
Combining In-situ and In-transit Processing to
Enable Extreme-Scale Scientific Analysis

Janine C. Bennett∗, Hasan Abbasi†, Peer-Timo Bremer‡, Ray Grout§, Attila Gyulassy¶,
Tong Jin‖, Scott Klasky†, Hemanth Kolla∗, Manish Parashar‖, Valerio Pascucci¶,

Philippe Pebay∗∗, David Thompson∗∗, Hongfeng Yu∗, Fan Zhang‖, and Jacqueline Chen∗
∗Sandia National Laboratories, †Oakridge National Laboratory, ‡Lawrence Livermore National Laboratory

§National Renewable Energy Laboratory, ¶University of Utah, ‖Rutgers University, ∗∗Kitware

Abstract—With the onset of extreme-scale computing, I/O
constraints make it increasingly difficult for scientists to save
a sufficient amount of raw simulation data to persistent storage.
One potential solution is to change the data analysis pipeline from
a post-process centric to a concurrent approach based on either
in-situ or in-transit processing. In this context computations are
considered in-situ if they utilize the primary compute resources,
while in-transit processing refers to offloading computations to
a set of secondary resources using asynchronous data transfers.
In this paper we explore the design and implementation of three
common analysis techniques typically performed on large-scale
scientific simulations: topological analysis, descriptive statistics,
and visualization. We summarize algorithmic developments, de-
scribe a resource scheduling system to coordinate the execution of
various analysis workflows, and discuss our implementation using
the DataSpaces and ADIOS frameworks that support efficient
data movement between in-situ and in-transit computations. We
demonstrate the efficiency of our lightweight, flexible framework
by deploying it on the Jaguar XK6 to analyze data generated
by S3D, a massively parallel turbulent combustion code. Our
framework allows scientists dealing with the data deluge at ex-
treme scale to perform analyses at increased temporal resolutions,
mitigate I/O costs, and significantly improve the time to insight.

I. INTRODUCTION

While the steady increase in available computing resources
enables ever more detailed and sophisticated simulations, I/O
constraints are beginning to impede their scientific impact.
Even though the time scales resolved by modern simulations
continue to decrease, the length between time steps saved to
disk typically increases. For example, turbulent combustion
direct numerical simulations (DNS) currently resolve inter-
mittent phenomena that occur on the order of 10 simulation
timesteps (e.g., the creation of ignition kernels). However, in
order to maintain I/O overheads at a reasonable level, typically
only every 400th timestep is saved to persistent storage for
post-processing and, as a result, the data pertaining to these
intermittent phenomena is lost. Figure 1 illustrates such subtle
vortical structures identified in a large and complex flow field
of turbulent combustion. This problem is widely predicted to
become even more pressing on future architectures, motivating
a fundamental shift away from a post-process centric data
analysis paradigm.

One promising direction is to move towards a concurrent
analysis framework in which raw simulation data is processed
as it is computed, decoupling the analysis from file I/O. The

Fig. 1: Top: A small vortical structure in a turbulent flow
field is highlighted in the red box. Bottom: The highlighted
structure is tracked over time (left 5 images). The right-most
image shows the overlap between the 1st and 5th images.
Such connectivity indicators are lost with conventional post-
processing when the temporal length-scale of features is
shorter than the frequency at which data is written to disk.

two most commonly considered variants are in-situ and in-
transit processing. Both are based on the idea of performing
analyses as the simulation is running, storing only the results,
which are usually several orders of magnitude smaller than
the original, and thus mitigating the effects of limited disk
bandwidth or capacity. Their difference lies in how and where
the computation is performed. In-situ analysis typically shares
the primary simulation compute resources. In contrast, when
analyses are performed in-transit, some or all of the data is
transferred to different processors, either on the same machine
or on different computing resources all together.

Both of these approaches have inherent advantages and dis-
advantages. In principle, in-transit analysis minimally impacts
the scientific simulation. By using asynchronous data transfers
to offload computations to secondary resources, the simulation
can resume operation much more quickly than if it were to wait
for a set of in-situ analyses to complete. However, in practice,
transferring even a subset of the raw data over the network
may become prohibitive, and furthermore, the memory and/or

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

computing capabilities of the secondary resources can quickly
be surpassed. In-situ analyses are not faced with the same
resource limitations because the entirety of the simulation data
is locally available. However, scientists will typically tolerate
only a minimal impact on simulation performance, which
places significant restrictions on the analysis. First, simulations
are often memory bound and thus all analyses must operate
within a very limited amount of scratch space. Second, the
analysis is usually allotted only a short time window to
execute. The latter restriction is particularly challenging as
many data analysis algorithms are global in nature and few
are capable of scaling satisfactorily.

To address these challenges, this paper proposes a hybrid
approach based on decomposing analysis algorithms into two
stages: a highly efficient and massively parallel in-situ stage,
and a small-scale parallel or serial in-transit stage connected
via a transparent data staging framework. The key insight is
that many analysis algorithms can be formulated to perform
various amounts of filtering and aggregation, resulting in a set
of intermediate data that is often orders of magnitude smaller
than the raw simulation output. Asynchronously transferring
these partial results, we are able to both minimize simulation
impact and reduce in-transit data transfer costs. We demon-
strate our framework using three common post-processing
tasks: visualization, descriptive statistical summaries, and a so-
phisticated topological analysis. All three approaches perform
an entirely local set of in-situ computations and transfer their
intermediate results asynchronously to a staging area where
computations are completed in-transit. The staging frame-
work automatically pipelines in-transit computations using
different processes for successive time steps via a pull-based
scheduling model to manage execution heterogeneity. This
almost entirely decouples the time necessary to complete the
analysis of a time step from the time required to advance the
simulation. In particular, we demonstrate how our framework
enables analysis and visualization of a large-scale combustion
simulation at temporal frequencies infeasible for traditional
post-processing approaches, while minimizing impact on the
primary simulation. Our contributions in detail are:

• A new formulation of three common analysis approaches
into a massively parallel in-situ and a small-scale or serial
in-transit stage;

• A flexible data staging and coordination framework to
transparently transfer intermediate data from the primary
to a set of secondary computing resources;

• A temporally multiplexed approach to decouple the per-
formance of the analysis from that of the simulation; and

• A case study demonstrating a wide range of analyses
applied to a large-scale turbulent combustion simulation
at unprecedented temporal frequencies.

Overall, our framework represents a crucial first step towards
a practical approach for the concurrent analysis of massively
parallel simulations. Our approach is flexible, extensible to a
wide range of analysis algorithms, applicable to virtually all
high performance computing environments, and promises to
significantly improve the time to insight for modern scientific

simulations.

II. RELATED WORK

In-situ and In-transit processing: The increasing per-
formance gap between compute and I/O capabilities has
motivated recent developments in both in-situ and in-transit
data processing paradigms. Largely data-parallel operations,
including visualization [1]–[5], and statistical compression and
queries [6], have been directly integrated into simulation rou-
tines, enabling them to operate on in-memory simulation data.
Another approach, used by FP [7] and CoDS [8], performs in-
situ data operations on-chip using separate dedicated processor
cores on multi/many-core nodes.

The use of a data staging area, i.e., a set of additional com-
pute nodes allocated by users when launching parallel simula-
tions, has been investigated in projects such as DataStager [9],
PreDatA [10], JITStaging [11], DataSpaces [12]/ActiveS-
paces [13], and Glean [14]. Most of these existing data
staging solutions primarily focus on fast and asynchronous
data movement off simulation nodes to lessen the impact of
expensive I/O operations. They typically support limited data
operations within the staging area, such as pre-processing,
and transformations, often resulting in under-utilization of the
staging nodes’ compute power. In contrast, we present a hybrid
in-situ/in-transit processing framework in which a multi-stage
pipeline supporting various simultaneous analyses fully uti-
lizes both the data buffering and computation capabilities of
staging nodes.

Analytics: Visualization is a largely data-parallel operation
that has been the focus of many of the existing in-situ analytics
efforts. Among the earlier work are several parallel run-time
visualizations whose problem and system scales were fairly
small [15]–[17]. One of the primary advantages of simulation-
time visualization is the ability it grants scientists to visually
monitor their simulation while it is running. For example,
SCIRun [18] provides a computational steering environment
that supports run-time simulation tracking. Tu et al. [1] were
the first to demonstrate how to effectively monitor a terascale
earthquake simulation running on thousands of processors of
a supercomputer. Over a wide-area network, they were able to
interactively change visualization parameters used to visually
monitor simulation runs [2]. Yu et al. [3] demonstrate in-situ
visualization of particle and scalar field data from a large-scale
combustion simulation, creating a scalable solution in which
in-situ visualization only accounts for a small fraction of over-
all simulation time. Recent efforts also allow for the coupling
of simulation codes with popular visualization tools, VisIt [4]
and ParaView [5]. Both works aim to reduce integration efforts
required by the user and minimize performance impact to the
simulation.

Descriptive statistics are a common tool used by scientists
to provide succinct summaries of their data. The R [19]
software package contains a subset of algorithms which have
been fully parallelized [20]. The work of [6] provides a
framework for performing statistical queries on massive data.
This paper describes the in-situ and in-transit deployment of

scalable parallel statistics algorithms [21]–[23], in the VTK
library [24], whose use had previously been reported for post-
processing purposes.

Topology-based techniques have proven useful in the anal-
ysis of a wide variety of simulation data due to their efficient
representation of the feature space of a scalar function [25]–
[30]. Reeb graphs [31] and their variants, contour trees and
merge trees [32], encode the level set behavior of a function,
while Morse- and Morse-Smale complexes [33]–[35] represent
gradient flow information. Both sets of approaches provide
multi-scale, condensed representations of relevant features.
However, their construction is inherently not data-parallel and
existing algorithms do not scale such that they can be deployed
entirely in-situ. Techniques to compute topological structures
for large-scale data fall into two categories: 1) streaming out-
of-core approaches, such as for of Reeb-graphs [36] and merge
trees [37], and 2) divide-and-conquer parallel approaches, such
as for contour trees [38] and Morse-Smale complexes [39],
[40] that rely on k-nary merging of regions of the domain.

III. HYBRID IN-SITU/IN-TRANSIT ANALYTICS

Central to our framework is the notion of decomposing
analysis algorithms into separate in-situ and in-transit stages.
Ideally, the first in-situ stage should be entirely data-parallel,
using only data already available on the local compute nodes.
Furthermore, in-situ computations should use a limited amount
of memory, execute sufficiently fast relative to the perfor-
mance of the simulation itself, and most importantly should
significantly reduce the data sent to the in-transit stage. This
second stage must be able to execute solely using the data
transferred from the first stage and must operate within the
memory and processing constraints of available secondary
compute resources. In practice, the fastest sustainable analysis
frequency is limited by memory and processing constraints
on the secondary system. This hybrid formulation naturally
optimizes the use of system resources, and provides scientists
a mechanism for elaborate prioritization to ensure accomplish-
ment of time-critical tasks.

Fortunately, a large class of analysis and visualization
algorithms can be rewritten according to these guidelines.
In particular, there has been an increased focus on online,
streaming algorithms [21], [41], [42] which naturally – and
in some cases unaltered – can be reframed to satisfy this
model. The following section provides a description of three
commonly used post-processing algorithms and discusses how
they have been adapted to our framework. These range from
highly data-parallel descriptive statistics and visualization, to
an advanced topological feature extraction technique with
complex, global communication requirements.

Visualization: In this paper we compare the behavior of two
visualization algorithms. The first of these is an entirely in-
situ volume rendering approach, whose design is similar to our
previous work [3], that renders full-resolution data on shared
compute nodes with the simulation. This parallel rendering
approach is very efficient and generates high-quality images
that visually convey the results of large-scale simulations in

great detail. However, we observe that for monitoring and
verification purposes, lower-resolution images are sufficient.
Such images can be generated using secondary compute
resources, minimizing direct impact on the simulation. Thus,
the second algorithm is a hybrid in-situ/in-transit approach
that first down-samples the full-resolution combustion data in-
situ using predefined or user-specified sampling rates. Then,
the down-sampled data is transferred to a staging area for
completion in-transit. A single, serial in-transit node receives
all blocks of down-sampled data and generates a look-up table
that records the upper and lower bounds of each block to
encode their spatial relationship. We use this small look-up
table to identify voxel positions during the ray casting process,
avoiding expensive visibility sorting or volume reconstruction
steps. Figure 2 compares the images resulting from these
two visualization algorithms. We note that the two algorithms
are not exclusive to each other. Multiple instances of each
visualization mode can be dynamically created in-situ and/or
in-transit on demand, enabling scientists to explore different
aspects of simulation and analysis data in linked-views.

(a) (b) (c) (d)

Fig. 2: Visualization of the temperature variable of combustion
simulation data. (a) and (c) show an overview and a zoom-
in view generated using the in-situ algorithm. (b) and (d)
show the same views generated via a hybrid algorithm that
down-samples data (at every 8th grid point) in-situ and volume
renders the down-sampled data in-transit.

Topology: As discussed in Section II, topological feature
extraction techniques have been highly successful in a broad
range of applications. In particular, merge trees, which encode
an ensemble of threshold-based segmentations, have been used
extensively in the analysis of large-scale simulations [30],
[43]–[45]. The merge tree of a function f encodes the merging
of contours – connected component of level sets – as an
isovalue is swept top to bottom through the range of f . Each
time a new contour appears, at a local maximum, a node
is created in the tree. As the isovalue is swept downward,
the contour evolves, represented as a lengthening arc in the
tree. When two separate contours merge with each other at
a saddle in the function, the associated arcs in the tree are
merged, as shown in Fig. 3. When combined with topological
simplification and filtering, the resulting merge tree encodes a
family of segmentations with many analysis uses. For example,
the regions around local maxima can be used to describe
features such as burning regions [43], extinction events [30],

Fig. 3: Merge trees represent merging in the evolution of
contours as the isovalue is lowered through the range of a
function. The color coding in this 2-dimensional example
indicates the correspondence between branches in the tree and
their associated region in the domain.

[44], or eddies in ocean currents [46].
In a distributed setting, the computation of a merge tree is

inherently not data-parallel due to complex communication
costs. However, by adapting and combining two different
existing merge tree algorithms, we have created a novel hybrid
in-situ/in-transit solution in which we compute subtrees in-situ
and then combine the subtrees into the final merge tree using
a streaming algorithm in-transit.

To compute the subtrees we adapt a low-overhead, in-core
algorithm [32] that works well in-situ but that requires a sort
operation, making it ill-suited for a global solution. Special
care must be taken to include additional boundary vertices to
guarantee that neighboring subtrees can be glued appropriately.
A detailed description is beyond the scope of this paper and
we refer the reader to [47] for a discussion of the relevant
theory. In practice, one must include the boundary components
that are the topological equivalent of simulation ghost-cells
(these include the 8 corners of the sub-domain and all maxima
restricted to boundary components).

The final tree is computed by aggregating subtrees in-transit
on a single serial process. We adapt a streaming algorithm for
unstructured data [43] that maintains a low memory footprint.
Unlike the in-situ algorithm, a global sort is not required,
however additional logic must be performed to process subtree
vertices in any order. To maintain a low memory footprint, a
subtree vertex must be processed before any subtree edge that
contains it, and is considered finalized once its last incident
edge has been processed. As subtree elements are processed
the algorithm maintains a merge tree of all elements seen thus
far, and writes those vertices and edges to disk that have been
finalized, removing them from memory.

Descriptive Statistics: Scientists have long been using
descriptive statistics, including first through fourth order mo-
ments, to provide concise summaries of trends in their data.
In [21]–[23] we describe formulas for robust, single-pass
computation of moment-based statistics, and present details
on an open source parallel statistics framework that was built
using these formulas as part of the VTK library. The statis-
tics algorithms employ a design pattern specifically targeted
for distributed-memory parallelism comprising 4 stages, see
Figure 4.

The learn stage calculates a primary statistical model from
an input data set. Derive calculates a more detailed statistical
model from a minimal model. The assess stage annotates each
observation with a number of quantities relative to a given
statistical model, and the test stage calculates test statistic(s)
for hypothesis testing purposes given a model and input data
set. From the parallelism standpoint, this partitioning reduces
learn to a special case of the map-reduce design pattern [48].
By construction, learn is the only operation which always
requires inter-process communication; for instance, in the
case of descriptive statistics, cardinality, external values, and
centered aggregates up to the fourth order must be exchanged
and updated to assemble a global model.

Observations

Learn TestAssessDerive

Model

Observations
(perhaps assessed)

Model
(perhaps updated)

Fig. 4: The 4 operations of statistical analysis and their inter-
actions with input observations and models. The learn stage
is the only stage that requires inter-process communication by
design.

In this paper we compare two methods for computing
descriptive statistics: 1) a fully in-situ approach where learn
and derive are performed on shared compute resources; and
2) a hybrid approach where learn is performed in-situ and
derive is performed in-transit. In the former, all computations
are performed in-situ and an all-to-all communication is re-
quired to guarantee a consistent model is computed across
all processors. In the latter, all partial models computed on
individual processors are communicated to a single serial in-
transit process that aggregates the final result.

IV. HYBRID IN-SITU/IN-TRANSIT DATA MOVEMENT

The hybrid in-situ/in-transit framework comprises primary
and secondary compute resources. The primary resources
execute the main simulation and in-situ computations, while
the secondary resources contain a task scheduler and a staging
area which is a set of dedicated nodes, whose cores act as
“staging buckets” where in-transit operations can be sched-
uled. In order to minimize impact on the simulation, Fig. 5
shows a messaging scheme that only requests data from the
primary resources when secondary resources are available for
processing. The task scheduler manages the scheduling and
execution of the in-transit computations and is composed of
two layers: 1) a communication and data movement layer, and
2) a scheduling and coordination layer. These two layers are
built on DART and DataSpaces respectively, which are open-
source [49], distributed with ADIOS, and available on Cray
machines that have support for Portals or uGNI API. Ports for
DART and DataSpaces to IBM BlueGene/P, InfiniBand, and
TCP also exist.

Communication and Data Movement Layer: This layer
builds on DART [50], which is an open-source asynchronous

Simulation

primary resources

In-transit
staging

area

secondary resources

Task
scheduler

In-transit
staging

area

shared data
structures

bucket
ready

task & data
descriptors

computational steering

asynchronous data transfers

data ready
In-situ

Fig. 5: An overview of the hybrid in-situ/in-transit analysis framework: Primary resources execute the main simulation and
in-situ computations. Secondary resources (on the same or on another machine) contain 1) a staging area whose cores act as
buckets for in-transit computations; and 2) a task scheduler, built on DART and DataSpaces, that manages the scheduling and
execution of the in-transit computations. In-situ computations notify the scheduler when data is ready and an in-transit data and
task descriptor is put into a scheduling queue. In-transit staging buckets that have notified the queue that they are available via
a bucket ready request are assigned tasks in a first-come first-served manner and asynchronously pull data from the specified
in-situ task.

communication and data transport substrate based on RDMA
one-sided communication. DART enables asynchronous data
extraction from parallel simulation machines, transporting data
to the staging area for further processing. It provides services
such as node registration/unregistration, data transfer, message
passing, event notification and processing. A key contribution
of this work is the implementation of the DART functionality
on the Gemini network of the Cray’s XE/XK systems.

Gemini provides the user Generic Network Interface (uGNI)
as its low-level interface. User-space communication in uGNI
is supported by a set of data transfer functions using the
Fast Memory Access (FMA) and the Block Transfer En-
gine (BTE) mechanisms. To ensure efficiency and scalability,
DART dynamically adapts which mechanism is used based
on data size. For small message sizes, DART uses the GNI
Short Message (SMSG) mechanism, which leverages FMA
and allows for direct OS-bypass achieving the lowest latencies
and highest message rates. For large data transfers, the BTE
memory operations (RDMA Get and RDMA Put) are used to
achieve better computation-communication overlap and lower
performance overhead. The completion of an FMA or BTE
transaction generates a corresponding event notification at both
the source and destination of the data transfer, allowing DART
to track the status of a transaction and schedule related data
analysis operations.

Scheduling and Coordination Layer: This layer builds
on DataSpaces [12], which is a distributed interaction and
coordination service. DataSpaces implements a scalable, se-
mantically specialized shared space abstraction that is ac-
cessible by all components and services in an application
workflow. It can be used to coordinate the execution of these
components/services as well as support dynamic and asyn-
chronous interactions among them. It also supports operations

such as flexible data querying, filtering, data redistribution,
and, building on the asynchronous, low-overhead, memory-
to-memory data transport provided by the communication
layer, it allows applications to overlap interactions and data
transfers with computation, and to reduce the I/O overheads by
offloading data operations to the staging area. In this research,
we use DataSpaces to enable end-to-end workflows between
the multiple interacting in-situ and in-transit processes. This
includes the scheduling of in-transit tasks, the coordination of
their execution, and the management of data transfers between
the in-situ and in-transit processes.

In-transit task scheduling is triggered by two events, data-
ready and bucket-ready. In-situ computations notify DataS-
paces of a data-ready event by inserting descriptors for
RDMA-enabled data blocks containing the intermediate results
of in-situ operations. A corresponding in-transit task is also
created to process the associated data blocks, and is pushed
into the DataSpaces task queue that caches the in-transit
tasks and their data descriptors. Staging area buckets notify
DataSpaces when they are available for use via a bucket-
ready event request, and then wait to be assigned tasks by
the scheduler. A free bucket list within DataSpaces is used
to keep track of all currently available staging buckets. Note
that in-transit tasks are assigned to staging buckets in a first-
come first-served manner. Such an asynchronous pull-based
scheduling mechanism can effectively and scalably address
the heterogeneity and dynamic nature of the analytics pipeline,
and manage load-balancing within the staging area.

V. RESULTS

Simulation Case Study: The hybrid in-situ/in-transit anal-
ysis approach is integrated with S3D [51], a massively parallel
turbulent combustion code. S3D performs first principles-

based direct numerical simulations of turbulent combustion
in which both turbulence and chemical kinetics associated
with burning gas-phase hydrocarbon fuels introduce spatial
and temporal scales spanning typically at least 5 decades. For
production simulations the time steps taken to advance the
solution are smaller than the smallest time scales. However,
when analyzing the data in a post-processing mode the spa-
tial fidelity is preserved while temporal fidelity is partially
compromised since analyses are performed on solution states
typically a few hundred time steps apart (see introduction).
Two broad classes of turbulent combustion problems are
simulated with S3D: statistically stationary and temporally
evolving flows. For both of these problem types, capturing
intermittent events requires analyses to be performed at a much
higher frequency, which is enabled by the hybrid in-situ/in-
transit approach.

An example of this is flame stabilization by auto-ignition
in a lifted hydrogen jet flame [52]. Ignition kernels form
intermittently at the base of a lifted flame and are advected into
the oncoming turbulent flow field and the temporal evolution
of the balance between chemical kinetic generation, advection,
and dissipation results in a stable lifted flame. Deeper insight
into the flame stabilization mechanism requires tracking the
inception, advection, and dissipation of the ignition kernels
vis-a-vis the turbulent strain at a much higher temporal fre-
quency than was hitherto done.

Experimental Results: We have tested our approach on
Jaguar, the Cray XK6 at Oak Ridge National Laboratory’s
National Center for Computational Sciences. The system has
18,688 nodes connected through a Gemini internal intercon-
nect, and each node has a single 16-core AMD 6200 series
Opteron processor. The total system memory is 600 terabytes.

In our experimental study, we deployed our framework on
a lifted Hydrogen combustion simulation of S3D with a grid
domain size of 1600× 1372× 430. We tested our framework
using two different core counts: 4896 and 9440, with each core
representing a portion of the spatial domain of size 100×49×
43 and 50×49×43, respectively. The core configurations, the
data region assignments, and the simulation and I/O times are
listed in Table I. For the present experiments data read/write
is done on a single-file-per-process basis, which achieves near
peak I/O bandwidths over a wide range of core counts. The
I/O bandwidths are limited by the number of Object Storage
Targets (OSTs) on the lustre filesystem. Since the total data
size is constant in the experiments the I/O read/write times do
not depend noticeably on the number of cores used.

In our current system, primary and secondary resources are
on a shared system and processing resources are managed
by the application developers prescribing desired analysis
frequencies. All simulation variables are double floating point
values (8 bytes) and the in-situ algorithms access simulation
variables by sharing the native simulation data structures.
While it is possible to write the in-transit data to persistent
storage for later processing, there are several advantages to
a concurrent approach, including computational steering, on-
the-fly visualization, and feature tracking.

No. of cores
4896 9440

No. of simulation/in-situ cores 16× 28× 10 = 4480 32× 28× 10 = 8960
No. of DataSpaces-service cores 160 256
No. of in-transit cores 256 224
Volume size 1600× 1372× 430 1600× 1372× 430
No. of variables 14 14
Data size (GB) 98.5 98.5
Simulation time (sec.) 16.85 8.42
I/O read time (sec.) 6.56 6.56
I/O write time (sec.) 3.28 3.28

TABLE I: This table contains core-allocations, data sizes, and
timing information for the two test scenarios: 4896 and 9440
cores. All measurements are per simulation time step.

Our framework covers the entire spectrum, from pure in-situ
to pure in-transit analysis. For an entirely data-parallel problem
the former will be optimal, while if little or no data-parallelism
exists then transferring the data becomes more attractive. The
optimal decoupling depends on the inherent scalability of
the analysis algorithm in question and the available system
resources. In general the in-situ algorithms require a fraction of
the simulation data size, and, while we did not have any issues
performing the in-situ analyses for our case study, we note that
in extreme cases, this small overhead may prevent analysis. In
this setting, one potential solution is to shift entirely to in-
transit processing, incurring increased data transfer costs.

The scalability of the in-transit stage lies in three aspects.
First, the scalability of our scheduling service is enabled by
the distributed design of DataSpaces and the hashing used to
balance the RPC messages (from in-situ or in-transit nodes)
over multiple DataSpaces servers. Second, our scheduling
multiplexes different in-transit operations (for each algorithm
and each simulation time step), by mapping them to separate
in-transit compute nodes, which are independent from each
other and operate on different data, thus increasing both
the processing parallelism and scalability. Third, in-transit
operations pull the data they need directly from the memory
of the in-situ nodes using RDMA, the scalability of which is
limited only by underlying communication fabrics. Although
in-transit computations for a given analysis and timestep are
serial, we note that this can easily be made parallel as well.

Figure 6 shows the timing breakdown for in-situ, in-transit,
and data movement for the simulation and analytics algorithms
for a run of 4,896 cores, where all measurements are for one
simulation time step. Among the three analytics tasks, we
tested fully in-situ and hybrid in-situ/in-transit variants of both
the visualization and descriptive statistics algorithms, while the
topological analysis tests were strictly employed with a hybrid
in-situ/in-transit algorithm. We can clearly see that the in-situ
visualization and the in-situ descriptive statistics only account
for a small fraction of the total simulation time. For example,
if we perform in-situ visualization at each simulation time step
for 4,896 cores, the visualization time is approximately 4.33
percent of the simulation time. Similarly, if we compute in-situ
descriptive statistics at each simulation time step, the compute
time is approximately 9.73 percent of the simulation time. In

Fig. 6: The timing breakdown for in-situ, in-transit, and data movement for the simulation and the various analytics algorithms
using 4896 cores. All measurements are per simulation time step.

practice, we usually perform in-situ processes less frequently
(for example, every 10th time step), so the in-situ processing
time can be two or three orders of magnitude less than the
overall simulation time.

Moreover, we note that the hybrid in-situ/in-transit algo-
rithms can further significantly reduce performance impact to
the simulation. For example, recall that the hybrid in-situ/in-
transit visualization algorithm first generates down-sampled
data in-situ and then leverages DataSpaces to quickly transfer
the reduced data for in-transit rendering on secondary compute
resources. In the case of 4,896 cores, the down-sampling and
data movement time for each time step is only about one
percent of the simulation time. Although the time for in-transit
rendering increases, we note that this is an asynchronous
calculation performed outside of the simulation nodes, and
thus has minimal impact on the simulation performance. With
the in-situ and in-transit decoupling, we can perform analytics
at the same timescale as simulation, while minimizing com-
putation overhead to the simulation. The quantitative timing
for different stages of analytics is reported in Table II.

In addition, the use of hybrid in-situ/in-transit algorithms
inspires us to re-examine the parallel and serial aspects of anal-
ysis algorithms that are critically important but conventionally
difficult to parallelize. As shown in Table II, we can see that

the hybrid topology algorithm can efficiently compute subtrees
directly from the simulation on 4,896 cores. The intermediate
data is only about 87 MB, which can be transferred asyn-
chronously and aggregated in-transit to compute the global
tree. In this way, scientists are able to deploy algorithms that
are not inherently data-parallel during simulation runs, making
it possible to capture and track highly intermittent, transient
phenomena.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel hybrid in-situ/in-transit analysis
framework that provides flexible data staging and coordination,
allowing for transparent data transfers of intermediate data
between primary and secondary computing resources. We have
introduced a temporally multiplexed approach to decouple
the performance of the analysis from that of the simulation,
and have reformulated three common analysis algorithms with
varying communication patterns into a massively parallel in-
situ and a small-scale or serial in-transit stage. Finally, we have
performed a case study, in which the analyses were applied to
a large-scale turbulent combustion simulation at unprecedented
temporal frequencies. Overall, our approach is extensible to a
wide range of analyses, and promises to significantly improve
the time to insight for modern scientific simulations.

in-situ time (sec.) data movement time (sec.) data movement size (MB) in-transit time (sec.)
in-situ visualization 0.73 – – –
in-situ descriptive statistics 1.64 – – –
hybrid in-situ/in-transit visualization 0.08 (down-sample) 0.092 49.19 5.06 (render)
hybrid in-situ/in-transit topology 2.72 (compute subtree) 2.06 87.02 119.81 (compute global tree)
hybrid in-situ/in-transit descriptive statistics 1.69 (learn) 0.06 13.30 0.01 (derive)

TABLE II: The timing and data movement costs for the various in-situ and hybrid in-situ/in-transit analytics algorithms using
4896 cores. All measurements are for a single simulation time step.

Nevertheless, a number of challenges and opportunities
remain. First, the performance of the analysis algorithms can
be highly data-dependent and it is likely that different in-
situ processes finish at significantly different times. While our
current system collects and buffers the in-transit data prior
to processing, a more optimal approach would be to process
in-transit data in a streaming fashion, starting as soon as
the first data arrives. This has the potential to hide much of
the in-transit computational costs and improve overall system
utilization. Furthermore, the data transfer patterns exhibited
by the analysis algorithms are significantly different from
those common to check-pointing or other traditional file I/O
operations. This presents a new challenge to optimize the
data movement layer and extend it to the unstructured, data
dependent, and highly adaptive output of data analysis tools.
We have plans to use the current system as a test bed to
experiment trade-offs between in-situ, in-transit, and post-
processing algorithms. For example, we plan to develop a
hybrid in-situ/in-transit auto-correlative statistical technique, in
addition to combining the merge tree computation presented in
this work with statistical analyses to enable the computation of
feature-based statistics such as those present in the correspond-
ing post-processing tools [30], [43]. Finally, to address more
complex application scenarios, we aim to introduce alternative
staging techniques that utilize a separate process co-hosted on
the application node that executes asynchronously with the
application.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94AL85000.

This work was performed under the auspices of the US
Department of Energy (DOE) by the Lawrence Livermore Na-
tional Laboratory under Contract Nos. DE-AC52- 07NA27344,
LLNL-JRNL-412904L.

REFERENCES

[1] T. Tu, H. Yu, L. Ramirez-Guzmanz, J. Bielak, O. Ghattas, K.-L. Ma, and
D. R. O’Hallaron, “From Mesh Generation to Scientific Visualization:
An End-to-End Approach to Parallel Supercomputing,” in Proceedings
of ACM/IEEE Supercomputing Conference, 2006.

[2] H. Yu, T. Tu, J. Bielak, O. Ghattas, J. C. López, K.-L. Ma, D. R.
O’Hallaron, L. Ramirez-Guzmanz, N. Stone, R. Taborda-Rios, and J. Ur-
banic, “Remote Runtime Steering of Integrated Terascale Simulation
and Visualization,” in ACM/IEEE Supercomputing Conference HPC
Analytics Challenge, 2006.

[3] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In Situ Visualization
for Large-Scale Combustion Simulations,” IEEE Computer Graphics
and Applications, vol. 30, no. 3, pp. 45–57, 2010.

[4] J.-M. F. Brad Whitlock and J. S. Meredith, “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System,” in Proc. of
11th Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV’11), April 2011.

[5] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Gevecik,
M. Rasquin, and K. Jansen, “The paraview coprocessing library: A
scalable, general purpose in situ visualization library,” in Proc. of IEEE
Symposium on Large Data Analysis and Visualization (LDAV), October
2011, pp. 89 –96.

[6] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-
H. Ku, S. Ethier, J. Chen, C. Chang, S. Klasky, R. Latham, R. Ross,
and N. Samatova, “Isabela-qa: Query-driven analytics with isabela-
compressed extreme-scale scientific data,” in Proc. of the ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), November 2011, pp. 1 –11.

[7] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,
C. Engelmann, and G. Shipman, “Functional partitioning to optimize
end-to-end performance on many-core architectures,” in Proc. of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, November 2010, pp. 1–12.

[8] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific workflow
on multi-core platform,” in Proc. 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’12), 2012.

[9] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,” in
Proc. of 18th International Symposium on High Performance Distributed
Computing (HPDC’09), 2009.

[10] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky, Q. Liu,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
preparatory data analytics on peta-scale machines,” in Proc. of 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’10), April 2010.

[11] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky, “Just
In Time: Adding Value to The IO Pipelines of High Performance
Applications with JITStaging,” in Proc. of 20th International Symposium
on High Performance Distributed Computing (HPDC’11), June 2011.

[12] C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows,” in Proc.
of 19th International Symposium on High Performance and Distributed
Computing (HPDC’10), June 2010.

[13] C. Docan, M. Parashar, J. Cummings, and S. Klasky, “Moving the
Code to the Data - Dynamic Code Deployment Using ActiveSpaces,”
in Proc. of 25th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’11), May 2011.

[14] V. Vishwanath, M. Hereld, and M. Papka, “Toward simulation-time data
analysis and i/o acceleration on leadership-class systems,” in Proc. of
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
October 2011.

[15] A. Globus, “A Software Model for Visualization of Time Dependent
3-D Computational Fluid Dynamics Results,” NAS Applied Research,
NASA Ames Research Center, Tech. Rep. RNR 92-031, 1992.

[16] K.-L. Ma, “Runtime Volume Visualization of Parallel CFD,” in Proceed-
ings of Parallel CFD Conference, 1995, pp. 307–314.

[17] J. Rowlan, E. Lent, N. Gokhale, and S. Bradshaw, “A Distributed,
Parallel, Interactive Volume Rendering Package,” in Proceedings of
IEEE Visualization Conference, 1994, pp. 21–30.

[18] S. G. Parker and C. R. Johnson, “SCIRun: A Scientific Programming

Environment for Computational Steering,” in Proceedings of ACM/IEEE
Supercomputing Conference, 1995.

[19] “The R project for statistical computing,” http://www.r-project.org/.
[20] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney,

and U. Mansmann, “State-of-the-art in parallel computing with R,”
Department of Statistics, University of Munich, Tech. Rep. 47, 2009.

[21] J. Bennett, P. Pébay, D. Roe, and D. Thompson, “Numerically stable,
single-pass, parallel statistics algorithms,” in Proc. 2009 IEEE Interna-
tional Conference on Cluster Computing, New Orleans, LA, Aug. 2009.

[22] P. P. Pébay, D. C. Thompson, and J. Bennett, “Computing
contingency statistics in parallel: Design trade-offs and limiting
cases,” in CLUSTER. IEEE, 2010, pp. 156–165. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5599992

[23] P. P. Pébay, D. C. Thompson, J. Bennett, and A. Mascarenhas,
“Design and performance of a scalable, parallel statistics toolkit,” in
IPDPS Workshops. IEEE, 2011, pp. 1475–1484. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008655

[24] “VTK Doxygen documentation,” http://www.vtk.org/doc/nightly/html.
[25] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pas-

cucci, and J. H. Chen, “Topological feature extraction for comparison
of terascale combustion simulation data,” in Topological Methods in
Data Analysis and Visualization, ser. Mathematics and Visualization,
V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, Eds. Springer
Berlin Heidelberg, 2011, pp. 229–240.

[26] A. Mascarenhas and J. Snoeyink, “Isocontour based visualization of
time-varying scalar fields,” in Mathematical Foundations of Scientific
Visualization, Computer Graphics, and Massive Data Exploration, ser.
Mathematics and Visualization. Springer Berlin Heidelberg, 2009, pp.
41–68.

[27] P.-T. Bremer, G. H. Weber, V. Pascucci, M. S. Day, and J. B. Bell,
“Analyzing and tracking burning structures in lean premixed hydrogen
flames.” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 2, pp. 248–260, 2010.

[28] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1053–1060, Sep. 2006.

[29] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann, “Topologically clean distance fields,”
IEEE Transactions on Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1432–1439, 2007.

[30] J. Bennett, V. Krishnamoorthy, S. Liu, R. Grout, E. R. Hawkes, J. H.
Chen, J. Shepherd, V. Pascucci, and P.-T. Bremer, “Feature-based
statistical analysis of combustion simulation data,” IEEE Trans. Vis.
Comp. Graph., vol. 17, no. 12, pp. 1822–1831, 2011.

[31] G. Reeb, “Sur les points singuliers d’une forme de pfaff completement
intergrable ou d’une fonction numerique [on the singular points of a
complete integral pfaff form or of a numerical function],” Comptes
Rendus Acad.Science Paris, vol. 222, pp. 847–849, 1946.

[32] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all
dimensions,” in Proc. of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM. New York, NY, USA: ACM Press, Jan.
2000, pp. 918–926.

[33] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds,” Discrete Computa-
tional Geometry, vol. 30, pp. 173–192, 2003.

[34] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “Topologi-
cal hierarchy for functions on triangulated surfaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 10, pp. 385–396, 2004.

[35] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann,
“A topological approach to simplification of three-dimensional scalar
functions,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 4, pp. 474–484, 2006.

[36] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust
on-line computation of Reeb graphs: simplicity and speed,” ACM Trans.
Graph., vol. 26, no. 3, Jul. 2007.

[37] P.-T. Bremer, G. H. Weber, J. Tierny, V. Pascucci, M. S. Day, and
J. B. Bell, “Interactive exploration and analysis of large-scale simu-
lations using topology-based data segmentation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, pp. 1307–1324, 2011.

[38] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,” Algorithmica, vol. 38, pp. 249–268, 2003.

[39] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A practical
approach to Morse-Smale complex computation: scalability and gen-
erality,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, no. 6, pp. 1619–1626, 2008.

[40] A. Gyulassy, T. Peterka, R. Ross, and V. Pascucci, “The parallel
computation of Morse-Smale complexes,” IEEE International Parallel
and Distributed Processing Symposium, to appear, 2012.

[41] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell, “Analyzing
and tracking burning structures in lean premixed hydrogen flames,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 2,
pp. 248–260, 2010.

[42] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust
on-line computation of Reeb graphs: Simplicity and speed,” ACM Trans-
actions on Graphics, vol. 26, no. 3, pp. 58.1–58.9, 2007, proceedings
of SIGGRAPH 2007.

[43] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell,
“Interactive exploration and analysis of large scale simulations using
topology-based data segmentation,” IEEE Trans. on Visualization and
Computer Graphics, vol. 17, no. 99, 2010.

[44] A. Mascarenhas, R. W. Grout, P.-T. Bremer, E. R. Hawkes, V. Pascucci,
and J. Chen, Topological feature extraction for comparison of teras-
cale combustion simulation data, ser. Mathematics and Visualization.
Springer, 2011, pp. 229–240.

[45] P.-T. Bremer, E. Brings, M. Duchaineau, A. Gyulassy, D. Laney,
A. Mascarenhas, and V. Pascucci, “Topological feature extraction and
tracking,” Proceedings of SciDAC 2007 - Scientific Discovery Through
Advanced Computing, vol. 78, pp. 012 032 (5pp), Journal of Physics
Conference Series, 2007.

[46] S. Williams, M. Petersen, P.-T. Bremer, M. Hecht, V. Pascucci, J. Ahrens,
M. Hlawitschka, and B. Hamann, “Adaptive extraction and quantification
of atmospheric and oceanic vortices,” IEEE Trans. Vis. Comp. Graph.,
vol. 17, no. 12, pp. 2088–2095, 2011.

[47] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,” Algorithmica, vol. 38, no. 1, pp. 249–268, Oct.
2003.

[48] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, Dec. 2004.

[49] “Dataspaces project,” http://www.dataspaces.org/.
[50] C. Docan, M. Parashar, and S. Klasky, “Dart: a substrate for high speed

asynchronous data io,” in Proc. of 17th International Symposium on
High Performance Distributed Computing (HPDC’08), 2008.

[51] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical
simulations of turbulent combustion using s3d,” Computational Science
and Discovery, vol. 2, pp. 1–31, 2009.

[52] C. S. Yoo, R. Sankaran, and J. H. Chen, “Three-dimensional direct
numerical simulation of a turbulent lifted hydrogen jet flame in heated
coflow: Flame stabilization and structure,” Journal of Fluid Mechanics,
vol. 640, pp. 453–481, 2009.

