
HOP: A Process Model for
Synchronous Hardware Systems

Ganesh C. Gopalakrishnan,
Richard M. Fujimoto,

Tech. Report. UUCS-88-003

HOP: A Process Model for Synchronous Hardware Systems
by

Ganesh C. Gopalakrishnan and Richard M. Fujimoto,
Dept, of Computer Science, University of Utah,

Salt Lake City, Utah 84112, U.S.A

Phone: (801) 581-3568/8224
Email: ganeshQcs. Utah. edu

UU/CS/TR-88/003

Contents
1 An Introduction to HOP 1

1.1 Features of HOP, in a Nutshell.. 1
1.2 What is Attractive About HOP? .. 5
1.3 Comparison With Related Research... 11

1.3.1 C i r c a l ... 11
1.3.2 Next-state and Output Function Based Approaches............................. 11
1.3.3 H O L ... 13
1.3.4 S B L ... 13

1.4 Organization of the P a p e r ... 14

2 Terminology and Operational Semantics 14
2.1 Term inology... 14
2.2 An Operational Semantics for H O P ... 15

2.2.1 Actions, and Action Product... 15
2.2.2 Definition of the Transition Relation —* .. 16

2.3 An Assessment of the Merits of the HOP M o d e l.. 20
2.3.1 From Intuitions to Operational Semantics ... 20
2.3.2 From An Operational Semantics to a Denotational Semantics............. 20
2.3.3 Identification of Equational L a w s ... 21
2.3.4 Handling Examples That Go Beyond the Limits of the Model 21
2.3.5 Relationship to Automata-theoretic Models .. 21
2.3.6 Supportive Exam ples.. 22

3 Specifications of a Stack 22
3.1 Absproc of an Unbounded Stack... 22
3.2 Realproc of the Unbounded S ta ck .. 24
3.3 Pipelining the Stack ... 26
3.4 Questions to be Addressed... 27

i

4 Verification Criteria, and Illustration Thereof 27
4.1 The Non-pipelined Stack R e a liz a t io n ... 27
4.2 Our Verification T ech n iqu e ... 29
4.3 An Outline o f the Verification o f S T K P A R ... 30
4.4 Verification o f P S T K P A R ... 31

5 The Basic PARCOMP, and PARCOMP-DC 32
5.1 Steps in the Basic P A R C O M P A lg orith m .. 33

5.1.1 Illustration o f PARCO M P on the push Operation o f stkreal 34
5.1.2 Heuristics Employed by P A R C O M P ... 35
5.1.3 Applications o f P A R C O M P ... 35

5.2 A D ivide and Conquer Version o f P A R C O M P .. 36

6 Concluding Remarks 38
6.1 A Design M ethodology Based on H O P .. 38
6.2 Ongoing and Future W o r k ... 38

A An LRU Matrix 40

B Results To Date 43

C A Specification of PARCOMP 44

List of Figures
1 Informal View o f HOP Processes ... 2
2 A m aster/slave Flip-Flop, F F .. 5
3 Excerpts from the Process Diagram o f F F ... 6
4 T he Com plete A bsproc Specification o f F F ... 7
5 H OP Provides a Com positional M o d e l .. 8
6 Illustrating Value Com m unication in H O P ... 9
7 A n Undesirable Process Diagram for F F .. 12
8 Definition o f A ction P roduct in H O P .. 15
9 Either a Shift Register or a Ring Oscillator! ... 21
10 Schematic o f the absproc o f a S t a c k ... 22
11 Requirements Specification for a S t a c k .. 23
12 Schematic o f the Realproc o f a S t a c k .. 24
13 Specifications o f the Submodules o f the s ta ck ... 25
14 The Specification o f a Pipelined Stack Controller .. 26
15 stkabs, S T K P A R and P S T K P A R ... 28
16 Illustrating Marching in U n is o n .. 35
17 Divide and Conquer P A R C O M P .. 36
18 An LRU M a tr ix .. 40

ii

1 An Introduction to HOP
A new Hardware Specification Language (HSL) called HOP is presented. HOP stands for
Hardware viewed as Objects and Processes. It can be used for specifying the structure,
behavior, and timing of digital systems.

We designed HOP for several reasons. It integrates well-tested ideas from our past work
[GSS87,Gop86,Gop87] that was based on an abstract data type [GHM78] view of hardware
systems into a new, simple, and deterministic process model that we have invented. Our
process model is inspired by the works of [Mil82], [Mil83], and [Hoa85].

Secondly we believe that not only should an HSL be founded in mathematical principles,
but it also ought to be simple, intuitive to use, and address practical issues, especially if
practicing VLSI designers are to be encouraged to use them.

HOP was designed to meet the following design objectives:

1. Be capable of modeling large architectures as well as simple MOS digital circuits;

2. support the writing of a priori as well as a posteriori specifications;

3. possess a simple and rigorous semantics;

4. support static analysis techniques and design verification;

5. match digital designer’s intuitions closely;

6. be demonstrably efficient in handling many important practical issues;

7. act as a common repository of related information falling in various domains (functional
behavior, timing, geometry, and user documentation to name a few) thereby helping
in designer and tool integration;

8. support design automation as well as manual design.

In this paper we show how HOP meets objectives 2, 3, 4, 5, and 6. Objectives 1 and 7 will be
addressed in the process of specifying a large Application Specific IC (ASIC) called the “Roll
Back Chip” [FTG88a,Gop] that we are currently engaged in. Objective 8 will be addressed
in our ongoing work on implementing a VLSI design system centered around HOP.

1.1 Features of HOP, in a Nutshell
Let us take an informal approach similar to [Mil80, Page 10] to intuitively understand HOP.
The externally observable features of every hardware module modeled in HOP consist of a set
of “ light actuated sensors” (input events), “a set of lamps” (output events), a set of “output
conduits” that bring out data items, and a set of “input conduits” that can consume data
items. In addition, each module maintains “a notebook” (the internal datapath state) that
maintains a complete record of all its input events and input data port values in as concise a
form as possible. The notebook (internal datapath state) is visible to human observers but
not to other modules. There can be modules of an extreme variety too; f o r instance those
that have only sensors and lamps and no internal notebooks (e.g. controllrrs). The values

1

o f data path states and the values shipped through conduits belong to one o f the data types
supported by HOP, such as queues, trees, bytes, or a user-defined data type.

A human observer may observe the following behavior o f every module: its current
output lamp statusses and output conduit values are entirely predictable from its current
input sensor statusses, input conduit values and notebook contents. Further, its notebook
contents at the next time step as well as its entire future behavior are also predictable. In
other words HOP processes are functions from current input events, data values, and data
path state to H OP processes. (T hey are deterministic.).

A t each tim e step a m odule M either does or does not wait for one o f its input sensors
to be actuated (i.e. it offers a deterministic choice o f input events). If it offers such a
choice, only one input sensor may be actuated. W hen so actuated by another m odule N ,
synchronization is achieved between M and N . M may then produce and consum e data
values through its conduits at the current time step and makes progress in its com putation.
If M waits for a sensor to be actuated but none is actuated, its current actions and future
com putation are both undefined (failure to synchronize). On the other hand if M doesn ’t
wait for any o f its input sensors to be actuated, it may make progress in its com putation
autonom ously after having produced a n d /or consumed data items at the current time step.
W e assume that light from lamps reach light-sensors instantaneously.

A collection o f interacting modules is formed through parallel com position, Collec­
tions o f interacting modules can make progress in their com putation only through synchro­
nizations; i.e. every input sensor awaited by a m odule to be actuated should actually be
actuated by som e other module. All the actions through events and ports in a system of
modules happen at the same rate (as in [Mil82]). If a m odule is busy perform ing internal
com putation, it will be regarded as outputting an output event called “ idle” .

Not all sensors and lamps are alike; they have different colors. A lamp and sensor
may interact either if they have the same colors to begin with, or if they are imparted the
same colors (this is called renaming). A lamp o f a given color can actuate (virtually) an
infinite number o f sensors o f that color at the time when it shines (events have a broadcast
sem antics.) T w o lamps o f the same color flashing at the same time is equivalent to one lamp
flashing with that color.

Input and output data conduits are meant to be connected amongst themselves. A given
architecture has a specific “ plum bing” o f the conduits. No synchronization is defined for data
transfers through conduits. Thus one m odule may put out a value without one sampling
this value, or vice versa. However modules usually achieve synchronization through their
flashing lights and thereafter meaningfully interact through their conduits. O utput conduits
have a broadcast semantics. T w o output conduits connecting to a node m ay not assert two
incom patible values to the node (defined via a function bus that com putes the least upper
bound o f the values involved over a strength lattice.). M ost conduits are assigned specific
directions to begin with; it is possible to have perfectly directionless conduits too.

Selected lamps, sensors, and conduits may be hidden from a collection o f interconnected
modules Mi. The collection M i may then be viewed as a single m odule M that possesses
only those events and ports that are not hidden. If a subm odule within M waits for a sensor
with color c to be actuated, no other subm odule within M produces a light o f color c, and
if events o f color c are not part o f M ’s interface (due to hiding), then M ’s com putation is
undefined. T he same goes for a lamp that shines within M without actuating any sensor

3

within M and hidden from M's interface.
However a lamp-sensor pair that communicate within M may be hidden without any

risk. The contribution of this hidden and communicating lamp-sensor pair to the interface
of M is just an “ idle” event.

Relationship to Hardware Modeling

Modules in HOP are black-boxes that are understood and used only in terms of their in­
terface. The interface consists of data ports, events, and a protocol specification that uses
events and asserts/queries values to/from ports.

Events are realized as different combinations of control wires or as predicates defined
over data conduits. Module await either command events or status events. Data conduits
are realized as bus structures that deliver the same data items at the receiving end as items
sent at the sending end (i.e. the busses do not have any wire-permutations, tappings, etc.).

HOP is useful for writing both requirements (a priori) specifications and design (a poste­
riori) specifications. The manner in which requirements are expressed has usually no bearing
on the actual implementation chosen later. Design specifications capture known facts about
a system that has been built or has been designed in detail. In a HOP based design method­
ology, design proceeds hierarchically, and on many occasions (but not always) top-down. For
most large systems, the requirements specification consists of the specification of a collection
o f modules and not one module; for these systems, the single module view is only derived a
posteriori.

Requirements specifications are usually written without knowing at least two detailed
aspects: (i) the details of the functional behavior (I/O mappings) of module(s); (ii) the
details of the temporal behavior of module(s). Abstraction mechanisms permit modeling
systems completely despite missing details. We employ two important abstraction mecha­
nisms: (i) data abstractions, to model the functional aspects of the I/O port values as well
as data path state; (ii) temporal abstractions in the form of a protocol description consisting
of events and event sequences that describe the control aspects.

Most of our applications of HOP to date (as well as the examples in this paper) pertain
to synchronous hardware systems, i.e. systems in which: (i) the computational rates of the
modules are the same; (ii) communications between modules are lockstep synchronous with
a global clock. While writing the requirements specifications for these systems however,
not enough may be known about the clocking aspects. In these cases, we would pretend
as if these synchronous systems were actually asynchronous systems— those in which all
synchronizations between events happen via handshaking. Later on when a design in the
synchronous style is produced, most of these “handshakes” happen implicitly, i.e. without
actually exchanging any signals, but via hard-wired assumptions built into modules. However
HOP encourages making these hard-wired timing/synchronization assumptions explicit via
the introduction of events.

In HOP one could write a module requirements specification and later replace it by a
collection of module requirements specifications. It is possible to check whether the collection
is observationally equivalent to the (original) single module. Design specifications may also
be written in HOP. Design specifications include details that closely match the details of
the ultimate hardware. Thus typical design specifications of synchronous hardware systems

4

Figure 3: Excerpts from the Process Diagram of FF

system that has two non-overlapping clocks a and b. It would then be necessary to generate
the above events only during specific clock phases. HOP allows this to be specified thus:

Id = a A load A ->copy A -> circ

• Highlighting Useful Event Sequences (“Modes of Behavior”): Only certain sequences of the
events ld,cp and cr are of interest. Figure 3 shows these sequences. What we have shown
in this figure is actually salient excerpts from the process diagram of the FF. The above
diagram can be expressed in the syntax of HOP as:

FF <= Id -> cp -> FF
I cr -> cp -> FF

• Detection o f a Class o f Sequencing Errors Statically: HOP forces designers to state the
sequences of events of interest. The system can flag an error should an unspecified sequence
manifest. This is easy to do due to the synchronization semantics of events. Thus for
FF, a sequence Id, cp does not constitute a useful mode of behavior; were such a sequence
be applied, it would be regarded as a sequencing error. In many traditional approaches,
sequencing errors are detected in the process of simulating a circuit; to be assured of the
detection of all lurking sequencing errors, a very large number of simulation test cases have

Figure 4: The Complete Absproc Specification of FF

to be applied. Even then, sequencing errors are not directly noticed, but have to be deduced
through backwards reasoning from an observed anomalous behavior, such as two values
clashing on a bus. Many sequencing errors can be detected during the process o f composing
two HOP processes using an algorithm called PARCOM P that we have developed.
• Separation of Data and Control, and Incorporation of Data I /O into Specifications: In
the design of digital systems, architects use their intuitions to separate data related aspects
from control related aspects. We believe that an HSL must support this separation process.
Data aspects may be loosely defined as those modes of behavior that are unaffected by the
datapath states. Consider a stack as an example. For all its data path states where the
stack is neither full nor empty, the same control recipe suffices. Thus, by separating data
from control, we again impart a good structure to the specification.
• Highlighting Data Related Protocols: Continuing with the example of FF, the following
important questions must be clearly answered by its specification:

• When may a user (possibly another module) read FF?
• when may the user write into FF?

Answers to such questions form the usage protocol of FF. Usage protocols are usually
complex; for instance FF may be reliably read even while it is being loaded. We embellish
the process diagram 3 to include such additional pieces of information as annotations. It
results in figure 4 which is a complete HOP specification of FF.

This specification may be read as follows. FF is initially in control state FF and datapath
state dps (a one-bit quantity). It offers the choices Id and cr to the external world. If
the external world asserts Id, the input data item is also expected to be supplied at the
same time through the data input port ?din. This is written as x=?din, x being the value
supplied. Despite loading x, the output port ! dout continues to remain at its original value
which is equal to the internal data path state dps. FF then advances to a new control state
(indicated by ->) where it awaits the event cp. This is generated during phase b of the
two-phase clock. Thereafter FF goes back to the control state FF but in data path state x.

Similarly we may consider the path starting from FF[dps] labeled via cr and coming
back to FF. In this case, FF doesn’t suffer any state changes nor does it load any input values.

Although this example doesn’t highlight the use of abstract data types, in general data

7

H I , H 2 H

i i (Dashes indicate Equivalence i
i i i

j j Under Zero-delay Simulation.) J
i i i
i i i
i i i
1 1 C o n n e c t 1

C l , C 2 - c

II

Figure 5: HOP Provides a Compositional Model

path states will be modeled using high-level abstract data types (user’s may introduce new
abstract data types into HOP), and new data path states as well as output port values will
be created using functional expressions. It is appropriate to think of HOP specifications
as specifying deterministic automatons that are: (i) enriched to include information about
data path states and port values; (ii) have a synchronization semantics underlying event
interactions; (iii) model value communications as updates of node values over a strength
lattice.

The paradigm of separation of data from control is not forced upon the designer. It may
be judiciously applied when found useful. It is also possible to view control lines as data and
vice versa when necessary, in a structured manner. Event to data mapping is achieved by
introducing a fictitious module that awaits the event and generates a data assertion. Data
to event mapping is achieved by defining one or more predicates (as needed) over the data
inputs, and defining events via these predicates.
• Compositionality: HOP provides a compositional model for synchronous hardware systems
as revealed by figure 5. If we have two HOP specifications Hi and H 2 and circuits C\ and
C2 corresponding to them, then the process of connecting C\ and C2 to obtain C can be
paralleled in the HOP domain (essentially) by the process of applying PARCOMP to H\ and
H% to yield H . This property will be the basis for establishing the correctness of systems,
as well as deducing behavior from structure.

8

p

Cl

C2

Data Output

Data Query

Data Query

Figure 6 : Illustrating Value Communication in HOP

• Deducing Behavior from Structure:
Suppose a collection of data path modules and controllers SMi are connected to form

a system M . Could a behavioral description for M as a black-box module be deduced
automatically? That is, could we automatically obtain a behavioral description that is simple
to understand because it does not require the user to visualize in his minds all possible ways
in which the modules SMi could interact?

We have developed an algorithm PARCOMP to do exactly this for HOP specifications.
Numerous heuristics render PARCOMP efficient in practice.
• Modeling Value Communication Naturally and Modularly: A mechanism called data ac­
tions is used to model data transfers over data ports. This mechanism has been found to be
more natural as well as modular to use, as opposed to synchronous value communication.
This mechanism also satisfactorily models the ability for ports (busses) to perform broad­
cast as well as bidirectional communication. We explain this with the aid of a synchronously
clocked hardware system depicted in figure 6 .

In a synchronous hardware system, a module can write a data item on a bus for one or
more clock ticks even in the absence of any other modules simultaneously reading from the
bus. Likewise, a read can go on without any simultaneous writes. Finally there are situations
such as shown in the timing diagram in figure 6. In these situations it is not appropriate to
model value communication through synchronization at every tick of the interval. Of course
one may still model these situations by forcing a synchronizing at each tick, and thereafter
discarding data items “when not needed” , etc. More than the awkwardness, this approach
suffers from a lack of modularity of the individual specifications because the specification
writer has to anticipate this particular context of usage of the consumer module.

Our solution involves an idea borrowed from logical variables as discussed in (and sug­
gested by the author of) [Lin85]. It also relates to the work of [Bry84] and [ISD88 , page
307]. We model data assertion as a process of imparting a value binding to a logical variable
through a data assertion. These value bindings last only for the duration for which data
assertion lasts. If no data assertion is made, the logical variable is essentially unbound. Data
inputs are modeled via data queries. If one data assertion and several data queries are made
at the same time, the queries would get the value asserted by the data assertions. Absence
of queries or assertions does not cause any problems in our approach.

Multiple writers on busses are modeled as a process of imparting two value bindings to a

logical variable. If these values do not agree, the binding associated with the logical variable
is error. Agreement is defined through a bus function that implements a monotonic mapping
over a strength lattice (similar to [Bry84]). Such a strength lattice is defined for every type of
value that can be communicated over ports. For the bit type (extension of the boolean type)
the lattice includes the strong values 0,1,U, and bit-error, where U stands for 0 or 1 , but
Unknown; e.g. the state of an un-initialized flip-flop is a U bit. The only weak value— one
that can be dominated by the strong values— is Z which stands for high-impedance. We
model transistor switches as devices that generate a Z value when open. Thus when module
M i drives a bus through an open switch and M 2 puts a 1 on the bus through a closed switch,
the net state of the bus would be determined by bus(Z, 1) which is 1 . Thus the bus would
be bound to 1 . In HOP, bidirectional switches are modeled as devices that force agreement
between two logical variables.

A good way to look at value communication in HOP is that the proper synchronization
of events guide data queries and assertions into a correct, implicit synchronization.
• Modeling “Arhythmic Arrays” A majority of examples published in the area of specifica­
tion driven design are architectures consisting of dissimilar modules [Mos83,CGM86,Coh88,
Hun87]. Regular arrays have received comparatively lesser attention ([She84,She85], [Pat85],
[MH85], [BW]). Among regular arrays, most examples have involved pipelined or systolic
arrays. Most geometrically regular arrays are however not computationally regular. We call
such arrays arhythmic arrays^Systolic arrays are a special case of arhythmic arrays where
both the geometry and the computations are regular. Some examples of arhythmic arrays
are registers, random-access and content addressable memories, FIFO queues, shift registers,
various types of carry-chains, and the LRU matrix discussed in section A.

Issues in the specification and verification of arhythmic arrays are different from those
for systolic arrays. Systolic systems typically effect data transformations on streams of data,
each member of the array essentially invoking the same operation on the elements of the
stream. Members of arhythmic arrays support multiple modes of activity. During a given
time interval, different members of an arhythmic array are involved in different modes of
activity. Also in arhythmic arrays, geometrical issues are closely coupled with behavioral
issues.

HOP addresses both behavioral and geometric issues quite effectively. We have developed
an efficient divide and conquer technique for performing PARCOMP on arhythmic arrays.
We believe that HOP could be effectively used for specifying systolic systems by following
the approaches taken by [She85] or [Hen84].
• Abstraction Mechanisms: In addition to behavioral and temporal abstractions of HOP
discussed in section 1.1, HOP supports data and structural abstractions also2. Structural
abstraction is achieved by the process of selectively hiding internal connections among ports
and among events. Behavioral abstraction is achieved by the introduction of processes and
mathematical functions that model the actual behavior. Data abstraction is the use of a
variety of user-defined data types to model state and port values. Two varieties of data types
are supported in HOP: (i) equationally defined abstract data types, similar to [GHM78];
(ii) data types defined via abstract models, similar to [LS75].

There are two approaches to specifying external timing requirements: (i) specify the most

1In the same “hearty spirit” as the word “systolic” !
2 A discussion of these four abstraction mechanisms appears in [BP88, Chapter 9].

10

general temporal behavior admissible; (ii) specify concrete bounds on the timing of various
modes of activity. We follow the former approach in this paper.

In order to amplify this point, consider synchronous hardware systems as an example. In
writing the requirements specification of synchronous systems in HOP we actually pretend
that they behave similar to self-timed hardware with handshaking events. These handshaking
events are merely conceptual in nature. When the actual system gets designed, the designer
gives definitions for these conceptual events. For example for the push operation on a stack,
we will associate a davail event to “notify” the stack when the data to be pushed on it is
available. In the actual implementation, we will not have this handshake line, but instead
a discipline for using the push operation, such as: “the user is expected to supply the data
exactly one tick after applying push.” (This example also points out that it seems attractive
to define HOP’s events in temporal logic.)

This approach to timing has two advantages:

• Implicit (hard-wired) timing assumptions in synchronous hardware are made explicit;
We believe that hard-wired synchronization assumptions are even worse than hard­
wired constants in programs, and are a source of common sequencing errors. Syn­
chronous hardware designs where synchronization is hard-wired are difficult to modify
and reuse.

• If the conceptual events are actually implemented as signals, we get a self-timed imple­
mentation of the system. Thus a common specification serves both synchronous and
asynchronous implementations.

1 . 3 C o m p a r i s o n W i t h R e l a t e d R e s e a r c h

We compare HOP with Circal[Mil85a,Mil83], [Gor81], Johnson[Joh84], HOL[CGM86], and
SBL[GSS87], using FF as an example.

1 .3 .1 Circal

The examples reported to date suggest that Circal attempts to model systems with con­
siderably more detail than we care to do in HOP. For instance, FF would be modeled by
modeling wires, inverters, and pass transistors as having some propagation delay. Though
published examples in Circal have not emphasized the identification of useful events and
modes of behavior, in principle this is possible to do.

Circal and HOP share the common feature of taking a process oriented view. However
a crucial difference exists in the way value communication is performed. In Circal, data
communication between modules over a port that can carry data items of type T is modeled
as synchronous communication over a sort of labels Z, where i ranges over the value sort of
T. In our experience, HOP’s approach is more convenient to use for large architectures that
are specified at the system clocking level.

1 .3 .2 N ex t-sta te and O utput Function Based Approaches

[Gor81] and Johnson[Joh84] correspond to a modeling style where the next state and current
outputs are functionally determined by the current state and current inputs. HOP’s process

11

cp

Figure 7: An Undesirable Process Diagram for FF

12

diagrams can be made to correspond to this model simply by using only one control state
always, and modeling the rest of the state of the system as data path states. A process
diagram for FF corresponding to this view is shown in figure 7. In this approach, we explicitly
model both the bits stored inside the FF. We then define next data path states for the inputs
Id, cp, and cr.

However notice that this diagram does not prevent the sequence ‘ Id , c r ’ from being
applied. This is not a useful mode of use of FF. Besides this approach is of lower level
because it requires both the storage nodes to be made explicit whereas ideally the data path
state must only be an abstract model of the state of the system. We have noticed both these
problems in the approaches taken by [Gor81] and Johnson[Joh84].

Finally, the next-state and output function based approaches do not support the notion
of ‘synchronization failure’. We believe that the static checks instituted by HOP based on
event sequences is a form of “temporal type checking” that is promising in the early detection
of sequencing errors. It forces designers to state their sequencing assumptions and supports
the checking of these assumptions for them.

1 .3 .3 H O L

The style in which HOL specifications have been presented in publications so far does not
match hardware designer’s intuitions very well in one regard: instead of talking about the
internal states of modules, HOL introduces a higher order relation to model relations between
port signals.

We believe that internal states are a very intuitive “reality” in hardware. Besides, states
are nothing but equivalent classes of I /O histories; thus there is an inherent notational
economy in a state based representation.

In contrast to HOP, the style of temporal abstraction followed in HOL [CGM86, Mul­
tiplier Example] is to introduce an existential quantifier that says: “there exists a future
time where the action in question happens” . This approach is less operational (hence less
intuitive for practicing hardware designers). It also does not introduce events that corre­
spond to points in time where some crucial interactions between modules take place. The
introduction of such events in HOP makes specifications more readable and more amenable
to static analysis. It also supports self-timed implementations directly.

1 .3 .4 SB L

HOP evolved out of SBL [GSS87,Gop86]. SBL modeled hardware systems as abstract data
types with a set of external operations corresponding to state changing (constructor) and
port-value producing (observer) operations. These operations have associated timing charac­
teristics. HOP was created to overcome certain restrictions in SBL’s ability to model complex
timings. Also HOP treats controllers as well as data path elements without distinction as
processes; SBL was organized based on a centralized controller discipline.

As in SBL, in HOP internal states of modules as well as values communicated over
ports are modeled using abstract data types, A fairly rich type system exists in HOP. HOP
combines the best of process based models and abstract data type based models.

The purely algebraic approach based on SBL is still being pursued by the second and
third authors of [GSS87], and SBL has independently matured considerably since the time

13

HOP was created.

1 . 4 O r g a n i z a t i o n o f t h e P a p e r

Section 2 presents our design methodology and the highlights of the language. The opera­
tional semantics of HOP is also presented here. Section 3 presents the specification of two
versions of a simple stack. Section 4 considers the formal verification of these two versions
of the stack. Section 5 presents two versions of the PARCOMP algorithm. The current
implementation as well as future directions of research are presented in section 6 .

2 T e r m i n o l o g y a n d O p e r a t i o n a l S e m a n t i c s

2 . 1 T e r m i n o l o g y

There are three kinds of HOP specifications: absproc, realproc, and vecproc.
An absproc specifies a module as a black-box. It specifies the interface of the module,

consisting of data ports, a set of events, and a protocol specification. A vecproc (a special
case of realproc) is tailored for specifying arhythmic arrays.

A realproc specifies the realization of a module as a heterogeneous collection of sub­
modules. In this paper we do not consider the process of picking the realization that best
suits the problem in hand; we only address modeling of the selected realization. A realproc
is a three-tuple < Si, C ,E > where 5,- is a collection of module specifications (absproc or
realproc), C is an interconnection, and E is an export-list.

An interconnection is the union of data interconnections and event interconnections.
A data interconnection is a binary relation over data ports, and indicates the ports that
are connected. An event interconnection is a binary relation over events, and indicates
those events that are forced to occur at the same time (by tying control wires together, for
example). An export-list is the union of data export list and event export list. Data export
lists and event export lists are subsets of data ports and events (respectively), and indicate
those ports and events of the submodules that are part of the interface of the realproc.

Primitive modules are modules whose design refinement in HOP is of no interest. Thus
only an absproc of primitive modules is of interest. For every primitive module M , a behav­
iorally identical circuit C is assumed to be available.

The HOP design methodology for designing a module M takes one of the following
approaches (recursively defined):

T op -d ow n i An absproc specification for M (M ap) is written, followed by a realproc M rp.
PARCOMP is used to infer an absproc specification for M . The inferred absproc
for M is called M ap{. The behavior observable at the interface of M ap and M api are
then compared for agreement. At present this is supported by a manual verification
methodology. If an agreement exists, the designer then proceeds to apply the HOP
design methodology to the submodules of M .

Top-dow n2 The designer does not write M ap, but begins by writing M rp. M api is inferred
using PARCOMP, and then M api is studied either manually, through simulation, or

14

through formal verification to confirm that it has the desired behavior. The HOP
design methodology is then applied to the submodules of M .

B ottom -u p A partial M rp is written; specifically, its submodules are selected but the con­
nections are not determined. The HOP design methodology is then applied to these
submodules. M rp is completed by providing the interconnection list and the export-list.
Mop, is then inferred from M rp using PARCOMP, and is then examined for correctness.

2.2 A n O p e r a t i o n a l S e m a n t i c s f o r H O P

This section is organized as follows. We begin by defining action, the basic unit of commu­
nication activity that a process may engage in. Actions are either events or data actions.
Both events and data actions are further sub-classified. The domain of actions for a process
is act. A set of simultaneous actions is known as a compound action.

We then define reduction rules for compound actions. These reduction rules are based on
the notion of action product, as in [Mil82]. Our action product operator is the infix operator

We then define a process as a system that engages in a compound action ca at the current
time and transforms itself into a new process that begins its activity at the following time
step.

Thus the meaning of a HOP process is its transition relation P rocxact x Proc which
is defined via structural induction over the abstract syntax of HOP. The definition of is
the operational semantics of HOP. We will define new HOP processes from existing ones by
using the notation where ante is an already defined HOP process (the “antecedent”),
and conse (the “consequent”) introduces the next syntactic category of processes that has
not been defined so far.

2 .2 .1 A ction s, and A ction P roduct

Events in HOP consist of input events written as e, output events written as e, and synchro­
nized events written as e.

An input event e represents a logical condition that is awaited (at some time) by a
module. An output event e represents the satisfaction of a logical condition at a particular

15

time instant. The notion of synchronized events e was introduced in HOP to impart a
broadcast semantics to output events. Let us examine synchronized events in detail.

A synchronized event W represents three facts: (i) at the time f is generated, an output
event e has synchronized with one or more input events e; (ii) because an e has a broadcast
semantics, Z also has a broadcast semantics; therefore e as well as e look the same as far as
an input event e is considered; (iii) e and e are treated differently by the ‘hiding’ operator
of HOP: hiding f results in an idle transition (similar to the r of [Mil82]); however hiding
£ causes the synchronization tree to be pruned. This is because e represents a mode of
behavior that will be selected because of synchronizations, whereas ~E represents a mode of
behavior that will not be selected because it has not synchronized so far, and it is going to be
hidden. We find the usage of e to be more convenient than the mechanism of 7 -conjunction
proposed in [Mil82, page 32] to model broadcast.

Data actions have only one simplification rule defined for them by action product: when
two different data assertions \p = E\ and Ip = Ej are made, the resultant value on the port Ip
is defined by the function bus(E\, E 2). A complete definition of the action product operator
is given in figure 8 .

2 .2 .2 Definition of the Transition Relation ^

In this section, we define the transition relation by structural induction. Before these defini­
tions are applied to a realproc or a vecproc, all the port and event names in their submodules
are assumed to be renamed so as to be distinct. Also, every compound action used in a def­
inition is assumed to be irreducible under the action product operator

Process S T O P

STOP is the simplest of HOP processes. It has a null transition relation; i.e. it always
remains halted.

A finite process is defined to be one that will become STOP in a finite number of steps. A
finite process does not usually represent any practically useful hardware system. Therefore
if PARCOMP results in a finite process starting from non-finite processes, there is room
for suspicion that there are synchronization errors in the system. This is how we detect
sequencing errors statically during PARCOMP: the reason for giving rise to a finite process
can usually be pinpointed as a collection of unsynchronized events that are hidden.

Sequential Processes

Action: (ca —► P) ■— * P
If P is a process, ca —> P is a process that first performs the compound action ca and

then behaves like P. Since actions are performed through mutual cooperation, the correct
way to look at the process P = e —> P' is that P has the potential to perform e and continue
to behave line P . If ca involves no events at all, the process can always make progress.

Vacuous compound actions are flagged by a single output event idle. Thus a process
idle —> P performs an idling step and continues to behave like P. e is an identity element
of the action product operator Most commonly, idle is introduced in a specification as a
result of hiding a synchronized event e.

16

Sequential Processes are a special case of deterministic choices where there is exactly one
choice available.

Determ inistic Choice

Det-choice: (|,- ca,- —► Pi) P,
The next category of HOP processes considered is the deterministic choice. A process

P =|; ca,- —► Pi, where i ranges over an index set I is one that offers a deterministic choice
consisting of the compound actions cai during its first computational step. If choice cm is
accepted, P continues to behave like Pm - Example: The F F module of section 1 offers a
deterministic choice of the events Id and cr during the first time step.

If I has more than one element, then:

1. There must be an input event e, present in each cat. Since the e,s govern the selection
of one o f the alternatives of the choices, the eiS must be pairwise mutually exclusive.
Since input events are boolean expressions, two events e, and ej are mutually exclusive
if their conjunction is equivalent to false. This fact is almost always decidable in
practice because events are usually defined as boolean expressions. However, HOP
does allow events of a more general nature to be defined, using user-defined predicates
belonging to a Turing-complete language. In such cases, well-formedness checks for
mutual exclusion of events cannot always be carried out. In practice this situation is
not expected to arise frequently.

2. Data queries may appear in an unrestricted manner among the cai and they do not
govern the choice. This is only to enfore a discipline on the use of the choice construct.
It is still possible to implement choices based on current “data inputs” , by defining
events that correspond to these data inputs— such as ?port = 55.

A deterministic choice process, such as P (above), can be depicted as a tree where the root
node of the tree corresponds to P, and there are arcs labeled with ca, leading from the root
nodes of P to the root nodes of P{. Process diagrams are a finite representation of these
trees. These trees are structurally similar to the synchronization trees of [Mil82]. However,
note again the absence of nondeterminism in HOP.

A dding A ctions To Initials

If P is a process, ca l,P is a process which adds cai to the initials of P . Further, ca l,P
must obey the restrictions defined for deterministic choices (mutually exclusive guards, and
the same data assertions in all the branches):

Hiding

“Hiding an event e” is a shorthand for saying that e, e, and e are all hidden from a process.
In the rule Hiding-sync, we are considering the hiding of e. Since e represents an event

17

resulting from a synchronization, hiding ^ is considered safe; we merely replace ? by idle.
This models the ability to drive several control inputs from one source and internalizing the
connections:

Hiding-sync
Hide e in P Hide e in P'

The notation “[new/old]” is used to mean that “new” replaces “old” .
Hiding e or e from a process prevents it from synchronizing on these symbols. This can

be captured by pruning those branches of the synchronization tree that are labeled by e or
e:

ca 1

Hiding- u nsync
P ' , P ■— * P " , e or e 6 cal

(Hide e in P) (Hide e in P ")
Hiding a data output port removes data assertions made on that port from the current

compound-action of the process. This would affect those processes that perform a data query
:rom a connected port at the same time:

Hiding-dout
p ca,lp=E p ,

Hide p in P — ► Hide p in P'
Hiding a data input port causes those variables that would have been bound by a data

query on this port to remain unbound:______________________

Hiding-din
p ca,x=?p p<

Hide p in P — ► Hide p in P'with x free in P'

R enam ing

Processes are made to interact with each other either via events or via data actions on ports,
by renaming those events and ports to common names:3

Renaming-e
P P'

Rename e to el in P Rename e to el inP'

Renaming-e
P - P'

Rename e to el in P Rename e to el inP'

„ . P P ', da uses p
Renammg-port ------------------------------- ^ --

Rename p to pi in P — > Rename p to pi inP

Parallel C om position

The parallel composition operator || models the process of realizing a system by putting
together several sub-processes, and permitting their interaction through events and ports
that are connected. In HOP, ports having the same name sans the ? and ! symbols are
connected. Likewise, events having the same name sans the overbar are connected:

3Renaming events as well as ports implies the appropriate use of connections as well as “glue logic” in
the underlying hardware

18

Parcomp p^ p'' Q^ Q'
P (P||Q)ca.I^ V | | Q ')

In the above definition, we assume that the mutually exclusive nature of the choices
offered by one process is not disrupted by the other process. E.g. if P offers e\ and e2, then
we assume that Q does not generate ‘e7 , e ’̂ . A syntactic definition of the Parcomp rule that
strengthens the precondition to this effect is more involved and hence not shown here.

After performing parallel composition according to the above rule, we may simplify the
result by using the following rule (if applicable). This rule captures the effect of value
communication:__

p (r='!p),(\p=E),ca p ,

Value Communication During Parallel Composition — - — —------------------
P <”= 3 “ P [£ /*]

Conditionals

HOP processes are usually defined as process schemas P[dps], where for each value of dps
we have one specific process, dps usually represents the data path state of the process. We
have the notion of conditional processes in HOP that allows us to specify the behavior of a
process based on its dps variable. Thus we may define a process P as:

P[dps] <= i f p(dps) then Pl[f(dps)] else P2[g(dps)\.

After reducing the predicate application p(dps) to true or fa lse , one of the following rules
would apply:__

Pi ea) Pf P2 ca) P'
Conditional--- —------- ; --- —-------

(i f true then P i e lse P 2) — > P' (i f false then P i e lse P2) — > P'

Recursion

A collection of one or more processes may be defined recursively. The following rule (adapted
from, and explained in [Mil82]) applies:

Recursion
Pi[fix X .P /Y] -SU

fix i X .P P'
In this paper, it suffices to view recursion as iteration.

Indefinite D elay

The phrase “-v* e” stands for: “Delay indefinitely until e occurs.” Its definition is as follows:

P i <= cal e, ca2 —> R l
is equivalent to

■ P I <!= cal —► Q l

Q l not(e) —► Q l
| e, ca2 —*■ Rl

19

2 . 3 A n A s s e s s m e n t o f t h e M e r i t s o f t h e H O P M o d e l

Although a formal definition of the underlying semantic model of a language is always desir­
able, the practical utility of the model has to be separatively established. We now offer our
own supportive comments as well as existence proofs for the merits of HOP’s model. Our
approach is partly motivated by that taken in [Mil82].

2.3 .1 From Intuitions to Operational Sem antics

Since an operational semantics is a compact embodiment of intuitions, it is prone to dis­
agreement. Consider for instance the definition of action product. It may be argued that
it is acceptable to consider e,e as both e as well as error based on whether driving a con­
trol wire with a 1 from two sources is normal or an error (due to the danger of skews, for
example). Our decision in this regard is to treat e, e as e, but issue a warning in the actual
implementation.

Yet another place where the HOP model can fail its users if used improperly is related
to set-up and hold times. Consider a read/write memory. Throughout a write cycle of the
memory, the address input must remain stable, lest an unintended location get written into.
The data input is allowed to change within the write cycle so long as it stabilizes a fixed
duration before the end of the write cycle. The idealized timing model taken in HOP (or for
that matter in [Gor81], [CGM86], and [Joh84]) does not make a distinction between these
temporal types. Hence it is possible to prove a design to be correct without implying the
correctness of the corresponding circuit.

Our solution is as follows. We borrow ideas from past researchers who have attempted
to classify signals into different temporal types, such as T (stable throughout), E (stable
towards the end), etc. [Noi82,Kar84]. We would take a staged approach where a HOP
verification would be followed by a circuit-theoretic reasoning based on temporal types.
This would provide more reliable validation in addition to partitioning concerns (verification
in an idealized model is separated from checking for proper set-up/hold times).

2 .3 .2 From A n Operational Sem antics to a D enotational Sem antics

Just as trace sets are denotations of deterministic CSP processes [Hoa85, Chapter-2], Trace-
Nodebinding sets (TN sets) are the denotation of HOP processes. Traces have the same
meaning as in [Hoa85], and nodebindings capture the effect of value assertions on nodes.

If P is a process, we define a meaning function M such that

M { P) = { < *i,crx > , < *2,cr2 > , ...} .

A TN pair < cr,- > is in M (V) if and only if process P can perform a sequence of compound
events f, while generating a sequence of node value bindings, cr,-. Both f, and cr, are prefix-
closed sets. The TN set is obtainable from the transition relation —► .

Alternatively, it is possible to assign a Kahn semantics [Kah74] to HOP. Events will then
be regarded as bit-streams, and data I /O as general streams. A state-stream that feeds back
into the module will capture the updating of the data path state.

20

Figure 9: Either a Shift Register or a Ring Oscillator!

2 .3 .3 Identification o f Equational Laws

Due to the absence of nondeterminism in HOP, its equational laws are simple in nature
(such as: the action product operator is commutative and associative; the || operator is
commutative and associative, etc.).

Even in the absence of nondeterminism, we have identified several useful and non-trivial
notions of equivalence between HOP processes. For example, the following questions arise
during the process of verification and optimization (say, via pipelining):

• how do we relate requirements specifications to design specifications in the process of
verification?

• in what sense is a pipelined system comparable to its non-pipelined counterpart?

In both the above cases, the identity relation between TN sets is far too strong to be useful.
We address these questions in section 4.

2 .3 .4 H andling Exam ples T h at G o Beyond the Lim its o f the M od el

Consider the circuit in figure 9. If we admit an event corresponding to the closing of all the
three switches, the node values attained in this circuit would be equal to the solution of the
equation x = not(x), i.e. the undefined element BIT-ERROR. All operators are strict on
BIT-ERROR, as BIT-ERROR is the top element of the BIT value lattice.

In short:

• we cannot rule out any circuits based on their structure;
• though circuits could become unusable with respect to those ports that generate BIT­

ERROR, they could well be used with respect to other ports.

2 .3 .5 Relationship to A utom ata-theoretic M odels

HOP specifications that put a finite bound on the data path state and port value types’ value
sorts can be regarded as a collection of communicating Mealy Machines [HU79]; a process

21

stkabs [dps] <*
Ireset ~> Ofree -> stk ab s[reset(d p s)]

I Ipush “> Id a ta _a v a il, vdin * ?din ~> Dfree -> stkabs[push(dps,vdin)]
I Ipop ~> Dfree -> stkabs[pop(dps)]
I Itop ~> O to p .a v a il, !dout*top(dps) “ > Ofree -> stkabs[dps]
I Isd ef ~> Dfree -> stkabs[dps]

Figure 11: Requirements Specification for a Stack

As defined in section 2, the interface of a process consists of a set of data ports, a set of
events and a protocol specification. Figures 10 and 11 specify the interface of an unbounded
stack, stkabs. The stack operates as follows. It supports the operations reset, push, pop,
top, and sd ef (similar to “no op”). The first three modify the state of the stack in an obvious
way. After a top operation, the current top of stack is made available on the output port
\dout. sd ef corresponds to a “no op” .

We will now write a requirements specification for the stack. In this specification, we
model the stack’s data-path state via the stack abstract data type. We specify the timing
of the stack in a manner that is uncommitted to any particular clocking discipline. This
requires that we adopt a few conventions so that when a design specification of the stack is
available, it becomes possible to relate it to the requirements specification:

• Generate an output event along with every data output. This event announces the
availability of the data output. For a set of simultaneous data assertions, we need
introduce only one such output event.

• Introduce an input event along with every set o f simultaneous data queries. This input
event signifies data availability.

• Do not insist on any specific delays between events.
• Notify the completion of an “operation” by a “free” event.

The specification in figure 11 follows these conventions. For ease of typing, we denote an
input event e using Ie, an output event e using Oe, and a synchronized event f using Se.

Let us examine the push operation. It is selected by applying the corresponding output
event Opush that matches the event Ipush offered by the stack, stkabs then waits indefi­
nitely for event Idata_avail. When Id a ta .a v a il is asserted by a module M , a module N
(possibly the same as M) is expected to bind the port ?din with the value to be pushed.
Therefore vdin gets bound to this value. Thereafter, the stkabs process performs internal
activities that last an unspecified amount of time. These activities stop when event Ofree
occurs. One step after Ofree occurs, stkabs goes back to its top-level control state, ready
to accept the next command from the external world. In going to the top-level control
state, the data path state is changed to push(dps,vdin). This is signified by the expression
stkabs[push(dps,vdin)] .

Now consider the top operation. Once triggered, stkabs goes into a period of internal
activity that is terminated by the occurrence of the event O top .avail. When this happens
the value binding on the output port ! dout is the “top of stack” , top (d p s). After some more
unspecified delay and one step after event Ofree occurs, the stack returns to its top-level
control state to accept its next command.

23

?din

Ireset, Ipush, Ipop, Itop, Isd ef, Idata_avail Ofre e , Otop^avail

Figure 12: Schematic of the Realproc of a Stack

3 . 2 R e a l p r o c o f t h e U n b o u n d e d S t a c k

The schematic in figure 12 is intended to implement the stack. The Stack Realproc
stkreal is made up of three modules CTR, MEM, and SCTL. Here, process MEM is defined
mutually recursively with another process M E M l. We assume that in this design all the
modules share a global clock.

The realization uses a memory and a counter to (respectively) hold the stack locations
and the stack pointer. A controller decodes the external commands and appropriately se­
quences the submodules. This design implements an unbounded stack. Operation push
is implemented by incrementing the counter and writing into the location of the memory
pointed by the counter, pop is implemented by decrementing the counter, top is implemented
by reading the memory at the location pointed by the counter. Finally, sdef is implemented
by doing nothing. Suitable control wire encodings trigger these operations.

T h e Subm odule Behaviors

We first examine the details of the write and read operation of the MEM submodule. Write
is invoked by event Iw rite. At this time, the address and data are to be held stable on the
ports ?cdo and ?din respectively. One tick later MEM returns to its control state with data

24

PCTL <« I s d e f , Omdef, Ocdef -> PCTL
I Ir e s e t , Omdef, Ocdef -> Oload, Omdef -> PCTL
I Ipush, Omdef, Ocdef -> Oup, Omdef -> w rite , PCTL
I Ipop, Omdef, Ocdef -> Odown, Omdef -> PCTL
I Ito p , Omdef, Ocdef -> Ocdef, Oread -> Oidle -> PCTL

Figure 14: The Specification of a Pipelined Stack Controller

path state write (ms, va ,vd).
The implementation of the read operation is trickier. We want to exploit a degree of

pipelining afforded by the presence of the memory data register in this MEM. Specifically,
consider two read operations issued one after the other. While we are collecting the results of
the first read, we wish to start the second read. (Without this, read will cost us two cycles.)
So starting from MEM in data path state ms, when Iread is invoked with address input
?cdo held stable, the MEM process turns itself into the M EM l process. The MEM1 process
awaits the operations read, write and mdef while outputting the result of the previous read
on port !dout. While reads keep coming, we stay in state M E M l. When something other
than read comes, we go back to state MEM.

Im plem entation o f push

Now consider how push is implemented by focusing on SCTL and seeing what it does on
the data path modules. When SCTL decodes the Ipush command, it outputs Omdef and
Ocdef to the memory and the counter, thereby keeping both MEM and CTR inactive.
In the next step it outputs Oup and Omdef thereby incrementing the counter, keeping the
memory unchanged. In the next step it outputs Owrite and Ocdef thereby writing into the
memory, at the address pointed to by the incremented counter value the data item that is
now asserted at the input ?din. SCTL then goes back to its top-level control state. All the
other operations are implemented similarly.

3 . 3 P i p e l i n i n g t h e S t a c k

After obtaining a realization, the designer is usually interested in optimizing the design
either manually or automatically. Pipelining, or overlapping the internal activities within
a system, is a frequently adopted optimization. (There are other optimizations such as the
sharing of ALUs, busses, etc.; we do not consider these in this paper.) Once manually
pipelined, it is necessary to validate the functional correctness of the system.

It turns out that we can pipeline stk real to a large extent. We illustrate this by “pipelin­
ing the push operation” , i.e. carrying over some of the computation associated with push into
the following operation. To see how this can be done, consider how push was implemented
by SCTL. At first, SCTL performed the up operation on the counter. It then performed
the write operation on the memory and only then did it return to its top-level control state.
However SCTL could have been waiting for the next operation while the write operation
was still in progress internally. (As we show in section 4, this wasted period does show up

26

as an extra idling step in the behavior deduced by PARCOMP.) The pipelined controller
PCTL given in figure 14 achieves this degree of pipelining. If it is used in lieu of SCTL, we
get a realization called pstkreal. By introducing PCTL in lieu of SCTL we increase the
number of control states in the controller in return for the increased speed of operation. Let
us examine how pstkreal performs push.

pstkreal first decodes the command Ipush. Then it increments the counter via Oup.
It then turns itself into the process write,PCTL. This is a controller similar to PCTL with
the difference that while waiting for the next operation it keeps M E M busy internally by
applying the Owrite event on it.

3 . 4 Q u e s t i o n s t o b e A d d r e s s e d

Having specified stkabs, stk real and pstkreal, the following questions arise naturally:

• Deducing Behavior from Structure: Can we automatically infer a single process equiv­
alent to stk real as well as pstkreal? What are some applications of this PARallel
COMPosition algorithm?

• A Verification Problem: Is stk real a correct design corresponding to the requirements
expressed in stkabs? How do we determine this?

• Given the controller in figure 14 and given the claim that this controller correctly
pipelines the stack, how do we verify this claim? In what sense(s) is(are) a pipelined
system comparable to a non-pipelined system?

• Specification Directed Testing: How do HOP specifications help in testing systems?
• What is a system design methodology using HOP?

These questions are answered in the following sections.

4 V e r i f i c a t i o n C r i t e r i a , a n d I l l u s t r a t i o n T h e r e o f

The denotation of a HOP process is its trace-nodebinding (TN) set. Therefore two HOP
processes are equivalent if they have identical TN sets. However in many practical situations,
two processes that are equivalent in many useful senses do not have identical TN sets. As
we will soon show, a pipelined hardware design can contain different traces than present in
either the requirements specification or a non-pipelined design.

In this section we address the verification of HOP processes. We illustrate it on the
non-pipelined realization of the stack. Then we consider the problems that arise in the
verification of pipelined hardware, and suggest possible solutions.

4 . 1 T h e N o n - p i p e l i n e d S t a c k R e a l i z a t i o n

We consider the stack realization stk real of figure 13. The behavior of stk real with
respect to its external ports and external events can be inferred using PARCOMP. The details
of this procedure will be provided in section 5. The inferred process, STKPAR, is shown in
figure 15. Also shown in this figure for easy reference are: (a) PSTKPAR, the inferred behavior
of the pipelined stack; (b) stkabs, the requirements specification of the stack.

27

stkabs [dps] <=
Ireset "> Ofree -> stkabs[reset(dps)]

I Ipush ~> Idata.avail, vdin = ?din ~> Ofree -> stkabs[push(dps, vdin)]
I Ipop ~> Ofree -> stkabs[pop(dps)]
I Itop ~> Otop_avail, !dout=top(dps) ~> Ofree -> stkabs[dps]
I Isdef ~> Ofree -> stkabs[dps]

y.------------ ------------------ --- ---------------------
STKPAR [cs.ms] <=

Ireset -> Oidle, Ofree -> STKPAR [Otms]
I Ipush -> Oidle -> Idata .avail, vdin=?din, Ofree

-> STKPAR [up(cs), write(ms,up(cs), vdin)]
I Ipop -> Oidle, Ofree -> STKPAR [down(cs), ms]
I Itop -> Oidle -> Otop.avail, Ofree, !dout=read(ms,cs) -> STKPAR [cs,ms]
I Isdef, Ofree -> STKPAR [cs,ms]

y,...-
PSTKPAR [cs,ms] <=

Ireset -> Oidle, Ofree -> PSTKPAR [0,ms]
I Ipush -> Oidle, Ofree -> PSTKPAR1 [up(cs), ms]
I Ipop -> Oidle, Ofree -> PSTKPAR [down(cs), ms]
I Itop -> Oidle -> Otop_avail, Ofree, !dout=read(ms,cs)

-> PSTKPAR [cs,ms]
I Isdef, Ofree -> PSTKPAR [cs,ms]

PSTKPAR1 [c s l, msl] <=
Ireset, Idata_avail, vdin=?din -> Oidle, Ofree

-> PSTKPAR [0, write(ms1 ,c s l ,vdin)]
I Ipush, Idata_avail, vdin=?din -> Oidle, Ofree

-> PSTKPAR1 [u p (csl), write(ms1 ,c s l , vdin)]
I Ipop, Idata_avail, vdin=?din -> Oidle, Ofree

-> PSTKPAR [down(csl), write(ms1 ,c s l , vdin)]
I Itop, Idata_avail, vdin=?din

-> Oidle, Ofree
-> !dout“ rea d (w rite (m sl,csl),csl), Otop.avail, Ofree
-> PSTKPAR [c s l, write(msl, c s l , vdin)]

I Isdef, Id ata .avail, vdin=?din -> Oidle, Ofree
-> PSTKPAR [c s l, write(msl, c s l , vdin)]

Figure 15: stkabs, STK PA R and P STK P AR

28

Let us examine the push operation of STKPAR. It is initiated by Ipush.. After this, during
the second time step, the user sees STKPAR idling. Actually at this time the counter module
CTR is getting incremented by one, but the ‘up’ event on CTR is hidden and hence not visible
outside. During the third time step, write is performed on MEM. As a consequence, port ?din
is being sampled now. Starting from the fourth tick, STKPAR continues to behave as before,
with its data path state advancing to the pair of states < up(cs), write(m s,up(cs),vd) > .
The events Id a ta .a v a il and Ofree are added in by the user as will be explained shortly.

Now consider operation top. During the second time step, a ‘read’ is issued on MEM, but
it appears as Oidle because ‘read’ is hidden. The result of top becomes available during the
third time step.

A dding-in Conceptual Events to an Inferred A bsproc

A design is a more detailed implementation that has to relate to its requirements specifi­
cation. Different designs however have different usage protocols. The protocols are to be
made explicit before we can meaningfully compare a design with a requirements specifica­
tion. In our approach this is done by adding-in events that characterize the protocol obeyed
by the absproc description at the appropriate instants of the inferred absproc. In the STKPAR
specification in figure 15, the events Id ata_avail, Ofree, and Otop_avail are added in by
the user for this purpose. For example, in the push operation of STKPAR, Idata_avail is
generated during the third time instant.

4 . 2 O u r V e r i f i c a t i o n T e c h n i q u e

Currently our formal verification methodology applies to those systems whose operations
(modes of behavior) can be viewed as a “constructor-observer” (c_o) experiment. A process
-P[5] subject to a c_o experiment consumes a sequence of input values Ii, produces a sequence
of output values Oj and turns into a process P[Cons(S, /,)]. It is assumed that the output Oj
can be modeled using an observer function application of the form Obs(S, /,•). Likewise, it is
assumed that data path state changes can be captured by a constructor function application
of the form Cons(S, Ii). constructor experiments and observer experiments are special cases
of c j o experiments where either a new data path state or a new output port value gets created
(but not both). c_o experiments start with distinct command events, (such as Ipush).

A large number of digital systems can be viewed in this manner. For instance, in the
proof of correctness of a simple microprocessor reported in [Coh88], only constructor and
observer experiments are considered. This is also the case in the proof of correctness of
yet another microprocessor in [Hun87]. In both these works the constructor experiments
correspond to the system state changes caused by the execution of instructions, and an
observer experiment consists of the observation of the register values attained in-between
constructor experiments. In both these works, the proof involves showing that if the systems
specified at the requirements and the design levels start in two observationally equivalent
states 5 and 5 and are subject to the same macro-instruction, the systems wind up in
two states 51 and 51 that are also observationally equivalent. Our technique is related to
these works. Due to the usage of a process model in HOP, we do not have to introduce
“oracles” [Hun87] to capture external input that may arrive at unspecified time instants.
HOP’s “busy wait” ("> Idata_avail ,vdin :=?din) captures this effect. If necessary, we can

29

introduce “tester processes” to model the world external to a HOP process in as much detail
as we wish.

4 . 3 A n O u t l i n e o f t h e V e r i f i c a t i o n o f S T K P A R

Let us first consider a system with only constructor and observer experiments— in this case,
the stack. We pick a constructor experiment ce, and subject stkabs and STKPAR to it. We
then follow ce,- with an observer experiment oe; . We then assert that the values returned by
the latter must agree, thus obtaining a Verification Condition (VC). In this way, we consider
all possible sequences of constructor experiments and observer experiments.

Though this may sound like performing an infinite number of proofs, we can achieve the
same effect by performing a finite number of proofs, using a form of data type induction
as applied to HOP processes. In HOP, data path states are modeled using constructor
functions that are defined equationally using data type axioms. Similarly, port values are
modeled using observers which are also defined via data type axioms. We will take advantage
of these facts in our verification methodology.

We assume that processes stkabs and STKPAR, when started in data path states dps and
< cs,m s > are observationally equivalent. By this, we mean that there exists no observer
experiment that can distinguish between these two processes. (In our example, performing
top results in the same value being produced on the port !dout.) We then show that
performing the same constructor experiment ce, on stkabs[dps] and S T K P A R [cs, ms] results
in processes stlcabs[dps] and STK P A R [cs ,m s] that are also observationally equivalent.

Consider the top and push operations. Applying our methodology results in the following
VC:

top(dps) = read(ms,cs)
top(push(dps,vdin)) = read(write(ms,up(cs),vdin),up(cs))'

The antecedent part is obtained from the assumption that the processes start by being
observationally equivalent-meaning that top must not distinguish them. The consequent is
obtained by applying a top first followed by a push.

This VC can be shown to be valid using the equational properties of the stack, memory
and counter abstract data types. A typical proof would consist of unfolding the consequent
and performing a case analysis, where the cases considered follow from the antecedent. In
the current example, familiar stack and memory axioms allow us to immediately reduce the
consequent to the tautology vdin = vdin. We then repeat the procedure for all the other
constructors pop, reset, and sdef.

We handle systems with cj> experiments as follows. For a cjo experiment op, we first
identify its associated constructor and observer functions Cop and Oop. When op is used as
the final experiment in a sequence of experiments, we would get VCs of the following form:

O op.absi.̂ op.absi.dpS ̂ = 0 0p'real(C0p'real(D P »S'))
Oop.a6s(Cop.al>s(^a6i(^P’S))) = 0 0p-rea/(C0p,rea/(Z)rea/(Z).P<S')))

In this VC, the subscript .abs denotes “as defined at the requirements level” . The subscript
.real is meant to denote “the expression obtained from the realproc level” . D is a constructor
different from C , and results from either a constructor experiment or a c_o experiment.
dps and D P S are the data path states at the requirements and design specification levels
respectively.

30

Our assumption that the modes of behavior can be thought of as c_o experiments imparts
a structure to TN sets such that every trace and node-binding sequence is a concatenation
of the traces and node-bindings of the individual c_o experiments. The equivalence induced
on TN sets by our verification approach is captured by the following properties:

• STKPAR and stkabs have the same trace sets if all intervening Oidle events are dropped.
• For every data assertion in stkabs, STKPAR also makes those assertions. (The opposite

need not be true.)
• For every data query made in stkabs, STKPAR also makes the same query, with the

same data input provided in both cases.

4 . 4 V e r i f i c a t i o n o f P S T K P A R

Similar to STKPAR, we obtain PSTKPAR through PARCOMP. The specification is in
figure 15. It includes the events Id ata_avail, Ofree, and O top.avail added in by the
designer, for reasons to be explained.

Consider the implementation of push. In stkabs, it consists of the sequence

Ipush -> Id ata_avail, vdin :=?din -> Ofree -> stkabs[push(dps, vdin)]

whereas in PSTKPAR, it consists of the sequence
Ipush -> Ofree -> PSTKPAR1[up(cs),ms]

followed by the sequence generated while executing PSTKPAR1. Regardless of the choice
offered to PSTKPAR1, it awaits Id a ta .a v a il at the first step.

Observe that the ordering of events Ipush -> Idata_avail -> Ofree changes to Ipush
-> Ofree -> Idata_avail in PSTKPAR. PSTKPAR issues Ofree one step earlier than STKPAR
to permit the next operation to begin. Thus the traces of PSTKPAR and stkabs are not the
same.

To complicate things further, PSTKPAR supports the same set of experiments, but in a
different way. Consider the sequence of operations Ipush ,Itop and consider how PSTKPAR
of figure 15 would execute it. Two ticks after Ipush, we end up in control state PSTKPAR1
where the choice Itop is accepted. Strictly speaking, a “top experiment” begins at control
state PSTKPAR1— however while this experiment goes on, the state of MEM is getting updated,
with the result that top doesn’t appear to be an observer experiment.

Our solution to these problems is based on the following assumptions:

• Only the sequential ordering of the command events present in the trace sets need
agree. Other events that are related to data availability and modules becoming free
can be ignored while comparing trace sets.

• Assume that every pipelined system has a “nop” event that can be inserted in between
two pipelined operations to get rid of the effect of pipelining. It is possible to artificially
introduce such an operation if it does not exist. For the stack, sde f is such an operation
that already exists.

31

Consider the only pipelined operation push of the stack. (All such pipelined operations
are considered in general.) To establish whether push has been correctly implemented, we
should try to establish the following equivalences between sequences of operations: For all
OP other than push:

• push; sdef; O P = push; OP; sdef
• push; sdef; push; OP = push; push; O P; sdef

The first line says that doing the sequence of operations shown on the left or on the right
on the very-same pipelined system should be treated as being equivalent by all ensuing
operations. The rationale behind choosing the first sequence is the following. The left-
hand side of the first sequence pads a sd ef in between push and O P, thus studying the
implementation of push without pipelining. The right-hand side checks the effect of push
when part of the computation of push is allowed to overlap into OP.

Section Sum m ary

We believe that the use of abstract data types as well as the absence of nondeterminism
contributes to the simplicity of the verification of HOP specifications. Our approach to
verification has similarities to that reported in [Coh88], [Hun87] and [GSS87]. None of these
works consider pipelined modes of behavior.

Pipelined modes of behavior are very commonly employed in high-performance micropro­
cessors. Often pipelining is not fully automated, and so results in the introduction of many
sequencing errors in the initial designs [Wei87]. Since formal verification is not employed
in practice, there is a great danger that some sequencing errors remain even in fabricated
chips despite extensive simulations. To our knowledge no one has considered the verification
of pipelined hardware systems, except in limited domains such as systolic systems [Hen84].
This, in our opinion, is an important area of new research.

5 T h e B a s i c P A R C O M P , a n d P A R C O M P - D C

The operational rules of HOP permit us to simplify the definition of a collection of process
Pi involving the ||, Renaming and Hiding operators into the definition of a single process
P where (i) P does not contain any occurrences of the Renaming or Hiding operators;
(ii) P has the || operators pushed “deep inside it” ; (iii) P does not have any data queries or
assertions in its body; instead, for every data query/assertion pair < dq,da > present in P ,
P has a functional expression in its body. Further, the collection Pi and P have identical
TN sets with respects to their external ports— a fact we have already exploited during formal
verification.

This procedure called PARCOMP is well defined i.e. effective. It always terminates
because:

• The operational rules always effect simplification under a well-founded ordering; this
is true because each operational rule considered considers a process P of the form
ca —► P , and the rule is then recursively applied to P ;

32

• When we encounter a form P[sp] || ... || (where sp and sq are terms) for the
first time, instead of unraveling this form through the rules of HOP, we unravel a more
general form P[x] || ... || Q[t/] where x ,y are variables;

• A collection Pi introduces a finite number of processes through mutual recursion. As
the || operator is “moved inwards” , eventually there will come a stage where we will
re-encounter expressions of the form P[.sp] || ... || Q[-s^]. Regardless of what sp and sq
are, when we re-encounter a form, we need not re-explore the form P[sp] || ... ||
because a most general expansion for this form has already been obtained for the case
where sp and sq are variables.

Hence PARCOMP is an algorithm.
In order to determine how efficient and useful PARCOMP is in practice, we coded it and

tried it out on a number of examples. We conclude that: (i) it is efficient enough to be used
for many purposes; (ii) the single process inferred by PARCOMP is attractive in many ways:

• It is easier to understand because the internal details are hidden;
• It is and more efficient to simulate because internal value communications appear as

functional expressions in the inferred specification; therefore we need not maintain
information regarding port value bindings during simulation;

• Synchronization errors can be detected because synchronization errors usually result
in PARCOMP generating a finite process;

• Only the useful modes of behavior are retained. In particular, the behavioral descrip­
tion of all the “idle hardware” is not retained. Idle hardware includes both unused and
under-utilized hardware— i.e. modules with only part of their operations used.

5 . 1 S t e p s i n t h e B a s i c P A R C O M P A l g o r i t h m

We consider a collection of processes that do not contain any Cond-processes (a more general
definition of PARCOMP is given in Appendix C). All required renamings are assumed to
be already done. We are given the process descriptions of the processes to be composed, as
well as the hiding set HS containing events and ports that are hidden. Then, the steps in
PARCOMP for this problem are:

1. Start all the N processes in their respective starting states.

2. March the processes in unison (lockstep-synchronously) until all A^-tuples of control
states that are equidistant from the starting state have been visited. (A node is at
distance d from the start state if it can be reached via d transitions from the start
state.) Record each such A^-tuple of control states visited as a control state of the
inferred process.

3. In moving from the control state 7V-tuple Sx to the control state A^-tuple Sy, the
following actions are taken:

(a) Collect the actions labeling the transitions going from the ith component of Sx
to the ith component of Sy, for all i in N . Call this collection Cxy.

33

(b) Reduce Cxy by applying the action product operator to its members. Obtain
the normal form D xy such that any pair of elements in D xy is irreducible under
a r>

* •
(c) If there are unsynchronized actions in D xy that are in the hiding set HS, then

mark state Sy as un-reachable from Sx.

(d) Replace the synchronized events of D xy that are in HS by idle.

(e) Collect the result of value communications as value bindings to the variables in
the data query:

i. Represent these bindings as let blocks corresponding to the state Sy.
ii. For multiple writers on a node, apply the bus function to the data assertions

to determine the resultant value on the node.
iii. Since the user is required to indicate each tristatable port in his system, bus

connections of non-tristate ports can be caught.

(f) Recursively call PARCOMP starting at Sy.

4. In the end, remove states that are unreachable from anywhere.

5. If the resulting process is a finite proess, then discover where it becomes STOP, and
for all those points flag a sequencing error, and generate diagnostic information.

5.1.1 Illustration o f P A R C O M P on the push Operation o f stkreal

Consider the controller SCTL, counter CTR and memory MEM of figure 13 to be in their starting
control states. Let us march them around from control state < S C T L , CTR[cs], M E M [m s] >
back to < S C T L ,C T R [cs’] ,M E M [m s] > .

1. The first group of actions to be considered are
Ipush, Omdef, Ocdef, Imdef, Icdef. This simplifies to
Ipush, Smdef, Scdef, and after applying hiding, becomes
Ipush .

2. The second group of actions are
Oup, Omdef, Iup, !cdo * c s , Imdef
which after simplification and applying hiding becomes
Oidle.

3. The third group of actions are
Owrite, Ocdef, Iw rite , va=?cdo, vd=?din, Ic d e f, !cdo=cs
and after simplification and hiding becomes
vd=?din.

4. We then move back to < SC T L, CTR[up(cs)], M EM [w rite(m s,up(cs),vd)] > .

5. There are no other paths that survive for the push operation. For instance, the tran­
sition labeled by

Ipush, Ocdef, Iup, Omdef, Iw r ite ,..

34

The pairs S0,Ti and S i,T 0 need not be considered.

© ©
< .

Figure 16: Illustrating Marching in Unison

is not a feasible transition because while the stack controller is trying to apply the
Ocdef and Omdef events to the counter and memory respectively, the counter and
memory themselves are awaiting Iup and Iw rite. Unsynchronized as well as hidden
transitions get pruned.

5 .1 .2 Heuristics Em ployed by P A R C O M P

• Generating the iV-tuples of states by taking a cross-product is wasteful, as figure 16
shows. We do it by marching in unison; its results are also shown in figure 16.

• A hidden unsynchronized event labeling a transition essentially removes the transi­
tion from the graph. Using this mechanism, many control state iV-tuples become
un-reachable and are removed early.

5 .1 .3 Applications o f P A R C O M P

• Obtaining simpler behaviors during design entry through a schematic entry system.
This way after entering a schematic, the behavior can be inferred, validated, and made
a part of the module library for further upwards composition.

• Simulation can be easily achieved by introducing a tester process similar to that used
by [Mil85b]. The tester process is composed with the system to be tested and the

35

Each cell is ‘M ’

Art A TR

Abl &BR

via copying and renaming.

Figure 17: Divide and Conquer PARCOMP

resultant process can then be run.
• Symbolic execution of the inferred behavior is possible.
• The inferred behavior can be used for formal verification.

5 . 2 A D i v i d e a n d C o n q u e r V e r s i o n o f P A R C O M P

PARCOMP-DC is a potentially faster way of computing PARCOMP by exploiting the ge­
ometrical regularity of arhythmic arrays. We will take a generic arhythmic array structure
and illustrate PARCOMP-DC on it. Due to the shortage of space, we relegate a more inter­
esting example— the LRU matrix— to Appendix A. In this section we derive an expression
for the computational savings possible due to PARCOMP-DC.

Consider the array A shown in figure 17. It consists of a collection of modules M con­
nected in a regular interconnection pattern. For simplicity assume a nearest-neighbor con­
nection that is regular in both the dimensions.

Consider the problem of computing P A R C O M P (A); i.e. the composition of all the M s
constituting A. P A R C O M P is both commutative and associative. Hence, we can split A
into two halves, say A j standing for “the top of A ” and A b , standing for “the bottom of
A ” . Thus,

P A R C O M P (A) = P A R C O M P (P A R C O M P (A T), P A R C O M P (A g)).

36

But P A R C O M P (A b) is easily obtained from P A R C O M P (A t) by renaming the ports of
A t to the corresponding ports of A s- Thus we need compute only P A R C O M P (A t) using
the P A R C O M P procedure; we can then obtain P A R C O M P (A b) by making a copy of the
data structure that represents P A R C O M P (A t), and apply suitable renamings to it.

But the process need not stop at the top-level of division. We can split A t into A tl (the
“left half of A t) and A tr (the “right half of A t) and again exploit the fact that A tr can
be obtained from A Tl through copying and renaming. This gives us a divide-and-conquer
procedure. We depict the execution of this procedure as a tree in figure 17.

PARCOMP-DC is often more efficient than PARCOMP. Let us make an approximate
cost analysis. The worst-case time complexity of PARCOMP is primarily dependent on the
number of control states that we have in a process diagram. Specifically, it can be equal
to the cross-product of the number of control states in each of the processes. Suppose for
simplicity that array A is square, and has N modules of type M , M has C control states in
it, and that N be a power of 2 . Then

cost^parcomp(A) — C N

because we may, in the worst-case, end-up taking a full cross-product of the process diagrams
of the N modules.

Suppose that the modules formed during the division process of PARCOMP-DC, M , ...,
A tli A t , A all have D control states “on the average” ; more precisely D must be the root
mean square value of the number of control states. Then

cost .par comp jdc(A) = log2(iV) X D 2.

This is because we are doing log2(iV) PARCOMPs of two modules at a time, where each of
these modules have, D control states as a root mean square. Root mean square is needed
because we are squaring D within the summation (we are doing the summation log2 (N)
times). We assume (as is the case in our data structures) that copying and renaming a
process description has negligible cost.

Firstly we note that D does not tend to increase as the size of the modules grow. In fact
for the LRU module D was equal to C. Thus if D is close to C and if M is large, then there
is a significant payoff by using PARCOMP-DC.

The behavior inferred by PARCOMP-DC for large arhythmic arrays is not very intuitively
understandable for human readers. We show the result of doing one-level of PARCOMP for
the LRU module in Appendix A. In conclusion, the following approach is suggested for
handling arhythmic arrays:

• Perform PARCOMP of two modules of the array;
• Study the inferred behavior and see if it is verifiable manually or through exhaustive

simulation; (for the LRU module, we discovered a sequencing error by the former
technique.)

• Apply PARCOMP or PARCOMP-DC whichever is faster4. The behavior inferred by
PARCOMP (or PARCOMP-DC) will have complex if-then-else functions. Construct
tabular functions corresponding to these.

• Use these tabular functions for efficient simulation.
• Try to perform formal verification of the whole array by setting up an induction.

4We may race them and pick the winner!

37

6 C o n c l u d i n g R e m a r k s

6 . 1 A D e s i g n M e t h o d o l o g y B a s e d o n H O P

The following steps capture a top-down design methodology that is currently under investi­
gation. While our investigation is still in its infancy, we believe it to be important to show
how we have fused verification with design.

• Write the requirements specification for the module to be designed;
• Identify the submodules that are to constitute the realization;
• Write requirements specifications for the submodules;
• Apply PARCOMP to the requirements specifications of the submodules;
• Follow the HOP verification methodology and verify that the behavior inferred is equiv­

alent to the original requirements specification;
• (Recursively) invoke the HOP design methodology on the submodules, thereby obtain­

ing a circuit and a design specification for them;
• Match the requirements specification for the submodules against their corresponding

design specifications; obtain a definition of the events in the requirements specification
in terms of the events at the design level;

• Propagate this information back to the level of M thereby obtaining a design specifi­
cation for M;

• Apply optimizing transformations to M.

In many of the above steps, we believe that a graphical editor for process diagrams can
be gainfully employed. For instance, in many situations a user could graphically specify
a highly inefficient but functionally correct controller, such as SCTL. After completing a
first design based on it, the optimized version PCTL can be obtained. Some heuristics are
known to us: e.g. “burping” all the idle steps in the inferred process by overlapping actions.
In principle, the approach for pipelining calls for systematically rearranging events labeling
process transitions without violating observational equivalence between requirements and
design specifications. In this way we hope that the rigorous semantics of HOP would help
in design synthesis and optimization.

6 . 2 O n g o i n g a n d F u t u r e W o r k

We have implemented a first prototype of PARCOMP to study its performance on simple
examples. Based on this experience, we are now engaged in developing a more elaborate
implementation of the HOP system. The implementation uses FROBS [Mue87] that supports
object-oriented programming, data activated daemons, and an inference engine. This would
help in watching simulation results in a very flexible manner. Complex trace mechanisms,
such as in logic-state analyzers, can be built. We summarize some of our results to date in
appendix B.

Concurrently we are engaged in the concurrent specification and design of a large ASIC
called the RBC [FTG88b,FTG 88a]. Tackling this large example has benefited HOP greatly.
For example, several arhythmic arrays are present in the RBC. Many important issues such
as modeling through connections satisfactorily, supporting grouping of ports into arrays and
records of ports for convenience, etc. are quite important if we were to manage the complexity

38

of a large specification. We are aiming towards a prototype of both the RBC as well as the
HOP system.

A preliminary design of the RBC was verified by hand using the technique illustrated on
the stack. Realizing the tedium and error-prone nature of the hand-proof, we plan to semi­
automate some of the verification steps in the long run. We plan to study the equational
laws of HOP as well as investigate notions of equivalence among HOP processes.

39

?c : a vector of ports Algorithm: set row; reset col; find

row with all zeros. This row is the LRU.
(See Tanenbaum, OS, Prentice-Hall, 1987.)

rr :

a vector

of ports

The LRU

Latches on indicated edge.

Figure 18: An LRU Matrix

A A n L R U M a t r i x

Figure 18 shows a unit to compute the “Least Recently Used” location, as described in
[Tan87, page 217]. The specification of one cell of this unit, l r u .c e l l , is shown in figure 19.

This unit is meant to operate inside an memory management unit as follows.
Conceptually the algorithm to be followed is the following two-phase algorithm. Initially

the matrix starts with all zeros. Whenever a memory address is accessed, a unary represen­
tation of the address is fed to both the ?r and ?c inputs. The bits in the indexed row are first
set. Thereafter the bits in the indexed column are reset. The LRU is always pointed by that
row that has all zeros. After four distinct address accesses, there is guaranteed to be such
a row. The implementation does not use the two-phase algorithm directly; rather priority
logic resident in each lr u _ c e ll decide whether to set or to reset the cell. The description
in figure 19 details the algorithm.

We performed one step of PARCOMP-DC by hand and obtained the description shown
in figure 20 for the behavior of two cells acting together. This specification can be used for
simulation and design verification. Following this, we can mechanically derive the behavior
of the entire array, represent it as a tabular function and employ it for simulation.

40

— This spec, c le a r ly shows that lr u c e ll changes i t s datapath
— sta te during the r is in g edge o f the clock and puts out a
— value on port Inextout during the fa l l in g edge. Thus during the
— f a l l in g edge, the external la tch cam latch in the r e s u lts .
— The ‘ ‘ i f ’ ' functions used herein have obvious implementations
— using combinational lo g ic . In addition , each lr u c e ll has a one­
— F lip -f lo p . D etails availab le from the author upon request.

ABSPROC lr u c e ll
PORTS ?previn , ?rowin, ? c o lin , Inextout : BIT
CLOCKS sin g lep h ase(ck ,n ot(ck))
EVENTS ckrise = ck

c k fa ll = not(ck)
PROTOCOL

lr u c e ll [dps] <= c k r ise , vcolin = ?c o lin , vrowin = ?rowin
-> lr u c e l l l [i f (v c o l i n ,0 ,

if(v r o w in ,1 , dps))]
l r u c e l l l [dps] <= c k fa l l , vprevin = ?previn,

Inextout = i f (v p r e v in ,1 , dps) -> lr u c e ll [c
END lr u c e ll

Figure 19: Specification of the lru_cell module

— Two lru cells as shown are subject to a PARCOMP. The result is shown as an absproc.
— These ?colin ports are together regarded as a single VECTOR PORT ?colin .

— ?co lin [0] ?co lin [l]
- - I I
— v v

, -------------

->l
I dps[1]

->l
|-------------

! nextout
— >

— ?rowin I------------
........................ >1
— I dps[0]
— ->|
— I I...............
— I
— gnd (internally grounded)

ABSPROC twolcs
PORTS ?rowin, ?c o lin [0] , ? c o lin [l] , fnextout : BIT
CLOCKS singlephase(ck,not(ck))
EVENTS ckrise = ck

ckfa ll * not(ck)
PROTOCOL

twolcs [dps[0], dps[l]] — Fully expanded form d p s[0],[l] is for convenience
<• ckrise, vcolin = ?colin , vrowin * ?rowin

-> twolcsl [if(v c o lin [0] , 0 ,
if(vrow in ,1 ,

dps [0])) ,
i f (v c o l in [l] , 0 ,

if(vrow in ,l,
d p s[l]))]

twolcsl [dps[0] , dps[l]]
<= c k fa ll, Inextout = if(v c o lin [0] , i f (v c o l in [l] , 0 ,

if(vrow in ,1 , dps[1])
) .

if(vrow in ,1 ,
if(d p s[0] , l ,

i f (v c o l in [l] , 0 ,
if(vrow in ,1 , dps[1])

)))
>.

twolcs[dps[0] , dps [1]]

— These i f forms may be converted into a tabular function that is
— sequentially searched during simulation. So the simulator doesn’ t
— have to keep track of the internal wires of the LRU matrix, and
— hence becomes e ffic ie n t.
END lru cell

Figure 20: Specification of the lru_cell module

42

B R e s u l t s T o D a t e

• An initial design of the RBC chip has been verified by hand.

• PARCOMP has been coded in Lisp. Applying it to the stack example considered in
this paper resulted in the inferred absprocs that we have shown. The execution time
was in the range of a few seconds.

• Other modules specified in HOP include a Translation Lookaside Buffer and the internal
circuitry of the RBC chip that consists of about ten large arhythmic arrays.

43

C A S p e c i f i c a t i o n o f P A R C O M P

An expression Hide H S in || { P . f X i] , Cj[Xj\,...} fori € { l . .m },_7 € { l ..n } .
Cj are conditional processes of the form Cj[X~] = i f qj then Tj[gj(X7)]e lse Fj[hj(X~)]
and Pi are non-conditional processes of the form P,[^i] = y, : initialsi —►
Each Pi offers a set of initial choices initialsi and for each choice yi that is offered,
the future behavior of P, is Ri(yi). H S is the Hidden Set, the set of events and ports
hidden from the parallel composition.

A behaviorally identical process P\X~i, ..., X j , ...].

A done-list is maintained for each parallel composition || {P,-[Xi],...} that
las already been computed. Upon getting a call for performing parallel composition,
the done-list is first consulted.

• If the requested parallel composition is in the done-list, return. Else enter it in the
done-list and proceed as follows.

• Combine all conditional processes into one conditional process C. Combining two
conditional processes is done as follows:

Ci\X^\ = i f then e lse i^ /i^ X T)]

C2 j = i f q2 then T2[g2(X 2)] e lse - 2̂[^2(^ "̂2)]

C O T II C a T O = ^ (9i A 9 2) then J ^ p Q] || T2[g2(X 2)\

e lse i f (qi A not(q2)) then Ti[gi(X[)} || F2[h2Q Q]
else ...etc. (all four combinations)

• Now we are left with the task of computing Hide H S in || {P ,[X i],..., C }. Let C be
of the form

i f qi then (XT)]else i f q2 then C2[g2(X 2)]etc.

|| {P,-[Xi],..., C } reduces to a conditional process with as the conditions. This
conditional has in it parallel compositions of the form || {P jfX i],..., C ,}. that is (recur­
sively) computed. Eventually we are faced with composing non-conditional processes
in parallel. We take this up next.

• Consider || {P.-fX,],...} . Let each P, be

P , [^ = caJ -> i?,1 [/ / (1 7)]

I caj -> R?[ff(Xl)]

I c a ? R ? \ f ? P Q]

• Generate tuples
T = < ca?1, ca2 ...ca"m >x2 - ,x m

Output:

Method:

Input:

44

i.e. a tuple of the Xith initial compound action offered by P\, the X2^h initial compound
action offered by P2, etc. This tuple T is assumed to be the irreducible form arrived at
after applying the action product rules of figure 8 . According to the rule for parallel
composition Parcomp all such tuples would become the initial choices of the resultant
process. Following such choices, the resultant process would continue to behave like
II {■^ri [/ f 1 (^ i)]-^2S[/ f a(^)]) - " } - However using the hiding information H S , we can
prune many of these choices. In particular,

- those tuples T that contain unsynchronized events e or e that belong to H S are
dropped, and the corresponding arm of the synchronization tree is pruned;

- those tuples T that contain synchronized events f that belong to H S are replaced
by T[idle/f\.

In computing

the bindings generated by taking action products of the members of T are taken into
account. Specifically, we construct a let block containing these bindings. □

45

R e f e r e n c e s

[BP88]

[Bry84]

[BW]

[CGM86]

[Coh88]

[FT G 88 a]

[FTG88b]

[GHM78]

[Gop]

[Gop86]

[Gop87]

[Gor81]

Graham Birtwistle and P. A.Subrahmanyam. VLSI Specification, Verification and
Synthesis. Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

Randall E. Bryant. A Switch Level Model and Simulator for MOS Digital Sys­
tems. IEEE Transactions on Computer, 0-33:160-177, February 1984.

Alan B.Davis and Uri Weiser. On Modeling Regular Arrays. (This is not an exact
reference.).

Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware Specification
and Verification using Higher Order Logic. In Processings of the IFIP W G 10.2
Working Conference on “From HDL Descriptions to Guaranteed Correct Circuit
Designs”, Grenoble, August 1986, North-Holland, 1986.

Avra Cohn. A Proof of Correctness of the VIPER Microprocessors: The First
Level. In Graham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis, pages 27-71, Kluwer Academic Publishers, Boston,
1988. ISBN-0-89838-246-7.

Richard Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan. Design and Per­
formance of Special Purpose Hardware for Time Warp. In The Computer Archi­
tecture Conference, Honolulu, 1988. (Accepted for publication).

Richard Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan. The Roll Back
Chip: Hardware Support for Distributed Simulation Using Time Warp. In The
Society for Computer Simulation Multiconference, San Diego, CA, February 1988.
(To Appear).

John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract Data Types and
Software Validation. Communications of the ACM, 21(12):1048-1064, December
1978.

Ganesh C. Gopalakrishnan. The Specification and Verification of the Roll Back
Chip. Available Upon Request From the Author.

Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Sys­
tems. PhD thesis, Dept, of Computer Science, State University of New York,
December 1986. (Also Tech. Report UU-CS-86-117 of Univ. of Utah).

Ganesh C. Gopalakrishnan. Synthesizing Synchronous Digital VLSI Controllers
Using Petri nets. In International Workshop on Petri Nets and Performance
Models, Madison, Wisconsin, August 1987.

Michael Gordon. Register Transfer Systems and Their Behavior. In Proc. of
the 5th International Conference on Computer Hardware Description Languages,
1981.

46

[Hen8Cl]

[Hen84]

[Hoa85]

[HU79]

[Hun87]

[ISD88]

[Joh84]

[Kah74]

[Kar84]

[Lin85]

[LS75]

[MH85]

[Mil80]

[GSS87]

[Mil82]

Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From
Algebraic Specifications to Correct VLSI Circuits. In D.Borrione, editor, From
HDL Descriptions to Guaranted Correct Circuit Designs, pages 197-225, North-
Holland, 1987. (Proc of the IFIP WG 10.2 Working Conference with the same
title.).

Peter Henderson. Functional Programming. Prentice Hall, 1980.

Matthew Hennessy. Proving Systolic Systems Correct. Technical Report CSR-
162-84, Department of Computer Science, University of Edinburg, June 1984.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1985. Definitive discussion of CSP, circa 1985.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979.

Warren A. Hunt Jr. The Mechanical Verification of a Microprocessor Design.
In D. Borrione, editor, From HDL Descriptions to Guaranted Correct Circuit
Designs, Elsevier Science Publishers B.V. (North Holland), 1987. (Proc of the
IFIP W G 10.2 Working Conference with the same title.).

I.S.Dhingra. Formal Verification of a Design Style. In Graham Birtwistle
and P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 293-321, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246-7.

Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. The
MIT Press, 1984. An ACM Distinguished Dissertation-1983.

Gilles Kahn. The Semantics of a Simple language for Parallel Programming. In
IFIP-74 , North-Holland, 1974.

Kevin Karplus. A Formal Model for MOS Clocking Disciplines. Technical Re­
port 84-632, Cornell University, Dept, of Computer Science, Cornell Univ., Ithaca,
N Y, 1984.

Gary Lindstrom. Functional Programming and the Logical Variable. In Pro­
ceedings o f the 12th A C M Symposium on Principles of Programming Languages,
pages 266-280, January 1985.

Barbara Liskov and S.N.Zilles. Specification Techniques for Data Abstractions.
IEEE Transactions on Software Engineering, SE-1(1):7-19, 1975.

M.Lam and H.T.Kung. A Transformational Approach to Systolic System Design.
IEEE Computer, 18(2), 1985.

Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
LNCS 92.

Robin Milner. Calculii for Synchrony and Asynchrony. Technical Report CSR-
104-82, Univ. of Edinburg, 1982. Internal Report.

47

[Mil83] George J. Milne. CIRCAL: A calculus for circuit description. Integration, (1):121—
160, 1983.

[Mil85a] George J. Milne. CIRCAL and the Representation of Communication, Concur­
rency, and Time. A C M Transactions on Programming Languages and Systems,
7(2):270-298, April 1985.

[Mil85b] George J. Milne. Simulation and Verification: Related Techniques for Hardware
Analysis. In Proceedings of the Seventh International Conference on Computer
Hardware Description Languages, pages 404-417, North-Holland, 1985.

[Mos83] Benjamin C. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Stanford
University, July 1983. Technical Report.

[Mue87] Eric G. Muehle. FROBS: A Merger of Two Knowledge Representation Paradigms.
Master’s thesis, Dept, of Computer Science, University of Utah, Salt Lake City,
UT 84112, December 1987.

[Noi82] David Noice. A Clocking Discipline for Two-Phase Digital Systems. In Proc.
International Conference on Circuits and Computers, pages 108-111, 1982.

[Pat85] Dorab Patel. nuFP: An Environment for the Multi-level Specification, Analysis
and Synthesis of Hardware Algorithms. In Proceedings of the Functional Pro­
gramming and Computer Architecture Conference, Springer-Verlag, LNCS 201,
September 1985. Nancy, France.

[She84] Mary Sheeran. muFP, a Language for VLSI Design. In Proceedings of the ACM
Symposium on Lisp and Functional Programming, pages 104-112, 1984.

[She85] Mary Sheeran. Design of Regular Hardware Structures Using Higher Order Func­
tions. In Proceedings of the Functional Programming and Computer Architecture
Conference, Springer-Verlag, LNCS 201, September 1985. Nancy, France.

[Tan87] Andrew S. Tanenbaum. Operating Systems: Design and Implementation. Pren­
tice Hall, Englewood Cliffs, NJ, 1987. ISBN 0-13-637406-9.

[Wei87] 1987. (Personal Communication with the Chief Architect of NS-32032.).

