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Abstract. Variation in the ability to utilize pulses of both water and nitrogen (N) is 

one possible m e c h a n i s m  allowing the coexistence of species in the cold desert c ommunity 

on the Colorado Plateau. W e  simulated 2 5 - m m  precipitation events and used stable isotope 

tracers (2H  and 15N )  to follow water and N  uptake patterns in six dominant perennials 

(Artemisia filifolia, Coleogyne ramosissima, Cryptantha flava, Ephedra viridis, Quercus 
havardii, and Vanclevea stylosa) at different times of the growing season. Water pulse 
utilization varied on a seasonal basis and w as to s o m e  extent different a m o n g  species during 

the summer. Carbon isotope discrimination w a s  negatively related to both plant use of 

moisture in upper soil layers and foliar N  concentration. Species that were similar in water 

pulse utilization patterns differed in the natural abundances of 15N ,  suggesting partitioning 

in N  sources. All species were able to utilize N  pulses after rain events, but there were 

temporal differences in the responses a m o n g  species. W e  also found that water and N  uptake 

in shallow roots do not necessarily occur simultaneously. Artemisia, Cryptantha, and Quer- 
cus sho w e d  significant uptake of both water and N  from the upper soil layers. In contrast, 

Coleogyne and Ephedra sho w e d  the capacity to utilize the water pulse, but not the N  pulse. 

Vanclevea only took up N. T h e  results indicate that different parts of the root system m a y  
be responsible for the acquisition of water and N. O u r  results also suggest that N  and water 

partitioning could contribute to the coexistence of species in highly variable environments 

such as the Colorado Plateau desert system.

K ey  w o rd s: C olorado  P la tea u  (U S A ); desert p eren n ia ls;  n itrogen  up take p a tte rn s ;  p u lse  u tili
za tio n ; resource p a rtitio n in g ; stab le iso topes; w a te r  up take  p a tte rn s .

In t r o d u c t i o n

In arid and semiarid ecosystems, soil resources are 

typically available for plant uptake only during pulses 

following precipitation. Nitrogen mineralization and 

nutrient m o v e m e n t  to the root surface are high w h e n  

soil moisture levels increase following precipitation 

events (Noy-Meir 1973, Schimel and Parton 1986, Gal

lardo and Schlesinger 1992, Cui and Caldwell 1997). 

H igh soil resource availability is restricted to infre

quent pulse events and plants m a y  be forced to share 

the s ame resources, resulting in strong competitive in

teractions. T h e  ability to rapidly capture water and n u 

trients m a y  influence competitive relationships or the 

accumulation of sufficient resources for survival during 

long periods of low resource availability (Goldberg and 

Novoplansky 1997). O n  the other hand, competitive 

interactions a m o n g  desert species could be reduced if 

soil resources were partitioned in time, space, or form 

(e.g., nitrate vs. a m m o n i u m )  (Bratton 1976, Fitter 1986, 

M c K a n e  et al. 1990, Reynolds et al. 1997).

Belowground resources in arid lands not only change 

greatly during short-term pulses after rain events, but 

can be very heterogeneous in both time and space on

1 Present address: Biology Department, Keene State Col
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larger scales (Caldwell 1994, Ehleringer 1994, Schles- 

inger et al. 1996, Ryel et al. 1996). For example, plants 

growing on the Colorado Plateau can experience high 

year-to-year variability in precipitation (Ehleringer

1994). Precipitation is divided between winter and 

s u m m e r  storms (Houghton 1979), with winter precip

itation recharging m u c h  of the soil profile. A s  the s u m 

m e r  season progresses, most of the soil profile dries, 

but rain storms increase soil moisture in the upper soil 

layers for a short time ( K e m p  et al. 1997; R. Gebauer, 

unpublished data). A s  a result, a disjunct soil moisture 

distribution is often found during the summer, with 

high soil moisture availability in shallow and deep lay

ers, separated by a drier soil layer. M o s t  Colorado Pla

teau plant species are dormant during cold winter 

months and m a k e  little immediate use of increased soil 

moisture availability. Succulents and a few herbaceous 

species rely entirely on the acquisition of surface soil 

moisture derived from s u m m e r  rain events (Ehleringer 

et al. 1991). Perennial shrubs often develop a dimorphic 

root system, where deeper roots tap a m o r e  reliable 

water source at depth (Ehleringer and D a w s o n  1992, 

Lin et al. 1996). Therefore, water is to s o m e  extent 

partitioned spatially a m o n g  different lifeforms and 

competitive interactions m a y  be reduced (Sala et al. 

1989, Casper and Jackson 1997, Ehleringer at al. 1997). 

A m o n g  species of the s ame life form, the zones of water
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Table 1. Characteristics of cold desert community species in the Colorado Plateau of southern Utah.

Species Growth form Leaf longevity Flowering

C oleogyne ram osissim a shrub drought deciduous April-August
A rtem is ia  filifo lia shrub winter deciduous August-October
Q uercus havard ii shrub winter deciduous April-June
E phedra  virid is shrub evergreent July-August
V anclevea  sty losa shrub winter deciduous July-August
C ryptan tha  fla va perennial forb evergreen May-July

t  Carbon gain in photosynthetic stems.

uptake generally s h o w  greater overlap (Rundel and N o 

bel 1991, Ehleringer and D a w s o n  1992). It has been 

argued that spatial differences in water uptake patterns 

alone m a y  be insufficient to allow the stable coexis

tence of a large n u m b e r  of species of the s ame life form 

(Scholes and Archer 1997).

After water availability, nitrogen (N) is the most i m 

portant factor limiting productivity in arid land eco

systems (Noy-Meir 1973, Fisher et al. 1987, Gutierrez 

and Whitford 1987). In contrast to soil moisture with 

a bimodal distribution after s u m m e r  rain events, N  

availability is highest in the upper soil layers and de

clines strongly with depth (Charley 1975, Evans and 

Ehleringer 1994, Stark 1994). O n e  m a y  expect that the 

largest fraction of N  required by desert plants is taken 

up by roots growing in the shallow soil layers following 

pulse events. Relatively little is known, however, about 

the short-term N  uptake patterns of different desert 

species. Great Basin desert species were generally ca

pable of utilizing the N  pulse in spring (Bilbrough and 

Caldwell 1997). A  reduction in competitive interac

tions a m o n g  species might then be achieved by either 

temporal differences in N  uptake activity of surface 

roots or by utilizing different forms of N  (Fitter 1986, 

M c K a n e  et al 1990, Nadelhoffer et al. 1996). In grass

land systems, w h e n  N  uptake wa s  compared between 

spring, summer, and fall, species s ho w e d  temporal dif

ferences in N  acquisition ( M c K a n e  et al. 1990).

In this study, w e  compared the in situ ability of six 

dominant species (five w o o d y  shrubs, one herbaceous 

perennial) of a cold desert c o m m u n i t y  on the Colorado 

Plateau to utilize water and N  pulses during different 

times of the growing season. In M a y ,  July, and Sep

tember, w e  simulated 2 5 - m m  rain events and used sta

ble isotope tracers (2H  and 15N )  to follow water and N  

uptake patterns. W e  asked whether niche separation 

a m o n g  species of this cold desert c o m m u n i t y  would 

b e c o m e  m o r e  distinct w h e n  N  utilization patterns were 

considered in addition to the utilization of different 

water sources. W e  also examined whether species 

which depend m o r e  heavily on rain events have higher 

water use efficiencies to compensate for exposure to 

long, dry periods between rain pulses.

M a t e r i a l s  a n d  M e t h o d s

T h e  study site w as located in Arches National Park 

in southern Utah (38°46' N, 110°07' W ,  elevation 1585

m). T h e  cold desert vegetation at the study site was 

dominated by perennial shrubs including Coleogyne 

ramosissima, Ephedra viridis, Artemisia filifolia, Van- 

clevea stylosa, and Quercus havardii. Soils consisted 

of alluvial sands and no caliche layer wa s  observed to 

a depth of 1 m.

Long-term precipitation records from nearby Mo a b ,  

Utah s h o w  a m e a n  annual precipitation of 220 m m .  

Precipitation is bimodal, with 3 2 %  of the precipitation 

occurring during the s u m m e r  months (June-Septem- 

ber). S u m m e r  precipitation during the two years of this 

study w a s  7 1 %  (1996) and 1 7 8 %  (1997) of the long

term means.

T h e  experiments were conducted in July 1996 and 

May, July, and September 1997 on five dominant pe

rennial shrub species (Quercus havardii Rydb., Ephe

dra viridis Cov., Artemisia filifolia Torr., Coleogyne 

ramosissima Torr., and Vanclevea stylosa (Eastw.) 

Greene) and the most dominant herbaceous perennial 

species (Cryptantha flava (A. Nels.) Payson) (Table 1). 

T h e  treatments were applied on 1 and 2 July, 1996, 17 

and 18 M ay, 17 and 18 July, and 17 and 18 September, 

1997. Three different treatments were randomly as

signed to six replicates per species: a control treatment 

receiving no supplemental precipitation and no addi

tion of 15N, a treatment receiving a 2 5 - m m  precipitation 

event and no addition of 15N, and a treatment receiving 

a 2 5 - m m  precipitation event and the addition of 15N. 

For the 15N  treatment, 1.5 L  of 0.264 m o l / m L  

15N H 415N O 3 ( 1 0 %  enriched) w a s  homogeneously added 

by spraying the solution onto the soil surface within a 

radius of 1.5 m  surrounding the main stem of the p e

rennial shrubs. Because Cryptantha flava is consider

ably smaller than the perennial shrubs, the 15N  label 

wa s  only added to a radius of 0.5 m  (but with the same 

amount of label per unit area). T h e  addition rate of the 

15N  tracer w a s  sufficiently low to avoid N  fertilization 

of plants. However, as an additional caution a nonen

riched 14N H 4 14N O 3 solution w as added to control plants 

and plants receiving only a 2 5 - m m  precipitation event. 

After N  wa s  added to the soil surface, plants received 

the 2 5 - m m  precipitation event in a manner similar to 

that described in Lin et al. (1996). Local well water 

wa s  isotopically enriched with heavy water ( D 2O) to 

reach a S D  value of ~ 0 % o  in 1996 and ~  +  200%o in 

1997. T h e  precipitation wa s  applied above each plant
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with a sprinkler system at a rate slow enough to avoid 

run off.

Leaves for 15N  analysis were sampled one day before 

and several times after the application of the 15N  tracer. 

Leaves were collected from several locations within 

the canopy and mixed to a single bulk sample for stable 

isotope analysis. Leaves were dried at 75°C for 48 h 

and ground with mortar and pestle to a fine powder. 

For the 15N, 13C, and N  concentration analyses, 2 -mg 

samples were combusted on an elemental analyzer 

linked in line with an isotope ratio mass spectrometer 

(model delta S, Finnigan M A T ,  San Jose, California, 

U S A ) .  For determination of water source and surface 

root uptake, w o o d y  stem samples (5-7 c m  long) were 

collected from different branches within the shrub can

opy r e m o v e d  as far as possible from transpiring leaves. 

For the herbaceous perennial, Cryptantha flava, s a m 

ples of the main root were collected. Samples were 

collected one day before, and three and five days after 

the watering treatment. Immediately upon collection, 

stem samples were placed in sealed glass vials wrapped 

in parafilm. Samples were kept frozen until the ex

traction of x y l e m  water by cryogenic v a c u u m  distil

lation from stem samples (Ehleringer and O s m o n d  

1989). For the hydrogen isotope analysis ~ 2  ^ L  of the 

extracted water wa s  reduced with Hayes zinc to h y 

drogen gas in an evacuated Pyrex tube at 500°C ( m o d 

ified from C o l e m a n  et al. 1982). Hydrogen gases were 

analyzed with an isotope ratio mass spectrometer.

Hydrogen, carbon, and nitrogen isotope ratios are 

expressed in 8 notation in parts per thousand (%o) as:

8 ( R sample/R standard 1)1000

where R  is the molar ratio of heavy to light isotopes 

(D/H, 15N / 14N, 13C/12C). T h e  standard is Standard M e a n  

O c e a n  Water ( S M O W )  for hydrogen, atmospheric air 

for nitrogen, and P D B  for carbon. Carbon isotope dis

crimination (A) wa s  calculated from leaf carbon isotope 

ratios using a carbon isotope ratio of —  8%o for a tmo

spheric carbon dioxide (Farquhar and Richards 1984). 

A  values provide a long-term estimate of the ratio of 

intercellular to ambient C O 2 concentrations (Ci/Ca) 

which in turn can be related to water use efficiency (A/ 

g), where A refers to assimilation and g refers to sto- 

matal conductance (Farquhar et al. 1982). T h e  propor

tion of enriched irrigation water taken up by the plant 

wa s  calculated using a linear mixing model ( D a w s o n  

and Ehleringer 1993). In September 1997, there were 

heavy rainfall events after watering the plants. Based 

on deuterium ratios of the upper soil layer in the soil 

profile 10 d after the treatment, w e  determined the di

lution of irrigation water b y  rain to adjust the 8 D  value 

of source water of surface roots. Differences in plant 

biomass and N  pool size and microbial immobilization 

can affect the extent of 15N  enrichment in leaves (Na- 

delhoffer and Fry 1994, B u c h m a n n  et al. 1995). B e 

cause shrubs could not be harvested w e  determined the 

occurrence of N  uptake only by evaluating whether the

15N  enrichment between 15N  labeled plants and plants 

with no 15N  addition wa s  significantly different from 

zero. However, within a species seasonal comparisons 

could be m a d e  because individuals were chosen within 

a small range of plant sizes.

Predawn xy l e m  water potentials were measured with 

a pressure chamber ( P M S  Instruments, Corvallis, 

Oregon, U S A ) .  T o express N  concentrations on an area 

basis, leaf areas were measured using a leaf area meter 

(LiCor Incorporated, Lincoln, Nebraska, USA).

T w o - w a y  analyses of variance were performed to 

assess effects of species and season on measured plant 

variables. Species differences within season were de

termined with Scheffe’s multiple comparison test (Day 

and Quinn 1989). Significance w a s  determined at the 

5 %  level, all percentages were arcsine transformed be

fore analysis, and me a n s  were expressed with standard 

errors.

R e s u l t s  

Water pulse utilization

There were significant seasonal and species differ

ences in the water pulse utilization after a rain event 

(Fig. 1, Table 2). In Ma y ,  all species derived < 1 0 %  of 

their stem water from the simulated precipitation event 

and there w a s  no difference a m o n g  species (Fig. 1). In 

July and September species generally obtained a larger 

fraction of stem water from the precipitation event and 

w e  found clear differences in the extent of pulse uti

lization a m o n g  species. In July, the m a x i m u m  fraction 

of stem water taken up by shallow roots w a s  5 0 - 5 5 %  

in Coleogyne and Artemisia, followed b y  Quercus and 

Ephedra with 2 5 - 3 0 % .  Water pulse utilization was 

< 1 0 %  in Vanclevea and Cryptantha. T h e  ranking of 

species in their ability to utilize water from a rain event 

changed between July and September as the m a x i m u m  

fraction of stem water derived from the upper soil lay

ers increased in Quercus and Vanclevea to 6 5 %  and 

4 0 %  respectively, but decreased in Artemisia to 39%. 

In all the other species, utilization of the rain event 

wa s  similar between July and September.

Species also differed in the short-term dynamics of 

the deuterium signal in stem water (Fig. 1). In Artemisia 

and Quercus the fraction of stem water derived from 

the simulated rain event declined strongly between day 

3 and 5. This dilution of the deuterium signal sug

gested, that after a rain event both species switched 

back quickly to uptake of deeper, unlabelled soil mois

ture sources. B y  contrast, the dilution of the deuterium 

signal between day 3 and 5 w a s  small or nonexistent 

in Coleogyne, Cryptantha, and Vanclevea. In Ephedra 

the larger fraction of stem water derived from the upper 

soil layers wa s  measured on day 5, indicating a slow 

response to a water pulse.

Interannual comparison of surface water uptake in 

July for all species show e d  good agreement between 

1996 and 1997 (r2 =  0.807, P < 0.001) (Fig. 2). In
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Fig. 1. Seasonal comparison of rain pulse utilization in 
1997 by six perennial cold desert species. The percentage of 
stem water derived from the 25-mm rain event is shown as 
closed circles for day 3 and as open circles for day 5 (mean 
± 1 se, n = 6 ). Significant differences (P <  0.05) among 
means within season are indicated by differing lowercase let
ters.

1997, Artemisia had higher a fraction and Cryptantha 

had a lower fraction of stem water supplied by surface 

roots than in 1996.

Predawn water potentials and carbon isotope 

discrimination

T h e  seasonal m a x i m u m  and m i n i m u m  predawn xy- 

le m  water potentials (ty) were used as an indicator of 

average soil water potentials experienced by plant spe

cies (Fig. 3). Coleogyne and Ephedra had consistently 

lower ty than the other species. During the growing 

season ty of Coleogyne and Ephedra decreased strongly 

by ~ 5  M P a  and ~ 4  M P a  to a m i n i m u m  ty of —  6.0 

M P a  and — 5.1 M P a ,  respectively. Quercus, Artemisia, 

Cryptantha, and Vanclevea had similar patterns of w a 

ter deficits, with ty ranging at its m a x i m u m  between 

— 0.35 M P a  and — 0.67 M P a  and dropping to a value 

of — 2.5 M P a  to — 3.4 M P a  in midsummer.

Carbon isotope discrimination (A) values indicated 

significant differences in water use efficiencies (A/g) 

a m o n g  species (Table 3). Cryptantha and Vanclevea 

had highest A  values (20.1 and 19.6%o) suggesting the 

lowest A/g. Quercus, Artemisia, and Coleogyne had 

intermediate A  values and Ephedra had the lowest A  

value. Carbon isotope discrimination values were neg

atively related to plant use of surface soil moisture 

during s u m m e r  (r2 =  0.43, P < 0.001). There wa s  also 

a negative relationship between carbon isotope dis

crimination and foliar N  concentration (r2 =  0.54, P 

<  0.001) (Fig. 4). Ephedra is the only species in our 

study with carbon assimilation occurring mainly in 

stems and it wa s  the only gymnosperm. W h e n  Ephedra 

wa s  excluded from the analysis, the relationship be

tween A  values and stem water derived from upper soil 

layers or N  concentrations improved considerably (r2 

=  0.94, P < 0.001 and r2 =  0.77, P < 0.001, respec

tively).

I5N natural abundances and N pulse utilization

Comparisons of 15N  natural abundances in leaves 

a m o n g  species indicate that Ephedra and Quercus m a y  

have utilized different N  sources than the four other 

species (Table 3). Ephedra had the highest leaf 815N  

values (+1.8 ± 0.3%o), while in leaves of Quercus 815N  

values were significantly depleted (— 4.9 ± 0.3%o). 

Cryptantha, Vanclevea, Coleogyne, and Artemisia 

s ho w e d  intermediate leaf 8 15N  values ranging from 

— 1.2 to +  0.0%o.

Changes of leaf 815N  after the application of a 15N  

label were used to determined N  pulse utilization of 

shallow roots after a rain event. Temporal changes in 

July 1996 show e d  that leaf 8 15N  values in Cryptantha 

increased considerably within three days, while in

creases in leaf 815N  values of Vanclevea and Artemisia 

were considerably smaller but significant (P <  0.01) 

(Table 4 and Fig. 5). With the exception of Cryptantha, 

leaf 815N  values did not change further after two weeks 

following the rain event. Increases in leaf 815N  values 

in Quercus, overall, were small, but leaf 8 15N  levels 

two weeks following the application were significantly 

higher than at the beginning of the experiment (P <  

0.05). B y  contrast, leaf 815N  values of Coleogyne and 

Ephedra did not change significantly during the s a m 

pling period (P >  0.05).

For the seasonal and species comparisons in 1997, 

the change in 8 15N  is s h o w n  for only 14 d after the 

simulated rain event, since the ranking of species re
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TABLE 2. Effects of species and season on resource utilization after a rain pulse. See Figs. 1 and 5 for means and standard 
errors.

Source

Fraction of stem water derived 
from rain event Change in leaf 815N

df MS F P df MS F P

Species 5 0.434 17.5 0.0001 5 49.4 13.7 0.0001
Season 2 2.709 109.2 0.0001 2 9.8 2.7 0.0721
Species X Season 10 0.278 11.9 0.0001 10 31.9 8.9 0.0001
Error 138 0.025 90 3.6

mained the s ame as during the initial sampling period. 

In July 1997, soil labeling with enriched 15N  tracer 

resulted in the s a m e  ranking patterns a m o n g  species as 

in July 1996. T h e  leaf-level 15N  changes were, however, 

ten times smaller (Figs. 5 and 6). Overall, there were 

species differences in the seasonal pattern of N  pulse 

utilization during 1997. Artemisia, Vanclevea, and 

Quercus were able to utilize N  pulses throughout the 

entire growing season as leaf 15N  were significantly 

enriched (Fig. 6). T h e  enrichment in 8 15N  in Vanclevea 

wa s  highest in M ay. Coleogyne and Ephedra also 

s how e d  spring uptake, but appeared to have no signif

icant N  uptake activity by surface roots in July or Sep

tember (P >  0.05). In contrast, Cryptantha wa s  the 

only species which exhibited no significant N  uptake 

in M ay, but large changes in July and September.

D i s c u s s i o n

Seasonal and species differences in water pulse 

utilization

In semiarid or arid regions, perennial w o o d y  species 

generally have greater rooting depths than annuals or 

herbaceous perennials and are able to utilize water 

sources in deeper soil layers (Sala et al. 1989, Ehler

inger et al. 1991, Canadell et al. 1996, Scholes and 

Archer 1997, Weltzin and M c P h e r s o n  1997). These 

studies describe a relatively distinct pattern of soil 

moisture partitioning, which m a y  promote the coex

istence of different life forms. However, w o o d y  species 

also exhibit wide variations in their utilization of soil 

moisture from the upper soil layers (Ehleringer et al. 

1991, Flanagan et al. 1992, Lin et al. 1996). In this 

study, w o o d y  species derived between 1 %  and 7 9 %  of 

their stem water from a simulated 2 5 - m m  rain event. 

O n  the Colorado Plateau, this is a large rain event, 

which would be expected to occur only 1-2 times dur

ing the entire s u m m e r  m o n s o o n  season (Houghton 

1979). Therefore, measured water pulse utilization rep

resents a m a x i m u m  estimate for species responses in 

this cold desert community.

In contrast to s o m e  species of the pinyon-juniper 

c o m m u n i t y  on the Colorado Plateau (Ehleringer et al.

1997), species in our study s h o w e d  limited year-to-year 

variation in the capacity to take up s u m m e r  moisture, 

even though the total amou n t  of s u m m e r  precipitation 

differed substantially between years. W e  observed, 

however, distinct seasonal differences in the utilization 

of soil moisture from the upper soil layers. Early in 

the growing season, each of these species derived rel

atively little water from the simulated rain event 

( < 1 0 %  of the stem water). In July and September, w e  

generally observed a greater relative moisture uptake 

from the upper soil layers. In spring, due to recharging

Fig . 2. Interannual comparison of rain pulse utilization 
between July 1996 and July 1997 (mean ± 1 se).

Fig. 3. Seasonal minimum (closed circles) and maximum 
(open circles) predawn xylem water potential (mean ± 1 SE, 
n = 5) of the six perennial cold desert species. Significant 
differences (P  <  0.05) among means within season are in
dicated by differing lowercase letters.
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Table 3. Foliar carbon discrimination (A) and S15N values 
of six perennial cold desert species.

Species A (%<,) S15N (%<,)

C oleogyne 17.11 ± 0.14b -0 .71  ± 0.19bc
A rtem is ia 17.31 ± 0.23b 0.04 ± 0.14c
Q uercus 17.80 ± 0.10b -4 .9 4  ± 0.34a
E phedra 16.26 ± 0.13at 1.78 ± 0.31 dt
V anclevea 19.50 ± 0.11c — 0.53 ± 0.12bc
C ryptantha 20.10 ± 0.14c -  1.19 ± 0.14b

N otes: Significant differences (P  <  0.05) among species 
are indicated by differing superscript letters. Values are means 
± 1 SE.

t  A and S15N were measured in photosynthetic stems.

T ab le  4. Changes in S15N values in stems of six perennial 
cold desert species in response to a rain event and after the 
application of an 15N label in July 1996 (means ± 1 SE, 
n = 4).

Species Change in S15N (%<>)

C oleogyne 0.46 ± 0.50NS
A rtem is ia 4.28 ± 0.81**
Q uercus 3.50 ± 1.58NS
E phedra 0.37 ± 0.57NS
V anclevea 4.76 ± 1.82*
C ryptantha 206.5 ± 73.9*t

NS P  >  0.05, * P  <  0.05, ** P  <  0.01. 
t  S15N was measured in roots.

by winter rains, soil moisture levels are relatively high 

throughout the soil profile (Caldwell 1985; R. Gebauer, 

unpublished data). All species reached relatively high 

^  and water w as unlikely to be limiting for plant ac

tivity. Since the entire root system had access to water, 

active roots in shallow soil layers m a y  have contributed 

relatively little to the plant’s water uptake. Later in the 

growing season w h e n  water loss b y  evapotranspiration 

results in extremely dry soils throughout most of the 

profile, competition for water a m o n g  species is likely 

to be m o r e  intense. Thus, during summer, soil moisture 

partitioning m a y  be m o r e  important for the mainte

nance of species diversity than in spring, w h e n  soil 

moisture availability is high. Ou r  results s h o w  that spe

cies differences in the ability to utilize rain events be

c a m e  m o r e  apparent in July and September. There was, 

however, considerable overlap in water pulse utiliza

tion. W e  can identify three species clusters based on 

response patterns to the simulated rain event and the 

degree of water stress experienced during the s u m m e r  

months: (1) Artemisia, Quercus, and Vanclevea, (2) 

Coleogyne and Ephedra, and (3) Cryptantha.

Artemisia, Quercus, and Vanclevea s h o w e d  the ca

pacity to both extensively utilize water pulses after rain 

events and to take up soil moisture stored at depth. In

Artemisia and Quercus the presence of active roots in 

the upper soil layers is indicated by considerable uptake 

of moisture from the simulated rain in July and Se p 

tember. O n  the other hand, the reduction of deuterium 

in stem water between days 3 and 5 indicates that both 

species switched back relatively quickly to deeper soil 

moisture sources. Additional evidence for access to soil 

moisture at depth wa s  the relatively small decreases in 

^  throughout the summer. Similarly ^  in Vanclevea 

decreased relatively little during the summer. However, 

in contrast to Artemisia and Quercus, Vanclevea only 

utilized rain pulses in September. Lin et al. (1996) o b 

served similar patterns in Vanclevea and suggested that 

high soil temperatures m a y  have affected water uptake 

capacity of shallow roots.

T h e  second cluster, Coleogyne and Ephedra, utilized 

a relatively large proportion of soil moisture from s u m 

m e r  rain pulses, but exhibited large decreases in ^  

during the summer. These patterns imply that both spe

cies were unable to effectively switch from use of sur

face moisture to water sources at depth (Lin et al. 

1996). For these species, there wa s  also no dilution of 

the deuterium signal in stem water in July between days 

3 and 5. In fact, the fraction of Ephedra's stem water 

derived from the rain event increased between days 3 

and 5. This delayed response to the simulated rain event

otn
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Fig. 4. Relationship between carbon isotope discrimi
nation and nitrogen concentrations among different species 
(mean ± 1 SE, n = 34-36).

Fig. 5. Temporal changes in leaf S15N of different species 
after the application of an 15N label in July 1996 (means ± 
1 SE, n = 6 ).
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Fig. 6 . Seasonal comparison of nitrogen pulse utilization 
in 1997 by six dominant perennial species of a cold desert 
community at Arches National Park, Utah. Changes in leaf 
815N between unlabelled and 15N enriched plants (mean ± 1 
SE) are shown for 14 d after the application of the 15N label. 
Changes significantly different from zero are indicated by * 
P  <  0.05 and **P  <  0.01.

might be a result of low rates of water transport through 

the plant. A s  a gymnosperm, Ephedra has different 

hydraulic architecture than the other species (Sperry et 

al. 1994, Tyree et al. 1994) and low transpirational flux 

rates (Comstock and Ehleringer 1992). It is also pos

sible that the delay in water uptake in Ephedra was 

associated with a time lag required for n e w  root growth 

(Nobel 1994). Such a delayed utilization of a rain event 

could place Ephedra into a competitive disadvantage

with other species, which are able to deplete moisture 

sources faster than Ephedra.

Cryptantha, the only herbaceous perennial in our 

study, m a d e  limited use of increased moisture avail

ability in the upper soil layers, but as indicated by the 

maintenance of relatively high ty, had access to soil 

moisture at depth. This water uptake pattern wa s  dif

ferent than most other herbaceous species, which gen

erally rely m o r e  strongly on water uptake from upper 

soil layers (Ehleringer et al. 1991).

T h e  significant negative relationship between leaf 

carbon isotope discrimination (A) and the proportional 

water uptake from the upper soil layers indicated that 

species with a high fractional utilization of water pulses 

in upper soil layers had a greater water use efficiency 

(A/g) than species with access to a m o r e  reliable water 

source at depth. Similar relationships between A  values 

and utilization of shallow soil moisture have been 

found in other plant communities (Flanagan et al. 1992, 

Valentini et al. 1992). It is consistent with Walter’s 

hypothesis (1979) that w h e n  considerable overlap in 

functional root systems exists a m o n g  species, differ

ences in A/g m a y  in part contribute to the coexistence 

of those species (Walker et al. 1981, Scholes and A r 

cher 1997). L o w  stomatal conductances, greater p h o 

tosynthesis, or the combination of both can lead to 

increases in A/g (or decreases in A  values) (Ehleringer 

et al. 1993). W e  also found a high correlation between 

A  values and leaf N  concentrations a m o n g  species, sug

gesting that carbon discrimination responded to dif

ferences in photosynthetic capacity. T h e  correlations 

of A  values, water pulse utilization and N  content in

dicates that N  use patterns affected carbon and water 

relationships of different plant species. Thus, even dur

ing times w h e n  water wa s  the primary factor limiting 

plant activity, N  partitioning a m o n g  species m a y  influ

ence species coexistence.

Natural abundances of I5N

8 15N  values of plant tissues were quite different 

a m o n g  species. For example, Ephedra (1.8%o) wa s  en

riched in 15N  relative to the other species, while Quer- 

cus (— 4.9%o) w a s  considerably depleted. Variations in 

natural abundances of 8 15N  of plant tissues have been 

attributed to several factors, including (1) soil trans

formations of N  ( N  fixation, turnover by microbial m i n 

eralization/immobilization), (2) the soil depth from 

which N  is taken up, (3) the form of soil N  used (or

ganic N, N H 4+, N O 3—), and/or (4) influences of my -  

corrhizal symbiosis (Handley and R a v e n  1992, Nadel- 

hoffer and Fry 1994, Hogberg 1997, Michelsen et al.

1998). Because of the complexity in N  pathways and 

the interactions between these factors, it is often dif

ficult to link observed variations in natural abundances 

of 15N  values to a specific m e c h a n i s m  (Nadelhoffer and 

Fry 1994, Hogberg 1997). O f  the species studied Quer- 

cus is the only species with an ectomycorrhizal asso

ciation (J. Trappe, personal communication). This m a y
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TABLE 5. Summary of resource uptake patterns in response 
to a rain event in 1997.

Species

May July September

H2O N H2O N H2O N

A rtem is ia — * + + * + *
Q uercus — * + * + +  *
C ryptantha — NS + * + *
C oleogyne — * + + NS + +  NS
E phedra — * + NS + NS
V anclevea — * — * + +  *

N otes: Water uptake is indicated as ( —), (+ ), or ( + + )  when 
stem water derived from the rain event was <10%, 10-40%, 
or >40%, respectively. N uptake is indicated in terms of 
whether changes in leaf 815N were significant (*, P  <  0.05) 
or were not significantly different from zero (ns, P  >  0.05).

be a contributing factor to the large 15N  depletion found 

for this species. Nevertheless, the large differences in 

815N  a m o n g  species supports the hypothesis that the 

soil N  pool is to s o m e  extent partitioned a m o n g  species. 

It has been suggested that differences in 815N  correlated 

with the absence or presence of mycorrhizal association 

m a y  reflect uptake of different forms of N, rather than 

fungal discrimination against 15N  (Michelsen et al.

1998). In our study, species which were similar with 

respect to their utilization of water sources (e.g., Ephe

dra and Coleogyne or Quercus and Artemisia) m a y  be 

differentiated from each other with respect to N  sources.

N pulse utilization need not to be related to water 

pulse utilization

In arid and semiarid ecosystems, N  availability is 

highest in surface layers and declines strongly with 

depth (Charley 1975, Virginia and Jarrell 1983, Evans 

and Ehleringer 1994), which can result in intense c o m 

petition for N  a m o n g  species during infrequent pulse 

events. T h e  results of the 15N  labeling experiment 

sho w e d  that all dominant species of this cold desert 

c o m m u n i t y  utilized the N  pulses in the upper soil lay

ers. There were, however, seasonal differences in N  

pulse utilization a m o n g  species. Coleogyne and Ephe

dra did take up N  from surface layers in M a y ,  but not 

in July and September. In contrast, Cryptantha did not 

utilize the surface N  pool in M ay, but did so in July 

and September. Artemisia, Quercus, and Vanclevea 

took up N  from the upper soil layers throughout the 

year. Similar to the results of our study, M c K a n e  et al.

(1990) found temporal differentiation in N  uptake 

a m o n g  species of an old field plant community.

O n e  conclusion of this study is that water and N  

uptake do not necessarily occur simultaneously. In July, 

in particular, w h e n  resources were most constrained, 

w e  found distinctly different N  and water utilization 

patterns a m o n g  species (Table 5, Figs. 1 and 6). Only 

Artemisia, Quercus, and Cryptantha show e d  significant 

water and N  uptake from the upper soil layers. H o w 

ever, at this time Cryptantha derived only a small frac

tion of its transpirational water from the water pulse.

Coleogyne and Ephedra had the capacity to utilize the 

water pulse but not the N  pulse. Shallow roots in Van- 

clevea only took up N.

M o s t  theoretical and experimental studies of root 

activity and below-ground resource competition as

s u m e  that water and N  uptake in different roots occur 

together (e.g., Casper and Jackson 1997). To our 

knowledge, few studies have tested the assumption of 

simultaneous N  and water uptake. Schulze and B l o o m  

(1984) sho w e d  that N  uptake rates in hydroponically 

grown tomato plants were independent of water uptake 

rates (as measured by transpiration rates). A  compar

ison of two perennial grass species of the Great Basin 

Desert show e d  that water uptake recovered rapidly fol

lowing drought in both grasses, while N  uptake was 

fully restored in only one of the species (Bassirirad and 

Caldwell 1992). O n e  possibility to explain water with

out significant N  uptake in Coleogyne and Ephedra 

might be that N  acquisition requires considerable 

amounts of energy (Clarkson 1985, Chapin 1988). Even 

though both species remained photosynthetically active 

during the s u m m e r  months (R. Gebauer, unpublished 

data), it is likely that due to the reduced leaf area, whole 

plant carbon gain might not have been sufficient to 

offset the uptake costs of N. A  possible m e c h a n i s m  for 

the observed resource uptake pattern in Vanclevea is 

that hydraulic conductances in shallow roots were rel

atively small compared to deeper growing roots. Dif

ferences in hydraulic conductivities between tap and 

lateral roots have been s h o w n  for proteaceous species 

(Pate et al. 1995). Despite the relatively low water flux 

rates in the shallow roots, N  uptake and transport are 

likely to be maintained as has been s h o w n  for corn 

(Tanner and Beevers 1990).

T h e  idea that parts of the integrated root system can 

serve different functional roles wa s  discussed b y  Wais- 

el and Eshel (1991). O u r  results s h o w  that in addition 

to distinguishing a m o n g  different functional (e.g., stor

age, anchorage, and transport or resource acquisition), 

it is important to recognize that different parts of the 

root system can be acquiring different essential re

sources, in this instance water and N. O u r  results also 

have important implications for understanding c o m 

petition and coexistence of species. Trade-offs in the 

ability to capture resources are unavoidable (Tilman

1982, 1988) and differential water and N  utilization 

suggest a m e c h a n i s m  by which species of this cold 

desert c o m m u n i t y  could be favored differentially under 

conditions of highly variable resource availability. Th e  

challenge ahead is to understand the consequences of 

variability in resource utilization on long-term inter

actions of plants under field conditions.
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