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We study linear and nonlinear optical properties of electromagnetically induced transparency 
(EIT) medium interacting w ith two quantized laser fields for adiabatic E IT  case. We show th a t E IT  
medium exhibits norm al dispersion. Kerr and higher order nonlinear refractive-index coefficients 
are also calculated in a completely analytical form. It is indicated th a t E IT  medium exhibits giant 
resonantly enhanced nonlinearities. We discuss the  response of the  E IT  medium to  nonclassical light 
fields and find th a t the polarization vanishes when the probe laser is initially in a  nonclassical sta te  
of no single-photon coherence.
PACS numbers: 32.80.-t, 42.50.Gy, 42.65.-k
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I. IN TR O D U C TIO N

In the last ten years, much attention has been paid 
to understandings and applications of systems exhibiting 
electromagnetically induced transparency (EIT) [1], EIT 
is a powerful technique that can be used to make an oth
erwise absorbing medium transparent to a probe laser on 
resonance with a certain atomic transition by applying 
a coupling laser under the circumstances, while retain
ing the large and desirable nonlinear optical properties 
associated with the resonant response of the medium. 
Preparation of matter in such an EIT state would pro
vide us with a new type of optical material of interest 
both its own right, and in many applications to funda
mental and applied physics. There has been a large num
ber of theoretical contributions in nonlinear optics using 
EIT [1, 2, 3, 4, 5]. The essence of EIT nonlinear op
tics is to create strongly-coupled Raman coherence for 
a three-level system and to control optical responses of 
the system. EIT has been observed in several different 
experimental configurations [5, 6, 7]. Recently, consid
erable attention has been drawn to slow group veloci
ties of light and high nonlinearities in the conditions of 
EIT. Extremely slow group velocities of light pulses have 
been observed in Bose-Einstein condensate of ultracold 
sodium atoms [8, 9], in an optically dense hot rubidium 
gas [10], in rubidium vapor with slow ground state re
laxation [11], and in crystals doped by rare-earth ions
[12]. It has been shown that the condition of ultrslow 
light propagation leads to photon switching at an energy 
cost of one photon per event [13] and to efficient non
linear processes at energies of a few photons per atomic 
cross section [14]. A giant cross-Kerr nonlinearity in EIT 
was suggested by Schmidt and Imamoglu [15], and has 
been indirectly measured in the experiment [8]. More re
cently, two groups [16, 17] have independently realized 
light storage in atomic mediums by using EIT technique.

Theoretically there are two formalisms to treat EIT. 
One is adiabatic EIT [1] in which both probe and cou
pling resonant lasers are adiabatically applied. After the 
system reaches a steady state, EIT occurs for arbitrary 
intensities of the probe and coupling lasers. The other is

transient-state EIT [4], In this case, resonant probe and 
coupling lasers are simultaneously applied. EIT happens 
only when the intensity of the coupling laser is much 
larger than that of the probe.

Conventionally, both coupling and probe lasers were 
treated as classical, external fields. A disadvantage of the 
external field approach is that it can not deal with atom- 
photon and photon-photon quantum entanglement which 
is of importance not only because of the fundamental 
physics involved, but also for their potential technological 
applications such as quantum computation and quantum 
communication [18]. Recent studies on EIT have indi
cated that the possibility to coherently control the prop
agations of quantum probe light pulses in atomic media. 
This opens up interesting applications such as quantum 
state memories, generation of squeezed and entangled 
atomic states, quantum information processing, and as 
narrow-band sources of nonclassical radiation. In partic
ular, with a quantum treatment of the probe laser, Fleis- 
chhauer and Lukin [19] have recently been able to predict 
the formation of dark-state polaritons in the propagation 
of light pulses through quantum entanglement of atomic 
and probe-photon states. This has been confirmed in 
the latest light storage experiments [16, 17]. This lesson 
teaches us that the quantum description of laser is more 
fundamental than the classical one, having advantages 
in uncovering new effects involving quantum nature of 
photons.

In a previous paper [20], We have developed a fully 
quantum treatment of EIT in a vapor of three-level A- 
type atoms. Both the probe and coupling lasers with ar
bitrary intensities are quantized, and treated on the same 
footing. The purpose of the present paper is to study the 
linear and nonlinear optical properties of an adiabatic 
EIT system interacting with two quantized fields and in
vestigate the response of the EIT medium to nonclassical 
light fields.

This paper is organized as follows. In Sec. II, we set 
up our model and give an adiabatic solution of the full 
Hamiltonian. In Sec. Ill and IV, we investigate the lin
ear and nonlinear optical properties of the EIT system. 
In Sec. V, we discuss the response of the EIT medium
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to nonclassical light fields. Finally, we summarize our 
results and make concluding remarks in Sec. VI.

II. T H E  M O D E L  A N D  A D IA B A T IC  S O L U T IO N

Let us consider a three-level atom, with energy lev
els E\ < E-.i < E ‘2 , interacting with two quantized laser 
fields, in the A-type configuration (see Fig. 1): The lower 
two levels |1) and |3) are coupled to the upper level |2). 
Going over to an interaction picture with respect to Ho = 
Y JmEm\m )(m \-h [A 1{\2)(2\ + \3)(3\)+ui1d\d1 +ui2dld2], 
under the rotating-wave approximation, we obtain the 
total Hamiltonian of the system in the form

H  = rzA1|2)(2| +  rz(A1 - A 2)|3)(3|)
— |2)(1| +  <720-212) (31 + H . c .) (1)

where |m) (m =  1,2,3) are atomic sates, dj and aj (j  = 
1, 2) the annihilation and creation operators of the probe 
and coupling laser modes, and the two coupling constants 
are defined by g\ — i-i2i£i/Ti and g2 — ^ 23^2/^  with 
Hij denoting a transition dipole-matrix element between 
states |?) and \j). Ei — \jT10Ji/ 2eoV being the electric field 
per photon for light of frequency uot in a mode volume V .

Eigenvalues of above Hamiltonian can be generally ex
pressed as the following form

#(+)ni,ri2
q \ 2 f P ' 3

1/3

E (-)n \ , n  2

+

Ai

+A 2

D 2+ ( r 3

_ 2 V V2/ V3
q \ 2 3

1/3

1/3

-A,

q \2  , p \ 3
2 V V27 +  V3

1/3

- 3 ^ ( 2 )

#(o)n 1 ,n 2 2 +vifr+r
1/3

+A i
q \2  , p \ 3

2 V V27 +  V3

1/3

- - A3 ’

w here th e  tw o co n s tan ts  A i =  exp(/'27r/3) an d  A2 =  
e x p (—i2n/3), o th e r  p a ra m e te rs  a re  given by

p — B  — \ a 2 , q — C 1 2 o- A B  + — A 3, 
3 27 (3)

with

A — —2Ai +  A2, C — g1ni(Ai — A2), 
B  =  A i(A i -  A2) -  g\{n2 +  1) -  g \n x. (4)

FIG. 1: A sketch of the  atomic energy levels coupled to  the 
coupling and probe fields.

The three eigenvalues E \^ ’n2, -E’,\1,n2 and En i;n2 are ̂ onrl'711,712 5 -C/71l,7l2 -̂ Tll ,9
unequal and real when p and q obey the inequality q2 /4  + 
p 3/ 27  < 0 .

Since we are concerned with behaviors of the system 
in the vicinity of resonance, assuming the two detunings 
Ai and A2 are small, we can develop a perturbation the
ory in which we retain only terms linear in Ai and A2. 
Then eigenvalues in Eq. (2) become the following simple 
expressions

E {±) =ni,ri2
nj + 2 n 22

2Q2
Ai - Sl% A O 

29?' 2 2''

=  ^ ( A i a 2), (5)

where we have defined Sli =  2giy/ni, Sl2 =  2g2 \Zn2 +  1
and Q =  V ^ i +  ^ 2-

Eigenstates of the Hamiltonian (1) are called dressed 
states. Dressed states corresponding to above eigenvalues 
have the following form:

1 0S ,n 2) =  O i | l , n i , n 2) + b i \ 2 , m  -  l , n 2)

+C i|3 ,ni -  l , n 2 +  1), (6)

where i =  ± , 0. Up to first-order perturbation theory in 
the detunings Ai and Ai, the coefficients in Eq. (6) are 
given by

a± =
1

b± =
O2

c± =
y/ 2  n

■,_S2? + 4S21a 
1 T 2JF Al ±  2SFA2

n|_
2S13 1 2SJ3 

, , 3S2?a _  4(lj + 3(1?,
2f!3 A2

(7)

and

n 2 , 2VtiVt2 , . A \ ^ 1  
0CI =  “ 1T- ~  fp  — CCI =  7T (8)

The complete set of dressed states for the system under 
consideration comprises the states |</>ni,n2)(* =  ± ,0) for
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each n i > 0, and n2 > 0 together with other two states 
|1 ,0, 712} and |3 ,n i,0) with zero eigenvalues. Knowing 
this set allows us to determine the time evolution of the 
atom-field system for any initial configuration.

We assume that the atom is initially in the ground 
state, while the coupling and probe lasers in a coherent 
state |o,/5}, with a  and [3 being supposed to be real for 
simplicity. Namely the initial state of the atom-field sys
tem is assumed to be

require this, so broader conditions are allowed: The cou
pling and probe lasers can be equally strong or even the 
probe laser is stronger. Then atoms can be in a more 
general superposition of two atomic states, which are en
tangled with the coupling and probe fields.

From Eq. (11) one can get the total density operator 
of the atom-field system. After taking trace over the field 
states, one finds the atomic reduced density operator to

OO
|tt(0)} =  |1} <S> |a ,/?}=  £  Cni>n211, n \ , 77.2} 1 (9) PA(t) = 2 2  { I^ i(« i^ '2 ) |2|1}(1|

hi ,n2=0

where the coefficient C'n, /n2 is given by

Cni,n2 = exp[-(«2 +  p 2) / 2]
a n i [3n2
s /n \\n 2\

(10)

Eq. (9) indicates that there is no atom-photon and 
photon-photon entanglement in the initial state of the 
atom-field system. In the usual treatment with both 
lasers being classical external fields, one is concerned with 
a steady state of the atomic system. The counterpart of 
the steady state in our fully quantum treatment, accord
ing to the commonly used adiabatic hypothesis in quan
tum scattering theory and quantum field theory [23], is 
the state that evolves from the initial state (9) with the 
couplings g± and <72 adiabatically turned on. Physically 
this is equivalent to having localized laser pulses before 
they enter the atomic vapor, with the pulse shape suffi
ciently smooth. In conformity to the Adiabatic Theorem, 
we need to identify a linear combination of the dressed 
states (2) that tends to the initial state (9) if we take 
the limits <71, g2 —► 0 (or O i, ^2 —̂ 0). According to Eqs. 
(3-5), the ordering of the limits Sli —> 0 and £2 2 —* 0 is im
portant. Corresponding to the actual conditions in which 
EIT is observed, the correct ordering is first > 0 and 
then Vt2 ->• 0. In our interaction picture, this procedure 
selects the i — 0 state in Eq. (6). Transforming it back to 
the Schrodinger picture, we identify the following state as 
the state that evolves adiabatically from the initial state:

Cni,n2 exp
rti ,n2=0

- i e {0) t I t f j -  (11)

where we have introduced the following notation

eni),n2 =  E l +  wl n l +  ^2^2 +  ^n^,n2 • ( I2)

The state given in Eq. (11) can be viewed as the coun
terpart of the usual ’’steady” state in our treatment. We 
see that the population of the upper level |2) is zero up 
to first order in detunings Ai and A2. This means that 
there is no absorption, implying the phenomenon of EIT. 
This is the adiabatic EIT. In the next section we will see 
that for transient-state EIT to occur the usual treatment 
requires the coupling laser be much stronger than the 
probe laser, i.e., O2 >  ^ 1; then most atoms are popu
lated in the ground state. The adiabatic EIT does not

m,n2=0
+  \D2(ni +  1, n-2) I ̂  12} (21 
+ |£)3(tm +  1,^2 — 1)|2|3}(3|
+ [ D ^ m .n ^ D K m  +  l,7i2)|l}(2| 
-|-£)l(ni,7l2)D3(7li +  l,7i2 -  1)11} (3| 
+£>2(ni +  l,Ti2)£>3(Tii +  l ,n 2 -  1)|2>(3|
+H.c.]},

where D-coefficients are defined by

£>1 (711, 712)

D2{n i,n 2)

D 3(n1,n2)

®oCni,n2 ®Xp 

boCm , n2 GXp 

CoCni ,n,2 GXp

-? e (0) t' cni,n2</ 

_ ?'e(°) t

-ie(0) t

(13)

(14)

where a0, bo, abd cq are given by Eq. (8).

III. D IS P E R S IO N  A N D  G R O U P  V E L O C IT Y

When an electromagnetic wave of frequency v propa
gates through a nonabsorptive but dispersive medium, 
the phase velocity is c/n  with c being the speed of 
light in vacuum, and n the refractive index which is re
lated to susceptibility of the medium \  by the relation 
n — \ / l  +  x, while the group velocity is c/[n + u(dn/du)]. 
So long as dn/dv > 0 which corresponds to normal dis
persive, the group velocity is less than the phase velocity. 
In what follows we shall indicate that under EIT condi
tions both probe and coupling lasers exhibit normal dis
persion, and their group velocities are greatly reduced 
while they have the same phase velocity c.

In order to get the susceptibility of the medium, we 
need to calculate the polarization of the atomic medium 
which is related to off-diagonal elements of the atomic 
reduced density operator through the following relation:

P  = N ( ^ 12P21 +  M32Pm) + C.C., (15)

where N  is the number density of atoms, denotes a 
transition dipole-matrix element between states |i) and
Ii}-

Transferring the induced polarization of the atomic 
medium P  to a Fourier representation of a frequency uj, 
one can define the susceptibility of the medium x i1-0) by

P {  ui) = eax,(u>)E(u), (16)
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where E(uj) is the Fourier component of the mean value 
of the total electric field at the frequency uj, eo the free 
space permittivity.

From Eqs. (13) and (14) we get the optical coherence 
of the system at time t

can be done easily. Then we obtain the Fourier com
ponent of the optical coherence of the adiabatically pre
pared state at the frequency uj

p£i(t)

P23(t)

T :  P ( n i ,n 2)a o (n i,n 2)6o(wi +  h n 2)
ni,n,2=0

s j n \  +  1
exp < 1 ,(0)'Mi,ri2 cni + l,n2 (17)

y  P (n i ,n 2 )b 0(n1 +  l , n 2)co(ni +  l , n 2 -  1)
ni,n2=0

x / ^ M 2 r. x -r1-----7T-7- exp < %
(ni +  1 )(3*

,(o) _
'ni + l,ri2 — l eni + l + l,n2

(0)

where the weighting factor is given by

P(ni,n2) =
^ n i ^ n  2

'Q 'Z3 p-(n a+%) 
n i!n 2!

(ni -  na y  +

2g2V n 2 + 1 =  2g2J n p  +  1 +  —= { n 2 -  np)
\Jnp

3/2 (^1 _ n /3)2 +4n

(18)

with na =  |a |2 and np =  |/3|2, respectively, being the 
initial mean photon numbers of the probe and coupling 
lasers in the coherent state |o,/5).

In the case n0 1 and np 1 (n ~  104 for a recent 
experiment of light storage [16], n ~  104), called the 
large-/? limit below, the summation over n\ and n2 in 
Eq. (17) can be performed approximately. If one notices 
that the weighting function P {n \,n 2) will peak at values 
«i =  fia and n2 — rip with relatively narrow dispersion:
{(nl)  -  n2a) 1/2 = and ((«|> -  n2p) 1/2 = this
implies that the photon distributions are sharply peaked 
around their mean values. So the rapid oscillations in 
the time record in Eq. (17) are just dominant oscillations 
which occur for n 1 =  na and n2 =  np , i.e., Qi =  Qi(ni =  
na) and Q2 =  0 2(n2 = np). Indeed we can expand the 
Rabi frequencies f2i =  2gi-s/n [  and Q2 = 2<72\/n 2 +  1 
about ha and np to obtain

2<7i\Am =  2gXy/n^ + —= ( n i  -  na)
Vna

1 ^ \2

(19)

To the lowest order of n\ — n a and n2 — np , we get Oi = 
^ i(n a ) and fl2 =  ^ 2{np).

After substituting the lowest-order values of the Rabi 
frequencies, ao{ni,n2), bo(ni,n2), and en},n2 in Eq. 
(17) are independent of n\ and n2. The summations 
over «i and n2 in Eq. (17) are carried out only for 
P (n i,n 2)/y /n i +  1 and P (n i,n 2)^/n2/(n \  +  1). These

P21M  =  aobo[8(cu - u > i )  + 5 ( a ; - | - a ; i ) ] ,  

P 2 z ( u )  =  Cobo[S{LJ -  CJ2) +  S ( u  +  u 2)], (20)

where a0 =  ao(na ,np), bo =  bo{na ,np), and co =  
Co {na 1 np).

The Fourier component of the mean value of the total 
electric field E{u) can be calculated from the adiabati
cally prepared state (11). In the large n approximation, 
we find that

E{io) — £ \ o l \ 5 { l o  — t o \ )  8(io t ^ i ) ]

+ £ 2(3[8{oj -  0J2) +  S(u) +  u 2)\, (21)

where £i = (hiJi/2eoV)1̂ 2(i =  1, 2) with V  the quantized 
volume.

From Eq. (21) we obtain E (u  1) =  £\a  and E{oj2) =  
£2/3, which imply that the mean values of the electric 
fields are unchanged when the pulses enter the medium. 
This is in agreement with the argument in Ref. [14] for 
the case of the classical probe and coupling laser fields. 
Since the power density is also unchnged as the pulses en
ter the medium, the energy density in the medium must 
increase. It is this increase that leads the spatial com
pression of a light pulse in the medium.

We first consider the propagation of the probe laser. 
For the frequency of the probe laser u \, substituting Eqs. 
(20) and (21) into Eqs. (15) and (16) and retaining only 
terms linear in the detunings Ai and A2 we obtain the 
following expression of the susceptibility

4iV|Ati2|20 2(Ai — A2) 
he0(n i  +  n 22)2 '

(22)

where Qi =  Qi(na,np) and Q2 =  Sl2(na ,ng) are the 
Rabi frequencies of the coupling and probe lasers, re
spectively. It should be pointed out that the expression 
(22) is just a perturbation result of the susceptibility for 
the small detunigs up to the first order of Ai and A2. Eq. 
(22) indicates that the imaginary part of the susceptibil
ity vanishes under the first order approximation of the 
detunings. When the EIT occurs,we have Ai =  0 =  A2. 
Then both real and imaginary parts of the susceptibil
ity are zero. Hence, the Kramers-Kronig relation is not 
violated. When the coupling laser is on resonance, Eq. 
(22) reduces to the result in our previous paper [20]. It 
is interesting to note that this result is valid for arbitrary 
ratio of Qi/f22.

We can see that Eq. (22) exhibits the signature of 
EIT: the linear susceptibility vanishes at the resonance 
(Ai =  0 =  A2), which implies that the probe laser has 
the phase velocity c. From Eq. (22) we can also know 
that at resonance, dxs/dui > 0. Hence we can conclude 
that the medium exhibits the normal dispersion.

A dispersive medium can be characterized by a light 
group velocity. Steep dispersion is associated with larger
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modifications of the group velocity. At the resonance 
frequency the group velocity of the probe laser pulse is 
related to the derivative of the susceptibility through the 
relation :!^  =  c /  [1 + /  2 ){dxs /  dui)\, where the deriva
tive of x.s (u-’i ) is evaluated at the probe frequency u \ with 
c the speed of light in vacuum. Thus we have

y(S) — y®pg pg
(fif +  s i )
a l

(23)

where v{})g is the usual expression for the group velocity 
[8] given by

vL  =
Ticeo l̂o

pa 2uj1\h12\2N '
(24)

Eq. (23) indicates that in general the group velocity 
of the probe laser depends on the Rabi frequency of the 
coupling as well as the probe laser. The fii dependence 
of the group velocity is a new result of the fully quantum 
formalism, closely related to the higher order nonlinear 
susceptibilities we will discuss below.

These general results should be compared with earlier 
studies of EIT-based dispersive properties [24, 25]. In 
order to do this, we expand the susceptibility given in 
Eq. (22) in terms of the powers of VL\/Vt2- When Qi <C 
^ 2, the first term of this expansion gives us the linear 
susceptibility

=  -
4iV|/ti2|2(Ai — A 2) 

keoClo
(25)

which is the same as Eq. (16a) in Ref. [25]. Note that 
the Rabi frequencies here are twice of those in Ref. [25] 
by definition.

On the other hand, when the probe and coupling lasers 
are on resonance, i.e., Ai =  0 =  A2, from Eq. (25) we 
find that

x i1}(^ i) =  0 ,
dx (i)

du 1
4|/ui2|2jV

Tieoflo

d2x i1]
du)\

=  0. (26)

Thus, at the lowest order we recover results in Ref. [24] 
(see Table 1 in [24]), when the decay rates of states are 
neglected at the resonant frequency of the probe laser. 
Similarly, keeping only the lowest-order term in O1/O 2, 
Eq. (23) will essentially give the same expression for the 
group velocity as reported in Ref. [8], i.e., the expression 
given by Eq. (24), which does not depend on Qi and 
involves the contributions only from linear susceptibility.

The refractive index of the medium can be gener
ally obtained from the susceptibility (22) by definition 
n =  y/1 + x- Making use of Eqs. (22) and (23), we find 
that the refractive index change in the vicinity of the res
onance can be expressed in terms of the group velocity 
of the probe laser as

A n s(wi) =
Ai (Ai — As
2tr ,(s) (27)

It is worthwhile to note that this refractive-index 
change involves the contributions of all orders of non
linear susceptibilities due to the intensity dependence of 
the group velocity in (23). For the slow light experiment 
of VpSJ = 17 m /s with parameters [8] Ai =  1.3 x 106 
rad/s, A2 =  0, and Ai =  589 nm, from Eq.(27) we obtain 
Ans(wi) =  8.2x 10-3 . This value is the same as that indi
rectly measured in Ref. [8]. It should be pointed out that 
the much larger change of refractive-index coefficients or 
the much larger normal dispersive of the medium which 
leads to much slower group velocity, is the direct result of 
EIT but not the result of strong coupling laser. In fact, 
a strong coupling laser is unnecessary for the adiabatic 
EIT situation.

We then consider the propagation of the coupling laser. 
For the frequency of the coupling laser uj2< from Eqs. 
(16), and (20) we obtain the following susceptibility

X s M  =
4jV|/u,32|2n f ( A i - A 2) 

he0{n2 + n 2) 2 '
(28)

Eq. (28) indicates that at resonance, we have Xs{w2) =  
0, and dxs{[jJ2)/ duJ2 > 0. This means that the coupling 
laser has the phase velocity c and exhibits the normal 
dispersion.

When <C fi2, we expand the susceptibility given in 
Eq. (28) in terms of powers of O1/O 2. The first term 
of this expansion gives us the linear susceptibility of the 
coupling laser

x i1}(^2) =
4jV|At32|2^ ( A i - A 2

heoCli
(29)

Thus, at the lowest order we recover results in Ref. [25] 
(Eq.(B2) in Ref. [25]).

Making use of the susceptibility (28), we obtain the 
group velocity for the coupling laser pulse

=  v°e g  eg
(H? + stj): 

fij

where v® is given by

1 2 1
Jcg

hceofl2
2co»2 |M32 |2 iV  P9 U 2 I 2 1/^3212

(30)

(31)

where v®g has given in Eq. (24), I\ =  2eoca2 and I2 = 
2eoc(32 are the intensities of the incident probe and cou
pling lasers, respectively. For the slow light experiment 
of VpSJ —  17 m /s with parameters [8] I± —  1 mW/cm2, 
I2 — 40 mW/cm2, u i/u >2 ~  1 and ^ 12/^32 ~  1.22, from 
Eqs. (30) and (31) we obtain v^Sg ~  1020 m/s. Hence 
the group velocity of the coupling laser is greatly reduced, 
although it is much greater than that of the probe laser.

The refractive-index change in the vicinity of the res
onance is given by

A n s (i02) = 2jV|/i32|2^ ( A i - A 2) 
heoinj +  O2)2

(32)
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which can be expressed as the following simple form

A2 (A i — A 2)
A ns(oj2) = 2tv ,(s)

For the slow light experiment of VpSJ — 17 m /s with pa
rameters [8] Ai =  1.3 x 106 rad/s, A 2 — 0, and A2 ~  589 
nm, from Eq.(33) we obtain A n s(io2) =  2.1 x 10-4 . This 
value is less one order of magnitude than that of the 
probe laser Ans(wi) =  8.2 x 10-3 .

(33)

IV . N O N L IN E A R  R E F R A C T IV E  IN D IC E S

We note that in the conventional approach, it is diffi
cult to obtain nonlinear susceptibilities higher than x*'1'* 
and X(3). However, in our formalism we can get arbi
trary higher-order nonlinear susceptibilities once for all. 
For the propagation of the probe laser it is easy to see 
that the higher-order terms of the expansion in Eq. (22) 
give rise to higher-order nonlinear susceptibilities defined 
by

= x{s1]M  +  x i 3 ) ( ^ i ) | £ ( ^ i ) l 2

+ xi5\ io 1)\E ^ 1)\4 + x (J ]M \ E M \ G +{34)

where X s^ ^ i)  is the linear susceptibility given in Eq. 
(25), and Xsk\w i){k  > 3) represent the Mh-order non
linear susceptibility.

Again, assuming that the coupling laser is stronger 
than the probe, we expand the susceptibility (22) in pow
ers of Oi /Q 2. Rewriting this expansion in the form of Eq. 
(34), we find

/o^. , 8fteoc2|ui2|4Af
x f V i )  =  ---- r—1JT5— (A i - a 2),

1/̂ 32 |4f |  
24heQC3\/j,i2\6N

\i^ F iI
(7)/, . \  _  192fteoC4|/u.i2|8Af

\ i 5)(^ i) =  

xi7V i )  =

(Ai -  A2), (35)

31 Ẑ-321812
(Ai -  A2),

where Xs^(k’i) is given by Eq. (25).
A light wave propagating through a nonlinear medium 

collects a nonlinear phase shift which is described by the 
expansion of the refractive index on powers of the light 
intensity [26]:

n* — n,(s) + 4 S) \EX12 +  n\s>\Ei I4 +  74s' 1^1 |b +  • <36)(s) I

where the first nonlinear correction to the refractive index 
is the Kerr coefficient n ^ \  which is related to X s^^i)- 
n /U k  > 4) are higher-order nonlinear refractive-index 
coefficients, related to higher-order nonlinear susceptibil
ities up to x ife+1)M -

Making use of Eq. (34), we find that the linear and 
nonlinear refractive-index coefficients can be expressed

in terms of the linear and nonlinear susceptibilities such

n^a)(u) =  l  +  x i ^ M ,  4 S)M  =  ^ ~ x i 3)M ,  

nis)M  = (37)

,(*)

2 n 0

M  =  7 ^ x i 7)M  -  ^ x i 3)M x i 5)H2no

Making use of Eq. (35), we obtain from Eq. (37) 
nonlinear refractive index coefficients:

_(«) 2eoc (i)/ x 2e0c(Ai -  A2) Ai 
" 2 “  ~ x‘ M  ~ — ^  
n<«) = ^  = (3g)

h
. ( s )  • • •Note that the sign of n\ is of significance. In par-

(s)ticular, the sign of n2 can be used to examine the 
self-focusing/-defocusing effect of the medium. When 

> 0, the medium is self-focusing. When < 0, 
the medium is self-defocusing. Eq. (38) tell us that one 
can manipulate the self-focusing/-defocusing effect of the 
medium by changing the relative detuning between the 
coupling and probe lasers.

From Eqs. (35) and (38) we can see that to increase the 
value of nonlinear refractive-index coefficients one may 
either increase the atomic density or decrease the cou
pling laser intensity. Note that when the ratio of CI1/CI2 
is close to unity, one had better directly deal with the 
original formula (22), rather than using its power series 
expansion.

In order to get some flavor of the magnitude of the 
giant nonlinearities derived above, we calculate the non
linear refractive-index coefficients using the parameters 
(I2 =  40 mW /cm2, Ai =  1.3 x 106 rad/s, A2 =  0, 
and Ai =  589 nm) in the ultraslow light experiment re
ported in Ref. [8], in which a light pulse speed 17 m/s 
was observed. We estimate that under these conditions,

3/2

-

,(s)
= 1.9x10 7 m2/V 2, = — 3.8x 10 12 m4/V 4, and 
=  6.7 x 10-17 m6/V 6. In terms of a common practi

cal unit, n ^ ’ — 0.36cm2/W , n ^ } — — 13.0cm4/W 2, and 
4 s) =  4.5 x 102cm6/W 3. Hence, this value of the Kerr 
nonlinearity is consistent with that indirectly measured 
in Ref. [8], almost 106 times greater than that measured 
in cold Cs atoms [8, 27], and ~  1012 times greater than 
that measured in other materials [28]. The fourth-order

(s)

refractive-index coefficient is ~  1022 times greater 
than that measured in other materials [28] .

The second nonlinear constants « i . known as the 
nonlinear index of refraction, is also an important pa
rameter in contemporary nonlinear optics. Theoretical 
investigations show that in order to obtain spatial soli
tary waves a certain relation between and ri\ must be
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satisfied. Specially, Wright and his coworkers [29] indi
cated that the ratio between the second- and the fourth- 
order refractive-index coefficients is an essential parame
ter to obtain stable spatial solitary waves. The lower the 
ratio r&f* / n ^ \  the lower the required power for stable 
beam propagation. For the atomic medium with EIT, we 
have ntf* / n ^  = — I2/(3eoc). With the parameters in the 
experiment[8], we estimate \ n ^  / n ^ \  ~  10-2W /cm2. 
This ratio is small compared to most other nonlinear 
media [28] by almost 11 orders of magnitude. From 
Eq. (37) we can also obtain the ratio between the 
fourth- and the sixth-order refractive-index coefficients 
n4SVn6^ =  —3/2/8(eoc), which is of the same order as 
that of n ^ / n ^ .

V . R E S P O N S E  T O  N O N C L A S S IC A L  FIE L D S

We now discuss the influence of non-classical light on 
atomic polarization. Allowing such a study is one of the 
advantages of our fully quantum treatment of both the 
coupling and the probe laser fields. We assume that ini
tially the atom is in the ground state, two laser fields 
in an arbitrary state n2=0 CniCn2 \ni, n2), and the 
coupling and probe fields are adiabatically applied. The 
’’steady” state of the system is found to be

rti ,n2=0
c ni Cn2 exp _ ? 'e ( ° )  t ni,n2 K 1, (39)

The Fourier component of the optical coherence at 
probe-laser frequency is then given by

4 \M =  E  cni+lc’ni\cn,\
ni ,n.2=0

:ao (n i>n2)bo{ni>n2).

(40)
which indicates that the atomic polarization depends 
upon the single-photon coherence of the initial probe 
field, i.e., Cni+iC* . Hence, the atomic polarization is 
zero, if the probe filed is initially in a state of no single
photon coherence.

This point can be understood by the following argu
ment. The polarization is produced by the electric field. 
When the probe field is initially in a state of no single
photon coherence, the mean value of the electric field 
in the state vanishes, therefore the polarization of the 
medium is zero. When the coupling and probe lasers 
are in the coherent state |o,/5), Eq. (40) reduces to Eq. 
(20) in the large-'/? approximation. Obviously, the large-n 
approximation should be given up to investigate on the 
response of the EIT medium to nonclassical laser fields.

V I. C O N C L U D IN G  R E M A R K S

In conclusion we have studied the linear and nonlinear 
optical properties of EIT medium interacting with two

quantized laser fields for the adiabatic EIT case in terms 
of a time-independent approach in which both probe and 
coupling lasers are included as parts of the dynamical 
system under our consideration, and treated on the same 
footing. It has been shown that the fully-quantized treat
ment for both probe and coupling lasers can not only de
scribes the ultraslow light experiments [8] very well, but 
also sheds new insight for the response of EIT media to 
nonclassical laser fields. In fact, we have found that very 
good agreement with experimental results for slow group 
velocities and the nonlinear refractive index of the probe 
laser observed in experiments [8]. We have shown that 
EIT medium exhibits normal dispersion. We have inves
tigated the group velocities of both probe and coupling 
lasers in adiabatic EIT media. It has been found that the 
group velocities of both probe and coupling lasers are re
duced. It should be pointed out that there are conditions 
for achieving slow group velocities of both probe and cou
pling lasers. In the perturbation regime, the weak-probe- 
strong-coupling-laser configuration leads to the fact that 
only the probe laser have significantly reduced group ve
locity. When using a strong-probe-strong-coupling-laser 
configuration, one transfers appreciable population to the 
excited state |3) at the early stage of the pulse. This is 
the familiar coherent population transfer stage. After 
this stage, both probe and coupling lasers take dual role: 
they both work partly as a probe and partly as a con
trol laser. The consequence is that both will experience 
slow down. We have studied refractive-index changes of 
both probe and coupling lasers in the vicinity of the reso
nance. We have also calculated nonlinear susceptibilities 
and nonlinear refractive-index coefficients in a completely 
analytical form. We have indicated that EIT medium ex
hibits giant resonantly enhanced nonlinearities. We have 
discussed the response of the EIT medium to nonclassical 
light fields, and indicated that the polarization vanishes 
when the probe laser is initially in a nonclassical state of 
no single-photon coherence.

Finally, it should be remarked that in our treatment of 
EIT, which incorporates both probe and coupling lasers 
as part of the dynamical system, the decay parameters 
of various levels are ignored. This is a good approxima
tion, since EIT is insensitive to any possible decay of the 
top level 12): During the adiabatic preparation the pop
ulation of the level |2) in the dressed state cf)^ remains 
negligibly small; see eqs. (6) and (8). Even if we add by 
hand an imaginary part to the energy of the level 12), it 
will not enter the energy eigenvalue for the drssed state 

Moreover, the effects of other decay parameters 
are expected to depend only on their ratios to or Cl2, 
which normally are too small to dramatically change our 
results.
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