
Autom atic Derivation of Tim ing Constraints
by Failure Analysis

Tomohiro Yoneda*1, Tomoya K ita i2, and Chris Myers**'*

1 National Institute of Informatics
Tokyo 101-8430, Japan
yonedaOni i.ac.j p

2 Tokyo Institute of Technology
Tokyo 152-8552, Japan

kitai@yt.cs.titech.ac.jp
3 University of Utah

Salt Lake City UT 84112, USA
myers@ece.Utah.edu

A b s tra c t. This work proposes a technique to automatically obtain tim ­
ing constraints for a given timed circuit to operate correctly. A desig­
nated set of delay parameters of a circuit are first set to sufficiently large
bounds, and verification runs followed by failure analysis are repeated.
Each verification run performs timed state space enumeration under the
given delay bounds, and produces a failure trace if it exists. The fail­
ure trace is analyzed, and sufficient timing constraints to prevent the
failure is obtained. Then, the delay bounds are tightened according to
the timing constraints by using an TLP (Integer Linear Programming)
solver. This process terminates when either some delay bounds under
which no failure is detected are found or no new delay bounds to pre­
vent the failures can be obtained. The experimental results using a naive
implementation show that the proposed method can efficiently handle
asynchronous benchmark circuits and nontrivial GasP circuits.

Keyw ords: Trace theoretic verification. Failure analysis. Timed circuits.
Timing constraints.

1 In trod u ction

In order to obta in high performance systems, it is necessary to design circu its
w ith aggressive and complex sets o f tim ing constraints. GasP circu its [] are
a prim e example o f such h ighly timed circu its , i.e., c ircu its tha t don 't work as
expected, unless s tric t tim ing constraints on delay parameters are satisfied. In
particu la r, the correctness o f GasP circu its depends on the fact tha t (1) no
hazards occur, (2) hold time constraints are satisfied for some signal transitions,
and (3) short circu its caused by tu rn ing on all transistors in the path between
the power supply and ground either never occur or occur only for a very short
time. Tt is, however, not easy to check i f the c ircu it satisfies a ll these constraints

* This research is supported by JSPS Joint Research Projects.
** This research is supported by NSF CAREER award MTP-9625014, NSF Japan

Program award TNT-0087281, and SRC grant 99-TJ-694.

D. B rinksm a and K. G. Larsen (E ds.): CAV 2002. LNCS 2404. pp. 195-208. 2002.
@ Springer-V erlag B erlin H eidelberg 2002

mailto:kitai@yt.cs.titech.ac.jp
mailto:myers@ece.Utah.edu

190 Tomohiro Yoneda et al.

by simulation or static tim ing analysis due to the complexity of the tim ing
constraints. Therefore, formal verification is essential.

This work uses a formal verification tool V IN A S -P []. V IN A S-P is based on
a tim ed version o f trace theoretic verification [], and tim e Petri nets are used
for modeling both specifications and circuits. V IN A S-P checks safety properties.
Bad behavior such as a hazard, hold tim e vio la tion, and a short c ircu it can be
detected as safety failures. V IN A S-P uses partia l order reduction which explores
only a reduced state space th a t is sufficient to detect failures, which enables us
to verify much larger circuits than a trad itiona l to ta l order method.

A lthough a formal verifier is very effective to prove a given c ircu it is correct
w ith respect to the specification, for an incorrect c ircu it, i t sim ply generates a
failure trace. In the case of V INAS-P, i t shows for a failure trace a waveform of
selected signals. This is useful to understand what is going on in a c ircu it, but,
i t is not easy to see why the failure occurs, or how the failure can be elim inated.
When we tried to verify the GasP circuits, failure traces were actually produced
again and again. A lthough almost all these failures are caused by incorrect delay
settings, obtaining the appropriate delays or conditions for them is a d ifficu lt
problem. This motivates th is work, which proposes a way to obtain sufficient
t im ing conditions on delays for correct behavior o f tim ed circu its by analyzing
failure traces produced by the verifier.

In the proposed method, several delay parameters are selected to be exam­
ined, and in itia lly , some large integer bounds are set to them. Then, the model
is verified. I f a failure trace is provided by the verifier, then our a lgorithm ana­
lyzes it , and suggests a set o f candidates for additional tim ing constraints. Those
tim ing constraints are sorted using heuristics, and the most appropriate one is
chosen by the algorithm . The rest o f the constraints are used when backtracking
occurs. The selected tim ing constraint is added to the in itia l tim ing constraints,
meaning the delay bounds are tightened. Then, an IL P (Integer Linear Pro­
gramming) solver is invoked to update the delay bounds. This new set o f delay
bounds are used for the next verification run. This process o f verification, analy­
sis of failure traces to obtain tim ing constraints, and updating the delay bounds
are fu lly automatic, and i t is repeated un til verification succeeds or no consistent
tim ing constraints are found. Integer delay bounds and IL P are used in order to
guarantee the term ination o f th is process.

The rest o f th is paper is organized as follows. Section 2 refers to related
works. Section 3 briefly introduces the verification method. Section 4 shows an
example to explain the proposed method in tu itive ly . In Section 5, the algorithms
to analyze a failure trace and obtain tim ing constraints to elim inate the failure
are proposed. The heuristics used for performance improvement, are also shown
there. Section 0 shows experimental results using a naive implementation. F i­
nally, Section 7 summarizes the discussion.

2 R elated W orks

The same problem discussed in th is paper is solved by two different but sim­
ila r approaches. In [], Negulescu proposes a method where a timed c ircu it is
represented by an untimed model, called a process, and untimed state space
enumeration is done. When a failure is detected, they analyze i t by hand and

Automatic Derivation of Timing Constraints by Failure Analysis 197

construct, a new model th a t avoids the failure. This process o f untimed verifica­
tion and reconstruction o f the model is repeated un til no failure is detected or
model reconstruction fails due to inconsistency. Another approach is proposed
in [,]. This approach also uses untimed models and untimed verification. In
th is approach, all possible failures of a c ircu it are generated by one state enumer­
ation, and then tim ing constraints are obtained autom atica lly by analyzing the
state graph. The constraints obtained by th is approach are not those on delays
b u t those on ordering o f signal transitions. Thus, the ir goal is s ligh tly different
from ours.

Another work th a t we need to mention is a verification o f tim ed systems
using relative tim ing method, which is proposed in []. Its goal is to verify timed
circuits, not to obtain tim ing constraints. B u t, in the ir method, a detected failure
is checked i f it is legal w ith respect to the given delay bounds, and i f so, a new
model th a t excludes the fa ilure is reconstructed. Verification and reconstruction
are repeated s im ilarly to Negulescu's method, bu t automatically. W hile it may
be possible to combine th is work and Negulescu's work to achieve the same
result as ours, i t is not clear how effective th is would be since it has not been
attempted.

The biggest difference between these works and our work is th a t only our
method uses tim ed state space enumeration. The authors o f the above works
claim th a t the advantage of the ir works is th a t the verification o f tim ed systems
can be reduced to th a t of untimed systems. I t is apparent th a t the complexity of
untimed verification is much smaller than th a t o f tim ed verification. O ur claim
is, however, th a t a huge number of failures may be detected i f a timed c ircu it
is analyzed as an untimed c ircu it, i.e., many but unrealistic failure traces can
be produced by the untimed analysis. This makes the cost to obtain tim ing
constraints fa irly large. I f the in itia l delay bounds can be su itab ly reduced to
realistic ones, our method may work more efficiently. Probably, the only way to
compare both approaches is to implement our idea and to compare the results
for many examples. This is one of the goals of th is paper.

Another difference is in adding tim ing constraints. O ur method uses updated
delay bounds. Thus, the cost o f each verification run is almost the same. On the
other hand, in the method proposed in [] and [], an additional tim ing con­
s tra in t is represented by a process or a transition system, and the composition
o f the original model and the model for the additional tim ing constraint is veri­
fied in the next run. I t is possible th a t th is more complicated model may require
more BDD nodes and increase the verification cost. The method in [] does not
suffer from th is problem, because no model reconstruction is done. However,
the ir method does not obtain constraints on delays bu t ordering o f signal transi­
tions, and hence, i t seems d ifficu lt to verify, for example, hold tim e vio la tion. In
order to obtain constraints on delays, model reconstruction or a re-verification
step (in our case) is necessary in each ite ra tion, because there are potentia lly
many constraints th a t elim inate a particu la r failure, and searching appropriate
combinations o f constraints to elim inate all possible failures step by step w ith
backtracking is much easier than obta in ing all possible combinations on the first
try . For th is reason, our problem cannot be modeled by a uniform IL P problem.

It's also necessary to mention th a t there are many works[, , , and others] to
verify tim ed systems using tim ed automata. A lthough th is work uses tim e Petri
nets to model timed circuits, because a tool based on them is available for us, we

198 Tomohiro Yoneda et al.

believe th a t the technique proposed in th is paper can be easily applied to timed
automaton based tools. Furthermore, although our tool uses the D B M analysis
to handle real-time constraints, the proposed technique can also be applied to
discrete-time analysis methods.

3 V erification M ethod

The underlying verification method used in th is work is the tim ed extension
o f trace theoretic verification []. In our method, each c ircu it element, called a
module, is modeled by a tim e Petri net.

A tim e Petri net consists of transitions (th ick bars), places (circles), and arcs
between transitions and places. A token (large dot) can occupy a place, and when
every source place o f a transition is occupied, the transition becomes enabled.
Each transition has two times, the earliest f ir in g time and the latest f ir in g time.
In th is work, i t is assumed th a t these times are integers. An enabled transition
becomes ready to fire (i.e., firable) when i t has been continuously enabled for its
earliest fir ing time, and cannot be continuously enabled for more than the latest
fir ing time, i.e., i t must fire unless i t is disabled. The firing o f a transition occurs
instantly. I t consumes tokens in its source places and produces tokens in to its
destination places.

A module is defined as (T, O, N). where T and O are sets o f inpu t and output
wires, respectively, and N is a tim e Petri net. A fir ing o f a transition changes
the value o f a w ire th a t is related to the transition , and the direction o f change
(0 —> 1 or 1 —> 0) is represented by + or — in its name. A transition th a t is
related to an output, w ire o f the module is called an output transition. An input
transition is defined sim ilarly.

A timed c ircu it is modeled by a set o f modules. In a set o f modules, an input
transition fires only in synchronization w ith the corresponding ou tpu t transition
in some different, module. Thus, the earliest and latest fir ing times o f an input
transition is considered to be [0, oo]. I f an ou tpu t transition is firable and every
corresponding input transition is disabled in a module, the state is called a failure-
state, and the verifier reports a, fa ilu re trace, which is a sequence o f all transitions
fired between the in itia l state and the fa ilure state.

A specification is also modeled as a module. I f a c ircu it behaves differently
from its specification, an ou tpu t from a c ircu it module cannot be accepted by
the specification, and i t is detected as a failure. In addition, bad behavior such
as a hazard, hold tim e v io la tion, and a short c ircu it can be detected as failures
inside c ircu it modules.

4 A Sm all E xam ple

Let's consider a c ircu it shown in Figure 1(a). where the delay bounds o f the
inverter and OR gate are [di„v , Dinv] and [dor, I)or}. The in itia l state o f th is
c ircu it is (a ,b ,c ,d) = (1 ,0 ,0 ,0). and its behavior is expected as follows (See
Figure 1(b)): When e is raised, d goes up. Then, a and e are lowered in th is
order. D uring these input changes, the c ircu it keeps d high. Finally, when a is
raised again, d goes down, and the c ircu it goes back to the in itia l state. Hence,

Automatic Derivation of Timing Constraints by Failure Analysis 199

b

: -Pur
(a)

e+ d+

[10,10] [0,oo[[10,10] [25,25] [80,80] [0,oo]

(c)

F ig . 1. A c ircu it and its environment

d d
(a) (b)

F ig . 2. Two possible cases to prevent the failure

the environment o f th is c ircu it can be expressed by (|</j . }</•<). A',), where N s
is a tim e P e tri net shown in Figure 1(c) 1. The delay bounds for c+ and f l ­
are [10,10], while those for c— and a + are [25,25] and [80,80], respectively. Note
th a t d is an input of th is environment and i t fires in synchronization w ith the
c ircu it output.

Assume th a t the follow ing in it ia l constraints for the c ircu it delay bounds are
given.

5 < d,nv < 50, 5 < < 50, 5 < dor < 50, 5 < D or < 50, ()
dinv 2 I)n. r d'hiv + 30, dor + 2 < Dor < dor + 3 0 ̂U

The constraints of the form dim, + 2 < D in v are used to avoid tig h t delay bounds,
and those of the form D inv < dinv + 30 are for reducing the state space. These
and the lower bounds are also im portant to avoid imbalanced delay assignment
such as assigning to ta l delay to one gate and zero to the others. Actually, these
in it ia l delay bounds should be determined depending on the device technology
used to implement the circuits. Now, the problem to be solved is to find some
delay bounds, satisfying the above constraints, under which the c ircu it behaves
correctly w ith its environment. A lthough i t is desired th a t m axim al possible
delay bounds are found, i t is beyond the scope of th is paper.

The firs t step of our a lgorithm is to obtain in it ia l delay bounds from (1) using
a ILP solver. In th is case, they are

dinv = 5, D ir,v = 35, d0r = 5, D 0r = 35.

1 More precisely, this is defined as a m irror of a specification, where their input set
(output set) is equal to the output set (input set) of the circuit.

200 Tomohiro Yoneda et al.

The details about the IL P solver and the objective function used are mentioned
in Section C. Using these delay bounds, the first verification run is done, and the
follow ing failure is detected: 2

e+; <i+; a - ; c - ; h+

This failure means th a t after c—, the OR gate tries to lower its ou tpu t d because b
is low at th a t tim e. But, before its ou tpu t change, b+ occurs. This violates a
property called semi-modularity, and is considered to produce a hazard. This
failure can be prevented, i f (a) b+ occurs later than the ou tpu t change d—, or
(b) b+ occurs before the inpu t change c— (See Figure 2(a) and (b)). Note tha t
the failure is prevented in case (b), because the output o f the OR gate is stable
d u iing these input changes. Suppose th a t our a lgorithm first tries case (a). In
order to obtain the constraint for (a), the algorithm examines the casuals of b+
and d—. b+ is caused by a —, while d— is caused by c— and c— is caused by
a — in the environment. Hence, to make b+ occur later than d—, the following
constraint is necessary.

25 + I)or < dinv (2)

Note th a t the largest delay is used for the OR gate, while the smallest delay
is used for the inverter. This ensures the above ordering (d—; b+) even in the
worst case.

For constraints (1) and (2), the TLP solver gives the delay bounds

dinv = 33, l) inv = 50, do,- = 5, D or = 7,

and the second verification run w ith these delay bounds produces the following
failure.

e+; d+; a —; c—; d—

This failure occurs, because the c ircu it produces d— although i t is not expected
in the environment (i.e., d— is not enabled after c—). In other words, to prevent
th is failure, d— should be prevented. This is possible i f b+ occurs before c—.
Again, the algorithm checks th e ir casuals, and finds th a t both b+ and c— are
caused by a —. Hence, the follow ing constraint is obtained.

Dinv < 2 5 (3)

For constraints (1), (2), and (3), however, the TLP solver gives no solution due
to inconsistency.

Now, the algorithm backtracks to the most recent selection point, and chooses
case (b) instead. This constraint is actually the same as the above one, and
constraint (3) is obtained. For constraints (1) and (3), the TLP solver gives

di„v = 5, Dinv = 24, do,- = 5, Dor = 35,

and the th ird verification run reports no failure. Hence, the above delay bounds
are the solution o f our problem.

2 Every gate is modeled by a time Petri net [], and it contains internal transitions
other than input or output transitions. A failure trace includes internal transitions,
but here, they are omitted for simplicity.

Automatic Derivation of Timing Constraints by Failure Analysis '201

The main technical issue of our a lgorithm is to autom atica lly obtain a con­
s tra in t to prevent the given failure by analyzing the failure trace and the struc­
ture o f the Petri nets. Another issue is th a t the correctness of the algorithm
depends on the backtracking. In the above example, one backtrack occurs. Many
backtrackings, of course, decreases the performance o f the algorithm . O ur algo­
r ithm uses a heuristic to choose appropriate constraints, which is simple, but
very effective. These issues are discussed in the fo llow ing section.

5 Failure A nalysis

This section presents the algorithm th a t is used to perform analysis to derive
sufficient tim ing constraints to avoid failures.

5.1 F in d in g A a nd B E ve n ts

When a failure trace is given, our a lgorithm firs t finds two events, called event A
and event B , such th a t the failure is caused because event A occurs before
event B , and th a t the failure may be prevented by firing event B before event A.
For a failure trace, there can exist several event A !s and B 's. Tn the above
example, for case (a), A is h+ and B is d—, and for case (b), A is c— and B is
b+. Tn order to handle cases where event B may not be even enabled, event A
and B are extended so th a t they have an offset. T ha t is, an AB-candidate w ith
respect to a failure trace T is a three tuple (t-A, ts , o ff)j? , where t-A is a transition
th a t fires in T , ts is a transition th a t is enabled in the state where t-A fires, such
th a t fir ing t s certa in ly o ff tim e units earlier than t-A may be able to prevent T .
T is om itted from th is notation i f there is no confusion.

Let's consider modules M -\, M-j shown in Figure 3 and the ir failure trace T =
« + ; 11; t 2! 11; b + (out). This failure trace starts when an ou tpu t transition u +
(out) o f M -2 fires in its in itia l m arking /in = {piupz,} as well as the corresponding
inpu t transition u + (in) o f M i . The failure occurs in a m arking /j.3 = {p 3,p4,p r }
because b + (out) of M-\ fires before its input transition b + (m) o f M -2 becomes
enabled. Thus, one way to prevent th is failure is to fire ta before b + (out). Note
th a t an inpu t transition is assumed to have [0 , oc] bound, and so i t becomes
ready to fire imm ediately when i t is enabled. Tn th is example, however, ta is
not yet enabled when b + (out) o f M-\ fires. Thus, the net is traversed upward,
and an enabled transition tr, is found. Since ta takes Dq tim e units to fire in a
worst case, i t is necessary to fire Dq tim e units earlier than b + (out). Hence,
(b + (out), tr,, I) 6) is obtained. This AB-candidate is computed by force_fire(6 +
(in) ,b + (out), 0, ps, 0), where force_fire(t, t-A, o ff, p, T d) obtains a set o f A B -
candidates in a m arking (j to force t to fire certa inly o ff tim e units earlier
than t-A w ithou t fir ing transitions in T d, and i t is defined as follows.

1. Tf t E T d , then force_fire(t, t-A, o ff ,(j,T d) = 0- T d is used to term inate loop­
ing.

2. Otherwise, i f f is enabled in /j., then

fo rceJ\re (t,tA , o f f , ij.,Td) = { (tA , t , o ff)}.

202 Tomohiro Yoneda et al.

M2({6},{a},JV2) t7
Po PQ P9

Pi P8
o+ (out) b+ (*")

14 ts tfi
P2 6+ (out)

° + (* ") B o u n d s f o r t ,
ti are Di]t

bounds for a + (otz£)
Po are [da+, £>a+],

Mi ({a}, {6}, Ni} *2 P3 *3 and so on.

Fig. 3. An example of a module set

3. Otherwise, for some empty place p € • t — fi.

force_fire(M,4, off,i_i,TD) =
U*'e«p f° rce_fire(° ut_trans(#''),#,4 , o ff + U t (t) ^ i ,T D U {#}),

where out_trans(tf') is the output transition tha t corresponds to t ' (if t ' is
an ou tpu t transition, then out_trans(#') = t ') , and Lft(#) is the latest firing
time of t. Note tha t i t is sufficient to check some empty source place p o f t
because at least p needs a token in order to enable t. On the other hand,
a ll source transitions of p should be checked, because i t is unknown which
source transition produces a token to p.

There are, however, other ways to prevent the above failure. For example,
i f t-s fires before #1 , this fa ilure is prevented, because the ou tpu t transition b +
(out) is 110 longer enabled. Furthermore, i f # 7 fires before t.\ and b + (out), this
failure is prevented. The method used in our work to cover a ll these cases is
to try every transition t c tha t lost the chance to fire in the failure trace, i.e.,
our method obtains every AB-candidate for firing transition t c such tha t t c €
conflict(f) where t is a transition tha t fired in the failure trace and conflict(f) is
a set of transitions tha t are in conflict w ith t. Since this method may produce
unnecessary AB-candidates, removing them is probably necessary in order to
improve the performance, but this is left as fu ture work. Hence, the following
obtain_AB(.F) obtains a set of a ll AB-candidates for a failure trace T , where
in_trans(^, M) is a set of input transitions of module M tha t correspond to output
transition t, M i„ is the module whose input transition causes a failure, 1 = \ f \ , U
is the i-th transition in T (i.e., #/_ 1 is the failure transition), and /i,: is the m arking
where t i fires (i.e., /io is the in it ia l marking).

obtain_AB(J7) = [J fo rce_ fire (# \# /_ i,0 ,^ /_ i,0) U
t f £\r\Jtrans(t 1 — 1 tM in)

1-2
U (U force-f ire(out_trans(#/),# j, 0,/U.j, 0))
* = 0 t'econflictft,)

Automatic Derivation of Timing Constraints by Failure Analysis 203

a + (out)

I:; ti i i tr

ts b + (out) tr,

F ig . 4. T im ing relations implied by the failure trace J-

5.2 O b ta in in g C o n s tra in ts

Once /i/i-cand ida tes are found, the next step is to construct tim in g constraints
for each /i/i-cand ida te . This is done based on the tim ing relations implied by
the given failure trace. A failure trace gives two kinds o f tim in g relations, called
causal relation and preceding relation.

I f transition u is the unique parent of transition t, i.e., the fil in g of u causes t
to become enabled, the fil in g tim e of t, denoted by T (t) , must satisfy the fo l­
lowing relation.

E ft(f) < T (t) - T (u) < L ft(f)

This is a causal relation. I f t has two or more parents u j . //•_.. • • •, the verification
algorithm chooses one parent, say up, th a t decides the firing tim e of t. Such a
parent is called a true parent. Since a true parent must fire later than the other
parents in order to actually cause its child transition , the follow ing relation is
also necessary besides the above causal relation.

T(u-i) < T (up), T(-Un) < T (u p), ■ ■ ■

These are called preceding relations. Furthermore, i f two or more transitions
t i J i , - - - are in conflict, and </,. wins the conflict, then the follow ing relation is
necessary to express th a t </,. fires earlier than any other conflicting transitions.

T(tk) < T(tk) < T(tn), ■ ■ ■

These are also preceding relations. Precisely, th is relation is necessary for all
transitions in a ready set [], which is a set of transitions th a t should be in ter­
leaved in the state.

Consider again the modules shown in Figure 3 and the failure trace J- =
«+ ; <4; <2: b + (out). The tim in g relations implied by th is failure trace
can be illustrated as shown in Figure 4. In th is figure, which is called a fa ilure
graph, a node represents a transition th a t fires or gets enabled in the failure
trace. A normal arrow from u to t, indicates the causal relation (i.e., Eft(<) <
T(i) — T (u) < L ft(f)), while a dotted arrow indicates the preceding relation (i.e.,
T (u) < T(t)).

Now, consider an /i/i-can d id a te (6 + (out). <5 , D q) to construct its tim ing
constraints for fir ing <e, certa in ly earlier than b + (out). The firs t step to obtain
the constraints is to find the common ancestor of <5 and b + (out) in the failure
graph. In th is example, it 's u + (out). This means th a t u + (out.) determines the
firing times of both <5 and b + (out), and so the constraints should be related to

204 Tomohiro Yoneda et al.

minimal delay T {y) + Eft(u) maximal delay T(y) + Lft(u)

x y ux y u

t t
t u t ut u

T(u) < T (t) ^ T (x) + Eft(t) T (t) < T(u) ^ T(.r) + Lft(f)

F ig . 5. Paths by preceding relation

the delays between a + (out) and those two events. Next, in order to guarantee
the above relation between f© and b + (out), the m axim al delay from a + (out)
to t i, plus D q must be smaller than the m in im al delay from u + (out) to b + (out).
From the causal relation of 'J-, th is is expressed as follows.

Note th a t bounds for ti are denoted by [di,Di], bounds for a + (out) are
[d0+,D 0+], and so on. In addition to the above constraint, the effect of the
preceding relation should be considered. When computing m in im al delay up
to t, suppose th a t there is a preceding relation T (u) < T(t) as shown in F ig­
ure 5(a). Due to th is constraint, i f u fires late enough, the earliest fir ing time
of t is not decided by T (x) + E ft(t), bu t decided by T (y) + Eft('u). This means
th a t the path shown by the dotted arrow in the figure should also be considered
for the m in im al delay path. Since it is d ifficu lt to check i f u certa in ly fires late
enough, bo th paths (i.e., x —> t and y —> u —> t) need to be considered. S im ilarly,
for the m axim al delay computation, the dotted arrow in Figure 5(b) should be
considered. Hence, another constraint like

is also necessary.

5.3 H e u r is t ic s to S e lect C o n s tra in ts

Since the algorithms shown in the previous sections obtain constraints for con­
sidering a ll possibilities to prevent the given failure, many constraints are often
generated, Thus, i t is very im portant to select an appropriate one from them.
This subsection shows simple heuristics for th is purpose.

Let t'(d) be a value assigned to a delay d by the TLP solver for the most
recent verification run, and for an expression E = d\ + + • • •* let v (E) be
v (d i) + v(dn) + • • •. A weight of a constraint L < H is v (L) — t'(H), where L
and H are expressions. The idea is th a t the weight of a constraint implies how
much effort is necessary to satisfy the constraint based on the current delay
assignment. For example, for the current delay assignment such as v (d i) = 10,
t<(do) = 50, and v(D :i) = 00, i t may be easier to satisfy a constraint £ > 3 < do
rather than to satisfy D :} < d \, because do should be increased by more than 10
for the former, while 1Z3 should be increased by more than 50 for the la tte r. This

Automatic Derivation of Timing Constraints by Failure Analysis '205

is represented by the weights 10 and 50, respectively. Note th a t a constraint w ith
negative weight is illegal, because such a constraint is supposed to be already
satisfied under the current delay assignment, and it cannot prevent the given
failure.

I f a constraint th a t is too strong is selected, an inconsistency may be detected
after several verification runs, and backtracking occurs. On the other hand, even
i f a constraint th a t is too weak is selected, a stronger constraint can be added
later to obtain a suitable constraint set. Hence, our heuristics select a constraint
w ith the smallest nonnegative weight.. For the example shown in Section 4, the
weight, of constraint (2) is 55, and th a t of (3) is 10. Hence, i f th is heuristic is
used, case (b) is selected firs t, and no backtracking occurs.

5 .4 O v e ra ll P ro c e d u re

The whole procedure th a t repeats the verification runs and adds new constraints
is shown in Figure 6 . This procedure takes two inputs, M and conse t. M is
a set. o f tim e Petri nets representing the c ircu it and its specification. When
the procedure is called for the firs t time, the in itia l constraints for the c ircu it
delay bounds like (1) in Section 4 is set. to co rise t. Th is procedure first, calls
an ILP solvei" (line 3). Currently, we use a public domain ILP solver called
lp_solve (ver 3.1a, f tp : / / f tp . ics.e le.tue.nl/pub/lp_solve/). An IL P solvei" computes
an optim al integer assignment, to variables for m axim izing or m in im izing an
objective function under a given set. of constraints. For delays d i.D i.d n , Dn, ■ ■ ■
where dk is a lower bound of the delay and D i is an upper bound, our a lgorithm
uses the follow ing objective function / and tries to maximize it.

/ = (Di — 2ch) + (D, - 2d2) + ■■■

From our experience, the most, suitable solutions such th a t the difference between
lower bounds and upper" bounds are large and th a t lower" bounds are fa irly small
are obtained by th is objective function, stat in line 3 indicates “ infeasible” , i f the
constraint set. is inconsistent.. In th is case, the procedure returns w ith “ impossi­
ble” fo r backtracking (line 4). Otherwise, bounds contains an optim al assignment,
to the delay bounds. In line 5, the bounds of M are modified according to th is de­
lay assignment., and M ' is obtained. This M ' is used for the verification in line 6 .
I f the verifier returns “success” , th is means th a t a set. of tim ing constraints under
which the c ircu it works as expected are obtained, and so, the procedure te rm i­
nates (line 7). Otherwise, the verifier produces a failure trace fa ilure. In line 8 ,
th is fa ilu re is analyzed as mentioned in the previous subsections, and a set. o f new
tim ing constraints are obtained. Those tim ing constraints are sorted based on
the ir weights (line 9), and each constraint con w ith a nonnegative weight, is added
to conset in th is order fo r the recursive call o f “ obt.ain_timing_constraint.s,: (line
11). I f it. returns, it. means th a t no solution is obtained under" conset U {con},
and so, the next, constraint in the new-con is tried by the foreach loop (line 1 0

and line 11). I f every constraint causes inconsistency, the procedure returns w ith
“ impossible” for backtracking (line 1 2).

By selecting a constraint w ith a nonnegative weight., it. is guaranteed tha t
the constraint certa in ly reduces the space of the delay bounds. Therefore, since
the earliest and latest, fir ing times are integer", th is procedure always terminates.

ftp://ftp.ics.ele.tue.nl/pub/lp_solve/

200 Tomohiro Yoneda et al.

1 : obtain_timing_eonstraints(Af, c o n s e t)
2: b e g in
3 : (s ta t, bounds) = TLP(con—set):
4: i f (s ta t = = infeasible) th en return(impossible);
5: M ' = modify_bounds(Af, bounds):
0 : (s ta t, fa ilu re) = verify(Af/):
7: i f (stat = = success) th en exit(success):
8 : new-con = analyze_failure(/aii«re);
9: neui-con = sort (ne«;_con):

10: fo r e a c h con. € n ew -co n
11 : i f weight (con) > 0 th en obtain J:iming_eonstraints(Af, co n -se t U {con});
12: return(impossible);
13: e n d

F ig . 6 . Overall procedure

On the other hand, when the procedure term inates w ith “ impossible’', is it
really impossible to elim inate the failure? I f so, the procedure is called complete.
Tn order to prove its completeness, it is necessary to show tha t the algorithm
to find an / 1 /i-candidate covers a ll cases to elim inate failures, and tha t the
constraints obtained are not unnecessarily s tric t. This is not yet proven formally.
The selection of objective function as well as errors in the IL P solutions certa inly
affect the performance (i.e., the number of backtrackings) and the qua lity of the
results (i.e., the w id th of the delay bounds), but we do not believe tha t the
completeness is affected by them.

6 E xperim en ta l R esu lts

Tn order to demonstrate the proposed method, the VTNAS-P verifier has been
modified so tha t it produces a set of tim ing constraints for a detected failure
trace. This program corresponds to lines 0 • • • 8 in Figure 0. Then, a Perl script
has been developed to naively implement the rest of the procedure.

Tn this section, two sets of experimental results are shown. The firs t set of ex­
periments have been done using some asynchronous benchmark circuits from [].
The second and th ird columns of Table 1 show the number of signals and the
number of gates in each c ircu it. “# tim e d states’’ shows the number of timed
states in the circuits w ith the final bounds (i.e., the circu its tha t pass verifi­
cation). The next two columns show the number of verification runs and the
number of backtracks needed to obtain the final constraint sets. The CPU times
for the overall procedure are shown in the column “ C PU ’'(a ll CPU times are
shown in seconds). The column “CPU-[]’’ is quoted from [], where the experi­
ments were done on a 450MHz 1GB U ltra SPARC60 machine. According to the
authors of tha t paper, the data comes from a proof-of-concept prototype that
is not yet optim ized for run-tim e and thus does not incorporate many of the
known speed-up techniques and optim izations for untim ed analysis. Tn addition,
the m a jo rity of the the run-tim e is taken up in the process for optim izing con­
s tra in t sets tha t can be made much more efficient. Our experiments have been
performed on a Pentium TT 333MHz, 128MB L inux machine, and as mentioned,

Automatic Derivation of Timing Constraints by Failure Analysis 207

T ab le 1. Experim ental results (1)

name ^signals Agates #tim ed states ^verify ^backtracks CPU CPU-[]
alloc-outbound 15 11 85 4 0 1.36 13.08
m p- for ward- pk t 13 1 0 57 3 0 0.93 0.89
dff 8 6 67 6 0 1.48 27.17
sbuf-send-pkt‘2 17 13 113 7 0 2.69 69.97
converta 14 1 2 98 7 0 2.36 113.12
ram-read-sbuf 2 2 16 161 7 0 3.08 127.98

T ab le 2. Experim ental results (2)

name ^signals #gates #tim ed states #verify ^backtracks CPU CPU (last)
gasp4 27 32 817 9 0 2.07 0 .1 1

gasp8 51 64 65147 1 0 0 752.17 717.77
square9 82 81 3017 11 2 21.26 2.04

our current im plem entation is also very naive. Thus, we consider th a t these data
demonstrate th a t the performance o f our method based on tim e analysis is at
least comparable to those o f the ir method based on untimed analysis.

I f the sorting by the constraints' weights (line 9 o f Figure C) is turned off,
10 verification runs and 5 backtrackings are needed for the “ a lloooutbound”
c ircu it. This shows the effectiveness o f the heuristics shown in Section 5.3.

The second set o f experiments 3 use several GasP circuits shown in []
and [11]. These circuits have fa irly large state spaces, but our method can handle
them as shown in Table 2. A lm ost a ll CPU times are spent for the fina l verifi­
cation of the correct circuits as shown in the last column (CPU (last)), and the
process to obta in the tim ing constraint sets is performed w ith in a rather short
tim e. These experiments have been performed on a Pentium I I I 1GHz, 2MB
L inux machine. In these experiments, the CPU times for ILP is negligible com­
pared w ith those for state space enumeration. Thus, from a performance point
o f view, using IL P instead of LP is not too costly.

7 C onclusion

This paper describes a new method for the derivation of tim ing constraints
th a t guarantee the correctness o f tim ed c ircu it implementations. This approach
uses an autom atic technique in which a failure trace is analyzed to find pairs
o f events and obta in associated new tim ing constraints th a t can elim inate the
failure trace. This method has been automated around the V IN A S-P tool, and
our in it ia l verification results are very promising.

In the future, we plan to develop better heuristics to avoid generating useless
AB-candidates. We also plan to perform a form al analysis to show th a t our
method is complete in th a t when no constraints can be found, no solution can
exist.

3 The source files and results of these experiments can be downloaded from
h ttp :/ /y o n e d a -w w w .c s .t i te c h .a c .jp /~ y o n e d a /tc s -d a ta /d a ta .ta r .g z .

http://yoneda-www.cs.titech.ac.jp/~yoneda/tcs-data/data.tar.gz

208 Tomohiro Yoneda et al.

A cknow ledgem ent

The authors would like to thank Peter Beerel and Hoshik K im for helping us
to understand the ir method and giving the ir latest experimental results, and to
thank B ill Coates and Tan Jones for helpful comments to model GasP circuits.

R eferences

1. Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and Sys­
tems, pages 46 53. IEEE Computer Society Press, March 2001. 195, 207

2. http://yoneda-www.cs.titeeh.ae.jp/~yoneda/pub.htm]. 196
3. Tomohiro Yoneda and Hiroshi Ryu. Timed trace theoretic verification using partial

order reduction. In Proc. of Fifth International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 108 1 2 1 , 1999. 196, 198, 200, 203

4. Radu Neguleseu and Ad I Veter-. Verification of speed-dependences in single-rail
handshake circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 159 170, 1998. 196, 197

5. Hoshik Kim. Relative timing based verification of timed circuits and systems. In
Proc. International Workshop on Logic Synthesis, June 1999. 197

6 . Hoshik Kim, Peter A. Beerel, and Ken Stevens. Relative timing based verification
of timed circuits and systems. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 115 124, 2002. 197, 206,
207

7. Marco A. Pena, Jordi Cortadella, Alex Kondratyev, and Enrie Pastor. Formal
verification of safety properties in timed circuits. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 2 11. IEEE
Computer Society Press, April 2000. 197

8 . Rajeev Alur and David Dill. Automata for modeling real-time systems. LNCS 600
Real-time: Theory in Practice, pages 45 73, 1992. 197

9. Marius Rozga, Oded Maler, and Stavros Tripakis. Efficient Verification of Timed
Automata Using Dense and Discrete Time Semantics. In Proc. of 10th 1F1P
WGt 0.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, LNCS 1703, pages 125 141, 1999. 197

10. Marius Minea. Partial order reduction fo r verification of timed systems. PhD
thesis, Carnegie Mellon University, 1999. 197

11. Jo Ebergen. Squaring the FIFO in GasP. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 194 205. IEEE
Computer Society Press, March 2001. 207

http://yoneda-www.cs.titeeh.ae.jp/~yoneda/pub.htm

