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Abstract 

Micropipelines, self-timed event-driven pipelmes, 
are an attractivp way of structuring asynchronous sys~ 
terns that ex,hibit many of the advantages of general 
asynchronous systems, but enough structure to make 
the design of significant systems practical. As with any 
design method, testing is critical. We present a tech­
nique for testing self-timed micropipelines for stuck-at 
faults and for delay faults in the bundled data paths 
by modifying the latch and control elements to include 
a built-in scan path for testing. This scan path al­
lows the processing logic in the micropipeline, as well 
as the control of the micropipeline, to be fully tested 
with only a small over'head in the latch and control cir­
cuits. The test method is very similar to scan testing 
in synchronous systems, but the micropipeline retains 
its self-timed behavior during normal operation. 

1 Introduction 

Pipelines are pervasive in modern digital systems. 
As a means of increasing performance, they appear 
in almost all aspects of system architecture from the 
instruction and arithmetic units of general purpose 
processors, to special purpose hardware for graphics 
processing, signal processing, image compression and 
error detection. An interesting class of pipeline cir­
cuits was described by Ivan Sutherland in his Tur­
ing award lecture from 1989 [13) which he termed mi­
cropipelines. These pipelines are asynchronous event­
driven pipelines that can be used to build very fine­
grained pipeline structures, Micropipelines are flow­
through elastic pipelines that are controlled by local 
handshaking rather than a global clock signal. The 
asynchronous nature of micropipelines allows them to 
be free of many problems related to the clock that 
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plague synchronous pipelines. In particular, the pro­
cesses that read from and write to the micropipeline 
need not be synchronized. The issue of whose clock 
should control the pipeline is avoided, and thus is­
sues of clock synchronization are also avoided. A 
rnicropipeline is also free to take advantage of data­
varying delay in the processing at each stage. Rather 
than set the clock period to the maximum delay in­
curred at any pipe stage, the individual pipe stages 
in a micropipeline finish as quickly, or as slowly, as 
the current data require. This allows the processing 
in the pipeline to occur at rates closer to the aver­
age processing time than the worst-case time which 
can mean significant performance improvements in 
some systems. Additional advantages of asynchronous 
circuits include freedom from a variety of clock re­
lated timing problems, simpler system composition, 
increased robustness in the face of process and envi­
ronmental variation, and the potential of low power 
consumption. 

Although micropipelines seem to have many advan­
tages, the fact that they are asynchronous circuits 
may, in fact, cause concern. One specific area for 
which asynchronous circuits seem to lag behind syn­
chronous circuits istn testing. Testing asynchronous 
circuits which are nol; subject to a global clock is tracli­
tionally considered difficult when compared to testing 
synchronous circuits. There are a number of tech­
niques for integrating testability into system design, 
but many of these traditional testing methods used 
for synchronous circuits are not directly applicable to 
non-clocked asynchronous circuits. As a result, many 
asynchronous circuits do not employ design for testa­
bility techniques. In this context new methods are 
required to test asynchronous circuits. In this pa­
per a design-for-test (DFT) approach is proposed to 
test micropipelines. Our approach involves modify­
ing the asynchronous latches in the data path and 
the micropipeline control structures such that the mi­
cropipelines can be tested in a way similar to that in 
a synchronous pipeline. In particular, a scan path is 



established through the latch and C-element circuits 
that allows scan testing of the micropipeline. The mi­
cropipeline uses a global scan clock for only, 
and then reverts to fully asynchronous mode during 
normal operation, preserving the benefits of that type 
of operation. 

In the next section the structure and operation of 
micropipelines is described in general. The proposed 
test method and the modifications made to the cir­
cuit elements are discussed in Sect,ion 3. Section 4 
describes the test procedure and Section 5 contains a 
comparison with existing work. Section 6 describes an 
example testable micropipelined multiplier and Sec­
tion 7 concludes the paper with a discussion of t.rade­
offs involved in this style of testing micropipelines. 

2 Micropipelines 

Micropipelines are asynchronous, event driven, 
elastic pipelines that mayor may not contain process-

between the pipe stages. If no processing is done 
between the pipe stages, the micropipeline reduces to 
a simple first-in first-out (FIFO) buffer. A block dia­
gram of a generic micropipeline is shown in Figure 1. 
It consists of three parts: a control network consist­
ing of one C-element per micropipeline stage, a latch 
in each stage, and possibly some processing logic be­
tween the stages. The C-elements control the action 
of the micropipeline by acting as protocol preserving 
AND gates for the transition control signals of the 
micropipeline. These gates, drawn as an AND gate 
with a C inside, will drive their output low when both 
inputs are low, and high when both inputs are high. 
When the inputs are at different states, the output is 
held at its previous level. Note that one input of each 
C-element used in Figure 1 is inverted. Thus, assum­
ing that all the control signals start low, the leftmost 
C-element will produce a transition to the leftmost 
latch when the incoming request (RIN) line first makes 
a transition from low to high. The acknowledge from 
the latch will produce a similar request through the 
next C-element to the right. Meanwhile, the leftmost 
C-element will not produce another request to the left­
most latch until there are transitions both on RIN 
(signaling that there are more data to be accepted) 
and the Ack from the next latch to the (signal­
ing that the next stage has finished with the current 
data). Each pipe stage acts as a concurrent process 
that will accept new data when the previous stage has 
data to give, and the next stage is finished with the 
data currently held. 
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Figure 1: A Micropipeline 

Note that the micropipeline structure is a flow­
through design. The data entering at the left of Fig­
ure 1 will flow through each stage of the micropipeline 
on its way from input to output. When the data reach 
the rightmost latch, a transition is produced on the 
ROUT line to indicate that there are data available to 
be read. Once those data have been read, the reader 
produces a transition on the AOUT line to allow new 
data to enter that pipeline 

The pipelines considered in the paper use two-phase 
transition signaling and bundled data paths. Two 

transition signaling means that a transition on a 
control line from low to high or from high to low is con­
sidered as an event and no distinction is made between 
two type of transitions. Bundled data path means 
that data must be stable at a latch before the latch­
ing control signal arrives. This condition is similar 
to, but weaker than the equipotential constraint [10]. 
The transition control signal indicates that the bun­
dled data path is valid, and that the latch may update 
its contents. The delay elements shown in Figure 1 
model the delay required to satisfy this constraint as 
the data move through the at each stage. The 
logic could of course be self-timed and generate a com­
pletion signal, which would eliminate the need for the 
delay at the expense of more complicated logic for de­
tecting completion of the processing. Latches llsed in 
such circuits are transition latches which latch new 
data upon receipt of a request event and produce an 
acknowledgment event when done. A description of 
the operation of these latch and C-element circuits. 
as well as schematics, are described in the following 
section. 

3 Scan design 

To modify a micropipeline for test.ability, we pro­
pose to modify the latch and C-element circuits to in-



elude a built-in scan chain. This scan-chain will allow 
logic in individual micropipeline latches to be tested 
independently using techniques well known from test­
ing synchronous circuits. 

3.1 Latch design 

Latches used in transition-controlled micropipelines 
must latch normal data values in response to transi­
tion control signals. These latches [2, 1:3) are typi­
cally controlled by a pair of signals called captu1'e( C) 
and pass(P). These control signals must alternate and 
control whether the latch is currently transparent, or 
holding a value. The initial condition, where the val­
ues of capture and pass are the same determines the 
type of the transition-controlled latch. If the latch is 
transparent in this state, the latch is known as a tmn­
sition latch normally transparent (TLNT) and if the 
initial condition is to be holding the current state, the 
latch is known as a transition latch normally opaque 
(TLNO). These latches are identical in their operation 
except for their initial conditions. If the latch is cur­
rently opaque, the next transition should be on the 
pass wire, and if currently transparent, should be on 
the capture wire. In our circuits, the micro pipeline 
latches can be of either type. The circuit for a TLNO 
latch is shown in Figure 2 (a) . I t is sometimes con­
venient to build latches with a request-acknowledge 
interface instead of the capture-pass interface. This 
is readily accomplished using a transition latch and a 
bundling delay. The pass signal is delayed to become 
the capture signal with a bundling delay to make sure 
that the value to be captured has had time to traverse 
the feedback path of the latch. 

Because the transition latch includes the equivalent 
of two simple latches in its implementation, it can be 
converted into a scan latch by providing a multiplexed 
serial input and making the connection shown in Fig­
ure 2(b). In this way the asynchronous transition latch 
becomes a muxed master/slave fiip/fiop. The normal 
and scan mode operation is controlled by SCAN input, 
which is global scan control like that in synchronous 
scan designs. The latches can be designed such that A 

the latching takes place on either low or high value of .. 
the control signal during scan mode. 

The basic and scan version of these latches have 
been designed in CMOS using Magic layout tools and 
simulated in SPICE for a 2 micron process. The area 
and performance overheads are shown in Figure 4. 
The transistors column gives the overhead in terms 
of transistors while the area column gives overhead in 
terms of square lambda for our implementation. The 
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Figure 2: Basic and Scan Versions of a Transition 
Latch 

delay column gives the average time between occur­
rence of a request transition and receipt of correspond­
ing acknowledgment transition for rising and falling 
request transitions. 

3.2 C-Element design 

A transistor level schematic of a generic C-element 
is shown in Figure :3(a) [1:3, 14). The first column of 
transistors at the left of this schematic implement a 
dynamic C-element. The transistors on the fight im­
plement a latch stage to make the C-eJement static. 
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Figure 3: Basic and Scan Versions of a C-elernent 



Attribute Latch I C-element 
Basic I Scan Basic I Scan 

Transistors 
34 I 42 I l4 I 16 Area 34656 40432 5776 6080 

Delay 3.58ns 3.63ns 2.07ns 2.25ns 

Figure 4: Area and Performance Overheads 

The feedback transistors in the latch stage driven by 
the C-element inputs are weak and are used to pro­
vide feedback when the dynamic stage is not driving 
the internal node. This C element has been modified 
by bypassing the B input transistors in the input stage 
in scan mode. Thus in scan mode input stage passes 
a directly to the output stage. The operation between 
normal and scan mode is selected by the SCAN control 
signal as in the latch case. The modified schematic is 
shown in Figure 3 (b) and requires only two extra tran­
sistors. The basic and scan versions of C element have 
also been designed using Magic layout tools and simu­
lated using SPICE for a 2 micron process. The results 
are shown in Figure 4. Here the delay represents the 
average time after both inputs have changed to the 
time when the output changes. The area is again in 
terms of square lambda units. 

4 Test methodology 

4.1 Organization of scan path 

A micropipeline with a scan path included is shown 
in Figure 5. Bold lines indicate the control path in the 
test mode which forms the clocking network for scan 
path. The latches in the micropipeline are connected 
in a scan path with SIN input coming to the first stage 
on the left and SOUT coming out from the last stage 
on the left. The latches are enabled on alternate tran­
sitions of the control signal starting with the latch on 
the right which is enabled on a high to low transition. 

The C-elements used are such that they pass their 
negated input onto the output in SCAN mode. This 
way the control path forms a clocking network for the 
scan path with AOUT being the clock input. Note 
that the clock runs in the opposite direction to that 

of data: the clock first reaches the stage closest to 
the output and then cycles through the stages to the 
AIN output. Also note that the clock value is inverted 
as it passes through each C-element, as it is incident 
on the negated input of the C element. This is why 
latches with different enabling properties are used in 
the alternate stages. 
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Figure 5: Micropipeline with Scan Path 

The reason for routing the SCAN clock in the re­
verse direction from the data is twofold: First, while 
testing the processing logic the preceding stage holds 
the test vector while the following stage serves the pur­
pose of being the observation point. If the clock were 
run in the same direction as the data, the test vector 
would have changed its value during test before the 
response had been captured in the observation stage. 
This is because the clock would have reached the pre­
ceding stage before cycling to the next stage. The 
second reason is related to efficiency. By running the 
test clock backwards we have removed the effect of the 
bundling delays, so we can run our test clock at higher 
rate for shifting the patterns in and out. 

4.2 Test procedure 

Testing Micropipelines involves testing for stuck­
at faults in the circuits and testing for bundling con­
straint violations which is similar to delay testing in 
synchronous circuits at each stage. The procedure for 
testing for these two types of'faults is descri bed below. 

4.2.1 Testing for stuck-at faults 

There are three parts of a micropipeline that must 
be tested: the processing logic between the stages, 
the control logic that controls the micropipeline in 
normal operation (the C-elements), and the latches 
that hold the data values in the micropipeline. The 
teBt procedure for each of the three components of 
the micropipelines is described below. Note that the 
procedure is very similar to that used in synchronous 
circuits. The asynchronous micropipeline uses a syn­
chronous test mode, but reverts to fully asynchronous 
operation in normal mode preserving the benefits of 
asynchrony. The following three tests will fully test 
each net in the micropipeline for stuck-at faults. 



Testing the processing logic 

The processing logic is assumed to be combinational 
and is tested using the following steps. Intuitively, 
the micropipeline is filled with values that become the 
inputs to the processing logic at each stage, and the C­
elements are left in a state where the pipeline state is 
full. The circuit is returned to normal mode, and one 
item is removed from the pipe which latches the val­
ues from each bundle of processing logic into the next 
micropipeline latch. The circuit is returned to scan 
mode and the results are shifted out and compared 
with the expected results. The test vectors for the 
combinational processing logic at each stage of the cir­
cuit may be generated with standard test-generation 
programs [1]. The detailed operation is as follows: 

1. Put the micropipeline into scan mode by asserting 
the SCAN signal (SCAN = 1). 

2. Shift the test vector into the scan path vec-
tors can be generated using any conventional test 
pattern generator) by clocking AOUT. Clocking 
consists of the pattern A 0 UT = 0 --7 1 --7 O. 

3. Set RIN = 0 if the number of stages in the pipeline 
is odd otherwise set RIN = 1. 

4. Return the circuit to normal operation mode 
(SCAN = 0). At this point the inputs to the 
latches come from the processing logic outputs 
and the C-elements return to their normal opera­
tion. The value of the C element outputs in each 
stage are those which occur when the pipeline 
is full under normal operation with ROUT be­
ing high and unacknowledged. In this stage when 
the acknowledgment arrives on AOUT it passes 
through all the stages up to AIN. 

5. Set AOUT= 1. As described in the previous step, 
this ack transition trickles through all the stages 
of the pipeline making latches to capture the out­
puts of their processing logic into their rnaster 
stage" 

6. Return the circuit to scan mode (SCAN = 1). 

7. Set A 0 UT = O. This causes the latches to copy 
the value from their master stages to their slave 
stages. 

8. Clock AOUT to shift out the outputs of logic 
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Testing the control logic 

The part of the control logic consisting of C-elements 
and the nets that connect them is tested concurrently 
with above steps. The C-elements in the even stages 
i.e. 0,2,4 ... starting from the right side are tested 
for a 1 --7 ° transition, while the C-elements in the 
odd stages 1,3,5 ... are tested for a 0 --7 1 transition. 
Any stuck-at-O fault on the complemented input or 
stuck-at-l fault at the output of the C-elements in the 
even stages will result in no transition being produced 
on the A IN line when the the A 0 UT is toggled in the 
normal mode. The same is true for stuck-at-l faults on 
the complemented input and stuck-at-O the output of 
the C-elements in the odd stages. In order to test the 
control network for the remaining part, the pipeline 
is put into another state where the micropipeline is 
full with AOUT == l. In this state the values on the 
C-element outputs are exactly opposite to that in the 
previous case. The pipeline can be brought to this 
state by putting it into scan mode and setting AOUT 
= 1. To test for these remaining faults the pipeline 
is returned to normal mode and AOUT is set to O. 
This causes a 0 --7 1 transition on the C-elements in 
the even stages and a 1 --7 0 transition in the odd 
stages, which tests the nets in the control part for the 
remaining faults. 

Testing the latches 

The latches are tested using the fault model proposed 
in [8]. This work models two types offaults for latches 
of this type: stuck-at--capture and stack-at-pass. In 
the stuck-at-capture model the storage elements as­
sume a particular value forever. In the stuck-at-pass 
model the latch fails to latch any data and always 
passes the input to output. 

The latches can be tested for the above faults us­
ing a shift operation. Stuck-at-pass faults can be de­
tected by shifting an alternating 0-1 pattern through 
scan path. Stuck-at-capture faults are equivalent to 
stuck-at-i fault, where i is the value being permanently 
captured in the latch. Stuck-at-capture faults can be 
detected by shifting Os for stuck-at-l faults and Is for 
stuck-at-O faults. 

In these steps, however, the net segment feeding 
the processing logic is not tested, but a fault on that 
segment is equivalent to the fault on the input of the 
processing logic, and hence gets tested along with the 
processing logic. 



4.2.2 Testing for bundling constraint viola­
tions 

As mentioned earlier, testing for bundling constraint 
violations is similar to path delay testing in syn­
chronous circuits. In synchronous circuits a path de­
lay fault is said to have occurred if delay through any 
path in the combinational logic between two latches 
exceeds the clock period [12]. The corresponding be­
havior in micropipelines is that a bundling constraint 
is violated if any path in the combinational logic be­
tween two stages has greater delay than the bundling 
delay. However in micropipelines the bundling delay 
in each stage is not the same, as it is in synchronous 
case where the delay is measured against the global 
clock everywhere in the circuit. (Of course, ifthe pro­
cessing logic between the micropipeline stages is itself 
self-timed (generating a completion signal when the 
logic has computed a result) then there is no bundling 
constraint to test.) 

Various methods have been proposed in the litera­
ture for robust path delay testing in synchronous cir­
cuits [6, 9, 11]. All these methods require a two pat­
tern test to test a path. The first pattern is used to 
setup the values in the circuits such that when the 
next pattern is applied a transition is produced on the 
path under consideration and propagated to the out­
puts. These patterns are required to have a property 
that propagation of the transition through the path is 
not invalidated by the delays in the other part of the 
circuits. 

The test procedure used in these tests is first a pat­
tern is applied to the combinational block and the cir­
cuit is allowed to settle. The second pattern is then 
applied at time tl and the output latch is clocked at 
time t2 such that (t2-tl) models the clock period in 
the circuit. 

Three mechanisms have been proposed in the lit­
erature for applying the two pattern test described 
above in a standard scan environment. The first ap­
proach requires use of an enhanced scan flip/flop which 
can store two values at one time corresponding to two 
patterns [4, 5]. This approach is very expensive in 
terms of area if the number of latches in the design is 
large. In the second method, a second pattern is de­
rived by shifting in the scan path [15]. This method 
is limited in the sense that it is not always possible 
to derive the second pattern just by shifting for any 
arbitrary combinational circuit. The third method de­
scribed in [3] exploits the pipeline property of the cir­
cuits. In this method a pipeline is fully delay fault 
testable if individual combinational blocks are delay 
testable individually and if the blocks can produce all 
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possible output combinations. In this case the first 
pattern is applied by shifting through the scan path 
while the second pattern is derived from the combi­
national block in the previous stage. This can be ap­
plied to the block under test by returning the circuit 
to normal mode and then clocking the circuit once. 
so that the output of the previous stage gets latched 
into the input latch of the block under consideration. 
The output of the block uncler test is latched after a 
time equal to the clock period and later scanned out. 
The condition that combinational blocks can produce 
all possible combinations can be handled during the 
synthesis process [3]. If an output combination is not 
possible, then it implies that this output is a don't 
care for the circuit. The circuit can then be optimized 
with this additional don't care condition. 

The third method discussed above is used to test 
micropipelines. In this method, the patterns can be 
shifted in the scan path such that pattern (vi) is ap­
plied to the target block and another pattern (v3) is 
applied to the block B previous to the target block in 
the pipeline, such that B(v3)=v2 which is the second 
pattern required to test a path in the target block. 
The circuit is then returned to normal mode and a 
reg event is applied to the micropipeline. This causes 
each pipeline latch to capture new inputs after a de­
lay equal to bundling constraint. If any path in target 
block has a delay fault i.e. has delay more than the 
target fault, then the values captured by the latch at 
the output of that block will not be correct which can 
be scanned out to verify. 

5 Comparison with existing techniques 

The only published work in testing micro pipelines 
is in [8] where only stuck-at faults were considered and 
no timing faults resulting in bundling constraint viola­
tion were tested. In their approach the TLNT (Tran­
sition Latch, Normally Transparent) type of latches 
are used in the micropipeline and the processing logic 
between all the stages in the micropipeline is assumed 
to be lumped together for testing. Because the latches 
are transparent in the initial case, the pipeline is trans­
parent from input to output after initialization and the 
entire logic path may be tested by applying vectors at 
the input to the micropipeline and observing results 
at the output of the micropipeline. This approach of 
lumping all the logic in the micropipeline together for 
testing it has two major drawbacks: the time required 
to generate the test vectors is much larger (in fact, 
the test pattern generator may fail to generate tests 



for some otherwise detectable faults because of cir­
cuit complexity), and testing the processing logic in a 
lumped fashion will require a lower test clock speed on 
the automatic tester to account for the delay through 
the lumped block and latches. 

In contrast, using our approach the processing logic 
between the stages is tested separately, so the test 
generation requires less time and the tester clock rate 
is determined only by the delay through the latches. 
Of course, as in all scan based approaches, the test 
application time will increase due to the time taken 
by the shifting. 

In the approach of [8], the latches in the mi­
cropipeline are tested by a two pattern test for stuck­
at-pass faults, where, to test for faults in a latch in 
stage i, enough elements are pushed in the pipeline 
such that the pipeline is completely full from stage i+ 1 
to the last stage. At that point another vector is ap­
plied to the micropipeline which causes stage i to latch 
a certain value. Then the next vector is applied to the 
pipeline so that if there is a fault at the target latch 
its output will be different than it would have been in 
fault free case. The effect of the faults are then prop­
agated through the processing logic of the following 
stages. Implicit in this procedure is the assumption 
that the combinational logic does not have any redun­
dant faults. This approach is very complex, as each 
latch may have to be tested individually, and every 
time the test setup will be required to follow above 
steps. Also fault propagation through the combina­
tional block has the implication that certain faults in 
latches may not be detectable due to redundant faults 
in the processing logic. In contrast our approach is 
very simple involving only shifting. 

Our approach to test the control path (C-element 
network) is similar to their approach. 

6 Example 

A micropipelined version of a 4X4 multiplier shown 
in was designed using View Logic tools to test the ideas 
described in this paper. The same circuit was also 
coded in VHDL at a structural level for test genera­
tion purposes. The Attest Software Inc. software was 
used for test pattern generation. Tests were gener­
ated first for all the stages being lumped together and 
then for individual stages. A summary of test genera­
tion results is shown in Figure 7. In this table module 
Mult represents the lumped version and the individual 
stages represent our approach of testing each stage in­
dependently. In this table stage2-3 represent stage 2 
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Figure 6: A 4X4 Micropipelined Multiplier 

Module Test generation Time No. of Vectors 
Mutt 8.2see 30 
stageO .lsee 7 
stage 1 .lsee 13 
stage2-3 Asee 19 
stage4 .!5sec 17 

Figure 7: Test generation statistics for Micropipelined 
Multiplier 

or 3. Since these stages are identical, test generation 
has to be done for only one of them. The test genera­
tion time includes time taken for test generation and 
time taken for fault ~;imulation. The vector column 
indicates the total number of vectors required for the 
faults that are detectable. 

As shown in the table the total test generation time 
for the stages is much less than that required when 
the tests are generated with all the stages lumped to­
gether. The test vedors for various stages are con­
catenated to form a single scan vector. The number 
of times vectors have to be scanned in, which is equal 
to maximum over number of vectors required for any 
single stage, is also less than number of times tests to 
be applied in lumped mode. 

7 Conclusions 

We have presented a technique for testing self-timed 
micropipeline circuits using a built-in scan path. The 
event-driven latches used to build micropipelines are 
readily converted into scan latches with only a small 
overhead. This allows the processing logic in the mi­
cropipeline stages to be tested in a way that is very 
similar to familiar synchronous scan testing. The C­
element control of the micropipeline is also modified 
to provide a scan clock during scan mode, and is also 
testable under a stuck-at fault model. However, al-



though the scan testing is performed under control of 
a scan dock, the micropipeline retains its fully self­
timed nature in normal operation. This technique 
allows the micropipeline to be completely tested for 
stuck at faults and also for delay faults in the bundled 
data paths. We are able to test for delay faults because 
each micropipeline stage is tested independently. This 
also allows the test generation and application time to 
be reduced significantly compared to techniques that 
test the entire circuit at once. 
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