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A b str a c t:

This paper discusses automatic Transmission Electron Microscopy (TEM ) image registration, 
TEM slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration. 
Several algo- rithms are presented, including an algorithm for mosaic layout of an unordered set of 
tiles, an algorithm for distortion correction, and an image processing algorithm for a coarse edge 
and blob detection.
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A b stra ct
This paper discusses automatic Transmission Electron Microscopy (TEM) image registration, TEM 

slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration. Several algo
rithms are presented, including an algorithm for mosaic layout of an unordered set of tiles, an algorithm 
for distortion correction, and an image processing algorithm for a coarse edge and blob detection.

1 M otivation
Transmission Electron Microscopy (TEM) brings several challenges to  autom atic image registration.

An electron microscope rarely has a large enough field of view to  cover the region of interest with rea
sonable detail. Therefore, the region of interest has to  be imaged as a sequence of tiles, following some 
overlapping tile pattern. The imaging process introduces distortion into each tile. Unfortunately, the distor
tion is typically not the same from tile to  tile, therefore each tile has to  be unwarped individually.

A bigger issue with the slice to  slice registration arises from the fact th a t each slice actually represents a 
different cross section of tissue, therefore adjacent slices are not expected to  match exactly. Additionally, each 
slice may undergo a different distortion during cutting, and some slices may be destroyed during cutting. 
To make m atters worse, tile distortion correction during the slice mosaic refinement introduces artificial 
warping into each slice. Slices are arbitrarily oriented when they are put under the electron microscope, 
which means th a t slice to  slice registration has to  find the correct orientation, translation and distortion 
correction parameters between arbitrarily oriented warped images of different tissue slices.

Also, as the tissue slices have to  be stained with a contrast agent, the images often have different contrast 
from slice to  slice, and in some cases the contrast may be so poor th a t a traditional contrast enhancement 
algorithm CLAHE would introduce artifacts into the image making the slice to  slice registration impossible. 

Dealing with any of the above issues manually is a daunting task.

2 Problem statem ent
Given a large number of tiles specified in no particular order, a slice mosaic must be constructed and 
individual tiles must be corrected for distortion. This is the global problem th a t can be split up into slightly 
more manageable sub-problems:

• Find pairs of matching tiles.

Slice to  slice registration presents a slightly different set of sub-problems:

Once all the slice to  slice pairs are registered, they must be stacked into a volume by cascading the slice to 
slice transforms.
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3 D escription of the  m athem atics and  algorithm s

3.1 M atch ing  pa irs  of tiles
Finding matching tiles amounts to finding tiles with highest cross-correlation. The method for finding 
matching tiles implemented in this application is based on a Phase Correlation technique described by Girod 
and Kuofl]. The technique is very straight forward, but it has an im portant prerequisite - it requires that 
the width and height of the two tiles must match. If that is not the case, one or both of the tiles must be 
padded on the bottom  and on the right side with zeros until both of the tiles have matching dimensions 
as follows: given unpadded tiles U0 and Ui5 padded tiles S1 me generated such th a t width  (S0) =
width  (Si) =  max (width (U0) , width (Ui )) mid height (S0) = height (S i ) =  max (height (U0) , height (Ui )).

Having satisfied the prerequisite by padding the tiles, the tiles are transformed into the frequency domain 
by Discrete Fourier Transform F0 = F  |S o^ d  Fi = F  {Si }. The Discrete Fourier Transform functionality 
is provided by the FFTW[4] library. Once the tiles have been transformed, the cross power spectrum between 
S1 S 0

$ 1 0  =  F i x F 0*

where FQ is the complex conjugate of F0. The the cross power spectrum is normalized as follow

V $ i 0  x  $ 1 0  +  e

where e is a small number greater than zero added to  avoid division by zero. The Girod and Kuo paper 
addresses a slightly different problem than the one targeted by our application. The technique described in 
the paper is intended for tracking a moving object. One of the difficulties of the tracking problem is that the 
background behind the object changes. The mosaicking problem typically does not suffer from this obstacle. 
During early experimentation we attem pted to use the non-normalized cross power spectrum directly as 
P  = $ 10. This was found to  be unacceptable because the peaks in the cross correlation image are poorly 
defined. The comparison of the phase correlation and cross correlation can be seen in figure 1.

Figure 1: phase correlation vs. cross correlation

phase correlation cross correlation
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The phase correlation is the inverse Fourier transform of the normalized cross power spectrum.

P D F  (x, y)  = & (F -1 { P })

The phase correlation corresponds to  the probability density function (PDF)  th a t tile S 1 matches with tile

P D F
P D F  P D F

magnitude. This may happen for mismatched images as well as for matching images due to  the repetitive 
texture of the microscopy images. The technique described in the Girod and Kuo paper mentions a simple

P D F
currently implemented in the mosaicking application is similar, but has several im portant features th a t are 
worth pointing out.

P D F
P D F

domain, where it corresponds to  a multiplication by a low-pass filter

unaffected frequencies in the range [0, r] and attenuating completely frequencies in the range (r, to). When 
s > 0 the filter passes frequencies in the range [0, r — s] completely unaffected, frequencies in the range 
(r + s, to) are completely attenuated, and frequencies in the range (r — s ,r  + s] are attenuated according to 
the function

which provides a smooth transition from zero attenuation at f  = r — s to  full attenuation at f  = r + s. This 
low-pass filter results in zero to tal power loss in the frequency range [0, r], because the attenuation incurred 
in range [r — s, r] is canceled out %  the power leakage from range [r, r + s] due to  aliasing.

P D F
P D F

for the tiles, and r = 0.4 Mid s = 0.1 for the P D F .
P D F

P D F
maximum is approximately 1% of the to tal number of P D F  pixels, but it may not be 1 ess than 5 pixels or 
greater than 64 pixels. The lower bound restriction is imposed in order to  avoid thresholding values where 
only one maximum pixel is left. One pixel does not carry enough information about the rest of the structure 

P D F  5
P D F  P D F  P D F

P D F
P D F

not carry enough information. The upper bound on the number of pixels applies to  larger images. If too
P D F

64 P D F
64

So displaced by vector [xy]T. We will refer to  this function as the displacement P D F .  Thus, in order to 
find the displacement vector it is necessary to  find the coordinates [xmax ymax]T of the global maximum of 
this function.

P D F  (x, y) = & (F  1 {P  x Filter (r, s)}) 

where r G [0, %/2| and s G [0, r]. When s =  0 the filter behaves exactly like the ideal low-pass filter, passing

attenuation (f )
2

Fo = F  {So} x Filter (r, s)
F1 = F  {S1} x Filter (r,s)

r s
P D F  r =  0.5 s =  0.1
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where area (P D F ) corresponds to  the to tal number of pixels in the P D F  image.
To find the threshold value th a t would provide this number of pixels, it is necessary to  build a cumulative 

histogram of the P D F  pixel values. The current implementation uses 1024 histogram bins. Although the 
importance of this param eter has not been explored in the context of our application, we can assume tha t 
more bins will give us a more accurate estimate of the threshold value. The cumulative histogram is searched 
for the bin containing at least

area ( P D F ) -  pixelsmaxima
number of pixels. The minimum pixel value associated with th a t bin is the optimal threshold value th a t we 
need.

P D F
one or more clusters. Next, pixels are classified into clusters based on an 8-connected neighborhood stencil.

P D F
merged together. This step is required because the Discrete Fourier Transform assumes th a t the signal is 

P D F
P D F

maximum is calculated as the to tal mass of the cluster divided by the number of pixels in th a t cluster. 
This process results in a list of several maxima with varying coordinates and values. The list is sorted in 
descending order, so th a t the highest maximum is at the head of the list.

P D F
P D F

However, due to  the inaccuracy in the selection of the thresholding value, it is very likely th a t there will be 
several maxima. This is also the case when the tiles being matched have undergone a distortion. During

P D F
P D F

P D F
P D F  P D F

maximum is calculated as
.. maxbest ( P D F )dissimilarity = --------- . ^  ^  ----- 1

maxi (P D F )
dissimilarity  0 dissimilarity

dissimilarity
1 2  

list are discarded. If the list contains only one maximum, we assume th a t the tiles match and proceed to 
calculate the corresponding displacement vector. If there is more than one maximum left in the list after 
this filtering, it is very likely th a t the tiles do not match, or one of the tiles is self-similar and may match 
the other tile in several places. Due to  distortion, it is possible th a t no matching tiles will be found with 
exactly one maximum. In th a t case the match with the fewest number of maxima is considered. Significantly 
distorted tiles typically have 2 to  4 valid maxima corresponding to  small shifts from the true displacement 
vector. The current implementation of the mosaicking application considers at most 3 maxima per match.

In order to  find the displacement vector, it is not enough to  simply find the maximum of the displacement 
P D F .  The coordinates [xmax ymax]T are always positive, yet the displacement vector may very well have 
negative components. As mentioned earlier, the Discrete Fourier Transform assumes th a t the signal is 
periodic, therefore the cross-correlation between the tiles corresponds to  cross-correlation of two periodic 
tiles. Once the coordinates of the maximum [xmax ymax]T are known, there are four possible permutations 
of the displacement vector th a t could produce the corresponding high cross-correlation between the tiles. 
The permutations are

Too =  

Tio =  

Toi =

ymax
Xmax -  width (So)

ymax

x max 
ymax height (S0)

x
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T  _ x max width (S0)
ymax height (S0)

The current implementation of the application chooses the best permutation based on the normalized 
cross correlation image metric. The best permutation corresponds to  the lowest metric value (the least

U0 U1
S 0 S1

permutations may not overlap the unpadded tiles a t all. In consequence, permutations can be discarded 
early based on the amount of overlap between the tiles. The amount of overlap is computed as the ratio of 
the area of the overlap region to  the area of the smaller of the two tiles. Thus, when one tile overlaps another 
entirely, the overlap is equal to  1. Displacement vectors resulting in less than 5% of overlap are discarded 
without further consideration. This decision is based on the fact th a t typical tiles will have 20% to 30% of 
overlap along the edges of the tile, and approximately 10% to 5% of overlap at the corners.

3.2 In itia l m osaic layout
Prior to  deducing the tile layout it is necessary to  find p a rs  of matching tiles. The runtime complexity of 
the current algorithm for finding the matching tiles is O (n2). The performance of this algorithm may be 
improved, but not without sacrificing some robustness in finding the correct tile matches and rejecting the 
mismatches. Why this is the case will become more clear after the current algorithm is explained in greater 
detail.

The algorithm tries to  find the best possible mapping from the image space of one tile into any other 
tile. This is accomplished by cascading the mappings via intermediate tiles. For example, there may exist 
a mapping U0 : U1 between ti les U0 and Ui5 and m other mapping U1 : U4 between ti les U ^ d  U4. A 
mapping U0 : U1 : U4 between tiles U0 and U4 can be created via the intermediate tile U1. The number 
of intermediate steps in a mapping from one tile to  another will be referred to  as the cascade length from 
now on. Given n  tiles, there may be at most n — 2 intermediate steps in a mapping between any 2 tiles. Of 
course, this is only the upper bound on the cascade length. There are no guarantees th a t a mapping with a

2
2

The algorithm proceeds as follows. F irst, pairs of matching tiles are found. Finding just one match for 
every tile is not enough, because th a t does not provide any redundant mappings between the tiles. This is

O n 2
the number of redundant mappings to  some fixed maximum number per tile. Allowing a maximum of just 
2
matching process.

The mappings between the tiles are stored as connections in a graph of tiles. Each mapping (connection) 
is weighed according to  the normalized cross correlation image metric. Next, redundant mappings with 
cascade length 1 to  n — 2 are found. There may be more than one such mapping, therefore it is useful if the 
process is explained with an example. Assume there exists a function

C (Ui : Uj) = cost

th a t evaluates the cost of a mapping between tiles U ^ d  Uj. Given the following sample mappings

C (Uo Ui) =  278
C (Uo U2 ) =  311
C (Ui U4 ) =  160
C (U2 U4 ) =  121
C (Uo U4 ) =  3419

it is most likely th a t the mapping U0 : U4 is mismatched. There are 2 possible alternative mapping from tile 
U0 to  U4. The cost is set to  the maximum cost of the intermediate mapping costs. In the context of this 
example, this means th a t

C (U0 : U1 : U4) = max (C (U0 : U1) , C  (U1 : U4)) = 278
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C (Uo : U2 : U4 ) = m a x ( C  (Uo : U2) , C  (U2 : U4 )) = 311

The mapping with the least cost (in this case Uo : U1 : U4) is preferred even when it has greater cascade 
length.

In order to  generate the mosaic, it is necessary to  select the target tile into which every other tile will be 
mapped. This is done by considering the to tal cost of the target tile candidates. The to tal cost is calculated 
as the cumulative cost of the mapping from the target tile to  every other tile in the mosaic. The candidate 
with the lowest to tal cost becomes the target tile.

3.3 D is to rtio n  co rrec tion
In order to  correct for distortion each tile has to  be unwarped.

During the earlier stages of the development, several continuous polynomial transforms were explored, 
in particular a bi-variate cubic Radial Distortion transform and a bi-variate cubic Legendre polynomial 
transform. These transforms suffer from a trade-off where the stability of the transform is related inversely 
to  the degree of the polynomial. Higher degree polynomial transforms may explode even when they are 
properly normalized and centered, while lower degree polynomial transforms limit the amount of distortion 
correction th a t may be achieved. Bi-variate polynomial transforms of degree greater than one may not 
have an analytic inverse, therefore an iterative numeric inverse calculation must be used[2]. Simultaneous 
numerical optimization of several polynomial transforms is computationally expensive.

Our latest approach uses a discontinuous transform. Each tile is sampled onto a coarse uniform triangle 
mesh. Each vertex in the mesh stores two sets of coordinates -  the local tile coordinates and the mosaic space 
coordinates. The image is warped by changing the mosaic space coordinates directly. Anyone familiar with 
texture mapping in OpenGL will readily recognize the similarity here. The tile space coordinates correspond 
to  the OpenGL texture coordinates, and the mosaic space coordinates correspond to  the OpenGL triangle 
vertex coordinates.

To map a coordinate from the mosaic space into the tile space, the tile mesh is searched for the triangle 
containing the given mosaic space point. This is similar to  ray/triangle intersection operation carried out 
in Raytracing. The barycentric coordinates of the intersection point are used to  calculate the corresponding 
tile space point by interpolating the tile space vertex coordinates. Acceleration datastructures commonly 
used in Raytracing are also applicable here. The current implementation uses a trivial 2D grid acceleration 
datastructure.

The mapping from tile space into mosaic space is trivial due to  the uniform structure of the triangle 
mesh in the tile space. One has to  find the mesh quad containing the tile space point and perform a bi-linear 
interpolation between the mosaic space coordinates of the quad vertices.

At each vertex in the mesh, a small image neighborhood of the tile is sampled in the mosaic space. A 
corresponding neighborhood is sampled from all of the tile neighbors in the mosaic. The neighborhood has 
to  be only as large as necessary to  capture a meaningful amount of image texture for phase correlation to  
work. Currently, we downscale tile images by a factor of 8 (roughly 400 x 500 pixels) and the use 96 x 96 
pixel neighborhoods. The mesh nodes are spaced at approximately one third of the neighborhood size, so a

13 x 16
The two neighborhoods are matched as described in section 3.1 on page 2. The displacement vectors 

produced by this matching are used to  correct the mosaic space coordinates of the vertex. One vertex neigh
borhood may be matched with more than one neighbor tile, which means the displacement vectors for tha t 
vertex would have to  be combined. Because we are trying to  warp all tiles simultaneously, the displacement 
vectors computed for neighboring tiles will overlap, causing the distortion correction to  overshoot. This 
means th a t the displacement vectors have to  be scaled down according to  the number of the overlapping 
neighbors at th a t point, scale = 1/ (1 +  N u m b e r O f  Displacements).

Since it is possible for tile matching to  produce mismatches, the displacement vectors calculated at each 
vertex are filtered using a median filter to  remove the outliers. Holes in the displacement vector image are 
filled in using dilation. The displacement vectors are further denoised with a Gaussian smoothing filter. 
All this post-processing necessitates several passes of the algorithm to ensure convergence. For our current 
datasets we’ve found 2-3 passes to  be sufficient. Actually, even a single pass of this algorithm produces 
better results than our best effort using the traditional ITK style mean pixel variance metric optimization 
of several Legendre polynomial transforms simultaneously.
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3.4 Slice to  slice reg is tra tio n
Slice to slice registration is very similar to  distortion correction except for two differences. Since the orien
tation of the slices is arbitrary we cannot use image correlation to estimate the image to image translation 
parameters. Instead, we perform a brute force search for tile translation/rotation parameters at a very coarse 
scale by downscaling the slices to  tiny thumbnails about 128 x 128 pixels each.

When the slices are downscaled to tiny thumbnails virtually all image texture is lost, even when the images 
were contrast enhanced. Therefore, the brute force slice to slice registration is carried out on preprocessed 
images. The blob enhancement algorithm enhances features at coarse scales such that they would not get 
washed out when downscaling the image, see figure 2. and figure 3 on the next page for illustration.

The blob enhancement algorithm is as follows:

1. The image is partitioned into a regular cell grid of roughly 17 x 17 pixels per cell.

2. Mean pixel variance is calculated within each cell.

3. The cell variances are sorted and the median variance is selected.

4. The algorithm iterates through all image pixels, and for each pixel calculates mean pixel variance
17 x 17

as min(3, (medianVariance  +  1) / (localVariance +  1)).

The result of this algorithm is tha t it enhances regions with greater than median variance the edges, which 
become black in the output image. The algorithm also enhances regions with lesser than median variance 
the flat spots (blobs) which become white in the output image.

Figure 2: blob enhancement

original tile 48691 blob enhanced tile 48691
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Figure 3: CLAHE vs blobs, adjacent slices scaled down by a factor of 64

CLAHE blobs
When scaled down by a factor of 64. the texture in the CLAHE processed slices is washed out. while the 
coarse texture properties brought out by the blob enhancement algorithm remain visible. The dark blobs 
correspond to  the high variance texture regions, and the white blobs correspond to the flat spots (low 
variance).

The brute force search is accelerated using the phase correlation to determine slice to slice translation 
parameters. The moving slice is rotated in increments on 1 degree and matched against the fixed slice as 
described in section 3.1 on page 2. The quality of the match is evaluated via the normalized cross correlation 
image metric. The rotation and translation parameters corresponding to the best brute force match metric 
are used to initialize the mesh transform of the moving slice. The transform is then refined as explained in 
section 3.3 on page 6. except the displacement vectors are applied to the moving slice only.

4 R esults

4.1 T ile m atch ing
Figure 4 on the following page shows two matching image tiles. Figure 5 on the next page shows the 
displacement PDF corresponding to these tiles, and highlights PDF maxima. There are a total of 50 maxima 
isolated in the PDF. Filtering leaves only 2 eligible maxima (highlighted in red and green), which indicates 
that the tiles match.
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Figure 4: matching tiles

tile 48685 tile 48690 mosaic 48685:48690

Figure 5: displacement PDF for matching tiles

PDF 48685:48690 Colormapped PDF maxima.
The colder colored maxima (bine) are filtered out, leaving only two warm colored (red and green) maxima. 
One of the remaining maxima corresponds to the translation vector for matching tiles.
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Figure 6 shows two mismatched tiles. Figure 7 shows the corresponding displacement PDF and PDF 
maxima. There are 59 maxima isolated in this PDF. After filtering there are still 14 maxima left. Ideally 
there would be less than 4 maxima left, therefore this PDF indicates that the tiles do not match.

Figure 6: mismatched tiles

tile 48690 tile 48692

Figure 7: displacement PD F for mismatched tiles

PDF 48690:48692 Color-mapped PD F maxima
There a 14 warm colored PDF maxima left after filtering, indicating tha t the tiles do no match.
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4.2 T ile layout
Figure 8 on the next page illustrates the order in which the tiles are added to  the mosaic. The algorithm 
lays out new tiles (shown in red) such th a t they have significant overlap with previous tiles (shown in blue). 
The incremental mosaic layout allows us to  refine the mosaic as each tile is added to  it, although currently 
we do not exercise this capability.
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Figure 8 : incremental tile layout

4.3 D is to rtio n  co rrec tion
Figure 9 on the following page illustrates the initial mosaic layout.
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Figure 9: initial mosaic

The initial mosaic, mean pixel variance is 593. 

Figure 10 on the next page illustrates the refined mosaic.
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Figure 10: refined mosaic

The refined mosaic, mean pixel variance is 213.

4.4 Slice to  slice reg is tra tio n
The slices were assembled from the blob enhanced image tiles, and downscaled to  about 160 x 160 pixel 
thumbnails. The moving slice is rotated in one degree increments, and matched against the fixed slice using 
the phase correlation as described in section 4. Figure 11 on the following page illustrates the brute force 
registration results.
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Figure 11: brute force slice to  slice registration of blob enhanced images

The mesh transform is initialized from the brute force results. The mesh is refined at low resolution 
(about 1000 x 1000 pixels), again using the blob enhanced images. This stage is meant to  capture the large 
scale deformations. Figure 12 on the next page illustrates this.
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Figure 12: refined slice to slice registration of blob enhanced images

The transform is refined again, this time using the CLAHE enhanced images, at a higher resolution. This 
stage is meant to  capture the local distortions. The results are illustrated in figure 13 on the following page.
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Figure 13: refined slice to slice registration of CLAHE enhanced images

4.5 S tacking slices
Once all the slice pairs are registered, the slice to slice transforms are cascaded to map into the space of the 
target (fixed) slice. Any slice can be the target slice. Currently we use the first slice as the target.

The volume is assembled from fully overlapping regions, meaning that every pixel in any slice maps inside 
every other slice in the stack. In other words, every pixel must have a neighbor pixel in all the slices above 
and below. Pixels which do not satisfy this condition are cropped from the volume. This is illustrated in 
figure 14 on the next page.

Cascading transforms introduces geometric distortion artifacts in the slices far removed from the target 
slice. The slice to slice registration may stretch and squeeze local regions in the warped slice in order to 
improve the match with the fixed slice. When the slice to  slice registration transforms are cascaded, the 
stretching/squeezing may become extreme. Figure 15 on page 19 demonstrates this.

The slice to slice registration is almost good enough for tracking individual features through the volume. 
Figure 16 on page 20 shows 12 cropped cross sections from the slice volume, where some features are readily 
recognizable in all the sliced.
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Figure 14: the first slice in the volume
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Figure 15: the last slice in the volume
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Figure 16: a cropped region from the stacked slice volume
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