ROBOT SHARE: A FRAMEWORK FOR

ROBOT KNOWLEDGE SHARING

by

Xiuyi Fan

A thesis submitted to the faculty of
The Urnuversity of Utah
in partial fulfillment of the requirements for the degree of

Master of Science
n

Computational Engineening and Science

School of Computing
The University of Utah

May 2009



Copyright © Xiuyi Fan 2009

All Rights Reserved



THE UNIVERSITY OF 1TAH CRABUATE SCHOOL
SUPERVISORY COMMITTEE APPROVAL

Ilh_-

Xiovs FFan

Ttis thesls hex boen cead by cach meinba of die $0llowiNg o ceme s cOmmetloe wid
by mujerey =ils = bovn (und W Iy sat alag =

o, &= miaa U o T

- Ml Y RS

e R IIrj'l'l.--n---n-::

Lol " #

e LA Horey i

Bolas Bl Bomeiii



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

[ have read the thesis of Xiuyi Fan in its final form and have
found that (1) its format, citations, and wibliograplic style are consistent and acceptable;
(2) its illustrative materials incJuding figures, tables, and charts are in place: and (3) the
final imanuscript is satisfactory to the Supervisory Coramnittee and is reacty for subnussion
to The Graduate Scheel.

Bate Thownas C. Henderson
Chair: Supervisery Committee

Appreved for the Major Department

|
Martin Berzins
Chair/Directer

Approved for the Graduate Council

u B HED B .

David S.
Bean of The Graduate School



ABSTRACT

[Knowledge representation is a traditional field in artificial intelligence. Re-
searchers have developed various ways to represent and share information ainong
intelligent agents. Agents that share resources. data, information, and knowledge
perform better than agents working alone. However, previous research also reveals
that sharing knowledge among a large number of entities in an open environment
is a problem yet to be solved. Intelligent robots are designed and produced hy
different manufacturers. They have various physical attributes and employ different
knowlecdge representations. Therefore, any nonstandard or non-widely-adopted
technology is unsuitable to provide a satisfactory solution to the knowledge sharing
problem. In this research, we pose robot knowledge sharing as an activity to be
developed in an open enviromnent - the World Wicde Web. Just as search engines
lilke Google provide enormous power for information exchange and sharing for hu-
mans, we believe a scarching mechanism designed for intelligent agents can provide
a robust approach for sharing knowledge among robots. We have developed (1) a
knowledge representation for robots that allows Internet access, (2) a knowledge
organization and scarcli indexing engine. and (3) a query/reply mechanism between

robots and the scarch engine.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Knowledge representation is a. traditional field of study in artificial intelligence
[34, 37]. More recently, knowledge sharing has attracted research interest. Pre-
vious research has been focused on the formation of knowledge, representation of
knowledge, categorization and partition of knowledge, etc. Various kunowledge base
structures, knowledge interchange languages, and knowledge sharing infrastructures
have been developed. Knowledge sharing among intelligent agents, e.g., robots,
brings more power to each participating agent as it can accomplish its jobs more
rapicly and/or at a lower cost.

One problem of the previous studies was that most cdealt w.ith a closed en-
vironment aud defined a specific set of knowledge representation structures and
communication languages in a somewhat nonstandard fashion. This lirnits the
adoptability and the flexibility of those systems. Another problem is the scalability
of these systenis, as most of them are designed to operate aunong a small number
of participants. These systems may work well in a small LAN, but when they are
adapted to an open WAN, various problems emerge, i.e.; network latency, platform
incompatibility, communication language incompatibility, etc. One major goal is
to vastly increase the scale of robot knowledge sharing.

We build a knowledge sharing framework that supports a large number of data
formats, is able to scale to process large amounts of data and is accessable to a
large number of robots. To avoid some of the problems of earlier approaclies, we
develop a web-based approach for knowledge sharing among robots.

Thesis: Robots sharing knowledge is more efficient and successful

than robots learning and acting on their own. A web-based open archi-
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tecture helps to bring more robots into the system and enhances their

performance.

1.2 Introduction
In the past, when we needed to know something, we would look it up in an

encyclopedia or find a book on the subject. Nowacdays, we turn to web search

TM [ TA2

engines, such as Google or Yahoo , and are given pointers to a large amnount
of information. We usually find what we are looking for relatively quickly and easily.
The semantic web holds promise for the future in which communities of practice
will share knowledge to meet their needs or solve problems. We propose to develop
similar capabilities for physical robots, including humanoid robots, which act in
the world and must know a great deal about it. Humanoid robots in our research
include robot butlers, surgeons, drivers, hospital orderlies, homecare nurses, etc.
Thus, when a robot encounters an unfamiliar or unknown object in its environment,
or when i1t needs to know how to perform a particular task with or on an object

M0 order to get pointers

(e.g., clean it), it will be able to query a Robot Google
to relevant information available in the world wide web, or it will interact with a
robot knowledge ontology-hased sharing community.

Humans achieve this sharing mainly through natural language: ¢neries are
wolds that are matched to document content. For robots, it is not clear how to
achieve this, and the question arises as to what representations best facilitate robot
knowledge sharing. Restricting for the moment our consideration to 3-D physical
objects, a description may include geometry, phivsical properties. functional use,
context. and natural language descriptions. Other knowledge, e.g., task procedures,

may require representation of desired forces, torques, wrenches, etc., described in an

appropriate sharable representation (e.g., some form of configuration space). The

*GOOGLE is a trademark of Google Inc.

2¥ahoo is a trademark of Yahoo In¢.
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pair of wooden sticks is called “chopsticks.” The robot then formulates a query
and sends it to the Robot Share server through its on-board Internet connection.
It wants to know if these chopsticks need to be cleaned (as it 1s told to clean all
kitchenware) and if so, how to clean them. The Robot Share server processes the
query, and responds with: please go to www.robot_chopstick.com/info to see more
mformation about chopsticks and please go to www.robot_chopstick.com/clean to
see how they can be cleaned. The robot then connects to those two provided URLs
and downloads a few packages that contain the needed information. It then cleans
the pair of chopsticks successfully.

From the scenario described above, we can see that there are at least two types

of knowledge a robot may be interested to know,

o The knowledge of object identification, i.e., the knowledge to answer questions

like: what is this?

e The knowledge of obbject manipulation, t.e., the knowledge to answer questions

like: what can be done to/with this object”

Both of the two types of knowledge are closely tied to a robot’s pliysical ca-
pacities, 1.¢., a robot’s sensors and its actuators, as sensor data are utimately what
a robot knows about the exterual world and actuators define what a robot can
possibly do to the external world. Therefore, the proposed framework emphasizes
sensor information. We helieve sensor data provide a solid grounding for this
research.

Goals for this research are:

o develop robot knowledge sharing framework,
o study robot knowledge representation,

o study knowledge indexing structwe,

e study accuracy of retrieved lknowledge.

o study performance of sharing.


http://www.robot_chopstick.com/info
http://www.robot_chopstick.com/clean

(N

1.3 Relevant Work

The study of knowledge representation can be traced back to ancient Greece.
Epistemology, the study of the nature of knowledge and its justification, was
established by Plato in the fifth century B.C. [37]. Since then, the study of
knowledge, including its nature, representation, development, etc., has been carried
on by philosophers, mathematicians, linguists, and scientists. Most knowledge
representation developed today is rooted in various logics. Recently, some computer
scientists have expressed belief that grounding knowledge purely in logic, e.g., in
symbolic languages, is insufficient for building intelligent agents and robots. They
propose to develop sensor grounded and context-aware knowledge representations
for robots [32, 33]. Even though their work is promising. they are still far from
providing a comprehensive and satisfactory solution.

Although still in its formative stages, several groups are making progress on
sensor-grounded robot knowledge creation. In our provisioning effort we intend to
take advantage of this. Colien et al. [6] describe a natural semantics approach
in which robots learn meanings through their interaction with the environment.
Traditional Al approaches rely on the reduction of semantics to syntax, and such
systems have no real understanding of the symbols that they manipulate. In natural
semantics, such meanings are acquired and maintained by the robot system, and
not. specified externally by hunian programmers or knowledge engineers. In this
work, a robot is provided with a small nuinber of beliaviors (e.g., move, twn, open
gripper, etc.), and the robot records sensor data streams. From this, prototype
sequences are segmented and serve as the basis for more complex tasks. In this
way, the robot learns a sensor data based ontology through interaction with the
environment, and concepts are related to the sense data.

Another approach is the Spatial Semantic Hicrarchy which allows bootstrap
learning from uninterpreted experience. This involves solving three problems: (1)
feature learning from the sense data, (2) control learning for achieving desired states,
and (3) place recognition to identify cdistinctive states. Ref. [26] explains this

approach in detail.



Er.1.l'l.lll.|!I '.J.'|I'|| :'f-ll:piErPI'u' ||r|inr.=||-::ﬂ..:=r| ol Pt t'l.:ll! b Ve Boars | Al
well @ oo aokoown envivomnent. we show hoee o leariug ager caai
aeparale the segiie vac rop anto modalives, |=avy the srroecnre of mdivd-
il pmeclabitiss, leagn parernd peinafses for phe gnotin: sssrenr llemtife
veliabile velat inms between primptavs ictizns aml crearsl seosory Feating.
ard Carclefine osebal control e Tor heameng and parh foliowing

Thas Ats well wirh wur rebat kpowledge provicionimg sclieme amee v shita, o well
4 lwaryped shinctgres. anll be svalable

Crropets e al, hove Pased then appaouch o boman develupapeneal e o |18
They ave demosateared o Damework B Lhe developmiene of rohor behavior
v |wie e

AN Behavion is bl constroucted from a e af e contiol lases
awiil evens Lhat chelieats coprral e oy ol are deriaed feoog Hae
paltern of Glipquilibeia onoa woerking subset of sensoriamlon pooacies,
Wi o T s arclitec Loge can be geed 1o ar Crbgrisin sl
|u1-'wa'lwﬂ5" muthering aud represendatnr Lasks anid ;nl'-::-u'idr' s dtiiples of
decelpmental teavniog vsing wogurndropedal walkong raber,

I adshicion, they lave proposed o celatiooal feprosentation fon procedural eosk
Liowledge (18] Jomt prebabity estunates ace learned whieh velars fearnres of
U sendminsibon olevum G chsipes ]l beliaior gualite. I tlis swas, ©e pobaot fan
deteripie ~alwnr leatines ja = woild expeiences Ceensoa Sactiaton pediated el
st et pobunss, Thes grcags bag esommmed ey seans cebared] ro tnoeaan ke
al Brviby (e arospang, wealkeng wie |

An i Baal exaenple of nosong producing shacablo jobot Ko wdee (ohese
many niore we Bove selecled a representative samgle beied Dikmann o0 ol have
foesed un robor knowledge velaged o cherr humanonl progece 3] Thewr vecent
FACOLPLUS prrode s focdevalop o cognidtve robat [100

O sppecach =] capabde ol deseloping perceptiad, belinvioral and
COLTY Cegores 1 A neeinrable way aod of cominnnicating aral
sharing those with bumans and ocher arteh al amears Tooac ey thes,
the puogect brings toeetlier o cnnsmbnm of cnbolics researr s engi
e, Ceanpinter visisn sCebials ligiets eecrsatic al e =0 it
At cognities s nlopests The ay=temia wé o ac are sapiposed 60
mzseact and lupctan tegether wolh himans ey are ipeane o e able
to coogerale and tooenter A dbdlopoe commtnsating with the d aan
Thevelae thmy peed Lo mderstaed Deotle, whas thes perieas g w



they do. Our hypothesis is that such understanding can only be attained
if we consider perception and action together. Iu this process the
artificial systemn needs to learn and adapt to the momentarily existing
situation to be able to act and react appropriately.

Their work will provide a way to bridge knowledge between humans and robots.
They have recently proposed a reference model for human kinetics just for the
purpose of enabling shaving {2].

In order to exchange knowledge, robot agents also require a common language
for the expression of their data and processes. As a starting point, conimon sensors
and actuators give a direct mechanism for exchange. Analysis of the scnsor data
15 then straightforward, as well as control of actuators. More abstract sharing
mechanisms are possible when specific sensors and/or actuators differ. For example,
Logical Sensor Systems [9, 20| provide such a framework. Tn this case, sensors arve
abstracted as a data type in an object-oriented sense. Physical operations by the
agent on the world may be expressed as a sequence of force closures to be achieved
(e.g.. In terms of forces, torques, wrenches, etc.) [21].

Another influential work in knowledge sharing is the Knowledge Interchange
Format, known as KIF [17]. KIF was defined as an ANST standard by the NCITS
T2 committee on Information Interchange and Interpretation in 1998, KIF is a
version of typed predicate logic. Tt is still unclear what is the nost appropriate
knowledge representation format for robots, and exchanging knowledge between
robots i an unrestricted environment is still a problem to be solved.

We are aware the current research on the Semantic Web (7], which is led by
the World Wide Web Consortium. The aim of the Semantic Web project is to
create a wuversal medium for information exchange by putting documents with
computer processable meaning on the World Wide Web. Using the Semantic Web,
infornwation can be better organized and more accurately delivered to a human
reader. The book by Dawies et al. [7] provides a very clear review of wethods
and tools developed for the human semantic web, including methods to extract
information from text, retrieve information from other sources, and to compress,

visualize and disseminate infornation.



We would like to position Robot Shave to a starting point for sharing data and
information among robots. How to reformat the structure of Semantic Web to suit
robots will be an interesting topic for furture research. It would also be an exciting
and difficult task to introduce a mathematical theory to model this problem.

Chapter 2 presents our view of robot knowledge. It introduces the knowledge
representation we have developed. Chapter 3 presents various issues involved 1n
a search engie construction and introduces the architecture of the Robot Share
search engine. Chapter 4 presents the performance of Robot Share. Chapter b gives

an overview of possible future research and conclude this thesis.



CHAPTER 2

KNOWLEDGE REPRESENTATION

2.1 Robot Knowledge

2.1.1 Sensor Grounded Knowledge

Humans recognize the external world first through seusory organs. When we
visit & museumn, we see a nuriber of artifacts on display. Suppose there is an object
we do not recognize, and we would like to know what it is. We loolk at it to see its
shape; we Jift it (assuming it is permitted to do so) to fecl its weight; we may smell
it, even though it may not he very helpful for this case, to determine its odor; we
may tap it with our finger to see how ir sounds (again. assume it is pernmitted to do
s0). With this collected sensory information, we try to associate this new object to
some object we already know. Association is a pattern matching process, i.e., we
try to find a known object, whicli has its sensory property close to the new ohject,
in our memory. If we cannot And such an object, or we find wltiple ones and we
are not so sure whicli one 15 the clasest, we may check out the inuseum description
card, as it provides sowme verhal information that may help us to distinguish the
best matel. We may also look around to see where this object 1s placed, as knowing
the object’s environment nray help us to recogitize the object. To summarze, we
recognize an object first by collecting information through our sensory organs. This
information comes in various formats. Somne of theny are more accurate than others;
some of them arc more ahstract than others; some of tliem have teinporal properties
while others do not. It seems there is cnough evidence for us to helieve that sensory
information, i.e., inferination collected hy our sensory organs, is the gronnd for all
of cur chject recognition process.

We believe robots can behave similarly and that the best way for a 1obot to

recognize objects is through sensor data. We would not deny ontology information
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like a fork s a ktchenware: o hitchenware 15 o tool used for dimang or relevant
purpose, a tool used for dining or relevant purpose usually is an o,m_f'act'; an artifact
s an object could he helpful at some place in our intellectual system. However, we
believe such information is less consulted, if at all, when we encounter something
previously unknown. Therefore, we would not deny outology or logie, at least to
some extent, could he helpful for a robots. However, we would like to focus this
research towards a sensor data grounded approach.

We are aware that currently there is a good deal of research dedicated to various
aspects of robot vision [3, 27| to find methods tor object segmentation, object
tracking, etc. Albeit interesting, these topics are beyond the scope of this research.
We assunie robots are able to identify objects in the environment [(i.e., segment
them in senser data) and measure physical properties of the object using ou-board

SCIISOrs.

2.1.2 Knowledge Definition

The definition of knowledge is still fuzzy at this point, as philosophers love
to debate this type of topics. The classic definition, found in Plato, states that
three criteria define knowledge: knowledge needs to be a statement, such that it
is justified, true, and believed [42]. For the purpose of this research, we restrict
the scope of robot knowledge to be: strings, which contamn information about
objects and activities. This includes physical propertics of objects and verbal
descriptions. which are usually assigned hy a haman to objects and strings that
contain information about activities that includes verbal descriptions and activity
components recorded 1 temporal scquernice.  Physical properties of objects are
present in various forms; some of them are temporal, ¢.g., acoustic information,
wlereas others are static, eg., eurvature of a swface.  Activitics can also be
represented in various formats, However, from a robot’s point of view, they are
not much different from each other, as they are all strings. As long as the robot
knows how, te.. has the program, to decode the string, they are cousidered the

sante.  For the sake of simplicity, and also to avoid somie of the less practically
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useful philosophical debate, we consider that for a robot to kiow an object or an
activity nierely means to have inforination about the object or activity stored in its
memory. Therefore, for a human, a verbal description of an object is quite diftferent
from the size, weight or other physical properties of the object as language usually
roots deeply to the meaning or concept of the object. To say it in a different way,
language provides a representation of the object, as one needs to understand the
word in the description to extract information emibedded in the description. On
the other hand, for a robot, a verbal description is the same as sensor collected
physical properties. They are all hyte strings stored in the memory. If a keyboard
can be viewed as a sensor, then key strokes are sensor inputs and character strings
are the sensor outputs.

Sensory information is the first step for humans and robots to perccive the
external world. However, there is much more than simple perception when humans
live in the real world. We not only perceive things, but also understand them. We
build concepts out of percepts. In the previous paragraph, we stated that for a
robot, to know is to have information stored in its memory. This is clearly not
the case for humans as someone could easily memorize a physics formula without

knowing its meaning,

5

or sonteone could read out a poem word by word withont
understanding it. Could we do something similar when we build robots? What
does it mean for a robot to understand a concept? Could a robot really understand
anything, not just react based on programs run on the robot?

We believe those are interesting questions. However, rather than addressing
them in this research, we would like to take a functional point of view. We believe
robots are built to help humans to perform certain tasks which are either impossible
or inconvenient for humans to perform. Therefore, if it is beneficial to have a robot
to know there are similarities between a fork and a spoon, i.e., the distance nieasure
between a fork and a spoon is less than a fork, say, a chair, then we should program
a distance evaluation hunction, which always returns a smaller number when a fork

and a spoon are compared. In such a measure, we define that identical objects

have a distance measure equal to zero, and this measure returns only nonnegative
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numbers. If a robot can use this function to perform tasks better, then we may
say that the robot knows, or is able to infer, that forks, spoons and probably
dinner knives, belong to one group, whereas tables, chairs and bookshelves belong
to another.

In a nutshell, robot knowledge is information about objects and activities, in
string format, stored in a robot’s memory. For a robot, to know an object means
to have information about that object stored in its memory. Relations between
objects help robots to perform tasks better. However, relations are developed or

discovered based on information acquired through sensors.

2.2 Knowledge Extraction
In the previous section, we have presented our definition of robot knowledge.
We have emphasized that grounding knowledge to sensor data is essential to this
work. This section introduces how knowledge can be extracted from sensor data,

and presents the data sample set that has been used for this work.

2.2.1 Data Type and Extraction

Sensors produce data in many formats. Typical sensors available to robots are
sonar, laser range finder, weight scale, CCD camera, infrared, odometers, etc. In
general, these sensors can produce results in two categories: direct measures and
derived measures. For instance, a weight measure of an object is a direct measure
of a weight scale; an RGB histogram of an image is a derived measure of a CCD
camera. The accuracy of direct measures depends on the accuracy of the sensor.
The accuracy of derived micasures depends on the accuracy of the sensor and the
algorithm used to produce the measure. Therefore, it is our liope to set standards
on algorithms used to produce derived measures, and to regulate the format of
these measurements. Therefore, comparable results can be obtained.

To test the suitability of the direct/derived data measure taxonomy and the
possibility of the measurement standardization, and to provide a solid ground for

our research, we collect sample data for objects and measure their properties. Since
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the prototype of this framework is to be applied to kitchen robots, we collect our
sample data from kitchenware, e.g., forks, spoous, knives, cups, plates, etc. CCD
cameras are readily available and the produced images are information intensive.
We choose to work with images as our starting point.

Since the 1970s, unage analysis and retrieval has been an active research area
in database and computer vision |5[. Image retrieval is primarily text-based in
research of database, whereas in research of computer vision, it relies on visual
properties of the data. In the early 1990s, content-based image retrieval (CBIR)
was proposed. Ref. [5] summarized CBIR as:

In CBIR, images are automatically indexed by summarizing their
visual contents through automatically extracted quantities or features
such as color, texture, or shape. ... Since the inception of CBIR., many
techniques have been developed along this direction, and many retrieval
systems, both research and commercial, have been built.

The basis of CBIR is feature extraction, as shown in Figure 2.1. Typical features
are color, texture, shape, sketch, etc. Nonwmally, each feature has more than one
representation. For instance; color histogram and color moments both represent
color features. There are several ways to compute a color histogram. Contrast,
uniformity, coarseness, roughness, frequency, density, and directionality are exam-
ples of texture features. They contain inforniation about the structural arrangement
of surface elements and their relationship to the surrounding environment.

To ensure system flexibility, we build our framework to support as many feature
extraction techniques as possible. Determining the most appropriate set of image
features for knowledge sharing in the context of robot knowledge would be interest-
ing as well. However, to make the research concrete, we predefine au immage feature

set and collect a data sample set.

2.2.2 Data Sample
Sixteen objects, including four howls, one cup, two forks, three knives, two
plates, and four spoons, are selected. T'wo images are taken of each object. one from

the top view, and the other one froru the side view. All images are taken against a
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the ymcertainty of the real world, we have studied how these measures may vary
under different picture-taking conditions. e.g., various lig 1ting conditions. We use
natural light (indoor sunlight), two incandescent hghts, and a flash light as our
light sources in this test. Four objects - a cup, a plate, a spoon and a knile - are
imaged. Twenty images under these four different hght settings are taken of each
object. The RGB histograms, the hue histogram, the edge direction histogram.
the perimeter and the image area are computed. Figure 2.2 shows an image of a
bowl from our sample set. Figurce 2.3 shows three concatenated color histograms of
this image from each color channel. Figure 2.4 shows the edge histogram computed

using the Sobel algorithm.

2.3 Knowledge Formulation
In order to build the Robot Share search engine, which supports a large amount
of data and fast retrievals, data indexing is needed. The indexing structure iz

cliscussed in the next chapter. Knowledge representation 1s presented heve.

Figure 2.2. A Sample Image.
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Unlike a traditional database query systen, where systen arclitects also control
the data source, Robot Share has the problem that it knows little about its data
source. It is normal for a robot to know certain features about an object, and it is
willing to share this knowledge with othev robots though Robot Share. However,
Robot Shave may know little about this feature. Hence, Robot Share does not
know how to process this knowledge. It is also possible that a rohot wants to share
knowledge of an object even though it does not know every feature of this object.
In order to make Robot Share to support these two common cases, two knowledge
transformations are required.

The first transformation takes place in robots, where kuowledge is transformed
from a robot’s internal representations, which are probably only known to robots
themselves, to a form such that they are understandable to other parties, e.g.,
Robot Share and other robots. The second transformation takes place in Robot
Share, where knowledge, which is represented in the format produced by the first
transformation, is then transformed into a vepresentation that can be cfficiently

indexed.

2.3.1 The First Transformation

The purpose of the first. transformation, from a vobot's internal format to an
open standard, Is to transforry knowledge m such a way that an unambiguous and
widely-adoptable format is achieved. Two requirements necd to be satisfied for
this purpose. Fust, the data source of the transtonnation needs to be collected
anifornly. We propose the idca of the asymmetiic spatial-temporal coherence for
objects. When a robot collects information about an object, 1., measures its
properties, we assume the robot does this in a uniform way such that all properties
are measired with the least intervention among them.  For instance, it 1s not
desirable for a robot to measure one property of ai object and somehow manipulate
the object and then measure another property. Once all information is collected,

the robot packages it tightlv to maintain data integrity. Thercfore, it is clear to
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both the robot and Robot Share that information about one particular object is
collected.

Having a clear distinction between an object instance and an object class is
significant to this work for two reasons. First, Robot Share has deep roots in the
concept of sensor cdata grounded knowledge, i.e., sensor data are the ground for all
liigher level knowledge structure. Therefore, knowing which instance a sensor data
refers to is important to all higher levels, e.g., semantic level, knowledge structure
formation. Second, it is desirable to support instance-based query in addition to
the general class-based query. For example, to be able to detect that an image
represents a human face is useful (the class-based query), but to be able to detect
whose face it is (instance-based query) can be more useful for some applications.

We employ the standard Extensible Markup Language (XML) to vepresent
knowledge as the result of the frst transformation, as the XML format is widely
used and accessible. We give a precise definition of the language our framework
supports by using the Knowledge Definition Grammar (KDG). IKDG is designed to
be flexible enough to capture various type of knowledge and parser friendly. The
definition of KDG is included in Appendix B. As all knowledge about objects in our
framework is sensor grounded, even though KDG provides the ability to support
virtually any type of object property, we define a set of XML tags to describe

certain conunon object properties.

2.3.2 The Second Transformation

The purpose of tlie second transformation is to convert the easy-to-comnumicate
XML format mto a representation that is easy to index. Hence we can build the
search engiie efficiently. We take the vector space approach.

Every piece of knowledge in our system can be divided into three parts: text
data, sensor data and meta data. Text data are provided by humans. They include
the name, function, use and possible other related descriptions about an object.
Sensor data are collected through sensors. They represent physical properties of

an object. They are recorded by numerical values. For instance, the weight of an
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object is usually recorded with a single nuwerical value, given a stancard wmt is
used; the shape of an object can be recorded by a histogram of the direction of the
object’s edge, where a histogra is usually represented by a vector. Meta data are
recorded when the object is measured by sensors. They contain information about
collected sensor data. For instance, the location of where the object is encountered,
the time when the object is encountered, the type/hand/model of the sensor used
to collect data, etc.

These three types of data can be indexed using two different approaches: dif-
ferent data types are either indexed separately, using multiple indexing structures,
or they are combined and indexed by a uniform structure.

There are pros and cons to either of these two approaches. Separated indexing
has the advantage that each type of data can take its own indexing method. The
indexing method of a particular data type can be entirely based on the type of
the data. For instance, LSI and reverse index are commonly used text indexing
methods. They can be evalvated and selected for the text data indexing. Image
data have a different set of properties. Thev can utilize sorne other indexing method.
So do meta data. Finer grained discrimination is possible as well. Sonar and laser
range fnder generate oucpul in different formats. Data generated from each of
the two can hence he indexed differently. Data-class based indexing could result
in a better retrieval pevformance, if queries contain only one type of data sample,
1.e., text query, sonar query, ctc. However, if a query contains more than one
type of data, then the query has to be frst divided into multiple smallev queries
and the search engine issues each of these queries into each individual indexing
structure accorcingly. Retrieved results from each of the indexing structures are
cross-processed before they are returned to the querying robot. One crawback
of this approach is the high maintenance cost. Since multiple indexing structures
needs to be implementad and data cousistency between indexing structuves needs to
be maintained, the complexity of building and updating this system s considerably

high.
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If we combine all data types and use a single indexing structwe, the multiple
indexing structure data coherency problem is eliminated. Upon receiving a multiple
fields query, we no longer need to worry about how to cross process results generated
by separated subqueries. However, missing an indexing field in a query now becomes
a problem. Many other problems exist in uniform indexing. For instance, we
need to develop a technique that combines all three data types (text, sensor, and
meta data) into one indexing structure. Even though some information carried by
these data can be compromised during the grouping process, the end result rmust
contain enough information to ensure a clear classification. Considering the verity
of data types, the only sensible solution is to build the indexing structure in o high
dimensional vector space where each object is mapped into a point in this space,
l.e., every object is represented by a long vector. More consequences follow the
choice of representation. This topic will be revisited in the next chapter, in which
the two indexing mechanisms are further compared.

Regardless the choice of indexing structure selection, we need to develop tech-
niques that map data into vectors. Mapping sensor data into vectors is straightfor-
ward enough as sensor data ave naturally represented by either a single numerical
value ov a vector. We only necd to arrange them in such a way that they can
be indexed efficiently. Meta data can be processed in a sinilar manner, as most
of information can be represented by numerical values. For instance, time can be
unambiguously vepresented by a UNIX time string, locations can be represented by
a GPS coordinate, and sensor type can be represented by an index of the sensor
into a sensor database, such as 1 for Fairchild 9000, 2 for Serial No. 28753. Instead
of using sensor models, logical sensor system frame can be employed.' Converting
text into numerical vectors appears to be problematic on the Arst glance. However,
techniques such as the LSI lave been well studied. LSI converts documents into
vectors in a mathematically meaningful way. Details of the LSI will be presentecl

in the next chapter.

'Even though such a complete database does not cxist today, we do not see any technology
barrier that prevents researcliers from building one, given enough demand.



The length of a data vector needs to he controlled. As will he explained. in
the next chapter, vector space index in high dirnensions is much more problematic
than in low dimensions. In another words, vector concatenated hy a 256-by-1 color
histogram, a 256-by-1 edge histogram and a few other data fields cannot be indexed
efficiently without further process. Therefore, we have to shorten the length of
some of these cata fields, especially histograms. The next chapter will introduce
vartous methods to achieve this goal of dimension reduction. For the purpose of this
research, we have evaluated four different methods: Fourier coefficient representa-
tion, polynomial coefficient representation, statistics vepresentation and moment
representation. Using each of these methods, we reduce 256-clement vectors to
5-element vectors. For the Fourter coefficient method, the first five coefficients
are selected. For the polynomial coefficient method, a fourth-order polynomial
approxitmation is used. For the statistics method, variance, median, standard
deviation, median of the first half values, and median of the second half values
are used. For the moment method, the first five moments are computed. Since
all algorithms have the same reduction rate, i.e., they all transform a 256-element
vector to a 5-element vector, we would like to select the transformation that mostly
preserves the distance measures of data in its onginal space.

Distance nieasure complicates this comparison as distances are determined by
the selected measure. It is possible that onc transformation provides better results
than another transformation under one distance measure but provides worse results
under a different measure. It is also possible for a transforination function and
distance measure pair to perform better on one set of histograms but perforn:
worse on another one, e.g., the pair good for edges are bad for colors. Indexing
structure selection further complicates the comparsion. Incdexing structures can
divide the search space hased on a particular subset of a vector, mstead of using
all mformation stored in the vector. Hence the distance hetween two points, which
are represcnted by two vectors, becomes less meaningful. For instance, suppose the
L1 distance d is measured between two points in a 10—dimensional space. When

the indexing structure is constructed, only the first two elements in a vector are



considered.® In this case, the distance obtained through the L1 distance mcasure
d becomes less meaningful than, for instance, the sum of the two differences of the
first and the second elements from each vector.

Transformation function and distance measure selection problems do not stop at
the indexing structures. Since one of the goals of this research is to build a search
engine for robots, we have to further consider how transformation function and
distance measure may affect query processing, especially because queries can come
in with missing fields. We may conclude it is sufficient to judge our design decision
solely based on retrieval performance, assuming we can ignore any consideration
on computational cost. However, knowing the exact consequence of adjusting
parameters in internal states of Robot Share could help us to improve the entire
system. Performing a complete study on all parameter selections may not be
possible given the complexity of the system and the variety of data. Nevertlieless,
it is possible to gain some insights into those problems once enough experiments
are conducted. This leads to interesting future research.

Trausformation functions and distance measures have been examined through
a series of experiments. Edge histograms are selected for exanination. In order
to simulate the real world uncertainty, we add noise into the data set. For each
histogram, noise drawn from a Gaussian distribution with mean equals to 20% of
the histogram mean is acdded. Thirty noise-added samples are created for each his-
togram; 480 listograms are obtained. We then apply four vector-length-recluction
transformations to the saniple set and obtain four sets of samples. Each sanple
set containg 480 5-element vectors. For each new sample sct. we measure distances
between every two vectors and produce a confusion matrix for each measure. Four
distances measures are applied in this process, L1, L2, KL and weighted L1. Sixteen
480-by-480 confusion matrices are produced (please see Appendix A for printouts.)

onfusion matrices give us a good visual to this experiment. Among these distance
C & &

>This is possible as whep using a k-d-tree as the indexing structure. One algorithm selects
the split based on the spread of data in that dimension, so when the first two elewneints in vectors
have gpreads larger than the rest of dintensions, they will be repeatedly selected.
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measures, L1 and weighted L1 ane better (i termn of keeping separated classes sep-
arate) than IK-L and L2 measwre. Fouvier Cacfficients and polyvnomial coefheients
ave better vector length reduction techmnjques than the other two. To perform
a qualitative analysis. we have created a perfect classification counfusion matrix
sample, in which we mannally assert the value of each element in this matrix. Then
we compare 16 confusion matrices agaimst this smuple by ushng the normalized
correlation. We have concluded that polynomial coefficient 1epresentation is the
most reasonahle chowce Figure 2.5 shows an example of an how edge bistogram is

approximated by a polynomial.

2.3.3 Example
We conclude this section with a simple example from our data set to demonstrate

the experiment. A robot notices an object i a kitchen. Therobot measw es physical

Edge Histogram vs. a fourth order polynomial approximanon,
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properties of the object as the following: the length is 12.5 centimeters; the height
is 5 centimeters; the width is 12.5 centimeters: and the weight is 2.5 ounces. Two
images are taken of this object, one from the top view and oue from the side view.
Images are segmeuted; color and edge histograins are computed. The robot has

)

learned from a human that this object is a “Kuife with black handle.” Since the
rohot wants to share information about this object, in addition to organizing and
uploading these data into o web space, the robot registers this information at Robot
Share. It then packages the object into a Robot Share understandable XML file
and sends 1t to Robot Share.

After Robot Share receives this file, Robot Share parses the XML file and
constructs a set of vectors to capture information stored in this file. The text
part, L.e., “Knife with black handle,” goes through the LSI process, and becomes
a four-element vector. The two images go thirough a sequence of inage processing
procedures. Color histograms and edges are produced. Then dimension reduction
techniques are applied, and histograuns are reduced to short length vectors. Dimen-
sion and weight measures are extracted. The final result can be viewed in Table 2.1.
Using this information, Robot Share huilds an index for these data and stores them

in the Robot Share database.

2.4 Activity Knowledge

The previous section has discussed how object knowleclge can be represented.
Object knowledge is one type of knowledge we would like to share. Another
type of knowledge is activity knowledge. Activity knowledge represents a much
broader range of knowledge. If we consider object knowledge is mostly about object
identification and classification, then activity knowledge can be used not only for
identification but also for the exceution of activitics.

One of the most challenging problems to solve in activity knowledge sharing
comes from the uncertainty of the real world environmient.  For instance, it is
possible that onc robot specifies a procedure that perforins a certain activity in

its own environment, e, under a set of conditions. It is difficult for a second
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body movements and queries Robot Shave for information to identify the activity
that being performed by these movements.

Collaborating with Prof. Dillmann’s humanoid robot research group at the
University of Karlsruhe, we have obtained data generated by the VooDoo human
motion capture system |24, 25|, which gathers data of the human configuration
over time, resulting in 3D trajectories for every modeled limmb and joint angle
of the human body. In VooDoo, the human body is represented hy 19 4-by-4
transtormation matrices, where each matrix describes the state of a limb joint. In
each transformation matrix, the upper left 3-by-3 submatrix describes the rotation
of the joint, the right most column describes the imovement of the joint. (See [25] for
a complete discussion of the VooDoo system representation.) We exploit two of these
matrices: one that describes the trunk of the bhody transtormation and the other
that cescribes the vight forearm transformation, from each activity instance frame.
The motion description is based on six values from each of the two transforms:
three cliagonal elements of the rotation matrix and three translation components.
This results in 12 feature vectors. We then approximate the trajectory of every
feature field across frames of an activity mstance by a fourth order polynomial.
The end result looks similar to object knowledge that has been described mn the
previous sections, i.e., each activity is represented in 12 vectors that can be indexe

using techiques will be described in the next chapter.



CHAPTER 3
KNOWLEDGE SEARCH ENGINE

3.1 Robot Knowledge Search IEngine

As described by Frieden and Kuntz 13], the three main tasks of a search engine
are to (1) match query kevwords with related material on the web, (2) rank web
documents according to relevance, and (3) provide pointers to the documents.
Avasu et al. 1) set their major cophasis to be the creation of scalable index
structures. Note that search engines for human created web documents try to
make the linkage among web pages explicit and exploit this to create structure
mdexes.

When adopting their strategy to the robot world, one of the major issues is
the diversity of the data format. Unlike text documents, which are focused by
current. weh search engine, sensor data produced by robots exists i many ways,
e.g., images, sound wave files, etc. These data need to be processed hefore they are
entered into database. Multiformat data also lead to various difficultics in database
design. Research in multimedia database shares some conunon problems we have.
Ortega-Binderberger et al. [5] pointed out that a multimedia database need to

provide four functionalities:

o Multimedia Object Representation. Techniques or niodels to succinetly

represent both structure and content of multimedia objects in databases.

o Content Extraction. Mechanisms to automatically or semiautomatically
extract meaningful features that capture the content of multimedia objects

and that can be indexed to support retricval.

o Multimedia Information Retrieval. Techniques to match and retrieve

multimedia objects on the basis of the similarity of their representation.
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e Multimedia Database Management. Extensions to data management
technologies of indexing and query processing to eftectively support efficient

content-hased retrieval in database management systems.

The previous chapter has addressed the first two issues. This chapter focuses

on the latter two.

3.2 Knowledge Harvesting

In this first. generation robot search engine research, we do not foresee a major
role for web crawlers. Even if web pages that contain robot information exist, the
meta data are not availahle to determine what pages to download and what is of
interest in then (e.g., there are no words to count and no lexicon to help define any
semantics.) There is no popularity measure and no standard place to fiud things
(e.g.. specific sites, in homepage, etc.) We decide to let robots register with the
Robot Share and provide direct meta data and links.

In the previous chapter, we presented the format for knowledge communication
between a robot and Rohot Share. Since the XML file presented in the previous
chapter solely contaius the data of objecrs, a few extra fields are helpful for Robot
Share. The most hnportant one is the link to the web address, where the origimal
data can be found. Storing information about the robot that registered the infor-
mation could be helpful as well. Therefore, three fields are added into a knowledge
registrationn XML file, the ideutity of the robot, the time of this registration, and

the link to the web page, where original data are stored.

3.3 Knowledge Query
Before we present the ohject retrieval architecture of Robot Shave, we first
discuss some related technologies. Section 3.3 s dedicated to search queries, section

3.4 discusses distance measures, and section 3.5 introduces mdexing structures.
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3.3.1 Query Type _

Similarity retrieval can be divided into whole match and partial match. In the
first class, every object is considered in whole, i.e., the query is considered as an
object and then matched against objects stored in the database. In the second
class, the query is compared to portions of objects in the database. Therefore a
portion of certain ohject can he returned to a query as a response. Research in
CBIR provides us good examples of both of these two classes. Projects dedicated
to photographic image retrieval are mostly in the class of whole match [11, 14] and
image analysis projects usually support partial /subimage match [28]. Partial match
systems usually bring the problem of data segmentation, whicl itself contains a lot

of variations. Robot Share supports wlhole match.

3.3.2 Query Interface

Query interfaces of retrieval systems vary. Query-by-example, query-by-feature,
and other miscellaneous methods have been demounstrated [5]. In a query-by-
example system, the query is treated as an object as every other object stored
in its database. The query is first analyzed to extract its features. Extracted
features are then used to query the database. Most CBIR systems helong to this
group. In a query-by-feature systenm, the user specifics a set of feature ancl their
values for the retrieval system to match. Keywoiwd. image-annotation and meta
data based image retrievals belong to this group. Since the 1990s, multimedia,
especially image, query languages have been developed in the database research
society. Most of them are SQL extensions or variations. inclucding PSQL, Spatial
SQL, QL/G, MOQL, etc. Ref. [27] contains an survey of them. Query-by-feature
systems usually require support from a dedicated query language. For Robot Share,
query-by-example 1s supported. No specific query language is employed in Robot

Share.



3.3.3 Search Type

Unlike text based retrieval system, a multimedia retrieval system does not
rely on exact queries. Instead, multimedia retrievals are similarity based. Using
interfaces described above, the user spe_ciﬁes a feature set, the retrieval system then

tries to find data that have a similar feature set. Three types of search exist.

e Range Search. Find all data in which feature f| is within range ry, feature
f2 1s within range 7o, etc. Query-by-feature systems work with this type of

search.

e k-Nearest-Neighbor Search. Using distance measuwre D, find k objects
that are closest to the query object. Note this type of query requires at
least k objects to be returned, regardless of their actual distance to the query
template. This could potentially result in returming objects that are very
different from the query template. Returned objects are usually ranked based

on their similarities to the query template.

e Within-Distance (or a-cut). Using distance measure D, find all objects
that are within distance « to the query template. In contrast to the k-nearest-
neighbor class, a-cut search could result in no return or returning the entire

database. Retuimed objects are usually ranked based on object similarities.

The k-Nearest-Neighbor search and the a-cut search are both supported in

Robot Share.

3.4 Similarity Functions

3.4.1 Distance Measures

The previous section has introduced a set of query types. Among theni, k-
nearest-neighbor and a-cut both require tlie distance measure between two objects
to be computed. This section presents some commonly used methods to nieasure
object distances.

A similarity function is a mapping between pairs of feature vectors and a positive

real-valued number, which represents the similarity between two objects. Some of



32

the commonly used dissimilarity measures are listed (See Ref. [5, 30] for a more
complete discussion. )

Let the descriptor be represented as an rn-dimensional vector [ = [fi... fm]?
Given two objects, I and J, let D(/,J) be the distance between the two objects as

measuved using the descriptors f; and f;.

L1 distance

rl

DI J) = |fi ~ f;| = Z | frt = fil
k=1

Euclidean distance (L2 Distance)

DUTY =W = £l = (= S (Fe— £3)

e L., distance
D{1,J) =maz|fi; — frl
o Weighted L1 distance
p(1,g) = 5 Wi = Jedl
=1 Ok
o, 15 the standard deviation of the kth feature component in the database.
e Mahalanobis distance
DUy =(fi = [T = f))
25 is the covariance matrix that
E=E{f - u){f —4y)7) and py = E|f].
e Kullback-Leibler {K-L) divergence (relative entropy)

If f is a normalized histogram, then

D(I‘]) Z.fﬁs:,]!ogjjﬂ'
JEey .f.‘s:,J
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L1, L2, and Lo distance belong to the category of Minkowski-form metric,

which has the general form:

A =3

dy, = Z |y (m) = h,(rn)|"]

=0

where h, and h; are two objects with M features. (In the case of Lo, it is interpreted
as Ly, D7.)

L1 distance 1s commonly known as the Manhattan chstance, city block distance,
or walk distance. When it is used to compare color histograms, it is also known as
the Histogram Intersection [38].

L2 distance is refered as Euchdean distance. It can be written as

A =1

DU, 1) = fr = full = 20 1H0m) = fo(m)].

m=0

One character of a Minkowski metric is that it compares the proportion of a
specific feature witlhun object ¢ to the proportion of the same feature within object ¢,
but not to the proportions of other similar teatures. For instance, when a Minkowski
metric is applied to compare color histograms, [5]:

the distance between a dark red image and a lighter red image is
measwmed to be the same as the distance between the same dark red
image and a perceptually raore different blue nnage.
The main computational cost in this family is due to computing the power functions.
‘I'he weighted L1 distance is a special case of the weighted Minkowski family. It

has the general forn as:

d
) : qiprd
DL J) = [ wil [yl = fl7)e
=1
Weighted Minkowski matric contains a weighting parameter w for every individ-
val teature. The standard deviation of the Ath feature, oy, 1s a common selection

for this weighting parameter.
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Mahalanobis distance is a special case of the quadratic-form metrie, which has

its general form as

DU Jy=(fs = f) A f = 1))
Its use on the color histogrant can be found in the IBM QBIC system [14]. For some
application, it generates more desirable results than matrices from the Minkowski
family as the Minkowski family compares ouly like bins, whereas quadratic-from
metrics consider the cross-relation of the bins.

Kullback-Letbler (IK-L) divergence is defined ouly for probability distributions.
Unlike others, relative entropy 1s uot technically a distance measure as it 1s not
symmetric, anc it does not satisfy a triangle inequality. (Mahalanobis distance
satisfies these two requirements when A is positive definite.) For query purposes,
the first argument is set to the query template where the second argument comes
from the database.

Ref.[5] discusses various properties of these distance measures in depth. A com-
parison of some of these matrices applied in image retrieval is presented. Despite
manually selected and relative small sample sizes used in their study {which contains
no more than 50 images in each of the tests), they provide some informative results,
inchiding simple metrnics such as L1 and L2 alone with the more sophisticated
Mahalanobis distance all give reasonable performances. I-L measure is not included

in this test, but reported with good performance elsewhere in ref. [5].

3.4.2 Experiment Data

In the previous chapter, we have discussed the combined effort of distance
measure and vector-length-reduction transformations. We have covered a series
of experimental data in the form of confusion matrix measures. We then conclude
that weighted L1 distance and polynomial coefficient provide the best performance.
Here we compare the four original histogram samples, without reducing the vector
length, to the same perfect sample and colleet measures. This test is needed for

search result rankiug.



3.5 Feature Indexing

Indexing schemes are commonly used in multimedia database queries. The oper-
ation required to perform content-based scarch in such systems are computationally
expensive. It is also known that indexin_g in multimedia. databases 1s very different
from indexing in text-based databases as multimedia data are stored in form of
feature vectors. The previous chapter introduced the knowledge representation,
array of short vectors, Robot Share uses. This section explains reasons behind
this selection by explaining the difficulty of building indexing structures over long
vectors. We then review a few commonly used indexing structures and discuss pros

and cons of each of them.

3.5.1 Curse of Dimensionality

The most problematic issue caused by long feature vectors is the curse of
dimensionality. This effect has been noticed by researchers fromn various domains.
This phenoienon appears as nwmerous geometric properties that hold in low-
dimenstonal spaces no longer hold in high-dimensional spaces. As ref. [5] explains:

...in two dimensional a circle is well-approximated by the minimum
bounding square; the ratio of the areas is 4/7. However, in 100 dinien-
sions the ratio of the volunies becomes approximately 4.2  10%: most
of the volume of a 100-dimensional hypercube is outside the largest in-
scribed sphere - hypercubes are pootr approximations of liypersphers and
a majority of indexing structures partition the space into hypercubes or
hyperrectangles.

For exaniple, the widely used R-tree indexing schemes bheconie inefficient for

a-cut querics using the L2 distance. As ref. [5; explains:

[R-tree indexing are inefficient] as they execute the search by trans-
formning it into the range query defined by the minhnmum houndiug
rectangles of the desired search regin, which is a sphere centered on the
template point, ancl by checking whether the retrieved results satisfy
the query. In high dimensions, the R-trees retrieve mostly irrelevant
poiuts that lie within the hyperrectangle bhut outside the hypersphere.

Another problem of high-dimensional space is that points randomly sampled
from the same distribution appear uniformly far from each other and each point

sees 1tself as an outlier. For instance, we can have an example such as the following;



o We first generate 20,000 independent 100-dunensional vectors, with the fea-
tures of each vector independently distributed as the standard Normal randem

variables.

s Then we compute the BEuclidean distance frori a random vector from tle same

distribution to all vectors in the databasce.

e We observe that the minimum distance between the query point and database
saniple is above 10, the average distance is about 14. and the maximuin

average chstance is above 17. Figure 3.1 shows the shape of the clistribution.

Comparing Figure 3.2 to Figure 3.3, with vector lengths of one and five, re-
spectively, we can sece the distance distribution in high-dimensional spaces differs
from distributions in low-dimensional spaces. This effect makes a-cut queries very
sensitive to the choice of the thresheld in high-dimensional spaces. For instance,
when the thveshold is smaller than 10, no result is returned; with a threshold of
12.5, the query returns 5.3% of the database: and when the threshold is increased

to 13, 14% percent of the database is returned.

3.5.2 Feature Selection

The curse of dimensionality can also be seen in the ficld of parten classification
|27]. We can view an object query as classifying a new object inte a known category.
In this view, the classification exror should decrease when additional measurements
are applied. However, this is not always true in practice. When a classifier is
constructed, there may not be enough sample to train the classifier, i.e.. determine
the most appropriate parameters for each feature, c.o., the threshold for a a-cut
query of rertain feature. Specifically, the classifier would he well tuned for the
training set, but would fail when new instances are presented. Therefore, we would
need tominimize the feature set for a classifier to minimize the number of unknown

parameters.
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Feature selection can be viewed as a typical searching prohblem formed as: Sclect
d < I} from

V={uj=12.,D)
arriving at
U {wli=1,2,..,4d}

where V 15 the complete feature set, each w; 15 an element of V. and U maximizes a
eriterion function, which is the probability of correct classification. Clearly, brute
force feature selection 1s not feasible, as the permutation of A choose N grows
exponentially with the growth of M and N, e.g., selecting 10 features out of 100
would necessitate evaluation of more than 10 feature sets. Thus. a compntation-
ally feasible method must be used.

Feature selection hence has been studied and a few algorithms Lave been pro-
posed, Among them, the sequential forward selection (SFS), the sequential back-
ward selection (SBS) and their derived variations are popular methods, Ref, [27]

states the following:

SFS is a bottom-up, hill chimbing search procedure, where one fea-
ture class is added at a time to the current feature set. At each iteration,
the feature class to be included in the feature set is selected from among
the remaining feature classes such that the new feature set yields the
greatest possible value of the criterion function. ... The two major
drawbacks .. are the local peak problem and the ridge problen.

The local peak problem and the ridge problem are common to all hill clhnbing
search algorithms. The first one occurs when there are multiple maxima and the
search is trapped in one local maximum, The second one ocours when the path to
a local maximum i1s not within available search directions. A typical hill climbing
algorithm stops when a local maximum s achieved without searching for the global
maximui. It also stops when none of tts operation yields o higher score in its
evaluation function, 1.e., reaches a ridge. In case of SFS, it reaches a local maximum
snch as adding no other feature to a particular feature set ¥y could results a higher
evaluation index. It also fails when a high evaluation index is reachable only when

nultiple features are added at once.
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SBS is the top-down counterpart to the SES. The complete feature set is the
starting point. At each stage, one feature is removecl until removing no feature can
result a higher evaluation index. It suffers from same problems as SES.

To overcome, or reduce the chance of getting into, the ridge problem, genevalized
sequential forward selection (GSFS) and generalized sequential backward selection
(GSBS) are developed. In these muethods, instcad of adding/deleting one feature at
a time, multiple features are added/deleted. In general, GSFS and GSBS produce
better results than SFS and SBS, but, again, with higher computational costs.

Another variation is the plus L take away R selection (LRS), where SES and
SBS arc applied interchangeably. Again, better results are reported, but with an
increased computational cost.

Nonfixed L and R sizes at each step can be utilized, 1.e., iustead of adding or
renmoving a fixed number of features at each step, a floating number of features are
considered. This further increases the possibility of finding the global maximun.

More discussion on techniques such as stochastic methocs and neuval networks
on feature selection can be found in ref. [23, 27]. Even though progress has been
made in this area, selecting a small yet representative set of features for general

applications is an open problem.

3.5.3 Dimensionality Reduction

Feature selection is a useful techuique that helps to overcome the curse of dimen-
sionality. However, as sone of the most popular indexing methods, including R-Tree
and Quad-Tree. perform suboptimally when the dimensionality of the feature space
barcly exceeds 10, we usually need to further decrease the dimeunsionality of the
feature space. Three classes of methods have been investigated.

Variable-subset selection works just like the feature selection. Certain features
are discarded upon mdexing. A small set of useful ones are left to keep the
dimensiovabty low. The main problem of this approach is the error induced
by approximating the original vectors with their lower-dimensionality projections.

Techniques in this group are Karhunen-Loeve transform (KLT) [15], singular value
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decomposition (SVD) [22] and principal component analysis (PCA) [27]. A variable-
subset selection step discards dimensions that have smaller variance. [t can be
shown that when Euclidean distance is used to measure distance, the cistance
between original vectors is closer thau the distance measured with their projections
using above techunigues. The niain disadvantage in above techniques is the compu-
tational cost, as KLT, SVD and PCA are data-dependerit. They are poorly suited
for dynamic databases, in which items are added and removed on a regular basis.

Multichimensional scaling is another technique used in this field. In general, this
techuique tries to remap the original feature space " into ™ (m < n) using m
transformations, each of which is a linear combination of appropriate radial basis
functions. Various imiplementations exist in this category. The drawback of these
algorithms is the high computational cost. Hence they are not suitable for dynanic
databases.

Geometric hashing [4] consists of hashing from a high-dimensional space to a
very low-dimensional space (usually one ov two dimensions.) As hashing functions
are not data-dependent, the mctric propevties of the hashed space can be signif-
icantly different from the original one. The design of a good hashing function
becomes increasingly difficult as the dimensionality of the original space grows.

To sumimarize, a good dimension reduction algorithm should maintain the dis-
tance measure when the feature set is transformed froni a high-dinmensional space
to a low-climensional space. It also must be computationally efficient if dynawic

databases need to be supported.

3.5.4 Indexing Structures

Ref [5] contains an intensive discussion on the topic of indexing structure.
A handful indexing scheme are veviewed. In gencral, we distinguish indexing
structures in three ways: (1) vector space indexes versus nietric space indexes; (2)
recursive partitioning methods versus projection-based methods; and (3) spatial

access methods (SAM) versus point access methods (PAM).
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Vector space mdexes represent objects and leature veetors as scls of points In
a d-dimensional vector space. Metric space indexes pairwise distances between
objects in a set instead of indexing objects. It tries to capture the metric structure
of the search space. Recwssive partitioning methods organize the scarch space into
a tree like structure. Projection-based methods employ algorithms that perform
searches on the projections of database point onto a set of directions. SAM indexcs
spatial objects, e.g., lines, polygons, surfaces, solids, etc. PAM index points in
multidimensional spaces. More detailed discussion of indexing structures can be
found in vef. [5, 16, 39].

Aniong these techniques, recursive partitioning nmethods have heen widely used
and veported with good results. The three most commonly used categories in this
group are quad-trees, k-d trees, and R-trees. Castelli 5] explained this as the
following:

Quad-trees divide a d-dimensional space into 2¢ regions by simulta-
neonsly splitting all axes into two parts. Each nonterminal node has
therefore 2¢ children, and, as in the other two classes of metliods, corre-
sponds to hyperrectangles aligned with the coordinate axes. K-d trees
divide the space using (d — 1)-dimensional hyperplanes perpendicular to
a specific coordinate axis. Each nonteruiinal node has thevefore at least
two children. The coordinate axis can be selected using a round-robin
criterion or as a function of the properties of the data mdexed by
the node. ... R-trees divicle the space into a collection of possibly
overlapping hyperrectangles. Each internal node corresponds to a hy-
perrectangular region of the search space, which generally contains tlie
hyperrectangular regions of the children. The indexed data is stored at
the leaf nodes of the tree.

Quad-trees are a large class of indexing structures. Besides the classic algorithi
described above, its variation includes region quad-tree, point quad-tree, et¢. How-
ever, quad-trees are not well-suited for high-dimensional (d > 10} indexing [5]. For
instance, when d = 20, the quad-tree becomes very sparse, i.e., most of 1ts nodes
are empty. In higher dimension, hyperspheres are not well-approximated by hyper-
rectangles. Therefore quac-trees are not suitable for a-cut and uearest-neighibor

queries.
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The k-dimensional tree, known as k-d tree, is another conmmonly used hierar-
chical indexing structure. As its name suggests, it gives better perforinance than
uad-trees in high-dimensional space. Constructing a /c—‘d, tree is more costly than
constructing a quad-tree in general. Furthermore, when the data node cannot be
efficiently split, k-d trees suffer from the utilization imbalance problem. A modified
version, k-d-b tree, was proposed [31]. Unlike the original version, it supports
dynamic node insertion and deletion. K-d trees are expected to give reasonable
performance for d < 20.

R-trees and their large variations are probably the most-studied multidimen-
sional Indexing structures. An R-tree splits the space using hyperrectangles rather
than hyperplanes. The properties of R-trees differ [rom the previous two families as
it allows overlapping rectangles. Derivations of R-trees include R*-trees, R*trees,
packed IR-trees, X-trees, VAMSplit R-tree, S-tree, ete. It has been reported that

R-tree shows enough efficiency in up to 20 dimensions [11].

3.5.5 Indexing Text Data

Text mdexing has a mnch longer history than multiinedia data indexing. In
fact, most early research in image retrieval was based on text-basecd retrieval though
image annotation 5]. However, the researcher then realized inage annotation based
retrieval was limited, as to have a huiman annotate the ever increasing large amount
of umnage data is not practical. Then we saw the birth and growth of CBIR. On
tlie other hand, up to date, text-based retricval has heen more successful than
image-based systems. Robot Share utilizes text indexing as well as content hasecl
age indexing.

We unify textual and multimedia sensor data in our system as we helieve aun
Integrated system is casier to maintain and gives a hetter performance. To achicve
this goal, all text information needs to be represented in numerical vectors and a
Jow climensional representation is desired. As suggested in ref. [36]. we investigatec

the latent semantic indexing (LSI) [8]. Rel. [36] explains LSI as:



LSI works by statistically associating related words to the semantic
context of the given document. The idea is to project words in similar
documents to an implicit underlying semantic structure.

LS] tries to solve the synonymy and polysemy problems. The synonyny problemn
is that the same object can be dlescribed in multiple words. The polysemy problem
is that a word can miean multiple things. There is a many-to-many relation that
exists between objects and words.

The singular-value decomposition (SVD) is the main workhorse in LSI. The

algorithi used in ref. [36] works in the following way:

o Construct the term x document matrix A, where the element a,; represents
the frequency of term ¢ in document j. Therefore, eacli column of the matrix

A is a term histogram of a document.
o Decompose A using the SVD:
A=UgvV?

where UTU = VIV = 1. ¢ = diag{o1,...,0,), & is the singular value matrix

of A.

e Then select A most significant dimensions from the original space. This is

achieved by selecting the first & rows in £ where o, has a higher value.
e Then the k-dimensional vector representation of the gth document is:
/g’ = (]TU—[CEEI

wlhere g is the word frequency histogram of the gth document, Uy is a matrix
composed of the first & columns in U, and g 15 a matrix composed of the

first A& rows and k& columus of Z.

Ref [8] does not provide a systematic approach in selecting k. The lope is &
should be large enough so most “latent semantic” in one document can be captured.

It s also needs to be small enough so data noise can be removed.
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3.6 Robot Share Architecture
After reviewing the concept and velated technologies of search engine, we are
ready to present the Robot Share architecture. We first revisit the single Indexing
structure vs. multiple indexing seructure discussion; then we give detailed discus-

sion on each component in Robot Share.

3.6.1 Indexing Structure Consideration

In the previous chapter, we explained that representing objects in a vector space
is a sensible approach for the construction of indexing structures. However. there
was a debate on whether a unified single indexing structure (Figure 3.1} s better
than a set of small, potentiallv heterogeneous, indexing scructures (Figure 3.5.)
Considering the need of knowledge representation, a unified single indexing struc-
ture requires a long vector concatenated hy a set of sniall vectors, where each smal.
vector records certain property of the object. A set of smaller indexing structwes
requires every small indexing structure to take a small vector. Tlierefore there is
no need to concatenate vectors, which represent different properties, into a lang
one. Hence objects are effectively represented by arrays of vectors. The pevious
chapter surnmarized the advantage of thic nified long vector approach as simple,
casy to implement and maintain and the advantages of the set of small vectors as
morc elegant and having better performance with ncomplete queries. We see niore
evidence points that the set-of-simall-vectors approach is a niore feasible solution if

more things are taken into consideration.

™~ ' \

' AN
s

| i ’ ) 5
| Query (ndexing | Response
‘ XM L! > Processor Struciure | Foomnalizer ‘—»| XM L‘

Figure 3.4. The Single-indexing-structure Architecture.
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recomnpute as well. It has been noticed that a SVD decomposition, which is at the
core of LSI, is computationally expensive. Thercfore, we may need to reconsider
if there is any substitute, as we can replace the text indexing component with the
new module without worrying about the rest of Robot Share. Another example
is finding better transformations for histograms. Different histograms cone in
different shapes, hence they ave better if approximated using different techniques,
e.g., polynomial approximation and trigonomnetry function approximation. If we
separate the indexing structure into compouents, we can efficiently study each
component hence achieving a better overall performance.

Robot Share supports both instance-based query and class-based query. Instance-
based query focuses on finding additional information for a particular object. Class-
based query focuses on object classification. Even though both of the single-big-
indexing-structure and the set-of-small-indexing-structures are able to perform the
instance-based query, the single indexing structure struggles to support class-based
queres. For justance, there are four objects stored in the database, two bowls and
two knives. Two bowls are represented by: [1,2,2], [10.2,2]; and two knives are

represented by [1,8,8] and [10,8,8]. The confusion matrix measured using L1 is:

0 9 12 2!
9 0 21 12
12 .21 0 9
2112 9 O

Based on measured distances using L1, two bowls are grouped together in one
group while two knives are also grouped together in another group. Figure 3.6 shows
a k-d tree placenment of these four vectors. In this case, suppose a bowl represented
by [1,1,1] is received for a query, even though the closest bowl, represented as
[1.2,2], ts roeturned correctly; the other bowl, [10,2,2], will be missed, and the
knife, represented as [1,8, 8], is also incorrectly returned. The upshot is, indexing
structure such as a k-d tree is best for the nearest neighbor query. lts pecfornance
on k-nearcst-neighbor queries is largely data depencled. Therefore, if we are able

to separate a large k-d tree into a few smaller ones, we have miore control over

the search procedure, hence better retrieval performance can be achieved. For
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Figure 3.6. K-d Trce Structure of T'wo Bowls and Two Knives.

instance, we can use weight coefficients to put emphasis ou properties that might
hetter classify a certain group of objects than other properties. It can be viewed
that we can use weight coefficient to dyuamically enlarge or shrink the space in
different. dimensions. For instance, if we want to ignore certain features in a query,
we put a small weight cocfficient for this featwre. This is equivalent to shrinking the
space in dimensions that represent this feature. In this case, coordinates of objects
in these dimensions no longer matter, as distances between points are dominated
by distances measured in other dimensions.

Based on these four reasons, even though the set-of-small-indexing-structure
approach has disadvantages in its complexity, we build Robot Share using this

approach.

3.6.2 Robot Share Component
In the cuwrent implementation, Robot Share is composed of four groups of
components: a query processor. indexing structures, a cross analyzer and a response

formalizer. In the futurc, a feedhack analyzer can be added into the system.



Tlie query processor is the frst component in a Robot Share query process.
It takes queries, in the format of XML files, and translates them into an array of
vectors and sends each vector to a corresponding indexing structure to find matches.
The query processor functions as a simple XML parser as it converts data stored in
XML to vectors, and computes various derived features from raw data stored in the
XML file. Forinstance, for object knowledge, it computes color and cdge histograins
and transforms them into low dimensional representations. Tt also computes the
vector representation of text information into vectors using LSI. In the future, the
query processor could be built more intelligently so it not only parses data but also
preprocesses them. For example, currently, robots perform image segmentation if
a query contains an image. We may later add an image segmentation component
into the query processor.

Another interesting topic to be studied is to have the query processor to discover
underlying relations between information stored in different fields in the same
object. For example, when an object comes with an image and a text description
as a “vellow bowl,” a color histogram is computed from the image. We know there
is an underlying relation between the word “yellow” and the shape of the color
histograni. Developing a systematic approach to discover all relations cross feature
fields is an open problem. If a such an approach is developed, aniong otlier things,
it can help Robot Share to approximate issing fields n both queries and data
entries stored in its database, and possibly improve the retrieval perforinance.

The second group of components is indexing structures. They are arguably
the most significant. group of components in Robot Share. Theyv take inputs from
the query processor in form of vectors, and produce ordered lists of objects. They
sort objects using measures between the query sample and objects stoved in Robot
Share and return the sorted list.

In the current implemnentation, 11 indexing components are created for object
knowledge processing. Six of them are built for color histograms (two images of
an object, three color channels in each image): two of themn are butlt for edge

histograms (two images for each object); one of them is built for text data produced
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from an LSI process; one of them is built for dimensional information of the abject,
re., length, heishr, wideh, and the cube raot of the product of the three; the ast
indexing structure s bult for the weight measutc of an object. These properties ave
summarcized in Table 3.1, J(-d trees hzwe_been uscd to mdex all of these Gelds except.
the weight measure, which uses a binary teee. In all &-d trees, branch dimensions
ave setected W the yound-robin {ashion. Branching stacts fionw the left most clement
of a vector. This decision is made due to the fact that the eight lustograms in one
object are all approximated by palynomials, in which high order terins contribute
more to the shape of the polynoomal Text data ave processed by LSI, which has
the same property that high order terms capture more intormation tiian 10w order
ones. All indexing components retnrp 15 items for each query. except the LSI text
incexing and dimensiona) properties component. im which 30 1items are returned.
For activity kuowledge, in contrast to the 11 index struetwves developed for ob-
ject kuowledge sharing, 12 1ndex structures are coustructed fov activity 1ecognition
as 12 trajectories are selected from each acbhivity. K-d trees are used to index all
trajectonies. For the reason described above, branch dimensions in cach k-d tice

arc selected in o round-robin fashion. Bach indexing component ceturns five items

Table 3.1. The Robot Share Component Leugth Sunnnary.

[ Component [ Vector Length | Returned items |
Red Channe (iml) | 5 15
Green Channel (im1) 5 15
Blue Channel (iin1) 5 15
Red Channel (im?2) 5 15
Green Channel (ini2) 5 15
Blue Channel (im?2) S 15
Edge Orientation (im1) 5 15
Edge Ouvientation (1im2) S 15
Text Data 4 ' 30
Dimensional Properties 4 30
Weight. 1 15




for each query. Ttews are then sent to the next module in Robot Share, the cross
analyzer.

The cross analyzer takes item lists from each indexing component, “cross an-
alyzes™ them and produces a single sorted list. Cross analyzer creates the sotted
list based on a weighted summation of all query-item distances. The cross analyzer
first creates a list containing all received items. It then computes distance from
the query sample to every item in the list. The distance measure is a weighted L1,
which can be expressed as, the overall distance D{A, B} between two objects A and
B is equal to:

k
D(A B) = |wd(A,, B)l.

A
=1

In this equation, & equals to the number of fields presented in the query, w, 1s
the weight coefficient of the ith component, and ¢; is the distance between ith
components in the two objects. All d,(4,, B;) are computed using the L1 distance
measure, where

k

di(Aa,a B-i) = Z ‘Ai.,‘v - Bf.J|-

i=1
For all image histograins represented by polynomnial coefficients, k equals to 5:
for the LSI indexed text field, k equals to 4; and for the singleton weight field,
I equals to 1. We are at the very beginning stage of developimg a systematic
approach of computing weight coefficients w;. The ideal ranking order is query
depenclent. [t is related to the intentional use of the knowledge, the content of
the database, and the content of the query template. To Aud optimal weight
coefficients, information about query vobots must be taken into cousideration.
Currently, a static analysis approach is taken. We design experiments for various
data couditions and query types. In each experiment, we evaluate Robot Share
performance using the standard inforination retricval measures: precision and recall
[41]. We then search for weight coefficients that maximize these measures. The
searching algorithm is an n-dimensional hinary search, wlich is a good compromise

between simplicity and performance.



There are two special cases making the distance computation more conplicated.
They are both related to missing fields in objects. The first case is: the query
comes incomplete, e.g., a query that has no text description or misses one image.
In this case, only indexing structures that associate with presented fields are used.
As briefly mentioned in the previous section, if Robot Share is able to discover the
underlying relations between fields, it is possible for Robot Share to fill some of these
missing fields. We also consider objects stored in Robot Share that contain missing
fields. In this case. ignoring inforniation contained in queries by not using indexing
structures associated with these fields would certaiuly yield a poor performance
as (a) therc are objects stored in Robot Share containing these fields and some of
thenm could be what the cuerying robot looks for. Not using information stored i
these fields can negatively impact the ranking of these objects. (b) Robot Share
should utilize as much information in a query as possible. However, if Robot Share
uses all indexing structures, then the distance between fields in the query sample
and objects stored in Robot Share has to be estimated for objects with missing
fields. This distance 1s approximated by nieasuring the query sample to a pseudo
object, which approximates a missing field with the sample nmiean of that field.
This approximation may not he a very good choice as when the sanmiple variance is
large, the sample riean hecomes less representative of the actual value of an object.
Future research is required to solve this problem better.

Once distances between the query sample and all items returned by indexing
structure are computed, the cross analyzer sorts the item list based on tlese
distances and sends the sorted list to the next module: the respouse formalizer.

The response formalizer takes input, which is a sorted object list from the cross
analyzer, and generates an XML file that is understandable to the querying robot.
The size of returned files, i.e., the length of the returned list, should be large enougli
so thiere is a high chance for the querying robot to find the information it necds
in the returned file. The file also needs to be reasonablely small so (a) the file
transmission can be done in a small amount of time and (b) after receiving the file,

a robot can determine if any useful information can be found in this file quickly. To
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find a compromise between these two requirements, there are two questions to be
answered: (a) how many results should be returned, and (b) what information does
one result contain? In the cuwrent implementation, for object knowledge, every
indexing components returns either 30 or 15 items to the cross analyzer, and there
are 11 indexing components in Robot Share, so the number of items generated by
the cross analyzer ranges from 30 to 180. If all indexing components return the
same set of items, then the length of the list cross analyzer generated is 30. If all
indexing components return lists that are mutually exclusive to each other, then
the length of the the list generated by the cross analyzer is 180. It is simple for
Robot Share to adjust the length of its returned list. As if more return items are
desired, Robot Share can increase the items returncd by each indexing component;
if fewer items are demanded, Robot Share can cut off the return list created by the
cross analyzer. As for the content of a result, the nmiost important information is
URL links to web addresses, where original object data can be found. It also would
be useful that certain object information. which is stored in Robot Share, could
be presented to a querying robot along with the URL. So the querying robot can
quickly scan through the list to eliminate objects that are not interesting to the
robot. The format of returued XML files can be expressed in a simple grammar.

The definition of the grammar is included in Appendix C.
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Recall is the percentage of desired retrieval results in the entive database. Neitha
precession nor recall alone can imdicate the performance of an information retrieval

system’

But by combining the two, a comprehensive evaluation can be reached.
4.1.1 General Performance

We first examine how Robot Share performs in general. T'wo hundred samples
are randomly selected from the Robot Share database. They are used as query
templates to query Robot Share. The Robot Share sample database contamns 480
sample objects that are derived from 16 real world collected sample objects. Each
object duplicates 29 copies, and 20% random nowse s added to each copy. All
samples in the Robot Share database, including query samples, are complete. 1.e..
there 1s no missing mformation in either queries or database samples.  Weight
coefficients used for distance measure, 1 the cross analyzer, are set to one. All
items returned from Robot Share are retrieved. Relevant items are siblings of
images that are duplicated from the same saniple object with added noise. One
result, measured in precision and recall, 1s presented in Table 4.1

We can observe that the recall for this experiment reaches its highest possible
value, one. Due to the relatively large number of retrieved documents and the
relatively small number of relevant items in the database, the precision is on the
low side.

We then define relevant items as items from the same class, Le , bowls, kiives,
etc. In this setting, the range of relevant items are enlarged. This test examines
how Robot Shave perform on class-based queries,

From Table 4.2 we can see that since the average number of relevant. items grows
and the number of retrieved stays unchanged, the precision grows, For the samne

reason, the recall drops.

'"Precision approaches one [the highest score it can reach) when the nainber ol retricved
docuinent approaches zero; recall reaches one {the highest score it can reach) when the numibey
of retrieved document approaches the size of the datahase. Neither of the two situations sacishes
a user's need thowgh the measore is high.
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Table 4.3. A Query With Only One Image and No Weight Measure.
| Field | Value |
redl: | | [1.8464e-011 -6.6396e-009 4.4481e-007 3.07290-005 -4.8032¢-004]
greenl: | [2.2378e-011 -8.7258¢-009 8.0668e-007 8.9936¢-006 -2 25 40{}004]
hluel: [2.2060(-}011 -8.5507e-009 7.6566e-007 1.3780e-005 -4 .5634e-004] |
rec2:
green2:
blue2:
edgel: | [-1.2498e-010 6.3984e-008 -1.07136-005 6.4745e-004 -0.0063)
edge2:
LSI: | [-0.0509 0.2674 0.2571 0.4403)
phy.vec: | [6.0190 1.6906 11.3570 0.4998]
weight:
filename: | "knife2a.jpg’
desc: | "Inife with black handle’

Table 4.4. Performance Test 2.1

‘ Min ‘ Max | Median ‘ Mean IVarlance ]

T
|
|

Precision | 0.2439  0.6818 04478 T 0.4550 | 0.0078
Recal i 1 1 ‘ 1 0
‘Retrieved 4 123 67 | 68.6700 | 222.0415
Precision | 0.3780 1 06701 0.6815] 00193
Recall | 0.2500 | 0.5250 | 0.5250 0.0291
‘ Retrieved 47 106 67 | 684800 177.4036 |

with Performmance Test 1 1, the average precision grows from 0.3677 to 0.4550 for

sibling searches and 0.6177 to 0 6815 for class searches

measured recall drops for class searches.

Then we test queries with no text description ov dime:

For the same reason, the

wional measures. Results

are in Table 4.5 For the same reason of further reducing the number of returned

itemns, search precision grows for sibling seartaes. Even though the number of in-

dexing components stavs nuchanged from Lhe previons test, both text indexing and
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Table 4.5. Performance Test 2.2

| Min Max | Median [ Mean | Variance |

 Precision | 0.3544 [ 0.8824 |  0.5000 | 0.5195 0.0117 |
Recall | 0.9000 Il = 1 09840 | 5.0460¢-004
Retrieved 34 79 59 | 58.9400 112.5216
" Precision [ 0.3718 | 0.9048 [ 0.5864 | 0.6089 | 0.0183
Recall | 0.2500 | 1 0.3778 | 0.4393 0.0317
Retrieved 39 90 63 | 61.9300 85.9996

dimensional indexing retwrn more items than other components. Hence removing
the two reduces the number of returned items,

Then we test queries with text description. Results are in Table 4.6. From
the coulusion matrix presented in the previous clapter, we know text description
is a good instrument for classifying objects. Measured precisions and recalls have
proved this agamn, Using only text description, the retrieved length is short, and
both precisions and recalls are high.

Then we test queties contaiming only dimensional data and weight measures.
Results are 1n Table 4.7. This test shows the woist result i tlhis group. Both
precisions and vecicls are low in eithor sibling searches and class scaiclies. However,
these results are ot doe to a high retrieved number as (0 previons tests. We hence
conclude dimmensional and weight nieasures are less effictent for object ¢lassification

when the two are used in isolation.

Table 4.6. Perfornuanee Toest 2.3

| | Min | Max | Median | Mean | Variance |
Precision | 0.5000 | 1| 1] 090007 0.0404
Recall 1 1 1 1 0
Retrieved | 30| 60 30 | 36 145.4545 |
| Precision | 1] 1 L] 1] 0
Recall | 0.2500 1 0.3333 | 0.4342 | 0.0477
Retrieved 30 60 30 357000 1 139.9091
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These results show no surprise, Compore with rvesults e Pevformance Test
2.1, which contains complete data, average precisions in both sibling search and
class search drop about 9%.

Then we reset the Robot Share <la.t§1|)ase to 1ts original state, 1 e, all records
are complete, and vandomly select 160 objects, teplace text data and dimensional
data with sample means of each of these helds, respectively. The performance s
presented in Table 4.9. The average precision for sibling searches (urther drops
from thie previous test. However, the average precision for class searches grows.
Since the average precision is still lower than results from Test 2.1, we think this
stall shows losing mformation mn database degrades search perforniance.

We agam reset. the Robot Share database to its original state and randomlv
selecrt 160 objects, replace all of their data with sample means except one set of ¢olol
histograms, one edge orientation histogrant and text data. Results ave presented in
Table 4.10.

More information s reowoved [voni the database. Precisions for both siblhing
searches and class searches drop. However, snice text and image data contain inost
information needed for clas<ifying objects, the precision drop s not dramatic.

From these three tests, we can see that losing information in database itens
generally degrades search performance, especially measured precisions. However,
since cettam features hear more Cassifying power than others, losing infornation

in less sigmficant features desiades performance to a smaller extent.

Table 4.9. Performance Test 2.6

| | Min | Max | Median [ Mean | Variance |
Precision | 0.2479 [ 04688 [ 0.3125 | 0.3209 0.0018 |
Recall | 0.8667 1 1| 0.9933 | 3.3670e-004 |
Retrieved | 64 121 | 95 | 94.4100 |  141.6383
Precision | 0.2092 1] 06392 \ 0.5896 0.0283
Recall | 0.3889 1| 06111 0.6428 0.0233 |
Retrieved 65 127 90 | 92.5400 | 211.4630 |
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Table 4.10. Parformance Test 2.7

| | Min | Max | Median | Mean [ Variance |

Precision | 0.1961 | 0.5085 |  0.3409 | 0.3400 0.0034
Reeall 1 1] 1 1 0
_Retrieved | 59 153 | 88 | 91.0400  287.5337 |
Precision | 0.3093 | 0.9474 0.5408 | 0.5623 0.0180
Recall | 0.2500 1 0.5889 | 0.5965 0.0277
Retrieved | 68 147 | 87.5000 | 91.2300  292.1587

The last group of tests i this section is on data with both incomplete queries
and incomplete records. First, we estimate the hrst image information in one
third of the database with sample mean, aud test performance with queries with
missing text mformation. Results are in Table 4.11. We see comparable rvesults
to Performance Test 2.5, where the query is complete but the database misses the
same amount of inforimation as in this test. Incomplete query redices the number
of returned 1tems. Precisions stay the same.

We then test the performance with one third of the database missing one image
and text iufurmation and queries niiss the other nnage and weight measure. Results
are in Table 4.12. The result is comparable to the previous one. Since more

information is missing i this test, precisions should be lower than in the previous

Table 4.11. Pecformance Test 2.8

| Min | Max | Median | Mean | Variance |

‘ Precision | 0.2389 [ 0.5172 [ 0.3333 | 0.3450 0.0036
Recall | 0.8333 1 09667 09697 | 0.0014
|Retrieved | 58| 113 87.5000 | 86.3000  140.6970
Precision [ 02545 [ 0.8391 [ 0.5143[ 05279 [  0.0181
Recall | 0.2500 1 05167 05300 0.0359

_Retrieved | 58 | 114 | 89.5000 | 87.3700 | 145.4274 |
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Table 4.12. Performance Test 2.4

e | Min| Max | Median | Mean | Variance |
~Precision | 0.2235 | 0.4906 | 0.3353 | 03351 00432
Recall | 0.6000 | 0.9333 . 0.8000 | 0.8097  0.0058
Retrieved | 50 | M | 76 ) 73.8100 00 7211
Precision | 0.2935 | 0.9565 | 0.5850 | 0.5843 | 00288
Recall | 0.2250 | 0.9000 | 0.4750 | 0.4787 |  0.0219
Retrieved 46| 102 75 | 74.3900 | 1055938 |

one. However, the number of returned items 1educes as well. Hence precisions stay
at the same level as before.

In this section, we have presented Robot Share perfor niance on incomplete data
In geneval we conclude that losing information in Robot Share datubase degrades
search performances. However, as discussed previously, reducing the number of
involved indexing components decreases the overall retiuned jtems, hence positiaely

impacting measured precisions.

4.1.3 Ranking

All of o previons tests are hised on one assimption that all results returned by
Robot Share are nsed by queryimg robots. Therelore we constantly see high marks
on recalls, but relatively cow marks on precisions  For certain application, precisions
are more impotrtait than recalls, and cobots that send queries to Robot Share wmay
be more interested in getting fewer results, which match the query template well,
than getting a long and cxhonstive list of data. N-pearest-neighbor searches are
more shitable to theie needs.

Knowing this need, we design another set of tests to evaluate the Robut Share
ranking mechanisin. Instead of analysis of all resnlts returned for a query, we focus
on the first 20 iterns. We measure precisions and recalls over them. To make this
analysis more contprehensive, we have reused previous test settings  Test vesnlts

are presented m Table 4 13, 4.14, 4.15.
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Table 4.15 Performance Test 3.1 Part 111

| L Min | Max [ Median | Mean | VarlancT

‘ | Incomplete Query & Record |
’ Record niissing one image ‘
' Query missing texts

| Precision | 0.3000 | 1 07500 | 0.7100 | 00279
' Recall | 0.2000  0.6667 0.5000 | 0.4753 0.0124
Retrieved | 20 20 | 20 20 0
Precision | 0.2000 1 (0.9500 | 0.8810 0.0195
Recall | 0.0667 | 0.0667 0.1667 | 0.2136 0.0134
Retrieved 20 | 20 20 20 0

In(umpltt{ Query & Recoid
Record niissing one image and text
Query missing one imagp aml weight meagures

Precision | 0.1000 \ 1 5500 | 0.5875 0.03%5
| Recall | 0 066? 06667 i3k | cists| oo
| Retrieved 1 ) | 20 20 | 20 | 0 }

Precision |02000 a L] 0.9500 T 0.8805 | 0.0250

Recall 00333 | 0.6667 | 01722 0.2276 0.0181 |
| Retrioved [ 20 20 | 2| 20| 0|
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Several observations can be made. First, we see a large uyiforin increase in
search precisions, from 50% or below to 80% or above. This is expected as we now
limit the size of the the retrieved list. It also reveals that Robot Share performs
very well in terms of search result ranking. The only surprise from this part comes
from searches with incomplete queries, Le., queries with texts and dimensional data
missing. The average precision reaches 98% in this test, which is even higher than
tests that are conducted with complete cueries. This implies weight measures not
only have less classifying power than other fields, such as text data or images, but
negatively impact object classification in our sample data. This conclusion seems
unrealistic on first glance. However, if we look at the confusion matrix generated
by weight neasures, we see it mixes different objects badly. Searches on incomplete
records show better performance as well. Precision nearly doubles when we compare
results from Performance Test 2.5, 2.6, and 2.7, which are tests on the same
conditions with full returns. This is expected, for the same reason that reducing
the number of objects returned results in higher precision measures. Searches on
incomplete records with incomplete queries alse exhibit twice the performance.
compared with searches returning the coniplete list on the same conditions. The
measured precisions are still lower than searches on complete data, as expected.

As explained previously, we know that certain fields have more classifying power
than others. Section 3.6.1 explainedd the benefit of separating indexing structure
into small conponents so a differenc weight coefficient for each component can be
applied. We have employed the static weight cocfficients searching algorithm to find
coefficients that maximize precisions. Using thesc coefficients, we see an increase
on measured precisions. Results are presented in Table 4.16. Only siblings relevant
searches are presented as class searches already show high marks on precision. Even
though there are 1l-indexing components cinrently impleniented in the system,
considering the computation cost of solving a 11-dimensional optimization problem,
we decide to simplify this optimization problem by reducing it to a 3-dinensional
one. We gronp color histograms in all channels into one, and edge histograms mto

another.



Table 4.16. Performance Test 3 2

Min | Max [ Median | Mean | Varjance |
Complete Query and Complete Records 1

Coefficient | (0100 0] |
Precision 1] 1 ] 1 0|
Recall | 0.6667 = 0.6667 0.6667 | 0.6667 | 6.1007¢-031
Incomplete Query
Missing one image and weight measures
| Coefficient | [01 00 0] i
Precision 1 1 1| 1| 0
Recall | 0.6667  0.6667 0.6667 | 0.6667  6.1007c-31
Incomplete Query ‘
Missing all but dimensional and weight measures |
| Cocfficient | 0000 1] ]
Precision | 0.0500 [ 0.7500 | 0.2500 | 0.3215 | 0.0259 |
Recall  0.0333 | 0.5000 0.1667 | 0.2143 0.0176 |
Incomplete Record
. Missing texts and dimensional measures
Coefficient [ (0100 0] -
Precision 1 1] 1] 1| 0]
Recall | 0.6667 | 0.6667 0.6667 | 0.6667 | 6.1007¢-31 |
" Incomplete Query & Recocd
Record missing one image and text
Query missing one image and weight measures
Coefficient | {1100 0] B
Precision | 0.0000 | 1 110.0970 T 2.4343¢-04
Recall | 0.6000  0.6667 = 0.6667  0.6647 | 1.0819¢-04

69
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All six color histograins from two hnages take a same weight coefficient and two
edge histograms from two images take the same weight coefficient. Coefficients are
stored in a vector, i the order of: color histograms, edge histograms, text data,
dimensional data, aud weight measures. For instance, cocfficient scr 01000 can
be read as putting zero weight on color histograms, text data, dimensional data,
and weight measures and only using edge histogranis to classily objects.

Results from Performance Test 3.2 are interesting. Four out of five tests show
the maximum average precision has been reached. The last one, where queries
contain only dimensional and weight measures, the average precision is somewhat
better than the one presented in Test 3.1 (0.3215 vs. 0.2705). This low precision is
understandable as neither dimensional data nor weight measures are good classifiers
for our sample data. The weight coefficient analysis computes the coefficient set as
|0 000 1]. This snggests that weight measures are slightly better than dimensional
data, and this can be verified by querying Robot Share with only dimensional
measures o weight measures, respectively. Results from the last test in this group
could be difficult to wiclerstand. The test is set as the two most useful features for
object classification, image information and text information are corvupted, witl
one third of the samples estimated by sample means. The query is missing the other
image and weight measures. However, with coefficients equal to [0 1 0 0 0], Robot
Share is still able to achieve an average retrieval precision very close to its maxiimun.
To understand tlis, we have to review the basic test setting. The database contains
480 samples, wlich are derived from 16 real world objects. The way we define the
siblings search 1s as follows: relevant items are items replicated from the sae
master copy. 1o this test, one third of the database is corrupted, which meaus on
average 10 copies from every 30 replicated group are corrupted. However, since
the ranking tests only analysis results from the first 20 items, Robhot Share just
happily reports that nsing edge histograms as the sole clagsifier; it could find all of
the 20 siblings with ease. Hence we again obtained a near perfect scove on average
precision, When we increase the number of returned items to 30, which equals to

the number of siblings one object has, we obtain results displayed in Table 4.17.
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Table 4.17. Performance Test 3.3

l | Min | Max Median  Mean | Variance ‘
_ (‘0¢"ﬁ(.ellt [ 01000
Precision | 0.4667  0.9000 | 0.7333 07143‘ Q. ﬂn%
|

Recall | 0.4667 0.9000 nm& 0.7143 000)5
Retricved 30 30

" Coefficient [ [1 000 1] ,
" Precision | 0.6000 | 0.9000 | 0.7667 | 0.7567 0.0062 |
Recall | 0.6000 | 0.9000 | 0.7667 | 0.7567 0.0062 ‘
Retrieved 30 30 30 30 . 0

' Coefficient | 1111 1] |
" Precision | 0.1333 ' 09000 | 0.5333 | 0.5113 0.0239
Recall | 0.1333 1 0.0000 | 0.5333  0.5113 0.0239 |
Retrieved 30| 30 30] 30 0|

We abserve that the measued precision drops abont 30%. We compute weight
coefhicients under ¢hhs new condition. and obtain another set of coefficients, which
brings a shightly better resule. Compared with setting all coeFicients to one, the

performance gain is more evident.

4.1.4 Supplemental Experiment I

The above experiments have demonstraced Rohat Shave performance on ohject.
data that are collected hy onvselves. We have also received a set of object images
taken by Prof. Dillmann’s humanoid robot research group. These images are used
m their textura) related recognition 1escarch and ate quite different. from images we
collected Onlv one hmage s taken at each object and some images do not capture
the entive object. Combining these images with images we found using the Google
nnage scarch. we have constructed a second database that contains 103 images.
We tested Robot Shate peiformance with these images. Experiment results are
presented i Table 4.18.

From Table 418, we can see the vetrieved accuiacy is lower than results from

previous tests. This is expected as data sainples are of lower quality than previons
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4.1.5 Supplemental Experiment II

We have obtained a set of humanoid robot activity data from Prof. Dillmann’s
group. Chapter 2 presented the VooDoo data vepresentation. These data con-
tain eight activities with each activity pecformed nultiple times. A total of 120
instances of activities is recorded Since all instances are performed by a huinan
experimenter, recorded lengths of instances range from 41 frames to 151 frames.
We randomly select query templates from the activity database. Since the purpose
of activity recognition is to identily human activities, Nearest-Neighbor search is
move appropriate than k-Nearest-Neighbor search or a-cut search used in previous
experiments. We then limit the aomber of returned activities {or each search to be 2
(siuce every search always returns the gnery template 1eself as the first activity ) We
define the classification as correct il the second returned item is the same activity as
the query template. Results are presented in Table 4.19. Ref. |24] indicates these

results are comparable to the FENS approach used by Prof. Dillmann’s gioup.

Table 4.19. Supplemental Experiment. 11

| Activity Correct |

“Hold Out Hand 91.0%
Hold Out Objeat 95.5%
Put Object On Table 89.9%
Read Bool 73.6%
Sitting 89.9%
Standing 26.3%
Take Object From Table = 77.7%
Typing On Laptop L 100%




CHAPTER 5

FUTURE WORK AND CONCLUSION

Humans started to share knowledge even before the birth of human natural lan-
guage. Since then, knowledge sharing has played a major role in liuman civilization.
The study of knowledge sharing in man-made intelligent systems, such as robots and
software agents, has a relatively young age in the study of artificial intelligence, even
though recent developments in Robotic, Semantic Web and Semantic Grid start to
touch this topic from various angles. There still is a lot of room for exploration.

Previous chapters presented our work on the design and implementation of
Robot Share, a knowledge sharing framework for robots. We have demonstrated
how two types of knowledge, object knowledge and activity knowledge, can be
shared through this framework. We have discussed reasons behind various method
selections and have compared tradeoffs between different cesigns. The Robot Share
systenl has been examined on a set of different experiment data sources and we have
discussed experiment results.

Future research can be divided into two categories: Robot Share refinement
and Robot Share expansion. In the refinement department, we propose a set of
approaclies that are worth trying to discover if any of them gives better search
retrieval results. In the expansion department, the concept of a machine-readable
knowledge search engine for knowledge sharing can be taken to other domains, such

as intelligent software agent. Detailed discussion follows.

5.1 Robot Share Refinement
The current proof-of-concept Robot Share system is centercd at image data, even
though the framework has been deliberately designed for multiple data formats.

Rohot Share performance on other types of data suclh as laser range finder, sonar,
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etc. is yet to be examined. To support a new data type in Robot Share, the data
type needs to be processed and a vector representation needs to be extracted. Poly-
nomial coefficient representation has been used for existing image data. Adaitional
approaches for dimension reduction need to be evaluated for data from other types
of sensors. Similar to dimension reduction methods, distance measures should be
eva.tiatec as well. In Lie curvent implementation, L1 anc weighted L1 distance
measures are used. Since the selection of distance measures is tied to the data
representation. more distance measures should be evaluated for new data types.

For image based object identification, more object recognition methods should
be evaluated. The current approach is based on color and edge histograms. These
approaches, especial the edge orientation histograms, are good properties to classify
objects, given that a clean background segmentation and textures on objects are
not too strong to give false identification on object edges. However, under certain
conditions, clean and easily distinguishable edges cannot be found. Even though
we have stated that image segmentation is not the problem Robot Share tries to
solve, we rcalize that other object identification techni¢ues, which do not vely on
strong edges, can be adopted. Another limitation associated with edge based object
identificalion is, using the edge based object identication, only a broad type of
object classification can be obtained rather than fine grained answers. For instance,
it is impossible for an edge based ohlcct identification system to distinguish a can of
Coke from a can of Sprite. However, there are times that the ability to distinguish
Coke from Sprite is important. Texture and image pattern based techimiques and
their associated indexing structures should be investigated.

Feedback systems have been heavily used in today’s Interuet search engines. We
have mentioned that a feedback system could help to adjust better weight measures
for object properties in the cross analyzer in Robot Share. We are certain about
that feedback process would he a very helpful tool to adjust various parameters in
Robot Share. However, the issue we are not so certain abont is how feeabacks can
be generated by robots. At an abstract level, the merit of a feedback system comes

from the vobot in field, which sends query to the Robot Share. knowing certain
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information that Robot Share does not know. Thevefore it is able to evaluate
query answers generated by Robot Share better and give useful feedback. This
model works perfectly for human users. As the interfaces between human users
and computers, especially the inpnt inteyt’ace, ¢.g., keyboard and mouse. are highly
limited. It is not possible for a user to convey much information to the search
engine. However, conveying information between two machines, e, a robot and
the Robot Share, is much less tedious. Hence it is possible for Robot Share to know
all information the gquerying robot knows, hence the querying robot may not have
much aclditional information to generate useful feedbacks. In this case, the decision
tor feedback system utilization is more like a burden-shifting between the query
robot and Robot Share, i.e., which one takes the responsibility to ensure query
responses are properly ranked. We can imagine that there are situations where
a query robot cannot give Robot Share all information to rank guery responses
most properly, due to privacy and other reasons. In these cases, the ability to take
feedhack from the query robot can be important.

Chapter 3 has mentioned that Robot Share has the potential to discover un-
derlying relations between data from different sensors. For instance, there is a link
between the color histograms and the text description of the ohject, e.g., the word
“yellow” implies a certain shape of color histograms. The ability to discover these
links can be very helptul as it not only helps Robot Share to estimate missing
mtormation i incomplete queries and records, but also provides ground for higher
level knowledge abstraction. The inethod of discovering these underlymg relations
15 A topic yet to be studiecl.

Tu the previous chapter, where Robot Share performance was cvaluated, we
reached the conclusion that certain data properties are more helpful to classify
objects than others. In particular, we have fouud that text descriptions, which are
processed through the LSI technique, and cdge histograms of olyjects ave better
classifiers than dinension and weight measures. It has been noticed that certain
properties with low classifying power, e.g.. weight measures, when paired with

properties with high classitving power, e.g., text description, the performance of
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this combination is worse than using text description as the solo classifier. However,
what is uncertain to us is the relation, in terms of classifying power, between these
properties, i.e., we know that more information does not always yield a better
classifier, the pattern of property selection and the resulting classifying power is still
unknown. Intuitively, we think certain properties complement others for classifying
certain group of objects, and certain properties only correctly classify a subset
of object other properties classify. Hence a combination of two complenmentary
properties may result in a much higher classifving power and a combination of
two overlapped properties may result in a lower classifying power. However, it is
unknown to us that if these relations are object dependent. and if they are impacted
by the selected distance measure. Another problem that is directly related to
this issue 1s the cross analyzer. In the current implementation, the cross analyzer
aggregates sorted hsted from every indexing structure and produces a single list
using the weighted L1 distance. Another approach to realizing the function of
the cross analyzer 1s to use a decision tree, j.e.. the cross analyzer sequentially
examines a list returned by each indexing structure, if an item listed in the list
satisfies a certaiu condition, e.g., within distance a of the query template, and it is
also accepted by previous indexing structures, then adds it to the output list. The
output list is then sorted. It js unclear to us if this approach is mmathematically
equivalent to the current implementation.

The previous chapter has presented the Robot Share performance on three sets
of data. The second set of experiments, which exanines Robot Share with Image
data collected from the Google image search and Prof. Dillmann’s group, shows
worse performance than the first set of experiments, which use data collected by
ourselves. One of the major differences between these two sets of images is the image
taking condition. Existing algorithms can compute the invariance in 2D graphs, i.e.,
moments are invaviant under rotation. Similar algorithms that compute invariants
of 2D projections of 3D space objects are yet to he discovered. Even though various
kinds of mathematical techniques can be applicd to approximate information that

is not clirectly captured in an image, there is a limit on the amount of information
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that can be correctly approxunated by those techniques. Therefore, it is exceedingly
difficult to detect if two images taken at different angles represent the saime object.
Hence, single image based object identification 1s limited. We have noticed the
recent development in a 3D scanner, which results in 3D scans that arc relatively
small and low cost and generate 3D model of objects in short amount of thuc. It
will be very interesting to see if algorithms can compare a 3D model of an object
to an tmage to detect if they show the same object. Such algorithms solve a large
class of object classification problems for robots. As robots can create databases
that contain 3D models for all kind of objects, then robots in the field only need to
take images and query such databases for identifications. We human rarely do 2D
image to 2D hmage comparison when we see objects around us. Wo always compare
images, which are projected in our retinas, to some models, which capture much

more information than a simple 2D projection, stored in our brains.

5.2 Robot Share Expansion

The previous section discussed various opportunities to improve Robot Share
performance. This section discusses the possibility of expanding Robot Share
use into other domains. We first explain how a third type of knowledge. scene
lnowledge, can be added into Robot Share. Then we discuss how the Robot Share
architecture can be adopted in the software intelligent agent world.

The idea of scene knowledge arises from the DARPA Urban Challenge project,
in which we also participate. The main objective of the DARPA project is to build
an antonomous vehicle that rung on urban streets. There are a lot of similarities
between an autonomous velicle and a humanoid vobot.  For instance, botlt of
the two have sensors and actuators and need to execute in complex real world
environment and know a large amount of information to rcach an acceptable level
of performance. These shmilarities ensure that an antonomous vehicle also bhenefits
from knowledge sharing frameworks such as Robot Share. However, there are
substantial differences between autonomous vehicles and humanoid robots. For

an autonomous vehicle, the ability of distinguishing a dinner plate from a dinner
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knife is less useful than recognizing a scene of a blocked road.or an interaction with
a detour sign. Hence we propose the idea that, in addition to the existing object
knowledge and activity knowledge, we add a third type of knowledge: scene knowl-
edge into the framework to support queries from autonomous vehicles. Problems

needing to be solved include:

e Dcveloping mechanisms to process sensor, especially image, data for the
purpose of scene recognition. In the current implementation, image based
object identification is based on identifying objects’ color and edges, scene

identifications require other mechanisms.

e Defining an outology hased semantic description to communicate identified
scenes to autonomous vehicltes. This helps to define the scene description

language between Robot Share and autonomous vehicles.

e Iuvestigating a fast query-response system that supports real-time response

to autonomous vehicles queries with high accuracy.

Scene knowledge can be used in other fields beyond autonomous vehicle control,
such as emergency control in surveillance systems. Investigating requirenients
aud himitations of using Robot Share supported scene knowledge sharing in those
envirornments is an interesting topic to explore.

In Cliapter 1, we stated that robots resemble many characters of software intelli-
gent ageiits. Agent systems have demounstrated their ability to solve many problems
in software engineering. We believe agents also have an unrevealed potential in Grid
computing. Grids are large, heterogeneous, and open environment. The size and
complexity of such systems suggests that centralized control structures usually fail.
Decentralized designs, modularized components, and the ability of localized decision
making make agent systemis suitable for Grid applications. However, for agents to
succeed in Grid, a knowledge sharing framework designed for agents is also needed.
Considering the difference between cyberspaces and the real world environment,
before we expend the Robot Share into agent world, we need to answer a number

of importait questions.
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e How to define knowledge for agents? For robots, knawledge is defined as:
information about objects and activities, in string format, stored in robots’
memory. This definition is not suitable for software agents as object informa-
tion is less useful for them. Activity knowledge may be useful, as if we define

activity knowledge as knowledge about carrying out certain computations.

e How to represent knowledge? In the current implementation, ontology based
meta data are less consulted for the purpose of indexing. However, for soft-
ware agents, it could be that the most efficient way to index agent knowledge
is through meta data, even though it is difficult to generate high quality meta
data for a large amount of information. How to overcome limitations of meta

data based indexing is a problem that needs to be solved.

e How to define the cominunication language for agents? Chapter 1 has pre-
sented some research on a semantic web, which aims at developing machine
readable web content. How to utilize results from this research to solve

problenis in Grids is another topic that needs to be explored.

Seeing the potential of intelligent agent systems and similarities between intelli-
gent agents and robots, we believe it 1s possible to port the Robot Share architecture

into agent world and to bring the power of intelligent agents to the next level.
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DIMENSIONALITY REDUCTION



Original Data, KL

Figure A.1. Confusion Matrix of the Ecdge Direction Histograrn in
-Leibler Divergence
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Original Data. L (

Figure A.2. Confusion Maunx of the Edge Diection Histogramy in L1 Distance
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Original Da(a. L2

Figure A.3. Confusion Matrix of the Edge Direction Histograni in L2 Distance



Original Dalp, Weighied L\

Figure A.4. Confusion Matrix of the Edge Divection Histogram m Weighted Ll
Distance
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FFT, KL

Figure A.5. Confusion Matvix of the Edge Directian tlislograrm Represented by
Fourier Coefficient in [Kullback-Leibler Divergence



Figure A.6. Confusion Matrix ol the Edge Direction Histogram Represented
Fourier Coefficient in L1 Distance

by



Figure A.7. Conlusion Malrix of the Edge Direction Histogram Represented
Fourier Coefhcient in L2 Distance
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FFT, Weighted L 1
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Figure A.8. Confusion Matrix of the Edge Direction Histogram Repiesented by
Fourer Coefhcient in Weighted L1 Distance
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Polyfil, KL

Figure A.9. Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynormal wm Kullback-Leibler Divergence
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Potyfil, L1

Figure A.10. Confusion Matrix ot the Edge Direction Histograny Represented by
Coefficients of a2 Polynomial in L1 Distance



Pelylii, L2

Figure A.11. Confusion Matrix of the Eage Direction Histogram Represented by
Coefheients of 2 Poryuomial in L2 Distance
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Polyfil, Weighted L

Figure A.12. Confusion Matnx of the Edge Direction Ristograin Represented by
Coefficients of a Polynomial in Weighted L1 Distance
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Slaksiics, KL

Figure A.13. Confusion Matrix of thie Edge Direction Histograin Represented by
Statistical Properties in Knllhack-Leibler Divergetice
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Siatisties, L

Figure A.14. Confusion Matrix of the Edge Direction Hiscogram Represcuicd by
Statistical Pioperties in L1 Distance
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Slalistics, L2

Figure A.15. Confusion Matrix of the Fdge Direction Histogram Represented by
Statistical Propeities in L2 Distance
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Stalisncs, Wesghieo Lt

Figure A.16. Confusion Matiix of the Exige Direction Histogram Represcnted by
Statistical Properties in Wesghted L1 Distance



Momenl. KL

Figure A.17. Confusion Matrix of the Edpe Direction Histogram m Represented
by Central Moments ICuliback-Leibler Divergence
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Momenl, L1

Figure A.18. Confusion Matnix of the Edge Dircction Histosran Represented by
Central Moments in L1 Distance
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Momenl, L2

Figure A.19. Confusion Matrix of the Edge Direction Histogyam Represented by
Central Moments in L2 Distance
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Moment, Weighted L1

Figure A.20. Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in Weighted L1 Distance.



APPENDIX B

THE KNOWLEDGE DEFINITION
GRAMMAR

This grammar describes the definition of object knowledge that is supported by
Robot Google.
knowledge

— (Knowledge) knowledgeBody (\Knowledge)
knowledgeBody

— imageData* dimensionalData textData metaData
imageData

— fileType image

=
fileType

— (FileType) type (\FileType)
type

— Jpg

— bmp
image

— (Image) img (\Image)
mg

— STRING
dimensionalData

— (Dimension) dimension (\Dimension)

N

dimensional


file:///Knowledge
file:///FileType
file:///Image
file:///Dimension

— length width height
length
— (Length) NUM (\Length)
—
width
— (Width) NT'M (\Width)
-
height
— (Height) NUM (\Height)
textData
— (Text) text (\Text)
text
— name description name
— (Name) STRING (\Name)
description
— (Description) STRING (\Description)
metaData
— (MetaData) meta (\MetaData)
meta
— time location
time
— (Time) STRING (\Ttme)
N
location

— (Location) STRING (\Location)

103


file:///Length
file:///Width
file:///Height
file:///Text
file:///Name
file:///Description
file:///MetaData
file:///Time
file:///Location

104

—
STRINGs are printable character strings.

NUMs are positive numerical values.



APPENDIX C

THE QUERY RESPONSE GRAMMAR

This grammar describes the definition of query response sent by Robot Google.
The definition of KKnowledge is adopted from Appendix B.
response
— (Response) responseEntry* (\Response)
responsekntry
— knowledge url
url
— (URL) URLSTRING (\URL)
URLSTRINGs are regular Uniform Resource Locator strings.


file:///Response

o
2]

3]
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