On Synthesizing Systolic Arrays
from
Recurrence Equations with Linear Dependencies

UUCS~86~009

Sanjay V. Rajopadhye,
S.Purushothaman,
Richard Fujimoto

Department of Computer Science
University of Utah
Salt Lake City, Ut 84112

Abstract

We present a technique for synthesizing systolic architectures from Recurrence Equations. A
class of such equations (Recurrence Equations with Linear Dependencies) is defined and and
the problem of mapping such equations onto a two dimensional architecture is studied. We
show that such a mapping is provided by means of a linear allocation and timing function. An
important result is that under such a mapping the dependencies remain linear. After
obtaining a two-dimensional architecture by applying such a mapping, a systolic array can be
derived if the communication can be spatially and temporally localized. We show that a simple
test consisting of finding the zeroes of a matrix is sufficient to determine whether this
localization can be achieved by pipelining and give a construction that generates the array
when such a pipelining is possible. The technique is illustrated by automatically deriving a
well known systolic array for factoring a band matrix into lower and upper triangular factors.

This work is supported in part by University of Utah Research Fellowships and in part by an
IBM faculty development grant.

is clear that a URE defines a dependency graph for the computation. It is assumed that the
function g can be implemented on a single processor and can be computed in a single "time
step". g thus defines the granularity of the computation. The design of a systolic array then
consists of scheduling the computation on an appropriate array of processors. This can be
defined by means of a timing function that maps every point in the domain D to a positive
integer, and an allocation function that maps every point in D to a (linear) array of processors.
Quinton gives necessary and sufficient conditions for the existence of such timing and
allocation functions. He also presents a constructive proof for determining the timing function,
under the restriction that the domain is a convex hull.

However, the class of problems expressible as uniform recurrence 'equations is restrictive
and a large number of interesting problems cannot be naturally expressed as UREs. The chief
reason for this is the restriction that all the dependency vectors (q; ’s) must be constants,
irrespective of the particular point in the domain. We therefore propose a more general class of
recurrence equations called Recurrence Equations with Linear Dependence (RELDs). In
RELDs, as the name suggests, the dependencies of a particular point are linear (actually affine)
functions of the point. This paper addresses the problem of synthesizing systolic arrays from
RELDs. As in the case of UREs, our approach is to determine appropriate timing and
allocation functions for the recurrence equation. This defines a mapping of the original RELD
into a processor-time domain, and thus yields a potential architecture for the problem. We
shall ‘prove that the new dependency structure induced by this mapping is also an RELD.
Thus, unlike UREs the architecture that we obtain may have non-local interconnections. We
must therefore explicitly pipeline the data flow in the new architecture. Explanation of this
two-step process constitutes the principal thrust of this paper. The rest of this paper is
organized as follows. In the following section (Sec II) we formally define RELDs and introduce
some of the notation we shall be using later. We then discuss {in Sec III) the notion of first
reorganizing the dependency graph by syntactic restructuring and then introducing pipelining
to obtain local communication. This two-step technique is illustrated in the following section
(Sec IV) by synthesizing the systolic array for a well known example -- LU-decomposition (i.e.
factorizing a band matrix into lower and upper diagonal matrices). .

II Recurrence Equations with Linear Dependence

Definition: A Recurrence Equation with Linear Dependence (RELD) is defined as an equation
of the form

Stp) =g (flap + by), f(Aa,p + by) ... flap + b))

where
p € D;
A;'s are constant n by n matrices:
b,’s are constant n-dimensional vectors;
and
g is a single valued function which is strictly dependent on each of it's

arguments.

As we have mentioned above many important problems cannot be easily described as UREs,
asnd a great deal of effort has to be spent in "massaging” an initial problem specification into a
URE. However, the class of problems defined by UREs is an important class because every
physical systolic array can be expressed as a URE. To understand intuitively why this is so,
consider a two dimensional systolic array. It has nearest neighbor interconnections and the
links have a constant delay associated (both independently of location in the array). Thus if we
imagine "snapshots" taken at every time instant as the computation progresses, we get a three-
dimensional dependency structure in a space-time [x, y, t] domain. Any point, p in this
domain represents a computation that needs values from other points that are a uniform
distance away independent of the p. '

Note that if in an RELD the A's are identity matrices this becomes a URE. Thus UREs are
merely a subset of RELDs. Thus one way of viewing (a part of) the results presented here is a
formalization of the ad hoc "massaging” of the initial specification that other researchers
do [4, 7, 8, 10]. As an example of RELDs, consider the dynamic programming problem as
applied to optimum parenthesization of a string. This problem was discussed by Kung et. al

[9] who have described a systolic architecture for it. The problem involves the computation of
a cost function specified as follows.

. . = min : + . +
clr] i(k(j (cllk ckl]) th

As expressed above, this specification is clearly not even a recurrence equation (let alone a
URE or a RELD) since the number of values Cry that a particular Cy depends upon is not
constant but equal to j-i-1 ! However, by introducing an additional parameter, and expressing
the computation as an iteration as follows, we can obtain an RELD that performns the same
computation.

Example III.1
c(i,3) = f(i, 3, 1)
where
f wy 5 t min (ﬁi:iitji; +f(i+k,j,1)) if k =1
Tt 3w = { = if k 2 j-i
 min (f&:i;;:ti; + f(i+k,j,1)) otherwise

Here, the value of f at (i,j.k) depends on its value at three other points, namely (i,j,k+1),
(i,i+k,1) and (i+k,j.1). Thus the dependencies are given by

l:l' 0' O} - [O} [1’ 0' O] . [0} [1, 0’ 1} _ [O]
A,=l0.1.0| b,=|0} =|1.0,1| b,=|0f =|0.1.0| b,=|0
Yool 'l A2=1000) P27(0 As 0.0.0/ - > 1

A. Notation

An RELD as defined above is viewed as defining a dependency graph. The nodes in the
graph are the points in D and the arcs are given by the A; and 'bi's. We shall now introduce
some terminology for such graphs. A pathz = (p;. p, ...) is a sequence of nodes such that for
each i, p,,, = A1 p, + bj for some j. If the sequence = is finite, having t+1 nodes then we say that
the path has length t and denote it by Ifr) = t. If & is infinite, we say that lfr) = «. A path whose
length is finite is called a cycle if the first and last nodes in it are identical. If all the nodes in a
cycle n are distinct then = is a called a simple cycle. '

Our objective in the synthesis problem is to "reorganize" this graph into an alternate
configuration that preserves the output functionality of the RELD, and which corresponds to a
systolic array (i.e. one which is at most two dimensional and has nearest-neighbor
interconnections). To do this we must examine in precedence relations between the evaluation
of f at various points p € D. We say that point p depends directly on point q, denoted by p Lq
ifand onlyif pe Dand q = A p +'b1forsomel. Thus p - q if and only if flg) is one of the
arguments in flp). Now, t-step dependence is defined inductively as follows: q 3 q V q; and
p b q if there exists r such that p 1 r and r -b q. Also, we say that p — q if p & q for some
positive integer t.

III Outline of the synthesis technique

We now introduce the notion of timing and allocation functions for the RELD. A timing
Junction t is a mapping of all points p in D to the positive integers such that if p — q then
tp) > tq). This means that no computation can be performed until its arguments have been
computed. t(p) may naturally be interpreted as the time at which fip) is computed, with the
assumption that the evaluation of the function g requires unit time. It thus serves as a
schedule for the computations defined by the RELD. An allocation function a is a mapping of
all points p in D to the domain I x I of a two dimensional mesh (note that a linear array is
merely a special case of this, and a hexagonal array can be represented as a two dimensional
mesh with diagonal interconnections).

Synthesizing a systolic array from an RELD can be viewed as a two-step process. Once we
have a timing and an allocation function, we have obtained a planar architecture. However,
the communication in such an architecture is in general, neither spatially nor temporally local.
Thus the next step is to localize the communication by pipelining the data flow. These two
issues are addressed in the next two subsections.

A. Step I: Timing and Allocation Functions

As defined above, the timing function {p) is interpreted as the time instant at which fip) is
computed. The following statement is thus obvious from the inductive definition of the
dependency relation "—".

t{p) will be a timing function for a RELD iff
) vpeD dp)>0
and () VpeD t(p)>t{AJp+'bJ) forj:1.2...mthatsatisfijp+'bje D

Note that we consider the boundary points as belonging to the domain, so the second
condition is correctly restricted only to those points that explicitly depend on other points in
the domain. We also have the following more restrictive case where we only have a sufficient
condition.

t{p) will be a timing function for a RELD if

() VpeD tp>0
and @) VpeD dp)>dAjp+bj) forj=1,2..m

In the following, we shall restrict our attention to what are called affine timing functions

(hereafter referred to as ATFs). Such a function is a scalar function of the form!
tp) = ATp + o

and is specified by a pair [A, oq]. Here A, is a constant vector and o, is a scalar constant.
Intuitively the reason for restricting our attention to linear timing functions is as follows. We
are interested in synthesizing systolic arrays not for a single instance of the problem specified
by the RELD, but for a class of problems, which are defined by a single set of dependency
matrices and a family of parameterized domains. Typically the parameter, n represents the
size of the problem input. We would likke the architectures that we derive to be "linearly
extensible” i.e. be able to solve problems of larger size merely by adding more processors. This
implies that the same timing and allocation functions should be applicable to the entire family.
This extensibility is difficult to achieve if the timing function is non-linear.

Allocation functions are mappings of the problem domain D to a new (processor) domain D,,.
Intuitively, an allocation function a(p) defines the processor on which the computation denoted
by point p is performed. The processor domain D, is restricted to be two-dimensional since we
are dealing with systolic arrays and each processor is connected to a nearest neighbor
according to a particular interconnection scheme. The interconnection is one of two possible
scheme -- to four immediate neighbors, corresponding to mesh arrays (and linear for the one-
dimensional case); and to six neighbors, corresponding to hexagonal arrays. An important
constraint that the allocation function must satisfy is conflict freedom as defined below.

Definition: The timing function t and the allocation function a of an RELD are said to be free
of conflict if

tp=tg ralp)=alg=p=q

The reason for this constraint is that we cannot perform two different computations

1Henceforth, a subscript T indicates the transpose of a matrix or a vector

(represented by the two points p and q in the original domain) on the same processor at the
same time instant. As in the case of timing functions we shall concentrate on affine allocation
functions. Thus the allocation function is defined as

alp) = Ix, y1 = AT, p + o, AT p + o]
and it thus corresponds to a geometric projection of the original domain.

We can view the timing and allocation functions as performing a transformation S of the
original problem specification from an n-dimensional domain to a three-dimensional one. Also,
by specifying that one of the axes is the "time axis" we have obtained a clear separation of two
important facets of an architecture, namely space and time. Henceforth, we shall refer to this
space as the [x,y.t] space. Since alp) and t(p) are confilict-free, it directly follows that this
transformation is injective, since two distinct points in the original domain cannot be mapped
to the same point in the [x,y,t] domain. We shall now prove a theorem that shows how affine
timing and allocation functions permit us to cleanly separate the space and time components
of the computation, while still retaining a linear dependency structure.

Theorem IT1.1:

For any RELD defined by [A,, bJ}J= 1..m the dependency structure induced by the timing function,
D & and the allocation function [\, o.J, A, o] is also an RELD if & = AT, AT, ATJT has
an inverse, A1,

Proof:

The transformation S defined by the timing and allocation function can be viewed as

a geometric manipulation (i.e. a translation and a scaling) of the original dependency
structure defined by

% AT,] o]
vyl = 8S(p) = Ap + ;i where A = IkTy| and o = Iayl
t Iz, | la,]

Since A has an inverse, Al the computation of f at any point p in the original
domain can be expressed as a computation of ancther function f at [xy.t]' as
follows
f[xl y, t] =f(P) =f(s_1[xl y, t1)
= g(f(a,Slix, y, t1 + b)), St a,8x, y, t] + b)),
... J(aStx, y, t] + by)
)
=g A aStx, y, t] + by +a),
FACAStx, vy, t] +by) +), -
e LRSI, vy, t] + b)) + @)
)

Butsincep = S7'[x, y, t] = A%, y, t]T - a}, we have
MaS 1 x, y, t] + by + o= AAA X, y, t]T - a) + b)) +a

X
= kAjk‘l [yil - X(Ajk‘la + Bj) +a
t

Since AaA"! is a constant 3x3 matrix and A (A, Ala + b) + o is a constant 3-
vector thfs represents an RELD in the [x,y.t] space i

Since the proof of this theorem is constructive, in we can use the above result to determine
the dependencies in the new RELD. We also have the following corollary.

Corollary III.2: For any URE, the transforrmation induced by affine timing and allocation
Junctions, leaves the dependency structure uniform {f the transformation matrix A has an
inverse.

Proof: Since a URE is an RELD with the dependency matrix A, being the identity

matrix I, the transformation yields a new RELD where e corresponding
dependency is

XAjk‘l =AIAT=1

B. Part II: Pipelining onto a systolic implementation

We see that by using appropriate timing and allocation functions, we have reduced the
original problem to a three dimensional RELD defined by [A’j, b‘j]j=1__m. This RELD corresponds
directly to a two dimensional processor aray. However, this naive architecture is not
necessarily systolic, since the communication is not local (in fact, it may not even be at a
constant distance away). We therefore proceed to the second step of the synthesis procedure,
namely pipelining in this array structure. Any dependency in the [x,y,t] domain indicates that
at time instant t, the processor [x,y] will need the value that the processor [x',y’] computed at
time instant t', where [xy.t]T is A x.y.t)T + b}. The following theorem enables us to
restructure the dependencies in the RELD.

Theorem II1.3: Pipelining Theorem:
Aparticulardependency[AJ. bj]ofanRELDinthelx,y,t]domamcanbemadeunifonng'the
dependency matrix A; has a nontrivial zero E’
Proof: Consider an RELD defined on the same [x,y,t] domain as follows.
Sy = Ui, fotp)]
where fi(p) =g (f;(Aa;p + b)), fi(A,p + b))
folp + P) «.. fi(AP + b))
and f(p) = folp + P)
If this RELD is restricted to have the same boundaries as the original one, then it

also has the same dependency structure except that the jth dependency is now

uniform. For it to be computationally equivalent to the original one, the following
must hold.

J2p + P) = f1(A;p + by (1)

But, the computation of fat point [p + ff] yields the following.

fite+ P) =g (fj(a (e + P) + Dby, f(Aa,(p + P) + by
Lo +2P) ... f1(A(P P) + b))
and
f2te + P = fatp + 2)

And thus for equivalency with the original RELD

L2l + P = fotp +2p)

= fitayp + P) + by) (2)
Since this must be true, regardless of the functions f, f; and f, we have, from Eqns
(1) and (2)
...)
Aj(p + p) + bj =Ajp +bj
l1.e.
B, 0= 0
Thus for the new Uniform RE to be computationally equivalent to the original one
F has to be a zero of the dependency matrix. 1

We also have the following corollary, whose proof follows directly from the previous theorem.

Corollary II1.4: If all the dependency matrices A have zeroes of the form [a, b, -k]T where k is a
positive integer and [a,b]T is one of [0, O] [£ 1, 0], [0, + 1] or [+ 1, + 1], the result of making the
depedencies uniform yields a systolic array.

Proof: The proof is obvious, since it is the vector 6’ that determines the point in

the [x, y. t] space that any point depends on. If E’ has the form described above,
then we see that the communication is local, both temporally and spatially, which is
exactly what is required for a systolic implementation. 1

The synthesis procedure thus consists of the following steps.
1. Determine an RELD for the problem.

2. Find appropriate allocation and timing functions

3. Compute the new RELD in the processor-time domain induced by the timing and
allocation functions.

4. Test to see if dependencies are pipelineable

5.1f so derive the systolic implementation, otherwise try alternate timing and
allocation functions and return to step (3)

AT T S S N

IV Application of the Technique to LU Decomposition
The results of the previous section give us a constructive technique to synthesize systolic
arrays. Once appropriate timing and allocation functions have been determined, the test for
pipelineability yields the zero, § = [a. b, -k] of the dependency matrix A;. This zero, f it exists,
automatically determines the architecture, i.e. the processor functionality and the

interconnection structure. Any processor in the architecture now performs a set of functions.
In addition to "normally" computing the g function on its input values, it also performs a
pipelining operation by forwarding one of its inputs to its [-a, -b] neighbor over a link that has
a delay of k time units ! We shall illustrate the technique by means of an example. Consider
the LU decomposition of a band matrix as defined in Figure IV-1.

ran' Ride 873 - aln-l b2, O o 0'| r“n' BMyorfillyg v ede uln-]

Ay A8y A3 .- a2n| T 0 0, u,y, Upz ... Uy,

a3y, @3y, @33 .- a3n| ool Aoy 1, et 0l |0, 0, w33 ... ug, |
= *

B3 RS fBAA sege B Ll1r L2 1oz --- 1 070 0h Ohe oo

Figure IV-1: LU Decomposition of a matrix

As described by Kung and Leiserson [13] the natural recurrence that describes this
computation is the following!.

LT Oy e ajy

af(i, j, k) = a(i, 3, k-1) = 1ikukj
where
0 1f 4y
lij =191 if i=j
a(i, Jj, 3-1)/uyy 1€ 455
and
{o if 433
L AR g a1
a(a, g9, 1=1) 1 £49L5

We now illustrate the different steps involved in synthesizing a systolic array for this
problem.

A. Formulating an RELD for the problem

The domain of the above recurrences is the pyramid bounded by the points (1,1,0), (1,n,0),
(n,1,0), (n,n,0) and (n,n,n). Its bounding planes arek =0;i=n;j=n;j=kand i=k. This
expression is not an RELD because of the presence of the subscripted 1, , and uy terms. To
express this as an RELD we can use one of two alternatives. First, by straightforward algebraic
manipulation we can completely eliminate the 11.1 and the u terms from the three equations
above. This yields the following RELD.

a3 e Oym= a;,

a(i, j, k) = a(i, j, k-1) - a(i, k, k-1) - a(k, 3, k-1)/a(k, k, k-1)

Alternatively, we may view the function fcomputed at each point p = (i,j,k) in the domain as
a tuple of two elements. The first of these is the value of a(i,j,k) and the second element is

lWe have slightly altered the third subscript to have the initial values available at k=0 rather than k=1

10

1,j,k), with 1 being meaningful only at the j = k+1 boundary2. The RELD for this computation
then becomes

f(il jr k) = [a(il jl k), l(il jl k)]
where

a(i, j, 0) = ajy

a(i, j, k) = a(i, 3, k-1) - 1(i, k, k-1)a(k, j, k-1)
and

1(i, j, k) = if j = k+1 then a(i, j, k)/a(3, 3, 3-1)

LY

(LT

1' 0I 0 o 0 1, 0' 0 & O
Mo d0eada 0L By = ' BEE A7 =170, "0, 10 b =1 ¥F
o, 0, 1 L 0, 0, 1 0

8, Dbl . 0
and A" = 0; 1:=0 by = 0
0 ’ 0 r 1 ”n
Figure IV-2: Dependency Structure and Domain of the LU-Decomposition Recurrences

2Strictly speaking, flp) should be a triple [a(p), l(p), u(p)], but the third element, u(ij,k) is exactly equal to the
corresponding a(i,j,k) and we may therefore ignore it

11

We see that the second alternative is preferable since it does not involve any redundant
computation of the 1(i,j,k) values. However, it contains what appears to be a cyclic dependency,
since the value of (a part of) fli, j. k) (the 1(i, j, k) part) depends on fli, j, k) (actually, only its
a(i, j, k) part). Hence, as expressed above this RELD cannot have a timing function. However,
we can easily modify it by extending the domain to also include the j = k plane, and letting
Ali, j, k) on this plane being 14, j, K). This yields the following RELD

[y if k =0
a4 Xy = ’lf(i,j,k-l)/f(k,j,k-l) if k = 3
Ji, 3,x-1) = fti, k, k) *f(k, 3, k=1) otherwise

This is the RELD that we shall use as the starting point of the mapping procedure. It must
be emphasized that this choice of the inital RELD is not a limitation of the technique. In fact,
by applying the mapping procedure to the first RELD we obtain an architecture which is very
similar to the Kung-Leiserson array except that each processor performs a division (as
expected) and depends on four input values. Figure IV-2 presents a pictorial view of the
domain and the individual dependencies, and also the A matrices and the bj vectors.

B. Determining the allocation and timing functions

In order to synthesize a systolic array from this RELD we must first determine timing and
allocation functions for it. Let AT, | o] = [a, b, c | d] be an affine timing function. Then it
must satisfy the following constraints because of the dependencies of the RELD.

ai + by + ck >\ai + bj + c(k=1) i.e. ¢ >N}
ai + bj *+ ck > ai + bk + c(k-1) i.e. blj=k)Ng ¢ > 0
ai + bj +¢k > aki + bj + c(k-1) i.e. a(i-k) +'® 0

Since our domain is a convex hull we can actually determine the space of all possible affine
timing functions by substituting the vertices of the domain in the above equations. These set
of inequalities define another convex hull (actually a cone) that constitutes the space of affine
timing functions. Let us choose a timing function as follows.

t(i,j, k) = i+j+k

We can easily verify that fi,j,k) as defined above is indeed a valid timing function. Also,
since we require that the allocation function afi,j,k) that we choose must not be in conflict with
the timing function, we can view afij,k) as a projection of the original domain, that is
non-parallel to the timing function. We therefore choose the following allocation function.

a(i,j, k) = [i-k, j-k] ‘

It is easy to see that this choice of allocation and timing functions are free of conflict as
follows. Let [i,j,k] and [p,q,r] be two points that map onto the same point in the [x,y,t] domain.
Then

i+j+k=p+q+r
i-k =p-r
and j-k =qQ-T

12

Hence i+j-2k=p+q-2r
Subtracting this from the first eqn yields 3k =3r=k=r
Substituting this in the second and third eqns yields i = p and j = q. Thus the two points are
identical. We thus have

1, 0,-1 L |1 2,-1

A =10, 1,-1|, and hence Al =3l1,-1, 2| also, o =8

1, 1, 1 1,-1,-1

C. Pipelining in the processor-time domain

We can then use Theorem LA to determine the new dependencies in the processor-time
domain as follows.

1, 0, 0 - - _ 1
A’ =AMl =0, 1, 0| and since @ =0, by’ =Ab; =| 1
0, 0, 1 -1

Similarly

i, 0, 0 _ 0 0, 0, O _ 1
A, = ¢, 0, 0}, b, = 0 and Ayf = 0, 1, 0, by' = ii;
0,-1, 1 0 -1, 0, 1 -1

We see that although the first dependency has remained uniform under this transformation,
neither Ay’ nor A;’ has been reduced to the identity matrix. However, since both 1A,’l and
|A;’l are zero we can apply Theorem III.B in order to pipeline in this new structure. this
requires us to solve

Az'?c =0 (and correspondingly As'?c =0)
and yields [-k, O, -k|T (and respectively [0, -k, -kIT) as a solution. Choosinng k to be 1, both the
second and third dependencies can be pipelined, and any processor [x, y] can obtain the
required values from processors [x-1, y] and [x, y-1] over links of unit delays. Using this
pipelining structure yields the architecture shown in Fig IV-3 below, which is identical to the
one described by Kung and Leiserson.

V Conclusions

We have presented a technique for designing systolijc arrays from an initial specfication
which is in the form of a Recurrence Equation with Linear Dependencies. The approach that
we have taken here may be viewed as an extension of Quinton’s approach where only
Recurrence Equations with Uniform Dependencies (UREs) are considered. In our approach the
class o problems discussed is a superset of UREs. It is essential to include UREs in our class,
because the final target that we are interested in is, in fact a URE (since systolic arrays have
local and regular interconnections - this regularity implies UREs). An alternative perspective of
our approach is obtained by envisioning the above steps as transforming an RELD into a URE.

Recently (in[3, 4]) Chen has presented an inductive technique to derive systolic
architectures from what are defined as First Order Recursion Equations (FOREQs). We can
show that these are merely a subset of Uniform Recurrence Equations with addional
constraints specifying that the dependencies must be local in addition to being constant.” Thus
the class of problems that can be designed is restrictive, and most of the effort is spent in

13

a, a2 33 Ay
\ \ N . . Y .
N N . L] . .
N
aga, a;, aza 224 dzs
N\ A
N
a3, Qa2 Aaz3 a3z a5y QA3

asy a53 854 855 as5¢

a¢s Agq Agy

Figure IV-3: Derived Architecture for LU Decomposition

"massaging” the original problem specification into a FOREQ. Chen (in [4]) has presented a
new architecture for LU-Decomposition, which is one and a half times faster than the one
designed by Kung and Leiserson. It is our conjecture that merely by an appropriate choice of
timing and allocation functions we should be able to derive this architecture as well.

As an extension to this work, there are three major areas of further research. One important
problem that needs to be addressed is alternate pipelining strategies, such as those involving
control signals to alter the speed of data flow (while keeping it constant at any given instant).
An example of such an architecture is the dynamic programming array presented by Guibas et
al(in [9]). Another area for further research is the use of the desired pipelining structure to
guide the choice of allocation and timing functions. Finally, a detailed investigation of the
nature of timing and allocation functions is in progress. Preliminary results indicate that for
the case when the domain of the RELD is a convex hull, we are able to constructively derive the
space of all possible timing functions as a cone in (n+1) dimensional space. Also, other

14

techniques such as results from conventional processor scheduling may be applicable in
setting bounds on such timing functions.

References

1. Brent, R P. and Kung, H. T. Systolic VLSI Arrays for Linear-Time GCD Computation. VLSI
83, Aug, 1983, pp. 145:154.

2. Cappello, Peter R and Steiglitz, Kenneth. Unifying VLSI Array Designs with Geometric
Transformations. Proc. IEEE Parallel Processing Conference, Aug, 1983.

3. Chen, Marina. A Parallel Language and its Compilation to Multiprocessor Machines or
VLSI. Principles of Programming Languages, ACM, 1986. To appear.

4. Chen, Marina. Synthesizing systolic designs. YALEU/Dept. Of Computer Science/RR-374,
Yale University, March, 1985.

8. Chen, Marina C. Space-Time Algorithms: Semantics and Methodology. Ph.D. Th., California
Institute of Technology, Pasadena, CA, May 1983.

6. Uri Weiser and Alan L. Davis. Mathematical Representation for VLSI Arrays.
UUCS-80-111, Department of Computer Science, University of Utah, Sept 1980.

7. Delosme, Jean-Marc and Ipsen Iise C. F. An {llustration of a methodology for the
construction of efficient systolic architectures in VLSI. International Symposium on VLSI
Technology, Systems and Applications, Taipei, Tatiwaan, 1985, pp. 268-273.

8. Delosme, Jean-Marc and Ipsen, llse C. F. Efficient Systolic Arrays for the solution of
Toeplitz Systems: An illustration of a methodology for construction of systolic architectures in
VLSI. YALEU/Dept. Of Computer Science/RR-370, Yale University, Department of Computer
Science, June, 1985.

9. Guibas, L., Kung, H. T. and Thompson, C. D. Direct VLSI Implementation of Combinatorial
Algorithms. Proc. Conference on Very Large Scale Integration: Architecture, Design and
Fabrication, Jan, 1979, pp. 509:525.

10. Ramakrishnan, I. V., Fussell, D. S. and Silberschatz, A. "Mapping Homogeneous Graphs
on Linear Arrays". IEEE Transactions on Computers , (?? 1985), ??-??.

11. S. Lennart Johnsson and Danny Cohen. A Mathematical Approach to Computational
Networks For the Discrete Fourier Transform.

12. R.M. Karp, R.E. Miller, S. Winograd. "The Organization of Computations for Uniform
Recurrence Equations”. JACM 14, 3 (July 1967), 563:590.

13. Kung, H. T. and Leiserson, C. E. Algorithms for VLSI Processor Arrays. In Mead, C. and
Conway, L., Ed., Introduction to VLSI Systems, Addison-Wesley, Reading, Ma, 1980, Chap. 8.3,
PpP- 271-292.

14. H. T. Kung. Let’s design algorithms for VLSI. Proc. Caltech Conference on VLSI, Jan,
1979.

15. Kung, H. T. "Why Systolic Architectures”. Computer 15, 1 (January 1982), 37:46.

18. C.E. Leiserson and J.B. Saxe. Optimizing Synchronous Systems. 227 Annual ACM
Symposium on Foundations of Computer Science, ACM, Oct, 1981, pp. 23:36.

17. Melhem, Rami G. and Rheinboldt, Werner C. "A Mathematical Model for the Verification of
Systolic Networks". SIAM Journal of Computing 13, 3 {August 1984), 541-565.

18. Quinton, Patrice. The Systematic Design of Systolic Arrays. 216, Institut National de
Recherche en Informatique et en Automatique [INRIA], July 1983.

15

19. Rajopadhye, Sanjay V. A formal basis for synthesizing systolic arrays: PhD Thesis 7
proposal. UUCS-84-010, Universityof Utah, Computer Science Department, November, 1984.

