
SCI INSTITOTI______________________
TECHNICAL REPORT

Automatic Assembly of TEM Mosaics and Mosaic
Stacks Using Phase Correlation

Pavel A . Koshevoy, Tolga Tasdizen, Ross T. Whitaker

UUSCI-2007-004

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

April 20, 2007

A b str a c t:

This paper discusses automatic Transmission Electron Microscopy (TEM) image registration,
TEM slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration.
Several algo- rithms are presented, including an algorithm for mosaic layout of an unordered set of
tiles, an algorithm for distortion correction, and an image processing algorithm for a coarse edge
and blob detection.

TH E

U N IV E R S IT Y
of UTAH

Automatic assembly of TEM mosaics and mosaic stacks using
phase correlation

Pavel A, Koshevoy, Tolga Tasdizen, Eoss T, Whitaker

April 19, 2007

A b stra ct
This paper discusses automatic Transmission Electron Microscopy (TEM) image registration, TEM

slice assembly via tile mosaicking, and TEM volume assembly via slice to slice registration. Several algo
rithms are presented, including an algorithm for mosaic layout of an unordered set of tiles, an algorithm
for distortion correction, and an image processing algorithm for a coarse edge and blob detection.

1 M otivation
Transmission Electron Microscopy (TEM) brings several challenges to autom atic image registration.

An electron microscope rarely has a large enough field of view to cover the region of interest with rea
sonable detail. Therefore, the region of interest has to be imaged as a sequence of tiles, following some
overlapping tile pattern. The imaging process introduces distortion into each tile. Unfortunately, the distor
tion is typically not the same from tile to tile, therefore each tile has to be unwarped individually.

A bigger issue with the slice to slice registration arises from the fact th a t each slice actually represents a
different cross section of tissue, therefore adjacent slices are not expected to match exactly. Additionally, each
slice may undergo a different distortion during cutting, and some slices may be destroyed during cutting.
To make m atters worse, tile distortion correction during the slice mosaic refinement introduces artificial
warping into each slice. Slices are arbitrarily oriented when they are put under the electron microscope,
which means th a t slice to slice registration has to find the correct orientation, translation and distortion
correction parameters between arbitrarily oriented warped images of different tissue slices.

Also, as the tissue slices have to be stained with a contrast agent, the images often have different contrast
from slice to slice, and in some cases the contrast may be so poor th a t a traditional contrast enhancement
algorithm CLAHE would introduce artifacts into the image making the slice to slice registration impossible.

Dealing with any of the above issues manually is a daunting task.

2 Problem statem ent
Given a large number of tiles specified in no particular order, a slice mosaic must be constructed and
individual tiles must be corrected for distortion. This is the global problem th a t can be split up into slightly
more manageable sub-problems:

• Find pairs of matching tiles.

Slice to slice registration presents a slightly different set of sub-problems:

Once all the slice to slice pairs are registered, they must be stacked into a volume by cascading the slice to
slice transforms.

1

3 D escription of the m athem atics and algorithm s

3.1 M atch ing pa irs of tiles
Finding matching tiles amounts to finding tiles with highest cross-correlation. The method for finding
matching tiles implemented in this application is based on a Phase Correlation technique described by Girod
and Kuofl]. The technique is very straight forward, but it has an im portant prerequisite - it requires that
the width and height of the two tiles must match. If that is not the case, one or both of the tiles must be
padded on the bottom and on the right side with zeros until both of the tiles have matching dimensions
as follows: given unpadded tiles U0 and Ui5 padded tiles S1 me generated such th a t width (S0) =
width (Si) = max (width (U0) , width (Ui)) mid height (S0) = height (S i) = max (height (U0) , height (Ui)).

Having satisfied the prerequisite by padding the tiles, the tiles are transformed into the frequency domain
by Discrete Fourier Transform F0 = F |S o^ d Fi = F {Si }. The Discrete Fourier Transform functionality
is provided by the FFTW[4] library. Once the tiles have been transformed, the cross power spectrum between
S1 S 0

$ 1 0 = F i x F 0*

where FQ is the complex conjugate of F0. The the cross power spectrum is normalized as follow

V $ i 0 x $ 1 0 + e

where e is a small number greater than zero added to avoid division by zero. The Girod and Kuo paper
addresses a slightly different problem than the one targeted by our application. The technique described in
the paper is intended for tracking a moving object. One of the difficulties of the tracking problem is that the
background behind the object changes. The mosaicking problem typically does not suffer from this obstacle.
During early experimentation we attem pted to use the non-normalized cross power spectrum directly as
P = $ 10. This was found to be unacceptable because the peaks in the cross correlation image are poorly
defined. The comparison of the phase correlation and cross correlation can be seen in figure 1.

Figure 1: phase correlation vs. cross correlation

phase correlation cross correlation

2

The phase correlation is the inverse Fourier transform of the normalized cross power spectrum.

P D F (x, y) = & (F -1 { P })

The phase correlation corresponds to the probability density function (PDF) th a t tile S 1 matches with tile

P D F
P D F P D F

magnitude. This may happen for mismatched images as well as for matching images due to the repetitive
texture of the microscopy images. The technique described in the Girod and Kuo paper mentions a simple

P D F
currently implemented in the mosaicking application is similar, but has several im portant features th a t are
worth pointing out.

P D F
P D F

domain, where it corresponds to a multiplication by a low-pass filter

unaffected frequencies in the range [0, r] and attenuating completely frequencies in the range (r, to). When
s > 0 the filter passes frequencies in the range [0, r — s] completely unaffected, frequencies in the range
(r + s, to) are completely attenuated, and frequencies in the range (r — s ,r + s] are attenuated according to
the function

which provides a smooth transition from zero attenuation at f = r — s to full attenuation at f = r + s. This
low-pass filter results in zero to tal power loss in the frequency range [0, r], because the attenuation incurred
in range [r — s, r] is canceled out % the power leakage from range [r, r + s] due to aliasing.

P D F
P D F

for the tiles, and r = 0.4 Mid s = 0.1 for the P D F .
P D F

P D F
maximum is approximately 1% of the to tal number of P D F pixels, but it may not be 1 ess than 5 pixels or
greater than 64 pixels. The lower bound restriction is imposed in order to avoid thresholding values where
only one maximum pixel is left. One pixel does not carry enough information about the rest of the structure

P D F 5
P D F P D F P D F

P D F
P D F

not carry enough information. The upper bound on the number of pixels applies to larger images. If too
P D F

64 P D F
64

So displaced by vector [xy]T. We will refer to this function as the displacement P D F . Thus, in order to
find the displacement vector it is necessary to find the coordinates [xmax ymax]T of the global maximum of
this function.

P D F (x, y) = & (F 1 {P x Filter (r, s)})

where r G [0, %/2| and s G [0, r]. When s = 0 the filter behaves exactly like the ideal low-pass filter, passing

attenuation (f)
2

Fo = F {So} x Filter (r, s)
F1 = F {S1} x Filter (r,s)

r s
P D F r = 0.5 s = 0.1

3

where area (P D F) corresponds to the to tal number of pixels in the P D F image.
To find the threshold value th a t would provide this number of pixels, it is necessary to build a cumulative

histogram of the P D F pixel values. The current implementation uses 1024 histogram bins. Although the
importance of this param eter has not been explored in the context of our application, we can assume tha t
more bins will give us a more accurate estimate of the threshold value. The cumulative histogram is searched
for the bin containing at least

area (P D F) - pixelsmaxima
number of pixels. The minimum pixel value associated with th a t bin is the optimal threshold value th a t we
need.

P D F
one or more clusters. Next, pixels are classified into clusters based on an 8-connected neighborhood stencil.

P D F
merged together. This step is required because the Discrete Fourier Transform assumes th a t the signal is

P D F
P D F

maximum is calculated as the to tal mass of the cluster divided by the number of pixels in th a t cluster.
This process results in a list of several maxima with varying coordinates and values. The list is sorted in
descending order, so th a t the highest maximum is at the head of the list.

P D F
P D F

However, due to the inaccuracy in the selection of the thresholding value, it is very likely th a t there will be
several maxima. This is also the case when the tiles being matched have undergone a distortion. During

P D F
P D F

P D F
P D F P D F

maximum is calculated as
.. maxbest (P D F)dissimilarity = --------- . ^ ^ ----- 1

maxi (P D F)
dissimilarity 0 dissimilarity

dissimilarity
1 2

list are discarded. If the list contains only one maximum, we assume th a t the tiles match and proceed to
calculate the corresponding displacement vector. If there is more than one maximum left in the list after
this filtering, it is very likely th a t the tiles do not match, or one of the tiles is self-similar and may match
the other tile in several places. Due to distortion, it is possible th a t no matching tiles will be found with
exactly one maximum. In th a t case the match with the fewest number of maxima is considered. Significantly
distorted tiles typically have 2 to 4 valid maxima corresponding to small shifts from the true displacement
vector. The current implementation of the mosaicking application considers at most 3 maxima per match.

In order to find the displacement vector, it is not enough to simply find the maximum of the displacement
P D F . The coordinates [xmax ymax]T are always positive, yet the displacement vector may very well have
negative components. As mentioned earlier, the Discrete Fourier Transform assumes th a t the signal is
periodic, therefore the cross-correlation between the tiles corresponds to cross-correlation of two periodic
tiles. Once the coordinates of the maximum [xmax ymax]T are known, there are four possible permutations
of the displacement vector th a t could produce the corresponding high cross-correlation between the tiles.
The permutations are

Too =

Tio =

Toi =

ymax
Xmax - width (So)

ymax

x max
ymax height (S0)

x

4

T _ x max width (S0)
ymax height (S0)

The current implementation of the application chooses the best permutation based on the normalized
cross correlation image metric. The best permutation corresponds to the lowest metric value (the least

U0 U1
S 0 S1

permutations may not overlap the unpadded tiles a t all. In consequence, permutations can be discarded
early based on the amount of overlap between the tiles. The amount of overlap is computed as the ratio of
the area of the overlap region to the area of the smaller of the two tiles. Thus, when one tile overlaps another
entirely, the overlap is equal to 1. Displacement vectors resulting in less than 5% of overlap are discarded
without further consideration. This decision is based on the fact th a t typical tiles will have 20% to 30% of
overlap along the edges of the tile, and approximately 10% to 5% of overlap at the corners.

3.2 In itia l m osaic layout
Prior to deducing the tile layout it is necessary to find p a rs of matching tiles. The runtime complexity of
the current algorithm for finding the matching tiles is O (n2). The performance of this algorithm may be
improved, but not without sacrificing some robustness in finding the correct tile matches and rejecting the
mismatches. Why this is the case will become more clear after the current algorithm is explained in greater
detail.

The algorithm tries to find the best possible mapping from the image space of one tile into any other
tile. This is accomplished by cascading the mappings via intermediate tiles. For example, there may exist
a mapping U0 : U1 between ti les U0 and Ui5 and m other mapping U1 : U4 between ti les U ^ d U4. A
mapping U0 : U1 : U4 between tiles U0 and U4 can be created via the intermediate tile U1. The number
of intermediate steps in a mapping from one tile to another will be referred to as the cascade length from
now on. Given n tiles, there may be at most n — 2 intermediate steps in a mapping between any 2 tiles. Of
course, this is only the upper bound on the cascade length. There are no guarantees th a t a mapping with a

2
2

The algorithm proceeds as follows. F irst, pairs of matching tiles are found. Finding just one match for
every tile is not enough, because th a t does not provide any redundant mappings between the tiles. This is

O n 2
the number of redundant mappings to some fixed maximum number per tile. Allowing a maximum of just
2
matching process.

The mappings between the tiles are stored as connections in a graph of tiles. Each mapping (connection)
is weighed according to the normalized cross correlation image metric. Next, redundant mappings with
cascade length 1 to n — 2 are found. There may be more than one such mapping, therefore it is useful if the
process is explained with an example. Assume there exists a function

C (Ui : Uj) = cost

th a t evaluates the cost of a mapping between tiles U ^ d Uj. Given the following sample mappings

C (Uo Ui) = 278
C (Uo U2) = 311
C (Ui U4) = 160
C (U2 U4) = 121
C (Uo U4) = 3419

it is most likely th a t the mapping U0 : U4 is mismatched. There are 2 possible alternative mapping from tile
U0 to U4. The cost is set to the maximum cost of the intermediate mapping costs. In the context of this
example, this means th a t

C (U0 : U1 : U4) = max (C (U0 : U1) , C (U1 : U4)) = 278

5

C (Uo : U2 : U4) = m a x (C (Uo : U2) , C (U2 : U4)) = 311

The mapping with the least cost (in this case Uo : U1 : U4) is preferred even when it has greater cascade
length.

In order to generate the mosaic, it is necessary to select the target tile into which every other tile will be
mapped. This is done by considering the to tal cost of the target tile candidates. The to tal cost is calculated
as the cumulative cost of the mapping from the target tile to every other tile in the mosaic. The candidate
with the lowest to tal cost becomes the target tile.

3.3 D is to rtio n co rrec tion
In order to correct for distortion each tile has to be unwarped.

During the earlier stages of the development, several continuous polynomial transforms were explored,
in particular a bi-variate cubic Radial Distortion transform and a bi-variate cubic Legendre polynomial
transform. These transforms suffer from a trade-off where the stability of the transform is related inversely
to the degree of the polynomial. Higher degree polynomial transforms may explode even when they are
properly normalized and centered, while lower degree polynomial transforms limit the amount of distortion
correction th a t may be achieved. Bi-variate polynomial transforms of degree greater than one may not
have an analytic inverse, therefore an iterative numeric inverse calculation must be used[2]. Simultaneous
numerical optimization of several polynomial transforms is computationally expensive.

Our latest approach uses a discontinuous transform. Each tile is sampled onto a coarse uniform triangle
mesh. Each vertex in the mesh stores two sets of coordinates - the local tile coordinates and the mosaic space
coordinates. The image is warped by changing the mosaic space coordinates directly. Anyone familiar with
texture mapping in OpenGL will readily recognize the similarity here. The tile space coordinates correspond
to the OpenGL texture coordinates, and the mosaic space coordinates correspond to the OpenGL triangle
vertex coordinates.

To map a coordinate from the mosaic space into the tile space, the tile mesh is searched for the triangle
containing the given mosaic space point. This is similar to ray/triangle intersection operation carried out
in Raytracing. The barycentric coordinates of the intersection point are used to calculate the corresponding
tile space point by interpolating the tile space vertex coordinates. Acceleration datastructures commonly
used in Raytracing are also applicable here. The current implementation uses a trivial 2D grid acceleration
datastructure.

The mapping from tile space into mosaic space is trivial due to the uniform structure of the triangle
mesh in the tile space. One has to find the mesh quad containing the tile space point and perform a bi-linear
interpolation between the mosaic space coordinates of the quad vertices.

At each vertex in the mesh, a small image neighborhood of the tile is sampled in the mosaic space. A
corresponding neighborhood is sampled from all of the tile neighbors in the mosaic. The neighborhood has
to be only as large as necessary to capture a meaningful amount of image texture for phase correlation to
work. Currently, we downscale tile images by a factor of 8 (roughly 400 x 500 pixels) and the use 96 x 96
pixel neighborhoods. The mesh nodes are spaced at approximately one third of the neighborhood size, so a

13 x 16
The two neighborhoods are matched as described in section 3.1 on page 2. The displacement vectors

produced by this matching are used to correct the mosaic space coordinates of the vertex. One vertex neigh
borhood may be matched with more than one neighbor tile, which means the displacement vectors for tha t
vertex would have to be combined. Because we are trying to warp all tiles simultaneously, the displacement
vectors computed for neighboring tiles will overlap, causing the distortion correction to overshoot. This
means th a t the displacement vectors have to be scaled down according to the number of the overlapping
neighbors at th a t point, scale = 1/ (1 + N u m b e r O f Displacements).

Since it is possible for tile matching to produce mismatches, the displacement vectors calculated at each
vertex are filtered using a median filter to remove the outliers. Holes in the displacement vector image are
filled in using dilation. The displacement vectors are further denoised with a Gaussian smoothing filter.
All this post-processing necessitates several passes of the algorithm to ensure convergence. For our current
datasets we’ve found 2-3 passes to be sufficient. Actually, even a single pass of this algorithm produces
better results than our best effort using the traditional ITK style mean pixel variance metric optimization
of several Legendre polynomial transforms simultaneously.

6

3.4 Slice to slice reg is tra tio n
Slice to slice registration is very similar to distortion correction except for two differences. Since the orien
tation of the slices is arbitrary we cannot use image correlation to estimate the image to image translation
parameters. Instead, we perform a brute force search for tile translation/rotation parameters at a very coarse
scale by downscaling the slices to tiny thumbnails about 128 x 128 pixels each.

When the slices are downscaled to tiny thumbnails virtually all image texture is lost, even when the images
were contrast enhanced. Therefore, the brute force slice to slice registration is carried out on preprocessed
images. The blob enhancement algorithm enhances features at coarse scales such that they would not get
washed out when downscaling the image, see figure 2. and figure 3 on the next page for illustration.

The blob enhancement algorithm is as follows:

1. The image is partitioned into a regular cell grid of roughly 17 x 17 pixels per cell.

2. Mean pixel variance is calculated within each cell.

3. The cell variances are sorted and the median variance is selected.

4. The algorithm iterates through all image pixels, and for each pixel calculates mean pixel variance
17 x 17

as min(3, (medianVariance + 1) / (localVariance + 1)).

The result of this algorithm is tha t it enhances regions with greater than median variance the edges, which
become black in the output image. The algorithm also enhances regions with lesser than median variance
the flat spots (blobs) which become white in the output image.

Figure 2: blob enhancement

original tile 48691 blob enhanced tile 48691

7

Figure 3: CLAHE vs blobs, adjacent slices scaled down by a factor of 64

CLAHE blobs
When scaled down by a factor of 64. the texture in the CLAHE processed slices is washed out. while the
coarse texture properties brought out by the blob enhancement algorithm remain visible. The dark blobs
correspond to the high variance texture regions, and the white blobs correspond to the flat spots (low
variance).

The brute force search is accelerated using the phase correlation to determine slice to slice translation
parameters. The moving slice is rotated in increments on 1 degree and matched against the fixed slice as
described in section 3.1 on page 2. The quality of the match is evaluated via the normalized cross correlation
image metric. The rotation and translation parameters corresponding to the best brute force match metric
are used to initialize the mesh transform of the moving slice. The transform is then refined as explained in
section 3.3 on page 6. except the displacement vectors are applied to the moving slice only.

4 R esults

4.1 T ile m atch ing
Figure 4 on the following page shows two matching image tiles. Figure 5 on the next page shows the
displacement PDF corresponding to these tiles, and highlights PDF maxima. There are a total of 50 maxima
isolated in the PDF. Filtering leaves only 2 eligible maxima (highlighted in red and green), which indicates
that the tiles match.

8

Figure 4: matching tiles

tile 48685 tile 48690 mosaic 48685:48690

Figure 5: displacement PDF for matching tiles

PDF 48685:48690 Colormapped PDF maxima.
The colder colored maxima (bine) are filtered out, leaving only two warm colored (red and green) maxima.
One of the remaining maxima corresponds to the translation vector for matching tiles.

9

Figure 6 shows two mismatched tiles. Figure 7 shows the corresponding displacement PDF and PDF
maxima. There are 59 maxima isolated in this PDF. After filtering there are still 14 maxima left. Ideally
there would be less than 4 maxima left, therefore this PDF indicates that the tiles do not match.

Figure 6: mismatched tiles

tile 48690 tile 48692

Figure 7: displacement PD F for mismatched tiles

PDF 48690:48692 Color-mapped PD F maxima
There a 14 warm colored PDF maxima left after filtering, indicating tha t the tiles do no match.

10

4.2 T ile layout
Figure 8 on the next page illustrates the order in which the tiles are added to the mosaic. The algorithm
lays out new tiles (shown in red) such th a t they have significant overlap with previous tiles (shown in blue).
The incremental mosaic layout allows us to refine the mosaic as each tile is added to it, although currently
we do not exercise this capability.

11

Figure 8 : incremental tile layout

4.3 D is to rtio n co rrec tion
Figure 9 on the following page illustrates the initial mosaic layout.

12

Figure 9: initial mosaic

The initial mosaic, mean pixel variance is 593.

Figure 10 on the next page illustrates the refined mosaic.

13

Figure 10: refined mosaic

The refined mosaic, mean pixel variance is 213.

4.4 Slice to slice reg is tra tio n
The slices were assembled from the blob enhanced image tiles, and downscaled to about 160 x 160 pixel
thumbnails. The moving slice is rotated in one degree increments, and matched against the fixed slice using
the phase correlation as described in section 4. Figure 11 on the following page illustrates the brute force
registration results.

14

Figure 11: brute force slice to slice registration of blob enhanced images

The mesh transform is initialized from the brute force results. The mesh is refined at low resolution
(about 1000 x 1000 pixels), again using the blob enhanced images. This stage is meant to capture the large
scale deformations. Figure 12 on the next page illustrates this.

15

Figure 12: refined slice to slice registration of blob enhanced images

The transform is refined again, this time using the CLAHE enhanced images, at a higher resolution. This
stage is meant to capture the local distortions. The results are illustrated in figure 13 on the following page.

16

Figure 13: refined slice to slice registration of CLAHE enhanced images

4.5 S tacking slices
Once all the slice pairs are registered, the slice to slice transforms are cascaded to map into the space of the
target (fixed) slice. Any slice can be the target slice. Currently we use the first slice as the target.

The volume is assembled from fully overlapping regions, meaning that every pixel in any slice maps inside
every other slice in the stack. In other words, every pixel must have a neighbor pixel in all the slices above
and below. Pixels which do not satisfy this condition are cropped from the volume. This is illustrated in
figure 14 on the next page.

Cascading transforms introduces geometric distortion artifacts in the slices far removed from the target
slice. The slice to slice registration may stretch and squeeze local regions in the warped slice in order to
improve the match with the fixed slice. When the slice to slice registration transforms are cascaded, the
stretching/squeezing may become extreme. Figure 15 on page 19 demonstrates this.

The slice to slice registration is almost good enough for tracking individual features through the volume.
Figure 16 on page 20 shows 12 cropped cross sections from the slice volume, where some features are readily
recognizable in all the sliced.

17

Figure 14: the first slice in the volume

18

Figure 15: the last slice in the volume

19

Figure 16: a cropped region from the stacked slice volume

20

References
fl] Girod, B. and Kuo, D. 1989. Direct estimation of displacement histograms. In Proceedings of the Optical

Society of America Meeting on Understanding and Machine Vision, 73-76.

[2] Newton-Raphson Method for Nonlinear Systems of Equations. Numerical Recipes in C, second edition,
379-382.

[3] NLM Insight Segmentation & Registration Toolkit, h ttp ://w w w .itk .org/

[4] Fastest Fourier Transform in the West, http://w w w .fftw .org/

21

http://www.itk.org/
http://www.fftw.org/

