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ABSTRACT

Today’s smartphones house private and confidential data ubiquitously. Mobile apps

running on the devices can leak sensitive information by accident or intentionally. To

understand application behaviors before running a program, we need to statically analyze

it, tracking what data are accessed, where sensitive data flow, and what operations are

performed with the data.

However, automated identification of malicious behaviors in Android apps is challenging:

First, there is a primary challenge in analyzing object-oriented programs precisely, soundly

and efficiently, especially in the presence of exceptions. Second, there is an Android-specific

challenge—asynchronous execution of multiple entry points. Third, the maliciousness of

any given behavior is application-dependent and subject to human judgment.

In this work, I develop a generic, highly precise static analysis of object-oriented code

with multiple entry points, on which I construct an effective malware identification system

with a human in the loop. Specifically, I develop a new analysis—pushdown exception-flow

analysis, to generalize the analysis of normal control flows and exceptional flows in object-

oriented programs. To refine points-to information, I generalize abstract garbage collection

to object-oriented programs and enhance it with liveness analysis for even better precision.

To tackle Android-specific challenges, I develop multientry point saturation to approximate

the effect of arbitrary asynchronous events. To apply the analysis techniques to security,

I develop a static taint-flow analysis to track and propagate tainted sensitive data in the

pushdown exception-flow framework. To accelerate the speed of static analysis, I develop

a compact and efficient encoding scheme, called Gödel hashes, and integrate it into the

analysis framework.

All the techniques are realized and evaluated in a system, named AnaDroid. AnaDroid

is designed with a human in the loop to specify analysis configuration, properties of interest

and then to make the final judgment and identify where the maliciousness is, based on

analysis results. The analysis results include control-flow graphs highlighting suspiciousness,

permission and risk-ranking reports. The experiments show that AnaDroid can lead to

precise and fast identification of common classes of Android malware.
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CHAPTER 1

INTRODUCTION

Today’s smartphones house private and confidential data ubiquitously. The sensitive

data include things such as personal email addresses, locations, to social media accounts to

bank accounts. Mobile apps running on the devices can leak the sensitive information by

accident or intentionally.

Google’s Android operating system is the most popular mobile platform, with a 79%

share of all smartphones [1]. It allows users to install third-party applications. Due

to Android’s open application development community, more than one million apps are

available in the Android app store [2] with 48 billion cumulative downloads by 2013 [3].

While most of these third-party apps have legitimate reasons to access private data, utilize

the Internet, or make changes to local settings and file storage, the permissions provided

by Android are too coarse, allowing malware to slip through the cracks. For instance,

an app that needs to read information from only a specific website and access global

positioning service (GPS) information must, necessarily, be granted full read/write access

to the entire Internet, allowing it to maliciously leak location information. In another

example, a note-taking application that writes notes to the file system can use the file system

permissions to wipe out secure digital card (SD card) files when a malicious trigger gets

tripped. Meanwhile, a task manager that legitimately requires every permission available

can be benign. Section 1.1 describes four common classes of malware.

To understand application behaviors like these before running the program, we need to

statically analyze the application, tracking what data are accessed, where sensitive data

flow, and what operations are performed with the data, i.e., determine whether data are

tampered with.

However, automated malware detection for Android apps is challenging: First, there is

a primary challenge in analyzing object-oriented programs (OOP) precisely, soundly and

efficiently, especially in the presence of exceptions. This challenge will be illustrated in
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Section 1.2. Second, there is an Android-specific challenge—the multiple entry points. This

is illustrated in Section 1.3.

Even then, due to the maliciousness of any given behavior being application-dependent

and subject to human judgment, Section 1.4 motivates involving a human analyst in the

detection loop.

Section 1.5 presents the thesis statement, and Section 1.6 describes the contributions.

1.1 Common classes of Android malware

Based on related literature and the project experience, I separate Android malware

into four categories: data leakage, data tampering, denial of service attacks, and behavior

interference.1

Data leakage is one of most common, and concerning, malicious behaviors in Android

apps [4, 5]. Sensitive data, including location information, an short message service (SMS)

message, or a device identifier (ID), is exfiltrated to a third-party host via an hypertext

transfer protocol (HTTP) request or Android web component intent, or to a predefined

reachable local file via standard file operations. This kind of behavior is often embedded

in a background Android service component, such as an AsyncTask or a thread, without

interfering with the normal functionality of the app. The other characteristic that malicious

software can exploit is that the apps are designed to avoid requesting any permissions.

For instance, instead of requesting the ACCESS FINE LOCATION an app can instead read

locations from photos stored on the file system using Exif data and instead of requesting

the INTERNET the app can use the default Android web view through an ACTION VIEW

intent; in both cases avoiding the need to explicitly request these permissions.

Data tampering, similar to data leakage, is to damage the contents of private data. For

instance, it corrupts the local file system by overwriting file contents with meaningless data,

recursively deleting files from the SD card, or deleting SMS messages. In real-world apps,

exceptions are frequently used, especially around input/output (I/O) operations. Without

a comparatively sound malware detection model, it is difficult to detect or identify malware.

DoS attack, Denial of service (DoS) on mobile phones exhaust limited resources by

intentionally causing the phone to use these resources in an inefficient manner. For instance,

an app might drain the battery by setting brightness to maximum or keeping WiFi on at

all times or exhaust file system space by logging every operation to a file.

1Some apps have more than one malicious behavior.
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Behavior interference includes those that do not leak or tamper with sensitive data but

still do not behave the way the app was intended to behave. For example, a calculator that

uses a random number in a calculation rather than the expected number, or blocks SMS

messages in the onReceive method when a trigger condition is met.

For the four categories of malware, purely automated static analyses have a hard time in

identifying the malware. To start with, analysis of the object-oriented programs are known

to be hard to analyze. Second, Android malware are application-dependent and subject to

human judgement. The following sections illustrate these points.

1.2 Primary challenge—Mutual dependence
of exception-flow, control-flow and

points-to analysis

Android apps are written in Java, and it can be difficult to statically produce a precise

control-flow graph of the program, particularly in the presence of exceptions. This is because

of the mutual dependence of exception-flow, control-flow and points-to analysis.

Exceptions pervade the control-flow structure of modern object-oriented programs. An

exception indicates an error occurred during program execution. Exceptions are resolved

by dynamically locating code specified by the programmer for handling the exception (an

exception handler) and executing this code. This language feature is designed to ensure

software robustness and reliability. Ironically, Android malware is exploiting it to leak

private sensitive information to the Internet through exception handlers [6]. Analyzing the

behavior of programs in the presence of exceptions is important to detect such vulnerabili-

ties. However, exception-flow analysis is challenging, because it depends upon control-flow

analysis and points-to analysis, which are themselves mutually dependent, as illustrated in

Figure 1.1.

In Figure 1.1, edge A denotes the mutual dependence between exception-flow analysis

and traditional control-flow analysis (CFA). CFA traditionally analyzes which methods

can be invoked at each call-site. Exception-flow analysis refers to the control-flow that

is introduced when throwing exceptions [7]. Intuitively, throwing an exception behaves

like a global goto statement, in that it introduces additional, complex, interprocedural

control-flow into the program. This makes it difficult to reason about feasible run-time paths

using traditional CFA. Similarly, infeasible call and return flows can cause spurious paths

between throw statements and catch blocks. The complexity of exception-flow analysis

makes many object-oriented analysis gives up exceptions or go unsound (see Chapter 14

Section 14.1 for detailed discussion).
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Figure 1.1: Relationship among exception-flow analysis, control-flow analysis and points-
to analysis.

The insufficiency of handing exceptions impacts the precision in finding the malware.

The following simple example demonstrates this:

try {

maybeThrow(); // Call 1

} catch (Exception e) { // Handler 1

startActivity(new Intent(Intent.ACTION_VIEW,Uri.parse(url)));

}

maybeThrow(); // Call 2

In the code snippet, the handler code uses Android constructs (to be illustrated in Sec-

tion 1.3) to leak some sensitive information that is embedded in the url. Under a mono-

variant abstraction like 0CFA [8], where the distinction between different invocations of the

same procedure are lost, it will seem as though exceptions thrown from Call 2 can be caught

by Handler 1. This further causes the false positive report, which should not be considered

as malicious. This imprecision can cause a false negative (undetected maliciousness), too.

It can happen when an exception was thrown in Call 1 but was not caught in Handler

1 and directed to some other clean code. The imprecise security analysis result can be

affected in similar way by the relationships denoted by Edge B and Edge C in Figure 1.1.

Edge B in Figure 1.1 denotes the relationship between exception-flow analysis and points-

to analysis. Points-to analysis computes which abstract objects (with respect to allocation

sites, calling contexts, etc.) a program variable or register can point to. Points-to analysis

affects exception-flow analysis, because the type of the exception at a throw site determines

which catch block will be executed. That is to say, exception-flow analysis requires precise

points-to analysis. Similarly, exceptional flows affect points-to analysis, since the path taken

by the exceptional flow can enable or disable object assignments and bindings.

The mutually recursive relationship of CFA and points-to analysis, denoted by edge C,
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is obvious: abstract objects (points-to analysis) determine which methods can be resolved

in dynamic dispatch (CFA), while control-flow paths affect object assignments and bindings

for points-to analysis. In fact, exception-flow analysis is an example of this relationship,

which exacerbates the edge C relationship further!

1.3 Secondary challenge—Android specific challenge:
permutations of asynchronous

multientry points

The secondary challenge in analyzing Android apps is caused by the asynchronous

multiple entry points into an Android application. Intuitively, to do a sound analysis,

all the permutations of the entry points need to be considered. Interleavings of concurrent

constructs will not be our concern, because concurrency-incurred control-flows and data-

flows are very unreliable when produced or exploited in the context of security vulnerability

identification [5]. Therefore, the focus is on the challenge of how to approximate the

permutations of the entry points under an Android framework.

The Android framework allows developers to create rich, responsive, and powerful

apps by requiring developers to organize their code into components. Each component

type serves a different purpose: (1) activities for the main user-interface, (2) services

for nonblocking code or remote processes, (3) content providers for managing application

data, and (4) broadcast receivers to provide system-wide announcements. Applications

can register various component handlers, either explicitly in code or through a resource

file (res/layout/filename.xml). Whenever an event occurs, the callbacks for the event

are invoked asynchronously, potentially interleaving their execution with those in other

components. Different apps can also invoke each other by exposing functionality via an

intent at both the application and component level.2 Unlike an application with a single

entry point, static analysis for an Android application must explore all permutations of

these asynchronous entry points.

Analyzing all permutations can greatly increase the expense of the analysis. As a result,

many analyzers use an unsound approximation that can lead to false negatives.

In order to avoid missing malicious behavior, while still performing the analysis ef-

ficiently, we need a way to approximate the possible permutations of the asynchronous

multientry points without loosing soundness. This means we cannot use heuristic pruning,

2Apps sharing the same Linux user ID are also able to access each other’s files.



6

but we also do not want to use a dynamic analysis, since we hope to analyze the program

before we attempt to run it.

To summarize the relationship between the challenges, an unsound approximation of

asynchronous entry points can miss malicious behavior, while any imprecision in the un-

derlying control-flow, exceptional-flow and data-flow analysis can result in an analysis

that falsely reports or misses malicious behavior in programs. This problem is further

exacerbated by additional highly dynamic dispatched interprocedural control-flows caused

by permutations of entry points. We need to address both challenges to produce precise

analysis results, as well as not to miss malicious behavior in the program.

1.4 Human-in-the-loop malware identification

Even if we can tackle the main challenges (Section 1.2 and Section 1.3) of statically

analyzing Android apps, purely automated static analysis of malware is insufficient. It is

indeed necessary to involve a human in the loop to statically identify malware, given the

precise analysis results. The reasons are two-fold:

• Malware is application-dependent and subject to human judgment. For all four

categories of common malware classes (Section 1.1), we need a human to determine if

this functionality is too far outside the advertised functionality of the app. A human

must decide maliciousness in given contexts. The contexts, in this case, are provided

by the static analyzer. They can highlight suspicious paths or brief reports, etc. For

example, analysis results for a photo sharing app may highlight a path 1 from photos

to some location A on the Internet. At the same time, there may be another path, 2,

highlighted because the analysis captures that the app is sending contact information

to the same place, too. Given this information, a human analyst can easily decide

path 2 is probably malicious since it is out of the advertised functionality of the app.

Even more, provided with more precise data, a human analyst can check where exactly

the location A is to determine what the app is doing.

• The second reason we integrate a human in the detection loop is, the analyzer is not

just for saying malicious or nonmalicious. More importantly, the task is to identify

malware. In other words, the goal of my analyzer is to provide precise results as

much as possible to aid analysts in making a final decision. In addition, to pinpoint

the maliciousness is the primary requirement in the Automated Program Analysis

for Cybersecurity (APAC) Defense Advanced Research Projects Agency (DARPA)

project. In other words, the precision of the malware analysis is not judged by “yes”
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or “no.” The analyzer must identify the locations and behavior of the malicious code,

if present.

1.5 Thesis statement

This dissertation is about advancing static analysis techniques to help human analysts

detect malware, specifically malicious Android apps. The thesis statement is: Static analysis

for Android apps for malware identification with a human in the loop is feasible and useful.

The idea behind the work relies on two closely related projects: one is a foundational analytic

platform with high precision and good-enough performance for object-oriented programs,

which can enable a precise and efficient static security analysis built upon it. The other

is application security analysis. I mainly target analyzing the most problematic malicious

behavior on mobile devices—the leakage or tampering of private sensitive information [4]

(the first and second categories of malware in Section 1.1), via static taint-flow analysis.

The analysis results are then provided to human analysts to detect and identify malicious

behaviors in Android apps. This process also makes the third and fourth categories of

malware within my scope, since the two categories rely more on human analysts’ judgment

of the analysis results.

1.6 Contributions

The contributions of the work are as follows:

• I develop a new abstraction to analyze exception flows and control flows in a gener-

alized fashion: an entry point to a try block is an analogy of a function call; an exit

from a try block or due to a throw is an analogy of a function return; handler frames

are introduced on the stack in addition to call frames, where both kinds of frames

serve to resume the execution contexts. The analysis technique can precisely resolve

return flows of thrown exceptions, in addition to normal function calls and returns.

• I develop an abstract garbage collection in an object-oriented setting, and enhance

it with liveness analysis to refine the points-to information. This in turn affects

control-flows and exception-flows, as illustrated in Figure 1.1.

• I construct the multientry point saturation to model the effect of the asynchronous

entry points.

• I develop a static taint-flow analysis in an abstract interpretation framework. When

it is built on classical abstract interpretation, the static taint analysis can leverage

context-, object- and field-sensitivity; when it is built on pushdown exception-flow

analysis, it can track taint-flow information with even better precision.
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• I develop and evaluate Gödel hashing to speed up static analysis.

• The evaluation of the analysis techniques are performed on large-scale Java programs

and yields precise and efficient analysis results.

• The evaluation of the static malware analyses with a human-in-the-loop demonstrates

its utility.

1.7 Outline

The rest of the dissertation is organized as follows: Chapter 2 presents preliminary

knowledge in abstract interpretation and introduces some related terms in Android.

Chapter 3 presents the syntax of a low level object-oriented bytecode, which generalizes

Dalvik bytecode.

Chapter 4 describes a core concrete semantics—a CESK machine, which is a state-

machine in which each state has four components: a (C)ontrol component, an (E)nvironment,

a (S)tore and a (K)ontinuation, for the Dalvik bytecode. This is the starting point to derive

abstract semantics to form static analysis.

Following abstracting abstract machine (AAM) [9] design methodology, Chapter 5 first

refines the concrete semantics that are introduced in Chapter 4 to pointer-refined concrete

semantics, which directly enables a classical control-flow analysis with context-, object- and

field-sensitivity.

Realizing the limitation of the classical analysis to produce precise return flows for

function calls and exception-flows, Chapter 6 refactors the concrete semantics into pushdown

semantics to precisely match calls, returns, exception throw, and catch.

To tackle the challenge of analyzing object-oriented programs from the points-to aspect,

Chapter 7 describes how to perform abstract garbage collection in object-oriented setting

to collect unreachable objects. Since pure abstract garbage collection can not discover

“garbage” or “dead” abstract objects in a local scope, this further enhances abstract garbage

collection by combining liveness analysis.

Combining the formulations and techniques presented in Chapter 6 and Chapter 7,

Chapter 8 formulates the complete reachability algorithm to construct a pushdown exception-

flow analyzer.

Since an Android app has multiple entry points rather than a single main function, static

analysis of Android apps must be able to handle it. Chapter 9 describes the entry point

saturation technique to model the permutations of the multiple entry points.

At this point, the foundational analysis framework for Android applications is con-

structed.
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For security analysis, Chapter 10 develops a static taint-flow analysis in abstract in-

terpretation framework. A set of walkthrough examples complement the explanations in

addition to the formulation.

To accelerate the analysis, Chapter 11 develops Gödel hashing techniques to transform

expensive store operations into numerical operations.

Combining all the techniques described in the previous chapters, Chapter 12 briefly

presents some implementation details, discusses how to enable a human in the loop and

principled soundness.

Chapter 13 presents the evaluation results in three aspects: (1) In analysis precision and

performance aspect, I compare pushdown exception-flow analysis and its enhanced version

with classical control-flow analysis. (2) In performance aspect specifically, I evaluate the

space and efficiency of Gödel hashing sets and their effectiveness in speeding up analysis. (3)

In the security aspect, a series of experiments have been conducted on real Android malware

to demonstrate the effectiveness of identifying Android malware by using the static analyzer

of Android apps with a human in the loop.

Chapter 14 summarizes some related work and Chapter 15 draws conclusions.



CHAPTER 2

BACKGROUND

2.1 Semantics-based abstract interpretation

Abstract interpretation aims to approximate program behaviors that arise during ex-

ecution. It allows a designer to specify an analysis and to make the correctness proof

mechanical, rather than in an ad hoc way. Semantic-based abstract interpretation is a

program analysis technique based on concrete semantics, which is used to specify language

implementation. Abstract semantics is derived from concrete semantics, reasoning program

behavior statically with the same language features that are described by concrete semantics.

In the following sections, I will briefly summarize concrete semantics, abstract semantics

and its relations.

2.1.1 Concrete semantics

Concrete semantics describes the core of a real language implementation. It can de-

scribe run-time execution of a program by modeling the language features. Examples of

such machines include CEK and Krivine’s machine. Those machines are state transition

systems, defined by a transition relation ⇒ between program states, ς ∈ Σ. For every

language feature, such as assignment, function definitions and invocations, etc. there is

a corresponding definition of ⇒ to describe the execution. The semantics starts from an

initial state, ς0, which is injected from an injection function,

I : Prog→ Σ, where prog ∈ Prog.

The meaning of a program is defined as a set of reachable states obtained by a partial

function—the evaluation function:

eval(prog) = {ς | I(prog)⇒ ς}.

The set of reachable states returned by this function can possibly be infinite, which is

incomputable.
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2.1.1.1 CEK, CESK, CESK?, time-stamped CESK?

The work of “Abstracting Abstract Machine” [9] by Van Horn and Might, introduces

a series of concrete machines. Since the semantic techniques embodied in the machines

inspire the design and implementation of the analysis of the object-oriented bytecode in

this work, it is worth describing those machines to ease the understanding of the rest of

the dissertation. To simplify the presentation, I describe the machines for a call-by-value

λ-calculus language:
e ∈ Exp ::= v` | (e e)` | (λ (v) e)`

` ∈ Lab is an infinite set of labels.

A CEK machine [10] is a kind of concrete machine, where every state of the CEK machine

consists of a control string (an expression), an environment that closes the control-string

and a continuation. For example, the state space of a CEK machine to model the λ-calculus

machine [9] is:
ς ∈ Σ = Exp× Env ×Kont
d ∈ D ::= (λ (v) e)
ρ ∈ Env = Var ⇀ D × Env
κ ∈ Kont ::= mt | ar(e, ρ, κ) | fn(d, ρ, κ).

It is an environment-based machine, where the environments are finite maps from variables

to closures.

There are three kinds of continuations in the machine. mt denotes no operations to

be done. ar indicates that the next computation is to evaluate the argument expression

(from a function call site), once the lambada expression is evaluated; at the same time,

it records the current continuation and environment (caller’s context information). fn

records the current lambda expression that is evaluated and current continuation. When

the argument expression is evaluated to a value, the binding from a formal parameter of the

lambda expression to the argument value is extended into the environment, and the caller’s

continuation is resumed. These processes are defined as transition relations of the CESK

machine, as shown in Figure 2.1.

The CEK machine has possibly infinite state-space, because both environments and con-

tinuations are recursive in structure. When applying structural abstraction on the machine,

the map α yields objects in abstract state-space with recursive structure [9], making the

abstract state-space infinite. This further makes the analysis complicated. Therefore, to

make the abstraction a finite state-space, I need to untie the recursive structures present in

the CEK machine. The CESK machine of [11] unties the environment recursiveness. It has

an additional store component to allocate variable bindings. The store is a finite map from
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ς ⇒CEK ς ′

〈v, ρ, κ〉 〈d, ρ′, κ〉 where ρ(v) = (d, ρ′)

〈(e0 e1), ρ, κ〉 〈e0, ρ,ar(e1, ρ, κ)〉
〈d, ρ,ar(e, ρ′, κ)〉 〈e, ρ′, fn(d, ρ, κ)〉
〈d, ρ, fn((λ (v) e), ρ′, κ)〉 〈e, ρ′[v 7→ (d, ρ)], κ〉

Figure 2.1: The CEK machine.

addresses to values and environment is refactored to map variable to addresses. The level

of indirection forces the recursive structure to go through explicitly allocated addresses.

Following the same spirit, the CESK∗ machine store allocates continuations to untie the

recursiveness incurred from continuations in the original CEK machine. To illustrate, the

abstract state-space of CESK∗ is shown as follows [9]:

ς ∈ Σ = Exp× Env × Store ×Addr
s ∈ Storable = D × Env + Kont
κ ∈ Kont ::= mt | ar(e, ρ, a) | fn(d, ρ, a).

The revised machine is defined in Figure 2.2 in the work of [9].

The CESK machine and the CESK? machine need to operate on addresses, which should

be allocated as real computation. In concrete semantics, it is trivial to give an unused value

whenever a new addresses is needed. However, in static analysis, we are only allowed to

operate on finite resources, which are represented by the finite number of addresses. This

means that I need to reuse the previously allocated addresses. In the literature, it is known

to use machine history to represent part of an address [12, 13]. The representations that

are based on machine history are called time-stamps. The work [14] proposes to use history

calling contexts as contours to parameterize the address allocation strategy. This is the

essence of the work k-CFA, which is concerned about what flows to where and when.

In this dissertation, I adopt the general time-stamp approach, while extending it to

instantiate a context-sensitive, object-sensitive abstract interpretation.

ς ⇒CESK? ς ′, where κ = σ(a), b /∈ dom(σ)

〈v, ρ, σ, a〉 〈d, ρ′, σ, a〉 where (d, ρ′) = σ(ρ(v))

〈(e0 e1), ρ, σ, a〉 〈e0, ρ, σ[b 7→ ar(e1, ρ, a)], b〉
〈d, ρ, σ, a〉
if κ = ar(e, ρ′, c) 〈e, ρ′, σ[b 7→ fn(d, ρ, c)], b〉
if κ = fn((λ (v) e), ρ′, c) 〈e, ρ′[v 7→ b], σ[b 7→ (d, ρ)], c〉

Figure 2.2: The CESK? machine.
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Here, I demonstrate the technique of constructing a time-stamped CESK? as in the

literature [14, 9, 15]. The idea is to add a Time component into the state-space definition.

For example, for call-by-value λ-calculus language:

t, u ∈ Time
ς ∈ Σ = Exp× Env × Store ×Addr × Time.

The machine is parameterized by the functions:

tick : Σ→ Time alloc : Σ→ Addr .

The tick function returns the next time; the alloc function allocates a fresh address for a

binding or continuation. We require of tick and alloc that for all t and ς, t < tick(t) and

alloc(ς) /∈ σ where ς = 〈 , , σ, , 〉.

The advantage of the CESK? machine and time-stamped CESK? is that it allows

straightforward design of static analysis, as I will show in the next section.

2.1.2 Abstract semantics

Due to the halting problem, it is not possible to decide membership in the set of reachable

states that are produced by concrete semantics. We need to safely approximate the core

of the realistic run-time execution and so to reason about program behavior. Abstract

semantics is the semantics to approximate the concrete semantics without too much loss

of precision and make it computable. It is also a state transition system but operates in a

nondeterministic way.

The transition system is defined by the abstract transition relation ; ⊆ Σ̂× Σ̂. The

transition starts from an initial abstract state ς̂0, injected from Î : Prog ⇀ Σ̂. Abstract

semantics operate on abstract states Σ̂, which represent, or approximate sets of concrete

states. Notationally, the difference between an abstract state ς̂ and a concrete state ς is the

addition of ˆover ς̂, but essentially, abstract states are mapped from concrete states by an

abstraction map α : Σ→ Σ̂.

The abstract evaluation function is defined as:

êval = {ς̂ | Î(prog) ; ς̂}.

The most straightforward abstraction map a static analysis uses is structural abstraction,

which lifts abstraction point-wise, element-wise, component-wise and member-wise across

the structure of a state.
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2.1.2.1 Abstract time-stamped CESK? machine and k-CFA

As stated in Section 2.1.1, CESK? and time-stamped CESK? allow one to design static

analysis straightforwardly. Specifically, I can construct abstract machines from CESK? and

time-stamped CESK? by structural abstraction.

This is because the two machines have no recursiveness in the structure of the state-

space. In fact, during abstraction, the only point of approximation is the store component.

This is done by bounding the address space of the store. In addition, to preserve soundness,

an address may be mapped to a set of values.

Since the time-stamped CESK? machine can yield context-sensitive analysis, I present

its abstract semantics in Figure 2.3.

The abstract semantics of time-stamped CESK? machine resemble in the concrete coun-

terpart, the modifications are considering possibly multiple values for an address and

allowing the machine to nondeterministically choose a particular value form the set at

a given address.

Correspondingly, the analysis is parameterized by the functions:

t̂ick : Σ̂→ T̂ime, âlloc : Σ̂→ Âddr .

The variance of the time-stamp based address allocation strategy, including the defi-

nitions of Time and T̂ime, tick and t̂ick, alloc and âlloc, are illustrated in Chapter 5, Sec-

tion 5.2.1.

As stated in Section 2.1.1.1, k-CFA uses history calling-context as contour or time. In

other words, T̂ime is defined as a list of labels, and the t̂ick is defined as follows:

t̂ick((e e)`, , , , t̂) = firstk(` : t̂).

where firstk returns the first k elements (`s in call sites) from a list. Âddr is instantiated

with T̂ime too:

Âddr = (Var, T̂ime).

ς̂ ; ĈESK ?
t ς̂
′, where κ ∈ σ̂(a), b = âlloc(ς̂ , κ), u = t̂ick(t, κ)

〈v, ρ, σ̂, a, t〉 〈d, ρ′, σ̂, a, u〉 where (d, ρ′) ∈ σ̂(ρ(v))

〈(e0 e1), ρ, σ̂, a, t〉 〈e0, ρ, σ̂ t [b 7→ ar(e1, ρ, a)], b, u〉
〈d, ρ, σ̂, a, t〉
if κ = ar(e, ρ′, c) 〈e, ρ′, σ̂ t [b 7→ fn(d, ρ, c)], b, u〉
if κ = fn((λ (v) e), ρ′, c) 〈e, ρ′[v 7→ b], σ̂ t [b 7→ (d, ρ)], c, u〉

Figure 2.3: The abstract time-stamped CESK? machine.
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So, âlloc returns an abstract address whenever a new binding is needed in a state ς̂.

The definition of T̂ime, t̂ick and âlloc based on calling history instantiates an k-CFA

analysis.

The design methodology of deriving a time-stamped CESK? is applied to analyze object-

oriented bytecode in this work (Chapter 5), achieving context-, object- and field-sensitivity

(Chapter 5, Section 5.2.1). It is the first attempt of my analysis. The advantages and its

limitation motivate my pushdown exception-flow analysis.

2.1.3 Soundness

This section illustrates how to formally establish soundness of the abstract time-stamped

CESK? machine. Despite that the language could be different, the proof technique can be

used to prove the soundness of my work in this dissertation.

Theorem 2.1 (Soundness). If ς ⇒ ς ′, and α(ς) v ς̂, then there exists ς̂ ′ such that ς̂ ; ς̂ ′

and α(ς ′) v ς̂ ′.

The theorem says that the abstract semantics computes an approximate ansIr for each

concrete execution that are sequences of concrete states related by ⇒. This is illustrated

in Figure 2.4. The abstract semantics should not miss any flows of concrete semantics, but

it may add extra flows that can never happen. These extra flows are named “infeasible”

paths or “unrealizable” paths in the literature [16].

For now, I prove the soundness of a time-stamped CESK? machine. I use an abstraction

function, defined in Figure 2.5, from the state-space of the concrete time-stamped machine

into the abstracted state-space.

I define the partial order (v) on the abstract state-space as the natural point-wise,

element-wise, component-wise and member-wise lifting, wherein the partial orders on the

sets Exp and Addr are flat.

Proof. Assume that ς ⇒ ς ′ and α(ς) v ς̂. According to the transition relation of ⇒, there

will be ς ′ yielded. To prove the theorem, I need to show that an abstract state ς̂ ′ exists

ς1 ⇒ ς2 ⇒ ... ⇒ ςn

α(ς1) α(ς2) ... α(ςn)

v v v

ς̂1 ; ς̂2 ... ; ς̂n

Figure 2.4: Soundness.
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α(e, ρ, σ, a, t) = (e, α(ρ), α(σ), α(a), α(t)) [states]

α(ρ) = λv.α(ρ(v)) [environments]

α(σ) = λâ.
⊔

α(a)=â

{α(σ(a))} [stores]

α((λ (v) e), ρ) = ((λ (v) e), α(ρ)) [closures]

α(mt) = mt [continuations]

α(ar(e, ρ, a)) = ar(e, α(ρ), α(a))

α(fn(d, ρ, a)) = fn(d, α(ρ), α(a)),

Figure 2.5: The abstraction map, α : ΣCESK?
t
→ Σ̂

ĈESK?
t
.

such that the ; simulates ⇒. This can be proven by the abstraction map with case by

case consideration. Finally, I can prove that α(ς) v ς̂ ′.

2.1.4 Static analysis as graph search

As indicated by the abstract transition relation, static analysis as a small-step abstract

interpretation is essentially a graph search process, because the sequences of abstract states

related by ; and the edges form a directed graph. The analysis terminates when no “new”

knowledge is discovered in any state nodes. In other words, the analysis reaches the fixed

point when every new state is subsumed (v) by the states that are explored [16, 15].

2.2 Android

Android involves domain-specific terms, which are summarized as follows:

• Android OS is an operating system based on the Linux kernel, and designed primarily

for touchscreen mobile devices such as smartphones and tablet computers [2].

• Dalvik virtual machine (DVM), is the open-source software that runs on Android

OS. It houses Android apps running on the devices. The DVM is designed to be

isolated from Android kernel services, such as security, memory management, process

management, and the network stack.

• An Android app, is written in Java programming language. It is compiled into .dex

(Dalvik executable) files from Java bytcode that are compiled in a Java compiler.

Along with any data and resources files, the .dex files will be zipped into an APK :

an Android package. It is an archive file with an .apk suffix. Every Android app has

its own virtual machine instance. The DVM executes the files in .dex format. The

core framework components are essential building blocks of an Android app. The
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categories of components and the asynchronous multiple entry points that complicate

static analysis of Android app, are described in Section 1.2, Chapter 1.



CHAPTER 3

THE SETTING: AN OBJECT-ORIENTED

BYTECODE FOR THE DALVIK VM

This chapter defines an object-oriented bytecode language closely modeled on the Dalvik

virtual machine to which Java applications for Android are compiled.

3.1 Dalvik bytecode

The machine model and calling convention of Dalvik VM approximately imitates com-

mon real architectures and C-style calling conventions. It is register-based and calling frames

are fixed in size upon creation. Each frame consists of a particular number of registers

(specified by the method) as well as any adjunct data needed to execute the method. The

instruction sets are designed based on this: local variables are assigned to any of the 216

available registers in each frame. Dalvik opcodes operate directly on the registers. There are

218 opcodes in Dalvik. Fortunately, they can be abstracted into a set of concise instructions.

The generalized instructions are straightforward representations of the original instructions,

more importantly, they can be interpreted and analyzed with similar semantics. In addition

to the default instruction sets, I also introduce instructions specifically for exceptions to aid

analysis. The specific syntax of the abstracted bytecode is described in Section 3.2.

3.2 The syntax of Dalvik bytecode

The syntax of the bytecode language is given in Figure 3.1. Statements encode individual

actions for the machine; atomic expressions encode atomically computable values, and

complex expressions encode expressions with possible nontermination or side effects. There

are four kinds of names: Reg for registers, ClassName for class names FieldName for field

names and MethodName for method names. There are two special register names: ret,

which holds the return value of the last function called, and exn, which holds the most

recently thrown exception.
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program ::= class-def . . .

class-def ::= (attribute . . . class class-name extends class-name

(field -def . . . ) (method -def . . . ))

field -def ::= (field attribute . . . field -name type)

method -def ∈ MethodDef ::= (method attribute . . . method -name (type . . . ) type

(throws class-name . . . ) (limit n) s . . .)

s ∈ Stmt ::= (label label) | (nop) | (line int) | (goto label)

| (if æ (goto label)) | (assign name [æ | ce]) | (return æ)

| (filled-new-array æ . . .æ type) | (aput æv æ æ)

| (aget name æ æ)

| (field-put æo field -name æv)

| (field-get name æo field -name)

| (push-handler class-name label) | (pop-handler)

| (throw æ)

æ ∈ AExp ::= this | true | false | null | void | name | int

| (atomic-op æ . . .æ) | (instance-of æ class-name)

| (check-cast æ class-name)

ce ::= (new class-name)

| (invoke-kind (æ . . .æ) (type0 . . . typen))

| (new-array æ type) | (array-length æ)

invoke-kind ::= invoke-static | invoke-direct | invoke-virtual

| invoke-interface | invoke-super

type ::= class-name | int | byte | char | boolean

attribute ::= public | private | protected | final | abstract

m ∈ MethodCall is a set of method invocation sites

` ∈ Label.

Figure 3.1: An object-oriented bytecode adapted from the Android specification.

The syntax is largely typical for a Java-like bytecode, except the bytecode format is

longer, because most of the Dalvik instructions contain source and destinations, including

move statements move-∗, constant assignments const-∗, comparisons cmp∗, unary operations

and binary operations. The series of the instructions are generalized in assign statement.

The other generalization is abstracting away the type information of the opcodes. For

example, the type specific opcodes such as ∗-byte, ∗-char, etc. are ignored in the core syntax.

This generalization eliminates the duplicate interpretation rules and simplifies presentation

of the analysis as well. The complete supporting Dalvik instructions and their abstracted
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versions (specified with opcode name) are presented in Appendix A.

In addition to the default instructions, I introduce additional bytecode statements

related to exceptions in method -def , illustrated in more detail as follows:

• (throws class-name . . . ) indicates that a method makes a throws declaration.

• (push-handler class-name label) pushes a handler frame on the stack. The frame will

catch exceptions of type class-name and divert execution to label .

• (pop-handler) pops the top-most handler frame off the stack.

Every statement has a label. With respect to a given program, I assume a syntactic

metafunction S : Label → Stmt∗, which maps a label to the sequence of statements that

start with that label.

The subsequent chapters develop and derive semantics for the languages.



CHAPTER 4

CONCRETE SEMANTICS FOR DALVIK

BYTECODE

In preparation for synthesizing abstract interpretations, I first construct a small-step

machine-based semantics for Dalvik bytecode.

4.1 Concrete state-space

Figure 4.1 presents the machine’s concrete configuration-space. The machine has an

explicit stack, which under structural abstraction (defined in Chapter 2, Section 2.1.2)

will become the stack component of a pushdown system. The stack contains not only call

frames, but also miniframes for exception handlers. The FramePointer is the environmental

component of the machine: by pairing the frame pointer with a register name, it forms the

address of its value in the store.

The Time component is intentionally left unspecified for now. It will be instantiated

when I derive an abstract semantics.

The encoding of objects abstracts over a low-level implementation: objects are a class

plus a base pointer, and field addresses are “offsets” from this base pointer. Given an object

(op, C), the address of field field -name would be (op,field -name). In the semantics, object

allocation creates a single new base object pointer op′.

The machines are parameterized by the following functions:

tick : Label× Time → Time, alloc : Label× Time → Ptr

The tick function returns the next time; the alloc function allocates a fresh pointer for

an address. The definitions of the functions and its abstract counterpart are defined in

Chapter 5, Section 5.2.1.

4.2 Concrete transition relation

In this section, I describe the essential cases of the (⇒) relation, which deal with objects,

functions and exceptions. The remaining cases are in Appendix B.1.
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ς ∈ Σ = Stmt∗ × FramePointer × Store ×Kont × Time

σ ∈ Store = Addr → D

a ∈ Addr = RegAddr + FieldAddr

ra ∈ RegAddr = FramePointer × Reg

fa ∈ FieldAddr = ObjectPointer × FieldName

κ ∈ Kont ::= fun(fp, ~s, κ)

| handle(class-name, label , κ)

| halt

d ∈ D = ObjectValue + String + Z + B
ov ∈ ObjectValue = ObjectPointer × ClassName

t ∈ Time is a set of time-stamps

ptr ∈ Ptr = FramePointer + ObjectPointer

fp ∈ FramePointer is an infinite set of frame pointers

op ∈ ObjectPointer is an infinite set of object pointers.

Figure 4.1: The concrete configuration-space.

The concrete semantics uses the helper functions described in Figure 4.2. The construc-

tor lookup function C yields the field names and the constructor associated with a class

name. A constructor K takes newly allocated addresses to use for fields and a vector of

arguments; it returns the change to the store plus the record component of the object that

results from running the constructor.

The method-lookup function M takes a method invocation point and an object to

determine which method is actually being called at that point.

The concrete semantics are encoded as a small-step transition relation, (⇒) ⊆ Σ × Σ.

C : ClassName→ (FieldName∗ × Ructor)

K ∈ Ructor =

fields︷ ︸︸ ︷
Addr∗×

arguments︷︸︸︷
D∗ → (

field values︷ ︸︸ ︷
Store ×

record︷ ︸︸ ︷
FramePointer)

M : D ×MethodCall ⇀ MethodDef

A : AExp× FramePointer × Store ⇀ D evaluates atomic expressions:

A(name, fp, σ) = σ(fp,name) [variable look-up]

AF : AExp× FramePointer × Store×FieldName ⇀ D looks up fields:

AF (æ, fp, σ,field -name) = σ(op,field -name) [field look-up]

where (op, class-name) = A(æ, fp, σ).

Figure 4.2: Helper functions for the concrete semantics.
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Each statement and expression type has a transition rule below.

The initial configuration consists of the program, the initial frame pointer, an empty

heap, and an empty stack: ς0 = I(~s) = (~s, fp0, [], 〈〉).

4.2.1 New object creation

Creating an object allocates a new object pointer; it also invokes the constructor helper

to initialize the object. The (+) operation represents right-biased functional union.

([[(assign name (new class-name))` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′′, κ, t′)

where t′ = tick(`, t)

di = {}

(
−−−−−−−→
field -name,K) = C(class-name)

op′ = alloc(`, t)

ai = (op′,field -namei)

(∆σ, p′) = K(~a, ~d)

d′ = (op′, C)

σ′ = σ + ∆σ + [(op,name) 7→ d′].

4.2.2 Instance field reference/update

Referencing a field gets the object pointer and then grabs the field value as an offset:

([[(field-get name æo field -name) : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ = tick(`, t), σ′ = σ[(fp,name) 7→ AF (æo, fp, σ,field -name)].

Updating a field grabs the object, extracts the object pointer and updates the associated

field in the store:

([[(field-put æo field -name æv) : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ = tick(`, t), (op, class-name) = A(æo, fp, σ)

σ′ = σ[(op,field -name) 7→ A(æv, fp, σ)].

4.2.3 Method invocation

Method invocation is a multistep process: it looks up the object, the class of that object

and then the appropriate method.1 When transiting to the body of the resolved method,

a new function continuation is instantiated, which records the caller’s execution context.

1The logic of handling static method resolution resembles that of virtual methods, except that it does
not need to climb up class hierarchy chain.
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Finally, the store is updated with bindings for the formal parameters and evaluated values

of passed arguments.

([[(invoke-kind (æ0 . . .æn)(type0 . . . typen))` : ~s]], fp, σ, κ, t)⇒ (s′0, fp
′, σ′, κ′, t′)

where

method-def︷ ︸︸ ︷
(method attribute . . . method -name (type . . .) type . . . (limit n) ~s′ . . . ) =M(d0,m)

t′ = tick(`, t)

d0 = A(æ0, fp, σ)

di = A(æ′i, fp, σ), i = m. . . n− 1

κ′ = fun(fp, ~s, κ)

fp′ = alloc(`, t)

a′i = (fp′,namej), j = m. . . n− 1

σ′ = σ[a′i 7→ di].

In Dalvik bytecode, the formal parameters in a method are specified as the last m

registers. For example, if the method has 2 arguments, and the total registers allocated for

the method call frame is 5 specified in statement (limit n) (n=5), then the formal parameters

are name3 and name4, and so m = 3. Also, the first register name0 is always dedicated to

the object that the method is being invoked on (for nonstatic method), and other registers

are for local variables.

4.2.4 Return to call

Returning from a function checks if the top-most frame pointer is a function continuation

(as apposed to an exception-handler continuation). If it is, then the machine binds the

result and restores the context of the continuation; if not, then the machine skips to the

next continuation. So, if κ = fun(fp′, ~s′, κ′):

([[(return æ)` : ~s]], fp, σ, κ, t)⇒ (~s′, fp′, σ′, κ′, t′)

where t′ = tick(`, t)σ′ = σ[(fp′, ret) 7→ A(æ, fp, σ)].

When returning a value restores the caller’s context, an additional step is to put the return

value in the dedicated return register, ret.

4.2.5 Return over handler

If attempting to return, but the topmost continuation is a handler, then the machine

pops off the handler. So, if κ = handle(class-name, label , κ′):

([[(return æ)` : ~s]], fp, σ, κ, t)⇒ ([[(return æ) : ~s]], fp, σ, κ′, t′)

where t′ = tick(`, t).
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4.2.6 Pushing and popping exception handlers

Pushing and popping exception handlers is straightforward:

([[(push-handler class-name label)` : ~s]], fp, σ, κ, t)

⇒ (~s, fp, σ,handle(class-name label) : κ, t′)

where t′ = tick(`, t).

([[(pop-handler) : ~s]], fp, σ,handle(class-name label , κ))⇒ (~s, fp, σ, κ)

where t′ = tick(`, t).

4.2.7 Throw to matching handler

When the machine encounters a throw statement, it must check if the topmost con-

tinuation is both a handler and also a matching handler; if a matching handler is found,

that is, class-name is a subclass of class-name ′, where (op, class-name) = A(æ, fp, σ) and

class-name ′ is from the top handler’s frame (HandlerFrame), the execution flow jumps to

code block of the handler:

([[(throw æ)` : ~s]], fp, σ,handle(class-name ′, label , κ′), t)

⇒ (S(label), fp, σ[(fp, exn) 7→ (op, class-name)], κ′, t′).

The last thrown exception object value will be put in the dedicated exception register

exn.

4.2.8 Throw past nonmatching handler

When throwing, if the topmost handler is not a match, machine continues deeper into

the stack, looking far a matching handler.

If class-name is not a subclass of class-name ′, where (op, class-name) = A(æ, fp, σ) and

class-name ′ is from the top HandlerFrame, then handle transits to a configuration with the

control state unchanged but with the top frame popped:

([[(throw æ)` : ~s]], fp, σ,handle(class-name ′, label), κ′), t)⇒ ([[(throw æ)` : ~s]], fp, σ, κ′, t′).

4.2.9 Throw past return point

If throwing an exception and the topmost handler is a function return point, then it

jumps over this continuation:

([[(throw æ) : ~s]], fp, σ, fun(fp′, ~s′, κ′), t)⇒ ([[(throw æ) : ~s]], fp, σ, κ′, t′).
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The throw past nonmatching handler, throw past return and the return over handler,

are the “multipop” transition relations that will require modification of the algorithm used

for control-state reachability, as illustrated in detail in Chapter 8.

4.2.10 Other transition rules

The above transition relations are the core relations that demonstrate the advantage of

upcoming analysis. Other rules for goto, if atomic operations, and array related instructions,

etc.are described in Appendix B.1.



CHAPTER 5

CLASSICAL K-CFA FOR DALVIK

BYTECODE

5.1 Pointer-refined machine semantics
for Dalvik bytecode

In order to construct a classical static analysis framework according to the “abstracting

abstract machines” (AAM) methodology [9], I need to systematically eliminate recursion

from the state-space of the machine. In this case, the only source that can cause infinite

state space comes from the continuations and the heap. To eliminate it, I store-allocate

frames.

Figure 5.1 contains the concrete state-space for the pointer-refined small-step Dalvik

machine. The state-space closely resembles previous concrete state-space. One key differ-

ence is the need to explicitly allocate continuations (from the set Kont) at a semantic level.

ς ∈ Σ = Stmt∗ × FramePointer × Store ×KontAddr × Time

σ ∈ Store = Addr → D

a ∈ Addr = RegAddr + FieldAddr + KontAddr

ra ∈ RegAddr = FramePointer × Reg

fa ∈ FieldAddr = ObjectPointer × FieldName

κ ∈ Kont ::= fun(fp, ~s, ak)

| handle(class-name, label , ak)

| halt

d ∈ D = ObjectValue + String + Z + B + Kont

ov ∈ ObjectValue = ObjectPointer × ClassName

ak ∈ KontAddr is a set of continuation addresses

t ∈ Time is a set of time-stamps

ptr ∈ Ptr = FramePointer + ObjectPointer

fp ∈ FramePointer is an infinite set of frame pointers

op ∈ ObjectPointer is an infinite set of object pointers.

Figure 5.1: Pointer-refined state-space for Dalvik bytecode.
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To do this, I introduce another function to get continuation address. It is a parameterizable

function like tick and alloc: allocκ : MethodDef × Time → Addr . The parameterization

function tick, alloc remains the same as the original signature (Chapter 4, Section 4.1).

This machine relies on in the same helper functions in Figure 4.2. The core small-

step transition relation (⇒) ⊆ Σ × Σ now is refactored in Figure 5.2 and Figure 5.3,

where Figure 5.2 is for objects and normal function calls and returns, and Figure 5.3 is

for exception handling. Other transition rules are shown in Appendix B.2. They are the

abstract counterpart of the ones that are defined in Appendix B.1.

The subtle difference is that the continuation is allocated and looked up via the store

component. For example, in method invocation rule in Figure 5.2, the new function

continuation is created and it is updated in the store, mapped by a continuation address;

[object allocation]:

([[(assign name (new class-name))` : ~s]], fp, σ, ak, t)⇒ (~s, fp, σ′′, ak, t
′)

where di = {}, t′ = tick(`, t), (
−−−−−−−→
field -name,K) = C(class-name),

op′ = alloc(`, t), ai = (op′,field -namei), (∆σ, p
′) = K(~a, ~d),

d′ = (op′, C), σ′ = σ + ∆σ + [(op,name) 7→ d′].

[field reference]:

([[(field-get name æo field -name)` : ~s]], fp, σ, ak, t)⇒ (~s, fp, σ′, ak, t
′)

where t′ = tick(`, t), σ′ = σ[(fp,name) 7→ AF (æo, fp, σ,field -name)].

[field update]:

([[(field-put æo field -name æv)
` : ~s]], fp, σ, ak)⇒ (~s, fp, σ′, ak, t

′)

where t′ = tick(`, t), σ′ = σ[(op,field -name) 7→ A(æv, fp, σ)], (op, class-name) = A(æo, fp, σ).

[method invocation]:

c︷ ︸︸ ︷
([[(invoke-kind (æ0 . . .æn)(type0 . . . typen))` : ~s]], fp, σ, ak, t)⇒ (s′0, fp

′, σ′, ak
′, t′)

where

method-def︷ ︸︸ ︷
(method attribute . . . method -name (type . . .) type . . . (limit n) s′ . . . ) =M(d0,m),

t′ = tick(`, t), d0 = A(æ0, fp, σ), di = A(æ′i, fp, σ)(i = m. . . n− 1),

ak
′ = allocκ(method -def , t), σ′ = σ[ak

′ 7→ fun(fp, ~s, ak)], fp′ = alloc(`, t),

a′i = (fp′,namej)(j = m. . . n− 1), σ′′ = σ[a′i 7→ di].

[return to call]:

If σ(ak) = fun(fp′, ~s′, ak
′) : ([[(return æ)` : ~s]], fp, σ, ak, t)⇒ (~s′, fp′, σ′, ak

′, t′)

where t′ = tick(`, t), σ′ = σ[(fp′, ret) 7→ A(æ, fp, σ)].

Figure 5.2: Pointer-refined concrete transition relations (objects and function call/return).
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[return over handler]:
If σ(ak) = handle(class-name, label , ak

′) :

([[(return æ)` : ~s]], fp, σ, ak, t)⇒ ([[(return æ) : ~s]], fp, σ, ak
′, t′).

[push handler]:

([[(push-handler class-name label)` : ~s]], fp, σ, ak, t)⇒ (~s, fp, σ′, ak
′, t′)

where t′ = tick(`, t), â′k = allocκ(c), σ′ = σ[â′k 7→ handle(class-name, label , ak)].

[pop handler]:
If σ(ak) = handle(class-name, label , ak

′)

([[(pop-handler)` : ~s]], fp, σ, ak, t)⇒ (~s, fp, σ, ak
′, t′)

where t′ = tick(`, t).

[throw to matching handler]:
If σ(ak) = handle(class-name ′, label , ak

′) and class-name is sub-class of class-name ′ :

([[(throw æ)` : ~s]], fp, σ, ak, t)⇒ (S(label), fp, σ[(fp, exn) 7→ (op, class-name)], ak
′, t′)

where t′ = tick(`, t).

[throw to matching handler]:
If σ(ak) = handle(class-name ′, label , ak

′) and class-name is not sub-class of class-name ′ :

([[(throw æ)` : ~s]], fp, σ, ak, t)⇒ ([[(throw æ)` : ~s]], fp, σ, ak
′, t′)

where t′ = tick(t).

[throw past return point]:
If σ(ak) = fun(fp′, ~s′, ak′)

([[(throw æ) : ~s]], fp, σ, ak, t)⇒ ([[(throw æ) : ~s]], fp, σ, ak
′, t′)

where t′ = tick(t).

Figure 5.3: Pointer-refined concrete transition relations (exceptions).

when a function returns, in Figure 5.3, it first looks up the continuation by the ak and then

decides whether return to calls (or return over handlers). Other mechanics are much like

the original concrete semantics described in Section 4.2, I omit the explanations for the

others here.

5.2 Classical analysis

Having untied the recursion in continuations by allocating them in the store, I can

directly derive the abstract interpretation for Dalvik machine by structural abstraction

on the pointer-refined concrete semantics. Essentially, I derive a parameterized analysis

framework to conduct traditional, finite-state static analysis.

Figure 5.4 contains the abstract state-space for Dalvik machine. It closely mirrors the

concrete semantics. I assume the natural partial order for the components of the abstract



30

ς̂ ∈ Σ̂ = Stmt∗ × ̂FramePointer × Ŝtore × ̂KontAddr × T̂ime

σ̂ ∈ Ŝtore = Âddr → D̂

â ∈ Âddr = ̂RegAddr + ̂FieldAddr + ̂KontAddr

r̂a ∈ RegAddr = ̂FramePointer × Reg

f̂a ∈ FieldAddr = ̂ObjectPointer × FieldName

κ̂ ∈ K̂ont ::= fun(f̂p, ~s, âk)

| handle(class-name, label , âk)

| halt

d̂ ∈ D̂ = P
(

̂ObjectValue + Ŝtring + Ẑ + B̂ + K̂ont
)

ôv ∈ ̂ObjectValue = ̂ObjectPointer × ClassName

âk ∈ ̂KontAddr is a set of continuation addresses

t̂ ∈ T̂ime is a set of time-stamps

p̂tr ∈ P̂tr = ̂FramePointer + ̂ObjectPointer

f̂p ∈ ̂FramePointer is an infinite set of frame pointers

ôp ∈ ̂ObjectPointer is an infinite set of object pointers.

Figure 5.4: The pointer-refined abstract configuration-space.

state-space.

The parameterization functions are lifted to the abstract form correspondingly:

t̂ick : Label× T̂ime → T̂ime, âlloc : Label× T̂ime → P̂tr

âllocκ : MethodDef × T̂ime → Âddr

The abstract semantics rely on evaluators for atomic expressions as well I fields reference/up-

date:

Â : AExp× ̂FramePointer × Ŝtore ⇀ D̂ evaluates atomic expressions:

Â(name, f̂p, σ̂) = σ̂(f̂p,name) [variable look-up]

ÂF : AExp× ̂FramePointer × Ŝtore×FieldName ⇀ D̂ looks up fields:

ÂF (æ, f̂p, σ̂,field -name) = σ̂(ôp,field -name) [field look-up]

where (ôp, class-name) ∈ Â(æ, f̂p, σ̂).

Helper functions used by abstract semantics are also lifted to their corresponding ab-

stract form, as described in Figure 5.5.

The constructor-lookup function Ĉ yields the field names and the abstract constructor

associated with a class name. An abstract constructor K̂ takes abstract addresses to use
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Ĉ : ClassName→ (FieldName∗ × R̂uctor)

K̂ ∈ R̂uctor =

fields︷ ︸︸ ︷
Âddr

∗
×

arguments︷︸︸︷
D̂∗ → (

field values︷ ︸︸ ︷̂
Store ×

record︷ ︸︸ ︷
̂FramePointer)

M : D̂ ×MethodCall ⇀ MethodDef

Figure 5.5: Helper functions for the abstract semantics.

for fields and a vector of arguments; it returns the “change” to the store plus the record

component of the object that results from running the constructor. The abstract method-

lookup function M̂ takes a method invocation point and an object to determine which

methods could be called at that point.

The abstract semantics are encoded as a small-step transition relation (;) ⊆ Σ̂ × Σ̂.

Given an initial machine state, the transitive closure of this relation constitutes a classical

finite-state static analysis. Details of the relation (;) for each expression and statement

are summarized in Figure 5.6 and Figure 5.7.

Thanks to the pointer-refined concrete semantics, this abstraction is guaranteed to be

terminated [9].1 The difference of the abstract interpretation from the concrete semantics

is that continuation is weak updated (using the join operator t into the store, and when

we look up a continuation by an abstract continuation address, we are at risk of getting

multiple abstract entities (continuations).

5.2.1 Classical instantiation: k-CFA-like analysis

I have factored out time-stamp allocation and even the structure of time-stamps them-

selves:

Time = Lab∗ T̂ime = Labk

Addr = Ptr × Offset Âddr = P̂tr × Offset

Ptr = Label× Time + Time P̂tr = Label× T̂ime + T̂ime

Offset = Reg + FieldName + Method.

To justify the analysis, a concrete time-stamp is the sequence of labels traversed since the

program began execution. Addresses pair either a variable/field name or a method with

a pointer (includes object pointer and frame pointer). Method names are allowed, so that

1Since abstraction of base types like int is not the concern of this work, base types are constructed as flat
lattices with the type name as the top.
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[object allocation]:

([[(assign name (new class-name))` : ~s]], f̂p, σ̂, âk, t̂) ; (~s, f̂p, σ̂′′, âk, t̂
′)

where d̂i = {}, t̂′ = t̂ick(`, t̂), (
−−−−−−−→
field -name, K̂) = Ĉ(class-name)

ôp
′

= âlloc(`, t̂), âi = (ôp
′
,field -namei), (∆σ̂, p̂

′) = K̂(~̂a,
~̂
d)

d̂′ = (ôp
′
, C), σ̂′ = σ̂ t∆σ̂ t [(ôp,name) 7→ d̂′].

[field reference]:

([[(field-get name æo field -name)` : ~s]], f̂p, σ̂, âk, t̂) ; (~s, f̂p, σ̂′, âk, t̂
′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(f̂p,name) 7→ AF (æo, f̂p, σ̂,field -name)].

[field update]:

([[(field-put æo field -name æv)
` : ~s]], f̂p, σ̂, âk) ; (~s, f̂p, σ̂′, âk, t̂

′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(ôp,field -name) 7→ Â(æv, f̂p, σ̂)], (ôp, class-name) ∈ Â(æo, f̂p, σ̂).

[method invocation]:

([[(invoke-kind (æ0 . . .æn)(type0 . . . typen))` : ~s]], f̂p, σ̂, âk, t̂) ; (s′0, f̂p
′
, σ̂′′, â′k, t̂

′)

where

method-def︷ ︸︸ ︷
(method attribute . . . method -name (type . . .) type . . . (limit n) s′ . . . ) ∈M(d̂0,m)

t̂′ = t̂ick(`, t̂), d̂0 = Â(æ0, f̂p, σ̂), d̂i = Â(æ′i, f̂p, σ̂)(i = m. . . n− 1),

â′k = âllocκ(method -def , t), σ̂′ = σ̂ t [â′k 7→ fun(f̂p, ~s, âk)], f̂p
′

= âlloc(ĉ),

â′i = (f̂p
′
,namej)(j = m. . . n− 1), σ̂′′ = σ̂′ t [â′i 7→ d̂i].

[return to call]:

If σ̂(âk) 3 fun(f̂p
′
, ~s′, â′k) : ([[(return æ)` : ~s]], f̂p, σ̂, âk, t̂) ; (~s′, f̂p

′
, σ̂′, â′k, t̂

′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(f̂p
′
, ret) 7→ Â(æ, f̂p, σ̂)].

Figure 5.6: Abstract transition relations (objects and function call/return).

continuations can have a binding point for each method at each time. (Were method names

not allowed, then all procedures would return to the same continuations in “0”CFA.)

The time-stamp function prepends the most recent label, as shown below:

tick(`, t) = ` : t t̂ick(`, t̂) = firstk(` : t̂)

alloc(`, t) = (`, t) âlloc(`, t̂) = (`, t̂)

allocκ(method -def , t) = (method -def , t) âllocκ(method -def , t̂) = (method -def , t̂).

The variable/field-allocation function pairs the current time with or without current label,

while the continuation-allocation function pairs the method being invoked with the current

time: Since a label can indicate call-sites as well as an allocation site, I call the formulation



33

[return over handler]:
If σ̂(âk) 3 handle(class-name, label , â′k) :

([[(return æ)` : ~s]], f̂p, σ̂, âk, t̂) ; ([[(return æ) : ~s]], f̂p, σ̂, â′k, t̂
′)

where t̂′ = t̂ick(`, t̂).

[push handler]:

([[(push-handler class-name label)` : ~s]], f̂p, σ̂, âk, t̂) ; (~s, f̂p, σ̂′, â′k, t̂
′)

where t̂′ = t̂ick(`, t̂), â′k = âllocκ(ĉ), σ̂′ = σ̂ t [â′k 7→ handle(class-name, label , âk)].

[pop handler]:
If σ̂(âk) 3 handle(class-name, label , â′k) :

([[(pop-handler)` : ~s]], f̂p, σ̂, âk, t̂) ; (~s, f̂p, σ̂, â′k, t̂
′)

where t̂′ = t̂ick(`, t̂).

[throw to matching handler]:
If σ̂(âk) 3 handle(class-name ′, label , â′k) and class-name is sub-class of class-name ′ :

([[(throw æ)` : ~s]], f̂p, σ̂, âk, t̂) ; (S(label), f̂p, σ̂ t [(f̂p, exn) 7→ (ôp, class-name)], â′k, t̂
′)

where t̂′ = t̂ick(`, t̂).

[throw to non-matching handler]:
If σ̂(âk) 3 handle(class-name ′, label , â′k) and class-name is not sub-class of class-name ′ :

([[(throw æ)` : ~s]], f̂p, σ̂, âk, t̂) ; ([[(throw æ)` : ~s]], f̂p, σ̂, â′k, t̂
′)

where t̂′ = t̂ick(t̂).

[throw past return point]:

If σ̂(âk) 3 fun(f̂p
′
, ~s′, â′k) :

([[(throw æ) : ~s]], f̂p, σ̂, âk, t̂) ; ([[(throw æ) : ~s]], f̂p, σ̂, â′k, t̂
′)

where t̂′ = t̂ick(t̂).

Figure 5.7: Abstract transition relations (exceptions).

k-CFA-like analysis. So, the above formulation describes k-call site sensitivity analysis,

k-object-sensitivity, or the mix of the two, depending on how I t̂ick the t̂ ∈ T̂ime. In

addition, since the field is addressed by pairing the field name and object pointer, which

uses T̂ime to distinguish different objects, the analysis is also field-sensitive.

5.3 Limitations of k-CFA

While the construction of a classical control-flow analysis is in place, there are noticeable

limitations illustrated in the subsequence sections.
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5.3.1 Spurious return flows to exception handlers

The first limitation is that, even for the best co-analysis, where boosting context-

sensitivity improves the analysis of exceptions, it does not improve as much as it does

for points-to analysis. It is too easy for exceptions to cross context boundaries and merge.

For the previous simple example presented in Chapter 1, Section 1.2, I could increase to

1-call-site sensitivity. However, context-sensitivity costs more and is easily confused when

calls are wrapped, as in:

try {

callsMaybeThrow(); // Call 1

} catch (Exception e) { // Handler 1

System.err.println("Got an exception");

}

callsMaybeThrow(); // Call 2

// ...

void callsMaybeThrow() {

maybeThrow();

}

In this case, an exception thrown in maybeThrow can not be distinguished where it is from.

What is worse, analysis can not resolve which handlers to go to!

5.3.2 Limitations of k-sensitivity

The limitation of k-sensitivity shares some similar characteristics with the one described

in Section 5.3.1, especially in the k-context-sensitivity aspect, but the point is that the k-

sensitivity, be it k-context-sensitivity or k-object-sensitivity, can always fail when exceeding

the level of k (call site, allocation sites, receiver objects, etc.) in modern software constructs.

The following toy example is listed for presentation purpose:

L1: B b1 = new B(10);

L2: B b2 = new B(100);

L3: foo(b1);

L4: foo(b2);

L5: foo(B b) { bar(b); }

L6: void bar(B bv) { bv.toFork(); }
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In 1-object sensitivity based on allocation site, I can distinguish the two new objects

allocated in L1 and L2; in 1-call site history sensitivity, I can distinguish the object values

bound to formal parameter of foo. However, the context-sensitivity fails to distinguish the

values bound to bv, because it requires an increase to two levels of sensitivity to be able to

distinguish the calls for the nested function bar. When the conflation of the objects in bv in

bar happens (which can be easily caused by limited k-object-sensitivity, too, if not by the

k-context-sensitivity), the method calls on bv spawn additional spurious function call flows

(and the return flows).



CHAPTER 6

PUSHDOWN EXCEPTION-FLOW

ANALYSIS FOR OBJECT-

ORIENTED PROGRAMS

In Chapter 5, I have derived a parameterized finite-state static analysis to analyze

Dalvik bytecode. I did so by reformulating the original machine semantics in Chapter 4

with a pointer refinement and then conducting a structural abstraction. While the ab-

straction guarantees termination, it is over-approximating in analyzing normal control-flow,

exception-flow and data-flow.

To remedy the imprecision issue with good-enough performance, I introduce several

analysis techniques in the subsequent chapters.

6.1 A pushdown semantics of exceptions

Rather than adopting the technique of abstracting abstract machines (AAM) to yield a

finite state-based analysis, which is equivalent to most of the conservative static analyses,

I choose to lightly reformulate the concrete semantics and conduct a similar structural

abstraction pushdown analysis. This approach abstracts less than AAM does: I leave the

stack unbounded in height. Ultimately, I will extend control-state reachability in pushdown

systems to handle the new behaviors introduced by exceptions.

6.1.1 Abstract configuration-space

Abstract semantics are defined on an abstract state-space. Figure 6.1 contains the

abstract state-space for the pushdown version of the small-step Dalvik bytecode machine.

I assume the natural element-wise, point-wise and member-wise lifting of a partial order

across this state-space.

What is important is that, I can extract the high-level structure of the pushdown system

from the state-space. A configuration in a pushdown system is a control state (from a finite

set) paired with a stack (with a finite number of frames). Observe the following formulas:



37

ĉ ∈ Ĉonf = Stmt∗ × ̂FramePointer × Ŝtore × K̂ont × T̂ime [configurations]

σ̂ ∈ Ŝtore = Âddr ⇀ D̂ [stores]

â ∈ Âddr = ̂RegAddr + ̂FieldAddr [addresses]

r̂a ∈ ̂RegAddr = ̂FramePointer × Reg

f̂a ∈ ̂FieldAddr = ̂ObjectPointer × FieldName

κ̂ ∈ K̂ont = F̂rame
∗

[continuations]

φ̂ ∈ F̂rame = ̂CallFrame + ̂HandlerFrame [stack frames]

χ̂ ∈ ̂CallFrame ::= fun(f̂p, ~s)

η̂ ∈ ̂HandlerFrame ::= handle(class-name, label)

d̂ ∈ D̂ = P
(

̂ObjectValue + Ŝtring + Ẑ + B̂
)

[abstract values]

ôv ∈ ̂ObjectValue = ̂ObjectPointer × ClassName

p̂tr ∈ P̂tr = ̂FramePointer + ̂ObjectPointer

f̂p ∈ ̂FramePointer is a finite set of frame pointers [frame pointers]

ôp ∈ ̂ObjectPointer is a finite set of object pointers [object pointers]

t̂ ∈ T̂ime is a finite set of of time.

Figure 6.1: The abstract configuration-space.

Ĉonf = Stmt∗ × ̂FramePoiner × Ŝtore × K̂ont × T̂ime

∼= Stmt∗ × ̂FramePoiner × Ŝtore × T̂ime × K̂ont

=
(

Stmt∗ × ̂FramePoiner × Ŝtore × T̂ime
)
× K̂ont

=
(

Stmt∗ × ̂FramePoiner × Ŝtore × T̂ime
)

︸ ︷︷ ︸
control states

× F̂rame
∗︸ ︷︷ ︸

stack

To synthesize the abstract state-space, I force frame pointers and object pointers (and

thus addresses) to be a finite set, but crucially, I leave the stack untouched. When I compact

the set of addresses into a finite set, the machine may run out of addresses to allocate, and

when it does, the pigeon-hole principle will force multiple abstract values to reside at the

same address. As a result, I have no choice but to force the range of the Ŝtore to become a

poIr set in the abstract configuration-space.

6.1.2 Abstract transition relation

The abstract transition relation replies on the helper functions in abstract forms. Here,

I reuse the ones defined in Figure 5.5.
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The inject function is different, as defined: I : Stmt∗ → Ĉonf injects an sequence of

instructions into a configuration:

ĉ0 = Î(~s) = (~s, f̂p0, [], 〈〉).

The rules for the abstract transition relation (;) ⊆ Ĉonf × Ĉonf largely mimic the

structure of the concrete relation (⇒). The biggest difference is that the structural abstrac-

tion forces the abstract transition to become nondeterministic.

Figure 6.2 and Figure 6.3 detail the transition relations in pushdown semantics. It is

straightforward to construct the abstract rules for object allocation, field reference/update,

method invocation and return, as shown in Figure 6.2.

Notice that for method invocation (nonstatic methods) in Figure 6.2, there can be a set

of possible objects that are invoked, rather than only one as in its concrete counterpart.

This also means that there could be multiple method definitions resolved for each object.

It is not immediately clear how to abstract the rules involving exceptions and what the

effects are, in the presence of the unbounded stack. My solution is shown in Figure 6.3. The

abstract rules resemble their concrete counterparts, but essentially, the abstraction of these

multipop transition relations simplify the control-state reachability algorithm substantially,

as I show in Chapter 8. Taken together, Figure 6.2 and Figure 6.3 are the principle rules to

construct the subroutine next that is called in the extended reachability Alg. 4 in Chapter 8.

Since other pushdown semantics are not essential to demonstrate the advantage of the

analysis, they are summarized in Appendix B.2.
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[object allocation]:

ĉ︷ ︸︸ ︷
([[(assign name (new class-name))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′′, κ̂, t̂′)

where d̂i = {}, t̂′ = t̂ick(`, t̂), (
−−−−−−−→
field -name, K̂) = Ĉ(class-name),

ôp
′

= âlloc(`, t̂), âi = (ôp
′
,field -namei), (∆σ̂, p̂

′) = K̂(~̂a,
~̂
d),

d̂′ = (ôp
′
, C), σ̂′ = σ̂ t∆σ̂ t [(ôp,name) 7→ d̂′].

[field reference]:

([[(field-get name æo field -name)` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(f̂p,name) 7→ AF (æo, f̂p, σ̂,field -name)].

[field update]:

([[(field-put æo field -name æv)
` : ~s]], f̂p, σ̂, κ̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(ôp,field -name) 7→ Â(æv, f̂p, σ̂)], (ôp, class-name) = Â(æo, f̂p, σ̂).

[method invocation]:

ĉ︷ ︸︸ ︷
([[(invoke-kind (æ0 . . .æn)(type0 . . . typen))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (s′0, f̂p

′
, σ̂′, κ̂′, t̂′),

where

method-def︷ ︸︸ ︷
(method attribute . . . method -name (type . . .) type . . . (limit n) s′ . . . ) ∈M(d̂0,m),

t̂′ = t̂ick(`, t̂), d̂0 = Â(æ0, f̂p, σ̂), d̂i = Â(æ′i, f̂p, σ̂)(i = m. . . n− 1),

κ̂′ = fun(v, succ(`), p̂) : κ̂, f̂p
′

= âlloc(`, t̂),

â′i = (f̂p
′
,namej)(j = m. . . n− 1), σ̂′ = σ̂ t [â′i 7→ d̂i].

[return to call]:

If κ̂ = (fun(f̂p
′
, ~s′) : κ̂′), ([[(return æ)` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s′, f̂p

′
, σ̂′, κ̂′, t̂′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(f̂p
′
, ret) 7→ Â(æ, f̂p, σ̂)].

Figure 6.2: Pushdown abstract transition relations (objects and function call/return).
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[return over handler]:
If κ̂ = handle(class-name, label) : κ̂′

([[(return æ)` : ~s]], f̂p, σ̂, κ̂, t̂) ; ([[(return æ) : ~s]], f̂p, σ̂, κ̂′, t̂′)

where t̂′ = t̂ick(`, t̂).

[push handler]:

([[(push-handler class-name label)` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂′, t̂′)

where t̂′ = t̂ick(`, t̂), κ̂′ = handle(class-name, label) : κ̂.

[pop handler]:
If κ̂ = handle(class-name, label) : κ̂′

([[(pop-handler)` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂, κ̂′, t̂′)

where t̂′ = t̂ick(`, t̂).

[throw to matching handler]:
If κ̂ = handle(class-name ′, label) : κ̂′ and class-name is sub-class of class-name ′ :

([[(throw æ)` : ~s]], f̂p, σ̂, κ̂, t̂) ; (S(label), f̂p, σ̂ t [(f̂p, exn) 7→ (ôp, class-name)], κ̂′, t̂′)

where t̂′ = t̂ick(`, t̂).

[throw to non-matching handler]:
If κ̂ = handle(class-name ′, label) : κ̂′ and class-name is not sub-class of class-name ′ :

([[(throw æ)` : ~s]], f̂p, σ̂, κ̂, t̂) ; ([[(throw æ)` : ~s]], f̂p, σ̂, κ̂′, t̂′)

where t̂′ = t̂ick(t̂).

[throw past return point]:

If κ̂ = fun(f̂p
′
, ~s′) : κ̂′

([[(throw æ) : ~s]], f̂p, σ̂, κ̂, t̂) ; ([[(throw æ) : ~s]], f̂p, σ̂, κ̂′, t̂′)

where t̂′ = t̂ick(t̂).

Figure 6.3: Pushdown abstract transition relations (exceptions).



CHAPTER 7

ENHANCED ABSTRACT GARBAGE

COLLECTION FOR OBJECT-

ORIENTED PROGRAMS

The previous chapter formulates a pushdown system (which termination is ensured in

Chapter 8) to handle complicated control-flows (both normal and exceptional). This section

describes how I prune the analysis for exceptions from the angle of points-to analysis with

enhanced garbage collection generalized for object-oriented programs.

7.1 Abstract garbage collection in an
object-oriented setting

The idea of abstract garbage collection was first proposed in [17]. As an analog to the

concrete garbage collection, abstract garbage collection reallocates unreachable abstract

resources. Order-of-magnitude improvements in precision have been reported, even as it

drops run-times by cutting away false positives. It is natural to think that this technique

can benefit exception-flow analysis for object-oriented languages. In fact, in an object-

oriented setting, abstract garbage collection can free the analysis from the context-sensitivity

and object-sensitivity limitation, since the “garbage” discarded is ignorant of any form of

sensitivity. For example, in the following simple code snippet:

A a1 = idA(new A());

A a2 = idA(new A()):

B b1 = idB(a1.makeB());

B b2 = idB(a2.makeB());

idA and idB are identity functions. Traditionally, with one level of object-sensitivity and

one level of context-sensitivity, I am able to distinguish the arguments passed in all of the

four lines. However, it is easy to exceed the k-sensitivity (call site, allocation sites, receiver

objects, etc.) in modern software constructs (Chapter 5, Section 5.3). Abstract garbage
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collection can play a role in the way that it discards conservative values and enables fresh

bindings for reused variables (formal parameters). This does not need knowledge about

any sensitivity. Thus, it can avoid “merging” of abstract object values (and so indirectly

eliminate potentially spurious function calls). For exceptions specifically, abstract garbage

collection can help avoid conflating exception objects at various throw sites.

To gain the promised analysis precision and performance, I must conduct a careful and

subtle redesign of the abstract garbage collection machinery for object-oriented languages.

Specifically, I need to make it work with the abstract semantics defined in Chapter 6. In

addition, the reachability algorithm should also be able to work with abstract garbage

collection. Fortunately, the challenge of how to adapt abstract garbage collection into

pushdown systems has been resolved in the work of [18]. I will review this work in

Section 8.1.

Here, I describe how I adapt abstract garbage collection to analyze object-oriented

languages. Abstract garbage collection discards unreachable elements from the store, it

modifies the transition relation to conduct a “stop-and-copy” garbage collection before

each transition. To do so, I define a garbage collection function Ĝ : Ĉonf → Ĉonf on

configurations:

Ĝ(

ĉ︷ ︸︸ ︷
~s, f̂p, σ̂, κ̂) = (~s, f̂p, σ̂|Reachable(ĉ), κ̂),

where the pipe operation f |S yields the function f , but with inputs not in the set S mapped

to bottom—the empty set. The reachability function Reachable : Ĉonf → P(Âddr) first

computes the root set and then the transitive closure of an address-to-address adjacency

relation:

Reachable(

ĉ︷ ︸︸ ︷
~s, f̂p, σ̂, κ̂) =

{
â : â0 ∈ Root(ĉ) and â0

∗
_
σ̂
â

}
,

where the function Root : Ĉonf → P(Âddr) finds the root addresses:

Root(~s, f̂p, σ̂, κ̂) = {(f̂p, v) : (f̂p, v) ∈ dom(σ̂)} ∪ StackRoot(κ̂),

The StackRoot : K̂ont → P(Âddr) function finds roots on the stack. However, only

̂CallFrame has the component to construct addresses, so I define a helper function F̂ :

K̂ont → ̂CallFrame
∗

to extract only ̂CallFrame out from the stack and skip over all the

handle frames. Now StackRoot is defined as

StackRoot(κ̂) = {(f̂pi, v) : (f̂pi, v) ∈ dom(σ̂) and f̂pi ∈ F̂(κ̂)},
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and the relation:

(_) ⊆ Âddr × Ŝtore × Âddr ,

connects adjacent addresses:

â _
σ̂
â′ iff there exists (ôp, class-name) ∈ σ̂(â),

such that â′ ∈ {(ôp,field -name) : (ôp,field -name) ∈ dom(σ̂)}.

The formulated abstract garbage collection semantics constructs the subroutine egc

that is called in Alg. 4, which is the interface to enable abstract garbage collection in the

reachability algorithm, similar to description in the work of [18].

7.2 Abstract garbage collection enhanced
with liveness analysis

Abstract garbage collection can avoid conflating abstract objects for reused variables or

formal parameters, but it can not discover “garbage” or “dead” abstract objects in the local

scope. The following example illustrates this:

bool foo(A a) {

B b = B.read(a);

C p = C.doSomething(b);

return bar(C.not(p));

}

Obviously, in the function body foo, b is actually “dead” after the second line. However,

näive abstract garbage collection has no knowledge of this. In fact, this is a problem for

näive concrete garbage collection [19]. In the realm of static analysis, the garbage value

pointed to by p can pollute the exploration of the entire state space.

In addition, in the register-based byte code that my implementation analyzes, there are

obvious cases where the same register is reassigned multiple times at different sites within a

method. The direct adaptation of abstract garbage collection to an object-oriented setting

in Section 7.1 cannot collect these registers between uses. For object-oriented programs, I

want to collect registers that are unreachable, but not without an intervening assignment.

This problem can be easily solved by using liveness analysis. Of course, I could also solve

it by transforming the byte code into static single assignment (SSA) form. However, as

mentioned above, liveness analysis has additional benefits, so I chose to enhance the abstract

garbage collection with live variable analysis (LVA).
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LVA computes the set of variables that are alive at each statement within a method.

The garbage collector can then more precisely collect each frame.

Since LVA is well-defined in the literature [20], I skip the formalization here, but the

Root is now modified to collect only live variables of the current statement Lives(s0):

Root(~s, f̂p, σ̂, κ̂) = {(f̂p, v′) : (f̂p, v′) ∈ dom(σ̂) and v′ ∈ Lives(s0)} ∪ StackRoot(κ̂).

The liveness property is embedded in the overall egc subroutine in Alg. 4.



CHAPTER 8

PUSHDOWN EXCEPTION-FLOW

REACHABILITY

Given the formalisms in the previous chapters, it is not immediately clear how to convert

these rules into a static analyzer, or more importantly, how to handle the unbounded stack

without it always visiting new machine configurations. Thus, we need a way to compute a

finite summary of the reachable machine configurations.

In abstract interpretation frameworks, the Dyck state graph synthesis algorithm [21],

which is a purely functional version of the saturation algorithm [16], provides a method for

computing reachable pushdown control states. I build my algorithms on the work of [18].

As it turns out, it is not hard to extend the summarization idea to deal with an unbounded

stack with exceptions. In the following sections, I present the complete algorithm in a

top-down fashion, which aims to easily turn into actual working code.

8.1 Analysis setup

The analysis for a program starts from the Analyze function, as shown in Alg. 1. It

accepts a program expression (an entry point to a program), and gives out a Dyck state

graph (DSG). Formally speaking, a DSG of a pushdown system is the subset of a pushdown

system reachable over legal paths. (A path is legal if it never tries to pop a when a frame

other than a is on top of the stack.) The T̂ime component is designed for accommodating

traditional analysis, depending on actual implementation. For example, the last k call

sites or object-allocation labels, or the mix of them. The analysis produces DSG from the

subroutine Eval, which is the fix-point synthesis algorithm.

In Alg. 1, IECG is a composed data structure used in the ε summarization algorithm.

It is derived from the idea of an ε closure graph (ECG) in the work of [21], but supports

efficient caching of ε closures along with transitive push frames on the stack. Specifically,

IECG = (
←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−−
PFP ,

←−−−
NEP). The six components can be considered maps:

• ε predecessors
←−
G : Σ̂→ {Σ̂}, maps a target node to the source node(s) of an ε edge(s).
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Algorithm 1: Analyze

Input: s: a list of program statements (with an initial entry point s0).
Output: Dyck State Graph DSG : a triple of a set of control states

a set of edges, and a initial state.
1 σ̂0 ←− empty store

2 f̂p0 ←− initial empty stack frame pointer

3 t̂0 ←− empty list of contexts

4 q̂0 ←− (s0, f̂p0, σ̂0, t̂0)
5 The initial working set W0 ←− {q̂0}
6 IECG0 ←− (∅, ∅, ∅, ∅, ∅, ∅)
7 DSG0 ←− ({q̂0}, ∅, q̂0)
8 (DSG , IECG , σ̂,W )←−Eval(DSG0, IECG0, σ̂0,W0)
9 return DSG

• ε successors
−→
G : Σ̂→ {Σ̂}, maps a source node to the target node(s) of an ε edge(s).

• top frames
−→
TF : Σ̂→ {F̂rame}, records the shallow pushed stack frame(s) for a state

node.

• possible stack frames
−−→
PSF : Σ̂ → {F̂rame}, compute all possible pushed stack frame

of a state. It is used for abstract garbage collection.

• predecessors for push action
←−−−
PFP : (Σ̂, F̂rame) → {Σ̂}, records source state node(s)

for a pushed frame and the net-changed state. For example, in the legal path: q̂0
g+−−→

q̂1 −→ ...
g−−−→ q̂2, the entry (q̂1, g

+) −→ {q̂0} is in
←−−−
PFP .

• non-ε predecessors (
←−−−
NEP : Σ̂→ {Σ̂}), maps a state node to non-ε predecessors.

These data structures (and IECG) have the same definition in the following algorithms.

8.2 Fix-point algorithm of the pushdown
exception framework

Alg. 2 describes the fix-point computation for the reachability algorithm. It iteratively

constructs the reachable portion of the pushdown transition relation (Ln. 5-12) by inserting

ε-summary edges whenever it finds an empty-stack (Ln. 13-20) (e.g., push a, push b, pop b,

pop a) paths between control states. Ln. 22-25 decides when to terminate the analysis: no

new frontier edges and the new store component σ̂′′ is subsumed by the old store σ̂′. The

second condition uses the technique presented in [8]. Otherwise, it recurs to Eval.

Now I explain Ln. 5-12 in more detail by examining the subroutines that are called. As

is shown in Ln. 7, the raw new states and edges are obtained from calling Step (shown

in Alg. 3). The algorithm enables the widening strategy in the pushdown reachability

algorithm by instrumenting the σ̂ component (it is widened during iteration in Eval (Ln. 7
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Algorithm 2: Eval

Input: DSG , IECG(definition referred to Section 8.1), σ̂,working set W
Output: DSG ′, IECG ′, σ̂′′,W ′

1 ∆S,∆E, σ̂′′,W ′ ← ∅
2 (E,S, q̂0)← DSG

3 (
←−
G,
−→
G,
−→
TF ,
−−→
PSF , , )← IECG

4 IECG ′ ← (∅, ∅, ∅, ∅, ∅, ∅)
5 for s ∈ W do

6 for κ̂ ∈
−→
TF (s) do

7 for (g, s1, σ̂
′) ∈ Step(s, κ̂,

−−→
PSF (s), σ̂) do

8 if {s} 6v (
−→
G(s) ∪ S ∪

←−
G(s)) then

9 insert s1 in ∆S
10 insert E (s, g , s1 ) in ∆E
11 insert s1 in W ′

12 σ̂′′ = σ̂′ t σ̂

13 for E ∈ ∆E do
14 switch E do
15 case (s′, ε, s′′)
16 IECG ′ ← Propagate(E, IECG)

17 case (s′, g+, s′′)
18 IECG ′ ← ProcessPush(E, IECG)

19 case (s′, g−, s′′)
20 IECG ′ ← ProcessPop(E, IECG)

21 DSG′ ← (E ∪∆E,S ∪∆S)
22 if σ̂′′ v σ̂ ∧∆E == ∅ then
23 return (DSG ′, IECG ′, σ̂′′,W ′)

24 else
25 Eval(DSG′, IECG ′, σ̂′′,W ′)

and Ln. 12)).

The other important part of the algorithm is StepIPDS, Alg. 4 shows the details.

StepIPDS does three things: (1) It incorporates the enhanced abstract garbage collection

into the pushdown framework by calling eagc (Ln. 3). The actual algorithm can be derived

from the semantics presented in Chapter 7; (2) it calls the pushdown abstract transition

relation function of next based on the cleaned state after garbage collection. The semantics

presented in Chapter 6 reflect the structure of next; (3) it summarizes the stack actions

from the newly explored nodes, to construct possible edges for DSG . This is done in the

Alg. 5, which compares the continuation before the transition and the continuation after,

then decides which of the three stack actions, epsilon, push and pop, to take.
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Algorithm 3: Step

Input: control state q̂, continuation κ̂, a list of frames
~̂
φ

Output: a set of records (stack action g, q̂′, σ̂)
1 result ←− ∅
2 for (g, q̂′) ∈ StepIPDS(q̂, κ̂,

~̂
φ) do

3 insert (g, q̂′, σ̂) in result

4 return result

Algorithm 4: StepIPDS

Input: a source state q̂, continuation κ̂, list of frames
~̂
φ, Options: global analysis

options
Output: a set of tuples (φ̂′, q̂′)

1 result ←− ∅
2 q̂′ ←− q̂
3 if Options.doGC then q̂′ ←− eagc(q̂, φ̂)
4 confs ←− next(q̂′, κ̂)
5 for (q̂′′, κ̂′) ∈ confs do
6 g ←− DecideStackAction(κ̂, κ̂′)
7 insert (g, q̂′′) in result

8 return result

Algorithm 5: DecideStackAction

Input: continuation before transition κ̂, new continuation κ̂′

Output: stack action g
1 if κ̂ = κ̂′ then return ε
2 (g1 :: κ̂1) ←− κ̂
3 (g2 :: κ̂′2) ←− κ̂′
4 if κ̂1 == κ̂′ then
5 return g−1

6 else if κ̂ == κ̂′2 then
7 return g+

2

Also note that I add only state nodes (e.g., q̂) into the working set if they do not appear

in the following sets: state nodes of the current DSG , predecessors of q̂ and successors of q̂,

for the purpose of avoiding nonnecessary recomputation.

Returning to Eval in Alg. 2, Ln. 13-20 summarizes and propagates the new knowledge

of the stack, given ∆E, by calling the algorithms based on stack action, which are defined

in Section 8.3, along with the mechanism to deal with exceptions.
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8.3 Synthesizing a Dyck state graph
with exceptional flow

For pushdown analysis without exception handling, only two kinds of transitions can

cause a change to the set of ε-predecessors (
←−
G): an intraprocedural empty-stack transition

and a frame-popping procedure return. With the addition of handle frames to the stack,

there are several new cases to consider for popping frames (and hence adding ε-edges).

In the following text, I first highlight how to handle the exceptional flows during DSG

synthesis, particularly as it relates to maintaining ε-summary edges. Then I present the

generalized algorithms for these cases. The figures in this section use a graphical scheme for

describing the cases for ε-edge insertion. Existing edges are solid lines, while the ε-summary

edges to be added are dotted lines.

8.3.1 Intraprocedural push/pop of handle frames

The simplest case is entering a try block and leaving a try block entirely intraprocedurally—

without throwing an exception. Figure 8.1 shows such a case: if there is a handler push

followed by a handler pop, the synthesized (dotted) edge must be added.

8.3.2 Locally caught exceptions

Figure 8.2 presents a case where a local handler catches an exception, popping it off the

stack and continuing.

8.3.3 Exception propagation along the stack

Figure 8.3 illustrates a case where an exception is not handled locally, and must pop off

a call frame to reach the next handler on the stack. In this case, a popping self-edge from

control state q′ to q′ lets the control state q′ see frames beneath the top. Using popping

q0
η+ //

ε

��
q′

η− // q1

Figure 8.1: Intraprocedural handler push/pop.

q0
χ+ // q

η+ //

ε

��
q′

ε // q′′
η− // q1

ε //

Figure 8.2: Locally caught exceptions.
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q0
η+ //η+ //

ε

��
q

χ+ //

ε

��
q′

η− //

χ−

WW q1

Figure 8.3: Exception propagation.

self-edges, a single state can pop off as many frames as necessary to reach the handle—one

at a time.

8.3.4 Control transfers mixed in try/catch

Figure 8.4 illustrates the situation where a procedure tries to return while a handle

frame is on the top of the stack. It uses popping self-edges as well to find the top-most call

frame.

8.3.5 Uncaught exceptions

The case in Figure 8.5 shows popping all frames back to the bottom of the stack—

indicating an uncaught exception.

8.3.6 finally blocks

To analyze full featured exceptions, I have to deal with the finally blocks. It is known

to be nontrivial to handle finally in static analysis [22]. However, this is not a problem in

my analysis. The reason is that the analyzer directly works on object-oriented byte code,

where the finally is compiled away by compiler in this level. Specifically, the blocks of

code for finally are copied into try and catch blocks before any possible exit points, which

include normal return statements or throw statements. This eases the static analysis

q0
χ+ //

ε

��
q

η+ //

ε

��
q′

η−

WW
χ− // q1

Figure 8.4: Control transfers mixed in try/catch.

q0
χ+ // q

φ+−

XX

Figure 8.5: Uncaught exceptions.
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substantially. In addition, finally blocks are translated as one kind of catch handler,

which is the catchall handler, with the exception type java/lang/Exception. During

the pushdown analysis, catchall is placed below any other normal catch handlers on the

stack, it is matched last and executed for any possible throw exceptions.

8.4 The generalized algorithms: Propagate,
ProcessPop, ProcessPush

Section 8.3 graphically illustrates the new cases for handling exceptions. The following

text presents the working algorithms to achieve the synthesis process. Alg. 6 handles the

cases when an ε edge is added. These cases are: intraprocedural empty-stack transition,

a frame-popping procedure return, or a frame-popping intraprocedural or interprocedural

exception catch.

The algorithm works as follows: it accepts an ε edge E and the current record of IECG

(introduced in Section 8.1) and produces a new IECG IECG ′. It propagates the ε successors

for each control state in
←−
G(s1) ∪ s1 (Ln. 8) and prepares the accumulated top frames for

propagation for each successor state node in
−→
G (Ln. 12). Similarly, it propagates the ε

Algorithm 6: Propagate

Input: An edgeE, an IECG (refer to Section 8.1)
Output: IECG ′

1 (
←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−−
PFP ,

←−−−
NEP)← IECG

2 topFramesToAdd ← ∅
3
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ← ∅

4 (s1, ε, s2)← E

5 preds ←
←−
G(s1) ∪ {s1}

6 nexts ←
−→
G(s2) ∪ {s2}

7 for s ∈ preds do

8
−→
G ′ ←

−→
G t [s 7→

−→
G(s) ∪ nexts]

9 insert
−→
TF (s) in topFramesToAdd

10 for s ∈ nexts do

11
←−
G ′ ←

←−
G t [s 7→

←−
G(s) ∪ preds]

12
−→
TF ′ ←

−→
TF t [s 7→

−→
TF (s) ∪ topFramesToAdd ]

13 for f ∈
−→
TF ′(s1) do

14
←−−−
PFP ′ ←

←−−−
PFP t [(s, f) 7→

←−−−
PFP(s, f)]

15
−−→
PSF ′ ←updatePSF(s,

−→
TF ′,

−−→
PSF ,

←−−−
NEP ,

←−
G ′)

16 IECG ′ ← (
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP)

17 return IECG ′
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predecessors for each control state in
−→
G(s2) ∪ s2. The predecessor nodes of pushed frames

for the current target note state s will also be propagated with the new propagated top

frames (Ln. 13-14). Finally, it propagates the possible stack frames
−−→
PSF (for abstract

garbage collection) in Ln. 15, for each control state in the original non-ε predecessors and

new ε predecessors
←−
G , as shown in Alg. 7 Ln. 2-3.

Alg. 8 handles the case of popping frames, including function call return popping and

exception handling popping. The algorithm is reduced to Alg. 6 to introduce ε edges, for

each tuple in
←−−−
PFP .

Alg. 9 is presented for completeness. It handles pushing stack frames in function calls

and exception handlers in try blocks. Since the pushing action introduces a new top frame,

it maintains extensions (propagation) for the data structure top frames
−→
TF , predecessors

for push frames
←−−−
PFP , non-ε predecessors

←−−−
NEP and possible stack frames

−−→
PSF .

Algorithm 7: UpdatePSF

Input: s,
−→
TF ′,

−−→
PSF ,

←−−−
NEP ,

←−
G ′

Output:
−−→
PSF ′′

1
−−→
PSF ′ ←

−−→
PSF t [s 7→

−→
TF ′(s)]

2 for spred ∈
←−−−
NEP(s) ∪

←−
G ′(s) do

3
−−→
PSF ′′ ←

−−→
PSF ′ t [s 7→

−−→
PSF ′(spred)]

4 return
−−→
PSF ′′

Algorithm 8: Processpop

Input: E, IECG
Output: IECG ′

1 IECG ′ ← ∅ (s1, g
−, s2)← E

2 for s ∈
←−−−
PFP(s1, g

−) do
3 IECG ′ ← IECG t Propagate((s, ε, s2), IECG)

4 return IECG ′
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Algorithm 9: Processpush

Input: E, IECG
Output: IECG ′

1 IECG ′ (
←−
G,
−→
G,
−→
TF ,
−−→
PSF ,

←−−−
NEP)← IECG

2
←−
G ′,
−→
G ′,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ′ ← ∅

3 (s1, g
+, s2)← E

4 for s ∈
−→
G(s2) ∪ {s2} do

5
−→
TF ′ ←

−→
TF t [s 7→ {f}]

6
←−−−
PFP ′ ←

←−−−
PFP t [(s, f) 7→ {s1}]

7
←−−−
NEP ′ ←

←−−−
NEP t [s 7→ {s1}]

8
−−→
PSF ′ ←UpdatePSF(s,

−→
TF ′,

−−→
PSF ,

←−−−
NEP ′,

←−
G)

9 IECG ′ ← (
←−
G,
−→
G,
−→
TF ′,

−−→
PSF ′,

←−−−
PFP ′,

←−−−
NEP ′)

10 return IECG ′



CHAPTER 9

MULTIENTRY POINTS SATURATION

The pushdown control-flow analysis described in the previous section provides the foun-

dation for my object-oriented analysis. Now, I shift my focus to addressing the Android

specific challenge: asynchronous multiple entry points using entry point saturation (EPS)

and integrating it into pushdown control-flow analysis.

9.1 Entry points discovery

An entry point is defined as any point through which the system can enter the user

application [23]. This means that any method that can be invoked by the framework is an

entry point. Since there is no single “main” method, the static analysis must first identify

the entry points in the program. Entry point discovery is not a challenge, however, since

they are defined by the Android framework. I briefly summarize possible entry points here.

There are three categories of entry points, which I generalize as units. First, all the

callback events of components defined by the Android framework are entry points. These

entry points are designed to be overridden by application code and are invoked and managed

by the framework for the purpose of component life cycle management, coordinating among

different components, and responding to user events which are themselves defined to be

asynchronous. Second, asynchronous operations that can be executed in the background

by the framework are considered to be entry points. These include the AsyncTask class

for short background operations, the Thread class for longer operations, and the Handler

class for responding to messages. Finally, all event handlers in Android user interface (UI)

widgets, such as button, check box, etc.are entry points. Each UI widget has standard event

listeners defined, where the event handler interface methods are meant to be implemented

by application code. Entry points from the first two categories are found by parsing Dalvik

bytecode and organized into a set attached to the corresponding unit. Entry points from

the final category can also be defined in resource layout files res/layout/filename.xml. These

entry points can be obtained by parsing files before analysis.
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9.2 The approximation of multiple entry points
execution—entry point saturation (EPS)

After the entry point set for each unit is determined the real challenge begins.

Intuitively, if we want to do a sound analysis, all the permutations of the entry points

need to be considered. The permutations of the entry points differ from the interleavings

of concurrent constructs, such as threads. They are not my concern, because concurrency-

incurred control-flows and data-flows are very unreliable in being produced or exploited

in the context of security vulnerability identification [5]. Therefore, the focus is how to

“soundly” approximate the permutations of the entry points under the Android framework.

However, it is possible to model thread interleavings in the spirit of EPS. I will discuss this

more after illustrating EPS.

Entry point saturation (EPS) directly relies on the underlying pushdown analytic engine

presented in Chapter 8. Figure 9.1 illustrates the process. For each entry point Ei in a

unit (represented as a square), I compute the fixed point via pushdown analysis (refer to

Section 8.2). After one round of computation the analysis returns a set of configurations. I

then use the configuration widening technique from Might [15] on the set of configurations

to generate a widened σ̂i. This abstract component will be “inherited” by the next entry

point in the fixed point computation. The process repeats until the last entry point finishes

its computation in a unit. In this way, the unit has reached a fixed point. The next step

computes the fixed point between units. This is computed in a similar fashion to the

intra-unit fixed point computation, so the widened result σ̂′n from the previous unit (the

left square) participates in the reachability analysis of the next unit (the right square).
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En
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σ̂′
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σ̂′
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Figure 9.1: Entry point saturation.
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So, now we can see that EPS is not based on permutations of entry points and their

interleaving execution. It models such behavior by passing the store resulting from analyzing

one entry point as the initial store for the next entry point. This gives the “saturated” store

for a given component. The saturated store for a component is similarly passed as the initial

store for the next component. The final store models every execution path without needing

to enumerate every combination, and the effect of every execution path is “stabilized”

eventually. In brief, EPS has several advantages:

1. It approximates multiple entry point executions without enumerating all the permu-

tations and analyzing each one of them.

2. It computes the fixed point from bottom up, intraentry point, interentry point, and

interunit, in an efficient manner and significantly simplifies the static analysis;

3. In the same spirit, it can compute the analysis of thread interleaving executions

via a more aggressive widening—global widening. It uses a single Ŝtore across each

statement, entry point and component. The technique can diminish precision but the

performance gain can be considerable [8, 15].

4. The soundness is easy to prove, because the soundness proof for widening on the

abstract configurations follows the same structure as shown in [15], thus I omit it

here.



CHAPTER 10

STATIC TAINT FLOW ANALYSIS IN

SMALL-STEP ABSTRACT

INTERPRETATION

According to the open web application security project (OWASP) [24], cross site script-

ing (XSS) and structured query language (SQL) injection have been two of the top ten

most common security threats for several years. Both are caused by unsanitized user input

flowing into unsafe or privileged sinks such as system calls, database queries or, in modern

times, client-side HTML. In mobile apps, particularly Android malware, security analysis

mostly concerns the flows of sensitive private user information. The taint source is not

necessarily just user input, but can be from sensors, GPS, local file system or SD cards, etc.

Taint analysis has been proposed to solve this problem [25, 26], by tracking and detecting

whether tainted values (usually unsanitized user input) may flow into security sinks. This

can be done dynamically and statically. Generally speaking, the main strength of dynamic

taint analysis is that it can track tainted information through direct data dependencies in an

efficient and precise way [27, 28, 29, 30, 31, 32]. However, strictly dynamic analyses cannot

prevent soft failure of the application when an unexpected taint violation happens [33, 34,

35].

Static taint analysis can prove the absence of taint violations, or at least delimit the

regions in which they may happen. However, it is subject to false positives. Therefore, a

precise static taint analysis is of particular importance.

The strategy to achieve a highly precise static taint analysis in this work is to retrofit

the principled and highly precise analysis framework foundation established in previous

chapters. However, the principled analysis framework does not deal with taint values as

it does for different types of data in a specific programming paradigm, not to mention the

flows of the taint values.

This chapter describes the technique to empower small-step abstract interpretation with

security analysis—taint-flow analysis. Section 10.1 describes the technique to integrate taint
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analysis in small-step abstract interpretation. It presents necessary details of refactoring

on abstract semantics for taint-flow analysis in both traditional abstract interpretation

and pushdown exception-flow abstract interpretation. Section 10.2 describes how to form

taint lattice, including the simplest two-valued taint lattice and multivalued subset-based

taint lattice for Android malware. To demonstrate how the static taint-flow precisely track

tainted data in abstract interpretation, Section 10.3 details some walk throughs on some

challenging running examples.

10.1 Static taint-flow analysis in small-step
abstract interpretation

The finite-state abstract interpretation—classical k-CFA described in Chapter 5, Sec-

tion 5.2.1—shows a context-, object- and field-sensitive analysis. A static taint analysis built

upon this analysis can retrofit these advantages. The pushdown abstract interpretation in

Chapter 6 and Chapter 7 presents an analysis free of the limited level of context- and

object-sensitivity. A static taint analysis based on this framework can gain even more

precision. This section describes the generalized technique of integrating taint-flow analysis

in both analysis schemes.

The core of integrating taint-flow analysis in these small-step abstract interpretation

is to track the tainted values in a “small-step” fashion. In other words, whenever a state

transits to next possibles state(s), the analysis will extend the effects of tainted values.

Therefore, here we only need to add a “taint” component into state space Ŝtate to record

this change, formulated as follows:

σ̂T ∈ ̂TaintStore = Âddr ⇀ D̂ .

The definition of D̂ now include the abstract tainted values:

d̂ ∈ D̂ = P
(

̂ObjectValue + Ŝtring + Ẑ + B̂ + ̂TaintVal
)

The taint values are opaque for now. This issue will be resolved in Section 10.2.

Further refactoring specific to the state space of two kinds of abstract interpretation:

• In finite-state small-step abstract interpretation:

Ĉonf = Stmt∗ × ̂FramePointer × Ŝtore × ̂TaintStore × ̂KontAddr × T̂ime

• In pushdown abstract interpretation:

Ĉonf = Stmt∗ × ̂FramePointer × Ŝtore × ̂TaintStore × K̂ont × T̂ime
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We also need to refine the atomic expression evaluator Â and ÂF to get tainted values

for variables and fields, respectively:

ÂT : AExp× ̂FramePointer × ̂TaintStore ⇀ D̂ : ÂT (name, f̂p, σ̂T ) = σ̂T (f̂p,name)

ÂF
T

: AExp× ̂FramePointer × ̂TaintStore × Store×FieldName ⇀ D̂ :

ÂF
T

(æ, f̂p, σ̂T , σ̂,field -name) = σ̂T (ôp,field -name), where (ôp, class-name) ∈ Â(æ, f̂p, σ̂).

When looking up taint values for fields, we need the normal store σ̂ to first find the base

pointer for the field, then look into the taint store σ̂T to get the taint values for the fields.

With the refactoring defined for state space of taint-flow analysis, the transition relation

; can propagate tainted values without any modification of the existing mechanics. In other

words, all the transition rules have an additional σ̂T added, operations resemble the ones on

σ̂, except that the taint values are monotonically propagated. For example, in a function

call, tainted values in arguments are bound to the formal parameters of the functions (using

the t operation in the taint store σ̂T ), returning abstract taint values bound to a register

address with ret, etc. The detailed formalism is omitted to save space due to much of the

duplication.

What is worth pointing out is that, the taint-flow analysis derived in this way needs no

modification to the (enhanced) abstract garbage collection (Chapter 7). Abstract garbage

collection related semantics are mainly computing reachable addresses, where the taint store

σ̂T and original store σ̂ have the same domain, which are the set of abstract addresses defined

in Âddr . This nonintrusive approach simplifies the construction of the taint analysis, more

importantly, it significantly eases the exploitation of underlying analysis techniques.

Section 10.3 exemplifies how the taint-flow analysis tracks tainted data precisely. Chap-

ter 13, Section 13.3 reports the overall effectiveness of the taint-flow analysis to identify

Android malware in pushdown exception-flow analysis framework.

10.2 Taint lattice

Section 10.1 introduces the idea of integrating taint-flow analysis in small-step abstract

interpretation. It leaves the taint values opaque. This section illustrates two kinds of lattices

as the abstract taint values.

10.2.1 Simple taint lattice

One of the simplest form of taint lattice is two-valued lattice with the values of “tainted”

and “untainted,” as shown in Figure 10.1.
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Tainted

⊥

⊤

UnTainted

Figure 10.1: Simple taint lattice.

The lattice is useful in specifying unsanitized user input in web apps. It has been used

to detect XSS attacks for Python web apps [36].

10.2.2 Multivalued flat taint lattice

The two valued lattice is insufficient to specify the taint values in Android apps. Any

data that involve user private information can be tainted values, such as contacts, SMS,

pictures in local file system, etc. To have a fine-grained analysis of taint values, I have

refined the simple taint lattice to be a multivalued subset-based taint lattice:

d̂ ∈ V̂al = P
(

̂ObjectValue + Ŝtring + Ẑ + TaintVal
)

TaintVal = Location + FileSystem + Sms + Phone + Voice + Contact

+ DeviceID + Network + ID + TimeOrDate + Sensor

+ Display + Reflection + BrowserBookmark + IPC + Thread

+ BrowserHistory + SdCard + Picture + Account + Media.

10.3 Examples of precise taint-flow analysis
in abstract interpretation

Since semantics of the taint-flow analysis resembles much of the existing semantics

omitted in this chapter, it would be helpful to exemplify how to track taint values by

leveraging underlying analysis framework. Listing 10.1 shows some condensed code snippet

that could trigger security violation reports.

Listing 10.1: Example code to show precise static taint-flow analysis in abstract interpre-
tation

1 void main() {

2 A a = new A();

3 B b = a.g;

4 foo(source(), a);

5 sink(b.f);

6 A c = new A();

7 foo("clean", c);

8 B d = c.g;
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9 sink(d.f);

10 }

12 void foo(String str, A z) {

13 B x = z.g;

14 String w = str;

15 x.f = w;

16 }

I will show how analysis runs in both normal store and taint store in particular. In

taint store, the tainted values are indicated with taintedi . v is the prefix to the name of

the variables and formal parameters. Frame pointer f̂p is abbreviated with the subscript

indicating last one call-site with function name if applied. Object pointer ôp is abbreviated

with the subscript indicating last one allocation site (line number) with the type name.

For the purpose of demonstrating the capability of my analysis, I start from the 0CFA

and 1-object sensitivity. So initial states and the ones after executing lines 1-2 (suppose the

nested field object “g” is instantiated somewhere with {(ôpB0, B)}):

(f̂pmain, va) 7→ {(ôpA2, A)}, (ôpA2, “g”) 7→ {(ôpB0, B)}

(f̂pmain, vb) 7→ {(ôpB0, B)}, (ôpB0, “f”) 7→ {}.

10.3.1 Propagating tainted values

In line 4, source returns tainted data. When calling foo, the formal parameter of str is

tainted at this point:

(f̂pfoo, vstr) 7→ {tainted0},

(f̂pfoo, vz) 7→ {(ôpA2, A)}, (f̂pfoo, vx) 7→ {(ôpB0, B)}

(f̂pfoo, vw) 7→ {tainted0}, (ôpB0, “f”) 7→ {tainted0}.

When executing line 5, the sink will report the risk of leaking sensitive data, because

now (ôpB0, “f”) is mapping to {tainted0}.

10.3.2 Traditional k-CFA and object sensitivity
to refine taint information

In line 6 of Listing 10.1, the program instantiates another object of type A, since I use

one level of object-sensitivity, I can distinguish the two objects of type A. Suppose the

nested field object “g” is instantiated somewhere with {(ôpB1, B)}:

(f̂pmain, vc) 7→ {(ôpA6, A)}, (ôpA6, “g”) 7→ {(ôpB1, B)}

(f̂pmain, vd) 7→ {(ôpB1, B)}, (ôpB1, “f”) 7→ {}.
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In line 7 of Listing 10.1, it calls foo again. Without any level of call-context-sensitivity,

the following happens:

(f̂pfoo, vstr) 7→ {tainted0 , “clean”} // values merging!

(f̂pfoo, vz) 7→ {(ôpA2, A), (ôpA6, A)} //values merging!

(f̂pfoo, vx) 7→ {(ôpB0, B), (ôpB1, B)} //values merging!

(ôpB0, “f”) 7→ {tainted0}

(f̂pfoo, vw) 7→ {tainted0 , “clean”} //values merging!

(ôpB1, “f”) 7→ {tainted0 , “clean”} //values merging!.

The merging records in the taint store and normal value store are annotated. In

particular, the imprecision in str causes the imprecision of vw and so (ôpB1, “f”). Its mapped

tainted value will falsely flow into sink in line 9.

With 1-call-site context-sensitivity, we can distinguish call site of foo by one level. That

is, the call site in line 4 is distinguished from the call site in line 7. So:

(f̂pfoo7, vstr) 7→ {“clean”}

(f̂pfoo7, vz) 7→ {(ôpA6, A)}

(f̂pfoo7, vx) 7→ {(ôpB1, B)}

(f̂pfoo7, vw) 7→ {“clean”}

(ôpB1, “f”) 7→ {“clean”}.

We can see that value merging problem for vstr, vz, vx, vw is solved and so that the field “f”

does not have any tainted value. So, sink in line 7 does not report a violation.

10.3.3 Abstract garbage collection to refine taint-flow
precision without context-sensitivity

What is worth pointing out is that context-sensitivity is easily subject to program

constructs, that is, a function can be easily nested in an arbitrary level, any fixed number of

level of call-site context-sensitivity can fail at some point. Therefore, the abstract garbage

collection in object-oriented setting becomes very useful to refine precision without any level

of context-sensitivity and field-sensitivity.

So, rewind to the point of line 7. Before executing this line, if abstract garbage collection

is applied, even with no context-sensitivity (0CFA), we can get clean stores as shown below:
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(f̂pfoo, vstr) 7→ {}

(f̂pfoo, vz) 7→ {}

(f̂pfoo, vx) 7→ {}

(f̂pfoo, vw) 7→ {}

(ôpB1, “f”) 7→ {}.

With these cleaned stores, when applying foo in line 7, the precise result is shown as

follows:

(f̂pfoo, vstr) 7→ {“clean”}

(f̂pfoo, vz) 7→ {(ôpA6, A)}

(f̂pfoo, vx) 7→ {(ôpB1, B)}

(f̂pfoo, vw) 7→ {“clean”}

(ôpB1, “f”) 7→ {“clean”}.

This analysis result at this point will not report false positive in the call site sink in line 9.

10.3.4 Abstract garbage collection to refine field
taint precision in alias case

Listing 10.2 is a code snippet that involves an alias. For brevity, I keep the foo the same

as Listing 10.1. Following the previous sections, I demonstrate how garbage collection can

help refine field taint information in particular. So, aa and a are aliases. As Section 10.3.2

shows, line 6 will reports violation, since after the call of foo in line 5, field f is tainted, and

there is a record in taint store: (ôpB0, “f”) 7→ {tainted0}.

Listing 10.2: Example code to show precise static taint-flow analysis in abstract
interpretation-alias case

1 void main() {

2 A a = new A();

3 A aa = a;

4 B b = a.g;

5 foo(source(), a);

6 sink(b.f);

7 foo("clean", aa);

8 sink(b.f);

9 }

The Listing 10.2 calls foo again in line 7 with the argument value of “clean” and the alias

of a, aa, sink in line 8 should not report a violation.
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Conservative analysis can falsely report if it is unable to track the alias, or if it is unable

to distinguish “active” values of an alias that is of concern in the current calling frame.

Tracking an alias is not an issue in my framework, with any arbitrary level of field

reference. What is more worth noting is that, with abstract garbage collection applied right

before applying the call foo in line 7, the values of the entry indexed by the field address

(ôpB0, “f”) are eliminated. So when applying foo in line 7 again, (ôpB0, “f”) 7→ {“clean”}

and thus line 8 will not report violation.

10.3.5 Pushdown framework to refine taint-flows
in the presence of exceptions

Listing 10.3 is a snippet code that shows source information can flow out of the sinks via

exception handlers. It is a simplified version of the work [6]. As shown in the Listing 10.3,

function foo calls bar. The bar is a function that can throw exception. The bar can be called

elsewhere, for instance, baz.

Listing 10.3: Example code to show precise static taint-flow analysis in abstract
interpretation-exception case

1 foo() {

2 try{

3 String str = source();

4 bar(); //may throw exceptions.

5 }

6 catch(Exception e) {

7 sink(str);

8 }

9 }

11 baz() {

12 try{

13 String str = "clean";

14 bar(); // may throw exceptions

15 }

16 catch(Exception e){};

17 }

Analysis with 1-call-site context-sensitivity is insufficient in this case since bar is nested

inside functions. The level of context-sensitivity should be 2 to distinguish the two different

calls to bar. However, the real challenge for existing analysis is the exceptions. Ignoring

exception handling code is unsound, although it is not trivial to figure out where the control-

flow should go, in particular when the handlers are located in deep upper caller chains.

Imprecise analysis of exceptions usually work this way: when calling either bar in line 14 or

the one in line 4 encounters an exception, conservative analysis might go to handler in line
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16 as well as the one in line 6-8. This kind of problem is documented in [37].

This over-approximation can be refined in the pushdown exception analysis framework

(Chapter 6). When bar in line 4 is called and an exception is thrown, it “jumps” out of

the current call frame of bar, locates its caller foo and finds the exception handler that was

installed in the caller. Thus, the analysis is able to track the tainted source flows into sink

in line 7. On the other hand, when the function baz is called in line 14, it would not falsely

resolve the handler in line 6-8 and report false positives.

At this point, I have demonstrated how to do precise and sound (with respect of

analyzing exceptions) taint-flow analysis by retrofitting the underlying analysis framework.

Chapter 13, Section 13.3 shall report the overall effectiveness of the taint-flow analysis in

identifying Android malware in a pushdown exception-flow analysis framework.



CHAPTER 11

GÖDEL HASHES FOR ACCELERATING

STATIC ANALYSIS

Computing static analysis as an abstract interpretation is much like a graph search,

except that instead of checking whether the current state has visited, the algorithm checks

whether the current state is subsumed by a state which has already been visited. Either

the finite-state-based analysis or the pushdown version, the subsumption comparison is the

core of the fix-point computation.

For example, in classical control-flow analysis, the fix-point computation is as fol-

lows [15]:

Todo := {(call ,⊥
Ŝtore

)}

Seen := ∅

while (Todo 6= ∅)

ς̂ := choose(Todo)

Todo := Todo − {ς̂}

if ({ς̂} 6v Seen)

Seen := Seen ∪ {ς̂}

next :=
{
ς̂ ′ : ς̂ ; ς̂ ′

}
Todo := next ∪ Todo

For a path-sensitive k-CFA, it is an implementation of flow-sensitive control-flow anal-

ysis with unrestricted heap-cloning. This kind of k-CFA could perform on the order of

O(n2((2n)n)2) subsumption tests [8, 38, 15]: programs as small as 100 lines can easily visit

well over a hundred thousand states, requiring over a billion subsumption tests between

abstract heaps.

In the pushdown exception-flow analysis, which is derived from the polynomial complex-

ity algorithm in [16, 18], the subsumption test between abstract heaps accounts for a lot in
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the fix-point computation of pushdown exception-flow analysis. The Alg. 2 in Chapter 8,

Section 8.2 illustrates this.

Gödel hashes are developed to transform the expensive operation during fixed point

computation into numerical operations for the purpose to speed up the analysis.

11.1 Outline

The rest of the section in this chapter is organized as follows: Section 11.2 introduces

the idea of Gödel hashing and its characteristics of such encoding scheme. Section 11.3

reviews some preliminary mathematics and notations.

Then in Section 11.4, I first explore Gödel hashes on sets by defining a perfect hashing

function that exploits the fundamental theorem of arithmetic; it maps set-theoretic oper-

ations on values (e.g., union, intersection, subset-inclusion) into arithmetic operations on

hashed values (e.g., lcm, gcd, divisibility).

I conduct a formal analysis of the worst- and average-case space usage of the set hashes,

and then provide a space-optimality result when the distribution of elements amongst sets

is known a priori. Following the analysis of space usage, I analyze the speed of operations

on Gödel hashes, which reveals that, asymptotically, some operations on Gödel hashes are

worse than the equivalent operations on the original values.

However, by “unhiding” the hidden constant factors—the speed-up from word-sized

arithmetic operations for the hashes and the cost of cache misses for the original values—I

find the potential for operations on Gödel hashes to be significantly faster (a point later

validated by my empirical trials).

With Gödel sets defined, Section 11.5 shows that many recursively constructed, partially

ordered data structures have order-preserving (monotonic) Gödel hashes. I do so by finding

a condition on partial orders, factorability, which implies the existence of an order-preserving

Gödel hash, and show that common set constructors preserve factorability.

Since other data structures are less relative to static analysis, the extension of Gödel

hashes for maps, relations, and graphs, multisets, and lists are arranged in Appendix C.

I then briefly discuss computing the prime numbers necessary for Gödel hashing to work.

This is described in Section 11.6.

The evaluation on Gödel hashes sets with respect to compactness in space and efficiency,

and the application to speedup static analysis is discussed in Chapter 13, Section 13.2 and

Section 13.2.4, respectively.
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11.2 The idea of Gödel hashes

Gödel’s incompleteness proofs [39] used clever strategies for encoding complex mathe-

matical structures as individual natural numbers. With occasional help from Cantor [40],

we focus on one of the strategies Gödel used for encoding propositions, and I extend it

to encode sets, multisets, lists, maps, relations, graphs, and partial orders. I term these

encodings Gödel hashes because they are compact and because inverting the encoding is

impossible.1 Compared to traditional hashing strategies, Gödel hashes possess six attractive

properties:

1. Gödel hashes are perfect hashes. For an ordinary hash function, inequality of

the hashes implies inequality of the original objects, but equality of hashes does not

imply the equality of the original objects. For a perfect hash function, the hashes of

two objects are equal if and only if the objects are equal.

2. Gödel hashes are dynamic. Unlike other perfect hashing schemes, it is not

necessary to know all of the items that may be hashed in advance in order to compute

a Gödel hash. Moreover, if the probability distribution of objects to be hashed is

known in advance, then the average Gödel hash will be minimal.

3. Gödel hashes are structurally incremental. Given a value and its hash, it is

efficient to incrementally update the hash without recomputation when the value is

extended. It is also straightforward to compute the Gödel hash of a complex value

from the Gödel hash of its components.

4. Gödel hashes are compact. Because Gödel hashes are dynamic and perfect, they

are necessarily unbounded in size. Even so, it is straightforward to reason about

their size in advance in both worst and average cases, and even their worst case is

remarkably compact under pessimistic assumptions. For example, in the worse case,

the Gödel hash of a set achieves a density of more than one element per 64-bit word

until 258 elements are in the universe. The average case is slightly more compact.

5. Gödel hashes are efficient. Operations on Gödel hashes are efficient, and they are

easy to implement in most modern programming languages, thanks to their built-in

support for arbitrary-precision integer arithmetic. In particular, multiple precision

arithmetic can be efficiently implemented by modern CPUs’ single instruction, mul-

tiple data (SIMD), instructions.

6. Gödel hashes are partial-order-preserving. Gödel hashes are order-preserving

(monotonic) for a variety of partial orderings. For instance, if:

1This statement is false. It is actually computationally intractable to invert.
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H : X→ H

computes the Gödel hash of an element in the set X, and the relation (⊆) orders X

while the relation (v) orders H, then:

x ⊆ y iff H(x) v H(y).

Critically, the relation v has a fast, efficient arithmetic implementation. I show that

all factorable partial orders (defined in Section 11.5) have a Gödel hashing scheme, and

I show that factorability is preserved across many set-construction operations. Thus,

even complex partially-ordered data structures have an order-preserving Gödel hash.

Existing hashing techniques preserve total orders, so this opens up new possibilities

for the use of hashes (Chapter 13, Section 13.2.4) on pushdown exception-flow for

object-oriented programs ).

11.2.1 Key idea

Even though the precise algorithm for constructing a Gödel hash differs from one kind

of structure to another, all Gödel hashing techniques that I discuss in detail exploit the

same principle—the fundamental theorem of arithmetic:

Every natural number has a unique decomposition as the product of prime fac-

tors.

I find links between insertion and multiplication, between removal and division, and between

subsumption and divisibility. I generalize these links to cover additional structures, such as

partial orders.

The message is that: Gödel hashes are feasible and useful for applications in which

hashes need to compactly preserve structure.

11.3 Preliminaries: background and notations

The set N = {0, 1, 2 . . .} is the set of natural numbers. The set Z = {. . . ,−1, 0, 1, . . .} is

the set of integers. The set P = {2, 3, . . .} is the set of prime numbers. The number pi is

the ith smallest prime number, where p0 = 2.

To enhance readability and notational symmetry, I use the operations greatest common

divisor (gcd) and least common multiple (lcm) in infix form. There are many equivalent

definitions of these operations, but this work exploits a particular (and uncommon) inter-

pretation of these operations: as functions which minimize or maximize the exponents of
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two natural numbers in a factor-wise fashion; the greatest common divisor of two natural

numbers n = pm0
0 · · · pmn

n and n′ = p
m′0
0 · · · p

m′n
n is:

n gcd n′ = p
min(m0,m′0)
0 · · · pmin(mn,m′n)

n ,

and their least common multiple is:

n lcm n′ = p
max(m0,m′0)
0 · · · pmax(mn,m′n)

n .

I also use the divisibility relation:

a | b iff b mod a = 0.

My proofs often employ characteristic functions. The characteristic function of a set A is

the function χA : A→ {0, 1}:

χA(x) =

{
1 x ∈ A
0 x 6∈ A.

I use the bar brackets to denote set cardinality: |A| is the cardinality of the set A.

The function ln denotes the natural logarithm (loge) and the function lg denotes the

binary logarithm (log2).

I make use of Cantor’s bijection, C∗ : Z∗ → N. There are many such bijections (but

Cantor first proved their existence [40]). Any such bijection will work. For example, for the

simple case of assigning pairs of naturals to a unique natural, the function C+
2 : N2 → N

works:

C+
2 (x, y) =

x∑
i=0

i+

y+2∑
j=x+2

j

11.3.1 Gödel hashing notations

For each hashable structure X that I study, I will define a Gödel-hashing function

GX : X → N, so that GX(x) is the Gödel encoding of the value x. To unclutter notation, I

will often shorthand GX(x) as ||x||X or just ||x|| when it is clear what X is.

11.4 Sets

Sets—unordered collections of elements—abound in functional (and nonfunctional) pro-

gramming. For set-intensive applications, performance hinges on two factors: (1) the

space-efficiency of the underlying data structure and (2) the time-efficiency of operations

on such structures: membership testing, inclusion testing, intersection, insertion, union,
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deletion and difference. A Gödel strategy for encoding sets delivers pragmatic efficiency in

both dimensions.

I devote more details to the study of Gödel hashes of sets, because many of the results

on sets (e.g., correctness, efficiency, optimality) generalize to other data structures.

To construct the Gödel encoding of a set, first assume that every potential element has

been assigned a unique prime number; then compute the product of the primes assigned to

each element; the result is the Gödel hash of the set. It is not necessary to preconstruct the

assignment from elements to primes: new elements may be assigned fresh primes as they

are encountered for the first time.

Example 1 If the potential elements of a set are A, B, C and D, then I can assign these

elements the primes 2, 3, 5 and 7, respectively. Thus, the Gödel hash of the set S = {A,C}

is the natural number 2× 5 = 10.

On the Gödel hash of a set, familiar number-theoretic operations become set-theoretic

operations: modulo tests both membership and subset-inclusion; union becomes the least

common multiple; and intersection becomes the greatest-common divisor.

11.4.1 Formal definition of Gödel encoding for sets

A universe of discourse, denoted U, which may be either finite or infinite, is a collection

of all the elements that may appear in a set. A prime map for a universe U is an injective

function PU : U → P, which maps every element in the universe U to a unique prime

number. In practice, the implementation may assign primes dynamically while memoizing

them; or if the elements of the universe themselves have a perfect hash map, H : U→ N,2

then a purely functional prime map may be used:

Ppure(u) = pH(u),

which lends itself to a recursive strategy for constructing prime maps.

Definition 11.1 The function GP(U) : P (U)→ N computes the Gödel hash of a set:

GP(U) {u1, . . . , un} = || {u1, . . . , un} || = P (u1)× · · · × P (un).

Equivalently, the Gödel hash of a set may also be defined through its characteristic function:

GP(U)(A) =
∏
u∈U

P (u)χA(u).

2Created, perhaps, by Gödel hashes in the internal structure of elements.
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(When only one universe is under consideration, the subscripts may be left off.)

11.4.2 Set-theoretic operations and relations

I can construct the standard set-theoretic operations and relations out of arithmetic.

Lemma 11.1 Union reduces to least common multiple:

||A ∪B|| = ||A|| lcm ||B||.

Proof. Let A,B ⊆ U.

||A ∪B|| =
∏
u∈U P (u)χA∪B(u)

=
∏
u∈U P (u)max(χA(u),χB(u))

= lcm
(∏

u∈U P (u)χA(u),
∏
u∈U P (u)χB(u)

)
= ||A|| lcm ||B||.

Lemma 11.2 Intersection reduces to the greatest common divisor:

||A ∩B|| = ||A|| gcd ||B||.

Proof. By argument analogous to the previous proof.

Lemma 11.3 Set difference reduces to division:

||A−B|| = ||A||
||A|| gcd ||B||.

Proof. By extension of the previous result.

Lemma 11.4 Membership reduces to divisibility:

u ∈ A iff P (u) | G(A)

Proof.

u ∈ A iff 1 = χA(u)

iff P (u) = P (u)χA(u)

iff P (u) | P (u)χA(u)

iff P (u) |
∏
u∈U

P (u)χA(u)

iff P (u) | G(A).
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Lemma 11.5 Inclusion reduces to divisibility:

A ⊆ B iff G(A) | G(B).

Proof. By an argument similar to the proof for membership.

Lemma 11.6 Insertion reduces to divisibility and multiplication:

||A ∪ {u} || =

{
||A|| P (u) | ||A||
||A|| × P (u) otherwise.

Proof. By cases in u ∈ A, u 6∈ A.

Lemma 11.7 Deletion reduces to divisibility and division:

||A− {u} || =

{
||A||/P (u) P (u) | ||A||
||A|| otherwise.

Proof. By cases in u ∈ A, u 6∈ A.

11.4.3 Space-efficiency of Gödel hashes on sets

I can derive upper bounds on the size of a Gödel hash for a set. Let U be the cardinality

of the universe, U = |U|. Using the prime number theorem, I can approximate the value of

the prime pU :

pU ≈ U ln(U)

From this, I can approximate the number of bits required to represent pU :

EU = size(pU ) ≤ dlg(U ln(U))e

When an n-bit number and an m-bit number are multiplied, the result is an (at most)

(n+m)-bit number. From this, I can bound the bit size of a hash with k elements:

size(|| {u1, . . . , uk} ||) ≤ k × dlg(U ln(U))e.

One immediate observation, is that on 32-bit hardware, until the universe of discourse

exceeds a cardinality of 193,635,250 (roughly 227), each word will hold more than one

element. On 64-bit hardware, the equivalent threshold for the universe of discourse is a

cardinality of 415,828,534,307,634,000 (roughly 258).

I can also predict the minimum number of elements which will fit in a single word of W

bits as a function of the size of the universe:

kmin(U) =
W

dlg(U ln(U))e
.
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Example 2 For example, with a universe of 210 elements, a 64-bit machine would be able to

roughly fit five elements in each word. Translated to a more concrete example, if 0CFA [38]

were to compute the flow sets (where each flow set contains the lambda terms that might

flow to an expression) for a program with a thousand functions, most flow sets (which tend

to be very sparse) would fit in single word—a single register. Using the bitmap formulation,

each flow set would consume 16 words of contiguous memory; using the traditional bucket-

based hash set, each flow set would consume about ten words; and a balanced-tree sorted set

implementation would consume roughly 15 words of (noncontiguous) memory per flow set.

The average case is slightly better. For the average case, I assume that the elements of a set

are uniformly distributed throughout the universe. In this case, the average size (in bits)

of a set with k elements will be:

k

(U − 1)

U∑
i=2

dlg(i ln(i))e.

Example 3 For instance, on average, on 64-bit hardware, each word will hold a little over

five elements on average assuming a universe with 210 elements. Or, in a universe with 216

elements, each word will now hold about three elements on average.

11.4.3.1 Optimizing the prime map for space usage

If we know a priori the probability distribution of elements in the universe, then we can

assign primes so as to minimize the number of bits per set. If the probability of an element

u appearing in a set is f(u), then we can construct the vector ~u? ∈ U∗ in which elements

are sorted according to decreasing frequency:

f(u?i ) ≥ f(u?i+1).

The optimal prime map is P ? : U→ P:

P ?(u?i ) = pi.

The expected size (in bits) of a random set is:∑
u∈U

f(u)dlg(P ?(u))e,

which leads to a space-optimality result:

Theorem 11.1 (Space optimality) The prime map P ? minimizes the expected bit-size

of a random set.
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Proof. Straightforward. (By contradiction.)

Example 4 If the universe has infinite size, but its elements are distributed according to a

geometric distribution with parameter r = 1/2, then the average set size will be roughly six

bits. (Intuition: Half of all the elements will be two, which adds only one bit to a set; a

quarter of all elements will be three, which adds only two bits; an eighth of all elements will

be 5, etc.)

11.4.4 Time efficiency of operations on
Gödel hashes for sets

As it turns out, some operations on Gödel hashes have slightly worse asymptotic com-

plexity than other data structures for sets. I will need to perform a more detailed accounting

of their cost with respect to modern hardware, chiefly with respect to the CPU word size,

to unearth their pragmatics. To make the constant factors stand out, I will assume 64-bit

hardware. I will also assume that the underlying implementation of arbitrary-precision

natural number is an array of unsigned integers (64-bit words).

I discuss the cost of operations on two sets, A and B. I assume the universe contains

no more than 258 elements so that a single element hash can fit into a machine word. Such

a universe size is sufficient in practice. Let m be the sum of the cardinality of these sets:

m = |A| + |B|. I will refer to the maximum number of bits in the Gödel hashes of these

sets: n = mEU.

• Intersection needs to compute greatest common divisor. The Euclidian algorithm

requires up to n/64 modulo operations on two multiple precision naturals (the Gödel

hashes of two sets, respectively), each of which has O(n2) time complexity. Thus,

the complexity of intersection is cubic: O(n3). However, the modulo operation is

performed in chunks of the word-size , which means the O(n2) complexity has a hidden

1/642 constant speedup factor. Considering the other 1/64 constant in the number of

times of the modulo operations, the cubic intersection complexity actually has a 1/643

constant speedup factor! On a pipelined 64-bit CPU, the back-of-the-envelope cost of

the computation is up to
⌈
n3

643

⌉
=
⌈

n3

262144

⌉
clock cycles!

• The cost for union is the same as intersection.

• The cost for set difference is the same as intersection, plus a division operation with

two multiple precision numbers.

• The cost for element insertion is a modulo operation and a multiplication operation,

both of which operate on a multiple precision number (the Gödel hash of a set) with
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a word-size (the Gödel hash of an element) divisor or multiplicand, so the total time

complexity is O(n), with a 1/64 constant speedup factor.

• The cost for element deletion is: a modulo and a division, both of which operate on

a multiple precision number (the Gödel hash of a set) with a word-size (the Gödel

hash of an element) divisor. Same as insertion, it is O(n) time complexity with a 1/64

constant speedup factor.

• The complexity of membership-testing is quite efficient too: one modulo operation on

a multiple precision number (the Gödel hash of a set) with a word-size (the Gödel hash

of an element) divisor, which costs O(n) time with a 1/64 constant speedup factor.

• The cost of subset inclusion testing is a modulo operation with two multiple precision

numbers (the Gödel hashes of two sets, respectively), which is O(n2) time complexity,

with a 1/4096 constant speedup factor.

• The complexity of set enumeration is equivalent to integer factorization, which is

believed to be intractable3.

In practice, multiple precision arithmetic can be further accelerated via SIMD instruc-

tions such as streaming SIMD extensions (SSE) and advanced vector extensions (AVX) [41].

These instructions can operate on 256 or even 512 bits data with a single instruction. Hence,

all the operations above can benefit from a much larger constant factor. What is more,

compared with other common set implementations such as tree-based or bucket-based hash

sets, the natural implementation of Gödel hashes as a small array of unsigned integers, which

can minimize cache misses, is better-suited to modern hardware for cache efficiency. The

empirical evaluation in Section 13.2.2 on the GNU (the name GNU is a recursive acronym

for GNU’s Not Unix!) GNU multiple precision (GMP) based Gödel hashes validates both

of these.

11.5 Partial orders

The ability of Gödel hashes to accelerate testing for subsumption under a partial order,

i.e., whether x v y, is perhaps their greatest strength. Partially ordered sets (posets) play

an important role in fields such as static analysis and artificial intelligence. In static analysis

in particular, subsumption testing in large, complex lattices can easily consume the bulk

of the runtime for an analysis. (See Chapter 13, Section 13.2.4 for experimental results in

accelerating static analysis with Gödel hashing.)

3Except that primes are sufficiently small in most cases.
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I am able to provide a structurally recursive condition for when a partially ordered set

has an order-perserving Gödel hash. Specifically, given a poset (S,v), I can formulate Gödel

hash analogs of join (t), meet (u) and subsumption (v) if the poset S has a prime basis.

A poset has a prime basis if every (nonbottom) element has a unique decomposition as the

least upper bound of a finite number of basis elements.

Definition 11.2 For a poset (S,v), the set B ⊆ S is a prime basis if:

C1 ⊆ B and C2 ⊆ B,

and ⊔
C1 =

⊔
C2,

implies

C1 = C2; and

for any element s 6= ⊥ ∈ S, there exists a set C ⊆ B such that:

s =
⊔
C.

I will call a partially ordered set that has a prime basis a factorable poset. A factorable

poset does not need to have a weakest element, but if it does, the weakest element (denoted

⊥) is not in the prime basis. (This is analogous to excluding one from the set of prime

numbers.)

Definition 11.3 The function GS : S → N computes the order-preserving Gödel hash

of a partially ordered set (S,v) with prime basis B under the prime map PB : B → P:

GS (b1 t · · · t bn) = PB(b1)× · · · × PB(bn).

11.5.1 Operations on factorable partial orders

As with previous Gödel hashes, common operations and relations reduce to natural

arithmetic.

Lemma 11.8 Join reduces to the least common multiple:

||s1 t s2|| = ||s1|| lcm ||s2||.

Proof. Factorability allows us to construct “characteristic functions” on the prime basis of

partial orders, where χs : B → {0, 1}:

χs(b) =

{
1 b v s
0 b 6v s.

Clearly, χs1ts2(b) = max(χs1(b), χs2(b)). The proof is analogous for union over sets.
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Lemma 11.9 Meet operation reduces to the greatest common divisor:

||s1 u s2|| = ||s1|| gcd ||s2||.

Proof. By an argument similar to the previous proof.

Lemma 11.10 Subsumption reduces to divisibility:

s1 v s2 iff G(s1) | G(s2).

Proof. By an argument analogous to the subset-inclusion test for Gödel hashes on sets.

Warning : My definition of prime basis does not ensure that a partially ordered set

defines a join (nor a meet) for any two elements. As a result, there are cases where s1 t s2

will not exist, but of course, the reduction to Gödel hashes will still assign it a number,

and there is no way for the Gödel hash to know that this element does not exist in the

partial order. Thus, the Gödel hash reduction for partial orders is only sound under join for

join-semilattices, and under meet for meet-semilattices. It is therefore advisable to promote

a partial order to a lattice before working with its Gödel hash encoding to ensure soundness.

(This is not an issue for application domains such as static analysis.)

11.5.2 Recursively constructed factorable posets

I can show that the standard set-construction operators preserve factorability.

Factorable flat orders: a poset (S,v) whose order is flat is trivially factorable: its prime

basis is the set S.

Factorable power sets: a partially ordered power set (P (S),⊆) where the order is

inclusion is easily factorable: its prime basis, BP(S), consists of the singleton sets over

S: BP(S) = {{s} : s ∈ S}

Products of factorable posets: the Cartesian product of factorable partial orders is itself

factorable under its product ordering. Let (A1,v1) and (A2,v2) be factorable posets with

prime bases B1 and B2, respectively. Then the poset (A1 ×A2,vA1×A2) is defined so that:

(a1, a2) vA1×A2 (a′1, a
′
2) iff a1 v1 a

′
1 and a2 v2 a

′
2.

The prime basis for the product, BA1×A2 , is the product of the prime bases: BA1×A2 =

B1 ×B2.

Disjoint unions of factorable posets: if two posets (A1,v1) and (A2,v2) have prime

bases B1 and B2, then the prime basis for the natural ordering of the disjoint sum A1 +A2

is the disjoint sum of the prime bases: BA1+A2 = B1 +B2.
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Function spaces into factorable partial orders: the natural partial ordering of functions

leads to a factorable space of partially ordered functions when the range of the function

space is factorable. That is, if (Y,vY ) has prime basis By, then a space of finite functions

(X → Y,vX→Y ) is also factorable under the natural ordering:

f vX→Y g iff for each x ∈ dom(f) : f(x) vY g(x).

The prime basis for this function space, BX→Y , is the set of functions that map just one

element of x into a prime basis element of the set Y :

BX→Y = {⊥X→Y [x 7→ b] : x ∈ X, b ∈ BY } ,

where the bottom function ⊥X→Y maps every element to the bottom of Y : ⊥X→Y (x) = ⊥Y ,

unless the poset Y has no bottom, in which case ⊥X→Y , is the everywhere undefined

function: λx.undefined . Partial function spaces are identical except that the prime basis

elements do not extend the bottom map:

BX⇀Y = {[x 7→ b] : x ∈ X, b ∈ BY } .

11.5.3 Function spaces into countable total orders

While factorability is a sufficient condition for Gödel hashing, there are partial orders

which are not factorable, yet which have an order-preserving Gödel hash. An important

instance of this is a function space that maps into a countable total order. (In static analysis,

such posets are used for must-alias and environment analysis [17, 15].) If (Y,≤) is a totally

ordered set, then the space of finite, partial functions X ⇀ Y has the natural partial order

(vX⇀Y ): f vX⇀Y g iff f(x) ≤ g(x) for all x ∈ X.

Because Y is a countable total order, there exists an order-preserving measure function

M : Y → N.

Definition 11.4 Given a totally ordered set (Y,≤), the order-preserving Gödel hash

of the function f : X ⇀ Y under the prime map P : X → P is computed by the function

G : (X ⇀ Y )→ N:

G(f) = ||f || =
∏

x∈dom(f)

P (x)M(f(x)).

Under this definition, I have the usual reductions:

Lemma 11.11 Join reduces to the least common multiple:

||f t g|| = ||f || lcm ||g||,
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Proof. The argument proceeds by constructing a multiset-like characteristic function χf :

X → N:

χf (x) = M(f(x)).

The rest of the argument is analogous to union on multisets.

Lemma 11.12 Meet reduces to the greatest common divisor:

||f u g|| = ||f || gcd ||g||,

Proof. By an argument similar to the previous proof.

Lemma 11.13 Subsumption reduces to divisibility:

f v g iff G(f) | G(g).

Proof. By an argument analogous to that of subset-inclusion testing for multisets.

A Gödel encoding for sequences is actually required in the proofs of incompleteness.

11.6 Computing primes and prime maps

Gödel hashes rely on being able to generate prime maps. Constructing efficient prime

maps requires an efficient method for generating the ith prime number. In functional

programming, a global, lazy, internally memoizing stream of prime numbers is convenient,

particularly when multiple structures in the program will require their own prime maps.

This is the approach that my implementation uses (in the analyzer implementation in

Chapter 13, Section 13.2.4). There are pragmatic methods that use a sieve to generate

primes deterministically [42]. However, probabilistic primality tests [43, 44, 45] are more

efficient, arbitrarily reliable and require no storage of prior primes. The probabilistic tests

are particularly fast on word-sized primes. Also, if primes are allocated in an on-demand

fashion, word-sized primes are all that are likely to be needed.



CHAPTER 12

IMPLEMENTATION OF A HUMAN-IN-

THE-LOOP STATIC ANALYZER

FOR MALWARE DETECTION

This chapter describes the implementation of a static malware detection system with

a human in the loop for Android apps. The system integrates the techniques presented

in the previous chapters with principled soundness to detect common classes of malware

in Android apps in a highly precise fashion yet with good-enough performance. It first

describes principled soundness in Section 12.1. Then Section 12.2 presents the system

architecture and some implementation details.

12.1 Principled soundness

Theoretically, soundness in static analyses usually means the capability to model all

language’s features and approximate every concrete executions. Unfortunately, there is

no such thing in reality to date, because complete soundness in this sense is a very hard

problem, theoretically and practically.

In fact, it is not always possible to demand the complete soundness in practice, because

(1) every research is constrained to some resources and targeting for a specific goal, and as

such it is infeasible to “do it all” once; (2) clients of static analysis have resource constraints

(such as efficiency) or targets for some specific features, rather than achieve all. However,

this does not mean I abandon the pursuit of soundness.

Therefore, I describe principled soundness: it is a well-controlled, best-efforts soundness

that satisfies the clients, given available resources. principled soundness particularly fits in

the malware detection scenario.

The essence of principled soundness is: it is justifiable. It is reasonable to discard

soundness in many cases, as summarized below:

• Library code as well as platform code from some large “trustworthy” entities such as

Google, etc., for the reasons: (1) the semantics are reasonably defined; (2) it has low
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risk or probability of malicious code, because maliciousness is “mostly” embedded in

application code (100% of all the cases in my experience to date).

• Thread interleavings from concurrent constructs are not explicitly claimed in this

work, since concurrency-incurred control-flows and data-flows are very unreliable in

being produced or exploited in the context of security vulnerability identification [5]

(Chapter 9, Section 9.2).

• Features of no current major concerns: dynamic loading, native codes, reflection,

cryptography, etc. However, it does not mean discarding them completely. I will need

to deal with them given sufficient resources.

• The benefit of analyzing some features does not pay off. This can happen either

when complicated features complicate the implementation of the static analyzer or

they incur scalability issues due to integration into inefficient legacy analysis model.

For example, abstract interpretation of string is not a trivial feature to add in the

analyzer. In addition, it can induce high costs. Normally, analyzer provides the option

to turn on/off string analysis to focus on the analysis on the property of interest. This

can be the same case for analyzing exceptions, and possibly other features.

12.2 AnaDroid : the static malware analyzer
with a human in the loop

The software artifact is called AnaDroid. The analyzer is mainly implemented in Scala

in roughly 19K LOC, with subproject implemented in Java and Python. The source code

is available at https://github.com/shuyingliang/pushdownoo.

Figure 12.1 briefly sketches the software architecture as well as the work flow. Sec-

tion 12.2.1 illustrates how AnaDroid enables human-in-the-loop with principled soundness.

• AnaDroid frontend: AnaDroid consumes off-the-shelf Android application pack-

ages (files with suffix .apk). In Figure 12.1 JDexSExp extracts the .dex file by invoking

apktool [46] and then disassembles binaries and generates an S-expression IR based on

the smali [47] format. The Parser parses the IR in S-Expression format and generates

Abstract Syntax Tree in the format that is defined in Chapter 2 and Section 3.2.

• AnaDroid analysis backend: The static malware detection system is built on the

principles illustrated in the previous chapters and sections. The pushdown exception-

flow analysis (Chapter 6) serves as the foundational platform. Entry point saturation

(Chapter 9) is embedded in the platform. The other components, abstract garbage

collection and its enhanced version (Chapter 7), static taint-flow analysis (Chapter 10)

and Gödel hashing for efficiency (Chapter 11) are “plugged” into the platform. The
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Figure 12.1: Static malware detection with a human in the loop.

following section describes how to involve human analysts in the loop with principled

soundness.

12.2.1 Human-in-the-loop analysis

AnaDroid enables human-in-the-loop analysis, by providing a rich user interface for an

analyst to configure the analyzer, i.e. setting the k value, configuring abstract garbage

collection to be used or not, specifying predicates over the state space, etc. to trade off

precision and performance.

• Semantic predicates: To assist analysts, I provide a library of predicates for

common patterns. For example, AnaDroid allows analysts to specify packages and

application programming interfaces (APIs) of interest in regular expression pattern,

so that states that are matched will be highlighted with customized color.

• Visualization of analysis results: AnaDroid generates various reports and state

graphs to visualize the analysis results1. The following three reports are included:

(1) least permissions presents which permissions are requested by an app and which

permissions are inferred by AnaDroid, reporting whether the app requests more per-

missions than it actually uses. (2) The information flow report presents triggers

(mainly user interface (UI) triggers) and tainted paths that lead from sources to

sinks, with contexts such as class files, method names, and line numbers. (3) The heat

map report shows rough profiling results of the analyzer, which can be used to help

an analyst understand where the analysis has focused its efforts and might indicate

where an app developer has attempted to hide malicious behavior. (4) Analysis graphs

1Sophisticated technologies to visualize analysis data deserve an orthogonal and decent study, which is
not in the scope of the dissertation work.
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are presented with an scalable vector graphics (SVG) formatted file as a reachable

control-flow graph. It highlights suspicious source and sink states, as well as showing

tainted paths between them. In addition, an analyst can click on any state node in

the graph for detailed inspection of the abstract execution at this point in the graph.

• The flags for principled soundness in malware detection: In addition to the

pure analysis configurations, AnaDroid provides a list of flags to enable analysts search

analysis results of properties of interest. The feature controls principled soundness

(also precision and efficiency indirectly). The flags are listed in Table 12.1. They are

divided into three categories: (1) language features; (2) property of interests, which is

related to Android specific functionalities and APIs; (3) analysis truncate, that is to

decide whether or not the analysis should proceed after some specified time or number

of states. By default, the flags are turned off.

Table 12.1: Flags for principled soundness.

Categories Language features Property of Interests Analysis
truncate

Flags –exceptions, –strings GPS, IDs, network,
display, webview,
contact, sensor, camera,
account, SMS, media,
picture, fileSystem

–states[n],
–time[n]



CHAPTER 13

EVALUATION

This chapter presents evaluations on the analysis precision and performance of the analy-

sis techniques and the impact on client security analysis for Android apps. The experiments

are divided in three categories. The first category of evaluation (Section 13.1) is on analysis

precision and performance of pushdown exception-flow analysis, abstract garbage collection

and its enhanced version. The second category of evaluation (Section 13.2) is on space usage

and performance of the data structure Gödel hashing sets and its application in accelerating

static analysis (Section 13.2.4). The last category of evaluation (Section 13.3) is for client

security analysis, to demonstrate impact of analysis precision in helping human analysts to

identify malware.

13.1 Evaluation on analysis precision and
performance

To evaluate the effectiveness of the pushdown exception-flow analysis in analyzing object-

oriented programs, I compare my analysis with one of the well-known finite-state based

static analysis frameworks—WALA [48].

WALA adopts co-analysis of control-flow and data-flow analyses, performing call-graph

construction and pointer analysis together, by propagating pointer information on the

constructed CFG. The framework provides several context-sensitivities [49], including rapid

type analysis (RTA), 0-CFA, 0-1-CFA (0-CFA with 1-object sensitivity), vanilla-0-1-CFA

(an unoptimized version of 0-1-CFA), and analysis with additional disambiguation of con-

tainer elements 0-container and 0-1-container. In particular, the 0-1-CFA enables several

optimizations for string and thrown objects1, etc. The 0-1-container policy extends the

0-1-CFA with unlimited object-sensitivity for collection objects, which is the most precise

default option. My evaluation uses the 0-1-container as the baseline.

1http://wala.sourceforge.net/wiki/index.php/UserGuide:PointerAnalysis
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To make the comparison more compelling, I conduct experiments on the DaCapo [50]

benchmarks. The suite of benchmarks has been widely accepted and used in the computing

community to evaluate Java programs. In addition, it has much larger scale code bases to

analyze than ordinary mobile applications presented in the Google market. This allows a

more realistic workload to stress-test the analysis.

Since the analyzer works directly on Dalvik bytecode, which is compiled from Java

programs in Dalvik virtual machine (DVM), I have successfully compiled 10 out of 11 Java

applications in the DaCapo benchmark (v.2006-10.MR2) in DVM with minor changes in

the source code (mainly enum is changed to another name because enum is a keyword in

JRE 1.5 or later). I encapsulate the main method of each benchmark in the entry point

onCreate of a class of type Activity. These benchmarks are compiled using the built-in

tool dx in the Android software development kit (SDK). Some graphics user interface (GUI)

class references (especially awt) in Java programs are resolved by including rt.jar in the

Android class path. To avoid name space conflicts in packages and classes, I use jarjar2

to repackage some Java standard libraries that are re-implemented in Android. The only

Java program that is not ported is eclipse, which involves substantial conflicts in Java

GUI classes (awt, swing, swt). I believe the other ten programs suffice for my purpose.

13.1.1 Metrics for precision

The basis for comparison in precision is the average cardinality of a points-to set, which

computes the average number of abstract objects (including exception objects) for pointers

that are collected into a single representative in the abstraction. In my evaluation, it has

two forms: VarPointsTo and Throws. VarPointsTo refers to the average cardinality of

the points-to set for nonexception abstract objects, and Throws refers to exception objects

specifically. (In Table 13.1, I normalized the two metrics computed in WALA, relative to

that in my analysis.)

I adopt this metric because it has been used widely in the literature [37, 7, 51] to measure

precision for object-oriented programs. The metric reflects analysis precision by recognizing

that the more objects are conflated for a variable, the less precise the analysis. When this

metric is a large value, it indicates a negative impact on normal control-flow analysis because

it means that virtual method resolution needs to dynamically dispatch to more than one

function causing spurious control-flow paths. This same reasoning applies for exception-flow

analysis. (The more subtle relationships have been illustrated in Section 1.2).

2https://code.google.com/p/jarjar
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Table 13.1: Precision comparison. Values in columns Nodes, Edges and Methods are
ratios of the number of nodes, edges and methods reached in our analysis, relative to the
ones in WALA, respectively. Values in columns VarPointsTo∗ and Throws∗ are ratios of
average cardinality of general point-to set and exception points-to set in WALA, relative to
the ones in our analysis, respectively. I did not list the results for the benchmark jython,
since I got OutofMemory error when running WALA after roughly 1 hour, even though I
increased the stack and heap space in JVM with the options: Xms10g -Xss5g -Xmx10g

-XX:MaxPermSize=2048m. pdxfa+1obj exists to show the contribution of precision for
pdxfa and eagc, respectively. The table shows that the pushdown exception-flow analysis
with enhanced abstract garbage collection pdxfa+eagc outperforms finite-state analysis in
WALA in precision by 4.5X-11X for Throws and up to 7X for general points-to information
VarPointsTo.
Benchmark LOC Opts Nodes Edges Methods VarPointsTo∗ Throws∗

antlr
35,000

pdxfa+1obj 4.1x 1.3x 1.2x 1.5x 2.8x
pdxfa + eagc 3.9x 1x 1x 3x 4.6x

bloat
70,344

pdxfa+1obj 1.9x 1.4x 2.4x 3.3x 2.4x
pdxfa + eagc 1.2x 1.3x 1.1x 6.3x 6x

chart
217,788

pdxfa+1obj 2.3x 1.3x 1.1x 2x 2.3x
pdxfa + eagc 2.1x 1.1x 1.2x 6x 4.5x

fop
184,386

pdxfa+1obj 2.1x 1.4x 1.1x 4.2x 5.5x
pdxfa + eagc 1.9x 1.3x 1.5x 7.3x 11x

hsqldb
155,591

pdxfa+1obj 8.9x 4.4x 3.4x 1x 2.3x
pdxfa + eagc 5.3x 2.7x 3.3x 3x 4.5x

luindex
38,221

pdxfa+1obj 1.9x 1.9x 1.8x 1x 1.6x
pdxfa + eagc 3.5x 1.7x 1.2x 1.5x 4x

lusearch
87,000

pdxfa+1obj 1.5x 1.6x 1.6x 1.6x 2.3x
pdxfa + eagc 1x 1.5x 1.4x 2.5x 4.5x

pmd
55,000

pdxfa+1obj 1.8x 1.3x 1.5x 2.2x 5.2x
pdxfa + eagc 1.5x 1.1 x 1x 3.7x 7.7x

xalan
159,026

pdxfa+1obj 1.9x 1.3x 1.7x 2.8x 6.2x
pdxfa + eagc 1.4x 1.2x 1.3x 3.7x 10.3x

Following WALA’s heap model3, I compute the same metric in my pushdown framework.

In addition to the Throws metric, the work [37] proposed using exception-catcher links

(E-C links) to reflect the precision of handling exceptional flows. I compute the metric in

my analysis framework, which is within the range of 1-3 across the DaCapo benchmarks.

Because WALA directly computes the catchers intraprocedurally, I do not compute and

report the comparison ratio as I do for VarPointsTo and Throws.

13.1.2 Results

Table 13.1 shows that the pushdown exception-flow analysis with enhanced abstract

garbage collection pdxfa+eagc outperforms finite-state context-sensitive analysis (repre-

3In WALA, the pointer-to relation is computed from PointerKey to a set of InstanceKeys, where a
PointerKey may represent a local variable, a static field, or an instance field of objects from a particular
allocation site, and an InstanceKey may represent all objects of a particular type, all objects from a particular
allocation site, all objects from a particular allocation site in a particular context, or other variants.
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sented by WALA) with a precision of 4.5-11 times for Throws and up to 7 times for general

points-to information VarPointsTo.

Nodes and Edges are control-flow graph information. Methods denotes the analyzed

methods. The values in these columns in Table 13.1 are normalized relative to those reported

by WALA 0-1-contain analysis. As is shown in Table 13.1, the pruned, pushdown analysis

technique (pdxfa+eagc) generally explores more edges and nodes, and explores up to 3.4

times more methods4.

To evaluate the contribution of each aspect (pushdown exception-flow analysis and

enhanced abstract garbage collection) to precision improvement, when comparing with

WALA, I also conduct an additional experiment with only the pushdown exception-flow

analysis with 1-object sensitivity (as WALA 0-1-container does), denoted as the option

pdxfa+1obj. The result shows that the pdxfa improves the precision more than enhanced

abstract garbage collection does.

13.1.3 Analysis time

For completeness, I also report an analysis time comparison. Table 13.2 is the ratio of

my analysis time to that of WALA.

WALA reports less analysis time than my analysis. This is not surprising. First, my anal-

ysis is derived from the polynomial complexity algorithm in [16, 18]. Even with enhanced

garbage collection, it only reduces the complexity by a constant factor. Second, WALA

has been significantly optimized by the IBM research lab, particularly with underlying Java

(collection) libraries rewritten specifically for its framework. My implementation is based

on Scala’s default data structure and is not optimized. Last but not least, the analysis time

is reasonably acceptable, given the high precision that my analysis technique can provide.

For example, for the largest benchmark chart, the unoptimized analyzer takes roughly 13

minutes.

13.2 Evaluation on Gödel hashing

There are two key questions to answer with experimentation:

1. How big do Gödel hashes get?

2. How fast are operations on Gödel hashes?

The short answer to the question of size is that they are roughly tens of times less than

the size of the structure from whence they came for relatively sparse data. With respect to

4WALA filters out some common library methods (e.g., I/O API), which can be specified in ”AnalysisS-
cope”.
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Table 13.2: Analysis time.
benchmark antlr bloat chart fop hsqldb luindex lusearch pmd xalan

ratio 11.7x 5.9x 14.9x 10.9x 5.4x 2.7x 8.7x 9.2x 5x

speed, the short answer is that the critical operations of inclusion and equality are orders

of magnitude faster at all densities.

I will focus my efforts on Gödel hashes of sets, since these form the basis for the other

techniques. Let the set U be the universe and let U = |U| be the size of the universe.

13.2.1 Measuring hash size

Figure 13.1 renders the normalized sizes of the following standard data structures,

relative to that of the predicted worst-case for Gödel hashes set: (1) the array-backed

set; (2) the tree-backed set; (3) the traditional hash-backed set; and (4) the bitmap-backed

set.

The varied parameters are (1) the size of the universe, U , and (2) the density of the set

relative to the size of the universe, ρ. For instance, with a density of 0.1 and a universe of

10,000 elements, the set size under consideration is 0.1× 10, 000 = 1, 000.

I compute the exact array size, without consideration of resizing strategy, which is

commonly employed in most program languages’ standard libraries for better performance
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Figure 13.1: Normalized size of traditional hash sets, sorted-array sets, sorted-balanced
tree sets and bitmap sets, relative to the size of the predicted worst case of Gödel hashing
sets. The (logarithmic scale) vertical axis is the normalized size. The horizontal axis is
denoted as U ∗ ρ: U is the size of the universe, ρ is the density of the set as a fraction of
the universe. The worst case of Gödel hash dominates for compactness—by up to tens of
times smaller than that of the common data structures.
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(e.g., Java’s ArrayList increases its capacity by a factor of 1.5). Also, I only compute the

elements’ size based on a very space-efficient bucket-based hashset implementation (C++’s

unordered set), the bucket array’s size is ignored.

Even so, Gödel hashes are substantially smaller (tens of times smaller) than all of the

other data structures, except the dense bitmap-backed sets with ρ = 0.1. Even though the

bitmap set is very space-efficient to represent dense data, when it goes to the sparse data

with small ρ, the size of bitmap set can be up to 78.4 times larger than that of Gödel hashes!

I focus on sparse sets because higher-order program analysis tends to deal with highly

sparse flow sets. For instance, in context-sensitive analysis, bitmap-backed sets could be

exponential in the size of the program, whereas the median flow set in practice has size 2.

13.2.2 Measuring speed

In Table 13.3, I measured the slow down ratio of average run time of each single set

operation on sorted tree sets, sorted array sets, and bitmap sets relative to that of Gödel

hashes. For hashes, fast equality is a critical operation. For Gödel hashes, fast subsumption

(subset) is also critical for candidate applications. Table 13.3 shows that the critical hash

operations on Gödel hashes of sets can be up to hundreds of times faster! Remarkably,

the performance of critical operations on bitmap sets degrades rapidly (by an order of

magnitude) when the sets become sparse (when ρ decreases), even though they can be

relatively more efficient than the other three standard data structures in dense sets (with

ρ = 0.1). The performance advantage of Gödel hashing sets on sparse sets (in addition to

the size advantage validated in Table 13.1) fits extremely well over other data structures in

the case of program analysis, especially for higher-order programs.

13.2.3 Implementation details

Gödel hashes are implemented in C++ using GNU GMP for big integer arithmetic

operations. GMP is highly optimized on modern CPUs to operate at very long data types

with a single instruction. Instruction sets such as SSE and AVX can do 256 bits or even

512 bits data arithmetic operations [41]. Sorted tree set uses C++ std::set, which is

red-black tree based. Sorted array set uses C++ std::vector to store data, and uses

std’s binary search and set algorithms for correspondent set operations. Hash set uses

std::unordered set that is a bucket-based hash set. Bit set uses C++ std::bitset,

which is implemented with an array of integers. The evaluation program runs each operation

1,000 times on sets that contain U ∗ ρ number of elements. These elements are randomly

fetched from the prime universe U . The evaluation is conducted on a PC with a six-
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Table 13.3: Slow down ratio of average run time of each single set operation on sorted tree
sets (ST), sorted array sets (SA), hash sets (HS) and bitmap sets (BS), relative to that of
Gödel hashes. For the critical hash operations of equality and subsumption, operations on
Gödel hashes of sets are up to hundreds of times faster.

U density ⊆ = ∪ − ∩ ∈ deletion insertion

5,000

0.001

ST 2.667 2.333 1.459 1.179 0.56 1 2.667 3.333
SA 1.333 1.333 0.324 0.393 0.36 0.75 1 2.333
HS 4 4.333 1.757 1.607 0.72 1 1.667 2.333
BS 36.333 35.333 2.216 2.929 3.32 0.25 0.333 0.333

0.01

ST 17.75 5.667 1.067 0.888 0.372 1.333 3.2 2.25
SA 6.625 2.333 0.098 0.105 0.072 0.833 1.6 2.5
HS 14 5.333 1.318 0.82 0.287 0.667 1.2 1
BS 13.75 23.333 0.129 0.147 0.149 0.333 0.2 0.25

0.1

ST 89.147 285.455 0.843 0.789 0.399 1.278 1.962 2
SA 40.941 112.818 0.075 0.07 0.049 0.556 1.423 4.32
HS 31.294 94.182 0.921 0.551 0.201 1.444 0.923 0.72
BS 3.235 9.727 0.01 0.011 0.011 0.111 0.038 0.08

10,000

0.001

ST 4.8 9 1.165 1.056 0.395 1.25 3.667 2.333
SA 1.8 3.5 0.165 0.222 0.158 0.75 1.333 2
HS 4 11 1.66 1.25 0.421 0.75 2 1.167
BS 49.4 117.5 1.641 2.319 2.197 0.5 0.667 0.333

0.01

ST 36.8 84.25 0.952 0.797 0.349 1 2.571 3
SA 12 26.5 0.081 0.084 0.059 0.636 1.714 4.5
HS 22.2 55.5 1.168 0.645 0.235 0.273 0.857 1.333
BS 24.6 59 0.129 0.141 0.141 0.182 0.286 0.5

0.1

ST 111.882 392.737 0.696 0.626 0.313 2.345 1.352 1.605
SA 58.853 205.737 0.052 0.048 0.034 0.448 1.759 5.698
HS 39.235 134.895 0.624 0.39 0.144 0.586 0.407 0.767
BS 3.559 12.105 0.007 0.007 0.007 0.069 0.037 0.047

50,000

0.001

ST 17.875 40 0.829 0.668 0.262 1 3 3.4
SA 6.5 14.667 0.077 0.08 0.051 0.714 1.6 4
HS 14 37.333 1.048 0.586 0.201 0.429 1.2 1.6
BS 247.875 599.333 1.691 1.739 1.663 0.571 1 1.2

0.01

ST 76.244 259.333 0.62 0.576 0.241 1.091 1.455 1.769
SA 35.463 104.667 0.05 0.048 0.032 0.409 0.939 4.038
HS 27.342 91.917 0.699 0.391 0.14 0.227 0.333 0.5
BS 48.342 150.667 0.113 0.118 0.115 0.227 0.152 0.154

0.1

ST 158.884 596.427 0.32 0.339 0.201 0.888 0.369 0.589
SA 58.382 219.281 0.018 0.018 0.012 0.231 1.65 6.386
HS 52.693 197.812 0.254 0.238 0.131 0.806 0.136 0.35
BS 5.565 19.104 0.004 0.004 0.004 0.037 0.016 0.03

100,000

0.001

ST 29.462 68.6 0.747 0.62 0.281 0.917 2.25 2.429
SA 8.769 20.2 0.062 0.065 0.045 0.583 1.5 3.857
HS 17 44 0.877 0.501 0.183 0.333 0.875 1.286
BS 338.077 1,001 1.795 1.868 1.865 0.5 1.125 1.143

0.01

ST 96.747 341.455 0.483 0.464 0.189 1.457 1.045 1.059
SA 51.279 179.318 0.035 0.033 0.022 0.314 1.358 3.353
HS 35.57 123.909 0.494 0.28 0.1 0.286 0.254 0.324
BS 54.392 179.136 0.093 0.098 0.098 0.2 0.119 0.118

0.1

ST 141.405 414.681 0.224 0.24 0.146 0.471 0.193 0.246
SA 51.9 152.039 0.012 0.013 0.008 0.143 1.54 4.825
HS 68.372 199.84 0.204 0.203 0.116 0.611 0.081 0.173
BS 5.403 14.858 0.003 0.004 0.004 0.027 0.012 0.015
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core Xeon 3.3GHz CPU and 32GB RAM. Gödel-hashing library used in this work are

available from: https://github.com/shuyingliang/cgh (in C++) and https://github.com/

shuyingliang/godelhash (in Scala).

13.2.4 Applying Gödel hashing to
speedup static analysis

As motivated in Chapter 11, a pure pushdown exception-flow analysis is an excellent

candidate to validate the benefits of Gödel hashes in improving analysis run time.

To evaluate the impact of Gödel hashes in accelerating static analysis of Android apps, I

refactor the pushdown exception-flow analyzer AnaDroid and instrument the Gödel hashing

domains. Gödel hashing domains mainly refer to Gödel hashing set and Gödel hashing

store. The implementation of Gödel hashing sets in Scala in Section 13.2 (Scala version) is

reused. Gödel hashing store is implemented by making Gödel hashing sets the type of the

range in the Ŝtore component. The Gödel domains are subtypes of the abstract domains,

in addition to default implementation of set and hash map in Scala. This can make the

analyzer accommodate two kinds of abstract domains in the same framework.

For the same reasons as illustrated in Section 13.1, I evaluate the Gödel hashes instru-

mented analyzer on the DaCapo benchmarks.

Table 13.4 presents the runtime speedup for the DaCapo benchmarks that are compiled

in Android DVM. With Gödel hash domains, the analysis can run tens of times faster than

the one without.

13.3 Evaluation on static malware detection

This section reports the evaluation on the advantages of using the pushdown exception-

flow analysis to help human analysts identify malware. Section 13.3.1 describes the overview

of the process and results, followed by sections to illustrate the characteristics of challenge

suite (Section 13.3.2), the metrics of accuracy (Section 13.3.3) and the experiment setup

(Section 13.3.4). Section 13.3.5 reports the characteristics of the detected malware, which

are summarized according to the four categories that are defined in Chapter 1, Section 1.1.

13.3.1 Overview

There were two teams of analysts analyze a challenge suite of 52 Android apps released

as part of the DARPA Automated Program Analysis for Cybersecurity (APAC) program.

Both teams are composed of the same five people, a mixture of graduate students and

undergraduate students, however, the applications are shuffled, ensuring the same app is
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Table 13.4: Analysis runtime speedup with Gödel hashes in DaCapo benchmarks.

benchmark name lines speed-up

antlr 35,000 22.2x

bloat 70,344 5.9x

chart 217,788 14.2x

fop 184,316 11.7x

jython 110,867 10.7x

hsqldb 155,591 18.7x

luindex 38,221 33.4x

lusearch 87,00 30.1x

pmd 55,000 17x

xalan 259,026 14.7x

not evaluated by the same analyst. The first team analyzed the apps with a version of

AnaDroid that uses traditional (finite-state-machine-based) control-flow-analysis used in

many existing malware analysis tools; the second team analyzed the apps with a version of

AnaDroid that uses my enhanced pushdown-based control-flow-analysis. I measure the time

the analyzer takes, the time human analysts spent reviewing the results, and the accuracy

of the malware identification by a human analyst. All other factors being equal, I found a

statistically significant (p < 0.05) decrease in time and a statistically significant increase (p

< 0.05) in accuracy with the pushdown-based analyzer.

13.3.2 The challenge suite

Among the apps, 47 are adapted from apps found on the Android market, Contagio [52],

or the developer’s source repository. A third-party within the APAC project injects mali-

cious behavior into these apps and uses an antidiffing tool on apps with larger code bases to

make it difficult to simply diff the application with the original source code. The remaining

five apps are variants of the original 47 apps with different malicious behaviors. For example,

App1 may leak location information to a malicious website while App2 may not. The apps

range in size from 18.7 KB to 10 MB, with 11,600 lines of source code in each app on

average.

13.3.3 Accuracy

The accuracy in malware identification is measured by four standards:

• Is the app is malicious?

• Where is the maliciousness?

This requires specifying the possible paths with class name, method name and line

number.
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• What is the trigger of the maliciousness?

• Why is it malicious?

The results of human-in-the-loop analysis in the four aspects have to be compared with

the ones released by DARPA. Failing to answer any one of the four correctly is counted as

inaccurate.

13.3.4 Experiment setup

The two teams of analysts were given instructions on how to use the tool (both versions

of the tool use similar UIs and output forms) and some warm-up exercises on a couple of

example apps. Then they were given example from the DARPA-supplied challenge suite.

The analysts used AnaDroid (deployed as a web application on my server) to analyze each

app and then record the run time of the analyzer, the total time the human analysis spent

investigating the results, and the answers of the four questions (described in Section 13.3.3),

based on the analysis results (and what the apps advertise).

I have made efforts to ensure that other factors remained unchanged so that the only

difference was the tool the analyst used to detect malware. This restriction can help us gain

insight into whether any improvement is made by my new analysis techniques.

Finally, I compare the analysts’ results with the DARPA supplied information on the four

standards to check accuracy and run statistical analysis using one-way analysis of variance

(ANOVA) to get the mean value and p-value of analyzer time, analyst time, and accuracy.

This allows us to see the statistical results of the experiment on finite-state-based-machine

versus pushdown-based control-flow analysis. This is shown in Table 13.5.

I found that pushdown malware analysis leads to statistically significant improvements

with p < 0.05 in both accuracy and analysis time over traditional static analysis.

Table 13.5: Comparison of finite-state based vs. pushdown malware analysis: pushdown
malware analysis leads to statistically significant improvements with p < 0.05 in both
accuracy and analysis time over traditional static analysis method.

Metrics Methods mean p-value

Analyzer Time
Finite 994 sec

Pushdown 560 sec 0.003

Analyst Time
Finite 1.13 hr

Pushdown 0.44 hr 0.0

Accuracy
Finite 71%

Pushdown 95% 0.0005
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13.3.5 Case studies

In this section, I report case studies of malware detected by AnaDroid. The malicious

behavior of the 52 apps are summarized in Table 13.6, based on the four categories that are

described in Chapter 1, Section 1.1.

From the experiments, I found the taint-flow analysis to be more useful than the least

permissions analysis in identifying these behaviors, since half of these apps are designed to

avoid requesting any permissions. In addition, I found that finite-state-based analysis can

lead to many spurious execution flows in the control graph when the apps have a lot of

exception handling code. The pushdown-based model, on the other hand, produces more

precise execution flows, which contributes to the sharp decline in analyst time when using

AnaDroid.

Table 13.6: Vulnerabilities summarization.

Vulnerabilities Percentile Case examples

Data leakage 57% location, pictures, SMS, ID, etc. ex-filtrated to
URL, intents, or predefined local file path.

Data tampering 10% fill local file system with meaningless data, (re-
cursive) deletion of files

DoS attack 11% inode exhaustion via log, battery drainage
(brightness, WiFi, etc.)

Other 28% random vibration, block or intercept SMS mes-
sages



CHAPTER 14

RELATED WORK

This dissertation is inspired by existing related work and technology. I separate them

in six categories, and discuss some representative work in each category. The outline is

summarized as follows.

Section 14.1 discusses the existing approaches in analyzing exception-flow, and compares

the pushdown approach in modeling control-flow in general.

Section 14.2 discusses a representative portion of the points-to analysis literature.

Section 14.3 discusses the work in pushdown analysis in higher-order settings, how

they inspire the dissertation work and what techniques have been advanced by this work.

Section 14.5 describes a subline of the pushdown analysis research.

For Android security specifically, Section 14.6 presents previous and state of the art

technology in static taint-flow analysis and Section 14.7 discusses related work of Android

malware detection in general.

14.1 Exception-flow analysis

The bulk of the earlier literature for analyzing Java programs has generally focused on

finite-state abstractions, i.e., k-CFA and its variants.

Specifically, for the work that acknowledges exceptional flows, the analysis is based

on either context-insensitivity or a limited form of context-sensitivity. Analyzers that use

only syntactic, type-based analysis of exceptional flow are extremely imprecise [53, 54, 48].

Propagating exceptions via the imprecise call graphs cause the analysis to result in: (1)

inclusion of many spurious paths between exception throw sites and handlers that are not

truly realizable at run time; (2) unable to tell and differentiate where an exception comes

from.

There are three kinds of approach in modeling exception handling. One approach assigns

all exceptions thrown in a program to a single global variable. This variable is then read
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at an exception catch site. This approach is imprecise since it has no knowledge of which

exception propagates to a catch site [55, 56].

The second approach analyzes exceptional control-flow only intraprocedurally, comput-

ing only local catch clauses for a try block, with no dynamic propagation of exceptions

interprocedurally [48].

The third approach is co-analysis using both control-flow analysis and points-to analysis

(a.k.a. on-the-fly control-flow construction) to handle exceptions, which yields reasonable

precision, compared to the aforementioned two approaches, as documented in past precision

studies [37, 57, 7]. However, even for the best co-analysis, where boosting context-sensitivity

improves the analysis of exceptions, it does not improve as much as it does for points-to

analysis. It is too easy for exceptions to cross context boundaries and merge. My analysis

shares similarities in this line of work, with respect to the co-analysis of both control-flow,

exception-flow and points-to analysis. The differences from all the three approaches are

two-fold: (1) the pushdown exception-flow can match precisely return flows of function

calls and exceptions; (2) the abstract garbage collection and its enhanced version does not

have limited context-, object- and field-sensitivity.

The work [58] have proposed a modular refinement to construct control graph to analyze

interprocedual exceptions for C++ programs. They avoid points-to analysis, opting to use

static type information to decide which catch handlers are invoked. One interesting thing

worth pointing out is that the paper mentions that stack unwinding is a major issue in

C++, because when an exception escapes out of a function, destructors are invoked on all

stack allocated objects between the occurrence of the exception and the catch handler in a

process [58]. Intuitively, this issue can be resolved naturally within the pushdown scheme

with a stack faithfully models the control-flow and exceptions flows.

14.1.1 Pushdown exception-flow analysis

There is little work on pushdown analysis for object-oriented languages as a whole.

Sridharan and Bodik proposed demand-driven analysis for Java that matches reads with

writes to object fields selectively, by using refinement [59]. They employ a refinement-

based contex-free language (CFL) reachability technique that refines calls and returns to

valid matching pairs, but approximates for recursive calls. They do not consider specific

applications of CFL-reachability to exception-flow.
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14.2 Points-to analysis

Precise and scalable context-sensitive points-to analysis has been an open problem for

decades. I describe a portion of the representative work in the literature.

Progress in general has been gradual, with results like object-sensitivity [60, 61] in-

termittently providing a leap for most programs. Most results target improvements for

individual classes of programs. My analyses targets all programs, and it is orthogonal to

and compatible with results like object-sensitivity.

Much work in pointer analysis exploits methods to improve performance by strategically

reducing precision. Lattner et al. show that an analysis with a context-sensitive heap

abstraction can be efficient by sacrificing precision under unification constraints [62]. In full-

context-sensitive pointer analysis, Milanova et al. found that an object-sensitive analysis [61]

is an effective context abstraction for object-oriented programs. This is confirmed by the

extensive evaluation in the work of [57]. Binary decision diagrams (BDDs) have been used to

compactly represent the large amount of redundant data in context-sensitive pointer analysis

efficiently [63, 64, 65]. Specifically, the work [65] reduces the redundancy by choosing

the right context abstractions. Such advancements could be applied to my pushdown

framework, as they are orthogonal to its central thesis. Recently, the work [66] exploits

liveness analyses to improve points-to analysis. My work also uses liveness analyses but

extends it to work with abstract garbage collection. In fact, to the best of my knowledge, my

work is the first work that explores abstract garbage collection in analyzing object-oriented

programs and enhances it with liveness analysis to explicitly prune points-to precision.

14.3 Pushdown analysis for the λ-calculus

Vardoulakis and Shivers’s CFA2 [67] is the precursor to the pushdown control-flow

analysis [21].

CFA2 is a table-driven summarization algorithm that exploits the balanced nature of

calls and returns to improve return-flow precision in a control-flow analysis. While CFA2

uses a concept called “summarization,” it is a summarization of execution paths of the

analysis, roughly equivalent to Dyck state graphs.

In terms of recovering precision, pushdown control-flow analysis [21] is the dual to

abstract garbage collection: it focuses on the global interactions of configurations via

transitions to precisely match push-pop/call-return, thereby eliminating all return-flow

merging. However, pushdown control-flow analysis does not directly avoid the value merging

problem. This work directly draws on the work of pushdown analysis for higher-order

programs [21] and introspective pushdown system (IPDS) for higher-order programs [18].
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I extend the earlier work in two dimensions: (1) I generalize the framework to an object-

oriented language; (2) I adapt the Dyck state graph synthesis algorithm to handle the new

stack change behavior introduced by exceptions; (3) I formulate necessary details to design

and implement a static analyzer even in the exceptions; (4) I integrate static taint-flow

analysis in the improved pushdown exception-flow analysis.

14.4 Pushdown analysis for the µ-calculus

The work [68] defines a fixpoint logic over execution trees of structured programs for mu-

calculus and associates the intra- and intercontrol-flow that is produced from the pushdown

fixpoint computation with some useful and interesting properties. The combination admits

tractable model-checking. What is notable is that their work uses the k-coloring technique

to distinguish multiple-returning points. This enables some refined and expressive property

specification at some specific calls and return points of the program. It is beneficial to

extend the pushdown system for Android programs with the k-coloring technique to prove

some security properties in general.

14.5 CFL- and pushdown-reachability techniques

The work [18] develop a pushdown reachability algorithm suitable for the pushdown

systems that I generate. It essentially draws on CFL- and pushdown-reachability analy-

sis [69, 70, 16, 71]. For instance, epsilon closure graphs, or equivalent variants thereof,

appear in many context-free-language and pushdown reachability algorithms. Dyck state

graph synthesis is an attractive perspective on pushdown reachability because it allows

targeted modifications to the algorithm.

CFL-reachability techniques have also been used to compute classical finite-state ab-

straction CFAs [72] and type-based polymorphic control-flow analysis [73]. These analyses

should not be confused with pushdown control-flow analysis, which is computing a funda-

mentally different kind of CFA.

14.6 Static taint-flow analysis

Static taint analysis is proposed to track and detect whether tainted values (usually

unsanitized user input) may flow into security sinks. It is applied a lot in detecting

vulnerabilities in web apps. Pixy [74] is a static taint analysis for hypertext preprocessor

(PHP) that propagates taint information and implements finely tuned alias analysis. Xie

and Aiken designed a more precise and scalable analysis for detecting SQL injection attacks

in PHP by using block- and function-summaries [75]. The taint analysis scales well but they
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are conducted in intraprocedural fashion and can not be used to track taint information in

objects. This is also the case for other work, such as [76, 77, 78]. Liang and Might take a

different approach in information flow analysis for scripting languages such as Python [36].

The analysis is developed in AAM style [9] in abstract interpretation.

A taint-flow analysis for Java programs was developed by [26]. Realizing tracking data-

flow through objects in general is difficult, [26] resolves the problem with “nested taint

depth.” It is tuned to be, at most, two levels, which can easily exceed the behaviors

commonly experienced in modern web applications. The work in ANDROMEDA with

on-demand alias analysis was later improved by [79]. It uses “access path” that indicates

the levels of object field reference to remember, and distinguish and propagate data-flow

information, when performing forward and backward analysis. The semantics involving

object related operations are well specified. It is reported to work in commercial use and

can analyze Java, Javascript and .NET. The technique of on-demand alias analysis to track

taint-flows is used in the work of FlowDroid [80] in tracking private sensitive data in Android

apps. It also improves ANDROMEDA with flow-sensitive analysis.

My approach in static taint-flow analysis is orthogonal to this line of work. I adopt

abstract interpretation design methodology for object-oriented languages and perform on-

the-fly analysis with control-flow, exception-flow and points-to analysis. The advantage

of my approach is comparatively high precision with good-enough performance. This is

reasonable in malware detection and identification scenarios.

14.7 Malware detection for Android applications

Several analyses have been proposed for Android malware detection.

Dynamic taint analysis has been applied to identify security vulnerabilities at run time in

Android applications. TaintDroid [81] dynamically tracks the flow of sensitive information

and looks for confidentiality violations. IPCInspection [82], QUIRE [83], and XMan-

Droid [84] are designed to prevent privilege-escalation, where an application is compromised

to provide sensitive capabilities to other applications. The vulnerabilities introduced by

interapp communication is considered future work. However, these approaches typically

ignore implicit flows raised by control structures in order to reduce run-time overhead.

Moreover, dynamically executing all execution paths of these applications to detect potential

information leaks is impractical. The limitations make these approaches inappropriate for

computing information flows for all submitted applications.

Woodpecker [85] uses traditional data-flow analysis to find possible capability leaks.

Comdroid [86] targets vulnerabilities related to interapp communications. However, it does
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not perform deep program analysis as my analysis does, and this results in high false positive

rates. SmartDroid [87] targets finding complex UI triggers and paths that lead to sensitive

sinks. It addresses imprecision of static analysis by combining dynamic executions to filter

out infeasible paths at run time. CHEX [5] focuses on detecting component hi-jacking by

augmenting existing analysis framework using app-splitting to handle Android’s multiple

entry points. My tool takes a significantly different approach from it (and other finite-state-

based static analysis tools) in two aspects: (1) I use pushdown flow analysis that handles

traditional control-flow and exception-flow precisely and efficiently. (2) My tool enables

human-in-the-loop analysis by allowing the analyst to supply predicates for the analyzer,

allowing it to highlight inspection of deeply disguised malware.

Language-based information flow [88, 89, 90] allows developers to annotate variables with

security attributes and compilers use the attributes to enforce information control-flow. The

main concern of this approach is that it imposes additional burdens on developers whose

major focus and interest is business logic. In addition, it can not support the vast majority

of legacy code.

The work [91] proposes enforcing a fine-grained permission system. It limits access

to resources that could normally be accessed by one of Android’s default permissions.

Specifically, the security policy uses a white list to determine which resources an app can

use and a black list to deny access to resources. In addition, strings potentially containing

URLs are identified by pattern matching and constant propagation is used to infer more

specific Internet permissions. The work [85] have also identified unprivileged malicious

apps that can exploit permissions on protected resources through a privileged agent (or app

component in my test suite) that does not enforce permission checks. Anadroid can also

identify this malicious behavior.

Stowaway [92] is a static analysis tool identifying whether an application requests more

permissions than it actually uses. PScout [93] aims for a similar goal, but produces more

precise and fine-grained mapping from APIs to permissions. My least permission report

uses the PScout permission map as my analysis’s database. However, they use a different

approach, adapting testing methodology to test applications and identify APIs that require

permissions, while my approach annotates APIs with permissions and statically analyzes

all executable paths.

Another approach to enforce security control on mobile devices is delegating the control

to users themselves. iOS and Window user account control [94] can prompt a dialog to

request permissions from users when applications try to access resources or make security



102

or privacy-related system level changes. Depending on users to enforce security control is

putting users at risk. Notification prompts by tools usually provide no insights of how users’

private sensitive data are used, and users tend to grant permissions in order to install the

apps that they want. Thus, it is desirable to stop potential malware from floating into the

market beforehand via strict inspections. My tool is designed with analysts in mind and

can help them identify malicious behaviors of submitted applications efficiently.



CHAPTER 15

CONCLUSION

The contribution of this work is two-fold: (1) it develops generic, highly precise static

analysis of object-oriented programs with multiple entry points; (2) it constructs an effective

malware identification system with a human in the loop.

Specifically, for the primary challenge in analyzing object-oriented programs—mutual

dependence between control-flow, exception-flow and points-to analysis—I tackle it from

two angles: (1) I develop the pushdown exception-flow analysis to refine the return flows

as well as exception flows. (2) I generalize abstract garbage collection in an object-oriented

setting to “reclaim” unreachable resources to refine points-to information. Precision is

further improved when the abstract garbage collection is enhanced with liveness analysis.

To tackle the Android specific challenge—multiple entry points—I develop the entry

point saturation technique to “soundly” approximate the execution of the permutations of

asynchronous entry points.

With the foundational analysis constructed for the two challenges, I develop a static

taint-flow analysis in abstract interpretation framework for security purpose. When it is

built on classical abstract interpretation, the static taint analysis can leverage the context-,

object- and field-sensitivity; when it is built on pushdown exception-flow analysis, it can

track taint-flow information with even better precision.

To accelerate the speed of static analysis, I develop a compact and efficient encoding

scheme, called Gödel hashes and integrate them into the analysis framework.

All the techniques are realized and evaluated in a system, named AnaDroid. AnaDroid

is designed with a human in the loop to specify analysis configuration, the property of

interest and then make the final judgment and identify where the maliciousness is, based

on analysis results. The analyses results include control-flow graphs with suspiciousness

highlighted, security reports of permissions and risk rankings. The experiments show that

AnaDroid can lead to precise and fast malware identification.
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Table A.1: The generalized Dalvik instruction set (00-1e).

OpNumber Dalvik Instruction Generalized Instruction

00 nop nop

01 move assign
02 move/from16
03 move/16
04 move-wide
05 move-wide/from16
06 move-wide/16
07 move-object
08 move-object/from16
09 move-object/16
0a move-result
0b move-result-wide
0c move-result-object
0d move-exception

0e return-void return
0f return
10 return-wide
11 return-object

12 const/4 assign
13 const/16
14 const
15 const/high16
16 const-wide/16
17 const-wide/32
18 const-wide
19 const-wide/high16
1a const-string
1b const-string/jumbo
1c const-class

1d monitor-enter
1e monitor-exit
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Table A.2: The generalized Dalvik instruction set (1f-4a).

OpNumber Dalvik Instruction Generalized Instruction

1f check-cast check-cast

20 instance-of assign

21 array-length

22 new-instance new

23 new-array
24 filled-new-array
25 filled-new-array/range
26 fill-array-data

27 throw throw

28 goto goto
29 goto/16
2a goto/32

2b packed-switch switch
2c sparse-switch

2d cmpl-float assign
2e cmpg-float
2f cmpl-double
30 cmpg-double
31 cmp-long

32 if-eq if
33 if-ne
34 if-lt
35 if-ge
36 if-gt
37 if-le
38 if-eqz
39 if-nez
3a if-ltz
3b if-gez
3c if-gtz
3d if-lez

3e..43 (unused)

44 aget array-get
45 aget-wide
46 aget-object
47 aget-boolean
48 aget-byte
49 aget-char
4a aget-short
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Table A.3: The generalized Dalvik instruction set (4b-73).

OpNumber Dalvik Instruction Generalized Instruction

4b aput array-put
4c aput-wide
4d aput-object
4e aput-boolean
4f aput-byte
50 aput-char
51 aput-short
52 iget field-get
53 iget-wide
54 iget-object
55 iget-boolean
56 iget-byte
57 iget-char
58 iget-short

59 iput field-put
5a iput-wide
5b iput-object
5c iput-boolean
5d iput-byte
5e iput-char
5f iput-short

60 sget field-sget
61 sget-wide
62 sget-object
63 sget-boolean
64 sget-byte
65 sget-char
66 sget-short

67 sput field-sput
68 sput-wide
69 sput-object
6a sput-boolean
6b sput-byte
6c sput-char
6d sput-short

6e invoke-virtual invoke-virtual
6f invoke-super invoke-super
70 invoke-direct invoke-direct
71 invoke-static invoke-static
72 invoke-interface invoke-interface

73 (unused)
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Table A.4: The generalized Dalvik instruction set (74-9f).

OpNumber Dalvik Instruction Generalized Instruction

74 invoke-virtual/range invoke-virtual
75 invoke-super/range invoke-super
76 invoke-direct/range invoke-direct
77 invoke-static/range invoke-static
78 invoke-interface/range invoke-interface

79..7a (unused)

7b neg-int atomic-op, assign
7c not-int
7d neg-long
7e not-long
7f neg-float
80 neg-double
81 int-to-long
82 int-to-float
83 int-to-double
84 long-to-int
85 long-to-float
86 long-to-double
87 float-to-int
88 float-to-long
89 float-to-double
8a double-to-int
8b double-to-long
8c double-to-float
8d int-to-byte
8e int-to-char
8f int-to-short
90 add-int
91 sub-int
92 mul-int
93 div-int
94 rem-int
95 and-int
96 or-int
97 xor-int
98 shl-int
99 shr-int
9a ushr-int
9b add-long
9c sub-long
9d mul-long
9e div-long
9f rem-long
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Table A.5: The generalized Dalvik instruction set (a0-c9).

OpNumber Dalvik Instruction Generalized Instruction

a0 and-long atomic-op, assign
a1 or-long
a2 xor-long
a3 shl-long
a4 shr-long
a5 ushr-long
a6 add-float
a7 sub-float
a8 mul-float
a9 div-float
aa rem-float
ab add-double
ac sub-double
ad mul-double
ae div-double
af rem-double
b0 add-int/2addr
b1 sub-int/2addr
b2 mul-int/2addr
b3 div-int/2addr
b4 rem-int/2addr
b5 and-int/2addr
b6 or-int/2addr
b7 xor-int/2addr
b8 shl-int/2addr
b9 shr-int/2addr
ba ushr-int/2addr
bb add-long/2addr
bc sub-long/2addr
bd mul-long/2addr
be div-long/2addr
bf rem-long/2addr
c0 and-long/2addr
c1 or-long/2addr
c2 xor-long/2addr
c3 shl-long/2addr
c4 shr-long/2addr
c5 ushr-long/2addr
c6 add-float/2addr
c7 sub-float/2addr
c8 mul-float/2addr
c9 div-float/2addr
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Table A.6: The generalized Dalvik instruction set (ca-ff).

OpNumber Dalvik Instruction Generalized Instruction

ca rem-float/2addr atomic-op, assign
cb add-double/2addr
cc sub-double/2addr
cd mul-double/2addr
ce div-double/2addr
cf rem-double/2addr
d0 add-int/lit16
d1 rsub-int
d2 mul-int/lit16
d3 div-int/lit16
d4 rem-int/lit16
d5 and-int/lit16
d6 or-int/lit16
d7 xor-int/lit16
d8 add-int/lit8
d9 rsub-int/lit8
da mul-int/lit8
db div-int/lit8
dc rem-int/lit8
dd and-int/lit8
de or-int/lit8
df xor-int/lit8
e0 shl-int/lit8
e1 shr-int/lit8
e2 ushr-int/lit8
e3..ff (unused)



APPENDIX B

ADDITIONAL CONCRETE AND

ABSTRACT TRANSITION

RELATIONS

B.1 Additional concrete transition relations

• Stepping over nops and labels: The simplest instruction nop does not change any

component in the state:

([[(nop)` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ, κ, t′)

where t′ = tick(`, t).

label and line statement shares the same transition form.1

• Unconditional jumps: This kind of statement forces the program to jump to the

target statement sequence:

([[(goto label)` : ~s]], fp, σ, κ, t)⇒ (S(label), fp, σ, κ, t′)

where t′ = tick(`, t).

where the function S : Label→ Stmt∗ maps a label to the statement sequence starting

with that label.

• Conditionals: The if-goto is not much more complicated than a nop or goto, but it

needs to evaluate the conditional expression (t′ = tick(t)):

([[(if æ (goto label)) : ~s]], fp, σ, κ, t)⇒

{
(~s, fp, σ, κ, t′) A(æ, fp, σ) 6= false

(S(label), fp, σ, κ, t′) otherwise

1The line statement is mainly for instrumenting context information to the statements that are actually
interpreted.
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• Atomic assignments: Atomic assignment statements assign the value of an atomic

expression to a variable (register). This involves evaluating the expression, calculating

the frame address to modify and then updating the store.

([[(assgin name æ) : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ = tick(t) and σ′ = σ[(fp,name) 7→ A(æ, fp, σ)].

A large set of instruction statements are transformed into assign form. For example,

(move-result name) is transformed to (assign name ret) form.

• Check cast: check-cast checks whether the object reference in register name can be

cast to an instance of a class referenced by class-name. If class-name ′ is any subtype

of class-name:

([[(assign name (check-cast æ class-name))` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ = tick(`, t), (op, class-name ′) = A(æ, fp, σ)

σ′ = σ[(fp,name) 7→ (op, class-name ′)].

If class-name ′ is not a subtype of class-name, then the statement will throw

ClassCastException. This is simulated by making the next statement a fake throw

statement, with other components unchanged.

• Instance-of:

([[(assign name (insance-of æ class-name))` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ = tick(`, t), (op, class-name ′) = A(æ, fp, σ),

σ′ =

{
σ[(fp,name) 7→ {true})], if class-name ′ is any subtype of class-name

σ[(fp,name) 7→ {false}], otherwise.
.

As we can see, the above rule has some similar logic as check-cast.

B.1.1 Array

Following rules deal with array related instructions. Array pointer ap ∈ ArrayPointer

is similar to object pointer, but it is used to denote array reference, and the type is the type

for elements. To index array element, we introduce array address ArrayAddr intoAddr :

a ∈ Addr = RegAddr + FieldAddr + ArrayAddr

ArrayAddr = ArrayPointer ×Z.

To allocate an array address, we need an allocation function: alloca : Conf → ArrayAddr
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• new array:

c︷ ︸︸ ︷
([[(assign name (new-array æ type))` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′′, κ, t′)

where t′ =tick(`, t)

ap =alloca(c)

σ′ =σ[(fp,name) 7→ (ap, type)]

σ′′ =σ′[(ap, len) 7→ A(æ, fp, σ)].

• array length:

([[(assign name (array-length æ))` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ =tick(`, t)

(ap, type) =A(æ, fp, σ)

σ′ =σ[(fp,name) 7→ σ(ap, len)].

• filled new array:

([[(filled-new-array æ0 . . .æn type)` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ =tick(`, t)

(ap, type) =σ(fp, ret)

di =A(æi, fp, σ), i = 0 . . . n

σ′ =σ + [(ap, i) 7→ di].

• aget:

([[(aget name æa æi) : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where (ap, type) =A(æa, fp, σ)

i =A(æi, fp, σ)

σ′ =σ[(fp,name) 7→ σ(ap, i)].

• aput:

([[(aput æv æa æi)
` : ~s]], fp, σ, κ, t)⇒ (~s, fp, σ′, κ, t′)

where t′ =tick(`, t)

(ap, type) =A(æa, fp, σ)

i =A(æi, fp, σ)

σ′ =σ[(ap, i) 7→ σ(fp,æv)].
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B.2 Additional abstract transition relations

• Stepping over nops and labels:

([[(nop) : ~s]], f̂p, σ̂, κ̂, t̂),; (~s, f̂p, σ̂, κ̂, t̂′)

where t′ = tick(`, t).

• Unconditional jumps:

([[(goto label) : ~s]], f̂p, σ̂, κ̂, t̂) ; (S(label), f̂p, σ̂, κ̂, t̂′).

• Conditionals:

([[(if æ (goto label)) : ~s]], f̂p, σ̂, κ̂, t̂) ;

{
(~s, f̂p, σ̂, κ̂, t̂′) Â(æ, f̂p, σ̂) 6= false

(S(label), f̂p, σ̂, κ̂, t̂′) otherwise

where t′ = tick(`, t).

• Atomic assignments:

([[(assgin name æ) : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t′ = tick(`, t) and σ̂′ = σ̂ t [(f̂p,name) 7→ Â(æ, f̂p, σ̂)].

A large set of instruction statements are transformed into assign form. For example,

(move-result name) is transformed to (assign name ret) form.

• Check cast: check-cast checks whether the object reference in register name can be

cast to an instance of a class referenced by class-name. So, if class-name ′ is any

subtype of class-name:

([[(assign name (check-cast æ class-name))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), (ôp, class-name ′) ∈ Â(æ, f̂p, σ̂)

σ̂′ = σ̂ t [(f̂p,name) 7→ (ôp, class-name ′)].

If class-name ′ is not a subtype of class-name, then the statement will throw a

ClassCastException. This is simulated by making the next statement a fake throw

statement, with other components unchanged.

• Instance-of:

([[(assign name (insance-of æ class-name))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), (ôp, class-name ′) ∈ Â(æ, f̂p, σ̂)

σ̂′ =

{
σ̂ t [(f̂p,name) 7→ {true})], if class-name ′ is any subtype of class-name

σ̂ t [(f̂p,name) 7→ {false}], otherwise.

This has similar logic as check-cast.
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B.2.1 Array

The abstract semantics for array is not a direct lifting from the concrete semantics,

because the array index in abstract semantics can have partial order on it, which can make

the array reference and update complicated. For simplicity (and to avoid precision loss), we

adopt the genera abstract approach, which is “crush” all array elements. In other words,

the analysis becomes index-insensitive, where all the values that are unordered will be

constructed and referenced in an array. There is no need to lift the refactoring to arrays

defined in concrete semantics.

• new array:

([[(assign name (new-array æ type))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′′, κ̂, t̂′)

where t̂′ = t̂ick(`, t̂), σ̂′ = σ̂ t [(f̂p,name) 7→ {}].

• array length:

([[(assign name (array-length æ))` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂, κ̂, t̂).

• filled new array:

([[(filled-new-array æ0 . . .æn type)` : ~s]], f̂p, σ̂, κ̂, t̂)a⇒ (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = tick(`, t̂), di = Â(æi, f̂p, σ̂), i = 0 . . . n, σ̂′ = σ̂ t [(f̂p, ret) 7→ di].

• aget:

([[(aget name æa æi) : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t′ = tick(`, t), σ̂′ = σ̂ t [(f̂p,name) 7→ σ̂(f̂p,æa)].

• aput:

([[(aput æv æa æi)
` : ~s]], f̂p, σ̂, κ̂, t̂) ; (~s, f̂p, σ̂′, κ̂, t̂′)

where t̂′ = tick(`, t̂), σ̂′ = σ̂ t [(f̂p,æa) 7→ σ̂(f̂p,æv)].



APPENDIX C

GÖDEL HASHING OTHER DATA

STRUCTURES

C.1 Maps, relations and graphs

The strategy for Gödel-hashing maps, relations and graphs are derivatives of the strategy

for Gödel-hashing sets.

C.1.1 Hashing maps

Finite maps can be encoded as sets of pairs; thus:

Definition C.1 The Gödel hash of a map f : X → Y with respect to prime map

PX×Y : X × Y → P is G(f), where:

G(f) =
∏

x∈dom(f)

PX×Y (x, f(x)).

C.1.2 Hashing relations

Relations can also be encoded as sets of pairs; thus:

Definition C.2 The Gödel hash of a relation R ⊆ X × Y with respect to prime map

PX×Y : X × Y → P is G(R), where:

G(R) =
∏
x R y

PX×Y (x, y).

C.1.3 Hashing graphs

A directed graph (V,E) is just a set of vertexes and a set of edges.

Definition C.3 Given two Gödel set-hashing functions:

GP(V ) : P (V )→ N , and GP(E) : P (E)→ N,
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the Gödel hash of a graph (V,E) is G(V,E):

G(V,E) = (GP(V )(V ), GP(E)(E)).

If one needs a natural number instead of a pair of natural numbers, then one can apply

Cantor’s bijection C : N×N→ N (used in proving the countability of the rationals) to the

result [40].

C.2 Multisets

It is not difficult to extend Gödel hashing to multisets. A multiset is a collection which

allows multiple copies of identical elements: in the multiset {um1
1 , . . . , umn

n }, there are mi

copies of the element ui. A characteristic function for a multiset M maps each element to

its multiplicity: χM : M → N. Even if multisets are not required, they can make a suitable

substitution for sets, since some operations are cheaper. (Additive union, for instance, costs

just one multiplication.)

Definition C.4 Given a universe of discourse U and a prime map P : U→ P, the function

G provides the Gödel hash of a multiset:

G {um1
1 , . . . , umn

n } = P (u1)m1 × · · · × P (un)mn,

or, equivalently:

G(M) =
∏
u∈U

P (u)χM (u).

The standard generalization of the set operations map to simple operations under the

Gödel encoding.

Lemma C.1 Additive union reduces to multiplication:

||A ]B|| = ||A|| × ||B||.

Proof. Hence:

||A ]B|| =
∏
u∈U

P (u)χA]B(u)

=
∏
u∈U

P (u)χA(u)+χB(u)

=

(∏
u∈U

P (u)χA(u)

)(∏
u∈U

P (u)χB(u)

)
= ||A|| × ||B||.
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Lemma C.2 Union reduces to the least common multiple:

||A ∪B|| = ||A|| lcm ||B||.

Proof. The argument is identical in form to that of regular sets.

Lemma C.3 Additive insertion reduces to multiplication:

||A ] {u} || = G(A)× P (u).

Proof. By the fundamental theorem of arithmetic.

Lemma C.4 Intersection reduces to the greatest common divisor:

||A ∩B|| = ||A|| gcd ||B||

Proof. The argument is identical in form to that of regular sets.

Lemma C.5 Difference reduces to division by the intersection:

||A−B|| = ||A||
||A|| gcd ||B||.

Proof. The argument is identical in form to that of regular sets.

Lemma C.6 Membership reduces to divisibility:

||u ∈ A|| iff P (u) | G(A).

Proof. The argument is identical in form to that of regular sets.

Lemma C.7 Testing multiplicity reduces to divisibility:

||uk ∈ A|| iff P (u)k | G(A).

Proof. By an argument similar to that for membership.

Lemma C.8 Inclusion reduces to divisibility:

||A ⊆ B|| iff GA | G(B).

Proof. The argument is identical in form to that of regular sets.
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C.3 Lists

A Gödel encoding for sequences is actually required in the proofs of incompleteness.

C.3.1 Arithmetic Gödel hashes on sequences

There is a strategy for Gödel hashing lists based on the fundamental theorem of arith-

metic, but ironically, the hashes produced by this strategy are rarely more efficient than an

array-based representation.

Definition C.5 The arithmetic Gödel hash of a list ~s ∈ S∗ under the perfect hash

map H : S → N is GS∗(~s):

GS∗(〈s1, . . . , sn〉) = p
H(s1)
1 × · · · × pH(sn)

n .

C.3.2 Gödel β-hashes on sequences

Though the proof itself required no efficiency, the proof of Gödel’s first incompleteness

theorem contains a far more space-efficient and effective means for encoding a sequence of

natural numbers: a β-function encoding. Since these hashes employ the Chinese remainder

theorem and his β-function, we term them Gödel β-hashes. Unlike the factorization-based

hash of the previous subsection, it is possible to efficiently recover the individual elements

of the sequence from a β-hash. We leave a detailed study of the practical applications of

these kinds of Gödel hashes to future work.
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