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Abstract- Innovative systems with increased sensitivity and 

resolution are in great demand to detect diversion and to prevent 

misuse in support of nuclear materials management for the U.S. 
fuel cycle. Nuclear fission is the most important multiplicative 

process involved in non-destructive active interrogation. This 

process produces the most easily recognizable signature for 

nuclear materials. High-energy gamma rays can also excite a 

nucleus and cause fission through a process known as 

photofission. After photofission reactions, delayed signals are 

easily distinguishable from the interrogating radiation. LINAC­

based, advanced inspection techniques utilizing the fission signals 

after photofission have been extensively studied for homeland 

security applications. Previous research also showed that a 

unique delayed gamma ray energy spectrum exists for each 

fissionable isotope. Isotopic composition measurement methods 

based on delayed gamma ray spectroscopy will be the primary 

focus of this work. 

I. INTRODUCTION 

In photofission reactions, four types of radiation can be used 
as signature signals for material identification and 

quantification: prompt photons, prompt neutrons, delayed 
photons and delayed neutrons. Although prompt signals are 
much stronger than the delayed signals, it is difficult to 
quantify them in practical measurements. The reason they are 
hard to measure is that they tend to be buried by the more 
intense probing radiation. Delayed signals are emitted seconds 
or even minutes after the photon irradiation making it easier to 
be distinguished from the interrogating radiation. LINAC­
based, advanced inspection techniques utilizing the delayed 
signals after photon induced fission have been extensively 
studied for homeland security applications [1-6]. Previous 
research also showed that a unique delayed gamma ray energy 
spectrwn exists for each fissionable isotope [7-8]. Isotopic 
composition measurement methods based on delayed gamma 
ray spectroscopy will be the primary focus of this project. 

The primary focus of this work is to study active 
interrogation methods based on delayed gamma ray 
spectroscopy following photon induced fission, for Materials 
Protection, Accountancy, and Controls Technologies 

Manuscript received November 15,2012. This research is being performed 
using funding received from the DOE Office of Nuclear Energy's Nuclear 
Energy University Programs under Grant No. 00120873. 

John Kavouras is with the University of Utah, Salt Lake City, UT 84112 
USA (e-mail: kavouras22@gmail.com). 

Xianfei Wen is with the University of Utah, Salt Lake City, UT 84112 
USA (e-mail: xianfei.wen@utah.edu). 

Daren R. Norman is with the Idaho National Laboratory, Idaho Falls, ID 
83415 USA (telephone: 208-526-3953, e-mail: daren.norman@inl.gov). 

Dante R. Nakazawa is with Canberra Industries, Meriden, CT 0645 USA 
(telephone: 203-639-2340, e-mail: dante.nakazawa@canberra.com). 

Haori Yang is with the University of Utah, Salt Lake City, UT 84112 USA 
(telephone: 801-581-6229, email: haori.yang@utah.edu). 

978-1-4673-2030-6/12/$31.00 ©20 12 IEEE 95 

(MP ACT). Delayed gamma rays are emitted seconds or 
minutes after the induced fission. Approximately, 6 to 8 
delayed gamma rays are emitted following each fission 

process. This is over 100 times stronger than the yield of 
delayed neutrons. Delayed gamma ray energy spectrwn is 
unique for each fissionable isotope. Although quite rich and 
complicated, delayed gamma ray spectra can be measured and 
analyzed using modem high resolution gamma spectroscopy 
systems. The relative amplitudes of certain lines vary 
significantly from one isotope to another. This is a result of 
the difference in photofission yield distribution of various 
isotopes. For example, discrimination ratio, measured as the 
intensity ratio between the 1103 keY Y-97 peak and the 1032 
keY Rb-89 peak, was observed to be significantly different 
between U-235, Pu-239 and U-238 [7-8]. Observations like 
this can be utilized to measure isotopic composition in nuclear 
material samples. Some examples are shown in Table 1. 
Previous research has shown that delayed gamma ray spectra 
emitted by fission products can be measured in seconds or 
even minutes after the induced fission using high purity 
germanium (HPGe) detectors [9]. Both the energy information 
and the temporal behavior (i.e. the decay half-life) of the 
observed gamma ray peaks can be used to identify and 
quantify fission products, as shown in Figure 1. Using the 
knowledge on photofission yield distribution of various 
isotopes, the isotopic composition of the sample can then be 
deduced. 

Table 1. Inrensity ratios of the fission product gatlID13 ray induced by 1 0 MeV 
Bremsstrahlung photons and measured between 13 ms and lOOms a fter the irradiation 

F i s s ion Gamm ,,·rny Inte n sity rat ios 

Prod uct ene rgy lJlJpU "'U 'lJ5 2J'lTh ( keV ) 
"'Cs 14 36.0 100.0 100.0 100.0 100.0 

Sr 1428. 136.4 235.7 1 86.8 171.3 
'�I 1 313.0 72.7 2 40 . 5 1 2 3.0 109.3 

"Rb 1248.2 13.1 85.4 92.7 228.0 
wKr 1118.7 39.5 110.5 108.5 171.0 
"Y 1103.0 113.7 148.1 115.2 68.9 
"Rb 1031.9 66.5 1 16.4 135.9 265.1 

The intensity of the delayed gamma rays decreases rapidly 
after the induced fission. Thus, the detection sensitivity can be 
dramatically increased by performing the measurements 
shortly after the induced fission reactions. Previous research 
shows that this can be accomplished using innovative digital 
electronics [10]. The performance of using photofission 
technique for direct measurement of plutonium in spent fuel 
will be thoroughly investigated in this proposed project. 

II. INlTlAL TESTING 

An initial test was performed at INL. Combinations of 
various electronics, detectors, and experimental setups were 



tested and evaluated. The experimental setup is shown below 
in Fig.l. The detector and front-end electronics are positioned 
in a shielding cavity built with lead and bismuth bricks. This 
detector and shielding assembly is located out of the Iinac 
beam in a backscattering angle. The detector is pointing at a 
sample placed in the beam. The distance between the 
Bremsstrahlung target and the sample is around 60". The 
distance between the sample and the front end of the detector 
is about 20". 
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Fig. 1. Experimental setup of the initial testing. 

A. Interlace Mode Measurement 

The simplest and most straight-forward way to measure 
delayed gamma rays after photofission is to use interlace 
mode. In this mode, the sample is bombarded for a certain 
amount of time. Then the LINAC is turned off and the 
spectrometry measurement starts. This irradiation-counting 
sequence can be repeated indefinitely until satisfactory results 
are obtained. A schematic is shown in Fig. 2. 
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Fig. 2. Schematic of the interlace mode measurement. 

Spectra were measured using this method, with both DU 
and HEU samples. Full energy peaks from fission products 
have been observed and identified in these spectra. Although 
counting in interlace mode is easy to implement, short-lived 
fission products are hard to identify and quantify based on 
spectra measured this way. Shorter-lived isotopes die away 
faster after each LINAC pulse. Thus, after the irradiation 
period, the only short-lived isotopes measured were produced 
at the end of the irradiation. On the other hand, the measured 
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activity of long-lived isotope is the integral activity over the 
whole irradiation period. As shown in Fig. 3 below, the 
shorter-lived Sr-94 is less prominent than the longer-lived Cs-
138, although Sr-94 has a larger fission yield. 

Fig. 3. A delayed gamma ray spectrum measured in the interlace mode 
showing peaks from Sr-94 and Cs-138. 

B. Delayed Gamma Spectra Measured in between LlNAC 

Pulses 

Interlace mode measurements described above are straight­
forward and put less stress on the electronics and detectors. 
However, the majority of fission products have relatively short 
half-lives. After being produced during each LINAC pulse, 
these fission products quickly decay away. In interlace mode, 
for short-lived fission products, only the last few pulses would 
make contribution to the final spectrwn. In order to capture 
short-lived isotopes and increase the sensitivity of the 
measurement, it is preferred that spectrometry measurements 
be performed in between LINAC pulses. Because of the huge 
energy deposition during each pulse, the detector and front­
end electronics are saturated for a relatively long time period 
(�tens of ms). After this, the baseline slowly returns to zero, as 
shown in Fig. 4. Traditional shaping methods cannot handle 
this behavior very well, so the measurements have to be gated. 
In the following measurement, the LINAC was running at 20 
Hz, i.e. the time interval between two adjacent pulses is 50 ms. 
After each pulse, the MCA waits for 20 ms before starting 
processing incoming signal. The counting continues for 20 ms 
before the MCA is disabled right before the next pulse hits. 

Using this method, delayed gamma spectra were measured 
with both a DU sample and a HEU sample, as shown in Fig. 5. 
Peaks from fission products (e.g. Sr-94 and Cs-138) are 
clearly observable, despite the fact that our counting time was 
quite limited (� 500s with at least 50% dead time). Because of 
the poor counting statistics and the low detector efficiency at 
higher energies, we were not able to quantitatively study the 
difference between REU and DU spectra. The degradation in 
energy resolution caused overlapping between gamma peaks 
from the check source and fission products, which makes it 
even harder to analytically report the measurement results. 
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Fig. 4. The output signal from the pre-amplifier when the LINAC beam is 
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Fig. 5. Delayed gamma ray spectra measured with a DU sample and a 
HEU sample. 

III. MONTE CARLO SIMULA nON OF DELA YEO GAMMA RAyS 

This portion of our investigation aims to accurately simulate 

gamma-ray distributions from photon induced fission 

reactions using the MCNP5/MCNPX Monte Carlo simulation 

platform. These simulations are used to model experimental 

conditions, including target and shielding materials, the 

detector, and the LINAC, which then allows us to predict and 

optimize experimental parameters. Recent collaboration at 

Idaho Accelerator Center (lAC) has enabled the collection of 

experimental photofission data used for benchmark 

comparisons with our MCNP nwnerical models. 

In order to accurately obtain delayed gamma signatures 

using MCNPX, the software's photofission library must first 

be initialized to ensure the coincidence counting of 

photofission particles. By enabling the analog production of 

photons from photofission reactions, specific isotopes 

identified from the ENDF/B-VII photonuclear data library are 

used for the simulation of photonuclear particle production. 

Photonuclear reactions within MCNPX are controlled using 

the software's Photon Physics Options within the PHYS:P 
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card. Tally cards specifying photon flux, energy and time, 

were used for the parameterization of each calculated 

photofission distribution. Within the code, the F4 flux tally 

averages the number of scored particles per area, and is set to 

do so within designated time and energy bins. The tally energy 

card, E4, defined the upper and lower bounds for particle 

energies on the order of �3MeV at the time of scoring. The 

specific time intervals expected for delayed emissions were set 

using the tally time card T4. The counting of short-lived 

fission products following LINAC pulses performed 

experimentally are accurately modeled using the variability of 

these tally cards. Photon flux distributions are used to model 

expected gamma-ray spectra for a variety of target materials. 

Analysis of each spectrum allows identification of specific 

energy peaks also expected for each photofission reaction. 

Simulations involving these delayed signatures were 

performed for a number of isotopes including Pu-239 and a 

number of mixed U-235/u-238 compositions. The normalized 

photon flux as a function of energy for the photofission 

reaction of a U-235/U-238 mixture is plotted below. 
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Fig. 6. An MCNPX simulation of the delayed gamma rays emission 
spectrum from a U-235 and U-238 mixture. 

Identification and assessment of numerical photofission yields 

also provide information used to solve for isotopic 

concentration in target materials. Spectra for pure samples of 

U-238 and U-235 were modeled to form basis spectra used to 

deconvolve mixed U-235/U-238 samples as shown in the 

figure above. The overlapped energy spectra for pure uraniwn 

samples (shown below) are indicative of sum peak 

contributions for each uranium mixture. 

The swn of these energy peaks at 974.6 keY, l.31 and 1.43 

MeV are used to determine the isotopic composition for both 

U-238 and U-235 fissionable isotopes. The summation of peak 

ratios in each pure sample is then set equal to the peak ratio of 

the mixture. Repeating this step for two additional energy 

peaks, allows for the formation of a set of two equations with 

two unknowns. For example, using the three energy peaks 

indicated in Fig. 7, the following equations are solved to find 

the U-238/U-235 concentrations within this mixture: 



Where the coefficients Cl and C2 indicate the quantity of 

each pure uranium isotope within the mixture. These 

equations can then be solved given the known values of each 

energy peak. Analysis of the U-238 concentration in this 

example yielded 9l.3%, differing by l.7% from the known 

concentration. Although this method of isotopic analysis has 

proven useful in this approximation, uncertainties within the 

MCNPX simulations still exist. These uncertainties may result 

from deficiencies in the number of scored particles during 

Monte Carlo calculations. The spectra discussed here and 

others alike are designated to run 106 source particles during 

calculation. At this time, immediate development of 

calculations involving increased particle counts on the order of 

109 is underway in effort to resolve counting uncertainty. 
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Fig. 7. MCNPX simulation of the delayed gamma rays emission spectrum 
from a pure U-235 sample and a pure U-238 sample. 

Recent tests run at lAC focused primarily on photofission 

measurements involving Pu-239, Th-232, and Depleted 

Uranium (DU) plates. Run time data acquisition provided 

accurate benchmark spectra which were referenced using our 

teams MCNP simulations. Although our team was equipped 

with calculated spectra for Pu-239 and U-235/U-238 mixtures, 

limitations due to available photonuclear data libraries in 

MCNPX restricted simulation of Th-232. 

IV. DIGITAL SIGNAL PROCESSING TECHNIQUES 

High throughput spectroscopy systems are being 

investigated. A major challenge in the proposed work is to 

perform high energy resolution gamma spectroscopy at an 

ultra-high throughput rate with good accuracy. The HPGe 

detector is the only practical candidate that can provide 

excellent energy resolution in a wide energy range as needed 

in measurements of delayed gamma spectroscopy. Innovative 

spectroscopy systems will are being developed using advanced 

signal processing techniques to improve the throughput rate of 

HPGe detectors without sacrificing energy resolution. Real­

time digital signal processing methods will then be 

implemented and tested. Previous study showed that digital 
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filtering can greatly improve throughput rate with little 

degradation in energy resolution [10]. Various filters are 

currently being evaluated in this work, e.g. moving window 

de-convolution (MWD) and the trapezoidal filters. Recent 

study showed great potential of the template-matching method 

in high rate applications [11]. Instead of filtering the energy 

signal, a pre-defmed pulse shape template is used in this 

method to de-convolve the signal train. This method will be 

further evaluated. 

As a start, a LABVIEW interface has been developed to 

enable streaming of digitized data to hard drive at full speed 

(100 MSPS, 14-bit) if one channel is utilized, or at half of the 

full speed (50 MSPS, 14-bit) if both channels on the digitizer 

are utilized. The speed of data streaming is mainly limited by 

the write speed of the hard drive. In our case, two Intel Solid 

State Disks are configured in RAID 0 array to maximize the 

transfer rate. The LABVIEW interface is shown below in Fig. 

8. 

Fig. 8. User interface of the LABVIEW data acquisition program. 

Using this interface, we were able to configure and control 

the digitizer. In the initial test, the digitizer is triggered by the 

LINAC pulses. During the measurements, the LINAC was 

running at 10 Hz, i.e. the time interval between two adjacent 

pulses is 100 ms. The digitizer is configured to record data for 

120 ms each time it is triggered. The figure below shows the 

output signal from the pre-amplifier after a LINAC pulse. 

As can be observed, the detector output is saturated for 

roughly 20 ms in this particular case. The recovery time is 

related to the energy deposition in the detector (i.e. beam 

current, beam energy, shielding around the detector, target in 

the beam, etc.). The baseline of the output signal slowly 

returns to normal after each LINAC pulse. Effort has been 

made to improve the DSP algorithms for high throughput 

applications. DSP algorithms based on trapezoidal filters are 

being developed and evaluated. A trapezoidal shaper can be 

implemented as shown below in Fig. 9. 



Fig. 9. Implementation of a trapezoidal filter. 

To implement pile-up rejection, two channels are designed. 
The output signal from the pre-amplifier are passed through 
these two channels in a parallel manner: a fast channel for 
timing and a slow channel for energy information. The figure 
below shows the original signal (blue) and the outputs from 
the fast (red) and slow channel (black). 
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Fig. 10. Digital signal processing using a trapezoidal filter. 

Improvements have been implemented on the shaping 

algorithm. Instead of using an overall estimation, the baseline 

of the output signal is measured right before the rising edge of 

each pulse. By doing this, the energy degradation due to 

drifting of baseline can be minimized. Using typical values for 

rising edge and flat top, an energy spectrum was achieved as 

shown in Fig. 11 below. 
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Fig. 11. An energy spectrum reconstructed using digitized data via a 
trapezoidal filter. 
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The same energy spectrum measured with a commercially 

available MCA (Canberra LYNX) is shown in the same figure 

for the purpose of comparison below with red dots. 

Energy (keV) 

Fig. 12. Comparison between energy spectra obtained using a 
commercially available MCA and the signal processing unit developed in this 
work. 

It can be observed that the energy resolution achieved using 

the customized DSP algorithm based on trapezoidal filters is 

very comparable to the results obtained using commercially 

available software. The next step in this work is to optimize 

this customized DSP algorithm for high-throughput 

applications. 

V. CONCLUSIONS AND FUTURE WORK 

Active interrogation techniques based on delayed gamma 

rays emitted by photofission products are being developed for 

nuclear safeguards applications. The ultimate goal is to 

directly measure Pu-239 content in nuclear spent fuel. The 

results from an initial testing were discussed. Energy spectra 

of delayed gamma rays were measured in both interlace mode 

and in between LINAC pulses. A simulation platform is being 

developed using MCNPX simulation package. To address the 

ultra-high throughput rate need for spent fuel measurements, 

spectrometry systems based on digital signal processing 

technology is under investigation. Currently, the shaping 

algorithm is limited to trapezoidal shaping. Other algorithms 

are to be implemented and evaluated. 
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