
Testing Micropipelines*

Ajay Khoche Erik Brunvand
Department of Computer Science

University of Utah
Salt Lake City, UT, 84112

Abstract

Micropipelines, self-timed event-driven pipelmes,
are an attractivp way of structuring asynchronous sys~
terns that ex,hibit many of the advantages of general
asynchronous systems, but enough structure to make
the design of significant systems practical. As with any
design method, testing is critical. We present a tech­
nique for testing self-timed micropipelines for stuck-at
faults and for delay faults in the bundled data paths
by modifying the latch and control elements to include
a built-in scan path for testing. This scan path al­
lows the processing logic in the micropipeline, as well
as the control of the micropipeline, to be fully tested
with only a small over'head in the latch and control cir­
cuits. The test method is very similar to scan testing
in synchronous systems, but the micropipeline retains
its self-timed behavior during normal operation.

1 Introduction

Pipelines are pervasive in modern digital systems.
As a means of increasing performance, they appear
in almost all aspects of system architecture from the
instruction and arithmetic units of general purpose
processors, to special purpose hardware for graphics
processing, signal processing, image compression and
error detection. An interesting class of pipeline cir­
cuits was described by Ivan Sutherland in his Tur­
ing award lecture from 1989 [13) which he termed mi­
cropipelines. These pipelines are asynchronous event­
driven pipelines that can be used to build very fine­
grained pipeline structures, Micropipelines are flow­
through elastic pipelines that are controlled by local
handshaking rather than a global clock signal. The
asynchronous nature of micropipelines allows them to
be free of many problems related to the clock that

'This Research is supported in part by University of Utah
Research Committee.

0-8186-6210-7/94 $4.00 © 1994 IEEE
239

plague synchronous pipelines. In particular, the pro­
cesses that read from and write to the micropipeline
need not be synchronized. The issue of whose clock
should control the pipeline is avoided, and thus is­
sues of clock synchronization are also avoided. A
rnicropipeline is also free to take advantage of data­
varying delay in the processing at each stage. Rather
than set the clock period to the maximum delay in­
curred at any pipe stage, the individual pipe stages
in a micropipeline finish as quickly, or as slowly, as
the current data require. This allows the processing
in the pipeline to occur at rates closer to the aver­
age processing time than the worst-case time which
can mean significant performance improvements in
some systems. Additional advantages of asynchronous
circuits include freedom from a variety of clock re­
lated timing problems, simpler system composition,
increased robustness in the face of process and envi­
ronmental variation, and the potential of low power
consumption.

Although micropipelines seem to have many advan­
tages, the fact that they are asynchronous circuits
may, in fact, cause concern. One specific area for
which asynchronous circuits seem to lag behind syn­
chronous circuits istn testing. Testing asynchronous
circuits which are nol; subject to a global clock is tracli­
tionally considered difficult when compared to testing
synchronous circuits. There are a number of tech­
niques for integrating testability into system design,
but many of these traditional testing methods used
for synchronous circuits are not directly applicable to
non-clocked asynchronous circuits. As a result, many
asynchronous circuits do not employ design for testa­
bility techniques. In this context new methods are
required to test asynchronous circuits. In this pa­
per a design-for-test (DFT) approach is proposed to
test micropipelines. Our approach involves modify­
ing the asynchronous latches in the data path and
the micropipeline control structures such that the mi­
cropipelines can be tested in a way similar to that in
a synchronous pipeline. In particular, a scan path is

established through the latch and C-element circuits
that allows scan testing of the micropipeline. The mi­
cropipeline uses a global scan clock for only,
and then reverts to fully asynchronous mode during
normal operation, preserving the benefits of that type
of operation.

In the next section the structure and operation of
micropipelines is described in general. The proposed
test method and the modifications made to the cir­
cuit elements are discussed in Sect,ion 3. Section 4
describes the test procedure and Section 5 contains a
comparison with existing work. Section 6 describes an
example testable micropipelined multiplier and Sec­
tion 7 concludes the paper with a discussion of t.rade­
offs involved in this style of testing micropipelines.

2 Micropipelines

Micropipelines are asynchronous, event driven,
elastic pipelines that mayor may not contain process-

between the pipe stages. If no processing is done
between the pipe stages, the micropipeline reduces to
a simple first-in first-out (FIFO) buffer. A block dia­
gram of a generic micropipeline is shown in Figure 1.
It consists of three parts: a control network consist­
ing of one C-element per micropipeline stage, a latch
in each stage, and possibly some processing logic be­
tween the stages. The C-elements control the action
of the micropipeline by acting as protocol preserving
AND gates for the transition control signals of the
micropipeline. These gates, drawn as an AND gate
with a C inside, will drive their output low when both
inputs are low, and high when both inputs are high.
When the inputs are at different states, the output is
held at its previous level. Note that one input of each
C-element used in Figure 1 is inverted. Thus, assum­
ing that all the control signals start low, the leftmost
C-element will produce a transition to the leftmost
latch when the incoming request (RIN) line first makes
a transition from low to high. The acknowledge from
the latch will produce a similar request through the
next C-element to the right. Meanwhile, the leftmost
C-element will not produce another request to the left­
most latch until there are transitions both on RIN
(signaling that there are more data to be accepted)
and the Ack from the next latch to the (signal­
ing that the next stage has finished with the current
data). Each pipe stage acts as a concurrent process
that will accept new data when the previous stage has
data to give, and the next stage is finished with the
data currently held.

240

AOUT

Figure 1: A Micropipeline

Note that the micropipeline structure is a flow­
through design. The data entering at the left of Fig­
ure 1 will flow through each stage of the micropipeline
on its way from input to output. When the data reach
the rightmost latch, a transition is produced on the
ROUT line to indicate that there are data available to
be read. Once those data have been read, the reader
produces a transition on the AOUT line to allow new
data to enter that pipeline

The pipelines considered in the paper use two-phase
transition signaling and bundled data paths. Two

transition signaling means that a transition on a
control line from low to high or from high to low is con­
sidered as an event and no distinction is made between
two type of transitions. Bundled data path means
that data must be stable at a latch before the latch­
ing control signal arrives. This condition is similar
to, but weaker than the equipotential constraint [10].
The transition control signal indicates that the bun­
dled data path is valid, and that the latch may update
its contents. The delay elements shown in Figure 1
model the delay required to satisfy this constraint as
the data move through the at each stage. The
logic could of course be self-timed and generate a com­
pletion signal, which would eliminate the need for the
delay at the expense of more complicated logic for de­
tecting completion of the processing. Latches llsed in
such circuits are transition latches which latch new
data upon receipt of a request event and produce an
acknowledgment event when done. A description of
the operation of these latch and C-element circuits.
as well as schematics, are described in the following
section.

3 Scan design

To modify a micropipeline for test.ability, we pro­
pose to modify the latch and C-element circuits to in-

elude a built-in scan chain. This scan-chain will allow
logic in individual micropipeline latches to be tested
independently using techniques well known from test­
ing synchronous circuits.

3.1 Latch design

Latches used in transition-controlled micropipelines
must latch normal data values in response to transi­
tion control signals. These latches [2, 1:3) are typi­
cally controlled by a pair of signals called captu1'e(C)
and pass(P). These control signals must alternate and
control whether the latch is currently transparent, or
holding a value. The initial condition, where the val­
ues of capture and pass are the same determines the
type of the transition-controlled latch. If the latch is
transparent in this state, the latch is known as a tmn­
sition latch normally transparent (TLNT) and if the
initial condition is to be holding the current state, the
latch is known as a transition latch normally opaque
(TLNO). These latches are identical in their operation
except for their initial conditions. If the latch is cur­
rently opaque, the next transition should be on the
pass wire, and if currently transparent, should be on
the capture wire. In our circuits, the micro pipeline
latches can be of either type. The circuit for a TLNO
latch is shown in Figure 2 (a) . I t is sometimes con­
venient to build latches with a request-acknowledge
interface instead of the capture-pass interface. This
is readily accomplished using a transition latch and a
bundling delay. The pass signal is delayed to become
the capture signal with a bundling delay to make sure
that the value to be captured has had time to traverse
the feedback path of the latch.

Because the transition latch includes the equivalent
of two simple latches in its implementation, it can be
converted into a scan latch by providing a multiplexed
serial input and making the connection shown in Fig­
ure 2(b). In this way the asynchronous transition latch
becomes a muxed master/slave fiip/fiop. The normal
and scan mode operation is controlled by SCAN input,
which is global scan control like that in synchronous
scan designs. The latches can be designed such that A

the latching takes place on either low or high value of ..
the control signal during scan mode.

The basic and scan version of these latches have
been designed in CMOS using Magic layout tools and
simulated in SPICE for a 2 micron process. The area
and performance overheads are shown in Figure 4.
The transistors column gives the overhead in terms
of transistors while the area column gives overhead in
terms of square lambda for our implementation. The

-
-

241

c

c

.1: Q

(a)

;;

S:I:N

D:I:N Q

SOUT

Figure 2: Basic and Scan Versions of a Transition
Latch

delay column gives the average time between occur­
rence of a request transition and receipt of correspond­
ing acknowledgment transition for rising and falling
request transitions.

3.2 C-Element design

A transistor level schematic of a generic C-element
is shown in Figure :3(a) [1:3, 14). The first column of
transistors at the left of this schematic implement a
dynamic C-element. The transistors on the fight im­
plement a latch stage to make the C-eJement static.

..

'- A

~p-' ,ql ..
~~ YI

OUT

.-

~
T

(")

Figure 3: Basic and Scan Versions of a C-elernent

Attribute Latch I C-element
Basic I Scan Basic I Scan

Transistors
34 I 42 I l4 I 16 Area 34656 40432 5776 6080

Delay 3.58ns 3.63ns 2.07ns 2.25ns

Figure 4: Area and Performance Overheads

The feedback transistors in the latch stage driven by
the C-element inputs are weak and are used to pro­
vide feedback when the dynamic stage is not driving
the internal node. This C element has been modified
by bypassing the B input transistors in the input stage
in scan mode. Thus in scan mode input stage passes
a directly to the output stage. The operation between
normal and scan mode is selected by the SCAN control
signal as in the latch case. The modified schematic is
shown in Figure 3 (b) and requires only two extra tran­
sistors. The basic and scan versions of C element have
also been designed using Magic layout tools and simu­
lated using SPICE for a 2 micron process. The results
are shown in Figure 4. Here the delay represents the
average time after both inputs have changed to the
time when the output changes. The area is again in
terms of square lambda units.

4 Test methodology

4.1 Organization of scan path

A micropipeline with a scan path included is shown
in Figure 5. Bold lines indicate the control path in the
test mode which forms the clocking network for scan
path. The latches in the micropipeline are connected
in a scan path with SIN input coming to the first stage
on the left and SOUT coming out from the last stage
on the left. The latches are enabled on alternate tran­
sitions of the control signal starting with the latch on
the right which is enabled on a high to low transition.

The C-elements used are such that they pass their
negated input onto the output in SCAN mode. This
way the control path forms a clocking network for the
scan path with AOUT being the clock input. Note
that the clock runs in the opposite direction to that

of data: the clock first reaches the stage closest to
the output and then cycles through the stages to the
AIN output. Also note that the clock value is inverted
as it passes through each C-element, as it is incident
on the negated input of the C element. This is why
latches with different enabling properties are used in
the alternate stages.

242

SCAN

RIN AOUT

SIN

AIN

Figure 5: Micropipeline with Scan Path

The reason for routing the SCAN clock in the re­
verse direction from the data is twofold: First, while
testing the processing logic the preceding stage holds
the test vector while the following stage serves the pur­
pose of being the observation point. If the clock were
run in the same direction as the data, the test vector
would have changed its value during test before the
response had been captured in the observation stage.
This is because the clock would have reached the pre­
ceding stage before cycling to the next stage. The
second reason is related to efficiency. By running the
test clock backwards we have removed the effect of the
bundling delays, so we can run our test clock at higher
rate for shifting the patterns in and out.

4.2 Test procedure

Testing Micropipelines involves testing for stuck­
at faults in the circuits and testing for bundling con­
straint violations which is similar to delay testing in
synchronous circuits at each stage. The procedure for
testing for these two types of'faults is descri bed below.

4.2.1 Testing for stuck-at faults

There are three parts of a micropipeline that must
be tested: the processing logic between the stages,
the control logic that controls the micropipeline in
normal operation (the C-elements), and the latches
that hold the data values in the micropipeline. The
teBt procedure for each of the three components of
the micropipelines is described below. Note that the
procedure is very similar to that used in synchronous
circuits. The asynchronous micropipeline uses a syn­
chronous test mode, but reverts to fully asynchronous
operation in normal mode preserving the benefits of
asynchrony. The following three tests will fully test
each net in the micropipeline for stuck-at faults.

Testing the processing logic

The processing logic is assumed to be combinational
and is tested using the following steps. Intuitively,
the micropipeline is filled with values that become the
inputs to the processing logic at each stage, and the C­
elements are left in a state where the pipeline state is
full. The circuit is returned to normal mode, and one
item is removed from the pipe which latches the val­
ues from each bundle of processing logic into the next
micropipeline latch. The circuit is returned to scan
mode and the results are shifted out and compared
with the expected results. The test vectors for the
combinational processing logic at each stage of the cir­
cuit may be generated with standard test-generation
programs [1]. The detailed operation is as follows:

1. Put the micropipeline into scan mode by asserting
the SCAN signal (SCAN = 1).

2. Shift the test vector into the scan path vec-
tors can be generated using any conventional test
pattern generator) by clocking AOUT. Clocking
consists of the pattern A 0 UT = 0 --7 1 --7 O.

3. Set RIN = 0 if the number of stages in the pipeline
is odd otherwise set RIN = 1.

4. Return the circuit to normal operation mode
(SCAN = 0). At this point the inputs to the
latches come from the processing logic outputs
and the C-elements return to their normal opera­
tion. The value of the C element outputs in each
stage are those which occur when the pipeline
is full under normal operation with ROUT be­
ing high and unacknowledged. In this stage when
the acknowledgment arrives on AOUT it passes
through all the stages up to AIN.

5. Set AOUT= 1. As described in the previous step,
this ack transition trickles through all the stages
of the pipeline making latches to capture the out­
puts of their processing logic into their rnaster
stage"

6. Return the circuit to scan mode (SCAN = 1).

7. Set A 0 UT = O. This causes the latches to copy
the value from their master stages to their slave
stages.

8. Clock AOUT to shift out the outputs of logic

243

Testing the control logic

The part of the control logic consisting of C-elements
and the nets that connect them is tested concurrently
with above steps. The C-elements in the even stages
i.e. 0,2,4 ... starting from the right side are tested
for a 1 --7 ° transition, while the C-elements in the
odd stages 1,3,5 ... are tested for a 0 --7 1 transition.
Any stuck-at-O fault on the complemented input or
stuck-at-l fault at the output of the C-elements in the
even stages will result in no transition being produced
on the A IN line when the the A 0 UT is toggled in the
normal mode. The same is true for stuck-at-l faults on
the complemented input and stuck-at-O the output of
the C-elements in the odd stages. In order to test the
control network for the remaining part, the pipeline
is put into another state where the micropipeline is
full with AOUT == l. In this state the values on the
C-element outputs are exactly opposite to that in the
previous case. The pipeline can be brought to this
state by putting it into scan mode and setting AOUT
= 1. To test for these remaining faults the pipeline
is returned to normal mode and AOUT is set to O.
This causes a 0 --7 1 transition on the C-elements in
the even stages and a 1 --7 0 transition in the odd
stages, which tests the nets in the control part for the
remaining faults.

Testing the latches

The latches are tested using the fault model proposed
in [8]. This work models two types offaults for latches
of this type: stuck-at--capture and stack-at-pass. In
the stuck-at-capture model the storage elements as­
sume a particular value forever. In the stuck-at-pass
model the latch fails to latch any data and always
passes the input to output.

The latches can be tested for the above faults us­
ing a shift operation. Stuck-at-pass faults can be de­
tected by shifting an alternating 0-1 pattern through
scan path. Stuck-at-capture faults are equivalent to
stuck-at-i fault, where i is the value being permanently
captured in the latch. Stuck-at-capture faults can be
detected by shifting Os for stuck-at-l faults and Is for
stuck-at-O faults.

In these steps, however, the net segment feeding
the processing logic is not tested, but a fault on that
segment is equivalent to the fault on the input of the
processing logic, and hence gets tested along with the
processing logic.

4.2.2 Testing for bundling constraint viola­
tions

As mentioned earlier, testing for bundling constraint
violations is similar to path delay testing in syn­
chronous circuits. In synchronous circuits a path de­
lay fault is said to have occurred if delay through any
path in the combinational logic between two latches
exceeds the clock period [12]. The corresponding be­
havior in micropipelines is that a bundling constraint
is violated if any path in the combinational logic be­
tween two stages has greater delay than the bundling
delay. However in micropipelines the bundling delay
in each stage is not the same, as it is in synchronous
case where the delay is measured against the global
clock everywhere in the circuit. (Of course, ifthe pro­
cessing logic between the micropipeline stages is itself
self-timed (generating a completion signal when the
logic has computed a result) then there is no bundling
constraint to test.)

Various methods have been proposed in the litera­
ture for robust path delay testing in synchronous cir­
cuits [6, 9, 11]. All these methods require a two pat­
tern test to test a path. The first pattern is used to
setup the values in the circuits such that when the
next pattern is applied a transition is produced on the
path under consideration and propagated to the out­
puts. These patterns are required to have a property
that propagation of the transition through the path is
not invalidated by the delays in the other part of the
circuits.

The test procedure used in these tests is first a pat­
tern is applied to the combinational block and the cir­
cuit is allowed to settle. The second pattern is then
applied at time tl and the output latch is clocked at
time t2 such that (t2-tl) models the clock period in
the circuit.

Three mechanisms have been proposed in the lit­
erature for applying the two pattern test described
above in a standard scan environment. The first ap­
proach requires use of an enhanced scan flip/flop which
can store two values at one time corresponding to two
patterns [4, 5]. This approach is very expensive in
terms of area if the number of latches in the design is
large. In the second method, a second pattern is de­
rived by shifting in the scan path [15]. This method
is limited in the sense that it is not always possible
to derive the second pattern just by shifting for any
arbitrary combinational circuit. The third method de­
scribed in [3] exploits the pipeline property of the cir­
cuits. In this method a pipeline is fully delay fault
testable if individual combinational blocks are delay
testable individually and if the blocks can produce all

244

possible output combinations. In this case the first
pattern is applied by shifting through the scan path
while the second pattern is derived from the combi­
national block in the previous stage. This can be ap­
plied to the block under test by returning the circuit
to normal mode and then clocking the circuit once.
so that the output of the previous stage gets latched
into the input latch of the block under consideration.
The output of the block uncler test is latched after a
time equal to the clock period and later scanned out.
The condition that combinational blocks can produce
all possible combinations can be handled during the
synthesis process [3]. If an output combination is not
possible, then it implies that this output is a don't
care for the circuit. The circuit can then be optimized
with this additional don't care condition.

The third method discussed above is used to test
micropipelines. In this method, the patterns can be
shifted in the scan path such that pattern (vi) is ap­
plied to the target block and another pattern (v3) is
applied to the block B previous to the target block in
the pipeline, such that B(v3)=v2 which is the second
pattern required to test a path in the target block.
The circuit is then returned to normal mode and a
reg event is applied to the micropipeline. This causes
each pipeline latch to capture new inputs after a de­
lay equal to bundling constraint. If any path in target
block has a delay fault i.e. has delay more than the
target fault, then the values captured by the latch at
the output of that block will not be correct which can
be scanned out to verify.

5 Comparison with existing techniques

The only published work in testing micro pipelines
is in [8] where only stuck-at faults were considered and
no timing faults resulting in bundling constraint viola­
tion were tested. In their approach the TLNT (Tran­
sition Latch, Normally Transparent) type of latches
are used in the micropipeline and the processing logic
between all the stages in the micropipeline is assumed
to be lumped together for testing. Because the latches
are transparent in the initial case, the pipeline is trans­
parent from input to output after initialization and the
entire logic path may be tested by applying vectors at
the input to the micropipeline and observing results
at the output of the micropipeline. This approach of
lumping all the logic in the micropipeline together for
testing it has two major drawbacks: the time required
to generate the test vectors is much larger (in fact,
the test pattern generator may fail to generate tests

for some otherwise detectable faults because of cir­
cuit complexity), and testing the processing logic in a
lumped fashion will require a lower test clock speed on
the automatic tester to account for the delay through
the lumped block and latches.

In contrast, using our approach the processing logic
between the stages is tested separately, so the test
generation requires less time and the tester clock rate
is determined only by the delay through the latches.
Of course, as in all scan based approaches, the test
application time will increase due to the time taken
by the shifting.

In the approach of [8], the latches in the mi­
cropipeline are tested by a two pattern test for stuck­
at-pass faults, where, to test for faults in a latch in
stage i, enough elements are pushed in the pipeline
such that the pipeline is completely full from stage i+ 1
to the last stage. At that point another vector is ap­
plied to the micropipeline which causes stage i to latch
a certain value. Then the next vector is applied to the
pipeline so that if there is a fault at the target latch
its output will be different than it would have been in
fault free case. The effect of the faults are then prop­
agated through the processing logic of the following
stages. Implicit in this procedure is the assumption
that the combinational logic does not have any redun­
dant faults. This approach is very complex, as each
latch may have to be tested individually, and every
time the test setup will be required to follow above
steps. Also fault propagation through the combina­
tional block has the implication that certain faults in
latches may not be detectable due to redundant faults
in the processing logic. In contrast our approach is
very simple involving only shifting.

Our approach to test the control path (C-element
network) is similar to their approach.

6 Example

A micropipelined version of a 4X4 multiplier shown
in was designed using View Logic tools to test the ideas
described in this paper. The same circuit was also
coded in VHDL at a structural level for test genera­
tion purposes. The Attest Software Inc. software was
used for test pattern generation. Tests were gener­
ated first for all the stages being lumped together and
then for individual stages. A summary of test genera­
tion results is shown in Figure 7. In this table module
Mult represents the lumped version and the individual
stages represent our approach of testing each stage in­
dependently. In this table stage2-3 represent stage 2

245

::~~trE~~~~
l<.--.,-=-.-.--.r,

Figure 6: A 4X4 Micropipelined Multiplier

Module Test generation Time No. of Vectors
Mutt 8.2see 30
stageO .lsee 7
stage 1 .lsee 13
stage2-3 Asee 19
stage4 .!5sec 17

Figure 7: Test generation statistics for Micropipelined
Multiplier

or 3. Since these stages are identical, test generation
has to be done for only one of them. The test genera­
tion time includes time taken for test generation and
time taken for fault ~;imulation. The vector column
indicates the total number of vectors required for the
faults that are detectable.

As shown in the table the total test generation time
for the stages is much less than that required when
the tests are generated with all the stages lumped to­
gether. The test vedors for various stages are con­
catenated to form a single scan vector. The number
of times vectors have to be scanned in, which is equal
to maximum over number of vectors required for any
single stage, is also less than number of times tests to
be applied in lumped mode.

7 Conclusions

We have presented a technique for testing self-timed
micropipeline circuits using a built-in scan path. The
event-driven latches used to build micropipelines are
readily converted into scan latches with only a small
overhead. This allows the processing logic in the mi­
cropipeline stages to be tested in a way that is very
similar to familiar synchronous scan testing. The C­
element control of the micropipeline is also modified
to provide a scan clock during scan mode, and is also
testable under a stuck-at fault model. However, al-

though the scan testing is performed under control of
a scan dock, the micropipeline retains its fully self­
timed nature in normal operation. This technique
allows the micropipeline to be completely tested for
stuck at faults and also for delay faults in the bundled
data paths. We are able to test for delay faults because
each micropipeline stage is tested independently. This
also allows the test generation and application time to
be reduced significantly compared to techniques that
test the entire circuit at once.

References

[1] Miron Abramovici, Melvin A. Breuer, and
Arthur D. Friedman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[2] Erik Brunvand. Translating Concurrent Commu­
nicating Programs into Asynchronous Circuits.
PhD Thesis, Carnegie Mellon University, 1991.

[3] Kwang-Ting Cheng, Srinivas Devadas and Kurt
Kuetzer. Robust Delay Fault Test Generation
and Synthesis for Testability Under A Standard
Scan Design Methodology. 28th A CM/IEEE De­
sign A utomation Conference, 1991.

[4] S. Devadas and K. Kuetzer. Synthesis and Op­
timzation Procedures for Robustly Delay-Fault
Testable Logic Circuits. 27th ACM/IEEE Design
A utomation Conference, 1990.

[5] S. Devadas and K. Keutzer. Design ofIntegrated
Circuits Fully Testable for Delay Faults and Mul­
tifaults. International Test Conference, 1990.

[6] K. Fuchs, F. Fink and M. H. Schulz DYNAMITE:
An Efficient Automatic Test Pattern Generation
System for Path Delay Faults. IEEE Transaction
on Computer Aided Design, Vol 10, No 10, Oct
1991.

[7] Ajay Khoche and Erik Brunvand. Testing Self­
Timed Circuits Using Scan Paths. 5th NASA
Symposium on VLSI Design, Nov 1993.

[8] Pagey S., Venkatesh G. and Sherlekar S. Issues
in Fault Modeling and Testing of Micropipelines.
First Asian Test Symposium, Hiroshima, Japan,
Nov 1992.

[9] S. M. Reddy, C. J. Lin and S. Pati!o An Auto­
matic Test Pattern Generator for the Detection
of Path Delay Faults. IEEE International Con­
ference on Computer Aided Design, Nov 1987.

246

[10] C. L. Seitz. System Timing. In Mead and Con­
way, Introduction to VLSI Systems, chapter 7.
Addison-Wesley, 1980.

[11] J. Savir and W. H. Mcanny. Random Pattern
Testability of Delay Faults. International Test
Conference, 1989.

[12] G. L. Smith. Model for Delay Faults Based Upon
Paths. International Test Conference, 1985.

[1:3] Ivan Sutherland. Micropipelines. CACM, :32(6),
1989.

[14J Ivan E. Sutherland, Robert F. Sproull, and Ian
Jones. Standard Asynchronous Modules. Tech­
nical Memo 4662, Sutherland, Sproull and Asso­
ciates, 1986.

[I 5] J. A. Waicukauski, E. Lindbloom, B. Rosen and
V. Iyengar. Transition Fault Simulation. IEEE
Design 8 Test of Computers, April 1987.

