k(t1, t2, σ), we use Ttop to find B(t1), and the associated

lower level B+-tree of B(t1) to find B(t2), which gives the top kmax objects in interval

[B(t1),B(t2)]. We return the top k objects from them as Ã (see Figure 3.8). The above and

Lemma 3.3 imply the following results.

Lemma 3.4. Given breakpoints B of size r (r2 < N and rkmax < N), Query1 takes

O((N/B) (logB(mr)+ r logB kmax)) IOs to build, has size Θ(r2kmax/B), and returns (ε, 1)-

approximate top-k queries, for any k ≤ kmax, in O(k/B + logB r) IOs.

3.3.2.2 Dyadic interval queries

Query1 provides very efficient queries, but requires Ω(r2kmax/B) blocks of space which

for small values of ε can be too large (as r = O(1/ε) in both types of breakpoints). For

arbitrarily small ε, it could be that r2 > N . It also takes Ω(rN log kmax) time to build.

59

Ã(k, t1, t2)

T
im

e

B(t1)

B(t2)

t1

t2

Figure 3.8. Illustration of Query1.

Thus, we present an alternative approximate query structure, called Query2, that uses

only O(rkmax /B) space, still has efficient query times and high empirical accuracy, but has

slightly worse accuracy guarantees. It is a (ε, 2 log r)-approximation for both σi(t1, t2) and

A(k, t1, t2).

We consider all dyadic intervals, that is all intervals [bj , bj′] where j = h2ℓ + 1 and

j′ = (h + 1)2ℓ for some integer 0 ≤ ℓ < log r and 0 ≤ h ≤ r/2ℓ − 1. Intuitively, these

intervals represent the span of each node in a balanced binary tree. At each level ℓ, the

intervals are of length 2ℓ, and there are ⌈r/2ℓ⌉ intervals. There are less than 2r + log r

such intervals in total since there are r at level 0, ⌈r/2⌉ at level 1, and so on, geometrically

decreasing.

As with Query1 for each dyadic interval [bj , bj′], we find the kmax objects with the

largest σi(bj , bj′) in a single sweep over all N segments. There are log r active dyadic

intervals at any time, one at each level, so we maintain log r running integrals per object.

We do so again using two IO-efficient priority queues. One requires O((1/B) logB(m log r))

IOs per segment, the elements correspond to objects sorted by which have segments to

processes next, and each element stores the log r associated running integrals. The second

is a set of log r IO-efficient priority queues of size kmax, sorted by the value of the running

integral; each requires O((1/B) logB kmax) IOs per segment. The total construction is

O((N/B)(logB(m log r) + log r logB kmax)) IOs.

In dyadic intervals, any interval [b1, b2] can be formed as the disjoint union of at most

2 log r dyadic intervals. We use this fact as follows: for each query interval [t1, t2], we

60

determine the at most 2 log r dyadic intervals that decompose the associated approximate

query interval [B(t1),B(t2)]. For each such dyadic interval, we retrieve the top-k objects and

scores from its associated top-kmax objects (k ≤ kmax), and insert them into a candidate set

K, adding scores of objects inserted more than once. The set K is of size at most k2 log r.

We return the k objects with the top k summed aggregate scores from K.

Lemma 3.5. Query2 (ε, 2 log r)-approximations A(k, t1, t2).

Proof of Lemma 3.5: Converting [t1, t2] to [B(t1),B(t2)] creates at most εM error

between σi(t1, t2) and σi(B(t1),B(t2)), as argued in Lemma 3.3. This describes the additive

εM term in the error, and allows us to hereafter consider only the lower bound on scores

over the approximate query interval [B(t1),B(t2)].
The relative 2 log r factor is contributed to by the decomposition of [B(t1),B(t2)] into

at most 2 log r disjoint intervals. For each object oi ∈ A(t1, t2), some such interval [bj , bj′]

must satisfy σi(bj , bj′) ≥ σi(B(t1),B(t2))/(2 log r). For this interval, if oi is in the top-k,

then we return a value at least σi(bj , bj′) ≥ σi(B(t1),B(t2))/(2 log r). If oi is not in the

top-k for [bj , bj′], then each object oi′ that is in that top-k set has

σi′(B(t1),B(t2))≥σi′(bj , bj′)≥σi(bj , bj′)≥
σi(B(t1),B(t2))

2 log r
.

Thus, there must be at least k objects oi′ ∈ Ã(B(t1),B(t2)) with σi′(B(t1),B(t2)) ≥
σi(B(t1),B(t2))/(2 log r).

To efficiently construct the set K of at most k2 log r potential objects to consider being

in Ã(k, t1, t2), we build a balanced binary tree over B. Each node (either an internal node

or leaf node) corresponds to a dyadic interval (see Figure 3.9). We construct the set of such

intervals that form the disjoint union over [B(t1),B(t2)] as follows. In Phase 1, starting at

B(t1) B(t2)

Figure 3.9. Illustration of Query2.

61

the root, if [t1, t2] is completely contained within one child, we recurse to that child. Phase

2 begins when [t1, t2] is split across both children of a node, so we recur on each child.

On the next step, Phase 3 begins, we describe the process for the left child; the process is

symmetric for the right child. If t1 is within the right child, we recur to that child. If t1 is

within the left child, we return the dyadic interval associated with the right child and recur

on the left child. Finally, if t1 separates the left child from the right child, we return the

dyadic interval associated with the right child and terminate. Since the height of the tree is

at most log r, and we return at most one dyadic interval at each level for the right and left

case of Phase 3, then there are at most 2 log r dyadic intervals returned. The above idea

can be easily generalized to a B+-tree (simply with larger fanout) if r is large.

Lemma 3.6. Given breakpoints B of size r, Query2 requires size Θ(rkmax/B), takes

O((N/B)(logB(m log r)+log r logB kmax)) cost to build, and answers (ε, 2 log r)-approximate

top-k queries, for any k ≤ kmax, in O(k log r logB k) IOs.

Proof of Lemma 3.6: The error bound follows from Lemma 3.5, and the construction

time is argued above. The query time is dominated by maintaining a size k priority queue

over the set K with O(k log r) objects inserted, from k objects in O(log r) dyadic intervals.

3.3.3 Combined approximate methods

Finally, we formalize different approximate methods: Appx1-B, Appx2-B, Appx1,

Appx2. As shown in Figure 3.6, the methods vary based on how we combine the con-

struction of breakpoints and the query structure on top of them. Appx1 and Appx2

use BreakPoints2 followed by either Query1 or Query2, respectively. As we will

demonstrate in Section 3.5, BreakPoints2 is superior to BreakPoints1 in practice;

so, we designate Appx1-B (BreakPoints1 +Query1) the basic version of Appx1, and

Appx2-B (BreakPoints1 +Query2) the basic version of Appx2.

The analysis between the basic and improved versions are largely similar; hence, we only

list the improved versions in Table 3.2. In particular, for the below results, since r = Θ(1/ε)

in BreakPoints1, we can replace r with 1/ε for the basic results.

Appx1 computes r = O(1/ε) breakpoints B2 using BreakPoints2 in O((N/B) logB

(N/B)) IOs. ThenQuery1 requiresO(r2kmax/B) space, O((N/B)(logB(mr)+r logB kmax))

construction IOs, and can answer (ε, 1)-approximate queries in O(k/B + logB r) IOs. Since

m, r < N , this simplifies the total construction IOs to O((N/B) (logB N + r logB kmax),

62

the index size to O(r2kmax/B), and the IOs for an (ε, 1)-approximate top-k query to

O(k/B + logB r).

InAppx2,Query2 hasO(rkmax/B) space, builds inO((N/B) (logB(m log r)+log r logB

kmax)) IOs, and answers (ε, 2 log r)-approximate queries in O(k log r logB k) IOs. As m, r <

N , the bounds simplify to O((N/B) (logB N +log r logB kmax)) build cost, O(k log r logB k)

query IOs, and O(rkmax/B) index size. We also consider a variantAppx2+, which discovers

the exact aggregate value for each object in K using a B+-tree from Exact2. This increases

the index size by O(N/B) (basically just storing the full data), and increases the query IOs

to O(k log r logB k), but significantly improves the empirical query accuracy.

3.4 Other Remarks

3.4.1 Updates

In most applications, temporal data receive updates only at the current time instance,

which extend a temporal object for some specified time period. In this case, we can model an

update to an object oi as appending a new line segment gi,ni+1 to the end of gi, where that

gi,ni+1’s left end-point is (ti,ni
, vi,ni

) (the right end-point of gi,ni
); gi,ni+1’s right end-point

is (ti,ni+1, vi,ni+1).

Handling updates in exact methods are straightforward. In Exact1, we insert a new

entry (ti,ni
, gi,ni+1) into the B+-tree; hence, the update cost is O(logB N) IOs. In Ex-

act2, we insert a new entry (ti,ni+1, (gi,ni+1, σi(Ii,ni+1)) to the B+-tree Ti, where Ii,ni+1

= [ti,0, ti,ni+1]. We can compute σi(Ii,ni+1) based on σi(Ii,ni
) and gi,ni+1 in O(1) cost; and

σi(Ii,ni
) is retrieved from the last entry in Ti in O(logB ni) IOs. So, the update cost is

O(logB ni) IOs. In Exact3, a new entry ([ti,ni
, ti,ni+1], (gi,ni+1, σi(Ii,ni+1))) is inserted into

the interval tree S. For similar arguments, σi(Ii,ni
) is retrieved from S in O(logB N) IOs;

and then σi(Ii,ni+1) is computed in O(1). The insertion into S is O(logB N) IOs [60]. Thus,

the total update is O(logB N) IOs.

Handling updates in approximate methods is more complicated. As such, we described

amortized analysis for updates. This approach can be de-amortized using standard technical

tricks. The construction of breakpoints depends on a threshold τ = εM ; however, M

increases with updates. We handle this by always constructing breakpoints (and the index

structures on top of them) using a fixed value of τ , and when M doubles, we rebuild the

structures. For this to work, we assume that it takes Ω(N) segments before M doubles;

otherwise, a segment ℓ could have an aggregate of M/2, and one has to rebuild the entire

query structure immediately after seeing ℓ. Thus, in an amortized sense, we can amortize

63

the construction time C(N) over Ω(N) segments, and charge O(C(N)/N) to the update

time of a segment.

We also need to maintain a query structure and set of breakpoints on top of the segments

just added. Adding the breakpoints can be done by maintaining the same IO-efficient data

structures as in their initial construction, using O(1
B logB N) IOs per segment. To maintain

the query structures, we again maintain the same auxiliary variables and running integrals

as in the construction. Again, assuming that there are Ω(N/r) segments between any pair

of breakpoints, we can amortize the building of the query structures to the construction

cost divided by N . The amortized reconstruction or incremental construction of the query

structures dominate the cost. For Appx1, we need O(1
B (logB N + r logB kmax)) IOs to

update Query1. For Appx2, we need O(1
B (logB N + log r logB kmax)) IOs to update

Query2.

3.4.2 General time series with arbitrary functions

In some time series data, objects are described by arbitrary functions f , instead of

piecewise linear functions g. However, as we explained in Section 3.1, a lot of efforts have

been devoted to approximate an arbitrary function f using a piecewise linear function

g in general time series (see [66] and references therein). All of our methods may be

extended to work with any piecewise polynomial functions p: one change is that we need

to deal with polynomial curve segments, instead of linear line segments. This affects how

to compute σi(I) of an interval I, which is a subinterval of the interval defined by the

two end-points of a polynomial curve segment pi,j (the jth polynomial function in the ith

object). However, this can be easily fixed. Instead of using (3.1) based on a trapezoid,

we simply compute it using the integral over pi,j , i.e., σi(I) =
∫
t∈I pi,j(t)d(t). Given

that pi,j(t) is a polynomial function, this can be easily computed. We have explicitly

optimized the construction of BreakPoints1 and BreakPoints2 assuming a piecewise

linear representation. Therefore, a secondary issue would be to develop efficient schemes for

computing breakpoints where piecewise polynomial segments are used instead of piecewise

linear segments. That said, when one needs more precision in representing an arbitrary

time series, either one can use more line segments in a piecewise linear representation, or

one can use a piecewise polynomial representation.

3.4.3 Negative values

We have assumed positive score values so far. However, this restriction can be easily

removed. Clearly, it does not affect our exact methods at all. In the approximate methods,

64

when computing the breakpoints (in either approach), we use the absolute values instead

to define M and when searching for a breakpoint. We omit technical details, but we can

show that doing so will still guarantee the same approximations.

3.4.4 Other aggregates

Our work focuses on the sum aggregation. This automatically implies the support to the

avg aggregation, and many other aggregations that can be expressed as linear combinations

of the sum (such as F2, the 2nd frequency moment), e.g., for avg, the ranking of items

within a time interval [t1, t2] remain the same as we are only changing the aggregate score

for each item oi from
∫ t2
t1
gi(t)dt to

1
t2−t1

·
∫ t2
t1
gi(t)dt. However, ranking by some holistic

aggregates is hard. An important one in this class is the quantile (median is a special case

of the quantile). We leave the question of how to rank large temporal data using some of

the holistic aggregates (e.g., quantile) as an open problem.

3.5 Experiments

We design all of our algorithms to efficiently consider disk IOs; in particular, we imple-

mented all our methods using the TPIE-library in C++ [67]. This allows our methods to

scale gracefully to massive data that do not fit in memory. All experiments were performed

on a Linux machine with an Intel Core i7-2600 3.4GHz CPU, 8GB of memory, and a 1TB

hard drive.

3.5.1 Datasets

We used two large real datasets. The first dataset is a temperature dataset, Temp,

from the MesoWest project [5]. It contains temperature measurements from Jan 1997 to

Oct 2011 from 26,383 distinct stations across the United States. There are almost N=2.6

billion total readings from all stations with an average of 98,425 readings per station. For

our experiments, we preprocessed the Temp dataset to treat each year of readings from a

distinct station as a distinct object. By aligning readings in this manner, we can ask which

k stations had the highest aggregate temperatures in a (same) time interval amongst any

of the recorded years. After preprocessing, Temp has m=145,628 objects with an average

number of readings per object of navg=17,833. In each object, we connect all consecutive

readings to obtain a piecewise-linear representation.

The second real dataset, Meme, was obtained from the Memetracker project. It tracks

popular quotes and phrases which appear from various sources on the internet. The goal is

to analyze how different quotes and phrases compete for coverage every day and how some

65

quickly fade out of use while others persist for long periods of time. A record has 4 attributes,

the URL of the website containing the memes, the time Memetracker observed the memes, a

list of the observed memes, and links accessible from the website. We preprocess the Meme

dataset, converting each record to have a distinct 4-byte integer id to represent the URL,

an 8-byte double to represent the time of the record, and an 8-byte double to represent

a record’s score. A record’s score is the number of memes appearing on the website, i.e.,

it is the cardinality of the list of memes. After preprocessing, Meme has almost m=1.5

million distinct objects (the distinct URLs) with N=100 million total records, an average

of navg=67 records per object. For each object, we connect every two of its consecutive

records in time (according to the date) to create a piecewise linear representation of its

score.

3.5.2 Setup

We use Temp as the default dataset. To test the impact of different variables, we have

sampled subsets of Temp to create datasets of different number of objects (m), different

number of average line segments per object (navg, by limiting the maximum value T).

By default, m = 50, 000 and navg = 1, 000 in Temp, so all exact methods can finish in

a reasonable amount of time. Still, there are a total of N = 50 × 106 line segments!

The default values of other important variables in our experiments are: kmax = 200, k =

50, r = 500 (number of breakpoints in both BreakPoints1 and BreakPoints2), and

(t2−t1) = 20%T . The disk block size in TPIE is set to 4KB. For each query-related result, we

generated 100 random queries and report the average for all query-related results, including

query time, I/Os, precision/recall, and approximation ratio. Lastly, in all datasets, all line

segments are sorted by the time value of their left end-point.

3.5.3 Number of breakpoints

We first investigate the effect of the number of breakpoints r on different approximate

methods, by changing r from 100 to 1000. Figure 3.10 shows the preprocessing results and

Figure 3.11 shows the query results. Figure 3.10(a) indicates that given the same number

of breakpoints, the value of the error parameter ε using BreakPoints2 B2 is much smaller

than that in BreakPoints1 B1 in practice; this confirms our theoretical analysis, since

r = 1/ε in B1, but r = O(1/ε) in B2. This suggests that B2 offers much higher accuracy

than B1 given the same budget r on real datasets. With 500 breakpoints, ε in B2 reduces to

almost 10−8, while it is still 0.02 in B1. Figure 3.10(b) shows the build time of B1 and B2.

Clearly, building B1 is independent to r since its cost is dominated by the linear sweeping

66

200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

Breakpoints

ε

BreakPoints1
BreakPoints2

(a)

200 400 600 800 1000
60

80

100

120

140

160

180

200

Breakpoints

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

BreakPoints1
BreakPoints2-B
BreakPoints2-E

(b)

200 400 600 800 1000

10
6

10
8

10
10

10
12

Breakpoints

In
d
ex

si
ze

(b
y
te

s)

Appx1-B Appx2-B Appx1

Appx2 Appx2+ Exact3

(c)

200 400 600 800 1000
10

1

10
2

10
3

Breakpoints

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

Appx1-B Appx2-B Appx1

Appx2 Appx2+ Exact3

(d)

Figure 3.10. Vary r for approximate methods on Temp: versus (a) ε, (b) time, (c) index
size, (d) build time.

67

200 400 600 800 1000

0.90

0.92

0.94

0.96

0.98

1.00

Breakpoints

R
ec

a
ll
/
p
re

ci
si

o
n

Appx1-B Appx2-B Appx1

Appx2 Appx2+

(a)

200 400 600 800 1000
0.98

1.00

1.02

1.04

1.06

Breakpoints

A
p
p
ro

x
im

at
io

n
ra

ti
o

Appx1-B Appx2-B Appx1

Appx2 Appx2+

(b)

200 400 600 800 1000
10

0

10
2

10
4

10
6

Breakpoints

I/
O

s

Appx1-B Appx2-B Appx1

Appx2 Appx2+ Exact3

(c)

200 400 600 800 1000

10
−4

10
−2

10
0

10
2

Breakpoints

T
im

e
(s

ec
o
n
d
s)

Appx1-B Appx2-B Appx1

Appx2 Appx2+ Exact3

(d)

Figure 3.11. Vary r for approximate methods on Temp: versus (a) recall/precision, (b)
ratio, (c) I/Os, (d) query time.

68

of all line segments. The baseline method for building B2, BreakPoints2-B clearly has a

linear dependency on r (on m as well, which is not reflected by this experiment). However,

our efficient method of building B2, BreakPoints2-E, has largely removed this dependency

on r, as shown in Figure 3.10(b). It also removed the dependency on m, though not shown.

In what follows, BreakPoints2-E was used by default. Both B1 and B2 can be built fairly

fast, in only 80 and 100 seconds, respectively, when r = 500 (over 50× 106 segments!).

Next, we investigate the index size and the construction cost of approximate methods, us-

ing Exact3 as a reference (as it has the best query performance among all exact methods).

Figure 3.10(c) shows that all approximate methods have much smaller size than Exact3,

except Appx2+ which also builds Exact2 since it calculates the exact aggregate score for

candidates in K from Appx2. Clearly, Appx1-B and Appx1 have the same size; basic and

improved versions only differ in which types of breakpoints they index using the two-level

B+-trees. For the same reason, Appx2-B and Appx2 also have the same size; they index

B1 or B2 using a binary tree over the dyadic intervals. Appx2-B and Appx2 only have size

O(rkmax), while Appx1-B and Appx1 have size O(r2kmax) and Exact3 and Appx2+ have

linear size O(N), which explains that the size of Appx2-B and Appx2 is more than 2 orders

of magnitude smaller than the size of Appx1-B and Appx1, which are in turn 3-2 orders of

magnitude smaller than Exact3 and Appx2+ when r changes from 100 to 1000. In fact,

Appx2-B and Appx2 take only 1MB, and Appx1-B and Appx1 take only 100MB, when

r = 1000; Exact3 and Appx2+ take more than 10GB. Construction time (for building

both breakpoints and subsequent query structures) for approximate methods (including

Appx2+) are much faster than Exact3, as shown in Figure 3.10(d). All structures build

in only 100 to 1000 seconds. Not surprisingly, Appx2-B and Appx2 are the fastest, since

they only need to find the top kmax objects for O(r) intervals, while Appx1-B and Appx1

need to find the top kmax objects for O(r2) intervals. Even Appx2+ is significantly faster

to build than Exact3 since Exact2 builds faster than Exact3. All approximate methods

are generally faster to build than Exact3, by 1-2 orders of magnitude (except for Appx1

when r reaches 1000) since the top kmax objects can be found in a linear sweep over all line

segments, as explained in Section 3.3.2.

In terms of the query performance, we first examine the approximation quality of all

approximate methods, using both the standard precision/recall (between Ã and A), and the

average of the approximation ratios defined as σ̃i(t1, t2)/σi(t1, t2) for any oi returned in Ã.

Since |Ã| and |A| are both k, the precision and the recall will have the same denominator

value. Figure 3.11(a) shows that all approximate methods have precision/recall higher than

69

90% even in the worst case when r = 100; in fact, Appx1 and Appx2+ have precision/recall

close to 1 in all cases. Figure 3.11(b) further shows that Appx1, Appx1-B, and Appx2+

have approximate ratios on the aggregate scores very close to 1, whereasAppx2 andAppx2-

B have approximation ratios within 5% of 1. In both figures, Appx1 and Appx2 using B2

are indeed better than their basic versions Appx1-B and Appx2-B using B1, since given

the same number of breakpoints, B2 results in much smaller ε values (see Figure 3.10(a)).

Similar results hold forAppx2+, and are omitted to avoid clutter. Nevertheless, all methods

perform much better in practice than their theoretical error parameter ε suggests (which

indicates worst-case analysis). Not surprisingly, both types of approximation qualities from

all approximate methods improve when r increases; but r = 500 already provides excellent

qualities.

Finally, in terms of query cost, approximate methods are clear winners over the best

exact method Exact3, with better IOs in Figure 3.11(c) and query time in Figure 3.11(d).

In particular, Appx1-B and Appx1 (reps. Appx2-B and Appx2) have the same IOs given

the same r values, since they have identical index structures except different values of

entries to index. These four methods have the smallest number of IOs among all methods,

in particular, 6-8 IOs in all cases. All require only two queries in a B+-tree of size r: a

top-level and lower-level tree for Appx1 and Appx1-B, and a left- and right-endpoint query

for Appx2 and Appx2-B. Appx2+ is slower with about 100 to 150 IOs in all cases, due

to the fact that after identifying the candidate set K, it needs to verify the exact score of

each candidate. However, since it only needs to deal with 2k log r candidates in the worst

case, and in practice, |K| ≪ 2k log r, its IOs are still very small. In contrast, the best exact

method Exact3 takes more than 1000 IOs.

Smaller IO costs lead to much better query performance; all approximate methods

outperform the best exact method Exact3 by at least 2 orders of magnitude in Figure

3.11(d). In particular, they generally take less than 0.01 seconds to answer a top-50(t1, t2,

sum) query, in 20% time span over the entire temporal domain, over 50× 106 line segments

from 50, 000 objects, while the best exact method Exact3 takes around 1 second for the

same query. The fastest approximate method only takes close to 0.001 second!

From these results, clearly, Appx1 andAppx2 using B2 are better than their correspond-

ing basic versions Appx1-B and Appx2-B using B1, given the same number of breakpoints;

and r = 500 already gives excellent approximation quality (the same holds for Appx2+,

which we omit to avoid clutter). As such, we only use Appx1, Appx2, and Appx2 + for

the remaining experiments with r = 500. Among the three, Appx2+ is larger and slower

70

to build than Appx1, followed by Appx2; the fastest to query are Appx1 and Appx2, then

Appx2+; however, Appx1 and Appx2+ have better approximation quality than Appx2

(as shown in later experiments and as suggested by their theoretical guarantees for Appx1).

3.5.4 Scalability

Next, we investigate the scalability of different methods, using all three exact methods

and the three selected approximate methods, when we vary the number of objects m, and

the average number of line segments per object navg, in the Temp dataset. Figures 3.12,

3.13, and 3.14 show the results. In general, the trends are very consistent and agree with our

theoretical analysis. All exact methods consume linear space O(N) and take O(N logN)

time to build. Exact3 is clearly the overall best exact method in terms of query costs,

outperforming the other two by 2-3 orders of magnitude in terms of IOs and query time

10 30 50 100 145
10

4

10
6

10
8

10
10

10
12

Objects m (×103)

In
d
ex

si
ze

(b
y
te

s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(a)

10 30 50 100 145
10

0

10
1

10
2

10
3

10
4

Objects m (×103)

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(b)

10 30 50 100 145
10

0

10
2

10
4

10
6

10
8

Objects m (×103)

I/
O

s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(c)

10 30 50 100 145

10
−2

10
0

10
2

Objects m (×103)

T
im

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(d)

Figure 3.12. Vary number of objects m on Temp: versus (a) index size, (b) build time,
(c) query I/Os, (d) query time.

71

1 10 50 100

10
6

10
8

10
10

10
12

Average segments navg (×102)

In
d
ex

si
ze

(b
y
te

s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(a)

1 10 50 100
10

0

10
1

10
2

10
3

10
4

10
5

Average segments navg (×102)

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(b)

1 10 50 100
10

0

10
2

10
4

10
6

10
8

Average segments navg (×102)

I/
O

s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(c)

1 10 50 100

10
−2

10
0

10
2

10
4

Average segments navg (×102)

T
im

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(d)

Figure 3.13. Vary average number of segments navg on Temp: versus (a) index size, (b)
build time, (c) query I/Os, (d) query time.

72

10 30 50 100 145

0.85

0.88

0.91

0.94

0.97

1.00

Objects m (×103)

P
re

ci
si

on
/R

ec
al

l

Appx1 Appx2 Appx2+

(a)

10 30 50 100 145
0.98

0.99

1.00

1.01

1.02

Objects m (×103)

A
p
p
ro

x
im

at
io

n
ra

ti
o

Appx1 Appx2 Appx2+

(b)

1 10 50 100

0.800

0.840

0.880

0.920

0.960

1.000

Average segments navg (×102)

P
re

ci
si

on
/R

ec
al

l

Appx1 Appx2 Appx2+

(c)

1 10 50 100
0.996

0.998

1.000

1.002

1.004

1.006

1.008

Average segments navg (×102)

A
p
p
ro

x
im

at
io

n
ra

ti
o

Appx1 Appx2 Appx2+

(d)

Figure 3.14. Approximation quality for Temp: m versus (a) precision/recall and (b) ratio;
navg versus (c) precision/recall and (d) ratio.

73

(even though it costs slightly more to build). In general, Exact3 takes hundreds to a few

thousand IOs, and about 1 to a few seconds to answer an aggregate top-k(t1, t2, sum) query

in the Temp dataset (with a few hundred million segments from 145,628 objects). Its query

performance is not clearly affected by navg, but has a linear dependency on m.

The approximate methods consistently beat the best exact algorithm in query perfor-

mance by more than 2 orders of magnitude in terms of running time. Even on the largest

dataset with a few hundred million segments from 145,628 different objects, they still take

less than 0.01 seconds per query! Among the three, Appx1 and Appx2 clearly take fewer

IOs, since their query cost is actually independent of both m and navg. Appx2+’s query

IO does depend on lognavg, but is independent of m; hence, it is still very small. Appx1

(and even more so Appx2+) occupy much more space, and take much longer to build.

Nevertheless, both Appx1 and Appx2 have much smaller index size than Exact3, by 4

(Appx1) and 6 (Appx2) orders of magnitude, respectively. More importantly, their index

size is independent of bothm and n. In terms of the construction cost, Appx2-B is the most

efficient to build (1-2 orders of magnitude faster than all other methods except Appx2).

Figure 3.14 shows that both Appx1 and Appx2+ retain their high approximation

quality when m or navg vary; despite some fluctuation, precision/recall and approximation

ratios in both Appx1 and Appx2+ stay very close to 1. Appx2 remains at an acceptable

level of accuracy, especially considering the index size is 1MB from 50GB of data! Although

the precision/recall drops as navg and m increases, the very accurate approximation ratio

indicates this is because there are many very similar objects.

3.5.5 Query time interval

Based on our cost analysis, clearly, the length of the query time interval does not

affect the query performance of most of our methods, except for Exact1 that has a linear

dependency on (t2 − t1) (since it has to scan more line segments). In Figure 3.15(a) and

3.15(b), we notice Exact1 has a linear increase in both I/Os and running time (note the

log-scale of the plots) and even for small (2%T) query intervals, it is still much slower than

Exact3 and approximate methods.

In Figures 3.15(c) and 3.15(d), we analyze the quality of all approximation techniques

as the query interval increases. Appx1 and Appx2+ clearly have the best precision/recall

and approximation ratio with a precision/recall above 99% and ratio very close to 1 in all

cases. Appx2 shows a slight decline in precision/recall from roughly 98% to above 90% as

the size of (t2 − t1) increases from 2% to 50% of the maximum temporal value T . This

decrease in precision/recall is reasonable since as we increase (t2− t1), the number of dyadic

74

2 10 20 30 50
10

0

10
2

10
4

10
6

10
8

(t2 − t1) as % of T

I/
O

s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(a)

2 10 20 30 50
10

−4

10
−2

10
0

10
2

(t2 − t1) as % of T

T
im

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(b)

0 10 20 30 40 50

0.90

0.92

0.94

0.96

0.98

1.00

(t2 − t1) as % of T

P
re

ci
si

on
/R

ec
al

l

Appx1 Appx2 Appx2+

(c)

0 10 20 30 40 50
0.94

0.97

1.00

1.03

1.06

1.09

(t2 − t1) as % of T

A
p
p
ro

x
im

at
io

n
ra

ti
o

Appx1 Appx2 Appx2+

(d)

Figure 3.15. Vary size of (t2 − t1) as % of T on Temp: effect on (a) query I/Os, (b) query
time, (c) precision/recall, (d) ratio.

intervals that compose the approximate query interval [B(t1),B(t2)] typically increases. As

the number of dyadic intervals increases, there is an increased probability that not every

candidate in K will be in the top-kmax over each of the dyadic intervals and so Appx2 will be

missing some of a candidate’s aggregate scores. This can cause an item to be falsely ejected

from the top k. The effect of missing aggregate scores is clearly seen in Figure 3.15(d),

which shows that Appx2’s approximation ratio drops slightly as the time range increases.

3.5.6 k and kmax

We studied the effect of k and kmax; the results are shown in Figures 3.16 and 3.17.

Figures 3.16(a) and 3.16(b) show that the query performance of most methods is not affected

by the value of k when it changes from 10 to kmax = 200 (a relatively small to moderate

change w.r.t. the database size) except for Appx2 and Appx2+. This results since larger

k values lead to more candidates in K, which results in higher query cost. Nevertheless,

75

10 50 100 150 200
10

0

10
2

10
4

10
6

10
8

k values

I/
O

s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(a)

10 50 100 150 200
10

−4

10
−2

10
0

10
2

k values

T
im

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(b)

0 50 100 150 200

0.90

0.92

0.94

0.96

0.98

1.00

k values

P
re

ci
si

on
/R

ec
al

l

Appx1 Appx2 Appx2+

(c)

0 50 100 150 200
0.995

1.000

1.005

1.010

k values

A
p
p
ro

x
im

at
io

n
ra

ti
o

Appx1 Appx2 Appx2+

(d)

Figure 3.16. Vary k values on Temp: effect on (a) query I/Os, (b) query time, (c)
precision/recall, (d) ratio.

76

50 100 200 300 400 500
10

4

10
6

10
8

10
10

10
12

kmax

In
d
ex

si
ze

(b
y
te

s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(a)

50 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

kmax

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(b)

50 100 200 300 400 500
10

0

10
2

10
4

10
6

10
8

kmax

I/
O

s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(c)

50 100 200 300 400 500
10

−4

10
−2

10
0

10
2

kmax

T
im

e
(s

ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

(d)

Figure 3.17. Vary kmax on Temp: effect on (a) index size, (b) construction time, (c) query
I/Os, (d) query time.

77

they still have better IOs than the best exact method Exact3, and much better query

cost (still 2 orders of magnitude improvement in the worst case, which can be attributed

to the caching effect by the OS). Figure 3.16(c) and 3.16(d) show some fluctuation, but no

trending changes in accuracy due to variation in k.

We vary kmax from 50 to 500 in Figure 3.17. kmax obviously has no effect on exact

methods. It linearly affects the construction cost and the size of index for Appx1 and

Appx2, but they are still much better than exact methods even when kmax = 500. In

terms of query cost, given the same k values, kmax does not clearly affect any approximate

methods when it only changes moderately w.r.t. the database size.

3.5.7 Updates

As suggested by the cost analysis, the update time for each index structure is roughly

proportional to the build time divided by the number of segments. Relative to these build

times over N , however, Exact1 is slower because it cannot bulk load, and Exact2 and

Appx2+ are faster because they only update a single B+-tree. For space, we omit these

results.

3.5.8 Meme dataset

We have also tested all our methods on the full Meme dataset (still using r = 500

breakpoints for all approximate methods), and the results are shown in Figure 3.18. In

terms of the index size, three exact methods (and Appx2+) are comparable, as seen in

Figure 3.18(a), while other approximate methods take much less space, by 3-5 orders of

magnitude! In terms of the construction cost, it is interesting to note that Exact1 is

the fastest to build in this case, due to the bulk-loading algorithm in the B+-tree (since

all segments are sorted), while all other methods have some dependency on m. However,

approximate methods (excluding Appx2+) generally are much faster to build than other

exact methods, as seen in Figure 3.18(b). They also outperform all exact methods by 3-5

orders of magnitude in IOs in Figure 3.18(c) and 3-4 orders of magnitude in running time

in Figure 3.18(d). The best exact method for queries is still Exact3, which is faster than

the other two exact methods by 1-2 orders of magnitude. Finally, all approximate methods

maintain their high (or acceptable for Appx2) approximation quality on this very bursty

dataset, as seen in Figure 3.19. Note Appx2 achieves this 90% precision/recall and close to

1 approximation ratio while compressing to about 1MB. Also, Appx1 and Appx2 using B2

show better results than their basic versions Appx1-B and Appx2-B using B1, given the

same number of breakpoints, which agrees with the trend from the Temp dataset.

78

10
0

10
5

10
10

10
15

In
d

e
x
 s

iz
e

 (
b

y
te

s
)

Exact1

Exact2

Exact3

Appx1-B Appx2-B

Appx1

Appx2

Appx2+

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

B
u

ild
 t

im
e

 (
S

e
c
o

n
d

s
)

Exact1

Exact2

Exact3

Appx1-B Appx2-B

Appx1

Appx2

Appx2+

(b)

10
0

10
2

10
4

10
6

10
8

I/
O

s

Exact1

Exact2

Exact3

Appx1-B Appx2-B

Appx1

Appx2

Appx2+

(c)

10
−2

10
0

10
2

10
4

T
im

e
 (

S
e

c
o

n
d

s
)

Exact1

Exact2

Exact3

Appx1-B Appx2-B

Appx1

Appx2

Appx2+

(d)

Figure 3.18. Meme dataset evaluation: observed (a) index size, (b) build time, (c) I/Os,
(d) query time.

0.90

0.92

0.94

0.96

0.98

1.00

P
re

c
is

io
n
/r

e
c
a
ll

 Appx1-B

Appx2-B
 Appx1 Appx2 Appx2+

(a)

0.95

1.00

1.05

1.10

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

 Appx1-B

Appx2-B
 Appx1 Appx2 Appx2+

(b)

Figure 3.19. Quality of approximations on Meme: observed (a) precision/recall and (b)
approximation ratio.

79

3.6 Related Work

To the best of our knowledge, ranking temporal data based on their aggregation scores

in a query interval has not been studied before. Ranking temporal data based on the

instant top-k definition has been recently studied in [51]; however, as we have pointed out

in Section 3.1, one cannot apply their results in our setting. In another work on ranking

temporal data [57], they retrieve k objects that are always amongst the top-k list at every

time instance over a query time interval. Clearly, this definition is very restrictive and may

not even have k objects satisfying this condition in a query interval. This could be relaxed

to require an object to be in the top-k list at most time instances of an interval, instead of

at all time instances, like the intuition used in finding durable top-k documents [68], but

this has yet to be studied in time series/temporal data. Even then, ranking by aggregation

scores still offers quite different semantics, is new, and, is useful in numerous applications.

Our study is related to work on temporal aggregation [62,63]. As mentioned in Section

3.2, [62, 63] focus on multiversioned keys (instead of time series data), and their objective

is to compute a single aggregation of all keys alive in a query time interval and/or a query

key range, which is different from our definition of aggregation, which is to compute an

aggregation over a query time interval, one per object (then rank objects based on their

aggregation values).

Approximate versions of [62, 63] were presented in Tao et al. [69, 70], which also lever-

aged on a discretization approach (the general principle behind the construction of our

breakpoints). As their goal is to approximate aggregates over all keys alive in any query

rectangles over the time and the key dimensions (a single aggregate per query rectangle),

instead of time-aggregates over each element individually, their approach is not appropriate

for our setting.

Our methods require the segmentation of time series data, which has been extensively

studied, and the general principles appear in Section 3.1. A more detailed discussion of this

topic is beyond the scope of this chapter and we refer interested readers to [52–54,56, 66].

3.7 Conclusion

We have studied one of the emerging challenges with massive data in this chapter, namely

the complex structure and rich semantics of temporal data, and have shown how to use the

ranking operator to summarize the data to the temporal objects with the top-k aggregate

values over a query interval, which has numerous applications. Our best exact method

Exact3 is much more efficient than baseline methods, and our approximate methods, which

80

themselves are also data summaries, offer further improvements. Interesting open problems

include ranking with holistic aggregations and extending to the distributed setting.

CHAPTER 4

RANKING SEMANTICS FOR

PROBABILISITC DATA

4.1 Introduction

In this chapter, we look at the emerging problem of uncertain data and its semantics.

We observe numerous ranking operators that have been proposed which lack many intuitive

properties that hold over certain data, such as containment, exact-k, value invariance, etc.

Given this shortcoming, we propose novel ranking operators to summarize uncertain data

which satisfy all of these intuitive properties.

Ranking queries are a powerful concept in focusing attention on the most important

answers to a query. To deal with massive quantities of data, such as multimedia search,

streaming data, web data, and distributed systems, tuples from the underlying database

are ranked by a score, usually computed based on a user-defined scoring function. Only

the top-k tuples with the highest scores are returned for further inspection. Following

the seminal work by Fagin et al. [72], such queries have received considerable attention

in traditional relational databases, including [73–75] and many others. See the excellent

survey by Ilyas et al. [50] for a more complete overview of the many important studies in

this area.

Within these motivating application domains—distributed, streaming, web, and mul-

timedia applications—data arrive in massive quantities, underlining the need for ordering

by score. However, an additional challenge is that data are typically inherently fuzzy or

uncertain. For instance, multimedia and unstructured web data frequently require data

integration or schema mapping [76–78]. Data items in the output of such operations are

usually associated with a confidence, reflecting how well they are matched with other records

from different data sources. In applications that handle measurement data, e.g., sensor

*The work in this chapter appears in (J. Jestes, G. Cormode, F.Li and K. Yi, “Semantics of ranking
queries for probabilistic data,” IEEE TKDE, vol. 23, pp. 1903-1917, 2011) c©2011 IEEE [71]

82

readings and distances to a query point, the data are inherently noisy, and are better

represented by a probability distribution rather than a single deterministic value [79,80]. In

recognition of this aspect of the data, there have been significant research efforts devoted to

producing probabilistic database management systems, which can represent and manage data

with explicit probabilistic models of uncertainty. Some notable examples of such systems

include MystiQ [81], Trio [82], Orion [83], and MayBMS [84].

With a probabilistic database, it is possible to compactly represent a huge number

of possible (deterministic) realizations of the (probabilistic) data—an exponential blow-up

from the size of the relation representing the data. A key problem in such databases

is how to extend the familiar semantics of the top-k query to this setting, and how to

answer such queries efficiently. To this end, there have been several recent works outlining

possible definitions, and associated algorithms. Ré et al. [85] base their ranking on the

confidence associated with each query result. Soliman et al. [86] extend the semantics of

ranking queries from certain data and study the problem of ranking tuples when there is

both a score and probability for each tuple. Subsequently, there have been several other

approaches to ranking based on combining score and likelihood [87–90] (discussed in detail

in Section 4.4.4).

For certain data with a single score value, there is a clear total ordering based on their

scores from which the top-k is derived, which leads to clean and intuitive semantics. This

is particularly natural, by analogy with the many occurrences of top-k lists in daily life:

movies ranked by box-office receipts, athletes ranked by race times, researchers ranked by

number of publications (or other metrics), and so on. With uncertain data, there are two

distinct orders to work with: ordering by score, and ordering by probability. There are

many possible ways of combining these two, leading to quite different results, as evidenced

by the multiple definitions which have been proposed in the literature, such as U-Topk [86],

U-kRanks [86], Global-Topk [87], and PT-k [90]. In choosing a definition, we must ask,

what conditions do we want the resulting query answer to satisfy. We address this following

a principled approach, returning to ranking query properties on certain data. We provide

the following properties which are desirable on the output of a ranking query as a minimum:

• Exact-k: The top-k list should contain exactly k items;

• Containment: The top-(k + 1) list should contain all items in the top-k;

• Unique-ranking: Within the top-k, each reported item should be assigned exactly one

position: the same item should not be listed multiple times within the top-k.

83

• Stability: Making an item in the top-k list more likely or more important should not

remove it from the list.

• Value-invariance: The scores only determine the relative behavior of the tuples:

changing the score values without altering the relative ordering should not change

the top-k;

We define these properties more formally in Section 4.4.1. These properties are satisfied

for certain data, and capture much of our intuition on how a “ranking” query should behave.

A general axiom of work on extending data management from certain data to the uncertain

domain has been that basic properties of query semantics should be preserved to the best

extent possible [81, 91]. However, as we demonstrate, none of the prior works on ranking

queries for probabilistic data has systematically examined these properties and studied

whether a ranking definition satisfies them. It should be noted these five ranking properties

are by no means a complete characterization for ranking uncertain data. Nevertheless, it

is an interesting and important problem to search for meaningful definitions that satisfy at

least these properties.

Lastly, we note prior work stated results primarily in the tuple-level model [81,82]; here,

we show results for both tuple-level and attribute-level models [79, 92].

4.1.1 Our contributions

To remedy the shortcomings we identify, we propose an intuitive new approach for

ranking based on the rank distribution of a tuple’s ranks across all possible worlds. Using

this well-founded rank distribution as the basis of the ranking, we study ranking definitions

based on typical statistical values over a distribution. Specifically,

• We formalize some important semantics of ranking queries on certain data and migrate

them to probabilistic data (Section 4.4.1), and systematically examine the char-

acteristics of existing approaches for this problem with respect to these properties

(Section 4.4.4).

• We propose a new approach based on the distribution of each tuple’s ranks across

all possible worlds. By leveraging statistical properties on such a rank distribution,

such as the expectation, the median, and the quantile, we derive the expected rank,

the median rank, and quantile rank. We are able to show that the new definitions

provably satisfy these requirements. These new definitions work seamlessly with both

the attribute-level and tuple-level uncertainty models (Section 4.4.5).

84

• We provide efficient algorithms for expected ranks in both models. For an uncertain

relation ofN constant-sized tuples, the processing cost of expected ranks isO(N logN)

for both models. In settings where there is a high cost for accessing tuples, we show

pruning techniques based on probabilistic tail bounds that can terminate the search

early and guarantee that the top-k has been found (Section 4.5 and 4.6).

• We study additional properties guaranteed by median and quantile ranks and present

dynamic programs for computing them. The formulations are different in the attribute-

level and the tuple-level models; however, they are similar for the median and different

quantile values. For an uncertain relation of N tuples, the processing cost of our

algorithm is O(N3) in the attribute-level model, and O(NM2) in the tuple-level model

where M is the number of rules in the database (Section 4.7).

• We discuss other issues related to this work in (Section 4.8), e.g., continuous functions,

further properties of a ranking, and the interesting relationship between our study

and [93] which proposes a general framework for imposing different ranking definitions

in probabilistic data.

• We present a comprehensive experimental study that confirms the effectiveness of our

approach for various ranking definitions (Section 4.9).

4.2 Background

Much effort has been devoted to modeling and processing uncertain data, so we survey

only the most related work. TRIO [82,91,94], MayBMS [84], Orion [83,95], and MystiQ [81]

are promising systems currently being developed. General query processing techniques have

been extensively studied under the possible worlds semantics [79,81,96,97], and important

query types with specific semantics are explored in more depth, skyline queries [98] and

heavy hitters [99]. Indexing and nearest neighbor queries under the attribute-level model

have also been explored [79, 92, 100–103].

Section 4.4.4 discusses the most closely related works on answering top-k queries on

uncertain databases [86, 87, 89, 90]. Techniques have included the Monte Carlo approach

of sampling possible worlds [85], AI-style branch-and-bound search of the probability state

space [86], dynamic programming approaches [87, 89, 104], and applying tail (Chernoff)

bounds to determine when to prune [90]. There is ongoing work to understand semantics of

top-k queries in a variety of contexts. For example, the work of Lian and Chen [105] deals

with ranking objects based on spatial uncertainty, and ranking based on linear functions.

85

Ge et al. [106] presented a detailed study on finding the typical vectors that effectively

sample the score distribution from the top-k query results in uncertain databases.

Our study on the tuple-level model limits us to considering correlations in the form

of mutual exclusions. More advanced rules and processing may be needed for complex

correlations. Recent works based on graphical probabilistic models and Bayesian networks

have shown promising results in both offline [107] and streaming data [108]. In these

situations, initial approaches are based on Monte-Carlo simulations [85, 97].

4.3 Uncertain Data Models

Many models for describing uncertain data have been presented in the literature. The

work by Das Sarma et al. [94] describes the main features and contrasts their properties

and descriptive ability. Each model describes a probability distribution over possible worlds,

where each possible world corresponds to a single deterministic data instance. The most

expressive approach is to explicitly list each possible world and its associated probability;

such a method is referred to as complete, as it can capture all possible correlations. However,

complete models are very costly to describe and manipulate since there can be exponentially

many combinations of tuples each generating a distinct possible world [94].

Typically, we are able to make certain independence assumptions, that unless correlations

are explicitly described, events are assumed to be independent. Consequently, likelihoods

can be computed using standard probability calculations (i.e., multiplication of probabilities

of independent events). The strongest independence assumptions lead to the basic model,

where each tuple has a probability of occurrence, and all tuples are assumed fully indepen-

dent of each other. This is typically too strong an assumption, and so intermediate models

allow the description of simple correlations between tuples. This extends the expressiveness

of the models, while keeping computations of probability tractable. We consider two models

that have been used frequently within the database community. In our discussion, without

loss of generality, a probabilistic database contains simply one relation.

4.3.1 Attribute-level uncertainty model

In this model, the probabilistic database is a table of N tuples. Each tuple has one

attribute whose value is uncertain (together with other certain attributes). This uncertain

attribute has a (finite) discrete pdf describing its value distribution. When instantiating this

uncertain relation to a certain instance, each tuple draws a value for its uncertain attribute

based on the associated discrete pdf and the choice is independent among tuples. This

model has many practical applications such as sensor readings [80,108], spatial objects with

86

fuzzy locations [79, 92, 100, 102, 103], etc. More important, it is very easy to represent this

model using the traditional relational database model, as observed by Antova et al. [109].

For the purpose of ranking queries, the important case is when the uncertain attribute

represents the score for the tuple, and we would like to rank the tuples based on this score

attribute. Let Xi be the random variable denoting the score of tuple ti. We assume that Xi

has a discrete pdf with bounded size si. This is a realistic assumption for many practical

applications, including movie ratings [81], and string matching [77]. In this model, we

are essentially ranking the set of independent random variables X1, . . . , XN . A relation

following this model is illustrated in Tables 4.1 and 4.2. For tuple ti, the score takes the

value vi,j with probability pi,j for 1 ≤ j ≤ si.

4.3.2 Tuple-level uncertainty model

In the second model, the attributes of each tuple are fixed, but the entire tuple may

or may not appear. In the basic model, each tuple t appears with probability p(t) inde-

pendently. In more complex models, there are dependencies among the tuples, which can

be specified by a set of generation rules. These can be in the form of x-relations [82, 91],

complex events [81], or other forms.

All previous work concerned with ranking queries in uncertain data has focused on the

tuple-level uncertainty model with exclusion rules [86, 87, 89, 90] where each tuple appears

Table 4.1. Attribute-level uncertainty model. c©2011 IEEE

tuples score

t1 {(v1,1, p1,1), (v1,2, p1,2), . . . , (v1,s1, p1,s1)}
t2 {(v2,1, p2,1), . . . , v2,s2, p2,s2)}
...

...
tN {(vN,1, pN,1), . . . , (vN,sN , pN,sN)}

Table 4.2. An example of possible worlds for attribute-level uncertainty model.
c©2011 IEEE

tuples score

t1 {(100, 0.4), (70, 0.6)}
t2 {(92, 0.6), (80, 0.4)}
t3 {(85, 1)}

world W Pr[W]

{t1 = 100, t2 = 92, t3 = 85} 0.4× 0.6× 1 = 0.24
{t1 = 100, t3 = 85, t2 = 80} 0.4× 0.4× 1 = 0.16
{t2 = 92, t3 = 85, t1 = 70} 0.6× 0.6× 1 = 0.36
{t3 = 85, t2 = 80, t1 = 70} 0.6× 0.4× 1 = 0.24

87

in a single rule τ . Each rule τ lists a set of tuples that are mutually exclusive so that

at most one of these can appear in any possible world. Arbitrary generation rules have

been discussed in [86, 88], but they have been shown to require exponential processing

complexity [89, 90]. Hence, as with many other works in the literature [86, 89, 90, 99], we

primarily consider exclusion rules in this model, where each exclusion rule has a constant

number of choices. In addition, each tuple appears in at most one rule. The total probability

for all tuples in one rule must be less or equal to one, so that it can be properly interpreted

as a probability distribution. To simplify our discussion, we allow rules containing only one

tuple and require that all tuples appear in (exactly) one of the rules. This is essentially

equivalent to the popular x-relations model [82]. This tuple-level model is a good fit for

applications where it is important to capture correlations between tuples; this model has

been used to fit a large number of real-life examples [81,86,90,91,99]. Examples of a relation

in this model are shown in Tables 4.3 and 4.4. This relation has N tuples and M rules.

The second rule says that t2 and t4 cannot appear together in any certain instance of this

relation. It also constrains that p(t2) + p(t4) ≤ 1.

4.3.3 The possible world semantics

We denote the uncertain relation as D. In the attribute-level uncertainty model, an

uncertain relation is instantiated into a possible world by taking one independent value for

each tuple’s uncertain attribute according to its distribution. Denote a possible world as

W and the value for ti’s uncertain attribute in W as wti . In the attribute-level uncertainty

Table 4.3. Tuple-level uncertainty model. c©2011 IEEE

tuples score p(t)

t1 v1 p(t1)
t2 v2 p(t2)
...

...
tN vN p(tN)

rules

τ1 {t1}
τ2 {t2, t4}
...

...
τM {t5, t8, tN}

Table 4.4. An example of possible worlds for tuple-level uncertainty model. c©2011 IEEE

tuples score p(t)

t1 100 0.4
t2 92 0.5
t3 80 1
t4 70 0.5

rules

τ1 {t1}
τ2 {t2, t4}
τ3 {t3}

world W Pr[W]

{t1, t2, t3} p(t1)p(t2)p(t3) = 0.2
{t1, t3, t4} p(t1)p(t3)p(t4) = 0.2
{t2, t3} (1− p(t1))p(t2)p(t3) = 0.3
{t3, t4} (1− p(t1))p(t3)p(t4) = 0.3

88

model, the probability that W occurs is Pr[W] =
∏N

j=1 pj,x, where x satisfies vj,x = wtj . It

is worth mentioning that in the attribute-level case, we always have ∀W ∈ W, |W | = N ,

where W is the space of all the possible worlds. The example in Table 4.2 illustrates the

possible worlds for an uncertain relation in this model.

For the tuple-level uncertainty model, a possible world W from W is now a subset of tu-

ples from the uncertain relation D. The probability ofW occurring is Pr[W] =
∏M

j=1 pW (τj),

where for any rule τ that applies to D, pW (τ) is defined as

pW (τ) =





p(t), if τ ∩W = {t};
1−∑

ti∈τ
p(ti), if τ ∩W = ∅;

0, otherwise.

A notable difference for the tuple-level uncertain model is that given a random possible

world W , not all tuples from D will appear. Hence, the size of the possible world can range

from 0 to N . The example in Table 4.4 illustrates the possible worlds for an uncertain

relation in this model.

We iterate that every uncertain data model can be seen as a succinct description of a

distribution over possible worlds W. Each possible world is a certain table on which we

can evaluate any traditional query. The focus of uncertain query processing is (1) how to

“combine” the query results from all the possible worlds into a meaningful result for the

query, and (2) how to process such a combination efficiently without explicitly materializing

the exponentially many possible worlds.

4.3.4 Difference of the two models under ranking queries

We emphasize that there is a significant difference for the two models in the context of

ranking tuples. More specifically, the goal of ranking queries in uncertain databases is to

derive a meaningful ordering for all tuples in the database D. Note that this is not equivalent

to deriving an ordering for all values that tuples in D may take. In the attribute-level model,

all tuples in D will participate in the ranking process in every possible world. In contrast, in

the tuple-level model, only a subset of tuples in D will participate in the ranking process for

a given possible world. In particular, although there are mappings between relations in the

attribute-level and tuple-level models, these have different sets of tuples to rank (often, with

different cardinalities). As such, this means that there is no simple reduction between the

two cases, and different algorithmic solutions are needed for each. It remains a tantalizing

prospect to make further use of structural similarities between the two models to design a

unified approach for ranking in both. We hope this can be addressed in future work.

89

4.4 Ranking Query Semantics

4.4.1 Properties of ranking queries

We now define a set of properties for ranking tuples. These are chosen to describe key

properties of ranking certain data, and hence give properties which a user would naturally

expect of a ranking over uncertain data. These properties should be seen largely as desirable

but by no means sufficient for a ranking. Our main purpose in introducing them is to

make them explicit, demonstrate prior definitions do not adhere to them all, and provoke

discussion about which properties should hold in general for proposed ranking methods.

The first property is very natural, and is also used in [87].

Definition 4.1 (Exact-k). Let Rk be the set of tuples (associated with their ranks) in the

top-k query result. If |D| ≥ k, then |Rk| = k.

The second property captures the intuition that if an item is in the top-k, it should be

in the top-k′ for any k′ > k. Equivalently, the choice of k is simply a slider that chooses

how many results are to be returned to the user, and changing k should only change the

number of results returned, not the underlying set of results.

Definition 4.2 (Containment). For any k, Rk ⊂ Rk+1.

Replacing “⊂” with “⊆” gives the weak containment property.

The next property stipulates that the rank assigned to each tuple in the top-k list should

be unique.

Definition 4.3 (Unique ranking). Let rk(i) be the identity of the tuple from the input

assigned rank i in the output of the ranking procedure. The unique ranking property requires

that ∀i 6= j, rk(i) 6= rk(j).

Zhang and Chomicki [87] proposed the stability condition in the tuple-level uncertainty

model. We adopt this property and generalize it to the attribute-level model:

Definition 4.4 (Stability). In the tuple-level model, given a tuple ti = (vi, p(ti)) from D,

if we replace ti with t
↑
i = (v↑i , p(t

↑
i)) where v

↑
i ≥ vi, p(t

↑
i) ≥ p(ti), then

ti ∈ Rk(D) ⇒ t↑i ∈ Rk(D′),

where D′ is obtained by replacing ti with t
↑
i in D.

For the attribute-level model, the statement for stability remains the same but with t↑i

defined as follows. Given a tuple ti whose score is a random variable Xi, we obtain t↑i by

90

replacing Xi with a random variable X↑
i that is stochastically greater than or equal to [110]

Xi, denoted as X↑
i � Xi, meaning Pr(X↑

i ≥ x) ≥ Pr(Xi ≥ x) for all x ∈ (−∞,∞).

Stability captures the intuition that if a tuple is already in the top-k, making it “proba-

bilistically larger” should not eject it. Stability also implies that making a tuple not in the

top-k probabilistically smaller should not bring it into the top-k.

The final property captures the semantics that the score function is assumed to only

give a relative ordering, and is not an absolute measure of the value of a tuple.

Definition 4.5 (Value invariance). Let D denote the relation which includes score values

v1 ≤ v2 ≤ Let s′i be any set of score values satisfying v′1 ≤ v′2 ≤ . . ., and define

D′ to be D with all scores vi replaced with v′i. The value invariance property requires that

Rk(D) = Rk(D′) for any k.

4.4.2 Discussion of value invariance

The value-invariance property is defined as it (trivially) holds in the deterministic

setting. It is more debatable whether it should always be enforced over uncertain data.

The argument against value-invariance notably arises when the score may have an intuitive

linear interpretation (e.g., when measuring financial profits, twice the profit is considered

twice as good). In such scenarios, value invariance can ignore the “common sense” meaning

of the scores and lead to counter-intuitive results. For these cases, it is clearly preferable

to choose a method which does not obey this property, and instead define an appropriate

requirement which captures the given semantics of the score value.

Nevertheless, we argue this property is important to consider for a number of reasons.

There are many cases when the score has no such linear interpretation. For example,

consider the general case where there is no explicit score value revealed to the algorithm;

instead, for any pair of (deterministic) tuples, there is an “oracle” which reports which

ranks above the other. This encodes a total order. Then, any method which can operate in

this setting must necessarily obey value invariance, whereas methods which rely on being

given a score value will be unable to operate. Other examples arise when scores arise from

outputs from the sum of classification algorithms, and so have no linear property. Instead,

we only have that a larger total score is preferable. Here (as in the deterministic ranking

case), the ranking should be invariant under different score values which give the same

total ordering. For example, consider the relation with tuple-level uncertainty illustrated

in Table 4.4. Here, the scores are 70 ≤ 80 ≤ 92 ≤ 100. The value invariance property

91

demands that we could replace these scores with, say, 1 ≤ 2 ≤ 3 ≤ 1000, and the result of

the ranking would still be the same.

Whether or not value invariance is considered desirable in a given ranking situation,

it is important to know if a proposed ranking method will guarantee the property or not.

It is perhaps surprising to note that all existing ranking definitions [86, 87, 90, 105] for

probabilistic data have this property.

4.4.3 Properties and probabilities

Observe that these conditions make little explicit reference to probability models, and

can apply to almost any ranking setting. They trivially hold for the top-k semantics over

certain data. It should nevertheless be noted that these properties are not meant to be a

complete characterization of ranking queries in probabilistic data. Indeed, in some cases,

a specific application may only require a subset of these conditions. However, in order to

choose a ranking definition to work with for different domain requirements, it is imperative

to examine the semantics of ranking queries for probabilistic data, especially in the context

of real-world applications, and to understand which ranking definitions provide which

properties. The intricate interplay between the score and the probability attributes indicates

that no single definition will be a universal best choice for all applications. Nevertheless,

we believe that many natural situations will require all these five simple properties to hold.

4.4.4 Top-k queries on probabilistic data

We now consider how to extend ranking queries to uncertain data. The two uncertainty

models require different approaches: In the attribute-level model, a tuple has a random

score but it always exists in any random possible world, i.e., every tuple participates in

the ranking process in all possible worlds, and we rank these N tuples based on their score

distribution. In contrast, in the tuple-level model, a tuple has a fixed score but it may not

always appear, i.e., it may not participate in the ranking process in some possible worlds.

We still aim to produce a ranking on all N tuples, taking this into account.

Considering the tuple-level model, the difficulty of extending ranking queries to prob-

abilistic data is that there are now two distinct orderings present in the data: that given

by the score, and that given by the probabilities. These two types of information need to

be combined in some meaningful way to produce the top-k (this can be orthogonal to the

model used to describe the uncertainty in the data). We now detail a variety of approaches

that have been taken, and discuss their shortcomings with respect to the conditions we have

defined. The key properties are summarized in Table 4.5.

92

Table 4.5. Summary of ranking methods for uncertain data. c©2011 IEEE

Ranking method Exact-k Containment Unique-Rank Value-Invariant Stability

U-topk [86] × × X X X

U-kRanks [86, 105] X X × X ×
PT-k [90] × weak X X X

Global-topk [87] X × X X X

Expected score X X X × X

Expected rank X X X X X

4.4.4.1 Ignore one dimension

A baseline approach is to ignore one dimension (score or likelihood). If we ignore

likelihood, it becomes an instance of ranking certain data. The work of Ré et al. [85] studies

the case where there is no score, and instead ranks the results of a query solely by their

probability (across all possible worlds). However, when there is both score and probability

information available, ignoring one dimension is insufficient for most purposes. Such simple

methods may trivially satisfy the above five basic properties, but they fail to meaningfully

combine information in the input. They are easily shown to lead to undesirable features,

such as ranking very low probability tuples above much more probable ones.

4.4.4.2 Combine two rankings

There has been much work on taking multiple rankings and combining them (e.g., taking

the top 50 query web search results from multiple search engines, and combining them to

get an overall ranking) based on minimizing disagreements [111, 112]. Likewise, skyline-

based approaches extract points which do not dominate each other, and are not themselves

dominated, under multiple ordered dimensions [113]. However, such approaches fail to

account for the inherent semantics of the probability distribution: it is insufficient to treat

it simply as an ordinal attribute, as this loses the meaning of the relative likelihoods, and

does not guarantee our required properties.

4.4.4.3 Most likely top-k

Since a probabilistic relation can define exponentially many possible worlds, one ap-

proach to the top-k problem finds the top-k set that has the highest support over all

possible worlds. In other words, (conceptually) extract the top-k from each possible world,

and compute the support (probability) of each distinct top-k set found. The U-Topk

approach [86] reports the most likely top-k as the answer to the ranking query (that is,

the top-k set with the highest total probability across all worlds). This method has the

93

advantage that it more directly incorporates the likelihood information, and satisfies unique

ranking, value invariance, and stability. However, it may not always return k tuples when D
is small, as also pointed out in [87]. More importantly, it violates the containment property.

In fact, there are simple examples where the top-k can be completely disjoint from the

top-(k + 1). Consider the attribute-level model example in Table 4.2. The top-1 result

under the U-Topk definition is t1, since its probability of having the highest score in a

random possible world is 0.24 + 0.16 = 0.4, larger than that of t2 or t3. However, the top-2

result is (t2, t3), whose probability of being the top-2 is 0.36, larger than that of (t1, t2) or

(t1, t3). Thus, the top-2 list is completely disjoint from the top-1. Similarly, one can verify

that for the tuple-level model example in Table 4.4, the top-1 result is t1 but the top-2 is

(t2, t3) or (t3, t4). No matter what tie-breaking rule is used, the top-2 is completely disjoint

from the top-1.

4.4.4.4 Most likely tuple at each rank

The previous approach fails because it deals with top-k sets as immutable objects.

Instead, we could consider the property of a certain tuple being ranked kth in a possible

world. In particular, let Xi,j be the event that tuple j is ranked i within a possible world.

Computing Pr[Xi,j] for all i, j pairs, this approach reports the ith result as argmaxj Pr[Xi,j],

i.e., the tuple that is most likely to be ranked ith over all possible worlds. This is the

U-kRanks approach [86]; essentially the same definition is proposed as PRank in [105] and

analyzed in the context of distributions over spatial data. This definition overcomes the

shortcomings of U-Topk and satisfies exact-k and containment. However, it fails on unique

ranking, as one tuple may dominate multiple ranks at the same time. A related issue is that

some tuples may be quite likely, but never get reported. So in Table 4.2, the top-3 under

this definition is t1, t3, t1: t1 appears twice and t2 never; for Table 4.4, there is a tie for the

third position, and there is no fourth placed tuple, even though N = 4. These issues have

also been pointed out in [87, 90]. In addition, it fails on stability, as shown in [87], since

when the score of a tuple becomes larger, it may leave its original rank but cannot take

over any higher ranks as the dominating winner.

4.4.4.5 Rank by top-k probability

Attempting to patch the previous definition, we can replace the event “tuple i is at rank

k” with the event “tuple i is at rank k or better,” and reason about the probability of this

event. That is, define the top-k probability of a tuple as the probability that it is in the

top-k over all possible worlds. The probabilistic threshold top-k query (PT-k for short)

94

returns the set of all tuples whose top-k probability exceeds a user-specified probability

p [90]. However, for a user-specified p, the “top-k” list may not contain k tuples, violating

exact-k. If we fix p and increase k, the top-k lists do expand, but they only satisfy the weak

containment property. For instance, consider the tuple-level example in Table 4.2. If we

set p = 0.4, then the top-1 list is (t1). However, both the top-2 and top-3 lists contain the

same set of tuples: t1, t2, t3. A further drawback of using PT-k for ranking is that the user

has to specify the threshold p, which greatly affects the result.

Similarly, the Global-Topk method ranks the tuples by their top-k probability, and then

takes the top-k of these [87] based on this probability. This makes sure that exactly k

tuples are returned, but it again fails on containment. In Table 4.2, under the Global-Topk

definition, the top-1 is t1, but the top-2 is (t2, t3). In Table 4.4, the top-1 is t1, but the

top-2 is (t3, t2).

Further, note that as k increases towards N , then the importance of the score diminishes,

so these two methods reduce to simply ranking the reported top-k items by probability alone.

4.4.4.6 Expected score

The above approaches all differ from traditional ranking queries, in that they do not

define a single ordering of the tuples from which the top-k is taken—in other words, they

do not resemble “top-k” in the literal interpretation of the term. A simple approach in

this direction is to just compute the expected score of each tuple, and rank by this score,

then take the top-k. This method may be desirable when the score has a strong linear

interpretation (e.g., it represents a financial profit), but it does not apply in the “oracle

model” where only the relative ordering of each pair of tuples is given. It is easy to check

that the expected score approach directly implies exact-k, containment, unique ranking,

and stability. However, this is very dependent on the values of the scores: consider a

tuple which has very low probability but a score that is orders of magnitude higher than

others—then it gets propelled to the top of the ranking, since it has the highest expected

score, even though it is unlikely. However, if we reduce this score to being just greater than

the next highest score, the tuple will drop down the ranking. It therefore violates value

invariance. Furthermore, in the tuple-level model, simply using the expected score ignores

all the correlation rules completely.

4.4.5 The rank distribution and expected ranks

Motivated by deficiencies of existing definitions, we propose a new ranking framework

that depends on the ranks of a tuple across all possible worlds and we refer to these ranks

95

(for a given tuple t), together with the corresponding possible worlds’ probabilities, as t’s

rank distribution. Our intuition is that top-k over certain data is defined by first providing

a total ordering of the tuples, and then selecting the k “best” tuples under the ordering.

Any such definition immediately provides the containment and unique-ranking properties.

After rejecting expected score due to its sensitivity to the score values (i.e., it does not

provide value invariance), a natural candidate is to consider the orderings based on the

ranks of the tuple over the possible worlds. More formally,

Definition 4.6 (Ranks of a tuple in all possible worlds). The rank of tuple ti in a possible

world W is defined to be the number of tuples whose score is higher than ti (the top tuple

has rank 0), i.e., rankW (ti) = |{tj ∈ W |vj > vi}|. In the tuple-level model, for a world

W where ti does not appear, we define rankW (ti) = |W |, i.e., it follows after all appearing

tuples.

The ranks of a tuple ti in all possible worlds and the probabilities of all worlds constitute

a proper probability distribution function (pdf): rank(ti), i.e., rank(ti) = {(rankW (ti),Pr[W])}
for ∀W ∈ W, since

∑
W∈W Pr[W] = 1. Note to form a well-defined pdf, we need to combine

(sum up the corresponding probabilities) the ranks from different possible worlds that have

the same value (i.e., rankW (ti)) from the above set. Formally, let R(ti) be a random variable

for the rank of tuple ti in a random selected possible world,

Definition 4.7 (Rank Distribution). The rank distribution of a tuple ti, rank(ti), is a

proper probability distribution function (pdf) for the random variable R(ti) defined as:

rank(ti) : Pr[R(ti) = V] =
∑

W∈W|rankW (ti)=V

Pr[W],

∀V ∈ [0, N]

The rank distribution for a tuple captures important information on how a tuple behaves

in terms of ranking across all possible worlds. Applying statistical operators to each

distribution to generate a single statistic is a natural way to summarize the rank distribution,

and can be used as the basis for ranking. We first study the expectation, which leads to a

new ranking method, which we call the expected rank.

Definition 4.8 (Expected Rank). The expected rank of tuple ti is the expectation of rank(ti).

The smaller rank(ti)’s expectation, the smaller tis final rank, denoted as r(ti).

96

In the attribute-level model, the expected rank r(ti) can be computed as the expectation

on rankW (ti)’s, then the top-k tuples with the lowest r(ti) can be returned. More precisely,

r(ti) = E[R(ti)] =
∑

W∈W,ti∈W

Pr[W] · rankW (ti) (4.1)

In the tuple-level model, in a world W where ti does not appear, rankW (ti) = |W |, i.e.,
we imagine it follows after all the tuples which do appear (as per Definition 4.6 above). So,

r(ti) =
∑

ti∈W

Pr[W] rankW (ti) +
∑

ti 6∈W

Pr[W] · |W |

=
∑

W∈W

Pr[W] rankW (ti), (4.2)

where the definition of rankW (ti) is extended so that rankW (ti) = |W | if ti 6∈W .

For the example in Table 4.2, the expected rank for t2 is r(t2) = 0.24 × 1 + 0.16 × 2 +

0.36 × 0 + 0.24 × 1 = 0.8. Similarly r(t1) = 1.2, r(t3) = 1, and so the final ranking is

(t2, t3, t1). For the example in Table 4.4, r(t2) = 0.2× 1 + 0.2× 3 + 0.3× 0 + 0.3× 2 = 1.4.

Note t2 does not appear in the second and the fourth worlds, so its ranks are taken to be

3 and 2, respectively. Similarly r(t1) = 1.2, r(t3) = 0.9, r(t4) = 1.9. So the final ranking is

(t3, t1, t2, t4).

We prove expected ranks satisfies all five fundamental properties. For simplicity, we

assume the expected ranks are unique, and so the ranking forms a total ordering. In

practice, ties can be broken arbitrarily, e.g., based on having the lexicographically smaller

identifier. The same tie-breaking issues affect the ranking of certain data as well.

Theorem 4.1. Expected rank satisfies exact-k, containment, unique ranking, value invari-

ance, and stability.

Proof of Theorem 4.1: The first three properties follow immediately from the fact

that the expected rank is used to give an ordering. Value invariance follows by observing

that changing the score values will not change the rankings in possible worlds, and therefore

does not change the expected ranks.

For stability, we show that when we change a tuple ti to t
↑
i (as in Definition 4.4), its

expected rank will not increase, while the expected rank of any other tuple will not decrease.

Let r′ be the expected rank in the uncertain relation D′ after changing ti to t
↑
i . We need to

show that r(ti) ≥ r′(t↑i) and r(ti′) ≤ r′(ti′) for any i
′ 6= i.

97

Consider the attribute-level model first. By Definition 4.8 and linearity of expectation,

we have

r(ti) =
∑

j 6=i

Pr[Xi < Xj] =
∑

j 6=i

∑

ℓ

pj,ℓ Pr[Xi < vj,ℓ]

≥
∑

j 6=i

∑

ℓ

pj,ℓ Pr[X
↑
i < vj,ℓ] (because Xi � X↑

i)

=
∑

j 6=i

Pr[X↑
i < Xj] = r′(t↑i).

For any i′ 6= i,

r(ti′) = Pr[Xi′ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

=
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

≤
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < X↑
i] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

= Pr[Xi′ < X↑
i] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj] = r′(ti′)

Next, consider the tuple-level model. If t↑i has a larger score than ti but the same probability,

then r(ti) ≥ r′(t↑i) follows easily from (4.2) since rankW (ti) can only get smaller while the

second term of (4.2) remains unchanged. For similar reasons, r(ti′) ≤ r′(ti′) for any i
′ 6= i.

If t↑i has the same score as ti but a larger probability, rankW (ti) stays the same for any

possible world W , but Pr[W] may change. We divide all the possible worlds into three

categories: (a) those containing ti, (b) those containing one of the tuples in the exclusion

rule of ti (other than ti), and (c) all other possible worlds. Note that Pr[W] does not change

for any W in category (b), so we only focus on categories (a) and (c). Since r(ti) is nothing

but a weighted average of the ranks in all the possible worlds, where the weight of W is

Pr[W], it is sufficient to consider the changes in the contribution of the possible worlds in

categories (a) and (c). Observe that there is a one-to-one mapping between the possible

worlds in category (c) and (a): W ↔W ∪ {ti}. For each such pair, its contribution to r(ti)

is

Pr[W] · |W |+ Pr[W ∪ {ti}] · rankW∪{ti}(ti). (4.3)

Suppose the tuples in the exclusion rule of ti are ti,1, . . . , ti,s. Note that W and W ∪ {ti}
differ only in the inclusion of ti, so we can write Pr[W] = π (1−∑

ℓ p(ti,ℓ)− p(ti)) and

Pr[W ∪ {ti}] = πp(ti) for some π. When p(ti) increases to p(t
↑
i), the increase in (4.3) is

π(p(ti)− p(t↑i))|W |+ π(p(t↑i)− p(ti)) rankW∪{ti}(ti)

= π(p(ti)− p(t↑i))(|W | − rankW∪{ti}(ti)) ≤ 0.

98

The same holds for each pair of possible worlds in categories (a) and (c). Therefore, we

have r(ti) ≥ r′(t↑i).

For any i′ 6= i, the contribution of each pair is

Pr[W] · rankW (ti′) + Pr[W ∪ {ti}] · rankW∪{ti}(ti′). (4.4)

When p(ti) increases to p(t
↑
i), the increase in (4.4) is

π(p(ti)− p(t↑i))(rankW (ti′)− rankW∪{ti}(ti′)) ≥ 0.

The same holds for each pair of possible worlds in categories (a) and (c). Therefore, we

have r′(ti′) ≥ r(ti′).

4.5 Attribute-Level Uncertainty Model

This section presents efficient algorithms for calculating the expected rank of an uncer-

tain relation D with N tuples in the attribute-level uncertainty model. We first show an

exact algorithm that can calculate the expected ranks of all tuples in D with O(N logN)

processing cost. We then propose an algorithm that can terminate the search as soon as

the top-k tuples with the k smallest expected ranks are guaranteed to be found without

accessing all tuples.

4.5.1 Exact computation

By Definition 4.8 and the linearity of expectation, we have

r(ti) =
∑

j 6=i

Pr[Xj > Xi]. (4.5)

The brute-force search (BFS) approach requires O(N) time to compute r(ti) for one tuple

and O(N2) time to compute ranks of all tuples. The quadratic dependence on N is

prohibitive for large N . Below we present an improved algorithm requiring O(N logN)

time. We observe that (4.5) can be written as:

r(ti) =
∑

j 6=i

si∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ] =

si∑

ℓ=1

pi,ℓ
∑

j 6=i

Pr[Xj > vi,ℓ]

=

si∑

ℓ=1

pi,ℓ
(∑

j

Pr[Xj > vi,ℓ]− Pr[Xi > vi,ℓ]
)

=

si∑

ℓ=1

pi,ℓ
(
q(vi,ℓ)− Pr[Xi > vi,ℓ]

)
, (4.6)

where we define q(v) =
∑

j Pr[Xj > v]. Let U be the universe of all possible values of all

Xi, i = 1, . . . , N . Because we assume each pdf has size bounded by s, we have |U | ≤ |sN |.
When s is a constant, we have |U | = O(N).

99

Now observe that we can precompute q(v) for all v ∈ U with a linear pass over the input

after sorting U which has a cost of O(N logN). Following (4.6), exact computation of the

expected rank for a single tuple can now be done in constant time given q(v) for all v ∈ U .

While computing these expected ranks, we maintain a priority queue of size k that stores the

k tuples with smallest expected ranks dynamically. When all tuples have been processed,

the contents of the priority queue are returned as the final answer. Computing q(v) takes

time O(N logN); getting expected ranks of all tuples while maintaining the priority queue

takes O(N log k) time. Hence, the overall cost of this approach is O(N logN). We denote

this algorithm as A-ERrank.

4.5.2 Pruning by expected scores

A-ERank is very efficient even for large N values. However, in certain scenarios,

accessing a tuple is considerably expensive (if it requires significant IO access). It then

becomes desirable to reduce the number of tuples accessed in order to find the answer. It

is possible to find a set of (possibly more than k tuples) which is guaranteed to include the

true top-k expected ranks, by pruning based on tail bounds of the score distribution. If

tuples are sorted in decreasing order of their expected scores, i.e., E[Xi]’s, we can terminate

the search early. In the following discussion, we assume that if i < j, then E[Xi] ≥ E[Xj]

for all 1 ≤ i, j ≤ N . Equivalently, we can think of this as an interface which generates each

tuple in turn, in decreasing order of E[Xi].

The pruning algorithm scans these tuples, and maintains an upper bound on r(ti),

denoted r+(ti), for each ti seen so far, and a lower bound on r(tu) for any unseen tuple tu,

denoted r−. The algorithm halts when there are at least k r+(ti)s that are smaller than

r−. Suppose n tuples t1, . . . , tn have been scanned. For ∀i ∈ [1, n], we have:

r(ti) =
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

Pr[Xj > Xi]

=
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ]

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si∑

ℓ=1

pi,ℓ
E[Xj]

vi,ℓ

(Markov Ineq.)

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] + (N − n)

si∑

ℓ=1

pi,ℓ
E[Xn]

vi,ℓ
. (4.7)

The first term in (4.7) can be computed using only seen tuples t1, . . . , tn. The second term

could be computed using Xi and Xn. Hence, from scanned tuples, we can maintain an

100

upper bound on r(ti) for each tuple in {t1, . . . , tn}, i.e., we can set r+(ti) to be (4.7) for

i = 1, . . . , n. r+(ti)’s second term is updated for every new tn (as well as the first term for

tn).

Now we provide the lower bound r−. Consider any unseen tuple tu, u > n, we have:

r(tu) ≥
∑

j≤n

Pr[Xj > Xu] = n−
∑

j≤n

Pr[Xu ≥ Xj]

= n−
∑

j≤n

sj∑

ℓ=1

pj,ℓ Pr[Xu > vj,ℓ]

≥ n−
∑

j≤n

sj∑

ℓ=1

pj,ℓ
E[Xn]

vj,ℓ
. (Markov Ineq.) (4.8)

This holds for any unseen tuple. Hence, we set r− to be (4.8). Note that (4.8) only depends

on the seen tuples. It is updated with every new tuple tn.

These bounds lead immediately to an algorithm that maintains r+(ti)s for all tuples

t1, . . . , tn and r−. For each new tuple tn, the r
+(ti)s and r

− are updated. From these, we

find the kth largest r+(ti) value, and compare this to r−. If it is less, then we know for sure

that the k tuples with the smallest expected ranks globally are among the first n tuples,

and can stop retrieving tuples. Otherwise, we move on to the next tuple. We refer to this

algorithm as A-ERank-Prune.

A remaining challenge is how to find the k tuples with the smallest expected ranks using

the first n tuples alone. This is difficult as it is not possible to obtain a precise order on their

final ranks without inspecting all N tuples in D. Instead, we use the curtailed database

D′ = {t1, . . . , tn}, and compute exact expected rank r′(ti) for every tuple (for i ∈ [1, n]) ti in

D′. The rank r′(ti) turns out to be an excellent surrogate for r(ti) for i ∈ [1, n] in D (when

the pruning algorithm terminates after processing n tuples). Hence, we return the top-k of

these as the result of the query. We show an evaluation of the quality of this approach in

our experimental study.

A straightforward implementation of A-ERrank-Prune requires O(n2) time. After seeing

tn, the bounds in both (4.7) and (4.8) can be updated in constant time, by retaining
∑sj

ℓ=1
pi,ℓ
vi,ℓ

for each seen tuple. The challenge is updating the first term in (4.7) for all i ≤ n.

A basic approach requires linear time, for adding Pr[Xn > Xi] to the already computed
∑

j≤n−1,j 6=i Pr[Xj > Xi] for all i’s as well as computing
∑

i≤n−1 Pr[Xi > Xn]). This leads

to a complexity of O(n2) for algorithm A-ERrank-Prune. Using a similar idea in designing

algorithm A-ERank, it is possible to utilize value universe U ′ of all seen tuples and maintain

prefix sums of the q(v) values, which would drive down the cost of this step to O(n logn).

101

4.6 Tuple-Level Uncertainty Model

We now consider ranking an uncertain database D in the tuple-level uncertainty model.

For D with N tuples and M rules, the aim is to retrieve the k tuples with the smallest

expected ranks. Recall each rule τj is a set of tuples, where
∑

ti∈τj
p(ti) ≤ 1. Without loss

of generality, we assume the tuples t1, . . . , tn are already sorted by the ranking attribute

and t1 is the tuple with the highest score. We use ti ⋄ tj to denote ti and tj are in the same

exclusion rule and ti 6= tj ; we use ti⋄̄tj to denote ti and tj are not in the same exclusion

rule. We first give an exact O(N logN) algorithm which accesses every tuple. Secondly,

we show an O(n logn) pruning algorithm, which only reads the first n tuples, assuming the

expected number of tuples in D is known to the algorithm.

4.6.1 Exact computation

From Definition 4.8, in particular (4.2), given tuples that are sorted by their score

attribute, we have:

r(ti) =p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj) + (1− p(ti)) ·



∑

tj⋄ti
p(tj)

1− p(ti)
+

∑

tj ⋄̄ti

p(tj)




The first term computes ti’s expected rank for random worlds when it appears, and the

second term computes the expected size of a random world W when ti does not appear in

W . The term

∑
tj⋄ti

p(tj)

1−p(ti)
is the expected number of appearing tuples in the same rule as

ti, conditioned on ti not appearing, while
∑

tj ⋄̄ti
p(tj) accounts for the rest of the tuples.

Rewriting,

r(ti) =p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj) +
∑

tj⋄ti

p(tj) + (1− p(ti)) ·
∑

tj ⋄̄ti

p(tj). (4.9)

Let qi =
∑

j<i p(tj). We first compute qi in O(N) time. At the same time, we find the

expected number of tuples, E[|W |] = ∑N
j=1 p(tj). Now (4.9) can be rewritten as:

r(ti) =p(ti) · (qi −
∑

tj⋄ti,j<i

p(tj)) +
∑

tj⋄ti

p(tj) + (1− p(ti))(E[|W |]− p(ti)−
∑

tj⋄ti

p(tj)).

(4.10)

By keeping the auxiliary information
∑

tj⋄ti,j<i p(tj) (i.e., the sum of probabilities of tuples

that have score values higher than ti in the same rule as ti) and
∑

tj⋄ti
p(tj) (i.e., the sum

of probabilities of tuples that are in the same rule as ti) for each tuple ti in D, r(ti) can be

computed in O(1) time. By maintaining a priority queue of size k that keeps the k tuples

with the smallest r(ti)’s, we can select the top-k tuples in O(N log k) time. Note that both

102

∑
tj⋄ti,j<i p(tj) and

∑
tj⋄ti

p(tj) are cheap to calculate initially given all the rules in a single

scan of the relation (taking time O(N), since each tuple appears in exactly one rule). When

D is not presorted by ti’s score attribute, the running time of this algorithm is dominated

by the sorting step, O(N logN).

4.6.2 Pruning

Provided that the expected number of tuples E[|W |] is known, we can answer top-k

queries more efficiently using pruning techniques without accessing all tuples. Note that

E[|W |] can be efficiently maintained in O(1) time when D is updated with deletion or

insertion of tuples. As E[|W |] is simply the sum of all the probabilities (note that it does

not depend on the rules), it is reasonable to assume that it is always available. Similar

to the attribute-level uncertainty case, we assume that D provides an interface to retrieve

tuples in order of their score attribute from the highest to the lowest.

The pruning algorithm scans the tuples in order. After seeing tn, it can compute r(tn)

exactly using E[|W |] and qn in O(1) time based on (4.10). It also maintains r(k), the kth

smallest r(ti) among all the tuples that have been retrieved. This can be done with a

priority queue in O(log k) time per tuple. A lower bound on r(tℓ) for any ℓ > n is computed

as follows:

r(tℓ)

+
∑

tj⋄tℓ

p(tj) + (1− p(tℓ)) ·
∑

tj ⋄̄tℓ

p(tj) (from (4.9))

=p(tℓ) ·
∑

tj ⋄̄tℓ,j<ℓ

p(tj) +E[|W |]− p(tℓ)− p(tℓ) ·
∑

tj ⋄̄tℓ

p(tj)

=E[|W |]− p(tℓ)− p(tℓ) ·


∑

tj ⋄̄tℓ

p(tj)−
∑

tj ⋄̄tℓ,j<ℓ

p(tj)




=E[|W |]− p(tℓ)− p(tℓ) ·
∑

tj ⋄̄tℓ,j>ℓ

p(tj). (4.11)

In the second step, we used the fact that
∑

tj⋄tℓ
p(tj) +

∑
tj ⋄̄tℓ

p(tj) = E[|W |]− p(tℓ).

Now, since qℓ =
∑

j<ℓ p(tj), we observe that

E[|W |]− qℓ =
∑

j>ℓ

p(tj) + p(tℓ) ≥
∑

tj ⋄̄tℓ,j>ℓ

p(tj).

Continuing with (4.11), we have:

r(tℓ) ≥ E[|W |]− p(tℓ)− p(tℓ) · (E[|W |]− qℓ)

≥ qℓ − 1 ≥ qn − 1. (4.12)

103

The last step uses the monotonicity of qi—by definition, qn ≤ qℓ if n ≤ ℓ. Since tuples are

scanned in order, obviously ℓ > n.

Thus, when r(k) ≤ qn−1, we know for sure there are at least k tuples amongst the first n

with expected ranks smaller than all unseen tuples. At this point, we can safely terminate

the search. In addition, recall that for all the scanned tuples, their expected ranks are

calculated exactly by (4.10). Hence, this algorithm—which we dub T-ERank-Prune—can

simply return the current top-k tuples. From the above analysis, its time cost is O(n log k)

where n is potentially much smaller than N .

4.7 Median and Quantile Ranks

Our expected rank definition uses the expectation as the basis of ranking, i.e., the

absolute ranks of each tuple from all possible worlds are represented by their mean. It

is well known that the mean (or equivalently, the expectation) is statistically sensitive to

the distribution of the underlying values (in our case, the absolute ranks of the tuple from

all possible worlds), especially when there are outliers in the distribution. It is natural to

consider alternate statistical operators as the basis of the ranking, such as the median of

the rank distribution instead of the mean. This can be further generalized to any quantile

for the distribution of absolute ranks for a tuple across all possible worlds. We can then

derive the final ranking based on such quantiles. Furthermore, the rank distribution rank(ti)

for a tuple ti reflects important characteristics of ti’s rank in any random possible world.

Studying these critical statistics (median and general quantiles) for this rank distribution is

of independent interest. This section formalizes these ideas and presents efficient algorithms

to compute the median and quantile ranks for uncertain databases in both the attribute-level

and tuple-level uncertainty models. Similarly to the approach taken for the expected rank,

we first present the definitions for these ranks and discuss the efficient, polynomial-time

algorithms that compute such ranks; then, we improve the efficiency of our algorithms by

designing necessary pruning techniques.

4.7.1 Definitions and properties

We formally define the median and quantile rank as,

Definition 4.9. For tuple ti ∈ D, its median rank rm(ti) is the median value from ti’s

rank distribution rank(ti), i.e., it is the value in the cumulative distributive function (cdf)

of rank(ti), denoted as cdf(rank(ti)), that has a cumulative probability of 0.5; for any user-

defined φ-quantile where φ ∈ (0, 1), the φ-quantile rank of ti is the value in the cdf(rank(ti))

104

that has a cumulative probability of φ, denoted as rφ(ti).

For the attribute-level uncertainty model example in Table 4.2, t1’s rank distribution

rank(t1) is {(0, 0.4), (1, 0), (2, 0.6)}. Therefore, t1’s median rank rm(t1) is 2. Similarly,

rm(t2) = 1 and rm(t3) = 1. Hence, the final ranking is (t2, t3, t1), which is identical to

the final ranking obtained from the expected ranks. For the tuple-level uncertainty model

example in Table 4.4, t4’s rank distribution rank(t4) is {(0, 0), (1, 0.3), (2, 0.5), (3, 0.2)}. t4’s
median rank rm(t4) is 2. Similarly, rm(t1) = 2, rm(t2) = 1, and rm(t3) = 1. The final

ranking is (t2, t3, t1, t4) whereas the final ranking from the expected ranks was (t3, t1, t2, t4).

Clearly, the median rank is a special case of φ-quantile rank where φ = 0.5. Ranking by

the median or the φ-quantile ranks of all tuples is straightforward. We first derive a total

ordering of all tuples in the ascending order of their rm(ti)s (or rφ(ti)s), and the k tuples

with the smallest values of rm(ti)s (or rφ(ti)s) are returned as the top-k. We can show that

ranking by the median rank (or the general quantile rank) offers all properties satisfied by

the expected rank. Formally,

Theorem 4.2. Ranking by median and quantile ranks satisfies all properties in Table 4.5.

The proof of is quite similar to the proof of Theorem 4.1, so we omit it.

The next important problem is whether we can calculate rm(ti) or rφ(ti) efficiently for a

tuple ti. Note, besides for ranking purposes, these values themselves are important statistics

to characterize the rank distribution of ti in all possible worlds, rank(ti). In the sequel, in

a random possible world, if ti and tj are tied ranking by their scores, ti ranks before tj

if i < j. In general, other tie-breaking mechanisms could be easily substituted. Also, our

algorithms work the same way for median and quantile ranks for any quantile values. Hence,

for brevity, we focus on discussing median ranks and extend it to quantiles ranks at the end

of each case. Recall that for any tuple t, R(t) is a random variable that denotes t’s rank in

a random possible world. R(t)’s distribution is represented by t’s rank distribution rank(t).

4.7.2 Attribute-level uncertainty model

In the attribute-level uncertainty model, given a tuple ti, its uncertain score attribute

is represented by the random variable Xi = {(vi,1, pi,1), . . . , (vi,si , pi,si)} for some constant

si. When Xi takes the value vi,1 (denote this as a special tuple t1i), tuple ti’s rank in all

possible worlds could be described by a probability distribution rank(t1i) = rank(ti|ti = vi,1)

where ‘|’ means “given that.” We concentrate on calculating rank(t1i) first. Note that

rank(t1i) ≡ Pr[R(t1i) = ℓ] for ℓ = 0, . . . , N − 1 (that is, the distribution gives the probability

105

of the random variable R(tli) taking on each of the N possible rank values). For any other

tuple tj ∈ D ∧ j 6= i, we calculate Pr[tj > t1i] =
∑sj

ℓ=1 pj,ℓ|vj,ℓ > vi,1, and Pr[tj < t1i],

Pr[tj = t1i] similarly. Then when j < i,

Pr[R(tj) < R(t1i)] = Pr[tj > t1i] + Pr[tj = t1i] and

Pr[R(tj) > R(t1i)] = Pr[tj < t1i]

and when j > i,

Pr[R(tj) < R(t1i)] = Pr[tj > t1i] and

Pr[R(tj) > R(t1i)] = Pr[tj < t1i] + Pr[tj = t1i].

In short, for any tj , we can calculate both Pr[R(tj) < R(t1i)], denoted as p↑j , and

Pr[R(tj) > R(t1i)], denoted as p↓j , efficiently. Now, for each tuple tj there are two possible

outcomes, either it ranks higher than t1i with probability p↑j or it ranks lower than t1i

with probability p↓j . There are (N − 1) such independent events (one for each tj for

j ∈ {1, . . . , N} − {i}). This could be viewed as a generalized binomial distribution. In

the jth trial, the head probability is p↑j and the tail probability is p↓j . The possible

ranks of t1i (essentially it is (ti|ti = vi,1)) are simply the possible number of heads from

this distribution. Then, rank(t1i) is the probability distribution on the number of heads

in this generalized binomial distribution, i.e., rank(t1i) = Pr[number of heads = ℓ] for

ℓ = 1, . . . , N − 1. For the binomial distribution, there is a compact closed-form formula

to calculate Pr[number of heads = ℓ] for any ℓ. This no longer holds for the generalized

binomial distribution. However, one can efficiently compute Pr[number of heads = ℓ] for

all ℓ in this case as follows. Let Eγ,j be the probability that in the first j trials there are γ

number of heads. Then,

Eγ,j = Eγ−1,j−1 × p↑j + Eγ,j−1 × p↓j (4.13)

From equation 4.13, the rank distribution rank(t1i) is defined by Pr[number of heads = ℓ] for

ℓ ∈ {0, 1, . . . , N − 1}, which is given by Eℓ,N−1’s for ℓ ∈ {0, 1, . . . , N − 1}. This observation
and Equation 4.13 immediately give us a dynamic programming formulation to calculate

the rank distribution rank(t1i).

We can carry out the similar procedure to obtain the distributions rank(t1i), . . . , rank(t
si
i),

one for each choice of ti. Finally, rank(ti) ≡ Pr[R(ti) = ℓ] for ℓ ∈ {0, 1, . . . , N − 1},
where Pr[R(ti) = ℓ] =

∑si
κ=1 pi,κ × Pr[R(tκi) = ℓ] and Pr[R(tκi) = ℓ] is given by rank(tκi),

i.e, the rank distribution of ti, rank(ti), is simply the weighted sum of the distributions

106

rank(t1i), . . . , rank(t
si
i). With rank(ti), one can easily get ti’s median rank rm(ti) or any

φ-quantile rank rφ(ti). Given a query parameter k, the final step is to simply retrieve the

k tuples with the smallest median (or quantile) rank values. We denote this algorithm as

A-MQRank.

Example 4.1. For the attribute-level uncertainty model example in Table 4.2, t12’s rank

distribution rank(t12) = rank(t2|t2 = 92) is {(0, 0.6), (1, 0.4), (2, 0)} and t22’s rank distribution

rank(t22) = rank(t2|t2 = 80) is {(0, 0), (1, 0.6), (2, 0.4)}. Therefore, t2’s rank distribution

rank(t2) is {(0, 0.36), (1, 0.48), (2, 0.16)}.

We observe that the same principle could be applied for the case of continuous distribu-

tions. Essentially, for a tuple ti, we need to compute p↑j = Pr[Xj > Xi] and p
↓
j = Pr[Xj <

Xi] for any other tuple tj ∈ D, where Xj and Xi are two random variables with continuous

distributions. Once p↑j and p↓j are available, the rest is the same as discussed above.

4.7.3 The complexity of A-MQRank

For an uncertain database D with N tuples and assuming that each tuple takes on at

most s possible choices, the cost of one dynamic program for one choice of a tuple (i.e.,

applying (4.13)) is O(N2). We have to do this for each choice of every tuple. Hence, the cost

of the algorithm A-MQRank is O(sN3). When s is a constant, the complexity of A-MQRank

is O(N3).

4.7.4 Pruning techniques

In practice, the number of choices of each tuple could be large. The contribution by the

factor of s in the overall computation cost for the algorithm O(sN3) may be nonnegligible.

To remedy this problem, an important observation is that if we rank the score values of

all choices for a tuple in decreasing order, then the median (or any quantile) rank value

for a tuple after seeing more choices will only increase. This intuition gives us a way to

lower-bound the median (or any quantile) rank value in any intermediate steps after seeing

any number of choices for a tuple. Specifically, after calculating the rank distributions

rank(tℓi)’s for the first x number of choices for a tuple ti, we denote the lower-bound on

rm(ti) as r
x
m(ti) (or r

x
φ(ti) for a quantile rank rφ(ti) with a quantile value φ). We would like

to maintain rxm(ti) such that (a) for ∀ℓ1, ℓ2 ∈ [1, si], if ℓ1 < ℓ2, then r
ℓ1
m(ti) ≤ rℓ2m(ti); and

(b) rsim(ti) = rm(ti). The same holds for the quantile ranks.

Assume we can achieve the above, an immediate pruning technique is to maintain a

priority queue of size k for the first ℓ (ℓ ∈ [1, N)) tuples whose exact median ranks (or

107

quantile ranks) have already been calculated. The priority queue is ordered by increasing

order of the tuple’s exact median rank (or quantile rank) and we denote the kth tuple’s rank

as rk. When processing the (ℓ+ 1)th tuple, after calculating rank(tiℓ+1)’s for i = 1, . . . , xth

choices of tℓ+1, if r
x
m(ti) ≥ rk (or rxφ(ti) ≥ rk), we can stop processing the remaining choices

of tℓ+1 and safely claim tℓ+1 has no chance to be in the final top-k answer. If one has to

exhaust all choices for tℓ+1, then the exact rank rm(tℓ+1) (or rφ(tℓ+1)) is obtained and the

priority queue is updated if necessary: if tℓ+1’s rank is smaller than rk, it will be inserted

into the queue with its rank and the last (the kth) element of the queue will be deleted.

The remaining challenge is how to calculate the lower-bound rxm(ti) for a tuple ti after

processing its first x choices. A key observation is each tuple’s choices are sorted by

descending order of their score values, i.e., for ∀ti and ∀ℓ1, ℓ2 ∈ [1, si], if ℓ1 < ℓ2, then

vi,ℓ1 > vi,ℓ2 . After processing the first x (x < si) choices of ti, we have obtained x rank

distributions, rank(t1i), . . . , rank(t
x
i). At this point, we can construct a (notional) tuple ti,x

with (x + 1) choices as follows: {(vi,1, pi,1), . . . , (vi,x, pi,x), (vi,x, 1 − ∑x
ℓ=1 pi,ℓ)}. The first

x choices of ti,x are identical to the first x choices of ti; and the last choice of ti,x has the

same score value, vi,x with probability as 1 −∑x
ℓ=1 pi,ℓ — we aggregate the probability of

all remaining choices (of ti) into one choice and make its score value the same as the last

processed choice (the xth one) from ti. We can write the rank distribution for constructed

tuple ti,x as follows, which follows immediately from its construction:

Lemma 4.1. We have ∀ℓ ∈ [1, x], rank(tℓi,x) = rank(tℓi); rank(tx+1
i,x) = rank(txi,x); and

rank(ti,x) =
∑x

ℓ=1 pi,ℓ × rank(tℓi) + (1−∑x
ℓ=1 pi,ℓ)× rank(txi).

The next result is that the median (quantile) value from distribution rank(ti,x) will not

be larger than the median (or corresponding quantile) value in distribution rank(ti), i.e.,

Lemma 4.2. ∀x ∈ [1, si) and ∀φ ∈ [0, 1], rφ(ti,x) ≤ rφ(ti). A special case is that rm(ti,x) ≤
rm(ti).

This follows immediately from Lemma 4.1 and the definition of rφ(t) and rm(t) for any

tuple t. Lemma 4.2 indicates that by constructing ti,x after processing the first x choices of

the tuple ti, we can efficiently obtain a lower bound on rφ(ti) or rm(ti). This can be done

after processing each choice of ti and it perfectly satisfies our pruning framework. Note

Lemma 4.1 shows that after processing the first x choices of the tuple ti, rank(ti,x) can

be obtained immediately (and hence its rφ(ti,x) or rm(ti,x) is immediate). We denote this

pruning technique as the A-MQRank-Prune algorithm.

108

4.7.5 Tuple-level uncertainty model

In the tuple-level model, we have additional challenges due to the presence of exclusion

rules. We leverage the dynamic programming formulation that is similar in spirit to some

of the existing work in the tuple-level model [89, 114].

Our approach begins by sorting all tuples by the descending order of their score values.

Without loss of generality, we assume that for any ti, tj ∈ D, i 6= j, if i < j, then ti’s

score value is greater or equal than tj ’s score value. Ties are broken arbitrarily or can be

otherwise specified.

Let Di be the database when D is restricted (both the tuples and the rules) on the first

i tuples {t1, . . . , ti} for i = 1, . . . , N , i.e., for each τ ∈ D, τ ′ = τ
⋂{t1, . . . , ti} is included

in Di. We first discuss the simplified tuple-level model where each rule contains just one

tuple, i.e., every tuple is independent from all other tuples in the database. In this case,

our idea is based on the following simple intuition. The probability that a tuple ti appears

at rank j depends only on the event that exactly j tuples from the first i− 1 tuples appear,

no matter which tuples appear. Now, let Ri,j be the probability that a randomly generated

world from Di has exactly j tuples, i.e., Ri,j =
∑

|W |=j Pr[W |Di], and R0,0 = 1, Ri,j = 0 if

j > i. Also, let R−i
N−1,j be the probability that a randomly generated world from D − {ti}

has exactly j tuples. Then, based on Definition 4.6, it is clear that the probability that ti’s

rank equals to j in a randomly generated world from D is:

Pr[R(ti) = j] = p(ti) ·Ri−1,j + (1− p(ti)) ·R−i
N−1,j , (4.14)

recalling R(ti) is a random variable denoting the rank for ti in a random possible world.

The final rank distribution rank(ti) is simply represented by the pairs, (j,Pr[R(ti) = j]),

for j = 0, . . . , N − 1. For any tuple ti, it is straightforward to calculate R−i
N−1,j for all js in

a similar fashion as we compute Ri,js. Our job is then to compute Ri,js, which in this case

is:

Ri,j = p(ti)Ri−1,j−1 + (1− p(ti))Ri−1,j . (4.15)

This gives us a dynamic programming formulation to calculate the Ri,js. We can then

effectively compute the rank distribution rank(ti) for the tuple ti. Consequently, both the

median rank and the φ-quantile rank for the tuple ti can be easily obtained. We do this for

each tuple in the database and return the k tuples with the smallest median ranks or the

φ-quantile ranks as the answer to the top-k query.

The general case when there are multiple tuples in one rule is more complex. Never-

theless, in this case, the probability that ti’s rank is equal to j in a randomly generated

109

world from D still follows the principle outlined in (4.14). However, Ri,j can no longer be

calculated as in (4.15), because if ti has some preceding tuples from the same rule, the event

that ti appears is no longer independent of the event exactly j − 1 tuples in Di−1 appear.

Similarly, for the second term in (4.14), when ti does not appear in a random world with j

tuples, we may not simply multiply (1− p(ti)) by the probability of this event: it could be

one tuple from the same rule containing ti has already appeared, which asserts ti cannot

appear at all.

To overcome this difficulty, we first convert Di to a database D̄i where all rules contain

only one tuple and apply the above algorithm on D̄i to compute Ri,js. We construct D̄i as

follows: For each rule τ ∈ Di and tuples in τ , we create one tuple t and one rule τ = {t} ∈ D̄i,

where p(t) =
∑

t∈τ p(t), with all of t’s other attributes set to null. Essentially, t represents

all tuples in a rule τ ∈ Di. Now, the Ri,j computed from D̄i is the same as the probability

that exactly j tuples in Di appear, because for Ri,j , we only care about the number of

tuples appearing; merging does not affect anything since the probability that t appears is

the same as the probability that one of the tuples in τ appears.

Now, we can compute all the Ri,js, but another difficulty is the probability ti’s rank

is equal to j if it appears is no longer simply p(ti) · Ri−1,j . This happens if ti has some

preceding tuples from the same rule in Di−1. Then, the existence of ti has to exclude all

these tuples, while Ri−1,j includes the probability of the possible worlds that contain one of

them. To handle this case, one can define D−
i−1 = Di−1−{t|t ∈ Di−1 and t ∈ τ and ti ∈ τ},

i.e., D−
i−1 is the version of Di−1 that excludes all tuples from the same rule τ which contains

ti . Just as Ri−1,j is defined with respect to Di−1, let R
−
i−1,j be the probability exactly j

tuples from D−
i−1 have appeared in a random possible world. We construct D̄−

i−1 as follows:

For each rule τ ∈ D−
i−1 and tuples in τ , we create one tuple t and one rule τ = {t} ∈ D̄−

i−1,

where p(t) =
∑

t∈τ p(t), with all of t’s other attributes set to null. Now, computing R−
i,j

from D̄−
i−1 is done in the same fashion as (4.15).

For the second term in (4.14), to cater for the case when a random world generated from

database D− {ti} has exactly j tuples and ti does not appear, there are two cases. In case

one, none of the j tuples in this random world is from the same rule that contains ti; we

denote this event’s probability as R−i−
N−1,j . In the second case, one of the j tuples in this

random world comes from the same rule which contains ti, and this event’s probability is

R−i+
N−1,j . We can compute both R−i−

N−1,j and R−i+
N−1,j similarly as we compute the Ri,js.

The probability ti’s rank in a random world equals j is:

Pr[R(ti) = j] = p(ti) ·R−
i−1,j + (1− p(ti)) ·R−i−

N−1,j +R−i+
N−1,j , (4.16)

110

since R−
i−1,j already excludes all tuples from the same rule containing ti. We calculate this

probability for all js where j = 0, . . . , N − 1; then (j,Pr[R(ti) = j])s for j = 0, . . . , N − 1

is the rank distribution rank(ti) for tuple ti. Both the median rank and the φ-quantile

rank can be easily obtained thereafter. The top-k answer could be easily obtained after

calculating the median (or the quantile) rank for each tuple. We denote this algorithm as

T-MQRank.

Example 4.2. We consider tuple t4 for the tuple-level uncertainty model example in Ta-

ble 4.4. For t4 the R−
i−1,js, where i = 4 and j = 0, 1, 2, 3 in this case, are {(0, 0), (1, 0.6), (2,

0.4), (3, 0)}, the R−i+
N−1,j’s are {(0, 0), (1, 0), (2, 0.3), (3, 0.2)}, and the R−i−

N−1,js are all zero as

the probability that neither t2 or t4 appear is zero. Then, rank(t4) is {(0, 0), (1, 0.3), (2, 0.5),
(3, 0.2)}.

4.7.6 Complexity of T-MQRank

In the basic case where each rule contains only one tuple, the cost of the dynamic

program to compute the Ri,js is O(N2), and one can compute R−i
N−1,js for all tis similarly

in O(N2) time. After which, for each ti, obtaining the entire distribution rank(ti) given

Ri,js and R
−i
N−1,j is linear. Hence, the overall cost is O(N2).

In the second case when each rule may contain multiple tuples, we have to invoke the

dynamic programming formulation for R−
i−1,j based on D̄−

i−1, which is different for each ti.

However, the size of the table for the dynamic programming formulation is only O(M2),

where M ≤ N is the number of rules in the database. The cost of calculating R−i−
N−1,js

and R−i+
N−1,js is also O(M2) for every tuple ti. Hence, the overall cost of this algorithm is

O(NM2).

4.8 Other Issues

4.8.1 Variance of the rank distribution: connection of expected
ranks, median ranks, and quantile ranks

Implicit in all our discussions so far is that for any uncertain tuple t, there is a well-

defined probability distribution rank(t) over its possible ranks within the uncertain relation.

Within this setting, the expected rank, median rank, and quantile rank of t are the expec-

tation, median, and quantile of this distribution, respectively. It is certainly meaningful to

study other properties of these distributions. In particular, we next discuss the variance of

the rank distribution rank(t), which we denote as var(t). A first observation is that var(t) is

a good indicator to gauge the difference among r(t) (expected rank), rm(t) (median rank),

and rφ(t) (quantile rank) for any quantile value φ. Intuitively, a small var(t) suggests that

111

r(t) and rm(t) will be similar (in the extreme case, an extremely small var(t) suggests that

even rφ(t) for any φ value will be similar to r(t)). If all tuples in the database have small

var(t)s, then ranking by expected ranks probably is a good choice. On the other hand, if

a large number of tuples have large var(t) values, then ranking by expected ranks does not

provide a good reflection on the ranks of various tuples. Rather, ranking by median ranks

or some quantile ranks should be used.

It remains to show how to compute var(t) given an uncertain tuple t. Clearly, this task

is trivial if one is provided with the rank distribution rank(t). Recall that our algorithms for

ranking by median ranks or quantile ranks in Section 4.7, in both uncertain models, work

by firstly computing the rank distribution for any given tuple in the database, then deriving

the median (or the quantile) from the computed rank distribution. So, as a straightforward

extension, these algorithms can easily support the calculation of var(t) for any tuple t as

well. It is an open problem to find more direct ways to compute var(t), but the existence

of correlations between tuples suggests that this may not be more efficient than simply

computing the rank distribution.

4.8.2 Scoring functions

Our analysis has assumed that the score is a fixed value. In general, the score can be

specified at query time by a user-defined function. Note that all of our offline algorithms

(for expected ranks, median, and quantile ranks) also work under this setting, as long as

the scores can be computed. If the system has some interface that allows us to retrieve

tuples in the score order (for the tuple-level order) or in the expected score order (for the

attribute-level model), our pruning algorithms for expected ranks are applicable as well.

A main application of a query-dependent scoring function is k-nearest-neighbor queries,

which is the top-k query instantiated in spatial databases. Here, the score is implicitly the

distance of a data point to a query point. When the data points are uncertain, the distance

to the query is a random variable, which can be modeled as an attribute-level uncertainty

relation. Existing works [105,115] essentially adopt U-kRanks semantics to define k-nearest-

neighbor queries in spatial databases. We believe that our ranking definition makes a lot of

sense in this context, and may have similar benefits over previous definitions of uncertain

nearest neighbors.

When a relation has multiple (certain and uncertain) attributes on which a ranking

query is to be performed, the user typically will give some function that combines these

multiple attributes together and then rank on the output of the function. When at least

112

one of the attributes is uncertain, the output of the function is also uncertain. This gives

us another instance where our ranking semantics and algorithms could be applied.

4.8.3 Continuous distributions

When the input data in the attribute-level uncertainty model are specified by a continu-

ous distribution (e.g., a Gaussian or Poisson), it is often hard to compute the probability that

one variable exceeds another. However, by discretizing the distributions to an appropriate

level of granularity (i.e., represented by a histogram), we can reduce to an instance of the

discrete pdf problem. The error in this approach is directly related to the granularity of

the discretization. Moreover, observe that our pruning-based methods initially require only

information about expected values of the distributions. Since continuous distributions are

typically described by their expected value (e.g., a Gaussian distribution is specified by its

mean and variance), we can run the pruning algorithm on these parameters directly.

4.8.4 Further properties of a ranking

It is certainly reasonable to define further properties and analyze when they hold.

However, formulating the right properties can be tricky. For example, Zhang and Chomicki

[87] defined a property of “faithfulness,” which demands that (in the tuple-level model),

given two tuples t1 = (v1, p(t1)) and t2 = (v2, p(t2)) with v1 < v2 and p(t1) < p(t2), then

t1 ∈ Rk ⇒ t2 ∈ Rk. This intuitive property basically says that if t2 “dominates” t1, then

t2 should always be ranked at least as high as t1. It was claimed that the Global-Topk

definition satisfies this property; however, this only holds in the absence of exclusion rules.

There are cases with exclusions where all existing definitions fail on faithfulness. Consider

the following example:

ti t1 t2 t3 t4 t5
vi 1 2 3 4 5
p(ti) 0.4 0.45 0.2 0.2 0.2

with rules τ1 = {t1, t3, t4, t5}, τ2 = {t2}. The possible worlds of this relation is shown in

Table 4.6. Here, t2 “dominates” t1, but all of the previous definitions (U-Topk, U-kRanks,

Global-Topk, and PT-k) will select t1 as the top-1. On this example, ranking by expected

ranks will rank t2 as the top-1, hence satisfying the “faithfulness” requirement. However,

it is easy to construct other examples where the expected rank will also rank a dominating

tuple lower than a dominated tuple. Consider the example shown in Table 4.7, the expected

rank of t1 is 0.105× 1 + 0.245× 1 + 0.455× 1 = 0.805. However, the expected rank of t2 is

0.195 × 2 + 0.455 × 1 = 0.845. Hence, t2 ranks after t1 even though t2 dominates t1. Our

113

Table 4.6. Possible worlds where previous definitions do not satisfy faithfulness.
c©2011 IEEE

0.18

t2 2
t1 1

0.09

t3 3
t2 2

0.09

t4 4
t2 2

0.09

t5 5
t2 2

0.22

t1 1

0.11

t3 3

0.11

t4 4

0.11

t5 5

Table 4.7. An example where the expected rank does not satisfy the faithfulness.
c©2011 IEEE

tuples score p(t)

t1 1 0.3
t2 2 0.35
t3 0.5 0.65

rules

τ1 {t1}
τ2 {t2, t3}

0.105

t2 2
t1 1

0.195

t1 1
t3 0.5

0.245

t2 2

0.455

t3 0.5

initial study suggests that “faithfulness” defined this way may not be achievable, and one

has to somehow take rules (i.e., correlations) into consideration in order to make it a viable.

4.8.5 Rank of missing tuples

In the tuple-level uncertainty model, we chose to determine the rank of tuples not

present in a world W as |W |. This is an intuitive choice (the missing tuples were all

ranked “equal last”), but other choices are possible. A different approach is to compute

the rank of a tuple only over those worlds W where it does appear, and then to scale

this by the probability that it appears. This can be understood in terms of conditional

probabilities: for the expected rank definition, we compute the rank of a tuple t by summing

the probabilities that other tuples appear which score more highly than t. This can be

viewed as the probability that each tuple t′ outranks t and t appears; dividing this by p(t)

gives the conditional probability t′ outranks t given that t appears. Accordingly, we can call

this the “conditional expected rank” of ti, e(ti). Formally, adopting the convention that

the tuples are indexed in decreasing order of their score, e(ti) =
1

p(ti)
(1 +

∑
j<i,tj ⋄̄ti

p(tj)),

which can be computed in constant time for each ti after computing prefix sums on the

p(ti)’s and on the probabilities associated with each rule. On the example in Table 4.4, we

obtain e(t1) = 1/0.4 = 2.5, e(t2) = (1 + 0.4)/0.5 = 2.8, e(t3) = (1 + 0.4 + 0.5)/1 = 1.9 and

e(t4) = (1+ 0.4+ 1)/0.5 = 4.8. This yields the ranking (t3, t1, t2, t4), the same as under the

expected rank semantics. Likewise, the properties of exact-k, containment, unique-rank,

and value-invariance follow immediately. Stability also follows easily: increasing the score

of a tuple t cannot increase the sum of probabilities of tuples with lower scores, while

114

increasing its probability drives down 1/p(t), so either way e(t) cannot increase, ensuring

that if it was in the top-k before, it will remain so after. We leave further study of this

alternate semantics to future work.

4.8.6 Parametrized ranking function

In parallel to this work, a new ranking framework for probabilistic data was proposed

[93], namely, the parametrized ranking function (PRF). It is interesting to note that PRF

adopts a similar basis to that shown in this work for ranking probabilistic data. Essentially,

the basis of ranking in PRF is also the rank distributions for different tuples. However,

instead of using the expectations, medians, or quantiles of these ranking distributions to

derive a total ordering of tuples, Li et al. proposed that any parametrized function may be

defined over the rank distributions of tuples, i.e., the final rank value of a tuple t ∈ D, where

|D| = N , could be defined as
∑N−1

i=0 ω(t, i) Pr[R(t) = i], where {ω(t, 0), . . . , ω(t,N − 1)} is

a set of (N − 1) user-defined parametrized functions. Clearly, the basis for the above

ranking definition is Pr[R(t) = i] for i = {0, . . . , N − 1}, which is nothing else but the

rank distribution of t, rank(t). Note that the PRF is a framework for ranking, but not

a ranking definition by itself. Many ranking definitions are possible to be defined in the

PRF framework; for example, it is indeed possible to define the expected rank in this

paper under the PRF framework. However, it is not feasible to directly define the median

and quantile ranks using the PRF mechanism. Nevertheless, one may extend the PRF

framework to support the median and quantile ranks when its ranking definitions are no

longer constrained by using only parametrized functions.

Since the ranking basis is the rank distributions for tuples, when ω(t, i) is independent

from t for all i ∈ {0, . . . , N − 1} (which is prevalent as also noted in [93]), all such rankings

within the PRF framework necessarily follow value-invariance. Different instantiations of

the parametrized function ω(t, i) in the PRF framework introduces quite different defini-

tions. It is an intriguing and challenging open problem to further study the rich semantics

and properties the PRF framework imposes on various ranking definitions extended from

it.

4.8.7 Approximate expected ranks

The rank distribution of an uncertain tuple follows the Poisson Binomial distribution.

It follows from standard results in statistics [116, 117] the expected rank of a tuple t is

approximated by the sum of probabilities of the tuples ranked before t in the tuple-level

model. Since the focus of this work is to rank the uncertain tuples based on their exact

115

expected ranks (or median or quantile ranks for that purpose), i.e., we are interested at

computing the exact top-k results in each framework (be it expected ranks, median ranks,

or quantile ranks), we do not pursue this observation further in this presentation. We leave

further study of approximate top-k ranks of uncertain data to future work. We observe

the key challenges to address are to design approximation schemes for broader models of

uncertain data, and to quantify the quality of the approximation over all possible uncertain

relations, or else to describe particular cases of uncertain relations which are guaranteed

to be well-approximated. The hope is an approximation which compromises on finding the

exact answer can compensate with computational efficiency.

4.9 Experiments

We implemented our algorithms in GNU C++. All experiments were executed on a

Linux machine with a 2GHz CPU and 2GB main memory. We utilized synthetic datasets

to study the impact of datasets with different characteristics on both the score and the

probability distribution. We additionally tested our algorithms on a real dataset, movie,

from the MystiQ project. movie consists of data integrated from IMDB and Amazon. Each

record in movie consists of an IMDB id (imdbid), IMDB string, Amazon id (aid), Amazon

string, and a probability, where the pair (imdbid,aid) is unique. We converted movie to

the attribute-level and tuple-level models by grouping records by the imdbid attribute. To

obtain an attribute-level representation, we created a single tuple for each imdbid group

where the pdf consists of all of the aid in the group. To obtain a tuple-level representation,

we created a tuple for each aid in an imdbid group and we also created an exclusion rule

(τ) for each imdbid group consisting of all aid in the group. For both models, we rank

tuples by the aid attribute. The movie dataset consists of 246,816 unique (imdbid, aid)

pairs and there are 56,769 unique imdbid groups with an average of 4.35 aid per group.

For the experiments, we vary only N and k for movie, where N is varied by uniformly

and randomly selecting tuples. To generate synthetic datasets, we developed several data

generators for both models. Each generator controls the distribution on the score value as

well as the probability. For both models, these distributions refer to the universe of score

values and probabilities when we take the union of all tuples in D. The distributions used

include uniform, Zipfian, and correlated bivariate. They are abbreviated as u, zipf, and

cor. For each tuple, we draw a score and probability value independently from the score

distribution and probability distribution, respectively. We refer to the result of drawing

from these two distributions by the concatenation of the short names for each distribution

116

for score then probability, i.e. zipfu indicates a Zipfian distribution of scores and uniform

distribution of probabilities. The default skewness for the Zipfian distribution is 1.2, and

other default values are k = 100, N = 10, 000, s = 5, ψ = 5, and ζ = 30%.

4.9.1 Expected ranks

4.9.1.1 Attribute-level uncertainty model

We first studied the performance of the exact algorithm A-ERank by comparing it

to the basic brute-force search (BFS) approach on uu and movie. The distribution on

the probability universe does not affect the performance of either algorithm, since both

algorithms calculate the expected ranks of all tuples. The score value distribution has no

impact on BFS, but does affect A-ERank: the uniform score distribution results in the

worst performance given a fixed number of tuples, as it leads to a large set of possible

values. So, amongst the synthetic datasets, we only consider uu for this experiment, to give

the toughest test for this algorithm.

Figure 4.1(a) shows the total running time of these algorithms as the size of D (the

number of tuples, N) is varied, up to 100, 000 tuples. Note we can only vary movie up to

N = 56, 769 for this and the following attribute-level experiments. A-ERank outperforms

BFS by up to 6 orders of magnitude. This gap grows steadily as N gets larger. A-ERank

has very low query cost: it takes only about 10ms to find the expected ranks of all tuples

for N = 100, 000, while the brute force approach takes 10 minutes. Results are similar for

other values of s.

As discussed in Section 4.5.2, A-ERank-Prune is an approximate algorithm, in that it

may not find the exact top-k. Figure 4.1(b) reports its approximation quality on various

datasets using the standard precision and recall metrics. Since A-ERank-Prune always

returns k tuples, its recall and precision are always the same. Figure 4.1(b) shows it achieves

high approximation quality: recall and precision are near the 100th percentile for movie

and in the 90th percentile when the score is distributed uniformly for the synthetic datasets.

The worst case occurs when the data are skewed on both dimensions, where the potential

for pruning is greatest. The reason for this is that as more tuples are pruned, these unseen

tuples have a greater chance to affect the expected ranks of the observed tuples. Even

though the pruned tuples all have low expected scores, they could still have values with

high probability to be ranked above some seen tuples, because of the heavy tail of their

distribution. Even in this worst case, the recall and precision of T-ERank-Prune is about

80%.

117

0 2 4 6 8 10
10

−4

10
−2

10
0

10
2

10
4

N: number of tuples × 104 (s=5)

R
un

ni
ng

 ti
m

e
(s

ec
s)

uu
movie

BFS A−ERANK

(a)

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

k (N=105, s=5)

R
ec

al
l a

nd
 p

re
ci

si
on

 in
 to

p−
k

uu uzipf

zipfu zipfzipf movie

(b)

Figure 4.1. Attribute-level model performance analysis: (a) running time of exact
algorithms and (b) A-ERank-Prune’s precision/recall. c©2011 IEEE

Figure 4.2 shows the pruning power of A-ERank-Prune. In this experiment N =

100, 000, s = 5, and k is varied from 10 to 100. It shows we often only need to materialize

a small number of tuples of D (ordered by expected score) before we can be sure we have

found the top-k, across a variety of datasets. Intuitively, a more skewed distribution on

either dimension should increase the algorithm’s pruning power. This intuition is confirmed

by results in Figure 4.2. When both distributions are skewed, A-ERank-Prune could halt

the scan after seeing less than 20% of the relation. For the movie dataset, A-ERank-Prune

is also effective and prunes almost 50% of the tuples. Even for more uniform distributions

such as uu, expected scores hold enough information to prune.

0 20 40 60 80 100
0

20

40

60

80

100

k (N=105, s=5)

%
 o

f t
up

le
s

pr
un

ed

uu uzipf

zipfu zipfzipf movie

Figure 4.2. Attribute-level: Pruning of A-ERank-Prune. c©2011 IEEE

118

4.9.1.2 Tuple-level uncertainty model

For our experiments in the tuple-level model, we first investigate the performance of our

algorithms. As before, there is a brute-force search-based approach which is much more

expensive than our algorithms, so we do not show these results.

A notable difference in this model is that the pruning algorithm is able to output the

exact top-k, provided E[|W |], the expected number of tuples of D, is known. Figure 4.3(a)

shows the total running time for the T-ERank and T-ERank-Prune algorithms on uu and

movie. Both algorithms are extremely efficient. For 100, 000 tuples, the T-ERank algorithm

takes less than 100 milliseconds to compute the expected ranks of all tuples; applying

pruning, T-ERank-Prune finds the same k smallest ranks in just 1 millisecond. However,

T-ERank is still highly efficient, and is the best solution when E[|W |] is unavailable.
Figure 4.3(b) shows the pruning power of T-ERank-Prune for different datasets. We fix

N = 100, 000 and vary k. T-ERank-Prune prunes more than 98% of tuples for all k for

movie, which shows T-ERank-Prune may be very effective at pruning real data for certain

applications. We also see a skewed distribution on either dimension increases the pruning

capability of T-ERank-Prune. Even in the worst case of processing uu, T-ERank-Prune is

able to prune more than 90% of tuples.

Our next experiments study the impact of correlations between a tuple’s score value and

probability. We say the two are positively correlated when a tuple with a higher score value

also has a higher probability; a negative correlation means a tuple with a higher score value

has a lower probability. Such correlations have no impact on the performance of T-ERank as

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

N: number of tuples × 104

R
un

ni
ng

 ti
m

e
(s

ec
s)

uu
movie

T−ERank T−ERank−Prune

(a)

0 20 40 60 80 100
90

92

94

96

98

100

k (N=105,30% tuples in rules)

%
 o

f t
up

le
s

pr
un

ed

uu uzipf

zipfu zipfzipf movie

(b)

Figure 4.3. Tuple-level model performance analysis: (a) running time and (b) pruning of
T-ERank-Prune. c©2011 IEEE

119

it computes the expected ranks for all tuples. However, correlation does have an interesting

effect on the pruning capability of T-ERrank-Prune. Using correlated bivariate datasets of

different correlation degrees, Figure 4.4(a) repeats the pruning experiment for T-ERank-

Prune with N = 100, 000. The strongly positively correlated dataset with a +0.8 correlation

degree allows the highest amount of pruning, whereas the strongly negatively correlated

dataset with a −0.8 correlation degree results in the worst pruning power. However, even

in the worst case, T-ERank-Prune still pruned more than 75% of tuples. Figure 4.4(b)

reflects the running time of the same experiment. T-ERank-Prune consumes between 0.1

and 5 milliseconds to process 100, 000 tuples.

4.9.2 Median and quantile ranks

Our primary concern when evaluating A-MQRank, A-MQRank-Prune, and T-MQRank

was the time necessary to retrieve the top-k from an uncertain database. To evaluate the

query time for A-MQRank and T-MQRank, we utilize uu and movie. The results for other

datasets are similar as the computational effort imposed by A-MQRank and T-MQRank are

the same regardless of the distribution as both algorithms compute the median or quantile

rank for every tuple in the database. We utilize movie, uu, uzipf , zipfzipf , and zipfu

to show the effect different distributions have on the pruning power of A-MQRank-Prune.

We also analyze the effect positively correlated and negatively correlated datasets have on

the processing time of A-MQRank-Prune. For all experiments, we present the results from

calculating the median ranks of all tuples, as other general quantiles perform similarly.

0 20 40 60 80 100
70

75

80

85

90

95

100

k (N=105,30% tuples in rules)

%
 o

f t
up

le
s

pr
un

ed

cor=+0.8
cor=0.0
cor=−0.8

(a)

0 20 40 60 80 100
10

−4

10
−3

10
−2

k (N=105,30% tuples in rules)

R
un

ni
ng

 ti
m

e
(s

ec
s)

cor=+0.8
cor=0.0
cor=−0.8

(b)

Figure 4.4. Impact of different correlations on T-ERank-Prune: (a) pruning power and
(b) running time. c©2011 IEEE

120

4.9.2.1 Attribute-level uncertainty model

We first analyze the effects of varying the number of tuples N with respect to the

processing time for A-MQRank and A-MQRank-Prune in Figure 4.5(a). Recall A-MQRank

and A-MQRank-Prune are both O(sN3). However, the pruning techniques utilized in A-

MQRank-Prune could allow the algorithm to avoid performing the O(N2) dynamic program

for all the s unique entries in the pdf of a tuple. The effects of this pruning are apparent in

Figure 4.5(a). We utilize movie and uu and vary N from 2,000 to 12,000. The processing

time for movie is less than that of uu for both algorithms as s is on average 4 in movie

whereas in uu, s = 5 for all tuples. In all cases A-MQRank-Prune requires less processing

time. In Figure 4.5(b) we analyze the effect of varying s for A-MQRank and A-MQRank-

Prune. Here we use only uu as we cannot vary s in movie. In this experiment, s is varied

from 2 to 10. Again we see the pruning of A-MQRank-Prune performs very well, effectively

reducing the constant in the O(sN3) complexity of A-MQRank.

We next analyze the effect different distributions have on the pruning power of A-

MQRank-Prune. In Figure 4.5(c), we study the effects of varying k over movie, uu,

zipfzipf , uzipf , and zipfu on A-MQRank-Prune. We see in general the processing

time grows almost linearly with respect to k. It is apparent the pruning utilized by

A-MQRank-Prune works best for scores which are uniformly distributed and probabilities

which follow a zipfian distribution. Regardless of the distribution A-MQRank-Prune shows

excellent scalability with respect to k. In Figure 4.5(d), we analyze the effect of varying k

over the positively and negatively correlated datasets. In general, we see correlations of the

dataset do not affect the pruning of A-MQRank-Prune.

4.9.2.2 Tuple-level uncertainty model

We evaluate the effect of varying the number of tuples N in the database and the

percentage of tuples from the database which share a rule with another tuple ζ in Figure 4.6.

Note the value selected for k is irrelevant as the quantile rank for every tuple is computed. In

Figure 4.6(a), we see the amount of time required to determine the median ranks increases

quadratically with respect to the number of exclusion rules M in the database, since M

clearly increases as N increases. This quadratic relationship makes sense as the running

time for T-MQRank is O(NM2). Also, note movie has about 3 times as many rules as

uu, which explains why it is about 9 times more expensive. We also evaluate the effect of

varying the percentage of tuples which share a rule with another tuple in Figure 4.6(b). As

expected, the amount of time required to calculate the median ranks drops quadratically as

the percentage increases. This is clear since as the percentage of tuples which share a rule

121

0 2 4 6 8 10 12
0

1

2

3

4

5

6

x 10
4

Number of Tuples (x103)

T
im

e
(s

ec
on

ds
)

uu
movie

A−MQRank A−MQRank−Prune

(a)

0 2 4 6 8 10
0

2

4

6

8

10x 10
4

Number of choices in pdf

T
im

e
(s

ec
on

ds
)

A−MQRank
A−MQRank−Prune

(b)

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3x 10
4

k

T
im

e
(s

ec
on

ds
)

uu zipfzipf

zipfu zipfzipf movie

(c)

0 200 400 600 800 1000
1

1.5

2

2.5

3x 10
4

k

T
im

e
(s

ec
on

ds
)

cor=+0.8
cor=0.0
cor=−0.8

(d)

Figure 4.5. Attribute-level model median and quantile ranks performance: effect of (a) N,
(b) s, (c) k while varying distributions on A-MQRank-Prune, (d) k while varying correlated
distributions on A-MQRank-Prune. c©2011 IEEE

122

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

Number of Tuples

T
im

e
(s

ec
on

ds
)

uu
movie

(a)

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Percentage of tuples sharing a rule

T
im

e
(s

ec
on

ds
)

T−MQRank

(b)

Figure 4.6. Tuple-level model median and quantile ranks performance: effect of (a) N and
(b) ζ. c©2011 IEEE

123

increases, there are fewer tuples in rules by themselves, and therefore, M decreases.

Figure 4.7 shows that increasing the number of tuples in a rule, while still requiring

ζ = 30%, also reduces the amount of time to compute median ranks. This is explainable

by the fact that increasing the number of tuples in any rule τ will clearly cause the total

number of exclusion rules in the database to decrease. It follows that the processing time

for T-MQRank will be very dependent on N , ζ, and ψ. It is likelyM will only be a constant

factor smaller than N for any uncertain database. However, as N increases, this reduction

factor will become increasingly significant in terms of the computational effort required by

T-MQRank. In any case, T-MQRank still has a low polynomial time cost with respect to

N and M .

4.9.3 Comparison of expected and median ranks

We have shown retrieving the top-k from an uncertain database following either the

attribute-level or tuple-level model may be computed efficiently in O(N logN) time when

ranking by expected ranks. We have also presented algorithms to compute median and

quantile ranks for a database following the attribute-level and tuple-level model in O(sN3)

and (NM2) time, respectively. It is evident not only from our experiments but also from the

corresponding complexities for the expected rank and median and quantile rank algorithms

that retrieving the top-k tuples from an uncertain database using expected ranks may

require much less computational effort than median or quantile ranks. It is clear from Figure

4.5 and Figure 4.6 that determining the top-k from both attribute-level and tuple-level

uncertain databases using median ranks requires on the order of 104 seconds. In comparison,

0 2 4 6 8 10 12
650

700

750

800

850

900

950

Number of choices in rule

T
im

e
(s

ec
on

ds
)

T−MQRank

Figure 4.7. Tuple-level: Effect of ψ for median and quantile ranks. c©2011 IEEE

124

from Figure 4.1 and Figure 4.3, we can see we need less than 1 second to determine the top-k

for both attribute-level and tuple-level uncertain databases utilizing the expected ranks. It

is not surprising that ranking by median ranks requires more computational effort than

ranking by expected ranks since we must compute the rank distribution rank(ti) for every

ti ∈ D in order to determine the median ranks. To do this, we rely on dynamic programs

with quadratic complexities. However, it has been commonly observed that calculating

the median or quantile values for a distribution is more expensive than computing the

expectation of the distribution.

We also compared the similarity between the top-k lists returned by ranking with the

median ranks and ranking with the expected ranks. We adopted the techniques from [112]

for this purpose. Specifically, for two top-k lists τ1 and τ2, we use the averaging Kendall

distance to measure their similarity, denoted as Kavg(τ1, τ2). Kavg(τ1, τ2) is computed as

Kavg(τ1, τ2) =
∑

{i,j}∈P (τ1,τ2)

K̄
(p)
i,j (τ1, τ2), for p = 0.5 (4.17)

where K̄
(p)
i,j (τ1, τ2) is defined as a penalty over the pairs in the set P (τ1, τ2) = {{i, j}|i 6=

j and i, j ∈ τ1∪τ2}, i.e., P (τ1, τ2) is the set of unordered pairs of distinct elements in τ1∪τ2.
The exact details of how the penalty K̄

(p)
i,j (τ1, τ2) is assigned for different pairs in the set P

are found in [112]. A larger Kavg(τ1, τ2) value indicates a higher dissimilarity between two

top-k lists τ1 and τ2. By examining the assignment of the penalty to possible pairs in P ,

we can show that Kavg(τ1, τ2) ∈ [0, k2 +
(
k
2

)
] for any two top-k lists τ1 and τ2. The smallest

value for Kavg(τ1, τ2) happens when τ1 and τ2 are identical as two ordered sets; and the

largest value for Kavg(τ1, τ2) happens when τ1 and τ2 are completely disjoint. Hence, a

meaningful way to represent the similarity between any two top-k lists, τ1 and τ2, is to use

the normalized averaging Kendall distance, which is defined as:

Knavg(τ1, τ2) =
Kavg(τ1, τ2)

k2 +
(
k
2

) (4.18)

Clearly, Knavg(τ1, τ2) ∈ [0, 1]. Smaller Knavg(τ1, τ2) values indicate higher similarity be-

tween τ1 and τ2, and larger values indicate lower similarity.

In Figures 4.8(a) and 4.8(b), we compare the similarity between the top-k results re-

turned from the median ranks and expected ranks for both the attribute-level and tuple-level

uncertainty models, using the normalized averaging Kendall distance. It is clear from

the results in Figure 4.8(a) and 4.8(b) that the top-k lists produced by the median ranks

and the expected ranks are rather different for both the attribute-level and the tuple-level

uncertainty models, especially when k is small for the synthetic datasets. In general, the

125

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

uu uzipf

zipfu zipfzipf movie

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

uu uzipf

zipfu zipfzipf movie

(b)

Figure 4.8. Kavg(τ1, τ2) for expected and median ranks with different k values: following
(a) attribute-level uncertainty model and (b) tuple-level uncertainty model. c©2011 IEEE

similarity between their top-k lists increases while k increases, but still maintains a clear

difference. This shows that ranking by median and quantile ranks or by expected ranks will

arrive at a different view of the top-k. This result is quite natural since median (quantile)

ranks and expected ranks characterize different characteristics of the rank distributions

rank(ti) for all ti ∈ D, i.e., the 0.50-quantile (or other quantile values) and expectation of

rank(ti).

In Figures 4.9(a) and 4.9(b) we compare the similarity between the top-k results returned

from the median ranks and different quantile ranks for the movie dataset for both the

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

k (movie)

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

0.10−quantile
0.20−quantile
0.30−quantile
0.40−quantile

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k (movie)

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

0.10−quantile
0.20−quantile
0.30−quantile
0.40−quantile

(b)

Figure 4.9. Kavg(τ1, τ2) for median and quantile ranks with different k values: following
(a) attribute-level uncertainty model and (b) tuple-level uncertainty model. c©2011 IEEE

126

attribute-level and tuple-level uncertainty models, again using the normalized averaging

Kendall distance. From these results, we see that the similarity of the top-k lists produced

by different quantile ranks and median ranks behaves in a very stable manner. As k increases

from 0 to about 200, the similarity decreases quadratically between the different quantile

ranks and the median ranks and when k > 200, we see that the similarity between median

ranks and different quantile ranks remains roughly the same. Notice for all k values, as the

quantile approaches the median, the normalized averaging Kendall distance approaches 0.

4.10 Conclusion

In this chapter, we study the challenge of uncertain data, which is becoming ubiquitous

in many applications, and how to summarize it using the ranking operator. We have studied

semantics of ranking queries in probabilistic data. We adapt important properties that guide

the definition of ranking queries in deterministic databases and analyze characteristics of

existing top-k ranking queries for probabilistic data. These properties naturally lead to

the ranking approach that is based on the rank distribution for a tuple across all possible

worlds in an uncertain domain. Efficient algorithms for two major uncertainty models ensure

the practicality of our approach. Our experiments demonstrate that ranking by expected

ranks, median ranks and quantile ranks is efficient in both attribute-level and tuple-level

uncertainty models.

CHAPTER 5

RANKING DISTRIBUTED

PROBABILISTIC DATA

5.1 Introduction

In Chapter 4, we studied the challenge of uncertain data by observing its semantics,

which drove us to propose novel ranking operators to summarize it, including the expected,

median, and quantile ranks, where we focused only on the centralized case. In this chapter,

we study the emerging challenge of distributed data, extending our study in Chapter 4 to

the distributed and parallel setting using the expected ranks ranking operator to summarize

massive distributed uncertain data, e.g., such as data collected in sensor networks as well

as data generated by scientific applications and stored in distributed file systems within

clusters.

Data are increasingly stored and processed distributively as a result of the wide deploy-

ment of computing infrastructures and the readily available network services [28,119–124].

More and more applications collect data in a distributive fashion and derive results based

on the collective view of all of the distributed data. Examples include sensor networks, data

integration from multiple data sources, information retrieval from geographically separated

data centers, as well as data partitioned and stored in a distributed file system within a

cluster. In the aforementioned application domains, it is often very expensive, impractical,

or sometimes even impossible to communicate the distributed dataset entirely to a central-

ized server for processing, e.g., by using techniques discussed in Chapter 4 at the centralized

server, due to the large amounts of data available nowadays and the network delay incurred,

as well as the economic cost associated with such communication [27]. Fortunately, query

semantics in many such applications rarely require reporting every piece of data in the

system. Instead, only a fraction of data that are the most relevant to the user’s interest

*The work in this chapter appears in [118] c©2009 Association for Computing Machinery, Inc. Reprinted
by permission.

128

will appear in the query results. Typically, a ranking mechanism is implemented and only

the top-k records are needed [27, 72], e.g., displaying the sensor ids with the k highest

temperature readings [125,126], or retrieving the images with the k largest similarity scores

to a predefined feature [127].

This observation deems that expensive communication is unnecessary and could be

avoided by designing communication efficient algorithms. Indeed, a lot of efforts have

been devoted to this subject, from both the database and the networking communities

[27, 28, 72, 119–123]. However, none of these works deals with distributed queries on prob-

abilistic data, which has emerged as a principled data type in many applications. In-

terestingly enough, many cases where uncertainty arises are distributed in nature, e.g.,

distributed sensor networks with imprecise measurements [80], multiple data sources for

information integration based on fuzzy similarity scores [81, 85]. Probabilistic data encode

an exponential number of possible instances, and ranking queries, by focusing attention

on the most representative records, are arguably more important and useful as a data

summarization technique in such contexts. Not surprisingly, top-k and ranking queries

on probabilistic data have quickly attracted a lot of interest, as discussed in Chapter 4.

However, prior to our work in this chapter, no work addressed the problem of ranking

uncertain data in a parallel and distributed setting. To address this important issue, our

focus in this chapter is to answer top-k queries in a communication-efficient manner on

probabilistic data from multiple, distributed sites using the expected ranks ranking operator.

The focus of uncertain query processing is (1) how to “combine” the query results from

all the possible worlds into a meaningful result for the query; and (2) how to process such

a combination efficiently without explicitly materializing the exponentially many possible

worlds. Additionally, in a distributed environment, we also face the third challenge: (3) how

to achieve (1) and (2) with the minimum amount of communication. This chapter concen-

trates on retrieving the top-k tuples with the smallest expected ranks from m distributed

sites that collectively constitute the uncertain database D. The challenge is to answer these

queries both computation- and communication-efficiently.

5.1.1 Our contributions.

We study ranking queries for distributed probabilistic data. We design communication

efficient algorithms for retrieving the top-k tuples with the smallest ranks from distributed

sites, with computation overhead also as a major consideration as well. In summary, our

contributions are as follows:

129

• We formalize the problem of distributed ranking queries in probabilistic data (Sec-

tion 5.2), and argue that the straightforward solution is communication-expensive.

• We first provide a basic approach using only a tuple’s local rank (Section 5.3). Then,

we introduce the sorted-access framework based on expected scores (Section 5.4).

The Markov inequality is first applied, followed by an improvement that formulates a

linear programming optimization problem at each site, which results in significantly

less communication.

• We next propose the notion of approximate distributions in probabilistic data used

for ranking (Section 5.5) to alleviate computation cost from distributed sites. We

present a sampling algorithm that optimally minimizes the total error in the ap-

proximation at each site. By transmitting them to the server at the beginning of

the algorithm, distributed sites are freed from any further expensive computation.

These approximate distributions are used by the server to compute the terminating

condition conservatively, so that we can still guarantee that the final top-k results

returned by the server are exact and correct. Furthermore, these approximations can

be incrementally updated by the server after seeing a tuple from the corresponding

distributed site, improving their approximation quality as the algorithm progresses.

• We also extend our algorithms to deal with issues on latency, continuous distributions,

scoring function, and multiple attributes (Section 5.6).

• We present a comprehensive experimental study that confirms the effectiveness of our

approach (Section 5.7).

Finally, we survey the related works (Section 5.8) before concluding the chapter.

5.2 Problem Formulation

Many models for describing uncertain data have been proposed in the literature, as we

discuss in Chapter 4. We focus on the attribute-level model of uncertainty that has been

used frequently within the database community. In this section, we will only introduce the

basics as well as our assumptions regarding an attribute-level uncertain database in both

the centralized and distributed settings; for a more in-depth discussion on the attribute-level

uncertainty model and its use within the community, please refer to Section 4.3. Without

loss of generality, we assume a probabilistic database D contains only one attribute-level

uncertain relation (also commonly referred to as a relational table, or table for short).

130

5.2.1 Uncertainty data model

The probabilistic database D is a table of N tuples. Each tuple has one attribute whose

value is uncertain (together with other certain attributes). This uncertain attribute has a

discrete pdf describing its value distribution. When instantiating this uncertain relation to a

certain instance, each tuple draws a value for its uncertain attribute based on the associated

pdf and the choice is independent among tuples. For ranking queries, the important case

is when the uncertain attribute represents the score for the tuple, and we would like to

rank the tuples based on this score attribute. Let Xi be the random variable denoting the

score of tuple ti. We assume that Xi has a discrete pdf with bounded size (bounded by bi).

The general, continuous pdf case is discussed in Section 5.6 as well as in our experimental

study. In this model, we are essentially ranking the set of independent random variables

X1, . . . , XN . In the sequel, we will not distinguish between a tuple ti and its corresponding

random variable Xi. This model is illustrated in Table 5.1. For tuple ti, the score takes the

value vi,j with probability pi,j for 1 ≤ j ≤ bi, and for ∀i, bi ≤ b, where b is an upper bound

on the size of any pdf.

5.2.2 The possible world semantics

In the above uncertainty model, an uncertain relation D is instantiated into a possible

world by taking one value for each tuple’s uncertain attribute independently according to

its distribution. Denote a possible world as W and the value for ti’s uncertain attribute in

W as wti . The probability that W occurs is Pr[W] =
∏N

j=1 pj,x, where x satisfies vj,x = wtj .

It is worth mentioning that in this case, we always have ∀W ∈ W, |W | = N , where W is

the space of all the possible worlds. The example in Table 5.2 illustrates the possible worlds

for an uncertain relation in this model.

5.2.3 The ranking definition

As we have argued in Chapter 4, many definitions for ranking queries in probabilistic

data exist. Among them, the expected rank approach is particularly useful as it is an

Table 5.1. The uncertainty data model.

tuples score

t1 {(v1,1, p1,1), (v1,2, p1,2), . . . , (v1,b1 , p1,b1)}
t2 {(v2,1, p2,1), . . . , v2,b2 , p2,b2)}
...

...
tN {(vN,1, pN,1), . . . , (vN,bN , pN,bN)}

131

Table 5.2. An example of possible worlds.

tuples score

t1 {(120, 0.8), (62, 0.2)}
t2 {(103, 0.7), (70, 0.3)}
t3 {(98, 1)}

world W Pr[W]

{t1 = 120, t2 = 103, t3 = 98} 0.8× 0.7× 1 = 0.56
{t1 = 120, t3 = 98, t2 = 70} 0.8× 0.3× 1 = 0.24
{t2 = 103, t3 = 98, t1 = 62} 0.2× 0.7× 1 = 0.14
{t3 = 98, t2 = 70, t1 = 62} 0.2× 0.3× 1 = 0.06

important statistical value that satisfies a number of intuitive properties. We extend our

study of the expected ranks operator to the distributed and parallel setting in this chapter.

For ease of exposition, we reintroduce the formal definition of the expected ranks

operator (as originally defined in Chapter 4):

Definition 5.1 (Expected Rank). The rank of a tuple ti in a possible world W is defined

to be the number of tuples whose score is higher than ti (so the top tuple has rank 0), i.e.,

rankW (ti) = |{tj ∈W |wtj > wti}|.

The expected rank r(ti) is then defined as:

r(ti) =
∑

W∈W

Pr[W] · rankW (ti) (5.1)

For the example in Table 5.2, the expected rank for t1 is r(t1) = 0.56 × 0 + 0.24 × 0 +

0.14×2+0.06×2 = 0.4. Similarly r(t2) = 1.1, r(t3) = 1.5. So the final ranking is (t1, t2, t3).

5.2.4 Distributed top-k in uncertain data

Given m distributed sites S = {s1, . . . , sm}, each holding an uncertain database Di with

size ni, and a centralized server H, we denote the tuples in Di as {ti,1, . . . , ti,ni
} and their

corresponding score values as random variables {Xi,1, . . . , Xi,ni
}. Extending the notation

from Table 5.1, Xi,j ’s pdf is {(vi,j,1, pi,j,1), . . . , (vi,j,bij , pi,j,bij)}. We would like to report at

H the top-k tuples with the lowest r(ti,j)s as in Definition 5.1 among all tuples in the unified

uncertain database D = D1
⋃D2 · · ·

⋃Dm of size N =
∑m

i=1 ni. The main objective is to

minimize the total communication cost in computing the top-k list, which is the same for

many problems on distributed data [27, 122].

132

5.2.5 The straightforward solution

Obviously, one can always ask all sites to forward their databases to H and solve the

problem at H locally. If we have a centralized uncertain database D = {t1, . . . , tN},
we can find the top-k tuples using our proposed centralized algorithm A-ERrank from

Section 4.5.1, which we will briefly review here as a warm-up before introducing our more

efficient distributed algorithms. We have observed previously, in Section 4.5.1, that r(ti)

can be written as:

r(ti) =

bi∑

ℓ=1

pi,ℓ
(
q(vi,ℓ)− Pr[Xi > vi,ℓ]

)
, (5.2)

where q(v) =
∑

j Pr[Xj > v]. Let U be the universe of all possible values ofXi, i = 1, . . . , N .

We have |U | ≤ |bN |. When b is a constant, we have |U | = O(N). Let Λ(v) =
∑

vi,j=v pi,j for

∀i, j, then q(v) = ∑
v′∈U∧v′>v Λ(v

′). Then, A-ERrank first precomputes q(v) for all v ∈ U

with a linear pass over the input after sorting U (summing up Λ(v′)’s for v′ > v) which

can be done in O(N logN). Following (5.2), exact computation of the expected rank for

a single tuple can be done in constant time given q(v) for all v ∈ U . A-ERrank computes

the expected ranks for all tuples to find the top-k and has an overall cost of O(N logN)

(retrieving the top-k has an inferior cost O(N log k) by maintaining a priority queue of size

k).

This approach, however, is communication-expensive. In this case, the total communi-

cation cost is |D| = ∑m
i=1 |Di|. This will be the baseline we compare against.

5.3 Sorted Access on Local Rank

One common strategy in distributed query processing is to first answer the query

within each site individually, and then combine the results together. For our problem,

this corresponds to first compute the local ranks of the tuples at the sites to which they

belong. In this section we present an algorithm following this strategy.

Consider an uncertain database Di in a local site si and any ti,j ∈ Di. We define

r(ti,j ,Di) as the local rank of ti,j in Di:

r(tij ,Di) =
∑

W∈W(Di)

Pr[W] · rankW (tij), (5.3)

where W(Di) is the space of possible worlds of Di.

133

Following the algorithm A-ERrank, let the universe of values at the site si be Ui. We

first compute qi(v) =
∑

j Pr[Xij > v] for all v ∈ Ui in O(ni log ni) time. Then, we can

efficiently compute the local ranks of all tuples in Di using (5.2), i.e.,

r(tij ,Di) =

bij∑

ℓ=1

pi,j,ℓ
(
qi(vi,j,ℓ)− Pr[Xij > vi,j,ℓ]

)
. (5.4)

We also extend the local rank definition of ti,j to a Dy where y 6= i. Since ti,j 6∈ Dy, we

define its local rank in Dy as its rank in {tij}
⋃Dy. We can calculate r(tij ,Dy) as

r(tij ,Dy) =
∑

Y ∈Dy

Pr[Y > Xij]

=
∑

Y ∈Dy

bij∑

ℓ=1

pi,j,ℓ Pr[Y > vi,j,ℓ]

=

bij∑

ℓ=1

pi,j,ℓ


 ∑

Y ∈Dy

Pr[Y > vi,j,ℓ]




=

bij∑

ℓ=1

pi,j,ℓqy(vi,j,ℓ). (5.5)

Note that in the last step of the derivation above, we use the fact that tij 6∈ Dy; hence, Xij

does not contribute to Uy and qy(v).

An important observation on the (global) expected rank of any tuple tij is that its

expected rank could be calculated cumulatively from all the sites. More precisely, we have

the following.

Lemma 5.1. The (global) expected rank of tij is

r(tij) =
m∑

y=1

r(tij ,Dy),

where r(ti,j ,Dy) is computed using (5.4) if y = i, or (5.5) otherwise.

Proof of Lemma 5.1: First, since D = D1
⋃D2 · · ·

⋃Dm, we have U = U1
⋃
U2 · · ·Um.

Furthermore, q(v) =
∑m

i=1 qi(v) by definition. Then, we have

m∑

y=1

r(tij ,Dy) =

m∑

y=1,y 6=i

bij∑

ℓ=1

pi,j,ℓqy(vi,j,ℓ)

+

bij∑

ℓ=1

pi,j,ℓ
(
qi(vi,j,ℓ)− Pr[Xij > vi,j,ℓ]

)

134

=

bij∑

ℓ=1

pi,j,ℓ
(m∑

y=1

qy(vi,j,ℓ)− Pr[Xij > vi,j,ℓ]
)

=

bij∑

ℓ=1

pi,j,ℓ
(
q(vi,j,ℓ)− Pr[Xij > vi,j,ℓ]

)

= r(tij). (By equation (5.2)).

An immediate corollary of Lemma 5.1 is that any tuple’s local rank is a lower bound on

its global rank. Formally,

Corollary 5.1. For any tuple tij, r(tij) ≥ r(tij ,Di).

Lemma 5.1 indicates that by forwarding only the tuple tij itself from the site si to

all other sites, we can obtain its final global rank. This naturally leads to the following

idea for computing the global top-k at the central server H. We sort the tuples at site

si based on their local ranks r(tij ,Di). Without loss of generality, we assume r(ti1,Di) ≤
r(ti2,Di) . . . ≤ r(tini

,Di) for any site si. The central server H accesses tuples from the m

sites in the increasing order of their local ranks. More precisely, H maintains a priority

queue L of size m in which each site si has a representative local rank value and the tuple

id that corresponds to that local rank value, i.e., a triple 〈i, j, r(ti,j ,Di)〉. The triples in

the priority queue are sorted by the local rank value in ascending order. L is initialized by

retrieving the first tuple’s id and local rank from each site.

In each step, H obtains the first element from L, say 〈i, j, r(ti,j ,Di)〉. Then, H asks for

tuple tij from site si as well as r(ti,j+1,Di), the local rank of the next tuple from si. The

triple 〈i, j + 1, r(ti,j+1,Di)〉 will be inserted into the priority queue L. In order to compute

the exact global rank of ti,j that H has just retrieved, H broadcasts ti,j to all sites except

si and asks each site Dy to report back the value r(tij ,Dy) (based on equation (5.5)). By

Lemma 5.1, H obtains the exact global rank of tuple tij . This completes a round.

Let the set of tuples seen by H be DH . H dynamically maintains a priority queue for

tuples in DH based on their global ranks. In the λth round, let the kth smallest rank from

DH be r+λ . Clearly, the local rank value of any unseen tuples by H from all sites is lower

bounded by the head element from L. This in turn lower bounds the global rank value

of any unseen tuples in D − DH by Corollary 5.1. Let r−λ be the local rank of the head

element of L. It is safe for H to terminate the search as soon as r+λ ≤ r−λ at some round λ

and output the top-k from the current DH as the final result. We denote this algorithm as

A-LR.

135

5.4 Sorted Access on Expected Score

Sorted access on local rank has limited pruning power as it simply relies on the next

tuple’s local rank from each site to lower bound the global rank of any unseen tuple. This

is too pessimistic an estimate. This section introduces the framework of sorted access

on expected score, which incurs much less communication cost than the basic local rank

approach.

5.4.1 The general algorithm

The general algorithm in this framework is for H to access tuples from all the sites

in the descending order of their expected scores. Specifically, each site sorts its tuples in

the decreasing order of the expected score, i.e., for all 1 ≤ i ≤ m and 1 ≤ j1, j2 ≤ ni, if

j1 < j2, then E[Xij1] ≥ E[Xij2]. H maintains a priority queue L of triples 〈i, j, E[Xij]〉,
where the entries are sorted in the descending order of the expected scores. L is initialized

by retrieving the first tuple’s expected score from each of the m sites. In each round, H

pops the head element from L, say 〈i, j, E(Xij)〉, and requests the tuple tij (and its local

rank value r(tij ,Di)) from site si, as well as the expected score of the next tuple at si, i.e.,

E[Xi,j+1]. Next, H inserts the triple 〈i, j + 1, E[Xi,j+1]〉 into L. Let τ be the expected

score of the top element from L after this operation. Clearly, τ is an upper bound on the

expected score for any unseen tuple.

Similarly to the algorithm A-LR, H broadcasts tij to all sites (except si) to get its local

ranks and derive the global rank for tij . H also maintains the priority queue for all tuples

in DH (the seen tuples by H) based on their global ranks and r+λ is similarly defined as in

A-LR for any round λ. The key issue now is to derive a lower bound r−λ for the global rank

of any unseen tuple t from D −DH . H has the knowledge that ∀t with a random variable

X for its score attribute, E(X) ≤ τ . We will show two methods in the sequel to derive r−λ

based on τ . Once r−λ is calculated, the round λ completes. Then H either continues to the

next round or terminates if r+λ ≤ r−λ .

5.4.2 Markov inequality-based approach

Given the expectation of a random variable X, the Markov inequality could bound the

probability that the value of X is above a certain value. Since τ is an upper bound for the

expected score of any unseen tuple t with the score attribute X, we have E(X) ≤ τ and for

a site si:

136

r(t,Di) =

ni∑

j=1

Pr[Xj > X] = ni −
ni∑

j=1

Pr[X ≥ Xj]

= ni −
ni∑

j=1

bij∑

ℓ=1

pi,j,ℓ Pr[X > vi,j,ℓ]

≥ ni −
ni∑

j=1

bij∑

ℓ=1

pi,j,ℓ
E[X]

vi,j,ℓ
. (Markov Ineq.)

≥ ni −
ni∑

j=1

bij∑

ℓ=1

pi,j,ℓ
τ

vi,j,ℓ
= r−(t,Di). (5.6)

This leads to the next lemma that lower bounds the global rank of any unseen tuple.

Lemma 5.2. Let τ be the expected score for the head element from L at round λ. Then,

for any unseen tuple t:

r(t) ≥
m∑

i=1

r−(t,Di) = r−λ ,

for r−(t,Di) defined in equation (5.6).

Proof of Lemma 5.2: By equation (5.6) and the Lemma 5.1.

By Lemma 5.2 and the general algorithm in Section 5.4.1, our algorithm could terminate

as soon as r+λ ≤ r−λ at some round λ. This is denoted as the algorithm A-Markov. Since

both ni and smi =
∑ni

i=1

∑bij
ℓ=1

pi,j,ℓ
vi,j,ℓ

are invariants for different rounds λ’s in equation (5.6),

a notable improvement to A-Markov is to have each site si transmit its ni and smi to H at

the beginning of the algorithm, once. Then, at each round λ, r−(t,Di) could be computed

locally at H. Note that in order to compute the exact rank of seen tuples and derive r+λ as

well as producing the final output, the server still needs to broadcast each new incoming

tuple to all sites and collect its local ranks.

5.4.3 Optimization with linear programming

The Markov inequality in general gives a rather loose bound. In this section, we give

a much more accurate lower bound on r(t,Di) for any tuple t 6∈ DH . Again, let X be the

uncertain score of t, and we have E[X] ≤ τ . Our general idea is to let H send τ to all sites

in each round and ask each site to compute a lower bound locally on the rank of any unseen

tuples (from H’s perspective), i.e., a lower bound on r(t,Di) for all D′
is. All sites then send

back these lower bounds and H will utilize them to compute the global lower bound on the

rank of any unseen tuple, i.e., r−λ .

The computation for r(X,Di) is different depending on whether X ∈ Di or X 6∈ Di.

We first describe how to lower bound r(X,Di) if X 6∈ Di. The problem essentially is,

137

subject to the constraint E[X] ≤ τ , how to construct the pdf of X such that r(X,Di)

is minimized. The minimum possible r(X,Di) is obviously a lower bound on r(X,Di).

Let Ui be the universe of possible values taken by tuples in Di. Suppose the pdf of X is

Pr[X = vℓ] = pℓ, v1 < v2 < · · · < vγ for some γ. Let qi(v) =
∑

Y ∈Di
Pr[Y > v]; note that we

always have qi(−∞) =
∑

v∈Ui
Λ(v) where Λ(v) =

∑
Y ∈Di∧Y.vj=v Y.pj , and qi(vL) = 0 where

vL is the largest value in Ui. Since X 6∈ Di, by equation (5.5), the rank of X in Di is

r(X,Di) =
∑

Y ∈Di

Pr[Y > X] =

γ∑

ℓ=1

pℓqi(vℓ). (5.7)

Note that qi(v) is a nonincreasing, staircase function with changes at the values of Ui.

(We also include −∞ in Ui.) We claim that to minimize r(X,Di), we only need to consider

values in Ui to form the vℓs, the values used in the pdf of X. Suppose the pdf uses some

vℓ 6∈ Ui. Then, we decrease vℓ until it hits some value in Ui. During this process, E[X]

decreases so the constraint E[X] ≤ τ is still satisfied. As we decrease vℓ while not passing a

value in Ui, qi(vℓ) does not change (see the example in Figure 5.1). So (5.7) stays unchanged

during this transformation of the pdf. Note that this transformation will always reduce

the number of vℓs that are not in Ui by one. Applying this transformation repeatedly will

thus arrive at some pdf of X with all vℓ ∈ Ui without changing r(X,Di).

Therefore, we can assume without loss of generality that the pdf of X has the form

Pr[X = vℓ] = pℓ for each vℓ ∈ Ui, where

0 ≤ pℓ ≤ 1, ℓ = 1, . . . , γ = |Ui|; (5.8)

p1 + · · ·+ pγ = 1. (5.9)

q(v) = PrY ∈D [Y > v]

−∞ v1 v3 v4vℓv2

value

∑
v∈U

Pr(v) − Pr(v1)

∑
v∈U

Pr(v)

0.0

Figure 5.1. Transform values in an unseen tuple X.

138

The constraint E[X] ≤ τ becomes

E[X] = p1v1 + · · ·+ pγvγ ≤ τ. (5.10)

Therefore, the problem is to minimize (5.7) subject to the linear constraints (5.8) (5.9)

(5.10), which can be solved using linear programming.

Next, consider the case X ∈ Dj for some j. Then, r(X,Dj) can be computed as in (5.4),

i.e.,

r(X,Dj) =

γ∑

ℓ=1

pℓ(qj(vℓ)− Pr[X > vℓ])

=

γ∑

ℓ=1

pℓqj(vℓ)−
γ∑

ℓ=1

pℓ Pr[X > vℓ]

≥
γ∑

ℓ=1

pℓqj(vℓ)−
γ∑

ℓ=1

pℓ =

γ∑

ℓ=1

pℓqj(vℓ)− 1,

where qj(vℓ) =
∑

Y ∈Dj
Pr[Y > vℓ]. Therefore, we can still minimize as we do for any

other Di, but simply subtract one from the final lower bound on r(X) that we obtain after

aggregating the minimum of (5.7) from all Dis. These observations are summarized in the

next lemma.

Lemma 5.3. Let X be an arbitrary unseen tuple by H. For ∀i ∈ {1, . . . ,m}, suppose

r−(X,Di) is the optimal minimum value from the linear program using (5.7) as the objective

function and (5.8), (5.9), (5.10) as the constraints for each site si respectively. Then,

r(X) ≥
m∑

i=1

r−(X,Di)− 1 = r−(X).

Proof of Lemma 5.3: By Lemma 5.1 and the optimal minimum local rank returned

by each linear programming formulation.

This naturally leads to an optimization to the sorted by expected score framework. H

maintains the current kth tuple’s rank among all the seen tuples at round λ as r+λ and

r−(X) at round λ as r−λ . As soon as r+λ ≤ r−λ , H stops the search and outputs the current

top-k from DH . This is the A-LP algorithm.

5.5 Approximate q(v): Reducing Computation at
Distributed Sites

In many distributed applications (e.g., sensors), the distributed sites often have limited

computation power or cannot afford expensive computation due to energy concerns. Algo-

rithm A-LP finds the optimal lower bound for the local rank at each site, but at the expense

139

of solving a linear program each round at all sites. This is prohibitive for some applications.

This section presents a method to approximate the q(v), which enables the site to shift

almost all the computation costs to the server H while still keeping the communication cost

low.

5.5.1 q∗(v): an approximate q(v)

Given a database D and its value universe U , q(v) represents the aggregated cumu-

lative distribution PrX∈D[X > v], which is a staircase curve (see Figure 5.1). Let U =

{v0, v1, . . . , vγ} where v0 = −∞ and γ = |U |. Then, q(vi) =
∑

j>i Λ(vj) where Λ(v) =
∑

X∈D∧X.vi=vX.pi. q(v) is decided by a set of points {(v0, q(v0)), (v1, q(v1)), . . . , (vγ , 0)},
but it is well-defined for any value v even if it is not in U , i.e., for v 6∈ U , q(v) =
∑

vj>v∧vj∈U
Λ(vj).

In the A-LP approach, the computation of r−(X,Di) only depends on qi(v). If each site

si sends its qi(v) to H at the beginning of the algorithm, then the server could compute

r−(X,Di) locally at each round without invoking the linear programming computation at

each site in every round. However, qi(v) is expensive to communicate if |Ui| is large. In

the worst case when tuples in Di all take distinct values, |qi(v)| = |Di| and this approach

degrades to the straightforward solution of forwarding the entire Di to H.

This motivates us to consider finding an approximate q∗(v) for a given q(v), such

that |q∗(v)| is small and adjustable, and provides a good approximation to q(v). The

approximation error ε is naturally defined to be the area enclosed by the approximate and

the original curves, i.e.,

ε =

∫

v∈[−∞,+∞]
|q(v)− q∗(v)|dv. (5.11)

We use such a definition of error because the site does not know beforehand how q∗(v) is

going to be used by the server. If we assume that each point on q(v) is equally likely to be

probed, then the error ε defined in (5.11) is exactly the expected error we will encounter.

The approximation q∗(v) is naturally a staircase curve as well. Thus, the problem is,

given a tunable parameter η ≤ |U |, how to obtain a q∗(v) represented by η points while

minimizing ε.

However, not all approximations meet the problem constraint. We need to carefully

construct q∗(v) so that given an upper bound value τ on the expected score, the solution

from the linear program w.r.t q∗(v) is still a lower bound for r(X,D) for any unknown tuple

X with E(X) ≤ τ . In other words, let r∗(X,D) be the optimal value identified by the

linear program formulated with q∗(v), and r−(X,D) be the optimal value from the linear

140

program using q(v) directly. We must make sure that r∗(X,D) ≤ r−(X,D) so that the

lower bounding framework still works, and the returned top-k results are still guaranteed to

be exact and correct. Intuitively, we need q∗(v) below q(v) in order to have this guarantee.

In what follows, we first present an algorithm that finds the optimal q∗(v) below q(v) that

minimizes the error ε; then, we show that such a q∗(v) indeed gives the desired guarantee.

There are still many possible choices to construct a q∗(v) as there are infinite number

of decreasing staircase curves that are always below q(v) and are decided by η turning

points. The next question is, among the many possible choices, which option is the best in

minimizing the error ε? The insight is summarized by the next Lemma.

Lemma 5.4. Given any η ≤ |U | and q(v), q∗(v), s.t., q∗(v) ≤ q(v) for ∀v ∈ [−∞,+∞]

and |q∗(v)| = η, the approximation error ε is minimized iff q∗(v)’s right-upper corner points

only sample points from the set of right-upper corner points in the staircase curve of q(v),

i.e., q∗(v) is determined by a subset of ∆q(v) = {α1 : (v1, q(v0)), . . . , αγ : (vγ , q(vγ−1)}.

Proof of Lemma 5.4: We concentrate on the necessary condition; the sufficient

condition can be argued similarly. We prove this by contradiction. Suppose this is not true;

then, we have a q∗(v) with the smallest approximation error that contains a right-upper

corner point α′ 6∈ ∆q(v). Since q∗(v) is always below q(v) for ∀v ∈ [−∞,+∞], moving α′

towards the αi ∈ ∆q(v) that is the first to its right will only reduce the area enclosed by q∗(v)

and q(v). Please see Figure 5.2(a) for an example where we move α′ to α3 and α′′ to α4.

This conflicts with the fact that q∗(v) minimizes the approximation error ε and completes

the proof.

A Corollary for constructing q∗(v) is that the two boundary points from ∆q(v) should

always be sampled; otherwise, the error ε could be unbounded.

Corollary 5.2. Both α1 : (v1, q(v0)) and αγ : (vγ , q(vγ−1)) from ∆q(v) should be included

in q∗(v)’s right corner points in order to have a finite error ε.

Lemma 5.4 is illustrated in Figure 5.2(a) where the ×s are the points (the lower-left

corner points) in a q(v) and the △s are the right-upper corner points that should be used to

determine q∗(v) in order to minimize the approximation error ε. The dashed line denotes a

possible curve for q∗(v) with η = 2. The two extreme points (v1, q(−∞)) and (v5, q(v4)) are

automatically included, plus α3 and α4. Once we have found the optimal set of α points

from ∆q(v), the × points in q∗(v) could be easily constructed. As a convention, we do not

include the two boundary △ points in the budget η.

141

With Lemma 5.4 and Corollary 5.2, we are ready to present the algorithm that obtains

an optimal q∗(v) given a budget η. Note that q∗(v) always have the two boundary △ points

from q(v). The basic idea is to use dynamic programming.

Let ∆♯
q(v) = {α2, . . . , αγ−1}. Let A(i, j) be the approximation error corresponding to the

optimal q∗(v) with i points selected from the first j points in ∆♯
q(v) for all 1 ≤ i ≤ j ≤ γ− 2

(since ∆♯
q(v) has γ− 2 number of points), together with the two boundary ∆ points (α1 and

αγ). The optimal curve achieving A(i, j) is denoted as q∗(i, j). Next, let δj+1
q∗(i,j) be the area

reduced by adding the (j + 1)-th point from ∆♯
q(v), i.e., αj+2, to q

∗(i, j). Now, we have:

A(i, j) = min

{
minx∈[i−1,j−1]{A(i− 1, x)− δjq∗(i−1,x)};
minx∈[i,j−1]{A(i, x)}.

(5.12)

Our goal is to find A(η, γ − 2) and the corresponding q∗(η, γ − 2) will be q∗(v) with the

minimum approximation error to q(v) using only η right-upper corner points (plus α1 and

αγ).

Given any q∗(i, j) and αj+2, δ
j+1
q∗(i,j) could be easily and efficiently computed using only

subtraction and multiplication since q∗(i, j) is a staircase curve. Suppose the last △ point,

except αγ , in q
∗(i, j) is αx, recall that αj+2 is (vj+2, q(vj+1)) and αx is (vx, q(vx−1)), then:

δj+1
q∗(i,j) = (vj+2 − vx)× (q(vj+1)− q(vγ−1)). (5.13)

The base case is when i = j = 0. This simply corresponds to having only the two

boundary ∆ points in q∗(0, 0) and

A(0, 0) =
∑

i∈[2,γ−1]

(vi − vi−1)(q(vi−1)− q(vγ−1)).

For example, in Figure 5.2(b), q∗(0, 0)’s right-upper corner points are (v1, q(−∞)) and

(v5, q(v4)), A(0, 0) corresponds to the the gray area in Figure 5.2(b), and δ1q∗(0,0) is the area

reduced by adding α2 to q∗(0, 0) (marked by the gray dotted lines in Figure 5.2(b)). This

gives us a dynamic programming formulation for finding the right-upper corner points in

optimal q∗(v) for any η.

This dynamic programming algorithm requires only subtraction, addition, and multi-

plication, and only needs to be carried out once per distributed site. Hence, even a site

with limited computation power is able to carry out this procedure. Compared with the

linear programming approach in Section 5.4.3, each site has shifted the expensive linear

programming computation to the server.

It still remains to argue that such a q∗(v) computed as above guarantees that r∗(X,D) ≤
r−(X,D), such that our lower bounding framework is still correct. This is formalized in the

following theorem.

142

Theorem 5.1. If q∗(v) is constructed only using upper-right corners from the set of points

∆q(v), then for any unknown tuple X with E(X) ≤ τ , r∗(X,D) ≤ r−(X,D).

Proof of Theorem 5.1: The unknowns in the linear program of Section 5.4.3 are the

pℓs for ℓ = 1, . . . , γ, where γ = |U |. The vℓs in the constraint from equation (5.10) only

take values from U (or equivalently, the x-coordinates of the turning points of q(v)).

Suppose q∗(v) has η points. Then, the LP constructed from q∗(v) has η unknowns. In

the following, we will transform this LP into one also with γ unknowns, with the same

constraints as the LP constructed from q(v), while having a smaller objective function.

Denote the set of x-coordinates of the turning points in q∗(v) as U∗. For any value

v̄ ∈ U − U∗, we have q∗(v̄) ≤ q(v̄). Now, we add the value v̄ to U∗ and a corresponding

unknown to the LP. Note this transformation does not change the staircase curve defined

by q∗(v). We apply such transformations for all values from U − U∗. Now we obtain a

LP that has the same set of unknowns and the same constraints (5.8)(5.9)(5.10) as the LP

generated from q(v). The objective function (5.7) of this transformed LP has smaller or

equal coefficients. Thus, the optimal solution to this transformed LP is no larger than that

of the original LP constructed from q(v).

Finally, we need to argue that this transformed LP is actually the same as the LP

constructed from q∗(v), namely, this transformation is merely conceptual and we do not

need to actually do so. Indeed, since all the new unknowns that are added during the

transformation are not at the turning points of q∗(v), by the same reasoning of Section 5.4.3,

we know that in the optimal solution of this transformed LP, these new unknowns will be

zero anyway. Thus, we do not need to actually include these unknowns in the LP, and it

suffices to solve the simpler LP that is constructed just from q∗(v).

Theorem 5.1 indicates that by using q∗i (v)s, the server is able to find a lower bound for

the local rank of any unseen tuple and check the terminating condition by solving the linear

programming formulation locally. Note that the server still forwards every seen tuple to

all sites to get its exact global rank based on the qi(v)s stored at individual sites. This,

together with Theorem 5.1, guarantees that the final top-k are exact answers. There is the

overhead of communicating q∗i (v)s to H at the beginning of the algorithm. However, it is

a one-time cost. Furthermore, in each subsequent round, the communication of passing τ

from H to all sites and sending lower bound values from all sites back to the server in the

A-LP algorithm is saved. This will compensate the cost of sending q∗i (v)s as evident from

our experiments.

143

5.5.2 Updating the q∗i (v)s at the server

Initially, each site computes the approximate q∗i (v) with a budget η for qi(v) and

sends it to the server H. A nice thing about these approximate q∗i (v)s is that they

can be incrementally updated locally by H after seeing tuples from the Dis so that the

approximation quality keeps improving after each update. In our framework, the budget

η is only important for the initial transmission of q∗i (v). After that, the server has no

constraint to keep only η number of points in q∗i (v). As the algorithm progresses and the

sites send in their tuples, the server can also use these tuples to improve the quality of q∗i (v)

“for free.” Intuitively, when H receives a tuple from some site si, H’s knowledge about qi(v)

for the database Di should be expanded; hence, a better approximation for qi(v) should be

possible.

The general problem is the following. Assume the server H has an initial q∗(v) with a

budget η for a database D that H does not possess. When a tuple X ∈ D is forwarded

to H, we would like to update q∗(v) with X such that the approximation error ε between

q∗(v) and q(v) could be reduced.

Recall that q∗(v) is represented by the set of right-upper corners obtained at the end of

the dynamic programming. Suppose H gets a new tuple X = {(vx1
, px1

), . . . , (vxz , pxz)} for

some z. Below we show how to update q∗(v) for one pair (vℓ, pℓ) ∈ X; the same procedure

is applied to all the pairs one by one.

We call the upper-right corner points in the initial q∗(v) the initial points. Note that the

two boundary points from q(v) are always initial points. An obvious observation is that all

the initial points should not be affected by any update since they are accurate points from

the original q(v). Consider an update (vℓ, pℓ), and the first initial point to its left, denoted

∆L. Another observation is that this update will not affect the curve q∗(v) outside the

interval [∆L.v, vℓ], where ∆L.v is the value of ∆L. This is because the update (vℓ, pℓ) will

only raise the curve on the left side of vℓ, while the initial point ∆L already incorporates

all the information on the right side of ∆L on the original curve q(v).

We are now ready to describe how to update q∗(v) with (vℓ, pℓ). By the definition of

q(v), the part of the curve of q∗(v) to the left of vℓ should be raised by an amount of pℓ,

if such a contribution has not been accounted for. As observed from above, this will raise

q∗(v) from vℓ all the way to the left until we hit ∆L.

An example of this procedure is shown in Figure 5.2(c) with two updates. Suppose the

initial points in q∗(v) are α1, α4 and α5. We first update with (v2, p2). This will raise the

portion (∆L.v = v1, v2) by p2. This corresponds to adding a new upper-right corner point

α2 to q∗(v). Next, we update q∗(v) with (vℓ, pℓ). As reasoned above, this will raise the

144

q(v) = PrY ∈D [Y > v]

v1 v2 v4v3 valuev5

α1
q(−∞)

q(v1)
q(v2)

q(v3)

q(v4)

α2

α3

α4

α5
α′

α′′

q(v5)
0

(a)

q(v) = PrY ∈D [Y > v]

v1 v2 v4v3 valuev5

α1
q(−∞)

q(v1)
q(v2)

q(v3)

q(v4)

α2

α3

α4

q(v5)
0

α5A(0, 0)

δ
1q
∗
(0

,0
)

(b)

α2

α
p2

q(v) = PrY ∈D [Y > v]

v1 v4 value

α1

v2 v5

q(−∞)

α4

α5

vℓ

0

∆L for α at vℓ is α1

pℓ

pℓ

(c)

Figure 5.2. q∗(v): definition, optimal computation and update: (a) approximate q(v), (b)

base case and δj+1
q∗(i,j), (c) update q

∗
λ−1(v).

portion (∆L.v = v1, vℓ) by pℓ. To record such a raise, we need to add a new upper-right

corner α to q∗(v), and then raise all the △ points between ∆L.v and vℓ by pℓ. In this

example, we will raise α2 by pℓ.

5.6 Reducing Latency and Other Issues

5.6.1 Reducing latency

All of our algorithms presented so far process one tuple from some site sj in a single

round. The latency of obtaining the final result could be high if there are many rounds.

However, there is an easy way to reduce latency. Instead of looking up one tuple at a time,

our algorithms could process β tuples before running the lower bounding calculation, for

some parameter β. Such a change could be easily adopted by all algorithms. The overall

latency will be reduced by a factor of β. However, we may miss the optimal termination

point, but by at most β tuples. In Section 5.7, we will further investigate the effects of β

empirically.

145

5.6.2 Continuous distributions

When the input data in the uncertainty model is specified by a continuous distribution

(e.g., Gaussian or Poisson), it is often hard to compute the probability that such a random

variable exceeds another (e.g., there is no closed formula for Gaussian distributions). How-

ever, by discretizing the distributions to an appropriate level of granularity (i.e., represented

by a histogram), we can reduce to an instance of the discrete pdf problem. The error in

this approach is directly related to the granularity of the discretization.

5.6.3 Scoring function and other attributes

Our analysis has assumed that the score is an attribute. In general, the score can be

specified at query time by a user-defined function that could even involve multiple uncertain

attributes. Our algorithms also work under this setting, as long as the scores can be

computed, by treating the output of the scoring function as an uncertain attribute. Finally,

users might be interested in retrieving attributes other than the ranking attribute(s) by the

order of the scoring function. We could modify our algorithms to work with trimmed tuples

that only contain the necessary attribute(s) for the ranking purpose. When the algorithm

has terminated, we retrieve the top-k tuples from distributed sites with user-interested

attributes based on the ids of the top-k truncated tuples at server H.

5.7 Experiments

We implemented all the algorithms proposed in this chapter: A-LR, A-Markov, A-LP,

A-BF (the straightforward solution that sends all Dis to H and process D locally using the

A-ERank), A-ALP (the algorithm using approximate qi(v)s). For A-LP and A-ALP, we

used the GNU linear programming kit library (GLPK) [128] to solve LPs.

5.7.1 Datasets

We used three real datasets and one synthetic dataset. The first real dataset is the movie

dataset from the MystiQ project [129], which contains probabilistic records as a result of

information integration of the movie data from IMDB and Amazon. The movie dataset

contains roughly 56, 000 tuples. Each tuple is uniquely identified by the movie id. We rank

tuples by the ASIN attribute, which varies significantly in different movie records, and may

have up to 10 different choices, each associated with a probability.

The second real dataset is the lab readings of 54 sensors from the Intel Research,

Berkeley lab [80]. This dataset contains four sets of sensor readings corresponding to the

temperature, light intensity, humidity, and voltage of lab spaces over a period of 8 days.

146

These datasets exhibit similar results in all of our experiments, so we only report the results

on the temperature dataset. To reflect the fuzzy measurement in sensor readings, we put

near-by g sensors (e.g., in the same room) into a group where g is a number between 1 and 10.

We treat these g readings as a uniformly distributed discrete pdf of the temperature. The

temperature dataset has around 67, 000 such records. We rank tuples by their temperature

attribute.

The third real dataset is the chlorine data from the EPANET project that monitors and

models the hydraulic and water quality behavior in water distribution piping systems [130].

This dataset records the amounts of chlorine detected at different locations in the piping

system collected over several days. The measurements were inherently fuzzy and usually

several monitoring devices were installed at the same location. Hence, we process this

dataset in a similar way as the temperature dataset. The chlorine dataset has approximately

140, 000 records and each record has up to 10 choices on the value of the chlorine amount.

We rank tuples by their chlorine amount attribute.

Finally, we also generated the synthetic Gaussian dataset where each record’s score

attribute draws its values from a Gaussian distribution. For each record, the standard

deviation σ is randomly selected from [1, 1000] and the mean µ is randomly selected from

[5σ, 100000]. Each record has g choices for its score values where g is randomly selected

from 1 to 10. This dataset can be also seen as a way to discretize continuous pdfs.

5.7.2 Setup

In each experiment, given the number of sitesm, each record from the uncertain database

D is assigned to a site si chosen uniformly at random. Once the Dis are formed, we apply

all algorithms on the same set of Dis.

We measure the total communication cost in terms of bytes, as follows. For each choice

of the score attribute, both the value and the probability are four bytes. The tuple id is also

four bytes. We do not send attributes other than the score attribute and the tuple id. The

expected score value is considered to be four bytes as well. We distinguish communication

costs under either the broadcast or the unicast scenario. In the broadcast case, whenever

the server sends a tuple or an expected score value to all sites, it is counted as one tuple

or one value regardless of the number of sites. In the unicast case, such communication

is counted as m tuples or m values being transmitted. In either case, all site-to-server

communication is unicast.

We truncated all datasets to N = 56, 000 tuples, the size of the movie dataset. The

default number of sites is m = 10 and the default budget η in the A-ALP algorithm is set

147

to be 1% of |qi(v)|. The default value of k is 100.

5.7.3 Results with different k

We first study the performance of all the algorithms for different k values from 10 to 200.

Figure 5.3 shows the communication costs of the algorithms for the four datasets under both

the broadcast and unicast settings; note N = 56, 000, m = 10, and η = 1%× |qi(v)| for this
experiment. Clearly, A-LP and A-ALP save the communication cost by at least one to two

orders of magnitude compared with A-BF in all cases. A-LR does provide communication

savings over the brute-force approach, but as k increases, it quickly approaches A-BF. This

indicates that the simple solution of using the local rank alone to characterize the global

rank of a tuple is not good enough. A-Markov is consistently much worse than the A-LP

and A-ALP algorithms in the access by expected score framework. In some cases, it actually

0 50 100 150 200
10

3

10
4

10
5

10
6

10
7

k Values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

Unicast Broadcast

(a)

0 50 100 150 200
10

3

10
4

10
5

10
6

10
7

k Values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

Unicast Broadcast

(b)

0 50 100 150 200
10

3

10
4

10
5

10
6

10
7

k values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

Unicast Broadcast

(c)

0 50 100 150 200
10

3

10
4

10
5

10
6

10
7

k values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

Unicast Broadcast

(d)

Figure 5.3. Communication cost while varying k: effect on (a) Synthetic Gaussian, (b)
Movie, (c) Temperature, (d) Chlorine.

148

retrieves almost all tuples from all sites. So we omit A-Markov from this and all remaining

experiments. All algorithms have increasing communication costs as k gets larger (except

A-BF of course). The costs of A-LP and A-ALP gradually increase as k gets larger. A

useful consequence of this is that A-LP and A-ALP are able to return the top tuples very

quickly to the user, and then return the remaining tuples progressively. We would like

to emphasize that these results were from relatively small databases (N = 56, 000). In

practice, N could be much larger and the savings from A-LP, A-ALP comparing to A-BF

could be from several to tens of orders of magnitude .

Another interesting observation is that A-ALP achieves similar communication cost as

A-LP, while with very little computation overhead on the distributed sites. Recall that other

than the initial computation of the q∗i (v)’s, the distributed sites have little computation cost

during the subsequent rounds in A-ALP. A reason is that A-ALP does not require the server

to send the expected score value τ to all sites and collect the lower bounds on the local

ranks based on τ . This results in some communication savings that compensate the needs

of communicating q∗i (v)s at the beginning. We also show the number of rounds required in

Figure 5.4; again note N = 56, 000, m = 10, η = 1%× |qi(v)|. Note that for all values of k,

A-LP and A-ALP need only slightly more than k rounds.

Finally, it is not surprising that our algorithms perform better in the broadcast case. In

the rest, we only show the unicast scenario as the other case can only be better.

5.7.4 Results with different N

We next study the effects of N , the total number of records in the database D, using

the chlorine dataset as it is the largest real dataset. Not surprisingly, Figure 5.5 (note

m = 10, η = 1%, k = 100) shows that the communication cost of the A-BF approach

linearly increases with N (note that it is shown in log scale). On the other hand, both the

communication cost and the number of rounds for A-LP and A-ALP increase at a much

slower rate. For example, when k = 100, both algorithms only access less than 300 tuples

(or rounds) even for the largest N = 140, 000. This means that A-LP and A-ALP have

excellent scalability w.r.t the size of the distributed database while others do not. The gap

between A-LP, A-ALP comparing to A-BF quickly increases as N becomes larger.

5.7.5 Results with different m

Our next goal is to investigate the effects of m, the number of sites. Figure 5.6 (note

N = 56, 000, η = 1%, k = 100) shows the experimental results on the movie dataset

where we varied m from 5 to 30 but kept N , the total database size (the union of all

149

0 50 100 150 200
10

1

10
2

10
3

k Values

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(a)

0 50 100 150 200
10

1

10
2

10
3

k Values

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(b)

0 50 100 150 200
10

1

10
2

10
3

10
4

k Values

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(c)

0 50 100 150 200
10

1

10
2

10
3

10
4

k Values

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(d)

Figure 5.4. Number of rounds while varying k: effect on (a) Synthetic Gaussian, (b)
Movie, (c) Temperature, (d) Chlorine.

150

0 5 10 15

10
5

10
6

10
7

N×104

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

(a)

0 5 10 15
10

2

10
3

10
4

N×104

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(b)

Figure 5.5. Varying N on Chlorine dataset: effect on (a) communication and (b) number
of rounds.

5 10 15 20 25 30

10
4

10
5

10
6

10
7

Number of Sites

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

(a)

5 10 15 20 25 30
10

1

10
2

10
3

10
4

Number of Sites

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(b)

Figure 5.6. Varying m on Movie dataset: effect on (a) communication and (b) number of
rounds.

sites) fixed. Since we use unicast, as expected, the communication cost for our algorithms

increase as m gets larger. Nevertheless, even with 30 sites, A-LP and A-ALP are still an

order of magnitude better than the basic A-BF solution (Figure 5.6(a)). We would like to

emphasize that this is the result from the smallest database with only 56, 000 tuples and

N is kept as a constant. In practice, when m increases, N will increase as well and A-LP,

A-ALP will perform much better than A-BF. Finally, the number of sites does not have

an obvious impact on the number of rounds required for A-LP and A-ALP (Figure 5.6(b)),

which primarily depends on N and k.

151

5.7.6 Results with different b

We next study the effects of b, the upper bound on the size of each individual pdf. Recall

that for continuous pdfs, we discretize them into discrete pdfs with up to b choices. The

larger b is, the better we can approximate the original continuous pdfs. For this purpose,

we use the synthetic Gaussian dataset in which we can control b. The results are shown in

Figure 5.7 (note N = 56, 000, m = 10, η = 1%, k = 100). As we can see from Figure 5.7(a),

the communication costs of all algorithms increase roughly linearly with b. The relative gap

among the algorithms basically stay the same. Figure 5.7(b) indicates that the number of

rounds λ is almost not affected by b. This is because the dominant factor that determines

λ is the expected score value. Changing the number of choices in a pdf does not shift its

expected score value too much. Note that with b = 20, a continuous pdf and its discrete

version is already very close in most cases.

5.7.7 Results with different skewness of the pdfs

We also study the effects of the skewness of the pdfs. Recall that by default for the

temperature and chlorine datasets, the probabilities for a pdf are set uniformly at random

to reflect the scenario that the reading is randomly selected in a group of sensors. In

practice, we may have a higher priority to collect the reading from one specified senor in

a group, resulting in a skewed distribution. For this purpose, for a group of sensors, we

always give a probability of ρ to one of them, while dividing the remaining probability

equally among the rest of the sensors. Obviously, the larger ρ is, the higher the skewness.

0 5 10 15 20
10

4

10
5

10
6

10
7

Number of Choices / pdf

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

(a)

0 5 10 15 20
10

1

10
2

10
3

Number of Choices / pdf

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(b)

Figure 5.7. Varying b on Synthetic Gaussian dataset: effect on (a) communication and
(b) number of rounds.

152

Figure 5.8 (note N = 56, 000, m = 10, η = 1%, k = 100) studies how this affects the

algorithms using the chlorine dataset. Obviously, this has no effect on the A-BF algorithm.

Interestingly, Figure 5.8(a) and 5.8(b) indicate that both the communication cost and the

number of rounds required for A-LR, A-LP and A-ALP algorithms actually reduce on more

skewed distributions.

5.7.8 Results with different η

We then study the impact of the budget η of the approximate q∗i (v) for the A-ALP

algorithm. Intuitively, smaller ηs reduce the communication cost of transmitting these

approximate q∗i (v)s, but also reduce their quality of approximation leading to larger number

of rounds. So there is expected to be some sweet spot for the choice of η. It turns out that a

fairly small η already reaches the sweet spot. Figure 5.9 (noteN = 56, 000,m = 10, k = 100)

shows the results on all four datasets. As seen in Figure 5.9(a), the communication cost

drops sharply when η increases from 0% to 1% on all datasets. Note that η = 0% means that

q∗i (v) contains only the two boundary points from qi(v). This indicates that by just adding

a small number of points into q∗i (v), it does a very good job at representing qi(v) and hence

gives a pretty tight lower bound r∗(X,Di) on the estimated local rank of any unseen tuple

X using the upper bound τ for the expected score of X. This is also evident from Figure

5.9(b) where the number of rounds drops significantly when η changes from 0% to 1%.

As η gets larger, the overhead of communicating q∗i (v) starts to offset the communication

savings. These results confirm that our algorithm does an excellent job in finding the

0 0.2 0.4 0.6 0.8 1
10

4

10
5

10
6

10
7

ρ Values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−LR
A−BF

(a)

0 0.2 0.4 0.6 0.8 1

10
2

10
3

10
4

ρ Values

R
ou

nd
s

λ

A−ALP
A−LP
A−LR

(b)

Figure 5.8. Varying ρ (skewness of the pdf) on Chlorine dataset: effect on (a) communi-
cation and (b) number of rounds.

153

0% 1% 3% 5% 7% 10%
10

4

10
5

10
6

η: |q
i
(v)|%

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

Gaussian
Movie
Temperature
Chlorine

(a)

0% 1% 3% 5% 7% 10%
10

2

10
3

η: |q
i
(v)|%

R
ou

nd
s

λ

Gaussian
Movie
Temperature
Chlorine

(b)

Figure 5.9. Effect of η on approximate qi(v)s: effect on (a) communication and (b) number
of rounds.

optimal representation of qi(v)s given a limited budget. In practice, a tiny budget as small

as 1% already seems good enough. A small η also reduces the computation cost for both

the server and the distributed sites. Thus, the algorithm A-ALP is both computation- and

communication-efficient. It requires minimal computational resources from the distributed

sites, since only addition, subtraction, and multiplication operations are needed to compute

the q∗i (v)s. Subsequently, solving LPs is only done at the server.

5.7.9 Results with different β

In all the experiments above, in each round, our algorithms process only one tuple and

then immediately check if it is safe to terminate. This causes a long latency if there are

network delays. However, as argued in Section 5.6, we can easily reduce the latency by

processing β tuples per round before checking the termination condition. This will reduce

the number of rounds by a factor of β while only incurring an additive communication

overhead of at most β tuples. In the last set of experiments, we empirically study the

effects of β. The results are shown in Figure 5.10 (note N = 56, 000, m = 10, k = 100,

η = 1%|qi(v)|). First, as expected, the number of rounds is greatly reduced as β gets

larger. For β = 100, both A-LP and A-ALP just need 2 rounds to complete, i.e., 2 round

trips of communication. On the other hand, in this particular case, since the β value is

still quite small when the number of rounds have been reduced to just 2, the increase in

the total communication cost is almost negligible. This can be explained by the fact that

although having a larger β makes the algorithms send ≤ β more tuples, we also reduce the

communication cost of checking the termination condition repeatedly. This results in a net

154

0 50 100 150 200
10

4

10
5

10
6

10
7

β Values

C
om

m
un

ic
at

io
n

C
os

t (
B

yt
es

)

A−ALP
A−LP
A−BF

(a)

0 50 100 150 200
0

50

100

150

200

250

β Values

R
ou

nd
s

λ

A−ALP
A−LP

(b)

Figure 5.10. Varying β on Chlorine dataset: effect on (a) communication and (b) number
of rounds.

effect of quite flat curves that we see from Figure 5.10, meaning that the algorithms are

both communication-efficient and fast.

In general, there is obviously a trade-off between the number of rounds and the total

communication cost. In the extreme case, when β equals the total size of the distributed

data sets (N) from all sites, this approach degrades to the A-BF approach. For any case

with β > 1, the number of tuples retrieved by the server will be larger than the case with

β = 1, resulting in a communication overhead. However, larger β values also imply that the

server only has to communicate a single tuple to all sites to get the lower bounds back from

every site after seeing β tuples, except in the case of A-ALP where the lower bounds are

computed locally by the server. In the latter case, larger β values reduce the computation

overhead at the server, i.e., the server only needs to do the LPs once for every β tuples.

For other algorithms, for small values of β, the savings of only retrieving the lower bounds

once after seeing every β tuples cancels off the overhead of retrieving more tuples over the

“optimal” terminating point with β = 1, as they cannot miss the “optimal” point by more

than β tuples. We run this experiment with small β values (up to 200) as this already

reduces the total rounds to just 1 or 2 for all datasets. If we keep increasing β, there will be

a cut-off value where the delayed termination (have to look at many more tuples beyond the

“optimal” point) will eventually result in more communication overhead than the savings.

5.7.10 Computation cost of solving the linear programs

Our main focus in this chapter is to save the communication cost. However, in practice,

the computation overhead should not be ignored. Our main algorithms, namely the A-LP

155

and A-ALP, require solving the linear programs (LPs). It is interesting to examine the

associated computation overhead. In our experiments, we found that such overheads are

quite small. All of our experiments were executed on a linux machine with an Intel Xeon

CPU 5130@2GHz and 4GB memory. On this machine, solving the LP in each round takes

only a few seconds at most, and our best algorithm takes only two or tree rounds (the

optimization with a β value that is larger than 1). The GLPK library is extremely efficient.

Note that we cannot assume the distributed sites in real world applications are powerful,

and this is precisely the reason why we wanted to migrate the computation cost to the

server with the A-ALP algorithm.

5.8 Related Work

There has been a large amount of efforts devoted to modeling and processing uncertain

data, so we survey only the works most relevant to ours. TRIO [82,94], MayBMS [109,131],

and MystiQ [81] are promising systems that are currently being developed. Many query

processing and indexing techniques have been studied for uncertain databases and the most

relevant works to this chapter are top-k queries [85–87,90]—their definitions and semantics

have been discussed in detail in Chapter 4 and the expected rank approach was shown

to have important properties that others do not guarantee. Techniques used include the

Monte Carlo approach of sampling possible worlds [85], AI-style branch-and-bound search

of the probability state space [86], dynamic programming approaches [87], and applying tail

(Chernoff) bounds to determine when to prune [90]. There is ongoing work to understand

top-k queries in a variety of contexts. For example, the work of Lian and Chen [105] deals

with ranking objects based on spatial uncertainty, and ranking based on linear functions.

Recently, Soliman et al. [88] have extended their study on top-k queries [86] to Group-By

aggregate queries.

To the best of our knowledge, this is the first work on query processing on distributed

probabilistic data. Distributed top-k queries have been extensively studied in certain data,

including both the initial computation of the top-k [27,28,72,126,132] and the incremental

monitoring/update version [120, 122]. Our work falls into the first category. Some works

consider minimizing the scan depth at each site to be the top priority, i.e., the number of

tuples a site has to access, such as the seminal work by Fagin et al. [72]. Arguably, the more

important metric for distributed systems is to minimize the communication cost [27,28,122],

which is our objective.

To capture more complex correlations among tuples, more advanced rules and processing

156

techniques are needed in the uncertainty data model. Recent works based on graphical

probabilistic models and Bayesian networks have shown promising results in both offline

[107] and streaming data [108]. Converting prior probability into posterior probability

also offers positive results [133]. In these situations, the general approaches are using

Monte-Carlo simulations [85, 97] to obtain acceptable approximations or inference rules

from graphical model and Bayesian networks, e.g., [133, 134].

5.9 Conclusion

In this chapter we study of the emerging challenge of distributed data, extending our

study in Chapter 4 to the distributed and parallel setting using the expected ranks ranking

operator to summarize massive distributed uncertain data. This is the first work that studies

ranking queries for distributed probabilistic data. We show that significant communication

costs can be saved by exploring the interplay between the probabilities and the scores.

We also demonstrate how to alleviate the computation burden at distributed sites, e.g.,

such as sensors in a sensor network or compute nodes in a cluster, so that communication

and computation efficiency are achieved simultaneously. Many ranking semantics are still

possible in the context of probabilistic data, extending our framework to those cases is an

important open work, e.g., the median and quantile ranks discussed in Chapter 4. Finally,

when updates are present at distributed sites, how to incrementally track (or monitor) the

top-k results is also an intriguing open problem.

CHAPTER 6

OTHER WORKS

Though not included as part of this thesis, there are several other works which we have

contributed to, in collaboration with other students, during our PhD study, including: (1)

studying an alternative data summary to the histogram for large data, namely the kernel

density estimate [135]; (2) studying the similarity join operator over both uncertain string

data and spatial data [136,137]; (3) and monitoring distributed probabilistic data [138]. We

will briefly mention these works here.

We studied the challenge of dealing with the massive size of data and summarizing it

in Chapter 2 using the wavelet histogram. We explore another data summary, the kernel

density estimate in [135], where the kernel density estimate may be thought of as a smooth

histogram. The construction of kernel density estimates has been well-studied. However,

existing techniques are expensive on massive datasets and/or only provide heuristic ap-

proximations without theoretical guarantees. We propose randomized and deterministic

algorithms with quality guarantees which are orders of magnitude more efficient than

previous algorithms. We demonstrate how to implement our ideas in a centralized set-

ting and in MapReduce, although our algorithms are applicable to any large-scale parallel

and distributed data processing framework. Extensive experiments on large real datasets

demonstrate the quality, efficiency, and scalability of our techniques.

When studying the similarity join operator, we begin by looking at similarity join

between uncertain strings [136]. Uncertainties arising in strings are a natural phenomena

and occur in many applications including data cleaning, data integration, and scientific

computing. We noticed that despite intense efforts in processing (deterministic) string joins

and managing probabilistic data, modeling and processing probabilistic string joins had

been a largely unexplored territory. Therefore, we studied the string join problem in proba-

bilistic string databases, using the expected edit distance (EED) as the similarity measure.

Extensive experiments on real data demonstrated order-of-magnitude improvements of our

approaches over the baseline.

158

We also study the similarity join operator with respect to spatial data in [137], where

the problem of interest was to efficiently obtain the kNN join between two datasets over a

spatial attribute, which is to produce the k nearest neighbors (NN), from a dataset S, of

every point in a dataset R. Since it involves both the join and the NN search, performing

kNN joins efficiently is a challenging task. As argued in Chapter 1, the scale of data we

are seeing these days is soaring out of control and a popular model nowadays for large-scale

data processing is using a MapReduce cluster. Hence, how to execute kNN joins efficiently

on large data that are stored in a MapReduce cluster is an intriguing problem that meets

many practical needs. In this work, we propose novel (exact and approximate) algorithms

in MapReduce to perform efficient parallel kNN joins on large data. We demonstrate our

ideas using Hadoop. Extensive experiments in large real and synthetic datasets, with tens or

hundreds of millions of records in both R and S and up to 30 dimensions, have demonstrated

the efficiency, effectiveness, and scalability of our methods.

Finally, we also study how to efficiently monitor distributed probabilistic data in [138]. In

this particular distributed setting, a primary concern is monitoring the distributed data and

generating an alarm when a user-specified constraint is violated. A particular useful instance

is the threshold-based constraint, which is commonly known as the distributed threshold

monitoring problem [119,124,139,140]. This work extends this useful and fundamental study

to distributed probabilistic data that emerge in a lot of applications, where uncertainty nat-

urally exists when massive amounts of data are produced at multiple sources in distributed,

networked locations (as mentioned in Chapter 5). When dealing with probabilistic data,

there are two thresholds involved, the score and the probability thresholds. One must

monitor both simultaneously, as such techniques developed for deterministic data are no

longer directly applicable. This work presents a comprehensive study to this problem.

Our algorithms have significantly outperformed the baseline method in terms of both the

communication cost (number of messages and bytes) and the running time, as shown by an

extensive experimental evaluation using several, real large datasets.

CHAPTER 7

CONCLUSIONS

Our PhD study has focused on the end goal of taking massive datasets and making

concise summaries on top of these huge data, as shown in Figure 1.3(a), and then using

these data summaries to accelerate data analytics tasks, as shown in Figure 1.3(b). One

of the most important aspects of our approach is to always look for methods to construct

summaries which can still give quality guarantees on the end results of a user’s query, and

this guarantee should be customizable via user parameter. After constructing such sum-

maries, data analytics tasks can become orders of magnitude more efficient and potentially

drastically reduce heat inside clusters and data centers as well as communication cost in

sensor networks.

Throughout our study, we identified and focused on four challenges emerging from

massive data: (1)size; (2) complex structure and rich semantics; (3) uncertain data; (4)

and distributed data. During our study, we proposed the use of the histogram and ranking

operator to deal with these emerging challenges. An illustration of some of the emerging

challenges from massive data, as well as our proposed data summaries to cope with these

challenges, is summarized in Figure 1.2.

Throughout our research, it has become apparent that there is no one-size-fits-all so-

lution for constructing data summaries. Sometimes it involves smart random sampling

schemes, clever indexing schemes, adapting or modifying existing algorithms from the data

mining and streaming communities, or developing novel algorithms completely from scratch.

In fact, during our PhD study, we have used all of these schemes, and in some cases

have combined schemes, in order to produce the histogram and ranking operator as data

summaries to cope with emerging massive data challenges. These techniques are by no

means all-inclusive and we believe only represent the tip of the iceberg in terms of data

summary construction techniques.

One common misconception is that not all data summaries will be useful for all data

analytics tasks or applications. For instance, oftentimes the histogram and ranking operators

160

we have proposed in our research may potentially eliminate outliers, depending on how

these data summaries are constructed, which may be the most interesting part of the data

depending on the data analytics. Therefore, the data analytics required of an application

or user as well as the quality guarantees will greatly shape the design of any data summary

which may be used to accelerate these tasks. Given this insight, there is certainly a huge

space remaining to be investigated in regards to data summaries and which data analytics

tasks are supported by them.

REFERENCES

[1] B. I. Lowdown, “The 10 largest databases in the world,” Business
Report, 2007, http://www.andymars.com/Papers IT Ed Computers.htm or
www.businessintelligencelowdown.com/2007/02/top 10 largest .html.

[2] L. Dignan, “Techlines panelist profile: Nasa’s nicholas skytland on big data literacy,”
Between the Lines, Report, 2012, http://www.zdnet.com/techlines-panelist-profile-
nasas-nicholas-skytland-on-big-data-literacy-7000003452/.

[3] Bing, “Bing maps publishes equivalent of 100,000
dvds of birds eye imagery,” Business Report, 2013,
http://www.bing.com/blogs/site blogs/b/maps/archive/2013/06/11/largest-
shipment-of-bird-s-eye-100-000-dvds-of-imagery.aspx.

[4] Google, “Facts about google and competition,”
http://www.google.com/competition/howgooglesearchworks.html.

[5] J. Horel, M. Splitt, L. Dunn, J. Pechmann, B. White, C. Ciliberti, S. Lazarus,
J. Slemmer, D. Zaff, and J. Burks, “Mesowest: cooperative mesonets in the western
united states,” Bull. Amer. Meteor. Soc., vol. 83, no. 2, pp. 211–226, 2002.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in SOSP, 2003,
pp. 29–43.

[7] Hadoop Project, http://hadoop.apache.org/.

[8] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou, “Spatial approximate string search,”
IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1394–1409,
2013.

[9] C. Li, B. Wang, and X. Yang, “Vgram: improving performance of approximate queries
on string collections using variable-length grams,” in VLDB, 2007.

[10] H. Shatkay and S. B. Zdonik, “Approximate Queries and Representations for Large
Data Sequences,” in ICDE, 1996, pp. 536–545.

[11] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based histograms for selectivity
estimation,” in SIGMOD, 1998, pp. 448–459.

[12] Y. Matias, J. V. Scott, and M. Wang, “Dynamic maintenance of wavelet-based
histograms,” in VLDB, 2000, pp. 101–110.

[13] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries,” in VLDB, 2001,
pp. 79–88.

162

[14] G. Cormode, M. Garofalakis, and D. Sacharidis, “Fast approximate wavelet tracking
on streams,” in EDBT, 2006, pp. 4–22.

[15] MemeTracker Project, http://memetracker.org/.

[16] COAPS, “The Center for Ocean-Atmospheric Prediction Studies at Florida State
University.” http://www.coaps.fsu.edu/.

[17] J. Jestes, K. Yi, and F. Li, “Building wavelet histograms on large data in MapReduce,”
PVLDB, vol. 5, no. 2, pp. 109–120, 2012.

[18] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved histograms for
selectivity estimation of range predicates,” in SIGMOD, 1996, pp. 294–305.

[19] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”
in OSDI, 2004, pp. 137–150.

[20] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stone-
braker, “A comparison of approaches to large-scale data analysis,” in SIGMOD, 2009,
pp. 165–178.

[21] M. Garofalakis and P. B. Gibbons, “Wavelet synopses with error guarantees,” in
SIGMOD, 2002, pp. 476–487.

[22] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate query
processing using wavelets,” VLDBJ, vol. 10, no. 2-3, pp. 199–223, 2001.

[23] S. Guha and B. Harb, “Wavelet synopsis for data streams: minimizing non-euclidean
error,” in SIGKDD, 2005, pp. 88–97.

[24] C. C. Aggarwal, “On effective classification of strings with wavelets,” in SIGKDD,
2002, pp. 163–172.

[25] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: a wavelet-based
clustering approach for spatial data in very large databases,” VLDBJ, vol. 8, no.
3-4, pp. 289–304, 2000.

[26] R. Fagin, A. Lotem, and M. Noar, “Optimal aggregation algorithms for middleware,”
Journal of Computer and System Sciences, vol. 66, pp. 614–656, 2003.

[27] P. Cao and Z. Wang, “Efficient top-k query calculations in distributed networks,” in
PODC, 2004, pp. 206–215.

[28] S. Michel, P. Triantafillou, and G. Weikum, “KLEE: a framework for distributed top-k
query algorithms,” in VLDB, 2005, pp. 637–648.

[29] B. Patt-Shamir and A. Shafrir, “Approximate distributed top-k queries,” Distributed
Computing, vol. 21, pp. 1–22, 2008.

[30] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of relative
frequencies of events to their probabilities,” Theory of Probability and its Applications,
vol. 16, pp. 264–280, 1971.

[31] R. Srinivasan, Importance sampling - Applications in communications and detection.
Springer-Verlag, 2002.

163

[32] Z. Huang, K. Yi, Y. Liu, and G. Chen, “Optimal sampling algorithms for frequency
estimation in distributed data,” in IEEE INFOCOM, 2011, pp. 1997–2005.

[33] Q. Zhao, M. Ogihara, H. Wang, and J. Xu, “Finding global icebergs over distributed
data sets,” in PODS, 2006, pp. 298–307.

[34] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data streams,” in
VLDB, 2008, pp. 1530–1541.

[35] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the
frequency moments,” in STOC, 1996, pp. 20–29.

[36] M. Arlitt and T. Jin, “Workload characterization of the 1998 world cup web site,”
IEEE Network, Tech. Rep., 1999.

[37] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of MapReduce: An in-depth
study,” PVLDB, vol. 3, no. 1, pp. 472–483, 2010.

[38] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity joins using
MapReduce,” in SIGMOD, 2010, pp. 495–506.

[39] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce environment,” in
EDBT, 2010, pp. 99–110.

[40] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “MAD skills: New
analysis practices for big data,” PVLDB, vol. 2, no. 2, pp. 1481–1492, 2009.

[41] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou,
“SCOPE: easy and efficient parallel processing of massive data sets,” PVLDB, vol. 1,
no. 2, pp. 1265–1276, 2008.

[42] Amazon EC2, http://aws.amazon.com/ec2/.

[43] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz,
“HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for
analytical workloads,” PVLDB, vol. 2, no. 1, pp. 922–933, 2009.

[44] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad,
“Hadoop++: Making a yellow elephant run like a cheetah,” PVLDB, vol. 3, no. 1,
pp. 518–529, 2010.

[45] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,
“MapReduce online,” in NSDI, 2010, pp. 21–21.

[46] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy,
and R. Sears, “Online aggregation and continuous query support in MapReduce,” in
SIGMOD, 2010, pp. 1115–1118.

[47] M. Son and H. Im, “Parallel top-k query processing using MapReduce,” Pohang
University of Science and Technology, Tech. Rep., 2010.

[48] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel,
“Optimal histograms with quality guarantees,” in VLDB, 1998, pp. 275–286.

[49] J. Jestes, J. Phillips, F. Li, and M. Tang, “Ranking large temporal data,” PVLDB,
vol. 5, no. 11, pp. 1412–1423, 2012.

164

[50] I. F. Ilyas, G. Beskales, and M. A. Soliman, “Survey of top-k query processing
techniques in relational database systems,” ACM Computing Surveys, vol. To Appear,
2008.

[51] F. Li, K. Yi, and W. Le, “Top-k queries on temporal data,” VLDB Journal, vol. 19,
no. 5, pp. 715–733, 2010.

[52] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu, “Indexable PLA for efficient
similarity search,” in VLDB, 2007, pp. 435–446.

[53] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. Keogh, and P. S. Yu,
“Global distance-based segmentation of trajectories,” in KDD, 2006, pp. 34–43.

[54] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani, “An online algorithm for segmenting
time series,” in ICDM, 2001, pp. 289–296.

[55] B. Jiang and J. Pei, “Online interval skyline queries on time series,” in ICDE, 2009,
pp. 1036–1047.

[56] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel, “Online amnesic
approximation of streaming time series,” in ICDE, 2004, pp. 338–349.

[57] M. L. Lee, W. Hsu, L. Li, and W. H. Tok, “Consistent top-k queries over time,” in
DASFAA, 2009, pp. 51–65.

[58] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, “Range queries in OLAP data
cubes,” in SIGMOD, 1997, pp. 73–88.

[59] H.-P. Kriegel, M. Pötke, and T. Seidl, “Managing intervals efficiently in object-
relational databases,” in VLDB, 2000, pp. 407–418.

[60] L. Arge and J. S. Vitter, “Optimal external memory interval management,” SICOMP,
vol. 32, no. 6, pp. 1488–1508, 2003.

[61] L. Arge and J. S. Vitter, “Optimal dynamic interval management in external memory,”
in FOCS, 1996, pp. 560–569.

[62] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger, “On computing
temporal aggregates with range predicates,” TODS, vol. 33, no. 2, pp. 1–39, 2008.

[63] J. Yang and J. Widom, “Incremental computation and maintenance of temporal
aggregates,” VLDB Journal, vol. 12, no. 3, pp. 262–283, 2003.

[64] G. S. Brodal and J. Katajainen, “Worst-case efficient external-memory priority
queues,” in SWAT, 1998, pp. 107–118.

[65] J. Jestes, J. M. Phillips, F. Li, and M. Tang, “Ranking large tempo-
ral data,” School of Computing, University of Utah, Technical Report, 2012,
http://www.cs.utah.edu/∼jestes/ranktaggtr.pdf.

[66] J. Shieh and E. Keogh, “iSAX: indexing and mining terabyte sized time series,” in
KDD, 2008, pp. 623–631.

[67] L. Arge, O. Procopiuc, and J. S. Vitter, “Implementing I/O-efficient data structures
using TPIE,” in ESA, 2002, pp. 88–100.

165

[68] L. H. U, N. Mamoulis, K. Berberich, and S. Bedathur, “Durable top-k search in
document archives,” in SIGMOD, 2010, pp. 555–566.

[69] Y. Tao, D. Papadias, and C. Faloutsos, “Approximate temporal aggregation,” in
ICDE, 2004, pp. 190–201.

[70] Y. Tao and X. Xiao, “Efficient temporal counting with bounded error,” VLDB
Journal, vol. 17, no. 5, pp. 1271–1292, 2008.

[71] J. Jestes, G. Cormode, F. Li, and K. Yi, “Semantics of ranking queries for
probabilistic data,” IEEE TKDE, vol. 23, pp. 1903–1917, 2011.

c©2011 IEEE. Reprinted, with permission, from J. Jestes, G. Cormode, F. Li,
and K. Yi, “Semantics of ranking queries for probabilistic data”, IEEE TKDE,
December 2011.

[72] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middleware,”
in PODS, 2001.

[73] C. Li, K. C.-C. Chang, I. Ilyas, and S. Song, “RankSQL: Query algebra and optimiza-
tion for relational top-k queries,” in SIGMOD, 2005.

[74] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. Elmongui, R. Shah, and J. S. Vitter,
“Adaptive rank-aware query optimization in relational databases,” ACM TODS,
vol. 31, no. 4, pp. 1257–1304, 2006.

[75] D. Xin, J. Han, and K. C.-C. Chang, “Progressive and selective merge: Computing
top-k with ad-hoc ranking functions,” in SIGMOD, 2007.

[76] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: the teenage year,” in
VLDB, 2006.

[77] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and efficient fuzzy
match for online data cleaning,” in SIGMOD, 2003.

[78] M. A. Hernandez and S. J. Stolfo, “Real-world data is dirty: Data cleansing and
the merge/purge problem,” Data Mining and Knowledge Discovery, vol. 2, no. 1, pp.
9–37, 1998.

[79] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic queries over
imprecise data,” in SIGMOD, 2003.

[80] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong, “Model-driven
data acquisition in sensor networks,” in VLDB, 2004.

[81] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic databases,” VLDB
Journal, vol. 16, no. 4, pp. 523–544, 2007.

[82] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara, and
J. Widom, “Trio: A system for data, uncertainty, and lineage,” in VLDB, 2006.

[83] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and R. Shah, “The
orion uncertain data management system,” in COMAD, 2008.

[84] L. Antova, C. Koch, and D. Olteanu, “1010
6

worlds and beyond: Efficient representa-
tion and processing of incomplete information,” in ICDE, 2007.

166

[85] C. Re, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation on probalistic
databases,” in ICDE, 2007.

[86] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query processing in uncertain
databases,” in ICDE, 2007.

[87] X. Zhang and J. Chomicki, “On the semantics and evaluation of top-k queries in
probabilistic databases,” in DBRank, 2008.

[88] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Probabilistic top-k and ranking-
aggregate queries,” ACM TODS, vol. 33, no. 3, pp. 13:1–13:54, 2008.

[89] K. Yi, F. Li, D. Srivastava, and G. Kollios, “Efficient processing of top-k queries in
uncertain databases,” AT&T Labs, Inc., Tech. Rep., 2007.

[90] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain data: A
probabilistic threshold approach,” in SIGMOD, 2008.

[91] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom, “ULDBs: databases with
uncertainty and lineage,” in VLDB, 2006.

[92] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar, “Indexing multi-
dimensional uncertain data with arbitrary probability density functions,” in VLDB,
2005.

[93] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking in probabilistic
databases,” PVLDB, vol. 2, no. 1, pp. 502–513, 2009.

[94] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom, “Working models for uncertain
data,” in ICDE, 2006.

[95] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and R. Shah, “Orion
2.0: native support for uncertain data,” in SIGMOD, 2008.

[96] A. Fuxman, E. Fazli, and R. J. Miller, “ConQuer: efficient management of inconsistent
databases,” in SIGMOD, 2005.

[97] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas, “MCDB: a
monte carlo approach to managing uncertain data,” in SIGMOD, 2008.

[98] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data,” in
VLDB, 2007.

[99] Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic data,” in
SIGMOD, 2008.

[100] V. Ljosa and A. Singh, “APLA: Indexing arbitrary probability distributions,” in
ICDE, 2007.

[101] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch, “Indexing uncertain
categorical data,” in ICDE, 2007.

[102] G. Beskales, M. A. Soliman, and I. F. Ilyas, “Efficient search for the top-k probable
nearest neighbors in uncertain databases,” in VLDB, 2008.

167

[103] V. Ljosa and A. K. Singh, “Top-k spatial joins of probabilistic objects,” in ICDE,
2008.

[104] M. Hua, J. Pei, W. Zhang, and X. Lin, “Efficiently answering probabilistic threshold
top-k queries on uncertain data,” in ICDE, 2008.

[105] X. Lian and L. Chen, “Probabilistic ranked queries in uncertain databases,” in EDBT,
2008.

[106] T. Ge, S. Zdonik, and S. Madden, “Top-k queries on uncertain data: on score
distribution and typical answers,” in SIGMOD, 2009.

[107] P. Sen and A. Deshpande, “Representing and querying correlated tuples in proba-
bilistic databases,” in ICDE, 2007.

[108] B. Kanagal and A. Deshpande, “Online filtering, smoothing and probabilistic model-
ing of streaming data,” in ICDE, 2008.

[109] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and simple relational processing
of uncertain data,” in ICDE, 2008.

[110] J. G. Shanthikumar and M. Shaked, Stochastic Orders and Their Applications.
Academic Press, 1994.

[111] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation methods for
the web,” in WWW Conference, 2001.

[112] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in ACM-SIAM
Symposium on Discrete Algorithms, 2003.

[113] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE, 2001.

[114] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle, “Probabilistic
frequent itemset mining in uncertain databases,” in KDD, 2009.

[115] R. Cheng, J. Chen, M. Mokbel, and C.-Y. Chow, “Probabilistic verifiers: Evaluating
constrained nearest-neighbor queries over uncertain data,” in ICDE, 2008.

[116] L. L. Cam, “An approximation theorem for the poisson binomial distribution,” Pacific
Journal of Mathematics, vol. 10, no. 4, pp. 1181–1197, 1960.

[117] W. Hoeffding, “On the distribution of the number of successes in independent trials,”
Annals of Mathematical Statistics, vol. 27, no. 3, pp. 713–721, 1956.

[118] F. Li, K. Yi, and J. Jestes, “Ranking distributed probabilistic data,” in SIGMOD,
2009, pp. 361–374, c©2009 ACM, Inc. http://doi.acm.org/10.1145/1559845.1559885.

[119] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to monitoring
threshold functions over distributed data streams,” in SIGMOD, 2006.

[120] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding (recently)
frequent items in distributed data streams,” in ICDE, 2005.

[121] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi, “Holistic aggregates
in a networked world: distributed tracking of approximate quantiles,” in SIGMOD,
2005.

168

[122] B. Babcock and C. Olston, “Distributed top-k monitoring,” in SIGMOD, 2003.

[123] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica, “Sharing aggregate
computation for distributed queries,” in SIGMOD, 2007.

[124] S. Jeyashanker, S. Kashyap, R. Rastogi, and P. Shukla, “Efficient constraint monitor-
ing using adaptive thresholds,” in ICDE, 2008.

[125] M. Wu, J. Xu, X. Tang, and W.-C. Lee, “Top-k monitoring in wireless sensor
networks,” IEEE TKDE, vol. 19, no. 7, pp. 962–976, 2007.

[126] A. S. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang, “A sampling-based
approach to optimizing top-k queries in sensor networks,” in ICDE, 2006.

[127] S. Chaudhuri, L. Gravano, and A. Marian, “Optimizing top-k selection queries over
multimedia repositories,” IEEE TKDE, vol. 16, no. 8, pp. 992–1009, 2004.

[128] GLPK, “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk/.

[129] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu, “MYSTIQ: a
system for finding more answers by using probabilities,” in SIGMOD, 2005.

[130] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in multiple
time-series.” in VLDB, 2005.

[131] L. Antova, C. Koch, and D. Olteanu, “From complete to incomplete information and
back,” in SIGMOD, 2007.

[132] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M. Vla-
chos, N. Koudas, and D. Srivastava, “The threshold join algorithm for top-k queries
in distributed sensor networks,” in DMSN, 2005.

[133] C. Koch and D. Olteanu, “Conditioning probabilistic databases,” in VLDB, 2008.

[134] P. Sen, A. Deshpande, and L. Getoor, “Exploiting shared correlations in probabilistic
databases,” in VLDB, 2008.

[135] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li, “Quality and efficiency for kernel density
estimates in large data,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD, 2013.

[136] J. Jestes, F. Li, Z. Yan, and K. Yi, “Probabilistic string similarity joins,” in SIGMOD,
2010, pp. 327–338.

[137] C. Zhang, F. Li, and J. Jestes, “Efficient parallel KNN joins for large data in
mapreduce,” in EDBT, 2012, pp. 38–49.

[138] M. Tang, F. Li, J. M. Phillips, and J. Jestes, “Efficient threshold monitoring for
distributed probabilistic data,” in ICDE, 2012, pp. 1120–1131.

[139] R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-efficient dis-
tributed monitoring of thresholded counts,” in SIGMOD, 2006.

[140] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for distributed functional
monitoring,” in Proc. ACM-SIAM Symposium on Discrete Algorithms, 2008.

