
ROBOT SHARE: A FRAMEWORK FOR

ROBOT KNOWLEDGE SHARING

by

Xiuyi Fan

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment o f the requirements for the degree of

Master of Science

in

Computational Engineering and Science

School of Computing

The University of Utah

May 2009

ROBOT SHARE: A FRAMEWORK FOR

ROBOT KNOWLEDGE SHARING

by

Xiuyi Fan

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

m

Computational Engineering and Science

School of Computing

The University of Utah

May 2009

Copyright © Xiuyi Fan 2009

All Rights Reserved

Copyright © Xiuyi Fan 2009

All Rights Reserved

Till:: IINIV1,RSITY OF jlTAH CRADUATI> SCHOOl.

SUN':Il,VISOllY COMl\.llTTEE APPROVAL

x, Flon

Tlo. , bot-<o , lot -" """",", of ,/W -. , _,,,. .. 01

" ' -"""r ""' 1.0<"" _ 10 I" ... _ ... ,

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To tbe Gradnate Council of the University of Utah:

I b,we reau the thesis of Xiuyi Fan in its final form and have
found tfwt (1) its format, citations, and bibliogr"plaic slyle are consistent and acceptable;
(2) its illustrative materials including figures, tables, "n(1 charts are in place: and (3) the
finalilianuscript is satisfactory to the Supervisory Commit.tee a.lld is rCAdy for .subnlisslon
to Tile Graduate School.

Date Thoma,s C. Henderson

Chair: Supervisory Commit.tee

Approved for the Major Department

Martin Be1'7.ins
Cha.ir jDirertor

Approved for the Graduat.e Council

��<;.CQ� __

David S. Chapin n
Deau of The GraUlI<1tc School

A B S T R A C T

Knowledge representation is a traditional field in artificial intelligence. Re

searchers have developed various ways to represent and share information among

intelligent agents. Agents that share resources, data, information, and knowledge

perform better than agents working alone. However, previous research also reveals

that sharing knowledge among a large number of entities in an open environment

is a problem yet to be solved. Intelligent robots are designed and produced by

different manufacturers. They have various physical attributes and employ different

knowledge representations. Therefore, any nonstandard or non-widely-adopted

technology is unsuitable to provide a satisfactory solution to the knowledge sharing

problem. In this research, we pose robot knowledge sharing as an activity to be

developed in an open environment - the World Wide Web. Just as search engines

like Google provide enormous power for information exchange and sharing for hu

mans, we believe a searching mechanism designed for intelligent agents can provide

a robust approach for sharing knowledge among robots. We have developed (1) a

knowledge representation for robots that allows Internet access, (2) a knowledge

organization and search indexing engine, and (3) a query/reply mechanism between

robots and the search engine.

ABSTRACT

Knowledge representation is a traditional field 111 ar t ificial intelligence. Re

searchers have developed various ways to represent and share information among

intelligent agents. Agents that share resources, data, information , and knowledge

perform better than agents working alone. However , previous research also reveals

that sharing knowledge among a large number of entities in an open environment

is a problem yet to be solved . Intelligent robots are designed and produced by

different manufacturers. They have various physical at tributes and employ different

knowledge representa tions. Therefore, any nonstandard or non-widely-adopted

technology is unsuitable to provide a satisfactory solution to the knowledge sharing

problem. In this research , we pose robot knowledge sharing as an activity to be

developed in an open environment - the World \iVide 'Neb . Just as search engines

like Google provide enormous power for information exchange and sharing for hu

mans, we believe a searching mechanism designed for intelligent agents can provide

a robust approach fo r sharing knowledge among robots. We have developed (1) a

knowledge representation for robots that allows Internet access, (2) a knowledge

organization and search indexing engine, and (3) a query/reply mechanism between

. robots and the search engine.

CONTENTS

A B S T R A C T iv

L I S T O F F I G U R E S vii

L I S T O F T A B L E S ix

C H A P T E R S

1. I N T R O D U C T I O N 1

1.1 Motivation 1
1.2 Introduction 2
1.3 Relevant Work 5

2. K N O W L E D G E R E P R E S E N T A T I O N 9

2.1 Robot Knowledge 9
2.1.1 Sensor Grounded Knowledge 9
2.1.2 Knowledge Definition 10

2.2 Knowledge Extraction 12
2.2.1 Data Type and Extraction 12
2.2.2 Data Sample 13

2.3 Knowledge Formulation 15
2.3.1 The First Transformation 18
2.3.2 The Second Transformation 19
2.3.3 Example 24

2.4 Activity Knowledge 25

3. K N O W L E D G E S E A R C H E N G I N E 28

3.1 Robot Knowledge Search Engine 28
3.2 Knowledge Harvesting 29
3.3 Knowledge Query 29

3.3.1 Query Type 30
3.3.2 Query Interface 30
3.3.3 Search Type 31

3.4 Similarity Functions 31
3.4.1 Distance Measures 31
3.4.2 Experiment Data 34

3.5 Feature Indexing 35
3.5.1 Curse of Dimensionality 35
3.5.2 Feature Selection 36

CONJ'ENTS

ABSTRACT . IV

LIST OF FIGURES. VB

LIST OF TABLES . ix

CHAPTERS

1. INTRODUCTION 1

1.1 Motivation 1
1.2 Introduction 2
1.3 Relevant \Nork . 5

2. KNOWLEDGE REPRESENTATION . 9

2.1 Robot Knowledge 9
2.1.1 Sensor Grounded Knowledge. 9
2. 1.2 Knowledge Defini tion . 10

2.2 Knowledge Extraction. .. 12
2.2.1 Data Type and Extraction. .. 12
2.2.2 Data Sample . 13

2.3 Knowledge Formulation . 15
2.3.1 The First Transformation 18
2.3.2 The Second Transformation .. 19
2.3 .3 Example 24

2.4 Activity Knowledge. 25

3. KNOWLEDGE SEARCH ENGINE. 28

3.1 Robot Knowledge Search Engine. 28
3.2 Knowledge Harvesting. .. 29
3.3 Knowledge Query .. 29

3.3. 1 Query Type. .. 30
3.3.2 Query Interface .. 30
3.3.3 Search Type . 31

3.4 Similarity Functions. .. 31
3.4.1 Distance NIeasures .. 31
3.4.2 Experiment Data . 34

3.5 Feature Indexing .. 35
3.5 .1 Curse of Dimensionali ty. .. 35
3.5.2 Feature Selection. 36

3.5.3 Dimensionality Reduction 4.1
3.5.4 Indexing Structures 42
3.5.5 Indexing Text Data 44

3.6 Robot Share Architecture 46
3.6.1 Indexing Structure Consideration 46
3.6.2 Robot Share Component 50

4. K N O W L E D G E E X P L O I T A T I O N 56

4.1 Object Knowledge Experiment 56
4.1.1 General Performance 57
4.1.2 Query with Missing Fields 58
4.1.3 Ranking 64
4.1.4 Supplemental Experiment I 71
4.1.5 Supplemental Experiment II 73

5. F U T U R E W O R K A N D C O N C L U S I O N 74

5.1 Robot Share Refinement 74
5.2 Robot Share Expansion 78

A P P E N D I C E S

A . D I M E N S I O N A L I T Y R E D U C T I O N 81

B . T H E K N O W L E D G E D E F I N I T I O N G R A M M A R 102

C . T H E Q U E R Y R E S P O N S E G R A M M A R 105

R E F E R E N C E S 106

vi

3.5.3 Dimensionali ty Reduction '.' '. ' 41
3.5.4 Indexing Structures. 42
3.5.5 Indexing Text Data . 44

3.6 Robot Share Architecture 46
3.6.1 Indexing Structure Consideration . 46
3.6. 2 Robot Share Component-. 50

4. KNOWLEDGE EXPLOITATION . 56

4.1 Object Knowledge Experiment 56
4. 1.1 General Performance .. 57
4.1.2 Query with Missing Fields .. 58
4.1.3 Ranking 64
4.1.4 Supplemental Experiment I . 71
4.1.5 Supplemental Experiment II . 73

5. FUTU RE WORK AND CONCLUSION . 74

5.1 Robot Share Refinement 74
5.2 Robot Share Expansion. .. 78

APPENDICES

A. DIMENSIONALITY REDUCTION .. 81

B . THE KNOWLEDGE DEFINITION GRAMMAR 102

C. THE QUERY RESPONSE GRAMMAR ,. 105

REFERENCES 106

VI

LIST OF FIGURES

1.1 The Robot Share Framework 3

2.1 An Image Retrieval System Architecture 14

2.2 A Sample Image 15

2.3 A Sample Color Histogram 16

2.4 A Sample Edge Histogram 17

2.5 An Edge Histogram and its Polynomial Approximation 24

3.1 Distances Between a Query Point and Database Samples. Sample
Size = 20,000; Vector Dimension = 100; Bin Number = 100. Drmn =
10.22, Dmax = 17.41, Davg = 13.94 37

3.2 Distances Between a Query Point and Database Samples. Sample
Size = 20,000; Vector Dimension = 1; Bin Number = 100. Dmm =
0,Dmax = 5.16, Davg = 1.11 38

3.3 Distances Between a Query Point and Database Samples. Sample
Size = 20,000; Vector Dimension = 5; Bin Number = 100. Dmin =
0.28, Dmax = 6.05, Davg = 2.72 39

3.4 The Single-indexing-structure Architecture 46

3.5 The Multi-indexing-structure Architecture 47

3.6 K-d Tree Structure of Two Bowls and Two Knives 50

A. 1 Confusion Matrix of the Edge Direction Histogram in Kullback-Leibler

Divergence 82

A.2 Confusion Matrix of the Edge Direction Histogram in LI Distance . . . 83

A.3 Confusion Matrix of the Edge Direction Histogram in L2 Distance . . . 84

A.4 Confusion Matrix of the Edge Direction Histogram in Weighted LI
Distance 85

A.5 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Kullback-Leibler Divergence 86

A.6 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in LI Distance 87

A.7 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in L2 Distance 88

LIST OF FIGURES

1.1 The Robot Share Framework. 3

2.1 An Image Retrieval System Architecture. 14

2.2 A Sample Image. 15

2.3 A Sample Color Histogram. 16

2.4 A Sample Edge Histogram. 17

2.5 An Edge Histogram and its Polynomial Approximation. 24

3.1 Distances Between a Query Point and Database Samples. Sample
Size = 20 ,000; Vector Dimension = 100; Bin Number = 100. D m in =
10.22, Dmax = 17.41 , Davq = 13.94 37

3.2 Distances Between a Query Point and Database Samples. Sample
Size = 20 ,000; Vector Dimension = 1; Bin Number = 100. Dmin =
0, Dmax = 5.16, Davq = 1.11 38

3.3 Distances Between a Query Point and Dat abase Samples. Sample
Size = 20,000; Vector Dimension = 5; Bin Number = 100. Dmin =
0.28, Dmax = 6.05 , Davq = 2.72 .. 39

3.4 The Single-indexing-structure Architecture. .. 46

3.5 The Multi-indexing-structure Architecture. 47

3.6 K-cl Tree Structure of Tv,To Bowls and Two Knives. 50

A.1 Confusion l\/la trix ofthe Edge Direction Histogram in Kullback-Leiblel'
Divergence .. 82

A.2 Confusion Matrix of the Edge Direction Histogram in L1 Distance. .. 83

A.3 Confusion Matrix of the Edge Direction Histogram in L2 Distance . . . 84

A.4 Confusion Matrix of the Edge Direction Histogram in vVeighted L1
Distance .. 85

A.5 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Kullback-Leibler Divergence. 86

A.6 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in L1 Distance . 87

A.7 Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in L2 Distance .. 88

A.8 Confusion Matrix of the Edge Direction Histogram. Represented by
Fourier Coefficient in Weighted LI Distance 89

A.9 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Kullback-Leibler Divergence 90

A. 10 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in LI Distance 91

A. 11 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in L2 Distance 92

A. 12 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Weighted LI Distance 93

A. 13 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Kullback-Leibler Divergence 94

A. 14 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in LI Distance 95

A. 15 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L2 Distance 96

A. 16 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Weighted LI Distance 97

A. 17 Confusion Matrix of the Edge Direction Histogram in Represented by
Central Moments Kullback-Leibler Divergence 98

A. 18 Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in LI Distance 99

A. 19 Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in L2 Distance 100

A.20 Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in Weighted LI Distance 101

viii

A.S Confusion NIatrix of the Edge Direction Histogram . Represented by
Fourier Coefficient in vVeighted L1 Distance S9

A.9 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Kullback-Leibler Divergence 90

A.10 Confusion Matrix of the Edge J)irection Histogram Represented by
Coefficients of a Polynomial in L1 Distance. 91

A.1I Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in L2 Distance. 92

A.12 Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in 'Weighted L1 Distance 93

A.13 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Kullback-Leibler Divergence. 94

A.14 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L1 Distance .. 95

A.15 Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L2 Distance .. 96

A.16 Confusion NIatrix of the Edge Direction Histogram Represented by
Statistical Properties in vVeighted L1 Distance 97

A.17 Confusion Matrix of the Edge Direction Histogram in Represented by
Central Moments Kullback-Leibler Divergence. 9S

A.1S Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in L1 Distance .. 99

A.19 Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in L2 Distance 100

A.20 Confusion NIatrix of the Edge Direction Histogram Represented by
Central Moments in vVeighted L1 Distance 101

Vlll

LIST OF TABLES

2.1 A Sample Object 26

3.1 The Robot Share Component Length Summary 52

4.1 Performance Test 1.1a 58

4.2 Performance Test 1.1b 58

4.3 A Query With Only One Image and No Weight Measure 59

4.4 Performance Test 2.1 59

4.5 Performance Test 2.2 60

4.6 Performance Test 2.3 60

4.7 Performance Test 2.4 61

4.8 Performance Test 2.5 61

4.9 Performance Test 2.6 62

4.10 Performance Test 2.7 63

4.11 Performance Test 2.8 63

4.12 Performance Test 2.9 64

4.13 Performance Test 3.1 Part I 65

4.14 Performance Test 3.1 Part II 66

4.15 Performance Test 3.1 Part III 67

4.16 Performance Test 3.2 69

4.17 Performance Test 3.3 71

4.18 Supplemental Experiment I 72

4.19 Supplemental Experiment II 73

LIST OF TABLES

2.1 A Sample Object .. 26

3. 1 The Robot Share Component Length Summary. 52

4.1 Performance Test 1.1a .. 58

4.2 Performance Test 1.1b .. 58

4.3 A Query vVith Only One Image and No Weight Measure. 59

4.4 Performance Test 2.1 .. 59

4.5 Performance Test 2.2 .. 60

4.6 Performance Test 2.3 .. 60

4.7 Performance Test 2.4 . 61

4.8 Performance Test 2.5 . 61

4.9 Performance Test 2.6 . 62

4.10 Performance Test 2.7 .. 63

4.11 Performance T st 2.8 . 63

4. 12 Performance Test 2.9 . 64

4.13 Performance Test 3.1 Part I .. 65

4.14 Performance Test 3.1 Part II .. 66

4.15 Performance Test 3.1 Part III 67

4.16 Performance Test 3.2 .. 69

4.17 Performance Test 3.3 . 71

4.18 Supplemental Experiment I . 72

4.19 Supplemental Experiment II 73

C H A P T E R 1

I N T R O D U C T I O N

1.1 Motivation
Knowledge representation is a traditional field of study in artificial intelligence

[34, 37]. More recently, knowledge sharing has attracted research interest. Pre

vious research has been focused on the formation of knowledge, representation of

knowledge, categorization and partition of knowledge, etc. Various knowledge base

structures, knowledge interchange languages, and knowledge sharing infrastructures

have been developed. Knowledge sharing among intelligent agents, e.g., robots,

brings more power to each participating agent as it can accomplish its jobs more

rapidly and/or at a lower cost.

One problem of the previous studies was that most dealt with a closed en

vironment and defined a specific set of knowledge representation structures and

communication languages in a somewhat nonstandard fashion. This limits the

adoptability and the flexibility of those systems. Another problem is the scalability

of these systems, as most of them are designed to operate among a small number

of participants. These systems may work well in a small LAN, but when they are

adapted to an open WAN, various problems emerge, i.e., network latency, platform

incompatibility, communication language incompatibility, etc. One major goal is

to vastly increase the scale of robot knowledge sharing.

We build a knowledge sharing framework that supports a large number of data

formats, is able to scale to process large amounts of data and is accessable to a

large number of robots. To avoid some of the problems of earlier approaches, we

develop a web-based approach for knowledge sharing among robots.

Thesis : R o b o t s sharing knowledge is more efficient and successful

than r o b o t s learning and act ing on their own . A web-based o p e n archi-

CHAPTER 1

lNTRODU CTlON

1.1 Motivation

Knowledge representation is a traditional field of study in art ificial intelligence

[34, 37] . More recently, knowledge sharing has attracted research interest . Pre

vious research has been fo cused on the formation of knowledge, representation of

knowledge, cat egorization and partition of knowledge, etc. Various knowledge base

structures, knowledge interchange languages, and knowledge sharing infrastructures

have been developed. Knowledge sharing among intelligent agents, e.g ., robots,

brings more power to each participating agent as it can accomplish its jobs more

rapidly andl or at a lower cost .

One problem of the previous studies was that most dealt with a closed en

vironment and defined a specific set of knowledge representation structures and

communication languages in a somewhat nonstandard fashion. This limits t he

adoptabili ty and the flexibility of those systems. Another problem is the scalability

of these systems, as most of them are designed to operate among a small number

of participants. These systems may work well in a small LAN, but when they are

adapted to an open WAN , various problems emerge, i.e., network latency, platforrn

incompatibility, communication language incompatibility, etc. One major goal is

to vastly increase the scale of robot knowledge sharing.

Vie build a knowledge sharing fr amework that supports a large number of dat a

formats, is able to scale to process large amounts of data and is access able to a

large number of robots. To avoid some of the problems of earlier approaches, we

develop a web-based approach for knowledge sharing among robots.

Thesis: Robots sharing knowledge is more efficient and successful

than robots learning and acting on their own. A web-based open archi-

2

l ec ture helps t o bring more robo t s into the sys tem and enhances their

per formance .

1.2 Introduction
In the past, when we needed to know something, we would look it up in an

encyclopedia or find a book on the subject. Nowadays, we turn to web search

engines, such as G o o g l e ™ 1 or Y a h o o ™ 2 , and are given pointers to a large amount

of information. We usually find what we are looking for relatively quickly and easily.

The semantic web holds promise for the future in which communities of practice

will share knowledge to meet their needs or solve problems. We propose to develop

similar capabilities for physical robots, including humanoid robots, which act in

the world and must know a great deal about it. Humanoid robots in our research

include robot butlers, surgeons, drivers, hospital orderlies, homecare nurses, etc.

Thus, when a robot encounters an unfamiliar or unknown object in its environment,

or when it needs to know how to perform a particular task with or on an object

(e.g., clean it), it will be able to query a Robot Google™ in order to get pointers

to relevant information available in the world wide web, or it will interact with a

robot knowledge ontology-based sharing community.

Humans achieve this sharing mainly through natural language: queries are

words that are matched to document content. For robots, it is not clear how to

achieve this, and the question arises as to what representations best facilitate robot

knowledge sharing. Restricting for the moment our consideration to 3-D physical

objects, a description may include geometry, physical properties, functional use,

context, and natural language descriptions. Other knowledge, e.g., task procedures,

may require representation of desired forces, torques, wrenches, etc., described in an

appropriate sharable representation (e.g., some form of configuration space). The

GOOGLE is a trademark of Google Inc.

2Yahoo is a trademark of Yahoo Inc.

2

tecture helps to bring more robots into the system .and enhances their

performance.

1.2 Introduction

In the past , when we needed to know something, we would look it up in an

encyclopedia or find a book on the subject . Nowadays, we turn t o web search

engines , such as Google™1 or YahooTM2, and are given pointers to a large amount

of information. vVe usually find what we are looking for relatively quickly and easily.

The semantic web holds promise for the future in which communities of practice

will share knowledge to meet their needs or solve problems. vVe propose to develop

similar capabilities for physical robots , including humanoid robots, which act in

the world and must know a great deal about it. Humanoid robots in our research

include robot butlers, surgeons, drivers, hospital orderlies , homecare nurses, etc.

Thus, when a robot encounters an unfamiliar or unknown object in its environment ,

or when it needs to know how to perform a particular t ask with or on an object

(e .g., clean it), it will be able to query a Robot GoogleT Ad in order to get pointers

to relevant information available in the world wide web , or it will interact with a

robot knowledge ontology-based sharing community.

Humans achieve this sharing mainly through natural language: quen es are

words that are matched to document content . For robots, it is not clear how to

achieve this, and the question arises as to what representa tions best facilita te robot

knowledge sharing. Restricting for the moment our considera tion to 3-D physical

objects, a description may include geometry, physical properties, functional use,

context , and natural language descriptions. Other knowledge, e.g., t ask procedures,

may require representation of desired forces , torques, wrenches, et c. , described in an

appropriate sharable representation (e.g., some form of configuration space) . The

l COOCLE is a trademark of Coogle Inc.

2Yahoo is a trademark of Yahoo Inc.

3

development of and access to networked robot knowledge can provide the basis for

very robust intelligence for robot systems.

The developed framework for our solution is shown in Figure 1.1. In this figure,

each participant robot creates web accessible knowledge repositories; the Robot

Share server harvests knowledge from each of the participant robots and then

organizes and creates efficient indexes into the database. Participant robots query

the Robot Share server for knowledge and receive URLs pointing to other robots'

knowledge. Robots, in this view, act as agents [12, 29, 39, 40, 43], and we assume

their ability to generate the necessary knowledge structures; this is not an issue of

investigation here.

Imagine a scenario like the following. A kitchen robot works in a kitchen. It

is told to clean all kitchenware. After successfully cleaning a few plates, forks and

spoons, the robot notices that there is a pair of wooden sticks. The robot is confused

by this pair of wooden sticks as it has never seen this before. The robot does not

know what to do with them. By asking a nearby human, the robot learns that this

Create web-accessible
knowledge repositories

queries

Knowledge Harvesting

Query
Server

Knowledge Organization
and Indexing

DB DB

Figure 1.1. The Robot Share Framework.

3

development of and access to networked robot knowledge ca,n provide the basis for

very robust intelligence for robot systems.

The developed framework for our solution is shown in Figure 1.1. In this figure,

each participant robot creates web accessible knowledge repositories; the Robot

Share server harvest s knowledge from each of the participant robots and then

organizes and creates efficient indexes into the database . Participant robots query

the Robot Share server for knowledge and receive URLs pointing to other robots'

knowledge. Robots, in this vie,v, act as agents [12, 29 , 39 , 40, 43], and we assume

their ability to generate the necessary knowledge structures; t his is not an issue of

investigation here.

Imagine a scenario like the following. A kitchen robot works in a kitchen. It

is told to clean all kitchenware. After successfully cleaning a few plates, forks and

spoons, the robot notices t hat there is a pair of wooden sticks. The robot is confused

by this pair of wooden sticks as it has never seen this before. The robot does not

know what to do with them. By asking a nearby human , the robot learns that this

Robot __ kl_lo_w_l_ed_g_e_r_ep_o_s_i t_o_ri_es __ 8
Create web- accessible

quertes

Knowledge Harvesting

responses

Query Knowledge Organization DB DB
Server and Indexing

Figure 1.1. The Robot Share Framework.

4

pair of wooden sticks is called "chopsticks." The robot then formulates a query

and sends it to the Robot Share server through its on-board Internet connection.

It wants to know if these chopsticks need to be cleaned (as it is told to clean all

kitchenware) and if so, how to clean them. The Robot Share server processes the

query, and responds with: please go to www.robot_chopstick.com/info to see more

information about chopsticks and please go to www.robot_chopstick.com/clean to

see how they can be cleaned. The robot then connects to those two provided URLs

and downloads a few packages that contain the needed information. It then cleans

the pair of chopsticks successfully.

From the scenario described above, we can see that there are at least two types

of knowledge a robot may be interested to know,

• The knowledge of object identification, i.e., the knowledge to answer questions

like: what is this?

• The knowledge of object manipulation, i.e., the knowledge to answer questions

like: what can be done to/with this object?

Both of the two types of knowledge are closely tied to a robot's physical ca

pacities, i.e., a robot's sensors and its actuators, as sensor data are utimately what

a robot knows about the external world and actuators define what a robot can

possibly do to the external world. Therefore, the proposed framework emphasizes

sensor information. We believe sensor data provide a solid grounding for this

research.

Goals for this research are:

• develop robot knowledge sharing framework,

• study robot knowledge representation,

• study knowledge indexing structure,

• study accuracy of retrieved knowledge,

• study performance of sharing.

4

pair of wooden sti cks is called "chopsticks." The robot then formulates a query

and sends it to the Robot Share server through its on-board Internet connection.

It wants to know if these chopsticks need to be cleaned (as it is told to clean all

kitchenware) and if so, how to clean tl:18m. The Robot Share server processes the

query, and responds with: please go to www.robot _chopstick.com/ info to see more

information about chopsticks and please go to www.robot_chopstick. com/ clean to

see how they can be cleaned. The robot then connects to those two provided URLs

and downloads a few packages that contain the needed information. It then cleans

the pair of chopsticks successfully.

From the scenario described above, we can see that there are at least two types

of knowledge a robot may be interested to know ,

• The knowledge of object identification , i.e., t he knowledge to answer questions

like: what is this?

• The knowledge of obj ect manipulation, i.e., the knowledge to answer questions

like: what can be done to/ with this obj ect ?

Both of the two types of knowledge are closely tied to a robot 's physical ca

pacities, i. e., a robot 's sensors and its actuators, as sensor data are utimately what

a robot knows about the external world and actuators define what a robot can

possibly do to the external world. Therefore, the proposed framework emphasizes

sensor information. We believe sensor dat a provide a solid grounding for this

research.

Goals for this research are:

• develop robot knowledge sharing fr amework ,

• study robot knowledge representation ,

• study knowledge indexing structure,

• study accuracy of retrieved knowledge,

• study performance of sharing.

http://www.robot_chopstick.com/info
http://www.robot_chopstick.com/clean

5

1.3 Relevant Work
The study of knowledge representation can be traced back to ancient Greece.

Epistemology, the study of the nature of knowledge and its justification, was

established by Plato in the fifth century B.C. [37]. Since then, the study of

knowledge, including its nature, representation, development, etc., has been carried

on by philosophers, mathematicians, linguists, and scientists. Most knowledge

representation developed today is rooted in various logics. Recently, some computer

scientists have expressed belief that grounding knowledge purely in logic, e.g., in

symbolic languages, is insufficient for building intelligent agents and robots. They

propose to develop sensor grounded and context-aware knowledge representations

for robots [32, 33]. Even though their work is promising, they are still far from

providing a comprehensive and satisfactory solution.

Although still in its formative stages, several groups are making progress on

sensor-grounded robot knowledge creation. In our provisioning effort we intend to

take advantage of this. Cohen et al. [6] describe a natural semantics approach

in which robots learn meanings through their interaction with the environment.

Traditional AI approaches rely on the reduction of semantics to syntax, and such

systems have no real understanding of the symbols that they manipulate. In natural

semantics, such meanings are acquired and maintained by the robot system, and

not specified externally by human programmers or knowledge engineers. In this

work, a robot is provided with a small number of behaviors (e.g., move, turn, open

gripper, etc.), and the robot records sensor data streams. From this, prototype

sequences are segmented and serve as the basis for more complex tasks. In this

way, the robot learns a sensor data based ontology through interaction with the

environment, and concepts are related to the sense data.

Another approach is the Spatial Semantic Hierarchy which allows bootstrap

learning from uninterpreted experience. This involves solving three problems: (1)

feature learning from the sense data, (2) control learning for achieving desired states,

and (3) place recognition to identify distinctive states. Ref. [26] explains this

approach in detail.

5

1.3 Relevant Work

The study of knowledge representation can be traced back to ancient Greece.

Epistemology, the study of the nature of knowledge and its justification, was

established by Plato in the fifth cen_tury B.C. [37]. Since then, the study of

knowledge, including its nature, representation , development, etc., has been carried

on by philosophers, mathematicians, linguists, and scientists. Most knowledge

representation developed today is rooted in various logics. Recently, some computer

scientists have expressed belief that grounding knowledge purely in logic, e.g. , in

symbolic languages , is in ufficient for building intelligent agents and robots. They

propose to develop sensor grounded and context-aware knowledge representations

for robots [32, 33] . Even though their work is promising, they are still far from

providing a comprehensive and satisfactory solution.

Although still in its formative stages, several groups are making progress on

sensor-grounded robot knowledge creation. In our provisioning effort we intend to

take advantage of this. Cohen et al. [6] describe a natural semantics approach

in which robots learn meanings through their interaction with the environment.

Traditional AI approaches r lyon the reduction of semantics to syntax, and such

systems have no real understanding of the symbols that they manipulate. In natural

semantics, such meanings are acquired and maintained by the robot system, and

not specified externally by human programmers or knowledge engineers. In this

work, a robot is provided with a small number of behaviors (e .g., move, turn, open

gripper , etc.), and the robot records sensor data streams. From this, prototype

sequences are segmented and serve as the basis for more complex tasks. In this

way, the robot learns a sensor data based ontology through interaction with the

environment , and concepts are related to the sense data.

Another approach is the Spatial Semantic Hierarchy which allows bootstrap

learning from uninterpreted experience. This involves solving three problems: (1)

f eat'ure learning from the sense data, (2) control learning for ach ieving desired states,

and (3) place recognition to identify distinctive states. Ref. [26] explains this

approach in detail.

6

Starting with completely uninterpreted sense and motor vectors, as. .,
well as an unknown environment, we show how a learning agent can
separate the sense vector into modalities, learn the structure of individ
ual modalities, learn natural primitives for the motor system, identify
reliable relations between primitive actions and created sensory features,
and can define useful control laws for homing and path following.

This fits well with our robot knowledge provisioning scheme since raw data, as well

as learned structures, will be available.

Grupen et al. have based their approach on human developmental theory [18].

They have demonstrated a framework for the development of robot behavior in

which:

All behavior is initially constructed from a set of innate control laws
and events that delineate control decisions and are derived from the
pattern of (dis)equilibria on a working subset of sensorimotor policies.
We show how this architecture can be used to accomplish sequential
knowledge gathering and representation tasks and provide examples of
developmental learning using a quadrupedal walking robot.

In addition, they have proposed a relational representation for procedural task

knowledge [19]. Joint probability estimates are learned which relate features of

the sensorimotor stream to desired behavior quality. In this way, the robot can

determine salient features in its world experiences (sensor/actuator mediated) and

choose action policies. This group has examined many issues related to human-like

activity (e.g., grasping, walking, etc.).

As a last example of a group producing sharable robot knowledge (there are

many more; we have selected a representative sample here), Dillmann et al. have

focused on robot knowledge related to their humanoid project [3]. Their recent

PACO-PLUS project aims to develop a cognitive robot [10]:

[Our approach is] capable of developing perceptual, behavioral and
cognitive categories in a measurable way and of communicating and
sharing these with humans and other artificial agents. To achieve this,
the project brings together a consortium of robotics researchers, engi
neers, computer vision scientists, linguists, theoretical neuro-scientists
and cognitive psychologists. The systems we aim at are supposed to
interact and function together with humans. They are meant to be able
to cooperate and to enter a dialogue communicating with the human.
Therefore they need to understand both, what they perceive and what

Starting with completely uninterpreted sense and motor vectors, as
well as an unknown environment, we show how a learning agent can
separate the sense vector into modalities, learn the structure of individ
ual modalities, learn natural primitives for the motor system, identify
reliable relations between primitive actions and created sensory features ,
and can define useful control laws for homing and path following.

6

This fits well with our robot knowledge provisioning scheme since raw data, as well

as learned structures, will be available.

Crupen et al. have based their approach on human developmental theory [18J.

They have demonstrated a framework for the development of robot behavior in

which:

All behavior is initially constructed from a set of innate control laws
and events that delineate control decisions and are derived from the
pattern of (dis)equilibria on a working subset of sensorimotor policies .
We show how this architecture can be used to accomplish sequential
knowledge gathering and representation tasks and provide examples of
developmental learning using a quadrupedal walking robot.

In addition , they have proposed a relational representation for procedural task

know ledge [19 J . J oint pro babili ty estimates are learned which relate features of

the sensorimotor stream to desired behavior quality. In this way, the robot can

determine salient features in its world experiences (sensor/actuator mediated) and

choose action policies. This group has examined many issues related to human- like

activity (e.g. , grasping, walking, etc.).

As a last example of a group producing sharable robot knowledge (there are

many more; we have selected a representative sample here), Dillmann et al. have

fo cused on robot knowledge related to their humanoid proj ect [3J. Their recent

PACO-PLUS project aims to develop a cognitive robot [lOJ:

[Our approach isJ capable of developing perceptual , behavioral and
cognitive categories in a measurable way and of communicating and
sharing these with humans and other artificial agents. To achieve this,
the proj ect brings together a consortium of robotics researchers, engi
neers, computer vision scientists , linguists, theoretical neuro-scientists
and cognitive psychologists . The systems we aim at are supposed to
interact and function together with humans. They are meant to be able
to cooperate and to enter a dialogue communicating with the human.
Therefore they need to understand both , what they perceive and what

7

they do. Our hypothesis is that such understanding can only be attained
if we consider perception and action together. In this process the
artificial system needs to learn and adapt to the momentarily existing
situation to be able to act and react appropriately.

Their work will provide a way to bridge knowledge between humans and robots.

They have recently proposed a reference model for human kinetics just for the

purpose of enabling sharing [2].

In order to exchange knowledge, robot agents also require a common language

for the expression of their data and processes. As a starting point, common sensors

and actuators give a direct mechanism for exchange. Analysis of the sensor data

is then straightforward, as well as control of actuators. More abstract sharing

mechanisms are possible when specific sensors and/or actuators differ. For example,

Logical Sensor Systems [9, 20] provide such a framework. In this case, sensors are

abstracted as a data type in an object-oriented sense. Physical operations by the

agent on the world may be expressed as a sequence of force closures to be achieved

(e.g., in terms of forces, torques, wrenches, etc.) [21].

Another influential work in knowledge sharing is the Knowledge Interchange

Format, known as KIF [17]. KIF was defined as an ANSI standard by the NCITS

T2 committee on Information Interchange and Interpretation in 1998. KIF is a

version of typed predicate logic. It is still unclear what is the most appropriate

knowledge representation format for robots, and exchanging knowledge between

robots in an unrestricted environment is still a problem to be solved.

We are aware the current research on the Semantic Web [7], which is led by

the World Wide Web Consortium. The aim of the Semantic Web project is to

create a universal medium for information exchange by putting documents with

computer processable meaning on the World Wide Web. Using the Semantic Web,

information can be better organized and more accurately delivered to a human

reader. The book by Davies et al. [7] provides a very clear review of methods

and tools developed for the human semantic web, including methods to extract

information from text, retrieve information from other sources, and to compress,

visualize and disseminate information.

they do. Our hypothesis is that such understanding can ~::mly be at tained
if we consider perception ~nd action together. In this process the
artificial system needs to learn and adapt to the momentarily existing
situation to be able to act and react appropriat ely.

7

Their work will provide a way to bridge knowledge between humans and robots.

They have recently proposed a reference model for human kinetics just for the

purpose of enabling sharing [2] .

In order to exchange knowledge, robot agents also require a common language

for the expression of their da ta and processes. As a starting point , common sensors

and actuators give a direct mechanism for exchange. Analysis of the sensor data

is then straightforward , as well as control of actuators. More abstract sharing

mechanisms are possible when specific sensors and/ or actuators differ. For example,

Logical Sensor Systems [9, 20] provide such a framework. In this case, sensors are

abstracted as a data type in an obj ect-oriented sense. Physical opera tions by the

agent on the world may be expressed as a sequence of force closures to be achieved

(e.g., in terms of forces , torques , wrenches, et c.) [21].

Another influential work in knowledge sharing is the Knowledge Interchange

Format , knmvn as KIF [17]. KIF was defined as an ANSI standard by the NCITS

T2 committee on Information Interchange and Interpretation in 1998. KIF is a

version of typed predicat e logic. It is still unclear what is the most appropriate

knowledge representation format for robots, and exchanging knowledge between

robots in an unrestricted environment is still a problem to be solved.

\lYe are aware the current research on the Semantic Web [7], which is led by

the World Wide vVeb Consortium. The aim of the Semantic vVeb proj ect is to

create a universal medium for information exchange by putting documents with

computer processable meaning on the World vVide vVeb. Using the Semantic vVeb,

information can be better organized and more accurately delivered to a human

reader. The book by Davies et al. [7] provides a very clear review of methods

and tools developed for the human semantic web, including methods to ext ract

information from text , retrieve information from other sources, and to compress ,

visualize and disseminate information.

8

We would like to position Robot Share to a starting point for sharing data and

information among robots. How to reformat the structure of Semantic Web to suit

robots will be an interesting topic for furture research. It would also be an exciting

and difficult task to introduce a mathematical theory to model this problem.

Chapter 2 presents our view of robot knowledge. It introduces the knowledge

representation we have developed. Chapter 3 presents various issues involved in

a search engine construction and introduces the architecture of the Robot Share

search engine. Chapter 4 presents the performance of Robot Share. Chapter 5 gives

an overview of possible future research and conclude this thesis.

8

vVe would like to position Robot Share to a starting poin~ fo r sharing data and

information among robots. How to reformat the structure of Semantic vVeb to suit

robots will be an interesting topic for furture research. It would also be an exciting

and difficult task to introduce a mathematical theory to model this problem.

Chapter 2 presents our view of robot knowledge. It introduces the knowledge

representation we have developed. Chapter 3 presents various issues involved in

a search engine construction and introduces the architecture of the Robot Share

search engine. Chapter 4 presents the performance of Robot Share. Chapter 5 gives

an overview of possible future research and conclude this thesis.

C H A P T E R 2

K N O W L E D G E REPRESENTATION

2.1 Robot Knowledge

2.1.1 Sensor G r o u n d e d K n o w l e d g e

Humans recognize the external world first through sensory organs. When we

visit a museum, we see a number of artifacts on display. Suppose there is an object

we do not recognize, and we would like to know what it is. We look at it to see its

shape; we lift it (assuming it is permitted to do so) to feel its weight; we may smell

it, even though it may not be very helpful for this case, to determine its odor; we

may tap it with our finger to see how it sounds (again, assume it is permitted to do

so). With this collected sensory information, we try to associate this new object to

some object we already know. Association is a pattern matching process, i.e., we

try to find a known object, which has its sensory property close to the new object,

in our memory. If we cannot find such an object, or we find multiple ones and we

are not so sure which one is the closest, we may check out the museum description

card, as it provides some verbal information that may help us to distinguish the

best match. We may also look around to see where this object is placed, as knowing

the object's environment may help us to recognize the object. To summarize, we

recognize an object first by collecting information through our sensory organs. This

information comes in various formats. Some of them are more accurate than others;

some of them are more abstract than others; some of them have temporal properties

while others do not. It seems there is enough evidence for us to believe that sensory

information, i.e., information collected by our sensory organs, is the ground for all

of our object recognition process.

We believe robots can behave similarly and that the best way for a robot to

recognize objects is through sensor data. We would not deny ontology information

CHAPTER 2

KNOWLEDGE REPRESENTATION

2.1 Robot Knowledge

2.1.1 Sensor Grounded Knowledge

Humans recognize the external world first through sensory organs. When we

visit a museum, we see a number of artifacts on display. Suppose there is an object

we do not recognize, and we would like to know what it is. vVe look at it to see its

shape; we lift it (assuming it is permitted to do so) to feel its weight ; we may smell

it , even though it may not be very helpful for this case, to determine its odor; we

may tap it with our finger to see hmv it sounds (again; assume it is permitted to do

so) . With this collected sensory information, we try to associate this new object to

some object we already know. Association is a pattern matching process, i. e., we

try to find a known object, which has its sensory property close to the new object,

in our memory. If we canno t find such an object , or we find multiple ones and we

are not so sure which one is the closest, we may check out the museum description

card , as it provides some verbal information that may help us to distinguish the

best match. vVe may also look around to see where this object is placed , as knowing

the object 's environment may help us to recognize the object . To summarize, we

recognize an object first by collecting information through our sensory organs. This

information comes in various formats. Some of them are more accurate than others;

some of them are more abstract than others; some of them have temporal properties

while others do not. It seems there is enough evidence for us to believe that sensory

information, i.e., information collected by our sensory organs, is the ground for all

of our object recognition process.

vVe believe robots can behave similarly and that the best way for a robot to

recognize objects is through sensor data . Vve would not deny ontology information

10

like a fork is a hitchenware; a kitchenware is a tool used for dining or relevant

purpose; a tool used for dining or relevant purpose usually is an artifact; an artifact

is an object could be helpful at some place in our intellectual system. However, we

believe such information is less consulted, if at all, when we encounter something

previously unknown. Therefore, we would not deny ontology or logic, at least to

some extent, could be helpful for a robots. However, we would like to focus this

research towards a sensor data grounded approach.

We are aware that currently there is a good deal of research dedicated to various

aspects of robot vision [5, 27] to find methods for object segmentation, object

tracking, etc. Albeit interesting, these topics are beyond the scope of this research.

We assume robots are able to identify objects in the environment (i.e., segment

them in senser data) and measure physical properties of the object using on-board

sensors.

2.1.2 K n o w l e d g e Definit ion

The definition of knowledge is still fuzzy at this point, as philosophers love

to debate this type of topics. The classic definition, found in Plato, states that

three criteria define knowledge: knowledge needs to be a statement, such that it

is justified, true, and believed [42]. For the purpose of this research, we restrict

the scope of robot knowledge to be: strings, which contain information about

objects and activities. This includes physical properties of objects and verbal

descriptions, which are usually assigned by a human to objects and strings that

contain information about activities that includes verbal descriptions and activity

components recorded in temporal sequence. Physical properties of objects are

present in various forms; some of them are temporal, e.g., acoustic information,

whereas others are static, e.g., curvature of a surface. Activities can also be

represented in various formats. However, from a robot's point of view, they are

not much different from each other, as they are all strings. As long as the robot

knows how, i.e., has the program, to decode the string, they are considered the

same. For the sake of simplicity, and also to avoid some of the less practically

10

like a fork is a kitchenware,' a kitchenware is a tool used fo r dining . or rdevant

purpose; a tool used for dining or relevant purpose usually is an art~fact; an artifact

is an object could be helpful at some place in our intellectual system. However , we

believe such information is less consulted , if at all , when we encounter something

previously unknown. Therefore, we would not deny ontology or logic, at least to

some extent , could be helpful for a robots. However , we would like to fo cus this

research towards a sensor data grounded approach.

We are aware that currently there is a good deal of research dedicated to various

aspects of robot vision [5 , 27] to find methods for object segmentation , object

tracking, et c. Albeit interesting , these topics are beyond the scope of this research.

vVe assume robots are able to identify objects in the environment (i.e., segment

them in senseI' data) and measure physical properties of the object using on-board

sensors.

2.1.2 Knowledge Definition

The definition of knowledge is still fuzzy at this point , as philosophers love

to debate this type of topics. The classic definition , found in Plato , states that

three cri teria define knowledge: knowledge needs to be 8 statement , such that it

is justified , true , and believed [42] . For the purpose of this research, we restrict

the scope of robot knowledge to be: strings, which contain information about

objects and activities. This includes physical properties of obj ects and verbal

descriptions, which are usually assigned by a human to objects and strings that

contain information about activities tha t includes verbal descriptions and activity

components recorded in t emporal sequence . Physical properties of objects are

present in various forms ; some of them are temporal , e.g., acoustic information ,

whereas others are static, e.g., curvature of a surface. Activities can also be

represented in various formats. Hovvever , from a robot 's point of view, they are

not much diff'erent from each other , as they are all strings . As long as the robot

knows how, i.e. , has the program, to decode the string, they are considered the

same. For the sake of simplicity, and also to avoid some of the less practically

11

useful philosophical debate, we consider that for a robot to know an object or an

activity merely means to have information about the object or activity stored in its

memory. Therefore, for a human, a verbal description of an object is quite different

from the size, weight or other physical properties of the object as language usually

roots deeply to the meaning or concept of the object. To say it in a different way,

language provides a representation of the object, as one needs to understand the

word in the description to extract information embedded in the description. On

the other hand, for a robot, a verbal description is the same as sensor collected

physical properties. They are all byte strings stored in the memory. If a keyboard

can be viewed as a sensor, then key strokes are sensor inputs and character strings

are the sensor outputs.

Sensory information is the first step for humans and robots to perceive the

external world. However, there is much more than simple perception when humans

live in the real world. We not only perceive things, but also understand them. We

build concepts out of percepts. In the previous paragraph, we stated that for a

robot, to know is to have information stored in its memory. This is clearly not

the case for humans as someone could easily memorize a physics formula without

knowing its meaning, or someone could read out a poem word by word without

understanding it. Could we do something similar when we build robots? W7hat

does it mean for a robot to understand a concept? Could a robot really understand

anything, not just react based on programs run on the robot?

We believe those are interesting questions. However, rather than addressing

them in this research, we would like to take a functional point of view. We believe

robots are built to help humans to perform certain tasks which are either impossible

or inconvenient for humans to perform. Therefore, if it is beneficial to have a robot

to know there are similarities between a fork and a spoon, i.e., the distance measure

between a fork and a spoon is less than a fork, say, a chair, then we should program

a distance evaluation function, which always returns a smaller number when a fork

arid a spoon are compared. In such a measure, we define that identical objects

have a distance measure equal to zero, and this measure returns only nonnegative

11

useful philosophical debate, we consider that for a robot to ~now an obj ect or an

activity merely means to have information about the object or activity stored in its

memory. Therefore, for a human, a verbal description of an object is quite different

from the size , weight or other physical properties of the object as language usually

roots deeply to the m eaning or concept of the object . To say it in a different way,

language provides a representation of the object , as one needs to underst and the

word in the description to extract information embedded in the description. On

the other hand, for a robot , a verbal description is the same as sensor collected

physical properties. They are all byte strings stored in the memory. If a keyboard

can be viewed as a sensor , then key strokes are sensor inputs and character strings

are the sensor outputs.

Sensory information IS the first step for humans and robots to perceIVe the

external world. However , there is much more than simple perception when humans

live in the real "vodd. Vie not only perceive things, but also understand them. We

build concepts out of percepts. In the previous paragraph, we stated that for a

robot , to know is to have information stored in its memory. This is clearly not

the case for humans as someone could easily memorize a physics formula without

knowing its meaning, or someone could read out a poem word by word without

underst anding it. Could we do something similar when we build robots? What

does it mean for a robot to underst and a concept? Could a robot really understand

anything, not just react based on programs run on the robot?

'liVe believe those are interes ting questions. However , rather than addressing

them in this research, we would like to take a functional point of view. 'liVe believe

robots are built to help humans to perform certain tasks which are either impossible

or inconvenient for humans to perform. Therefore, if it is benefi cial to have a robot

to know there are similarities between a fork and a spoon, i.e. , the distance measure

between a fork and a spoon is less than a fork , say, a chair , then we should program

a distance evaluation fun ction, which always returns a smaller number when a fork

and a spoon are compared. In such a measure, we define that identical obj ects

have a distance measure equal to zero , and this measure returns only nonnegative

12

numbers. If a robot can use this function to perform tasks better, then we may

say that the robot knows, or is able to infer, that forks, spoons and probably

dinner knives, belong to one group, whereas tables, chairs and bookshelves belong

to another.

In a nutshell, robot knowledge is information about objects and activities, in

string format, stored in a robot's memory. For a robot, to know an object means

to have information about that object stored in its memory. Relations between

objects help robots to perform tasks better. However, relations are developed or

discovered based on information acquired through sensors.

2.2 Knowledge Extraction
In the previous section, we have presented our definition of robot knowledge.

We have emphasized that grounding knowledge to sensor data is essential to this

work. This section introduces how knowledge can be extracted from sensor data,

and presents the data sample set that has been used for this work.

2.2.1 Da ta T y p e and Ext rac t ion

Sensors produce data in many formats. Typical sensors available to robots are

sonar, laser range finder, weight scale, CCD camera, infrared, odometers, etc. In

general, these sensors can produce results in two categories: direct measures and

derived measures. For instance, a weight measure of an object is a direct measure

of a weight scale; an RGB histogram of an image is a derived measure of a CCD

camera. The accuracy of direct measures depends on the accuracy of the sensor.

The accuracy of derived measures depends on the accuracy of the sensor and the

algorithm used to produce the measure. Therefore, it is our hope to set standards

on algorithms used to produce derived measures, and to regulate the format of

these measurements. Therefore, comparable results can be obtained.

To test the suitability of the direct/derived data measure taxonomy and the

possibility of the measurement standardization, and to provide a solid ground for

our research, we collect sample data for objects and measure their properties. Since

12

numbers. If a robot can use this function to perform t asks better , t hen we may

say that the robot knows, or is able to infer, that forks, spoons and probably

dinner knives, belong to one group , whereas t ables, chairs and bookshelves belong

to another .

In a nutshell , robot knowledg e is information about objects and activities, in

string format , stored in a robot 's memory. For a robot , to know an object means

to have information about tha t object stored in its memory. Relations between

obj ects help robots to perform tasks better. However , relations are developed or

discovered based on information acquired through sensors.

2.2 Knowledge Extraction

In the previous section, we have presented our defini t ion of robot knowledge.

We have emphasized that grounding knowledge to sensor data is essential to this

work. This section introduces how knowledge can be extracted from sensor dat a,

and presents the data sample set that has been used for this work.

2 .2.1 Data Type and Extraction

Sensors produce data in many formats . Typical sensors available to robots are

sonar , laser range finder , weight scale, CCD cam era, infrared , odometers, etc. In

general, these sensors can produce results in two cat egories: direct measures and

derived measures. For instance , a weight measure of an obj ect is a direct measure

of a weight scale; an RGB histogram of an image is a derived measure of a CCD

camera. The accuracy of direct measures depends on the accuracy of the sensor.

The accuracy of derived measures depends on the accuracy of the sensor and the

algorithm used to produce the measure. Therefore, it is our hope to set st andards

on algorithms used to produce derived measures, and to regula te the format of

these measurements. Therefore, comparable results can be obtained .

To test the sui tabili ty of the direct / derived data measure taxonomy and the

possibility of the measurement standardization , and to provide a solid ground for

our research , we collect sample data for obj ects and measure their properties. Since

13

the prototype of this framework is to be applied to kitchen robots, we collect our

sample data from kitchenware, e.g., forks, spoons, knives, cups, plates, etc. CCD

cameras are readily available and the produced images are information intensive.

We choose to work with images as our starting point.

Since the 1970s, image analysis and retrieval has been an active research area

in database and computer vision [5]. Image retrieval is primarily text-based in

research of database, whereas in research of computer vision, it relies on visual

properties of the data. In the early 1990s, content-based image retrieval (CBIR)

was proposed. Ref. [5] summarized CBIR as:

In CBIR, images are automatically indexed by summarizing their
visual contents through automatically extracted quantities or features
such as color, texture, or shape. ... Since the inception of CBIR, many
techniques have been developed along this direction, and many retrieval
systems, both research and commercial, have been built.

The basis of CBIR is feature extraction, as shown in Figure 2.1. Typical features

are color, texture, shape, sketch, etc. Normally, each feature has more than one

representation. For instance, color histogram and color moments both represent

color features. There are several ways to compute a color histogram. Contrast,

uniformity, coarseness, roughness, frequency, density, and directionality are exam

ples of texture features. They contain information about the structural arrangement

of surface elements and their relationship to the surrounding environment.

To ensure system flexibility, we build our framework to support as many feature

extraction techniques as possible. Determining the most appropriate set of image

features for knowledge sharing in the context of robot knowledge would be interest

ing as well. However, to make the research concrete, we predefine an image1 feature

set and collect a data sample set.

2.2.2 Da ta Sample

Sixteen objects, including four bowls, one cup, two forks, three knives, two

plates, and four spoons, are selected. Two images are taken of each object, one from

the top view, and the other one from the side view. All images are taken against a

13

the prototype of this framework is to be applied to kitchen Iobots, we collect O].1r

sample data from kitchenware, e.g., forks , spoons, knives, cups, plates, etc. CCD

cameras are readily available and the produced images are information intensive.

We choose to work with images as our s~arting point.

Since the 1970s, image analysis and retrieval has been an active research area

111 database and computer vision [5]. Image retrieval is primarily text-based in

research of database, whereas in research of computer vision, it relies on visual

properties of the data. In the early 1990s, content-based image retrieval (CBIR)

was proposed. Ref. [5] summarized CBIR as:

In CBIR, images are automatically indexed by summarizing their
visual contents through automatically extracted quantities or features
such as color , texture, or shape. ... Since the inception of CBIR, many
techniques have been developed along this direction , and many retrieval
syst ems, both research and commercial, have been built .

The basis of CBIR is feature extraction , as shown in Figure 2.1. Typical features

are color, texture, shape, sketch, etc. Normally, each feature has more than one

representation. For instance, color histogram and color moments both represent

color features. There are several ways to compute a color histogram. Contrast ,

uniformity, coarseness , roughness, frequency, density, and directionality are exam

ples of texture features. They contain information about the structural arrangement

of surface elements and their relationship to the surrounding environment.

To ensure system flexibility, we build our fra.mework to support as many feature

extraction techniques as possible. Determining the most appropriate set of image

features for knowledge sharing in the context of robot knowledge would be interest

ing as well. However, to make the research concrete, we predefine an image feature

set and collect a data sample set .

2 .2.2 D ata Sample

Sixteen objects, including four bowls, one cup , two forks , three knives, two

plates, and four spoons, are selected. Two images are taken of each object , one from

the top view , and the other one from the side view. All images are taken against a

14

JFeature extraction M

o
j}>
"5
O
o>
CO
nj
E >

Multidimensional
indexing

Query-processing

Query interface

X

H

Retrieval engine

User

Figure 2.1. An Image Retrieval System Architecture.

white background and objects are later manually segmented. Images are stored in

JPEG format in the size of 640-%-480 pixels. For each image, the histograms of its

color in RGB channels are computed, with 256 bins for each channel. The image

is then converted to HSV color space, where the histogram of the hue channel is

computed, with 256 bins. The Sobel edge detection algorithm is applied to compute

the distribution of edge orientations, and a histogram with 256 bins is obtained.

The color image is then converted to a binary image. The perimeter and the area

of connected components in the binary image are computed. In order to capture

c
0

,;~~
(I) ,

'6'
()
0).
OJ
co
E

I
I
I
I
I
I

-,.
rJ)

~
'::J co
.a!
ro
::J'

.!!.!
>

Multidimensional

c ,
0

'';:;
co
(5
c
c
co
.......
x
(j)

f-

Retrieval eng ine

I
I
I
I
I
I

1 ___ _ __________ J

User

Figure 2.1. An Image Retrieval System Architecture.

14

white background and objects are later manually segmented. Images are stored in

JPEG format in the size of 640-by-480 pixels. For each image, the histograms of its

color in RGB channels are computed , with 256 bins for each channel. The image

is then converted to HSV color space, where the histogram of the hue channel is

computed , with 256 bins. The Sobel edge detection algorithm is applied to compute

the distribution of edge orientat ions, and a histogram with 256 bins is obtained.

The color image is then converted to a binary image. The perimeter and the area

of connected components in the binary image are computed. In order to capture

15

the uncertainty of the real world, we have studied how these measures may vary

under different picture-taking conditions, e.g., various lighting conditions. We use

natural light (indoor sunlight), two incandescent lights, and a flash light as our

light sources in this test. Four objects - a cup, a plate, a spoon and a knife - are

imaged. Twenty images under these four different light settings are taken of each

object. The RGB histograms, the hue histogram, the edge direction histogram,

the perimeter and the image area are computed. Figure 2.2 shows an image of a

bowl from our sample set. Figure 2.3 shows three concatenated color histograms of

this image from each color channel. Figure 2.4 shows the edge histogram computed

using the Sobel algorithm.

2.3 Knowledge Formulation
In order to build the Robot Share search engine, which supports a large amount

of data and fast retrievals, data indexing is needed. The indexing structure is

discussed in the next chapter. Knowledge representation is presented here.

Figure 2.2. A Sample Image.

15

the uncertainty of the real world , . we have studied how these measures may vary

under different picture-taking conditions, e.g., various lighting conditions. We use

natural light (indoor sunlight), two incandescent lights, and a flash light as our

light sources in this test. Four objects - a cup , a plate, a spoon and a knife - are

imaged. Twenty images under these four different light settings are taken of each

object. The RGB histograms, the hue histogram, the edge direction histogram,

the perimeter and the image area are computed. Figure 2.2 shows an image of a

bowl from our sample set. Figure 2.3 shows three concatenated color histograms of

this image from each color channel. Figure 2.4 shows the edge histogram computed

using the Sobel algorithm.

2.3 Knowledge Formulation

In order to build the Robot Share search engine, which supports a large amount

of data and fast retrievals , data indexing is needed. The indexing structure IS

discussed in the next chapter. Knowledge representation is presented here.

Figure 2.2. A Sample Image.

0.035
bowl1a.jpg RGB Histogram

~i _ ~ r T r

0.03

0.025

0.02 -

0.015

0.01

0.005 J

j j - . i

0 100 200 300 400 500 600 700 800

Figure 2.3. A Sample Color Histogram.

16

bowl1a.jpg RGB Histogram
0.035 ,--------,,------,------,-----,-----,---..,----,-----,

0.03

0.025

0.02

0.015

0.01

0.005

O L--~-~~--~~~-~----~--LL-~~--=-~

o 100 200 300 400 500 600 700 800

Figure 2.3 . A Sample Color Histogram.

bowha.jpg Edge Histogram
0.021 1 1 1 1 —

0.018 r

0.016

0.014

0.012

0.01 IT

300

Figure 2.4. A Sample Edge Histogram.

bowl1 a.jpg Edge Histogram
0.02 ,-------,------,------,----,--- --,.---

0.018

0.016

0.014

0.012

0.01

0.008

0 .006

0.002

O L---~---~---~----L--_~L__~

o 50 100 150 200 250 300

Figure 2.4. A Sample Edge Histogram.

17

18

Unlike a traditional database query system, where system architects also control

the data source, Robot Share has the problem that it knows little about its data

source. It is normal for a robot to know certain features about an object, and it is

willing to share this knowledge with other robots though Robot Share. However,

Robot Share may know little about this feature. Hence, Robot Share does not

know how to process this knowledge. It is also possible that a robot wants to share

knowledge of an object even though it does not know every feature of this object.

In order to make Robot Share to support these two common cases, two knowledge

transformations are required.

The first transformation takes place in robots, where knowledge is transformed

from a robot's internal representations, which are probably only known to robots

themselves, to a form such that they are understandable to other parties, e.g.,

Robot Share and other robots. The second transformation takes place in Robot

Share, where knowledge, which is represented in the format produced by the first

transformation, is then transformed into a representation that can be efficiently

indexed.

2.3.1 T h e First Transformation

The purpose of the first transformation, from a robot's internal format to an

open standard, is to transform knowledge in such a way that an unambiguous and

widely-adoptable format is achieved. Two requirements need to be satisfied for

this purpose. First, the data source of the transformation needs to be collected

uniformly. We propose the idea of the asymmetric spatial-temporal coherence for

objects. When a robot collects information about an object, i.e., measures its

properties, we assume the robot does this in a uniform way such that all properties

are measured with the least intervention among them. For instance, it is not

desirable for a robot to measure one property of an object and somehow manipulate

the object and then measure another property. Once all information is collected,

the robot packages it tightly to maintain data integrity. Therefore, it is clear to

18

Unlike a traditional database query system, 'where syst em architects a lso control

the data source, Robot Share has the problem that it knows little about its data

source. It is normal for a robot to know certain features about an object , and it is

willing to share this knowledge with ot!1er robots though Robot Share. However ,

Robot Share may know little about this feature. Hence, Robot Share does not

know how to process this knowledge. It is also possible that a robot wants to share

knowledge of an object even though it does not know every feature of this object .

In order to make Robot Share to support these two common cases, two knowledge

transformations are required.

The first transformation takes place in robots, where knowledge is transformed

from a robot 's internal representations, whi ch are probably only known to robots

themselves , to a form such that they are understandable to other parties, e.g.,

Robot Share and other robots. The second transformation takes place in Robot

Share, where knowledge, which is represented in the format produced by the first

transformation , is then transformed into a representation that can be efficient ly

indexed.

2.3.1 The First Transformation

The purpose of t he first tr a.nsform a.t ion, from a robot's int ernal fo rmat to an

open standard, is to transform knowledge in such a way that an unambiguous and

widely-adoptable format is achieved. Two requirements need to be sa tisfied for

this purpo e. First , the data source of the transformation needs to be collected

uniformly. We propose the idea of the asymmetric spatial-temporal coherence for

objects. When a robot collects information about an obj ect , i. e., measures its

properties, we assume the robot does this in a uniform way such that all properties

are measured with the least intervention among them. For instance, it is not

desirable for a robot to measure one property of an obj ect and somehow manipulate

the obj ect and then measure another property. Once all information is collected,

the robot packages it tightly to maintain data integrity. Therefore, it is clear to

19

both the robot and Robot Share that information about one particular object is

collected.

Having a clear distinction between an object instance and an object class is

significant to this work for two reasons. First, Robot Share has deep roots in the

concept of sensor data grounded knowledge, i.e., sensor data are the ground for all

higher level knowledge structure. Therefore, knowing which instance a sensor data

refers to is important to all higher levels, e.g., semantic level, knowledge structure

formation. Second, it is desirable to support instance-based query in addition to

the general class-based query. For example, to be able to detect that an image

represents a human face is useful (the class-based query), but to be able to detect

whose face it is (instance-based query) can be more useful for some applications.

We employ the standard Extensible Markup Language (XML) to represent

knowledge as the result of the first transformation, as the XML format is widely

used arid accessible. We give a precise definition of the language our framework

supports by using the Knowledge Definition Grammar (KDG). KDG is designed to

be flexible enough to capture various type of knowledge and parser friendly. The

definition of KDG is included in Appendix B. As all knowledge about objects in our

framework is sensor grounded, even though KDG provides the ability to support

virtually any type of object property, we define a set of XML tags to describe

certain common object properties.

2.3.2 T h e Second Transformation

The purpose of the second transformation is to convert the easy-to-communicate

XML format into a representation that is easy to index. Hence we can build the

search engine efficiently. We take the vector space approach.

Every piece of knowledge in our system can be divided into three parts: text

data, sensor data and meta data. Text data are provided by humans. They include

the name, function, use and possible other related descriptions about an object.

Sensor data are collected through sensors. They represent physical properties of

an object. They are recorded by numerical values. For instance, the weight of an

19

both the robot and Robot Share that information about onE; parti cular obj ect is

collected.

Having a clear distinction between an object instance and an object class is

significant to this work for two reasons. First , Robot Share has deep roots in the

concept of sensor dat a grounded knowledge, i. e., sensor data are the ground for all

higher level knowledge structure. Therefore, knowing which instance a sensor data

refers to is important to all higher levels , e.g. , semantic level, knowledge structure

formation. Second, it is desirable to support inst ance-based query in addition to

the general class-based query. For example, to be able to detect that an image

represents a human fac is useful (the class-based query) , but to be able to detect

whose face it is (instance-based query) can be more useful for some applications.

vVe employ the standard Extensible Markup Language (XML) to represent

knowledge as the result of the first transformation, as the XML format is widely

used and accessible. We give a precise definition of the language our framework

supports by using the Knowledge Defini t ion Grammar (KDG). KDG is designed to

be fl exible enough t o capture various type of knowledge and parser fri endly. The

definition of I(DG is included in Appendix B. As all knowledge about obj ects in our

framework is sensor grounded, even though KDG provides the ability to support

vir tually any type of object property, we define a set of X},IL tags to describe

certain common object properties .

2.3.2 The Second 'Transformation

The purpose of the second transformation is to convert the easy-to-communicate

XML format into a representation that is easy to index. Hence we can build the

search engine efficient ly. We take the vector space approach.

Every piece of knovvledge in our system can be divided into three parts: text

dat a, sensor data and meta data. Text data are provided by humans. They include

the name, fun ction, use and possible other related descriptions about an object.

Sensor data are collected through sensors. They represent physical properties of

an object . They are recorded by numerical values. For instance, the weight of an

20

object is usually recorded with a single numerical value, given a standard unit is

used; the shape of an object can be recorded by a histogram of the direction of the

object's edge, where a histogram is usually represented by a vector. Meta data are

recorded when the object is measured by sensors. They contain information about

collected sensor data. For instance, the location of where the object is encountered,

the time when the object is encountered, the type/band/model of the sensor used

to collect data, etc.

These three types of data can be indexed using two different approaches: dif

ferent data types are either indexed separately, using multiple indexing structures,

or they are combined and indexed by a uniform structure.

There are pros and cons to either of these two approaches. Separated indexing

has the advantage that each type of data can take its own indexing method. The

indexing method of a particular data type can be entirely based on the type of

the data. For instance, LSI and reverse index are commonly used text indexing

methods. They can be evaluated and selected for the text data indexing. Image

data have a different set of properties. They can utilize some other indexing method.

So do meta data. Finer grained discrimination is possible as well. Sonar and laser

range finder generate output in different formats. Data generated from each of

the two can hence be indexed differently. Data-class based indexing could result

in a better retrieval performance, if queries contain only one type of data sample,

i.e., text query, sonar query, etc. However, if a query contains more than one

type of data, then the query has to be first divided into multiple smaller queries

and the search engine issues each of these queries into each individual indexing

structure accordingly. Retrieved results from each of the indexing structures are

cross-processed before they are returned to the querying robot. One drawback

of this approach is the high maintenance cost. Since multiple indexing structures

needs to be implemented and data consistency between indexing structures needs to

be maintained, the complexity of building and updating this system is considerably

high.

20

object is usually recorded with a single numerical value, giv~n a standard unit is

used; the shape of an object can be recorded by a histogram of the direction of the

object 's edge, where a histogram is usually represented by a vector . Meta data are

recorded when the obj ect is measured by sensors. They contain information about

collected sensor data . For instance, the location of where the object is encountered ,

the time when the object is encountered, the type/ band/ model of the sensor used

to collect data, et c.

These three types of data can be indexed using two different approaches: dif

ferent dat a types are either indexed separately, using multiple indexing structures,

or they are combined and indexed by a uniform structure.

There are pros and cons to either of these two approaches. Separated indexing

has the advantage that each type of data can take its own indexing method. The

indexing method of a particular data type can be entirely based on the type of

the data. For instance, LSI and reverse index are commonly used text indexing

methods. They can be evaluated and selected for the text data indexing. Image

data have a different set of properties. They can utilize some other indexing method.

So do meta data . Finer grained discrimination is possible as well. Sonar and laser

range finder generate out.put in dift'erent formats . Data generated from each of

the two can hence be indexed differently. Data-class based indexing could result

in a better retrieval performance, if queries contain only one type of data sample,

i. e., text query, sonar query, et c. However, if a query contains more than one

type of data, then the query has to be first divided into multiple smaller queries

and the search engine issues each of these queries into each individual indexing

structure accordingly. Retrieved results from each of the indexing structures are

cross-processed before they are returned to the querying robot. One drawback

of this approach is the high maintenance cost . Since multiple indexing structures

needs to be implemented and data consistency between indexing structures needs to

be maintained, the complexity of building and updating this system is considerably

high.

21

If we combine all data types and use a single indexing structure, the multiple

indexing structure data coherency problem is eliminated. Upon receiving a multiple

fields query, we no longer need to worry about how to cross process results generated

by separated subqueries. However, missing an indexing field in a query now becomes

a problem. Many other problems exist in uniform indexing. For instance, we

need to develop a technique that combines all three data types (text, sensor, and

meta data) into one indexing structure. Even though some information carried by

these data can be compromised during the grouping process, the end result must

contain enough information to ensure a clear classification. Considering the verity

of data types, the only sensible solution is to build the indexing structure in a high

dimensional vector space where each object is mapped into a point in this space,

i.e., every object is represented by a long vector. More consequences follow the

choice of representation. This topic will be revisited in the next chapter, in which

the two indexing mechanisms are further compared.

Regardless the choice of indexing structure selection, we need to develop tech

niques that map data into vectors. Mapping sensor data into vectors is straightfor

ward enough as sensor data are naturally represented by either a single numerical

value or a vector. We only need to arrange them in such a way that they can

be indexed efficiently. Meta data, can be processed in a similar manner, as most

of information can be represented by numerical values. For instance, time can be

unambiguously represented by a UNIX time string, locations can be represented by

a GPS coordinate, and sensor type can be represented by an index of the sensor

into a sensor database, such as 1 for Fairchild 9000, 2 for Serial No. 28753. Instead

of using sensor models, logical sensor system frame can be employed.1 Converting

text into numerical vectors appears to be problematic on the first glance. However,

techniques such as the LSI have been well studied. LSI converts documents into

vectors in a mathematically meaningful way. Details of the LSI will be presented

in the next chapter.

^ v e n though such a complete database does not exist today, we do not see any technology
barrier that prevents researchers from building one. given enough demand.

21

If we combine all data types and use a single indexing structure, the multiple

indexing structure data coherency problem is eliminated. Upon receiving a multiple

fields query, we no longer need to worry about hovv to cross process results generated

by separated subqueries. However , miss~ng an indexing field in a query now becomes

a problem. Many other problems exist in uniform indexing. For instance, we

need to develop a technique that combines all three da ta types (text , sensor , and

meta data) into one indexing structure. Even though some information carried by

these da ta can be compromised during the grouping process, the end result must

contain enough information to ensure a clear classification . Considering the verity

of da ta types, the only sensible solution is to build the indexing structure in a high

dimensional vector space where each object is mapped into a point in this space,

i. e., every obj ect is represented by a long vector. More consequences follow the

choice of representa tion. This topic will be revisited in the next chapter , in which

the two indexing mechanisms are further compared.

Regardless the choice of indexing structure selection, \ve need to develop tech

niques that map data into vectors. Mapping sensor data into vectors is straightfor

ward enough as sensor data are naturally represented by either a single numerical

value or a vector. Vve only need to arrange them in such a way that they can

be indexed efficiently. Meta data can be processed in a simila.r manner , as most

of information can be represented by numerical values . For instance , time can be

unambiguously represented by a UNIX time string, locations can be represented by

a GPS coordinate, and sensor type ca.n be represented by an index of the sensor

into a sensor database, such as 1 for Fairchild 9000 , 2 for Serial No. 28753. Instead

of using sensor models , logical sensor sys tem frame can be employed .l Converting

text into numerical vectors appears to be problematic on the first glance. However ,

techniques such as the LSI have been well studied. LSI converts documents into

vectors in a mathematically meaningful way. Details of the LSI will be presented

in the next chapter.

1 Even though such a complete database does not exist today, we do not see any technology
barrier that prevents researchers from building one, given enough demand.

22

The length of a data vector needs to be controlled. As will be explained in

the next chapter, vector space index in high dimensions is much more problematic

than in low dimensions. In another words, vector concatenated by a 256-6/y-l color

histogram, a 256-6?/-1 edge histogram and a few other data fields cannot be indexed

efficiently without further process. Therefore, we have to shorten the length of

some of these data fields, especially histograms. The next chapter will introduce

various methods to achieve this goal of dimension reduction. For the purpose of this

research, we have evaluated four different methods: Fourier coefficient representa

tion, polynomial coefficient representation, statistics representation and moment

representation. Using each of these methods, we reduce 256-element vectors to

5-elernent vectors. For the Fourier coefficient method, the first five coefficients

are selected. For the polynomial coefficient method, a fourth-order polynomial

approximation is used. For the statistics method, variance, median, standard

deviation, median of the first half values, and median of the second half values

are used. For the moment method, the first five moments are computed. Since

all algorithms have the same reduction rate, i.e., they all transform a 256-element

vector to a 5-element vector, we would like to select the transformation that mostly

preserves the distance measures of data in its original space.

Distance measure complicates this comparison as distances are determined by

the selected measure. It is possible that one transformation provides better results

than another transformation under one distance measure but provides worse results

under a different measure. It is also possible for a, transformation function and

distance measure pair to perforin better on one set of histograms but perform

worse on another one, e.g., the pair good for edges are bad for colors. Indexing

structure selection further complicates the comparsion. Indexing structures can

divide the search space based on a particular subset of a vector, instead of using

all information stored in the vector. Hence the distance between two points, which

are represented by two vectors, becomes less meaningful. For instance, suppose the

LI distance d is measured between two points in a 10—dimensional space. When

the indexing structure is constructed, only the first two elements in a vector are

22

The length of a data vector needs to be controlled. As will be explained. in

the next chapter, vector space index in high dimensions is much more problematic

than in low dimensions. In another words, vector concatenated by a 256-by-l color

histogram , a 256-by-l edge histogram a~d a few other data fi elds cannot be indexed

efficient ly without further process. Therefor e, we have to shorten the length of

some of these data fields, especially histograms. The next chapter will introduce

various methods to achieve this goal of dimension reduction. For the purpose of this

research , we have evaluated four different methods: Fourier coefficient representa

tion , polynomial coefficient representation , st atistics representation and moment

representation. Using each of these methods, we reduce 256-element vectors to

5-element vectors . For the Fouri r coefficient method, the first five coefficients

are selected. For the polynomial coefficient method , a fourth-order polynomial

approximation is used. For t he statistics method, variance, median, standard

deviation, median of the first half values, and median of the second half values

are used. For the moment method , the first five moments are computed. Since

all algorithms have the same reduction rate, i.e. , they all transform a 256-element

vector to a 5-element vector , we would like to select the transformation that mostly

preserves the dist ance measures of data in its original space.

Distance measure complicates this comparison as distances are determined by

the selected measure. It is possible that one transformation provides better results

than another transformation under one distance measure but provides 'worse results

under a different measure. It is also possible for a transformation function and

distance measure pair to perform better on one set of histograms but perform

worse on another one, e.g., the pair good for edges are bad for colors. Indexing

structure select ion further complicates the comparsion. Indexing structures can

divide the search space based on a particular subset of a vector , instead of using

all information stored in the vector. Hence the distance between two points, which

are represented by two vectors, becomes less meaningful. For instance, suppose the

Ll distance cl is measured between two points in a lO - dimensional space. \iVhen

the indexing structure is constructed, only the first two elements in a vector are

23

considered.2 In this case, the distance obtained through the LI distance measure

d becomes less meaningful than, for instance, the sum of the two differences of the

first and the second elements from each vector.

Transformation function and distance measure selection problems do not stop at

the indexing structures. Since one of the goals of this research is to build a search

engine for robots, we have to further consider how transformation function and

distance measure may affect query processing, especially because queries can come

in with missing fields. We may conclude it is sufficient to judge our design decision

solely based on retrieval performance, assuming we can ignore any consideration

on computational cost. However, knowing the exact consequence of adjusting

parameters in internal states of Robot Share could help us to improve the entire

system. Performing a complete study on all parameter selections may not be

possible given the complexity of the system and the variety of data. Nevertheless,

it is possible to gain some insights into those problems once enough experiments

are conducted. This leads to interesting future research.

Transformation functions and distance measures have been examined through

a series of experiments. Edge histograms are selected for examination. In order

to simulate the real world uncertainty, we add noise into the data set. For each

histogram, noise drawn from a Gaussian distribution with mean equals to 20% of

the histogram mean is added. Thirty noise-added samples are created for each his

togram; 480 histograms are obtained. We then apply four vector-length-reduction

transformations to the sample set and obtain four sets of samples. Each sample

set contains 480 5-element vectors. For each new sample set, we measure distances

between every two vectors and produce a confusion matrix for each measure. Four

distances measures are applied in this process, LI, L2, KL and weighted LI. Sixteen

480-%-480 confusion matrices are produced (please see Appendix A for printouts.)

Confusion matrices give us a good visual to this experiment. Among these distance

2 Th i s is possible as when using a k-d-tvee as the indexing structure. One algorithm selects
the split based on the spread of data in that dimension, so when the first two elements in vectors
have spreads larger than the rest of dimensions, they will be repeatedly selected.

23

considered 2 In this case, the distance obtained through the 11 distance measure

d becomes less meaningful than, for instance, the sum of the two differences of the

first and the second elements from each vector.

Transformation function and distance measure selection problems do not stop at

the indexing structures. Since one of the goals of this research is to build a search

engine for robots, we have to further consider how transformation function and

distance measure may affect query processing, especially because queries can come

in wit h missing fields. We may conclude it is sufficient to judge our design decision

solely based on retrieval performance, assuming we can ignore any consideration

on computational cost. However , knowing the exact consequence of adjusting

parameters in internal states of Robot Share could help us to improve the entire

system. Performing a complete study on all parameter selections may not be

possible given the complexity of the system and the variety of data. Nevertheless,

it is possible to gain some insights into those problems once enough experiments

are conducted. This leads to interesting future research.

Transformation functions and distance measures have been examined through

a series of experiments. Edge histograms are selected for examination. In order

to simulate the real world uncertainty, we add noise into the data set. For each

histogram, noise drawn from a Gaussian distribution with mean equals to 20% of

the histogram mean is added. Thirty noise-added samples are created for each his

togram; 480 histograms are obtained. vVe then apply four vector-length-recluction

transformations to the sample set and obtain four sets of samples. Each sample

set contains 480 5-element vectors . For each new sample set, we measure distances

between every two vectors and produce a confusion matrix for each measure. Four

distances measures are applied in this process, 11 , 12, K1 and weighted 11. Sixteen

480-by-480 confusion matrices are produced (please see Appendix A for printouts.)

Confusion matrices give us a good visual to this experiment . Among these distance

2This is possible as when using a k-d- tree as the indexing struct m e. One algori t hm selects
the split based on the spread of data in that dimension, so when t he first two elements in vecto rs
have spreads larger than the rest of dimensions, t hey will be repeatedly selected .

24

measures, LI and weighted LI are better (in term of keeping separated classes sep

arate) than K-L and L2 measure. Fourier Coefficients and polynomial coefficients

are better vector length reduction techniques than the other two. To perforin

a qualitative analysis, we have created a perfect classification confusion matrix

sample, in which we manually assert the value of each element in this matrix. Then

we compare 16 confusion matrices against this sample by using the normalized

correlation. We have concluded that polynomial coefficient representation is the

most reasonable choice. Figure 2.5 shows an example of an how edge histogram is

approximated by a polynomial.

2.3.3 Example

We conclude this section with a simple example from our data set to demonstrate

the experiment. A robot notices an object in a kitchen. The robot measures physical

Edge Histogram vs. a fourth order polynomial approximation.
0.02

0.018

0.016

0.014

0.012

« 0.01
>

Polynomial Approximation
Histogram

250 300

Figure 2.5. An Edge Histogram and its Polynomial Approximation.

24

measures, L1 and weighted L1 are better (in term of keeping geparated classes sep

arate) than 1(-L and L2 measure. Fourier Coefficients and polynomial coefficients

are better vector length reduction techniques than the other two. To perform

a qualita tive analysis, we have created a perfect classification confusion matrix

sample, in which we manually assert the value of each element in this matrix. Then

we compare 16 confusion matrices against this sample by using the normalized

correlation. VVe have concluded that polynomial coefficient representation is the

most reasonable choice. Figure 2. 5 shows an example of an how edge histogram is

approximated by a polynomial.

2.3.3 Example

'vVe conclude this section with a simple example from our data set to demonstrate

the experiment. A robot notices an obj ect in a kitchen. The robot measures physical

0 .02

0.018

0 .016

0.014

0.012
Q)
:::J

0 .01 "iii
>

0.008

Edge Histogram vs. a fourth order polynomial approximation.

50 100

.......... Polynomial Approximation
-- Histogram

150
Bins

200 250 300

Figure 2.5. An Edge Histogram and its Polynomial Approximation .

25

properties of the object as the following: the length is 12.5 centimeters; the height

is 5 centimeters; the width is 12.5 centimeters; and the weight is 2.5 ounces. Two

images are taken of this object, one from the top view and one from the side view.

Images are segmented; color and edge histograms are computed. The robot has

learned from a human that this object is a "Knife with black handle." Since the

robot wants to share information about this object, in addition to organizing and

uploading these data into a web space, the robot registers this information at Robot

Share. It then packages the object into a Robot Share understandable XML file

and sends it to Robot Share.

After Robot Share receives this file, Robot Share parses the XML file and

constructs a set of vectors to capture information stored in this file. The text

part, i.e., "Knife with black handle," goes through the LSI process, and becomes

a four-element vector. The two images go through a sequence of image processing

procedures. Color histograms and edges are produced. Then dimension reduction

techniques are applied, and histograms are reduced to short length vectors. Dimen

sion and weight measures are extracted. The final result can be viewed in Table 2.1.

Using this information, Robot Share builds an index for these data and stores them

in the Robot Share database.

2.4 Activity Knowledge
The previous section has discussed how object knowledge can be represented.

Object knowledge is one type of knowledge we would like to share. Another

type of knowledge is activity knowledge. Activity knowledge represents a much

broader range of knowledge. If we consider object knowledge is mostly about object

identification and classification, then activity knowledge can be used not only for

identification but also for the execution of activities.

One of the most challenging problems to solve in activity knowledge sharing

comes from the uncertainty of the real world environment. For instance, it is

possible that one robot specifies a procedure that performs a certain activity in

its own environment, i.e., under a set of conditions. It is difficult for a second

25

properties of the obj ect as the following: the length is 12.5 centiP1etersi the height

is 5 centimeters; the width is 12.5 centimet ers; and the weight is 2.5 ounces. Two

images are taken of this obj ect , one from the top view and one from the side view.

Images are segment d ; color and edge !1istograms are computed. The robot has

learned from a human tha t this object is a "Knife with black handle." Since the

robot wants to share information about this obj ect , in addition to organizing and

uploading these da ta into a web space, the robot registers this information at Robot

Share. It then packages the obj ect into a Robot Share underst andable XML file

and sends it to Robot Share.

After Robot Share receives t his file, Robot Share parses the XML file and

constructs a set of vectors to cap ture information stored in this file. The text

part , i. e., "Knife with black handle," goes through the LSI process, and becomes

a four- element vector . The two images go through a sequence of image processing

procedures. Color histograms and edges are produced . Then dimension reduction

t echniques are applied , and histograms are reduced to short length vectors. Dimen

sion and weight measures are extracted . The fin al result can be viewed in Table 2.l.

Using this information , Robot Share builds an index for these da ta and stores them

in the Robot Share database.

2.4 Activity Knowledge

The previous section has discussed how obj ect knowledge can be represented.

Object knowledge is one type of knowledge we would like to share. Another

type of knowledge is activity knowledge. Activity knowledge represents a much

broader range of knowledge. If we consider obj ect knowledge is mostly about object

identification and classification , then act ivi ty knowledge can be used not only for

identification but also for the execution of activities .

One of the most challenging problems to solve in activity knowledge sharing

comes from the uncerta inty of the real world environment. For instance, it is

possible that one robot specifies a procedure that performs a certain activity in

its own environment , i.e., under a set of conditions. It is difficult for a second

26

Table 2.1. A Sample Object.

Field Value

redl: [1.8464e-011 -6.6396e-009 4.4481e-007 3.0729e-005 -4.8032e-004]
green 1: [2.2378e-011 -8.7258e-009 8-.0668e-007 8.9936e-006 -2.2540e-004]

bluel: [2.2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4.5634e-004]
red2: [1.4509e-012 2.5196e-009 -9.8969e-007 8.7476e-005 -2.4578e-0()4]

green2: [3.1170e-012 1.8227e-009 -9.2036e-007 8.8420c-005 -3.8085c-004]
blue2: [4.2376e-012 1.3480e-009 -8.7116e-007 8.9412e-005 -5.5129e-004]
edgel: [-1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063]
edge2: [-1.3743e-010 6.9991e-008 -1.1638e-005 6.9704e-004 -0.0070]

LSI: [-0.0509 0.2674 0.2571 0.4403]
phy_vec: [6.0190 1.6906 11.3570 0.4998]

weight: 0.4244
filename: 'knife2a.jpg'

desc: 'Knife with black handle'

robot to blandly adopt this procedure to perform the same task as the second

robot lives in a different environment. Two approaches can solve this problem.

The first approach focuses on the environment. A detailed description of a robot

environment can be recorded and shared with the activity description. When the

learner robot learns the new procedure, the learning robot checks if it is in a similar

environment with the sharing robot. The second approach is to bring intelligence

into the learning robot, i.e., when it receives an activity description, it adopts the

knowledge selectively. For instance, if certain instruction in the activity description

is not suitable for the learning robot's own environment, it generates and executes

substitute instructions with equivalent functions. Either of these two approaches

requires an extensive amount of research. Approach one assumes the ability of

environment recognition and representation, and approach two assumes the ability

of environment recognition, local planning and activity result prediction. All of

these requirements point to interesting topics for future research.

The Robot Share research focuses on activity knowledge identification. The

problem statement can be summarized as one robot records a sequence of human

Table 2.1. A Sample Object.

Field I Value
redl: [1.8464e-011 -6.6396e-009 4.4481e-007 3.072ge-005 -4.8032e-004J

greenl: [2.2378e-011 -8.7258e-009 8c0668e-007 8.9936e-006 -2.2540e-004]
bluel: [2.2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4 .5634e-004J
red2: [1.450ge-012 2.5196e-009 -9.896ge-007 8.7476e-005 -2.4578e-004]

green2: [3. 1170e-012 1.8227e-009 -9.2036e-007 8.8420e-005 -3.8085e-004J
blue2: [4.2376e-012 1.3480e-009 -8 .7116e-007 8.9412e-005 -5.512ge-004J
edgel: [- 1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063J
edge2: [-1.3743e-010 6.9991e-008 -1.1638e-005 6.9704e-004 -0.0070J

LSI: [-0.0509 0.2674 0.2571 0.4403J
phy_vec: [6 .0190 1.6906 11.3570 0.4998J

weight: 0.4244
filename: 'knife2a.jpg'

desc: 'Knife with black handle'

26

robot to blandly adopt this procedure to perform the same task as the second

robot lives in a different environment. Two approaches can solve this problem.

The first approach fo cuses on the environment . A det ailed description of a robot

environment can be recorded and shared with the activity description. \l\Then the

learner robot learns the new procedure, the learning robot checks if it is in a similar

environment with the sharing robot. The second approach is to bring intelligence

into the learning robot , i.e. , when it receives an activity description, it adopts the

knowledge selectively. For instance, if certain instruction in the activity description

is not suitable for the learning robot 's own environment, it generates and executes

substitute instructions with equivalent functions. Either of these two approaches

requires an extensive amount of research. Approach one assumes the ability of

environment recognition and representation , and approach two assumes the ability

of environment recognition, local planning and activity result prediction. All of

these requirements point to interesting topics for future research.

The Robot Share research focuses on activity knowledge ident ifica.tion. The

problem statement can be summarized as one robot records a sequence of human

27

body movements and queries Robot Share for information to identify the activity

that being performed by these movements.

Collaborating with Prof. Dillmann's humanoid robot research group at the

University of Karlsruhe, we have obtained data generated by the VooDoo human

motion capture system [24, 25], which gathers data of the human configuration

over time, resulting in 3D trajectories for every modeled limb and joint angle

of the human body. In VooDoo, the human body is represented by 19 A-by-A

transformation matrices, where each matrix describes the state of a limb joint. In

each transformation matrix, the upper left 3-by-3 submatrix describes the rotation

of the joint, the right most column describes the movement of the joint. (See [25] for

a complete discussion of the VooDoo system representation.) We exploit two of these

matrices: one that describes the trunk of the body transformation and the other

that describes the right forearm transformation, from each activity instance frame.

The motion description is based on six values from each of the two transforms:

three diagonal elements of the rotation matrix and three translation components.

This results in 12 feature vectors. We then approximate the trajectory of every

feature field across frames of an activity instance by a fourth order polynomial.

The end result looks similar to object knowledge that has been described in the

previous sections, i.e., each activity is represented in 12 vectors that can be indexed

using techniques will be described in the next chapter.

27

body movements and queries Robot Share for information to identify t he activity

that being performed by these movements.

Collaborating with Prof. Dillmann's humanoid robot research group at the

University of Karlsruhe, we have obtai~ed data generated by the VooDoo human

motion capture system [24, 25], which gathers data of the human configuration

over time, resulting in 3D trajectories for every modeled limb and joint angle

of the human body. In VooDoo , the human body is represented by 19 4-by-4

transformation matrices , where each matrix describes the state of a limb joint. In

each transformation matrix, the upper left 3-by-3 submatrix describes the rotation

of the joint, the right most column describes the movement of the joint. (See [25] for

a complete discussion of the VooDoo system representation.) vVe exploi t two of these

matri ces: one that describes the trunk of the body transformation and the other

that describes the right forearm transformation , from each activity instance frame.

The motion description is based on six values from each of the two transforms:

three diagonal elements of the rotation matrix and three translation components .

This resul ts in 12 feature vectors. Vie then approximate the trajectory of every

feature field across frames of an activity instance by a fourth order polynomial.

The end result looks similar to object knowledge that has been described in the

previous sections, i. e. , each activity is represented in 12 vectors that can be indexed

using techniques will be described in the next chapter.

C H A P T E R 3

K N O W L E D G E SEARCH ENGINE

3.1 Robo t Knowledge Search Engine
As described by Frieden and Kuntz [13], the three main tasks of a search engine

are to (1) match query keywords with related material on the web, (2) rank web

documents according to relevance, and (3) provide pointers to the documents.

Arasu et al. [1] set their major emphasis to be the creation of scalable index

structures. Note that search engines for human created web documents try to

make the linkage among web pages explicit and exploit this to create structure

indexes.

When adopting their strategy to the robot world, one of the major issues is

the diversity of the data format. Unlike text documents, which are focused by

current web search engine, sensor data produced by robots exists in many ways,

e.g., images, sound wave files, etc. These data need to be processed before they are

entered into database. Multiformat data also lead to various difficulties in database

design. Research in multimedia database shares some common problems we have.

Ortega-Binderberger et al. [5] pointed out that a multimedia database need to

provide four functionalities:

• Mul t imed ia O b j e c t Representa t ion. Techniques or models to succinctly

represent both structure and content of multimedia objects in databases.

• Content Ext rac t ion . Mechanisms to automatically or semiautomatically

extract meaningful features that capture the content of multimedia objects

and that can be indexed to support retrieval.

• Mul t imed ia Informat ion Retr ieval . Techniques to match and retrieve

multimedia objects on the basis of the similarity of their representation.

CHAPTER 3

KNOWLEDGE SEARCH ENGINE

3.1 Robot Knowledge Search Engine

As described by Frieden and Kuntz [13], the three main tasks of a search engine

are to (1) match query keywords with related material on the web, (2) rank web

documents according to relevance, and (3) provide pointers to the documents.

Arasu et a1. [1] set their major emphasis to be the creation of scalable index

structures. Note that search engines for human created web documents try to

make the linkage arnong web pages explicit and exploit this to create structure

indexes .

When adopting their strategy to the robot world , one of the major issues is

the diversity of the data format . Unlike text documents, which are focused by

current web search engine , sensor data produced by robots exists in many ways,

e.g., images , sound wave files , etc . These data need to be processed before they are

entered into database. Multifonnat data also lead to various difficul t. ies ill database

design. Research in multimedia database shares some common problems we have.

Ortega-Binderberger et a1. [5] pointed out that a multimedia database need to

provide four functionalities:

• Multimedia Object Representation. Techniques or models to succinctly

represent both structure and content of multimedia objects in databases.

• Content Extraction. Mechanisms to automatically or semiautomatically

extract meaningful features that capture the content of multimedia objects

and that can be indexed to support retrieval.

• Multimedia Information Retrieval. Techniques to match and retrieve

multimedia objects on the basis of the similarity of their representation .

29

• Mul t imed ia Database Managemen t . Extensions to data management

technologies of indexing and query processing to effectively support efficient

content-based retrieval in database management systems.

The previous chapter has addressed the first two issues. This chapter focuses

on the latter two.

3.2 Knowledge Harvesting
In this first generation robot search engine research, we do not foresee a major

role for web crawlers. Even if web pages that contain robot information exist, the

meta data are not available to determine what pages to download and what is of

interest in them (e.g., there are no words to count and no lexicon to help define any

semantics.) There is no popularity measure and no standard place to find things

(e.g., specific sites, in homepage, etc.) We decide to let robots register with the

Robot Share and provide direct meta data and links.

In the previous chapter, we presented the format for knowledge communication

between a robot and Robot Share. Since the XML file presented in the previous

chapter solely contains the data of objects, a few extra fields are helpful for Robot

Share. The most important one is the link to the web address, where the original

data can be found. Storing information about the robot that registered the infor

mation could be helpful as well. Therefore!, three fields are added into a knowledge

registration XML file, the identity of the robot, the time of this registration, and

the link to the web page, where original data are stored.

3.3 Knowledge Query
Before we present the object retrieval architecture of Robot Share, we first

discuss some related technologies. Section 3.3 is dedicated to search queries, section

3.4 discusses distance measures, and section 3.5 introduces indexing structures.

29

• Multimedia Database Management. Extensions to data management

technologies of indexing and query processing to effectively support efficient

content-based retrieval in database management systems.

The previous chapter has addressed the first two issues. This chapter fo cuses

on the latter two.

3.2 Knowledge Harvesting

In t his first generation robot search engine research , we do not foresee a major

role for web crawlers. Even if web pages that contain robot information exist , the

meta data are not available to determine wha t pages to download and what is of

interest in them (e.g., there are no words to count and no lexicon to help define any

semantics.) There is no popularity measure and no standard place to find things

(e.g., specific sites, in homepage, etc .) We decide t o let robots register with the

Robot Share and provide direct meta data and links.

In the previous chapter , we presented the format for knowledge communication

between a robot and Robot Share. Since the XiVIL file presented in the previous

chapter solely contains t he data of objec ts, a few extra fields are helpful for Robot

Share. The most impor tant one is the link to the web address, where the original

data can be found. Storing information about the robot that registered the infor

mation could be helpful as well. Therefore, three fields are added into a knowledge

registration XML file, the identity of t he robot , the t ime of this registration, and

the link to the web page, where original data are stored.

3.3 Knowledge Query

Before we present the object retrieval archi tecture of Robot Share, we first

discuss some related technologies. Section 3.3 is dedicated to search queries, section

3.4 discusses distance measures, and section 3.5 introduces indexing structures.

30

3.3.1 Query T y p e

Similarity retrieval can be divided into whole match and partial match. In the

first class, every object is considered in whole, i.e., the query is considered as an

object and then matched against objects stored in the database. In the second

class, the query is compared to portions of objects in the database. Therefore a

portion of certain object can be returned to a query as a response. Research in

CBIR provides us good examples of both of these two classes. Projects dedicated

to photographic image retrieval are mostly in the class of whole match [11, 14] and

image analysis projects usually support partial/subirnage match [28]. Partial match

systems usually bring the problem of data segmentation, which itself contains a lot

of variations. Robot Share supports whole match.

3.3.2 Query Interface

Query interfaces of retrieval systems vary. Query-by-example, query-by-feature,

and other miscellaneous methods have been demonstrated [5]. In a query-by-

example system, the query is treated as an object as every other object stored

in its database. The query is first analyzed to extract its features. Extracted

features are then used to query the database. Most CBIR systems belong to this

group. In a query-by-feature system, the user specifies a set of feature and their

values for the retrieval system to match. Keyword, image-annotation and meta

data based image retrievals belong to this group. Since the 1990s, multimedia,

especially image, query languages have been developed in the database research

society. Most of them are SQL extensions or variations, including PSQL, Spatial

SQL, QL/G, MOQL, etc. Ref. [27] contains an survey of them. Query-by-feature

systems usually require support from a dedicated query language. For Robot Share,

query-by-example is supported. No specific query language is employed in Robot

Share.

30

3 .3.1 Query Type

Similarity retrieval can be divided into whole match and partial match. In the

first class, every obj ect is considered in whole, i.e., the query is considered as an

obj ect and then matched against obj ects stored in the database. In the second

class, the query is compared to portions of objects in the database. Therefore a

portion of certain object can be returned to a query as a response. Research in

CBIR provides us good examples of both of these two classes . Projects dedicated

to photographic image retrieval are mostly in the class of whole match [1l , 14J and

image analysis projects usually support partial/subimage match [28J . Partial match

systems usually bring the problem of data segmentation, which itself contains a lot

of variations . Robot Share supports whole match .

3 .3.2. Query Interface

Query interfaces of retrieval systems vary. Query-by-example, query-by-feature,

and other miscellaneous methods have been demonstrated [5J. In a query-by

example system, the query is treated as an object as every other object stored

in its database. The query is first analyzed to extract its features. Extracted

features are then used to query the database. Most CBIR sys tems belong to this

group. In a query-by-feature system, the user specifies a set of feature and their

values for the retrieval system to match. Keyword , image-annotation and meta

data based image retrievals belong to this group . Since the 1990s, multimedia,

especially image, query languages have been developed in the database research

society. Most of them are SQL extensions or variations, including PSQL, Spatial

SQL, QL/ G, MOQL, et c. Ref. [27] contains an survey of them. Query-by-feature

systems usually require support from a dedicated query language. Fol' Robot Share,

query-by-example is supported. No specific query language is employed in Robot

Share.

31

3.3.3 Search T y p e

Unlike text based retrieval system, a multimedia retrieval system does not

rely on exact queries. Instead, multimedia retrievals are similarity based. Using

interfaces described above, the user specifies a feature set, the retrieval system then

tries to find data that have a similar feature set. Three types of search exist.

• R a n g e Search. Find all data in which feature f\ is within range feature

f2 is within range r2, etc. Query-by-feature systems work with this type of

search.

• /c-Nearest-Neighbor Search. Using distance measure JD, find k objects

that are closest to the query object. Note this type of query requires at

least k objects to be returned, regardless of their actual distance to the query

template. This could potentially result in returning objects that are very

different from the query template. Returned objects are usually ranked based

on their similarities to the query template.

• Wi th in -Dis tance (or a -cu t) . Using distance measure D, find all objects

that are within distance a to the query template. In contrast to the fc-nearest-

neighbor class, a-cut search could result in no return or returning the entire

database. Returned objects are usually ranked based on object similarities.

The /i;-Nearest-Neighbor search and the a-cut search are both supported in

Robot Share.

3.4 Similarity Functions

3.4.1 Dis tance Measures

The previous section has introduced a set of query types. Among them, k-

nearest-neighbor and a-cut both require the distance measure between two objects

to be computed. This section presents some commonly used methods to measure

object distances.

A similarity function is a mapping between pairs of feature vectors and a positive

real-valued number, which represents the similarity between two objects. Some of

31

3.3.3 Search Type

Unlike text based retrieval system, a multimedia retrieval system does not

rely on exact queries . Instead, multimedia retrievals are similarity based. Using

interfaces described above , the user specifies a feature set, the retrieval system then

tries to find data that have a similar feature set. Three types of search exist .

• Range Search. Find all data in which feature 11 is within range rI , feature

12 is within range r2, etc. Query-by-feature syst ems work with this type of

search.

• k-Nearest-Neighbor Search. Using distance measure D , find k objects

that are closest to the query obj ect . Note this type of query requires at

least k objects to be returned, regardless of their actual distance to the query

template. This could potentially result in returning objects that are very

different from the query template. Returned objects are usually ranked based

on their similarities to the query template.

• W ithin-D istance (or a-cut). Using distance measure D , find all obj ects

that are within distance a to the query template. In contrast to the k-nearest

neighbor class, a -cut search could result in no return or returning the entire

database. Returned obj ects are usually ranked based on obj ect similari t ies .

The k-Nearest- Neighbor search and the a-cut search are both supported in

Robot Share.

3.4 Similarity Functions

3.4.1 D istance Measures

The previous section has introduced a set of query types. Among them, k

nearest-neighbor and a-cut both require the dist ance measure between two objects

to be computed. This section presents some commonly used methods to measure

obj ect distances.

A similarity fun ction is a mapping between pairs of feature vectors and a positive

real-valued number , which represents the similarity between two objects. Some of

32

the commonly used dissimilarity measures are listed (See Ref. [5, 30] for a more

complete discussion.)

Let the descriptor be represented as an ra-dimensional vector / = [/]...fm] .

Given two objects, I and J, let D(I, J) be the distance between the two objects as

measured using the descriptors f) and fj.

L I distance

D(I,J) = \fi-fj\ = Y,\fk,i-fi k.J
k=l

Euclidean distance (L2 Dis tance)

D(I,J) = \\fi-fj\\ = (fi-fj)T(fi-fj)

• L q q distance

D(I, J) = rnax\fkJ - fkyJ\

Weigh ted L I distance

rn I f i- I

D (/ . J) = ^

ok is the standard deviation of the kX\\ feature component in the database.

Mahalanobis distance

D(i,j) = (fI-fj)Ti:-\fI-fj)

E is the covariance matrix that

E = J S 7 [(/ - / i /) (/ - / i /) T] a n d fxf = E[f}.

Kullback-Leibler (K - L) d ivergence (relative en t ropy)

If / is a normalized histogram, then

32

the commonly used dissimilarity measures are listed (See B,ef [5, 30] for a more

complete discussion.)

Let the descriptor be represented as an m-dimensional vector J = [il···imjT.

Given two objects, I and J , let D(I, J) be the distance between t he two objects as

measured using the descriptors if and h·

• L 1 distance

rn

D(I , J) = Iii - iii = L lik,1 - i k,JI
k= l

• Euclidean distance (L2 Distance)

D(I , J) = Il h - h ll = (fI - h f(h - i J)

• Loo distance

D(I , J) = maxlik,1 - i k,JI

• Weighted Ll distance

D(I , J) = f= lik ,I - i k,JI
k =) (Jk

(Jk is the standard deviation of the kth feature component in the database.

• Mahalanobis distance

I: is the covariance matrix t hat

I: = E [(f - vl)(i - vl f] and Vl = E [i '].

• Kullback-Leibler (K-L) divergence (relative entropy)

If i is a normalized histogram, then

m f
"'"' . k,I

D(I , J) = ~ i k,Ilog ik ,J .

33

LI, L2, and distance belong to the category of Minkowski-form metric,

which has the general form:

A/-1

d'„,t = [E \h,,(m) - h,(m)\r}

where hq and are two objects with M features. (In the case of L ^ , it is interpreted

as linip-^oo Dp.)

LI distance is commonly known as the Manhattan distance, city block distance,

or walk distance. When it is used to compare color histograms, it is also known as

the Histogram Intersection [38].

L2 distance is refered as Euclidean distance. It can be written as

M - l

D(I,J) = \\fl- fj\\= E l / i M - / » f .
r n = 0

One character of a Minkowski metric is that it compares the proportion of a

specific feature within object q to the proportion of the same feature within object t,

but not to the proportions of other similar features. For instance, when a Minkowski

metric is applied to compare color histograms, [5]:

the distance between a dark red image and a lighter red image is
measured to be the same as the distance between the same dark red
image and a perceptually more different blue image.

The main computational cost in this family is due to computing the power functions.

The weighted LI distance is a special case of the weighted Minkowski family. It

has the general form as:

D<«(J,. /) = [X > . ~ h W \ ' -
? ; = i

Weighted Minkowski matric contains a weighting parameter u for every individ

ual feature. The standard deviation of the k\\\ feature, is a common selection

for this weighting parameter.

33

L1 , L2 , and Loa distance belong to the category of lVIinkowski-.form metric ,

which has the general form:

M - l

d;;,t = [L lhq(m) - ht(mW]
m = O

where hq and ht are two objects with M features. (In the case of Loa, it is interpreted

as limp->oa DP .)

L1 distance is commonly known as the Manhattan distance, city block distance,

or walk distance. vVhen it is used to compare color histograms, it is also known as

the Histogram Intersection [38].

L2 distance is refered as Euclidean distance. It can be written as

M - I

D(I , J) = Il iI - fl ll = L [fj(m) - fJ(m}f.
m = O

One character of a Minkowski metric is that it compares the proportion of a

specific feature within object q to the proportion of the same feature within object t ,

but not to the proportions of other similar features . For instance, when a Minkowski

metric is applied to compare color histograms, [5]:

the distance between a dark red image and a lighter red image is
measured to be the same as the distance between the same dark red
image and a perceptually more different blue image.

The main computational cost in this family is due to computing the power functions.

The weighted L1 distance is a special case of the weighted Minkowski family. It

has the general form as:

d

D(p) (I , J) = [L wilfJ [i]- fl [iW]~·
i = l

~Weighted Minkowski matric contains a weighting parameter w for every individ

ual feature. The standard deviation of the kth feature, ak, is a common selection

for this weighting parameter .

34

Mahalanobis distance is a special case of the quadratic-form metric, which has

its general form as

D(I,J) = (fI-fj)TA-1(f,-fJ).

Its use on the color histogram can be found in the IBM QBIC system [14]. For some

application, it generates more desirable results than matrices from the Minkowski

family as the Minkowski family compares only like bins, whereas quadratic-from

metrics consider the cross-relation of the bins.

Kullback-Leibler (K-L) divergence is defined only for probability distributions.

Unlike others, relative entropy is not technically a distance measure as it is not

symmetric, and it does not satisfy a triangle inequality. (Mahalanobis distance

satisfies these two requirements when A is positive definite.) For query purposes,

the first argument is set to the query template where the second argument comes

from the database.

Ref.[5] discusses various properties of these distance measures in depth. A com

parison of some of these matrices applied in image retrieval is presented. Despite

manually selected and relative small sample sizes used in their study (which contains

no more than 50 images in each of the tests), they provide some informative results,

including simple metrics such as LI and L2 alone with the more sophisticated

Mahalanobis distance all give reasonable performances. K-L measure is not included

in this test, but reported with good performance elsewhere in ref. [5].

3.4.2 Exper iment Da ta

In the previous chapter, we have discussed the combined effort of distance

measure and vector-length-reduction transformations. We have covered a series

of experimental data in the form of confusion matrix measures. We then conclude

that weighted LI distance1 and polynomial coefficient provide the best performance.

Here we compare the four original histogram samples, without reducing the vector

length, to the same perfect sample and collect measures. This test is needed for

search result ranking.

34

Mahalanobis distance is a special case of the quadratic-form metric, which h as

its general form as

Its use on the color histogram can be fouRd in the IBM QBIC system [14J. For some

application, it generates more desirable results than matrices from the Minkowski

family as the Minkowski family compares only like bins, whereas quadratic-from

metrics consider the cross-rela tion of the bins.

Kullback-Leibler (K-L) divergence is defined only for probability distributions.

Unlike others, relative entropy is not technically a dist ance measure as it is not

symmetric, and it does not satisfy a triangle inequality. (Mahalanobis distance

satisfies these two requirements when A is positive definite.) For query purposes,

t he first argument is set to the query template where the second argument comes

from the dat abase .

Ref. [5J discusses various properties of these dist ance measures in depth. A com

parison of some of these matrices applied in image retrieval is presented. Despite

manually selected and rela tive small sample sizes used in their study (which contains

no more than 50 images in each of the tests), they provide some informative results ,

including simple metrics such as Ll and L2 alone with the more sophisti cated

Mahalanobis distance all give reasonable perforrnances. K-L measure is not included

in this test, but reported with good performance elsewhere in ref. [5J .

3.4.2 Experiment Data

In the previous chapter , we have discussed the combined effort of distance

measure and vector-length-reduction transformations. '0/e have covered a series

of experimental data in the form of confusion matrix measures . \;Ve then conclude

that weighted Ll distance and polynomial coefficient provide the best performance.

Here we compare the four original histogram samples, without reducing the vector

length , to the same perfect sample and collect measures. This test is needed for

search result ranking.

35

3.5 Feature Indexing
Indexing schemes are commonly used in multimedia database queries. The oper

ation required to perform content-based search in such systems are computationally

expensive. It is also known that indexing in multimedia databases is very different

from indexing in text-based databases as multimedia data are stored in form of

feature vectors. The previous chapter introduced the knowledge representation,

array of short vectors, Robot Share uses. This section explains reasons behind

this selection by explaining the difficulty of building indexing structures over long

vectors. We then review a few commonly used indexing structures and discuss pros

and cons of each of them.

3.5.1 Curse o f Dimensional i ty

The most problematic issue caused by long feature vectors is the curse of

dimensionality. This effect has been noticed by researchers from various domains.

This phenomenon appears as numerous geometric properties that hold in low-

dimensional spaces no longer hold in high-dimensional spaces. As ref. [5] explains:

...in two dimensional a circle is well-approximated by the minimum
bounding square; the ratio of the areas is 4 / T T . However, in 100 dimen
sions the ratio of the volumes becomes approximately 4.2 * 10 3 9 : most
of the volume of a 100-dimensional hypercube is outside the largest in
scribed sphere - hypercubes are poor approximations of hypersphers and
a majority of indexing structures partition the space into hypercubes or
hyper rectangles.

For example, the widely used R-tree indexing schemes become inefficient for

a-cut queries using the L2 distance. As ref. [5] explains:

[R-tree indexing are inefficient] as they execute the search by trans
forming it into the range query defined by the minimum bounding
rectangles of the desired search regin, which is a sphere centered on the
template point, and by checking whether the retrieved results satisfy
the query. In high dimensions, the R-trees retrieve mostly irrelevant
points that lie within the hyperrectangle but outside the hypersphere.

Another problem of high-dimensional space is that points randomly sampled

from the same distribution appear uniformly far from each other and each point

sees itself as an outlier. For instance, we can have an example such as the following:

35

3.5 Feature Indexing

Indexing schemes are commonly used in multimedia database queries. The oper

ation required to perform content-based search in such systems are computa tionally

expensive. It is also known that indexing in multimedia databases is very different

from indexing in text-based databases as multimedia data are stored in form of

feature vectors. The previous chapter introduced the knowledge representation ,

array of short vectors, Robot Share uses. This section explains reasons behind

this selection by explaining the difficulty of building indexing structures over long

vectors. vVe then review a few commonly used indexing structures and discuss pros

and cons of each of them.

3.5.1 Curse of Dimensionality

The most problematic issue caused by long feature vectors is the curse of

dimensionality. This effect has been noticed by researchers from various domains.

This phenomenon appears as numerous geometric properties that hold in low

dimensional spaces no longer hold in high-dimensional spaces . As ref. [5] explains:

.. . in two dimensional a circle is well-approximated by the minimum
bounding square; the ra tio of the areas is 4(rr. However, in 100 eli men
sions the ratio of the volumes becomes approximately 4.2 * 1039 : most
of the volume of a 100-dimensional hypercube is outside the largest in
scribed sphere - hypercubes are poor approximations of hypersphers and
a majority of indexing structures partition the space into hypercubes or
hyperrectangles.

For example, the widely used R-tree indexing schemes become ineffici ent for

a-cut queries using the L2 distance. As ref. [5] explains:

[R-tree indexing are inefficient] as they execute the search by trans
forming it into the range query defined by t he minimum bounding
rectangles of the desired search regin, which is a sphere centered on the
template point , and by checking whether the retrieved results satisfy
the query. In high dimensions , the R-trees retrieve mostly irrelevant
points that lie within the hyperrectangle but outside the hypersphere.

Another problem of high-dimensional space is tha t points randomly sampled

from the same distribution appear uniformly far from each other and each point

sees itself as an outlier. For instance, we can have an example such as the following:

36

• We first generate 20,000 independent 100-dimensional vectors, with the fea

tures of each vector independently distributed as the standard Normal random

variables.

• Then we compute the Euclidean distance from a random vector from the same

distribution to all vectors in the database.

• We observe that the minimum distance between the query point and database

sample is above 10, the average distance is about 14, and the maximum

average distance is above 17. Figure 3.1 shows the shape of the distribution.

Comparing Figure 3.2 to Figure 3.3, with vector lengths of one and five, re

spectively, we can see the distance distribution in high-dimensional spaces differs

from distributions in low-dimensional spaces. This effect makes a-cut queries very

sensitive to the choice of the threshold in high-dimensional spaces. For instance,

when the threshold is smaller than 10, no result is returned: with a threshold of

12.5, the query returns 5.3% of the database; and when the threshold is increased

to 13, 14% percent of the database is returned.

3.5.2 Feature Select ion

The curse of dimensionality can also be seen in the field of patten classification

[27]. We can view an object query as classifying a new object into a known category.

In this view, the classification error should decrease when additional measurements

are applied. However, this is not always true in practice. When a classifier is

constructed, there may not be enough sample to train the classifier, i.e., determine

the most appropriate parameters for each feature, e.g., the threshold for a a-cut

emery of certain feature. Specifically, the classifier would be well tuned for the

training set, but would fail when new instances are presented. Therefore, we would

need to minimize the feature set for a, classifier to minimize the number of unknown

parameters.

36

• vVe first generate 20,000 independent 100-dimensional \:ectors , with the fea

tures of each vector independently distributed as the standard Normal random

variables.

• Then we compute the Euclidean distance from a random vector from the same

distribution to all vectors in the database.

• We observe that the minimum distance between the query point and database

sample is above 10, the average distance is about 14, and the maximum

average distance is above 17. Figure 3.1 shows the shape of the distribution.

Comparing Figure 3.2 to Figure 3.3 , with vector lengths of one and five , re

spectively, we can see the distance distribution in high-dimensional spaces differs

from distributions in low-dimensional spaces. This efFect makes a-cut queries very

sensitive to the choice of the threshold in high-dimensional spaces . For instance,

when the threshold is smaller than 10, no result is returned; with a threshold of

12.5, the query returns 5.3% of the database; and when the threshold is increased

to 13, 14% percent of the database is returned .

3.5.2 Feature Selection

The curse of dimensionality can also be seen in the field of patten classification

[27]. vVe can view an object query as classifying a new object into a known category.

In this view, the classification error should decrease when additional measurements

are applied . However, this is not always true in practice. \i\Then a classifier is

constructed, there may not be enough sample to train the classifier, i. e., determine

the most appropriate parameters for each feature, e.g., the threshold for a a -cut

query of cer tain feature. Specifically, the classifier would be well tuned for the

training set , but would fail when new instances are presented. Therefore, we would

need to minimize the feature set for a classifier to minimize the number of unknown

parameters.

37

Histogram of distances
800 | 1 1 1 1 1 —

Distance

Figure 3.1. Distances Between a Query Point and Database Samples.
Sample Size = 20,000; Vector Dimension = 100; Bin Number = 100.
Dmin = 10.22, Dmax = 17.41, Davg - 13.94

37

Histogram of distances
800

700

600

C 500
::::l
0
u
E 400 ~
O'l
0

~
I 300

200

100

0
10 11 12 13 14 15 16 17 18

Distance

Figure 3.1. Distances Between a Query Point and Database Samples.
Sample Size = 20 ,000; Vector Dimension 100; Bin Number = 100.
D min = 10.22, D max = 17.41, D avg = 13.94

38

Figure 3.2. Distances Between a Query Point and Database Sam
ples. Sample Size = 20,000; Vector Dimension = 1; Bin Number = 100.
-Drain ~ 0, Dmax 5.16, Davg 1.11

C
::::l
o
u
E
~
OJ
o
~
I

2

Histogram of distances

3
Distance

4

Figure 3.2. Distances Between a Query Point
pIes. Sample Size = 20 ,000; Vector Dimension = 1;
D m in = 0, Dmax = 5.16, D avg = 1.11

38

5 6

and Database Sam
Bin Number = 100.

39

Histogram of distances
600 I 1 1 1 1

0 1 2 3 4 5 6 7
Distance

Figure 3.3. Distances Between a Query Point and Database Sam
ples. Sample Size = 20,000; Vector Dimension = 5; Bin Number = 100.
Drrnn — 0.28, D,max = 6.05, Davg = 2.72

39

Histogram of distances
600 ,------,-----,~----.------,------.------,------,

500

400
C
:::l
0
u
E 300 ~
OJ
0

.~
I

200

100

0 '--------
o 2 3 4 5 6 7

Distance

Figure 3.3. Distances Between a Query Point and Database Sam
ples. Sample Size = 20 ,000; Vector Dimension = 5; Bin Number = 100.
D min = 0.28 , D maJ; = 6.05, D avg = 2.72

40

Feature selection can be viewed as a typical searching problem formed as: Select

d < D from

V = {vi\j = 1,2, . . . , £ }

arriving at

U = {ui\i = 1,2,

where V is the complete feature set, each u?; is an element of I/, and U maximizes a

criterion function, which is the probability of correct classification. Clearly, brute

force feature selection is not feasible, as the permutation of M choose TV grows

exponentially with the growth of M and N, e.g., selecting 10 features out of 100

would necessitate evaluation of more than 10 1 3 feature sets. Thus, a computation

ally feasible method must be used.

Feature selection hence has been studied and a few algorithms have been pro

posed. Among them, the sequential forward selection (SFS), the sequential back

ward selection (SBS) and their derived variations are popular methods. Ref. [27]

states the following:

SFS is a bottom-up, hill climbing search procedure, where one fea
ture class is added at a time to the current feature set. At each iteration,
the feature class to be included in the feature set is selected from among
the remaining feature classes such that the new feature set yields the
greatest possible value of the criterion function. ... The two major
drawbacks ... are the local peak problem and the ridge problem.

The local peak problem and the ridge problem are common to all hill climbing

search algorithms. The first one occurs when there are multiple maxima and the

search is trapped in one local maximum. The second one occurs when the path to

a local maximum is not within available search directions. A typical hill climbing

algorithm stops when a local maximum is achieved without searching for the global

maximum. It also stops when none of its operation yields a higher score in its

evaluation function, i.e., reaches a ridge. In case of SFS, it reaches a local maximum

such as adding no other feature to a particular feature set Vi could results a higher

evaluation index. It also fails when a high evaluation index is reachable only when

multiple features are added at once.

40

Feature selection can be viewed as a typical searching prob.lem formed as : Select

d :::; D from

v = {vilj = 1, 2, .. . , D}

arriving at

U={uili=1,2,oo.,d}

where V is the complete feature set , each Ui is an element of V, and U maximizes a

criterion function , which is the probability of correct classification. Clearly, brute

force feature selection is not feasible, as the permutation of NI choose N grows

exponentially wi th the growth of NI and N, e.g., selecting 10 features out of 100

would necessitate evalua tion of more than 1013 feature sets. Thus, a computation-

ally feasible method must be used .

Feature selection hence has been studied and a few algorithms have been pro

posed. Among them, the 'equential forward selection (SFS), t he sequential back

ward selection (SBS) and their derived varia tions are popular methods. Ref. [27]

states the following:

SFS is a bottom-up , hill climbing search procedure, where one fea
ture class is added at a time to the current feature set . At each iteration,
t he feature class to be included in the feature set is selected from among
t he remaining feature classes such that the new feature set yields the
greatest possible value of the criterion function. 00. The two major
drawbacks ... are the local peak problem and the ridge problem.

The local peak problem and the ridge problem are common to all hill climbing

search algorithms. The first one occurs when there are multiple maxima and the

search is trapped in one local maximum. The second one occurs when the path to

a local maximum is not within available search directions. A typical hill climbing

algorithm stops when a local maximum is achieved without searching for the global

maximum. It also stops when none of its operation yields a higher score in its

evaluation function, i. e., reaches a ridge. In case of SFS, it reaches a local maximum

such as adding no other feature to a particular feature set VI could results a higher

evaluation index. It also fails when a high evaluation index is reachable only when

multiple features are added at once.

11

SBS is the top-down counterpart to the SFS. The complete feature set is the

starting point. At each stage, one feature is removed until removing no feature can

result a higher evaluation index. It suffers from same problems as SFS.

To overcome, or reduce the chance of getting into, the ridge problem, generalized

sequential forward selection (GSFS) and generalized sequential backward selection

(GSBS) are developed. In these methods, instead of adding/deleting one feature at

a time, multiple features are added/deleted. In general, GSFS and GSBS produce

better results than SFS and SBS, but, again, with higher computational costs.

Another variation is the plus L take away R selection (LRS), where SFS and

SBS are applied interchangeably. Again, better results are reported, but with an

increased computational cost.

Nonfixed L and R sizes at each step can be utilized, i.e., instead of adding or

removing a fixed number of features at each step, a floating number of features are

considered. This further increases the possibility of finding the global maximum.

More discussion on techniques such as stochastic methods and neural networks

on feature selection can be found in ref. [23, 27]. Even though progress has been

made in this area, selecting a small yet representative set of features for general

applications is an open problem.

3.5.3 Dimensional i ty R e d u c t i o n

Feature selection is a useful technique that helps to overcome the curse of dimen

sionality. However, as some of the most popular indexing methods, including R-Tree

and Quad-Tree, perform suboptimally when the dimensionality of the feature space

barely exceeds 10, we usually need to further decrease the dimensionality of the

feature space. Three classes of methods have been investigated.

Variable-subset selection works just like the feature selection. Certain features

are discarded upon indexing. A small set of useful ones are left to keep the

dimensionality low. The main problem of this approach is the error induced

by approximating the original vectors with their lower-dimensionality projections.

Techniques in this group are Karhunen-Loeve transform (KLT) [15], singular value

41

SBS is the top-down counterpart to the SFS. The compl~te f eature set is the

starting point. At each stage, one feature is removed until removing no feature can

result a higher evaluation index. It suffers from same problems as SFS.

To overcome, or reduce the chance of getting into , the ridge problem, generalized

sequential forward selection (GSFS) and generalized sequential backward selection

(GSBS) are developed. In these methods, instead of adding/ deleting one feature at

a time, multiple features are added/ deleted. In general, GSFS and GSBS produce

better results than SFS and SBS, but , again, with higher computational costs.

Another variation is the plus L take away R selection (LRS) , where SFS and

SBS are applied interchangeably. Again, better results are reported , but with an

increased computational cost.

Nonfixed L and R sizes at each step can be utili zed , i. e., instead of adding or

removing a fixed number of features at each step, a fioating number of features are

considered. This further increases the possibility of finding the global maximum.

More discussion on techniques such as stochastic methods and neural networks

on feature selection can be found in ref. [23, 27]. Even though progress has been

made in this area, selecting a small yet representative set of features for general

applications is an open problem.

3.5.3 Dimensionality Reduction

Feature selection is a useful technique that helps to overcome the curse of dimen

sionality. However , as some ofthe most popular indexing methods, including R-Tree

and Quad-Tree, perform sub optimally when the dimensionality of the feature space

barely exceeds 10, we usually need to further decrease the dimensionality of the

feature space. Three classes of methods have been investigated.

Variable-subset selection works just like the feature selection. Certain features

are discarded upon indexing. A small set of useful ones are left to keep the

dimensionality low. The main problem of this approach is the error induced

by approximating the original vectors with their lower-dimensionality projections.

Techniques in this group are Karhunen-Loeve transform (KLT) [15], singular value

42

decomposition (SVD) [22] and principal component analysis (PCA) [27]. A variable-

subset selection step discards dimensions that have smaller variance. It can be

shown that when Euclidean distance is used to measure distance, the distance

between original vectors is closer than the distance measured with their projections

using above techniques. The main disadvantage in above techniques is the compu

tational cost, as KLT, SVD and PCA are data-dependent. They are poorly suited

for dynamic databases, in which items are added and removed on a regular basis.

Multidimensional scaling is another technique used in this field. In general, this

technique tries to remap the original feature space Rn into Rm (m < n) using m

transformations, each of which is a linear combination of appropriate radial basis

functions. Various implementations exist in this category. The drawback of these

algorithms is the high computational cost. Hence they are not suitable for dynamic

databases.

Geometric hashing [4] consists of hashing from a high-dimensional space to a

very low-dimensional space (usually one or two dimensions.) As hashing functions

are not data-dependent, the metric properties of the hashed space can be signif

icantly different from the original one. The design of a good hashing function

becomes increasingly difficult as the dimensionality of the original space grows.

To summarize, a good dimension reduction algorithm should maintain the dis

tance measure when the feature set is transformed from a high-dimensional space

to a low-dimensional space. It also must be computationally efficient if dynamic

databases need to be supported.

3.5.4 Indexing Structures

Ref [5] contains an intensive discussion on the topic of indexing structure.

A handful indexing scheme are reviewed. In general, we distinguish indexing

structures in three ways: (1) vector space indexes versus metric space indexes; (2)

recursive partitioning methods versus projection-based methods; and (3) spatial

access methods (SAM) versus point access methods (PAM).

42

decomposition (SVD) [22] and principal component analysis (PCA) [27]. A variable

subset selection step discards dimensions that have smaller variance. It can be

shown that when Euclidean distance is used to measure distance, the distance

between original vectors is closer than the distance measured with their pro.i ections

using above techniques. The main disadvantage in above techniques is the compu

tational cost , as KLT , SVD and P CA are dat a-dependent. They are poorly suited

for dynamic dat abases, in which items are added and removed on a regular basis.

Multidimensional scaling is another technique used in this field. In general, this

technique tries to remap the original feature space R n into R m (m < n) using m

transformations , each of which is a linear combination of appropriate radial basis

functions. Various implementations exist in this category. The drawback of these

algorithms is the high compu tational cost. Hence they are not suitable for dynamic

dat abases .

Geometric hashing [4] consists of hashing from a high-dimensional space to a

very low-dimensional space (usually one or two dimensions.) As hashing functions

are not dat a-dependent , the metric properties of the hashed space can be signif

icantly diffe rent from t. he origina.l one . The design of a good hashing function

becomes increasingly difficul t as the dimensiona.lity of the original space grows.

To summarize , a good dimension reduction algorit.hm should maintain the dis

tance measure when the feature set is transformed from a high-dimensional space

to a low-dimensional space. It also must be computationally efficient if dynamic

databases need to be supported .

3.5.4 Indexing Structures

Ref [5] contains an intensive discussion on the topic of indexing structure.

A handful indexing scheme are reviewed. In general, we distinguish indexing

structures in three ways: (1) vector space indexes versus metric space indexes ; (2)

recursive partitioning methods versus projection-based methods; and (3) spatial

access methods (SAM) versus point access methods (PAM).

43

Vector space indexes represent objects and feature vectors as sets of points in

a d-dimensional vector space. Metric space indexes pairwise distances between

objects in a set instead of indexing objects. It tries to capture the metric structure

of the search space. Recursive partitioning methods organize the search space into

a tree like structure. Projection-based methods employ algorithms that perform

searches on the projections of database point onto a set of directions. SAM indexes

spatial objects, e.g., lines, polygons, surfaces, solids, etc. PAM index points in

multidimensional spaces. More detailed discussion of indexing structures can be

found in ref. [5, 16, 35].

Among these techniques, recursive partitioning methods have been widely used

and reported with good results. The three most commonly used categories in this

group are quad-trees, k-d trees, and R-trees. Castelli [5] explained this as the

following:

Quad-trees divide a d-dimensional space into 2d regions by simulta
neously splitting all axes into two parts. Each nonterminal node has
therefore 2d children, and, as in the other two classes of methods, corre
sponds to hyperrectangles aligned with the coordinate axes. K-d trees
divide the space using (d— l)-dimensional hyperplanes perpendicular to
a specific coordinate axis. Each nonterminal node1 has therefore at least
two children. The coordinate axis can be selected using a round-robin
criterion or as a function of the properties of the data indexed by
the node. ... R-trees divide the space into a collection of possibly
overlapping hyperrectangles. Each internal node corresponds to a hy-
perrectangular region of the search space, which generally contains the
hyperrectangular regions of the children. The indexed data is stored at
the leaf nodes of the tree.

Quad-trees are a large class of indexing structures. Besides the classic algorithm

described above, its variation includes region quad-tree, point quad-tree, etc. How

ever, quad-trees are not well-suited for high-dimensional (d > 10) indexing [5]. For

instance, when d = 20, the quad-tree becomes very sparse, i.e., most of its nodes

are empty. In higher dimension, hypersphercs are not well-approximated by hyper

rectangles. Therefore quad-trees are not suitable for o-cut and nearest-neighbor

queries.

43

Vector space indexes represent objects and feature vecto{s a$ sets of points in

a d-dimensional vector space. Metric space indexes pairwise distances between

objects in a set instead of indexing objects. It tries to capture the metric structure

of the search space. Recursive partitioni_ng methods organize the search space into

a tree like structure. Proj ection-based methods employ algorithms that perform

searches on the projections of database point onto a set of directions. SAM indexes

spatial objects, e.g. , lines, polygons, surfaces, solids, etc. PAM index points in

multidimensional spaces. More detailed discussion of indexing structures can be

found in ref. [5, 16, 35].

Among these techniques, recursive partitioning methods have been widely used

and reported with good results . The three most commonly used categories in this

group are quad-trees, k-d trees, and R-trees . Castelli [5] explained this as the

following:

Quad-trees divide a d-dimensional space into 2d regions by simulta
neously splitting all axes into two parts. Each nonterminal node has
therefore 2d children, and , as in the other two classes of methods, corre
sponds to hyperrectangles aligned with the coordinate axes. K-d trees
divide the space using (d - 1)-dimensional hyperplanes perpendicular to
a specific coordinate axis. Each nonterminal node has therefore at least
two children. The coordinate axis can be selected using a round-robin
criterion or as a function of the properties of the data indexed by
the node. R-trees divide the space into a collection of possibly
overlapping hyperrectangles. Each internal node corresponds to a hy
perrect angular region of the search space , vvhich generally contains the
hyperrectangular regions of the children. The indexed data is stored at
the leaf nodes of the tree.

Quad-trees are a large class of indexing structures. Besides the classic algorithm

described above, its variation includes region quad-tree, point quad-tree, etc. How

ever , quad-trees are not well-suited for high-dimensional (d > 10) indexing [5]. For

instance, when d = 20, the quad-tree becomes very sparse, i. e., most of its nodes

are empty. In higher dimension, hyperspheres are not well-approximated by hyper

rectangles. Therefore quad-trees are not suitable for a -cut and nearest-neighbor

quen es.

44

The ^-dimensional tree, known as k-d tree, is another commonly used hierar

chical indexing structure. As its name suggests, it gives better performance than

quad-trees in high-dimensional space. Constructing a k-d tree is more costly than

constructing a quad-tree in general. Furthermore, when the data node cannot be

efficiently split, k-d trees suffer from the utilization imbalance problem. A modified

version, k-d,-b tree, was proposed [31]. Unlike the original version, it supports

dynamic node insertion and deletion. K-d trees are expected to give reasonable

performance for d < 20.

R-trees and their large variations are probably the most-studied multidimen

sional indexing structures. An R-tree splits the space using hyperrectangles rather

than hyperplanes. The properties of R-trees differ from the previous two families as

it allows overlapping rectangles. Derivations of R-trees include /?+-trees, i?*trees,

packed R-trees, X-trees, VAMSplit R-tree, S-tree, etc. It has been reported that

R-tree shows enough efficiency in up to 20 dimensions [11].

3.5.5 Indexing Text Da ta

Text indexing has a much longer history than multimedia data indexing. In

fact, most early research in image retrieval was based on text-based retrieval though

image annotation [5]. However, the researcher then realized image annotation based

retrieval was limited, as to have a human annotate the ever increasing large amount

of image data is not practical. Then we saw the birth and growth of CBIR, On

the other hand, up to date, text-based retrieval has been more successful than

image-based systems. Robot Share utilizes text indexing as well as content based

image indexing.

We unify textual and multimedia sensor data in our system as we believe an

integrated system is easier to maintain and gives a better performance. To achieve

this goal, all text information needs to be represented in numerical vectors and a

low dimensional representation is desired. As suggested in ref. [36], we investigated

the latent semantic indexing (LSI) [8]. Ref. [36] explains LSI as:

44

The k-dimensional tree, known as k-d tree, is another cO.mrnonly used hierar

chical indexing structure. As its name suggests, it gives better performance than

quad- trees in high-dimensional space. Constructing a k-d tree is more costly than

constructing a quad- tree in general. Furthermore, when the data node cannot be

efficient ly spli t, k-d trees suffer from the utilization imbalance problem. A modified

version , k-d-b tree, was proposed [31]. Unlike the original version, it supports

dynamic node insertion and deletion. K-d trees are expected to give reasonable

performance for d ~ 20.

R-trees and their large variations are probably the most-studied multidimen

sional indexing structures. An R-tree splits the space using hyperrectangles rather

than hyperplanes. The properties of R-trees differ from the previous two families as

it allows overlapping rectangles. Derivations of R-trees include R+ -trees, R*trees,

packed R-trees, X-trees , VAMSplit R-tree, S-tree, etc. It has been reported that

R-tree shows enough efficiency in up to 20 dimensions [11].

3.5.5 Indexing Text Data

Text indexing has a much longer history than mult imedia data indexing. In

fact, most early research in image retrieval was based on text-based retrieval though

image annotation [5]. However , the researcher then realized image annotation based

retrieval was limited, as to have a human annotate the ever increasing large amount

of image data is not practical. Then we saw the birth ftnd growth of CBIR. On

the other hand, up to date, text-based retrieval has been more successful than

image-based systems. Robot Share utilizes text indexing as well as content based

image indexing.

vVe unify textual and multimedia sensor data in our system as we believe an

integrated system is easier to maintain and gives a better performance. To achieve

this goal, all text informat ion needs to be represented in numerical vectors and a

low dimensional representation is desired. As suggested in ref. [36], we investigated

the latent semantic indexing (LSI) [8]. Ref. [36] explains LSI as :

45

LSI works by statistically associating related words to,the semantic
context of the given document. The idea is to project words in similar
documents to an implicit underlying semantic structure.

LSI tries to solve the synonymy and polysemy problems. The synonymy problem

is that the same object can be described in multiple words. The polysemy problem

is that a word can mean multiple things. There is a many-to-many relation that

exists between objects and words.

The singular-value decomposition (SVD) is the main workhorse in LSI. The

algorithm used in ref. [36] works in the following way:

• Construct the term x document matrix A, where the element ai?- represents

the frequency of term i in document j . Therefore, each column of the matrix

A is a term histogram of a document.

• Decompose A using the SVD:

A = UJ:VT

where UTU = VTV = I, E = diag{o\,crn), E is the singular value matrix

of A.

• Then select k most significant dimensions from the original space. This is

achieved by selecting the first A: rows in E where ox has a higher value.

• Then the A:-dimensional vector representation of the qM\ document is:

X = qTUkZ^

where q is the word frequency histogram of the qth document, is a matrix

composed of the first k columns in U, and E^ is a matrix composed of the

first k rows and k columns of E.

Ref [8] does not provide a systematic approach in selecting k. The hope is k

should be large enough so most "latent semantic" in one document can be captured.

It is also needs to be small enough so data noise can be removed.

LSI works by statistically associating related words .to the semantic
context of the given docume~t . The idea is to proj ect words in similar
documents to an implicit underlying semantic structure.

45

LSI tries to solve the synonymy and polysemy problems. The synonymy problem
-

is that the same object can be described in multiple words. The polysemy problem

is that a word can mean multiple things. There is a many-to-many relation that

exists between objects and words.

The singular-value decomposition (SVD) is the main workhorse 111 LSI. The

algorithm used in ref. [36] works in the following way:

• Construct the t erm x document matrix A, where the element a ij represents

the frequency of term i in document j . Therefore, each column of the matrix

A is a term histogram of a document.

• Decompose A using the SVD:

where UTU = VTV = I , ~ = diag(O'l , ... , O'n) , ~ is the singular value matrix

of A.

• Then select k: most significant dimensions from the original space. This is

achieved by selecting the first k: rows in ~ where O'i has a higher value.

• Then the k-dimensional vector representation of the qth document is:

where q is the word frequency histogram of the qth document , Uk is a matrix

composed of the first k columns in U, and ~k is a matrix composed of the

first k rows and k columns of ~.

Ref [8] does not provide a systematic approach in selecting k. The hope is k

should be large enough so most "latent semantic" in one document can be captured.

It is also needs to be small enough so data noise can be removed.

46

3.6.1 Indexing Structure Considera t ion

In the previous chapter, we explained that representing objects in a vector space

is a sensible approach for the construction of indexing structures. However, there

was a debate on whether a unified single indexing structure (Figure 3.4.) is better

than a set of small, potentially heterogeneous, indexing structures (Figure 3.5.)

Considering the need of knowledge representation, a unified single indexing struc

ture requires a long vector concatenated by a set of small vectors, where each small

vector records certain property of the object. A set of smaller indexing structures

requires every small indexing structure to take a small vector. Therefore there is

no need to concatenate vectors, which represent different properties, into a long

one. Hence objects are effectively represented by arrays of vectors. The previous

chapter summarized the advantage of the unified long vector approach as simple,

easy to implement and maintain and the advantages of the set of small vectors as

more elegant and having better performance with incomplete queries. We see more

evidence points that the set-of-small-vectors approach is a more feasible solution if

more things are taken into consideration.

X M L

c ->

Indexing
Structure

V)

Response
Fonnalizer XML

Figure 3.4. The Singie-indexing-structure Architecture.

3.6 Robot Share Architecture
After reviewing the concept and related technologies of search engine, we are

ready to present the Robot Share architecture. We first revisit the single indexing

structure vs. multiple indexing structure discussion; then we give detailed discus

sion on each component in Robot Share.

46

3.6 Robot Share Architectur.e

After reviewing the concept and rela ted technologies of search engine, we are

ready to present the Robot Share archi tecture. vVe first revisit the single indexing

structure vs. multiple indexing s tructUI~e discussion; then we give det ailed discus

sion on each component in Robot Share.

3.6.1 Indexing Structure Consideration

In the previous chapter , we explained t ha t representing obj ects in a vector space

is a sensible approach for the construction of indexing structures. However , there

was a debate on whe ther a unified single indexing structure (Figure 3.4.) is better

than a set of small, potentially heterogeneous, indexing structures (Figure 3.5.)

Considering the need of knowledge representation , a unified single indexing struc

ture requires a long vector concatenated by a set of small vectors, where each small

vector records certain property of the obj ect. A set of smaller indexing structures

requires every small indexing structure to take a small vector. Therefore there is

no need t o concatenate vectors, which represent different properties, into a long

one. Hence obj ects are effectively represented by arrays of vectors. The previous

chapter summarized the advantage of t he unified long vector approach as simple,

easy to implement and maintain and the advantages of the set of small vectors as

more elegant and having better performance with incomplete queries. vVe see more

evidence points that the set-of-small-vectors approach is a more feasible solution if

more things are taken into consideration .

~ r---

Query --.. Indexing Response
XML 1-'- Processor Structure FOrInalizer I-+- XML

'--------'

Figure 3.4. The Single-indexing-structure Architecture.

47

Indexing
Structure I

X M U
Query

Processor
Indexing
Structure II

Cross Response
Analyzer Formal izer XML

Indexing
Structure III

Figure 3.5. The Multi-indexing-structure Architecture.

First, the curse of dimensionality determines that the length of vectors used for

indexing needs to be short. Even though various mathematical techniques help to

reduce the size of long vectors, such as histograms, there is a limit on the amount

of size reduction can be applied without losing a significant amount of information.

One good way to measure the amount information that has been preserved after

dimension reduction is to compare the confusion matrix that is generated using the

original data, i.e., long length vectors, against the confusion matrix generated using

reduced vectors. Since a confusion matrix is a good measure of the classifying power

of a certain property of an object, comparing two confusion matrices is informative.

If too much information has been lost, then this resulted representation loses the

power of classifying object. For example, edge histograms are usually good at

distinguishing objects, where each histogram can contain more than a hundred bins,

hence each of these histograms is represented by a vector with more than a hundred

elements (256 in our sample data.) If we compare distances between histograms

stored in our database, we can construct a confusion matrix, which shows how those

histograms can be classified. A similar confusion matrix can be constructed using

reduced vector, e.g., approximate a histogram by a fourth-order polynomial, and

the five coefficients can be used to represent the original histogram. The second

matrix cannot be identical to the first, as some amount of information must be lost

during dimensional reduction. However, if the second matrix is close enough to

,--------..

XML

'----------'

Query
-~ Processor ~

"'"

Indexing
Structure 1

Indexing
Structure 11 -

Indexin g
Structure III

~
Cross Response

r---- Analyzer Formalizer

/

Figure 3.5 . The Multi-indexing-structure Architecture.

47

,--------..

XML

First , the curse of dimensionality determines that the length of vectors used for

indexing needs to be short. Even though various mathematical techniques help to

reduce the size of long vectors , such as histograms, there is a limit on the amount

of size reduction can be applied without losing a significant amount of information.

One good way to measure the amount information that has been preserved after

dimension reduction is to compare the confusion matrix that is generated using the

original data, i. e., long length vectors, against the confusion matrix generated using

reduced vectors. Since a confusion matrix is a good measure of the classifying power

of a certain property of an object , comparing two confusion matrices is informative.

If too much information has been lost, then this resulted representation loses the

power of classifying object . For example, edge histograms are usually good at

dist inguishing obj ects, where each histogram can contain more than a hundred bins,

hence each of these histograms is represented by a vector with more than a hundred

elements (256 in our sample dat a.) If we compare distances between histograms

stored in our database, we can construct a confusion matrix, which shows how those

histograms can be classified . A similar confusion matrix can be construct ed using

reduced vector , e.g., approximate a histogram by a fourth-order polynomial, and

the five coefficients can be used to represent t he origina.l hist.ogram. The second

matrix cannot be identical to the first , as some amount of informat ion must be lost

during dimensional reduction. However , if the second mat rix is close enough to

48

the first matrix, then we conclude that the classifying power of the original data is

mostly preserved.1 A series of experiments have shown that transforming a 256-bin

histogram to a 5-element vector using polynomial coefficient representation yields

a reasonable performance. More aggressive reductions sacrifice from performance

losses. However, in our sample data, each object contains eight histograms. Even

if all of them are reduced to 5-element vectors, the length of the concatenated final

vector approaches 50. Building a indexing structure supports a 50-dimensional

space without suffering from the curse of dimensionality is a challenge.

Second, from a software engineering point of view, a single big indexing structure

suffers from poor scalability. One of the most significant characteristics distin

guishes Robot Share from other work in multimedia database or CBIR is the

flexibility Robot Share aims at. Robot Share is designed to support as many data

format/object representations as possible. However, if we commit to a specifically

designed indexing structure for all data Robot Share takes, then it is very likely that

the desired system flexibility will be lost. On the contrary, if we divide indexing

structures into multiple ones, where each of them handles one type of data, it will

be easy to add more object properties by adding more indexing components.

We had briefly mentioned before was separating indexing component into smaller

ones could help us to improve the performance of each of these components. For

example, in the current implementation, LSI is used to handle text data. Even

though we report good retrieval results with LSI, it inherently has the problem

of being too static, as adding any new document into the database requires a

recompute on the entire structure. Any modification made to keywords requires a

1 No te that wc are not stating that a transformation from a high dimension to a lower one
always decreases the classifying power. It is possible that in certain cases, a low-dimensional
representation has more classifying power than its high-dimensional counterpart. For two reasons,
(1) data stored in the high dimension vector are intercorrelated, so information redundancy exists;
(2) some portion of the high dimension data is noise. In either case , the high dimension to low
dimension transformation works more like a low pass filter, where useful information is extracted
from the original data. However, for the purpose of this discussion, i.e., transforming a 256-bin
edge histogram to a 5-element vector, we always see losing classification power rather than gaining
it. Hence the difference between the two confusion matrices can always be interpreted as a loss
of classifying power.

48

the firs t matrix , then we conclude that t he classifying power of the original da ta is

mostly preservecP A series of experiments have shown that transforming a 256-bin

histogram to a 5-element vector using polynomial coefficient representa tion yields

a reasonable performance. lVlore aggressive reductions sacrifice from performance

losses. However , in our sample data, each obj ect contains eight histograms. Even

if all of them are reduced to 5-element vectors, the length of the concatenated final

vector approaches 50. Building a indexing structure supports a 50-dimensional

space without suffering from the curse of dimensionality is a challenge.

Second, from a software engineering point of view, a single big indexing structure

sufFers from poor scalability. One of the most significant characteristi cs distin

guishes Robot Share from other work in multimedia dat abase or CBIR is the

flexibili ty Robot Share aims a t. Robot Share is designed to support as many dat a

format / obj ect representations as possible. However , if we commit to a specifically

designed indexing structure for all data Robot Share t akes, then it is very likely that

the desired system fl exibility will be lost. On the cont rary, if we divide indexing

structures into multiple ones, where each of them handles one type of da ta , it will

be easy to add more object properties by adding more indexing components.

vVe had briefly mentioned before was separating indexing component into smaller

ones could help us to improve the performance of each of the::;e components. For

example, in the current implementation , LSI is used to handle text da ta . Even

though we report good retrieval results with LSI , it inherently has the problem

of beillg too static, as adding any new document into the database requires a

recompute on the entire structure. Any modification made to keywords requires a

1 Note tha t we are not sta ting that a transformation from a high dimension to a lower one
always decreases the classifying power . It is possible tha t in certain cases, a low-dimensional
representation has more classifying power than its high-dimensional coun terpar t . For two reasons,
(1) data stored in the high dimension vector are intercorrelated , so information redundancy exists;
(2) some portion of the high dimension da ta is noise . In either case , the high dimension to low
dimension transform ation works more like a low pass filter , where useful information is extracted
from the original data . However , for the purpose of this disc Llssion , i. e. , transforming a 256-bin
edge histogram to a 5-element vector , \ove always see losing classification power rather than gainillg
it. Hence the difference between the two confusion matrices can always be interpreted as a loss
of classifying power .

49

recompute as well. It has been noticed that a SVD decomposition, which is at the

core of LSI, is computationally expensive. Therefore, we may need to reconsider

if there is any substitute, as we can replace the text indexing component with the

new module without worrying about the rest of Robot Share. Another example

is finding better transformations for histograms. Different histograms come in

different shapes, hence they are better if approximated using different techniques,

e.g., polynomial approximation and trigonometry function approximation. If we

separate the indexing structure into components, we can efficiently study each

component hence achieving a better overall performance.

Robot Share supports both instance-based query and class-based query. Instance-

based query focuses on finding additional information for a particular object. Class-

based query focuses on object classification. Even though both of the single-big-

indexing-structure and the set-of-small-indexing-structures are able to perforin the

instance-based query, the single indexing structure struggles to support class-based

queries. For instance, there are four objects stored in the database, two bowls and

two knives. Two bowls are represented by: [1,2,2], [10,2,2]: and two knives are

represented by [1,8,8] and [10,8,8]. The confusion matrix measured using LI is:

Based on measured distances using LI, two bowls are grouped together in one

group while two knives are also grouped together in another group. Figure 3.6 shows

a k-d tree placement of these four vectors. In this case, suppose a bowl represented

by [1,1,1] is received for a query, even though the closest bowl, represented as

[1,2,2], is returned correctly; the other bowl, [10,2,2], will be missed, and the

knife, represented as [1,8,8], is also incorrectly returned. The upshot is, indexing

structure such as a k-d tree is best for the nearest neighbor query. Its performance

on fc-nearest-neighbor queries is largely data depended. Therefore, if we are able

to separate a large k-d tree into a few smaller ones, we have more control over

the search procedure, hence better retrieval performance can be achieved. For

" 0 9
9 0
12 21
21 12

12 21 "
21 12

0 9
9 0

49

recompute as well . It has been noticed that a SVD decompoqition , which is at the

core of LSI, is computationally expensive. Therefore, we may need to reconsider

if there is any substitute, as we can replace the t ext indexing component with the

new module without worrying about the rest of Robot Share. Another example

is findin g better transformations for histograms. Different histograms come in

different shapes, hence they are better if approximated using different techniques,

e.g., polynomial approximation and trigonometry function approximation. If we

separate the indexing structure into components, we can efficiently study each

component hence achieving a better overall performance.

Robot Share supports both instance-based query and class-based query. Instance

based query fo cuses on finding addit ional information for a particular object. Class

based query fo cuses on object classification. Even though both of the single-big

indexing-structure and the set-of-small-indexing-structures are able to perform the

instance-based query, the single indexing structure struggles to support class-based

queries . For instance, there are four objects stored in the database, two bowls and

two knives. Two bowls are represented by: [1,2 , 2]' [10 , 2, 2]; and two knives are

represented by [1,8,8] and [10, 8, 8]. The confusion matrix measured using L1 is:

l 0 9 12 21 j
9 0 21 12
12 21 0 9
21 12 9 0

Based on measured distances using L1 , two bowls are grouped together in one

group while two knives are also grouped together in another group. Figure 3.6 shows

a k-d tree placement of these four vectors. In this case, suppose a bowl represented

by [1, 1, 1] is received for a query, even though the closest bowl, represented as

[1,2 , 2]' is returned correctly; the other bowl, [10,2,2]' will be missed , and the

knife, represented as [1,8,8], is also incorrectly returned. The upshot is, indexing

structure such as a k-d tree is best for the nearest neighbor query. Its performance

on k-nearest-neighbor queries is largely data depended. Therefore, if we are able

to separate a large k-d tree into a few smaller ones, we have more control over

the search procedure, hence better retrieval performance can be achieved. For

50

[1 2 2]
[18 8]

[10 2 2]
[10 8 8]

Figure 3.6. K-d Tree Structure of Two Bowls and Two Knives.

instance, we can use weight coefficients to put emphasis on properties that might

better classify a certain group of objects than other properties. It can be viewed

that we can use weight coefficient to dynamically enlarge or shrink the space in

different dimensions. For instance, if we want to ignore certain features in a query,

we put a small weight coefficient for this feature. This is equivalent to shrinking the

space in dimensions that represent this feature. In this case, coordinates of objects

in these dimensions no longer matter, as distances between points are dominated

by distances measured in other dimensions.

Based on these four reasons, even though the set-of-small-indexing-structure

approach has disadvantages in its complexity, we build Robot Share using this

approach.

3.6.2 R o b o t Share C o m p o n e n t

In the current implementation, Robot Share is composed of four groups of

components: a query processor, indexing structures, a cross analyzer and a response

forrnalizer. In the future, a feedback analyzer can be added into the system.

[1 2 2]
[1 8 8]

Root

[1022]
[10 8 8]

F igu re 3 .6. K-d Tree Structure of Two Bowls and Two Knives.

50

instance, we can use weight coefficients to put emphasis on properties that might

better classify a certain group of objects than other properties. It can be viewed

that we can use weight coefficient to dynamically enlarge or shrink the space in

different dimensions. For instance, if we want to ignore certain features in a query,

we put a sma.ll weight coefficient. for t his feature. This is equivalent to shrinking the

space in dimensions that represent this feature. In this case, coordinates of objects

in these dimensions no longer matter, as distances between points are dominated

by distances measured in other dimensions.

Based on these four reasons, even though the set-of-small-indexing-structure

approach has disadvantages in its complexity, we build Robot Share using this

approach.

3.6 .2 R ob ot Share Com ponent

In the current implementation , Robot Share is composed of four groups of

components: a query processor, indexing structures, a cross analyzer and a response

formalizer. In the future , a feedback analyzer can be added into the system.

51

The query processor is the first component in a Robot .Share query process.

It takes queries, in the format of XML hies, and translates them into an array of

vectors and sends each vector to a corresponding indexing structure to find matches.

The query processor functions as a simple XML parser as it converts data stored in

XML to vectors, and computes various derived features from raw data stored in the

XML file. For instance, for object knowledge, it computes color and edge histograms

and transforms them into low dimensional representations. It also computes the

vector representation of text information into vectors using LSI. In the future, the

query processor could be built more intelligently so it not only parses data but also

preprocesses them. For example, currently, robots perform image segmentation if

a query contains an image. We may later add an image segmentation component

into the query processor.

Another interesting topic to be studied is to have the query processor to discover

underlying relations between information stored in different fields in the same

object. For example, when an object conies with an image and a text description

as a "yellow bowl," a color histogram is computed from the image. We know there

is an underlying relation between the word "yellow" and the shape of the color

histogram. Developing a systematic approach to discover all relations cross feature

fields is an open problem. If a such an approach is developed, among other things,

it can help Robot Share to approximate missing fields in both queries and data

entries stored in its database, and possibly improve the retrieval performance.

The second group of components is indexing structures. They are arguably

the most significant group of components in Robot Share. They take inputs from

the query processor in form of vectors, and produce ordered lists of objects. They

sort objects using measures between the query sample and objects stored in Robot

Share and return the sorted list.

In the current implementation, 11 indexing components are created for object

knowledge processing. Six of them are built for color histograms (two images of

an object, three color channels in each image); two of them are built for edge

histograms (two images for each object); one of them is built for text data produced

51

The query processor is the first component in a Robot .Sh4re query process.

It takes queries, in t he format of XML files, and translates t hem into an array of

vectors and sends each vector to a corresponding indexing structure to find matches.

The query processor functions as a simp!e XML parser as it converts data stored in

XML to vectors, and computes various derived features from raw data stored in the

XML file. For instance, for object knowledge, it computes color and edge histograms

and transforms them into low dimensional representations. It also computes the

vector representation of text information into vectors using LSI. In the future , the

query processor could be built more intelligently so it not only parses data but also

preprocesses them. For example, currently, robots perform image segmentation if

a query contains an image. We may later add an image segmentation component

into the query processor.

Another interesting topic to be studied is to have the query processor to discover

underlying relations between information stored in different field. in the same

object . For example, when an object comes with an image and a text description

as a "yellow bowl," a color histogram is computed from the image. We know there

is an underlying relation between the word "yellow" and the shape of the color

histogram. Developing a systematic approach to discover all relations cross feature

fields is an open problem. If a such an approach is developed , among other things ,

it can help Robot Share to approximate missing fields in both queries and data

entries stored in its database, and possibly improve the retrieval performance.

The second group of components is indexing structures . They are arguably

the most significant group of components in Robot Share. They take inputs from

the query processor in form of vectors, and produce ordered lists of objects. They

sort objects using measures between the query sample and objects stored in Robot

Share and return the sorted list.

In the current implementation , 11 indexing components are created for object

knowledge processmg. Six of them are built for color histograms (two images of

an object, three color channels in each image); two of them are built for edge

histograms (two images for each ob.iect); one of them is built for text data produced

52

from an LSI process; one of them is built for dimensional information of the object,

i.e., length, height, width, and the cube root of the product of the three; the last

indexing structure is built for the weight measure of an object. These properties are

summarized in Table 3.1. K-d trees have been used to index all of these fields except

the weight measure, which uses a binary tree. In all k-d trees, branch dimensions

are selected in the round-robin fashion. Branching starts from the left most element

of a vector. This decision is made due to the fact that the eight histograms in one

object are all approximated by polynomials, in which high order terms contribute

more to the shape of the polynomial. Text data are processed by LSI, which has

the same property that high order terms capture more information than low order

ones. All indexing components return 15 items for each query, except the LSI text

indexing and dimensional properties component, in which 30 items are returned.

For activity knowledge, in contrast to the 11 index structures developed for ob

ject knowledge sharing, 12 index structures are constructed for activity recognition

as 12 trajectories are selected from each activity. K-d trees are used to index all

trajectories. For the reason described above, branch dimensions in each k-d tree

are selected in a round-robin fashion. Each indexing component returns five items

Table 3.1. The Robot Share Component Length Summary.

C o m p o n e n t V e c t o r Length Re tu rned i tems
Red Channel (iml) 5 15

Green Channel (iml) 5 15
Blue Channel (iml) 5 15
Red Channel (irn2) 5 15

Green Channel (im2) 5 15
Blue Channel (im2) 5 15

Edge Orientation (iml) 5 15
Edge Orientation (im.2) 5 15

Text Data 4 30
Dimensional Properties 4 30

Weight 1 15

52

from an LSI process; one of them is built for dimensional infor:mation of the object,

i. e., length , height , width , and the cube root of the product of the three; the last

indexing structure is built for the weight measure of an ob.i ect. These properties are

summarized in Table 3.1. K -cl trees have been u ed to index all of these fields except

the weight measure, which uses a binary tree. In all k-cl trees, branch dimensions

are selected in the round-robin fashion. Branching starts from the left most element

of a vector. This decision is made due to the fact that the eight histograms in one

object are all approximated by polynomials, in which high order terms contribute

more to the shape of the polynomial. Text data are processed by LSI , which has

the same property that high order terms capture more information than low order

ones. All indexing components return 15 items for each query, except the LSI text

indexing and dimensional properties component , in which 30 items are returned.

For activity knowledge, in contrast to the 11 index structures developed for ob

ject knowledge sharing, 12 index structures are constructed for activity recognition

as 12 trajectories are selected from each activity. K -cl trees are used to index all

traj ectories. For the reason described above, branch dimensions in each k-cl tree

are selected in a round-robin fashion. Each indexing component returns five items

Table 3 .1. The Robot Share Component Length Summary.

Component Vector Length Returned items
Red Channel (iml) 5 15

Green Channel (iml) 5 15
Blue Channel (iml) 5 15
Red Channel (im2) 5 15

Green Channel (im2) 5 15
Blue Channel (im2) 5 15

Edge Orientation (iml) 5 15
Edge Orientation (im2) 5 15

Text Data 4 30
Dimensional Properties 4 30

'Weight 1 15

53

for each query. Items are then sent to the next module in Robot Share, the cross

analyzer.

The cross analyzer takes item lists from each indexing component, "cross an

alyzes" them and produces a single sorted list. Cross analyzer creates the sorted

list based on a weighted summation of all query-item distances. The cross analyzer

first creates a list containing all received items. It then computes distance from

the query sample to every item in the list. The distance measure is a weighted LI,

which can be expressed as, the overall distance D(A, B) between two objects A and

B is equal to:
k

D(AiB) = 'E\widi(Ai,Bi)\.
i=l

In this equation, k equals to the number of fields presented in the query, wl is

the weight coefficient of the zth component, and di is the distance between zth

components in the two objects. All <-/,(. 1,. /;>,) are computed using the LI distance

measure, where
k

d.j(At, Bi) = ^ | A ; , j ~~
.7=1

For all image histograms represented by polynomial coefficients, k equals to 5;

for the LSI indexed text field, k equals to 4; and for the singleton weight field,

k equals to 1. We are at the very beginning stage of developing a systematic

approach of computing weight coefficients Wi. The ideal ranking order is query

dependent. It is related to the intentional use of the knowledge, the content of

the database, and the content of the emery template. To find optimal weight

coefficients, information about query robots must be taken into consideration.

Currently, a static analysis approach is taken. We design experiments for various

data conditions and query types. In each experiment, we evaluate Robot Share

performance using the standard information retrieval measures: precision and recall

[41]. We then search for weight coefficients that maximize these measures. The

searching algorithm is an n-dimensional binary search, which is a good compromise

between simplicity and performance.

53

for each qucry. Items are then sent to the next module in R.obot Share , the cross

analyzer.

The cross analyzer takes item lists from each indexing component , "cross an

alyzes" them and produces a single sorted list . Cross analyzer creates the sorted

list based on a weighted summation of all query-item distances. The cross analyzer

first creates a list containing all received items. It then computes distance from

the query sample to every item in the list. The distance measure is a weighted L1 ,

which can be expressed as, the overall distance D(A, B) between two obj ects A and

B is equal to:
k

D(A , B) = L IWidi(A, Bi)l ·
i = l

In this equation, k equals to the number of fields presented 111 the query, Wi is

the weight coefficient of the ith component , and di is the distance between ith

components in the two obj ects. All di(Ai , Bi) are computed using the L1 distance

measure, where
k

di(Ai, Bi) = L IAi,j - Bi,.i l·
j = l

For all Image histograms represented by polynomial coefficients, k equals to 5;

for the LSI indexed text field , k equals to 4; and for the singleton weight field ,

k equals to 1. \Ne are at the very beginning st age of developing a systematic

approach of computing weight coefficients Wi . The ideal ranking order is query

dependent. It is related to the intentional use of the knowledge, the contcnt of

the datab ase , and the content of the query template . To find optimal weight

coefficients, information about query robots must be taken into consideration.

Currently, a static analysis approach is t aken. vVe design experiments for various

data conditions and query types. In each experiment, we evaluate Robot Share

performance using the st andard information retrieval measures: precision and recall

[41]. We then search for weight coefficients tha t maximize these measures. The

searching algorithm is an n-dimensional binary search , which is a good compromise

between simplicity and performance.

54

There are two special cases making the distance computation more complicated.

They are both related to missing fields in objects. The first case is: the query

comes incomplete, e.g., a query that has no text description or misses one image.

In this case, only indexing structures that associate with presented fields are used.

As briefly mentioned in the previous section, if Robot Share is able to discover the

underlying relations between fields, it is possible for Robot Share to fill some of these

missing fields. We also consider objects stored in Robot Share that contain missing

fields. In this case, ignoring information contained in queries by not using indexing

structures associated with these fields would certainly yield a poor performance

as (a) there are objects stored in Robot Share containing these fields and some of

them could be what the querying robot looks for. Not using information stored in

these fields can negatively impact the ranking of these objects, (b) Robot Share

should utilize as much information in a query as possible. However, if Robot Share

uses all indexing structures, then the distance between fields in the query sample

and objects stored in Robot Share has to be estimated for objects with missing

fields. This distance is approximated by measuring the query sample to a pseudo

object, which approximates a missing field with the sample mean of that field.

This approximation may not be a very good choice as when the sample variance is

large, the sample mean becomes less representative of the actual value of an object.

Future research is required to solve this problem better.

Once distances between the query sample and all items returned by indexing

structure are computed, the cross analyzer sorts the item list based on these

distances and sends the sorted list to the next module: the response formalize!".

The response formalizer takes input, which is a sorted object list from the cross

analyzer, and generates an XML file that is understandable to the querying robot.

The size of returned files, i.e., the length of the returned list, should be large enough

so there is a, high chance for the querying robot to find the information it needs

in the returned file. The file also needs to be reasonablely small so (a) the file

transmission can be done in a small amount of time and (b) after receiving the file,

a robot can determine if any useful information can be found in this file quickly. To

54

There are two special cases making the distance computationI}1ore complicated.

They are both related to missing fi elds in objects. The first case is: the query

comes incomplete, e.g., a query that has no text description or misses one image.

In this case, only indexing structures th~t associate with presented fields are used.

As briefly mentioned in the previous section , if Robot Share is able to discover the

underlying relations between fields, it is possible for Robot Share to fill some of these

missing fields. We also consider obj ects stored in Robot Share that contain missing

fields. In this case, ignoring information contained in queries by not using indexing

structures associated with these fields would certainly yield a poor performance

as (a) there are objects stored in Robot Share containing these fields and some of

them could be what the querying robot looks for. Not using information stored in

these fields can negatively impact the ranking of these obj ects. (b) Robot Share

should utilize as much information in a query as possible. However , if Robot Share

uses all indexing structures, then the distance between fields in the query sample

and objects stored in Robot Share has to be estimated for objects with missing

fields. This distance is approximated by measuring the query sample to a pseudo

obj ect, which approximates a missing field with the sample mean of that field.

This approximation may not be a very good choice as when the sample variance is

large, the sample mean becomes less representative of the actual value of an object.

Future research is required to solve this problem better.

Once distances between the query sample and all items returned by indexing

structure are computed, the cross analyzer sorts the item list based on these

distances and sends the sorted list to the next module: the response formalizer.

The response formalizer takes input , which is a sorted obj ect list from the cross

analyzer , and generates an Xl\IL file that is understandable to the querying robot.

The size of returned fil es, i. e., the length of the returned list, should be large enough

so there is a high chance for the querying robot to find the information it needs

in the returned file. The fi le also needs to be reasonablely small so (a) t.he fi le

transmission can be done in a small amount of time and (b) after receiving the file,

a robot can determine if any useful information can be found in this file quickly. To

55

find a compromise between these two requirements, there are two questions to be

answered: (a) how many results should be returned, and (b) what information does

one result contain? In the current implementation, for object knowledge, every

indexing components returns either 30 or 15 items to the cross analyzer, and there

are 11 indexing components in Robot Share, so the number of items generated by

the cross analyzer ranges from 30 to 180. If all indexing components return the

same set of items, then the length of the list cross analyzer generated is 30. If all

indexing components return lists that are mutually exclusive to each other, then

the length of the the list generated by the cross analyzer is 180. It is simple for

Robot Share to adjust the length of its returned list. As if more return items are

desired, Robot Share can increase the items returned by each indexing component;

if fewer items are demanded, Robot Share can cut off the return list created by the

cross analyzer. As for the content of a result, the most important information is

URL links to web addresses, where original object data can be found. It also would

be useful that certain object information, which is stored in R,obot Share, could

be presented to a querying robot along with the URL. So the querying robot can

quickly scan through the list to eliminate objects that are not interesting to the

robot. The format of returned XML files can be expressed in a simple grammar.

The definition of the grammar is included in Appendix C.

55

find a compromise between these two requirements , there ar.e two questions to .be

answered: (a) how many results should be returned , and (b) what information does

one result contain? In the current implementation, for object knowledge, every

indexing components returns either 30 <?r 15 items to the cross analyzer, and there

are 11 indexing components in Robot Share, so the number of items generated by

the cross analyzer ranges from 30 to 180. If all indexing components return the

same set of items, then the length of the list cross analyzer generated is 30. If all

indexing components return lists that are mutually exclusive to each other, then

the length of the the list generated by the cross analyzer is 180. It is simple for

Robot Share to adjust the length of its returned list. As if more return items are

desired, Robot Share can increase the items returned by each indexing component ;

if fewer items are demanded, Robot Share can cut off the return list created by the

cross analyzer. As for the content of a result , the most important information is

URL links to web addresses, where original object data can be found. It also would

be useful that certain object information , which is stored in Robot Share, could

be presented to a querying robot along with the URL. So the querying robot can

quickly scan through the list to eliminate objects that are not interesting to the

robot. The format of returned Xl'vIL fi les can be expressed in a simple grammar.

The defini tion of the grammar is included in Appendix C.

C H A P T E R 4

K N O W L E D G E EXPLOITATION

In the previous chapter, we have discussed the architecture of Robot Share

and reasons behind a number of design choices. This chapter is dedicated to

performance studies of Robot Share. One can realize that giving a complete

evaluation to a complex system like Robot Share is a challenging task. To make

this task manageable, we limit the scope of our study and divide the evaluation into

small areas. Each area focuses on one performance aspect of Robot Share. These

performance tests give us a comprehensive overview of the system and help us to

study future improvement.

4.1 Object Knowledge Experiment
This section presents Robot Share performance on object knowledge. In all

of these experiments, we have used common information retrieval performance

measures, precision and recall, to evaluate our system. Precision in information

retrieval is defined as the following:

[relevant document f] retrieveddocuments]
'precision — . — . .

I retrieveddocuments \

It is a measure of the percentage of results that are desired in the total retrieved

list. Recall in information retrieval is defined as:

.. [relevant document fl retrieveddocuments]
recall —

| relevant documents \

CHA]?TER 4

KNOWLEDGE EXPLOITATION

In the prevIOUS chapter , we have discussed the architecture of Robot Share

and reasons behind a number of design choices. This chapter is dedicated to

performance studies of Robot Share. One can realize that giving a complete

evaluation to a complex system like Robot Share is a challenging task. To make

this task manageable, we limit the scope of our study and divide the evaluation into

small areas. Each area focuses on one performance aspect of Robot Share. These

performance tests give us a comprehensive overview of the system and help us to

study future improvement.

4.1 Object Knowledge Experiment

This section presents Robot Share performance on object knowledge. In all

of these experiments, we have used common information retrieval performance

measures , precision and recall , to evaluate our system. Precision in information

retrieval is defined as the following:

. . Ir elevantdocument n retrieveddocurnentsl
preC'lswn = . I retrieveddocuments I

It is a measure of the percentage of results that are desired in the total retrieved

list. Recall in information retrieval is defined as:

Ire levantdocument n retrieveddocum entsl
r ecall = ~------~--------------~------~

IrelevantdoC'uments I

57

Recall is the percentage of desired retrieval results in the entire database. Neither

precession nor recall alone can indicate the performance of an information retrieval

system1. But by combining the two, a comprehensive evaluation can be reached.

4.1.1 General Per formance

We first examine how Robot Share performs in general. Two hundred samples

are randomly selected from the R,obot Share database. They are used as query

templates to query Robot Share. The Robot Share sample database contains 480

sample objects that are derived from 16 real world collected sample objects. Each

object duplicates 29 copies, and 20% random noise is added to each copy. All

samples in the Robot Share database, including query samples, are complete, i.e.,

there is no missing information in either queries or database samples. Weight

coefficients used for distance measure, in the cross analyzer, are set to one. All

items returned from Robot Share are retrieved. Relevant items are siblings of

images that are duplicated from the same sample object with added noise. One

result, measured in precision and recall, is presented in Table 4.1.

We can observe that the recall for this experiment reaches its highest possible

value, one. Due to the relatively large number of retrieved documents, and the

relatively small number of relevant items in the database, the precision is on the

low side.

We then define relevant items as items from the same class, i.e., bowls, knives,

etc. In this setting, the range of relevant items are enlarged. This test examines

how Robot Share perform on class-based queries.

From Table 4.2 we can see that since the average number of relevant items grows

and the number of retrieved stays unchanged, the precision grows. For the same

reason, the recall drops.

'Precision approaches one (the highest score it can reach) when the number of retrieved
document approaches zero; recall reaches one (the highest score it can reach) when the number
of retrieved document approaches the size of the database. Neither of the two situations satisfies
a user's need though the measure is high.

57

Recall is the percentage of desired retrieval results in the entire database. Neither

precession nor recall alone can indicate the performance of an information retrieval

system1 . But by combining the two, a comprehensive evaluation can be reached.

4.1.1 General Performance

We first examine how Robot Share performs in general. Two hundred samples

are randomly selected from the Robot Share database. They are used as query

templates to query Robot Share. The Robot Share sample database contains 480

sample objects that are derived from 16 real world collected sample objects. Each

object duplicates 29 copies, and 20% random noise is added to each copy. All

samples in the Robot Share database, including ql.lery samples, are complete, i. e.,

there is no missing information in either queries or database samples . \ l\Teight

coefficients used for distance measure, in the cross analyzer, are set to one. All

items returned from Robot Share are retrieved. Relevant items are siblings of

images that are duplicated from the same sample object with added noise. One

result , measured in precision and recall , is presented in Table 4.l.

\l\Te can observe that the recall for this experiment reaches its highest possible

value , one. Due to the relatively large number of retrieved documents , and the

relatively small number of relevant items in the database , the precision is on the

low side.

vVe then define relevant items as items from the same class, i.e. , bowls, knives,

etc. In this setting, the range of relevant items are enlarged. This test examines

how Robot Share perform on class-based queries.

From Table 4.2 we can see that since the average number of relevant items grows

and the number of retrieved stays unchanged, the precision grows. For the same

reason, the recall drops.

J Precision approaches one (the highest score it can reach) when the number of retrieved
document approaches zero; recall reaches one (the highest score it can reach) when the number
of retrieved document approaches the size of the database. Neither of the two situations satisfies
a user 's need though the measure is high.

58

Table 4.1. Performance Test 1.1a

M i n M a x Med ian M e a n Variance
Precision

Recall
Retrieved

0.2113
1

51

0.5882
1

142

0.3704
1

81

0.3677
1

84.8400

0.0048
0

321.5723

Table 4.2. Performance Test L i b

M i n M a x Med ian M e a n Variance
Precision

Recall
Retrieved

0.3488
0.2500

55

0.9178
1

130

0.6066
0.5583

80.5000

0.6117
0.5668

83.2200

0.0156
0.0240

239.8097

4.1.2 Query wi th Missing Fields

Robot Share is designed to be robust enough to handle incomplete queries, i.e.,

queries that miss certain fields. Robot Share also handles incomplete records, i.e.,

missing certain fields in objects from the Robot Share database. In the case of

an incomplete query (Table 4.3 shows an example of a query representation that

contains only one image and no weight measure), Robot Share utilizes information

from fields that contain data. In the case of an incomplete record, Robot Share

estimates values in a missing field using sample means from the database.

We first present performance data of Robot Share on incomplete queries. Results

of queries that miss one image and weight measure are shown in Table 4.4. The

first half of the table shows results from siblings relevant searches, and the second

half of the table shows results from class searches. (All subsequent tables follow

this format.)

Results can be interpreted as the following. We measure precision using all

objects returned by Robot Share, and the number of items returned depends on

the number of indexing components used for a query. In the case of missing fields in

a query, the number of involved indexing components reduces. Therefore the overall

number of returned items reduces. So the precision of searches grows. Compared

58

Table 4.1. Performance Test 1.1a

Min Max Median Mean Variance
Precision 0.2113 0.5882 0.3704 0.3677 0.0048

Recall 1 1 - 1 1 0
Retrieved 51 142 81 84 .8400 321.5723

Table 4.2. Performance Test LIb

Min Max Median Mean Variance
Precision 0.3488 0.9178 0.6066 0.6117 0.0156

Recall 0.2500 1 0.5583 0.5668 0.0240
Retrieved 55 130 80.5000 83 .2200 239 .8097

4.1.2 Query with Missing Fields

Robot Share is designed to be robust enough to handle incomplete queries, i.e.,

queries that miss certain fields. Robot Share also handles incomplete records, i.e.,

missing certain fields in objects from the Robot Share database. In the case of

an incomplete query (Table 4.3 shows an example of a query representation that

contains only one image and 110 weight measure), Robot Share utilizes information

from fields that contain data. In the case of an incomplete record , Robot Share

estimates values in a mi. sing field using sample means from the database.

vVe first present. performance data of Robot Share on incomplete queries. Results

of queries that miss one image and weight measure are shown in Table 4.4. The

first half of the table shows results from siblings relevant searches, and the second

half of the table shows resul ts from class searches. (All subsequent tables follow

this format.)

Results can be interpreted as the following. We measure preCISIon using all

objects returned by Robot Share, and the number of items returned depends on

the number of indexing components used for a query. In the case of missing fields in

a query, the number of involved indexing components reduces. Therefore the overall

number of returned items reduces. So the precision of searches grows. Compared

59

Table 4.3. A Query With Only One Image and No Weight Measure.

Field Value

redl
green 1

[1.8464e-011 -6.6396e-009 4.4481e-007 3.0729e-005 -4.8032e-004]
[2.2378e-011 -8.7258e-009 8.0668e-007 8.9936e-006 -2.2540e-004]

bluel [2.2060e-011 -8.5507e-009 7.6566e-007 1.378()e-0()5 -4.5634e-004]
red2

green2
blue2
edgel [-1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063]
edge2

LSI [-0.0509 0.2674 0.2571 0.4403]
phy_vec [6.0190 1.6906 11.3570 0.4998]

weight
filename 'knife2a.jpg'

desc 'Knife with black handle'

Table 4.4. Performance Test 2.1

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.2439
1

44

0.6818
1

123

0.4478
1

07

0.4550
1

68.6700

0.0078
0

222.0415

Precision
Recall

Retrieved

0.3780
0.2500

47

1
1

106

0.6701
0.5250

67

0.6815
0.5250

68.4800

0.0193
0.0291

177.4036

with Performance Test 1.1, the average precision grows from 0.3677 to 0.4550 for

sibling searches and 0.6177 to 0.6815 for class searches. For the same reason, the

measured recall drops for class searches.

Then we test queries with no text description or dimensional measures. Results

are in Table 4.5. For the same reason of further reducing the number of returned

items, search precision grows for sibling searches. Even though the number of in

dexing components stays unchanged from the previous test, both text indexing and

Table 4 .3 . A Query 'vVi th Only One Image and No \tVeight Measure.

Field I Value
redl: [1.8464e-011 -6.6396e-009 4,4481e-007 3.072ge-005 -4 .8032e-004]

greenl: [2.2378e-011 -8 .7258e-009 .0668e-007 8.9936e-006 -2 .2540e-004]
bluel: [2. 2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4.5634e-004]
red2 :

green2:
blue2:
edgel:
edge2:

[- 1.2498e-Ol0 6.3984e-008 -1.0713e-005 6,4745e-004 -0.0063]

LSI:
phy_vec:

weight:
filename:

desc:

[-0.0509 0.2674 0.2571 0.4403]
[6.0190 1.6906 11.3570 0.4998]

'knife2a. j pg'
'Knife with black handle'

Table 4.4. Performance Test 2.1

M in I Max I Median I Mean I Variance I

Precision 0.2439 0.6818 0,4478 0.4550 0.0078
Recall 1 1 1 1 0

Retrieved 44 123 67 68.6700 222.0415

Precision 0.3780 1 0.6701 0.6815 0.0193
Recall 0.2500 1 0.5250 0.5250 0.0291

Retrieved 47 106 67 68,4800 177,4036

59

with Performance Test 1.1 , the average precision grows from 0.3677 to 0,4550 for

sibling searches and 0.6177 to 0.6815 for class searches. For the same reason, the

measured recall drops for class searches.

Then we test queries with no text description or dimensional measures. Results

are in Table 4.5. For the same reason of further reducing the number of returned

items, search precision grows for sibling searches. Even though the number of in

dexing components stays unchanged from the previous test , both text indexing and

60

Table 4.5. Performance Test 2.2

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.3544
0.9000

34

0.8824
1

79

0.5000
1

59

0.5195
0.9840

58.9400

0.0117
5.0460e-004

112.5216

Precision
Recall

Retrieved

0.3718
0.2500

39

0.9018
1

90

0.5864
0.3778

63

0.6089
0.4393

61.9800

0.0183
0.0317

85.9996

dimensional indexing return more items than other components. Hence removing

the two reduces the number of returned items.

Then we test queries with text description. Results are in Table 4.6. From

the confusion matrix presented in the previous chapter, we know text description

is a good instrument for classifying objects. Measured precisions and recalls have

proved this again. Using only text description, the retrieved length is short, and

both precisions and recalls are high.

Then we test queries containing only dimensional data and weight measures.

Results are in Table 4.7. This test shows the worst result in this group. Both

precisions and recalls are low in either sibling searches and class searches. However,

these results are not due to a high retrieved number as in previous tests. We hence

conclude dimensional and weight measures are less efficient for object classification

when the two are used in isolation.

Table 4.6. Performance Test 2.3

M i n M a x Med ian M e a n Var iance

Precision 0.5000 1 1 0.9000 0.0404
Recall 1 1 1 1 0

Retrieved 30 60 30 36 145.4545

Precision 1 1 1 1 0
Recall 0.2500 1 0.3333 0.4342 0.0477

Retrieved 30 60 30 35.7000 139.9091

60

Table 4 .5. Performance Test 2.2

M in I Max I Median I Mean I Variance I
Precision 0.3544 0.8824 0.5000 0.5195 0.0117

Recall 0.9000 1 - 1 0.9840 5.0460e-004
Retrieved 34 79 59 58.9400 112.5216

Precision 0.3718 0.9048 0. 5864 0.6089 0.0183
Recall 0.2500 1 0. 3778 0.4393 0.0317

Retrieved 39 90 63 61.9800 85.9996

dimensional indexing return more items than other components. Hence removing

the two reduces the number of returned items.

Then we test queries with text description. Results are in Table 4.6. From

the confusion matrix presented in the previous chapter , we know text description

is a good instrument for classifying objects. Measured precisions and recalls have

proved this again. Using only text description, the retrieved length is short , and

both precisions and recalls are high.

Then we test queries containing only dimensional data and weight measures.

Results are in Table 4.7. This test shows the worst result in this group. Both

precisions and recalls are low in either sibling searches and class searches. However,

these results are not due to a high retr ieved number as in previous tests. VYe hence

conclude dimensional and weight measures are less efficient for object classification

when the two are used in isolation.

Table 4 .6 . Performance Test 2.3

Min I Max I Median I Mean I Variance I
Precision 0.5000 1 1 0.9000 0.0404

Recall 1 1 1 1 0
Retrieved 30 60 30 36 145.4545

Precision 1 1 1 1 0
Recall 0.2500 1 0. 3333 0.4342 0.0477

Retrieved 30 60 30 35.7000 139.9091

61

Table 4.7. Performance Test 2.4

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.0732
0.1000

36

0.5526
0.7000

44

0.2558
. 0.3667

42.5000

0.2786
0.3863

42.0900

0.0150
0.0245
4.0221

Precision
Recall

Retrieved

0.0682
0.0500

36

0.9524
0.5833

44

0.6551
0.2583

42

0.6258
0.2886

41.7700

0.0473
0.0159
3.9567

To summarize these results, two conclusions can be made: (1) since the number

of returned items effects the measured search precision and the number of indexing

components involved in a query determines the total number of returned items,

removing certain indexing structures can increase the measured precision. (2) Some

features are more useful for classifying objects than others. In the above tests,

image features and text features show higher classifying power than dimensional

and weight data.

We then test Robot Share performance with incomplete records. First we

randomly select 160 objects from the database (that is one third of the entire

database) and replace all information obtained from the first image, i.e., color

histograms and edge orientation histograms with mean values from the data sample,

then evaluate the retrieval performance. Results are presented in Table 4.8. In this

test and all subsequent tests on incomplete records, queries are always complete.

Table 4.8. Performance Test 2.5

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.2055
1

60

0.5000
1

146

0.3409
1

88

0.3382
1

91.4900

0.0033
0

289.4039

Precision
Recall

Retrieved

0.2973
0.2667

69

0.8462
1

150

0.5594
0.5667

90

0.5560
0.5581

92.9500

0.0138
0.0156

261.4217

61

Table 4.7. Performance Test 2.4

Min I Max I Median I Mean I Variance I
Precision 0.0732 0.5526 0.2558 0.2786 0.0150

Recall 0.1000 0.7000 - 0.3667 0.3863 0.0245
Retrieved 36 44 42.5000 42.0900 4.0221

Precision 0.0682 0.9524 0.6551 0.6258 0.0473
Recall 0.0500 0.5833 0.2583 0.2886 0.0159

Retrieved 36 44 42 41.7700 3.9567

To summarize these results, two conclusions can be made: (1) since the number

of returned items eff'ects the measured search precision and the number of indexing

components involved in a query determines the total number of returned items,

removing certain indexing structures can increase the measured precision. (2) Some

features are more useful for classifying objects than others. In the above tests,

image features and text features show higher classifying power than dimensional

and weight data.

\ iVe then test Robot Share performance with incomplete records . First we

randomly select 160 objects from the database (that is one third of the entire

database) and replace all information obtained from the first image, i. e. , color

histograms and edge orientation histograms with mean values from the data sample,

then evaluate the retrieval performance. Results are presented in Table 4.8. In this

test and all subsequent tests on incomplete records , queries are always complete.

Table 4.8. Performance Test 2.5

Min I Max I Median I Mean I Variance I
Precision 0.2055 0.5000 0.3409 0.3382 0.0033

Recall 1 1 1 1 0
Retrieved 60 146 88 91.4900 289.4039

Precision 0.2973 0.8462 0.5594 0.5560 0.0138
Recall 0.2667 1 0.5667 0.5581 0.0156

Retrieved 69 150 90 92.9500 261.4217

62

These results show no surprise. Compare with results from Performance Test

2.1, which contains complete data, average precisions in both sibling search and

class search drop about 9%.

Then we reset the Robot Share database to its original state, i.e., all records

are complete, and randomly select 160 objects, replace text data and dimensional

data with sample means of each of these fields, respectively. The performance is

presented in Table 4.9. The average precision for sibling searches further drops

from the previous test. However, the average precision for class searches grows.

Since the average precision is still lower than results from Test 2.1, we think this

still shows losing information in database degrades search performance.

We again reset the Robot Share database to its original state and randomly

select 160 objects, replace all of their data with sample means except one set of color-

histograms, one edge orientation histogram and text data. Results are presented in

Table 4.10.

More information is removed from the database. Precisions for both sibling

searches and class searches drop. However, since text and image data contain most

information needed for classifying objects, the precision drop is not dramatic.

From these three tests, we can see that losing information in database items

generally degrades search performance, especially measured precisions. However,

since certain features bear more classifying power than others, losing information

in less significant features degrades performance to a smaller extent.

Table 4.9. Performance Test 2.6

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.2479
0.8667

64

0.4688
1

121

0.3125
1

95

0.3209
0.9933

94.4100

0.0018
3.3670e-004

141.6383

Precision
Recall

Retrieved

0.2992
0.3889

65

1
1

127

0.6392
0.6111

90

0.5896
0.6428

92.5400

0.0283
0.0233

211.4630

62

These results show no surprise. Compare with results frQm Performance Test

2.1 , which contains complete data, average preCISIOns in both sibling search and

class search drop about 9%.

Then we reset the Robot Share database to its original state, I.e., all records

are complete, and randomly select 160 objects, replace text data and dimensional

data with sample means of each of t hese fields, respectively. The performance is

presented in Table 4.9. The average precision for sibling searches further drops

from the previous test. However , the average precision for class searches grows.

Since the average precision is still lower than results from Test 2.1 , we think this

still shows losing information in database degrades search performance.

vVe again reset the Robot Share database to its original state and randomly

select 160 objects, replace all of their data with sample means except one set of color

histograms, one edge orientation histogram and text data. Results are presented in

Table 4.10.

More information is removed from the database. Precisions for both sibling

searches and class searches drop. However , since text and image data contain most

information needed for classifying objects, the precision drop is not dramatic.

From these three tests , we can see that losing information in database items

generally degrades search performance, especially measured precisions. However,

since certain features bear more classifying power than others, losing information

in less significant features degrades performance to a smaller extent.

Table 4.9 . Performance Test 2.6

Min [Max [Median [Mean [Variance [
Precision 0.2479 0.4688 0.3125 0.3209 0.0018

Recall 0.8667 1 1 0.9933 3.3670e-004
Retrieved 64 121 95 94.4100 141.6383

Precision 0.2992 1 0.6392 0.5896 0.0283
Recall 0.3889 1 0.6111 0.6428 0.0233

Retrieved 65 127 90 92.5400 211.4630

63

Table 4.10. Performance Test 2.7

M i n M a x M e d i a n M e a n Variance

Precision
Recall

Retrieved

0.1961
1

59

0.5085
1

153

0.3409
1

88

0.3400
1

91.0400

0.0034
0

287.5337

Precision
Recall

Retrieved

0.3093
0.2500

68

0.9474
1

147

0.5408
0.5889

87.5000

0.5623
0.5965

91.2300

0.0180
0.0277

292.1587

The last group of tests in this section is on data with both incomplete queries

and incomplete records. First, we estimate the first image information in one

third of the database with sample mean, and test performance with queries with

missing text information. Results are in Table 4.11. We see comparable results

to Performance Test 2.5, where the query is complete but the database misses the

same amount of information as in this test. Incomplete query reduces the number

of returned items. Precisions stay the same.

We then test the performance with one third of the database missing one image

and text information and queries miss the other image and weight measure. Results

are in Table 4.12. The result is comparable to the previous one. Since more

information is missing in this test, precisions should be lower than in the previous

Table 4.11. Performance Test 2.8

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.2389
0.8333

58

0.5172
1

113

0.3333
0.9667

87.5000

0.3450
0.9697

86.3000

0.0036
0.0014

140.6970

Precision
Recall

Retrieved

0.2545
0.2500

58

0.8391
1

114

0.5143
0.5167

89.5000

0.5279
0.5300

87.3700

0.0181
0.0359

145.4274

63

Table 4 .10 . Performance Test 2.7

Min I Max I Median I Mean I Variance I

Precision 0.1961 0.5085 0.3409 0.3400 0.0034
Recall 1 1 _ 1 1 0

Retrieved 59 153 88 91.0400 287.5337

Precision 0.3093 0.9474 0.5408 0.5623 0.0180
Recall 0.2500 1 0.5889 0.5965 0.0277

Retrieved 68 147 87. 5000 91.2300 292.1587

The last group of tests in this section is on dat a with both incomplete queries

and incomplete records . First, we estimate the first image information in one

third of the database with sample mean, and test performance with queries with

missing text information. Results are in Table 4.1 1. We see comparable results

to Performance Test 2.5, \vhere the query is complete but the database misses the

same amount of information as in this t est. Incomplet e query reduces the number

of returned items. Precisions stay the same.

We then test the performance with one third of the database missing one image

and text information and queries miss the other image and weight measure. Resul ts

are in Table 4.12. The result is comparable to the previous one. Since more

information is missing in this test, precisions should be lower than in the previous

Table 4.11 . Performance Test 2.8

Min I Max I Median I Mean I Variance I

Precision 0.2389 0. 5172 0.3333 0.3450 0.0036
Recall 0.8333 1 0.9667 0.9697 0.0014

Retrieved 58 113 87.5000 86.3000 140.6970

Precision 0.2545 0.8391 0.5143 0. 5279 0.0181
Recall 0.2500 1 0.5167 0.5300 0.0359

Retrieved 58 114 89.5000 87.3700 145.4274

64

Table 4.12. Performance Test 2.9

M i n M a x Med ian M e a n Variance

Precision
Recall

Retrieved

0.2235
0.6000

50

0.4906
0.9333

94

0.3353
. 0.8000

76

0.3351
0.8097

73.8100

0.0032
0.0058

90.7211

Precision
Recall

Retrieved

0.2935
0.2250

46

0.9565
0.9000

102

0.5850
0.4750

75

0.5843
0.4787

74.3900

0.0288
0.0219

105.5938

one. However, the number of returned items reduces as well. Hence precisions stay

at the same level as before.

In this section, we have presented Robot Share performance on incomplete data.

In general we conclude that losing information in Robot Share database degrades

search performances. However, as discussed previously, reducing the number of

involved indexing components decreases the overall returned items, hence positively

impacting measured precisions.

4.1.3 Ranking

All of our previous tests are based on one assumption that all results returned by

Robot Share are used by querying robots. Therefore we constantly see high marks

on recalls, but relatively low marks on precisions. For certain application, precisions

are more important than recalls, and robots that send queries to Robot Share may

be more interested in getting fewer results, which match the query template well,

than getting a long and exhaustive list of data. Af-nearest-neighbor searches are

more suitable to their needs.

Knowing this need, we design another set of tests to evaluate the Robot Share

ranking mechanism. Instead of analysis of all results returned for a query, we focus

on the first 20 items. We measure precisions and recalls over them. To make this

analysis more comprehensive, we have reused previous test settings. Test results

are presented in Table 4.13, 4.14, 4.15.

64

Table 4.12. Performance Test 2.9

Min I Max I Median I Mean I Variance
Precision 0.2235 0.4906 0.3353 0.3351 0.0032

Recall 0.6000 0.9333 -- 0.8000 0.8097 0.0058
Retrieved 50 94 76 73.8100 90.7211

Precision 0.2935 0.9565 0.5850 0.5843 0.0288
Recall 0.2250 0.9000 0.4750 0.4787 0.0219

Retrieved 46 102 75 74.3900 105.5938

one. However , the number of returned items reduces as well. Hence precisions stay

at the same level as before.

In this section, we have presented Robot Share performance on incomplete data.

In general we conclude that losing information in Robot Share database degrades

search performances. However, as discussed previously, reducing the number of

involved indexing components decreases the overall returned items, hence positively

impacting measured precisions.

4.1 .3 Ranking

All of our previous tests are based on one assumption that all resul ts returned by

Robot Share are used by querying robots. Therefore we constantly see high marks

on recalls, but relatively low marks on precisions. For certain application, precisions

are more important than recalls, and robots that send queries to Robot Share may

be more interested in getting fewer results, which match the query template well,

than get ting a long and exhaustive list of data. N-nearest-neighbor searches are

more sui table to their needs.

Knowing this need, we design another set of tests to evaluate the Robot Share

ranking mechanism. Instead of analysis of all results returned for a query, vve focus

on the first 20 items. vVe measure precisions and recalls over them. To make this

analysis more comprehensive , we have reused previous test settings . Test results

are presented in Table 4. 13,4.14,4. 15.

Table 4.13. Performance Test 3.1 Part I

M i n M a x Med ian M e a n Variance

Complete Query and Complete Records
Precision

Recall
Retrieved

0.4500
0.3000

20

1
0.6667

20

0.9000
0.6000

20

0.8580
0.5720

20

0.0185
0.0082

0

Precision
Recall

Retrieved

0.5500
0.1083

20

1
0.6667

20

0.9500
0.1667

20

0.9290
0.2344

20

0.0102
0.0173

0

Incomplete Query
Missing one image and weight measures

Precision
Recall

Retrieved

0.0500
0.0333

20

1
0.6667

20

0.6500
0.4333

20

0.6665
0.4443

20

0.0400
0.0178

0

Precision
Recall

Retrieved

0.2500
0.0417

20

1
0.6667

20

1
0.1917

20

0.9195
0.2675

20

0.0171
0.0291

0

Incomplete Query
Missing texts and dimensional measures

Precision
Recall

Retrieved

0.4500
0.3000

20

1
0.6667

20

1
0.6667

20

0.9785
0.6523

20

0.0073
0.0033

0

Precision
Recall

Retrieved

0.7500
0.1667

20

1
0.6667

20

1
0.2222

20

0.9925
0.2562

20

0.0014
0.0167

0
Incomplete Query
Missing all information but texts

Precision
Recall

Retrieved

0
0

20

1
0.6667

20

1
0.6667

20

0.8900
0.5933

20

0.0989
0.0440

0

Precision
Recall

Retrieved

1
0.1667

20

1
0.6667

20

1
0.1667

20

1
0.1667

20

0
0.0143

0

65

Table 4 .13. Performance Test 3.1 Part I

Min I Max I Median I Mean I Variance I

Complete Query and Complete Records
Precision 0.4500 1 0.9000 0.8580 0.0185

Recall 0.3000 0.6667 0.6000 0.5720 0.0082
Retrieved 20 20 20 20 0

Precision 0.5500 1 0.9500 0.9290 0.0102
Recall 0.1083 0.6667 0.1667 0.2344 0.0173

Retrieved 20 20 20 20 0

Incomplete Query
Missing one image and weight measures

Precision 0.0500 1 0.6500 0.6665 0.0400
Recall 0.0333 0.6667 0.4333 0.4443 0.0178

Retrieved 20 20 20 20 0

Precision 0.2500 1 1 0.9195 0.0171
Recall 0.0417 0.6667 0.1917 0.2675 0.0291

Retrieved 20 20 20 20 0

Incomplete Query
Missing texts and dimensional measures

Precision 0.4500 1 1 0.9785 0.0073
Recall 0. 3000 0.6667 0.6667 0.6523 0.0033

Retrieved 20 20 20 20 0

Precision 0.7500 1 1 0.9925 0.0014
Recall 0.1667 0.6667 0.2222 0.2562 0.0167

Retrieved 20 20 20 20 0

Incomplete Query
NIissing all information but texts

Precision 0 1 1 0.8900 0.0989
Recall 0 0.6667 0.6667 0.5933 0.0440

Retrieved 20 20 20 20 0

Precision 1 1 1 1 0
Recall 0.1667 0.6667 0.1667 0.1667 0.0143

Retrieved 20 20 20 20 0

Table 4.14. Performance Test 3.1 Part II

M i n M a x Med ian M e a n Variance

Incomplete Query
Missing all but dimensional and weight measures

Precision
Recall

Retrieved

0.0500
0.0333

20

0.7500
0.5000

20

0.2500
0.1667

20

0.2705
0.1803

20

0.0259
0.0115

0

Precision
Recall

Retrieved

0.0500
0.0083

20

0.9000
0.2333

20

0.4500
0.1000

20

0.4375
0.0975

20

0.0592
0.0029

0

Incomplete Record
Missing one image

Precision
Recall

Retrieved

0.1000
0.0667

20

1
0.6667

20

0.7000
0.4667

20

0.7080
0.4720

20

0.0498
0.0221

0

Precision
Recall

Retrieved

0.2000
0.0667

20

1
0.6667

20

0.9250
0.1889

20

0.8645
0.2269

20

0.0248
0.0178

0

Incomplete Record
Missing texts and dimensional measures

Precision
Recall

Retrieved

0.3000
0.2000

20

1
0.6667

20

0.6500
0.4333

20

0.6765
0.4510

20

0.0368
0.0164

0

Precision
Recall

Retrieved

0.4000
0.0667

20

1
0.6667

20

0.9500
0.2111

20

0.9060
0.2478

20

0.0179
0.0176

0

Incomplete Record
Missing all but one image and texts

Precision
Recall

Retrieved

0.2000
0.1333

20

1
0.6667

20

0.6500
0.4333

20

0.6735
0.4490

20

0.0429
0.0190

0

Precision
Recall

Retrieved

0.2500
0.0667

20

1
0.6667

20

0.8500
0.1778

20

0.8555
0.2298

20

0.0194
0.0204

0

66

Table 4.14. Performance Test 3.1 Part II

M in I Max I Median I Mean I Variance I
Incomplete Query
Missing all but dimensional and weight measures

Precision 0.0500 0.7500 0.2500 0.2705 0.0259
Recall 0.0333 0.5000 0.1667 0.1803 0.0115

Retrieved 20 20 20 20 0

Precision 0.0500 0.9000 0.4500 0.4375 0.0592
Recall 0.0083 0.2333 0.1000 0.0975 0.0029

Retrieved 20 20 20 20 0

Incomplete Record
Missing one image

Precision 0.1000 1 0.7000 0.7080 0.0498
Recall 0.0667 0.6667 0.4667 0.4720 0.0221

Retrieved 20 20 20 20 0

Precision 0.2000 1 0.9250 0.8645 0.0248
Recall 0.0667 0.6667 0.1889 0.2269 0.0178

Retrieved 20 20 20 20 0

Incomplete Record
NIissing texts and dimensional measures

Precision 0.3000 1 0.6500 0.6765 0.0368
Recall 0.2000 0.6667 0.4333 0.4510 0.0164

Retrieved 20 20 20 20 0

Precision 0.4000 1 0.9500 0.9060 0.0179
Recall 0.0667 0.6667 0.2111 0.2478 0.0176

Retrieved 20 20 20 20 0

Incomplete Record
Missing all but one image and texts

Precision 0.2000 1 0.6500 0.6735 0.0429
Recall 0.1333 0.6667 0.4333 0.4490 0.0190

Retrieved 20 20 20 20 0

Precision 0.2500 1 0.8500 0.8555 0.0194
Recall 0.0667 0.6667 0.1778 0.2298 0.0204

Retrieved 20 20 20 20 0

Table 4.15. Performance Test 3.1 Part III

M i n M a x Med ian M e a n Var iance

Incomplete Query & Record
Record missing one image
Query missing texts

Precision
Recall

Retrieved

0.3000
0.2000

20

1
0.6667

20

0.7500
0.5000

20

0.7190
0.4793

20

0.0279
0.0124

0

Precision
Recall

Retrieved

0.2000
0.0667

20

1
0.6667

20

0.9500
0.1667

20

0.8810
0.2136

20

0.0195
0.0134

0

Incomplete Query & Record
Record missing one image and text
Query missing one image and weight measures

Precision
Recall

Retrieved

0.1000
0.0667

20

1
0.6667

20

0.5500
0.3667

20

0.5875
0.3917

20

0.0385
0.0171

0

Precision
Recall

Retrieved

0.2000
0.0333

20

1
0.6667

20

0.9500
0.1722

20

0.8805
0.2276

20

0.0250
0.0181

0

67

Table 4.15. Performance Test 3.1 Part III

Min I Max I Median I Mean I Variance I
Incomplete Query & Record
Record missing one image
Query missing texts

Precision 0.3000 1 0.7500 0.7190 0.0279
Recall 0.2000 0.6667 0.5000 0.4793 0.0124

Retrieved 20 20 20 20 0

PI' cision 0.2000 1 0.9500 0.8810 0.0195
Recall 0.0667 0.6667 0.1667 0.2136 0.0134

Retrieved 20 20 20 20 0

Incomplete Query & Record
Record missing on image and text
Query missing one image and weight measures

Precision 0.1000 1 0.5500 0.5875 0.0385
Recall 0.0667 0.6667 0.3667 0.3917 0.0171

Retrieved 20 20 20 20 0

Precision 0.2000 1 0.9500 0.8805 0.0250
Recall 0.0333 0.6667 0.1722 0.2276 0.0181

Retrieved 20 20 20 20 0

68

Several observations can be made. First, we see a large uniform increase in

search precisions, from 50% or below to 80% or above. This is expected as we now

limit the size of the the retrieved list. It also reveals that Robot Share performs

very well in terms of search result ranking. The only surprise from this part comes

from searches with incomplete queries, i.e., queries with texts and dimensional data

missing. The average precision reaches 98% in this test, which is even higher than

tests that are conducted with complete queries. This implies weight measures not

only have less classifying power than other fields, such as text data or images, but

negatively impact object classification in our sample data. This conclusion seems

unrealistic on first glance. However, if wre look at the confusion matrix generated

by weight measures, we see it mixes different objects badly. Searches on incomplete

records show better performance as well. Precision nearly doubles when we compare

results from Performance Test 2.5, 2.6, and 2.7. which are tests on the same

conditions with full returns. This is expected, for the same reason that reducing

the number of objects returned results in higher precision measures. Searches on

incomplete records with incomplete queries also exhibit twice the performance,

compared with searches returning the complete list on the same conditions. The

measured precisions are still lower than searches on complete data, as expected.

As explained previously, we know that certain fields have more classifying power

than others. Section 3.6.1 explained the benefit of separating indexing structure

into small components so a. different weight coefficient for each component can be

applied. We have employed the static weight coefficients searching algorithm to find

coefficients that maximize precisions. Using these coefficients, we see an increase

on measured precisions. Results are presented in Table 4.16. Only siblings relevant

searches are presented as class searches already show high marks on precision. Even

though there are 11-indexing components currently implemented in the system,

considering the computation cost of solving a 11-diinensional optimization problem,

we decide to simplify this optimization problem by reducing it to a 5-dimensional

one. We group color histograms in all channels into one, and edge histograms into

another.

68

Several observations can be made. First, we see a larg~ uniform increase in

search precisions, from 50% or below to 80% or above. This is expected as we now

limit the size of the the retrieved list. It also reveals that Robot Share performs

very well in terms of search result ranking . The only surprise from this part comes

from searches with incomplete queries, i.e. , queries with texts and dimensional data

missing. The average precision reaches 98% in this test , which is even higher than

tests that are conducted with complete queries. This implies weight measures not

only have less classifying power than other fields, such as text data or images, but

negatively impact object classification in our sample data. This conclusion seems

unrealistic on first glance. However, if we look at the confusion matrix generated

by weight measures , we see it mixes different objects badly. Searches on incomplete

records show better performance as well. Precision nearly doubles when we compare

results from Performance Test 2.5, 2.6 , and 2.7, which are tests on the same

conditions with full returns. This is expected, for the same reason that reducing

the number of objects returned results in higher precision measures. Searches on

incomplete records with incomplete queries also exhibit twice the performance,

compared with searches returning the complete list on the same conditions. The

measured precisions are still lower than searches on complete data, as expected.

As explained previously, we know that cer ta,in fi elds have more classifying power

than others. Section 3.6 .1 explained the benefit of separating indexing structure

into small components so a different weight coefficient for each component can be

applied. vVe have employed the static weight coefficients searching algorithm to find

coefficients that maximize precisions. Using these coefficients , we see an increase

on measured precisions. Resul ts are presented in Table 4.16. Only siblings relevant

searches are presented as class searches already show high marks on precision . Even

though there are ll-indexing components currently implemented in the system,

considering the computation cost of solving a ll-dimensional optimization problem ,

we decide to simplify this optimization problem by reducing it to a 5-dimensional

one. vVe group color histograms in all channels into one, and edge histograms into

another.

Table 4.16. Performance Test 3.2

M i n M a x Med ian M e a n Variance

Complete Query and Complete Records
Coefficient 0 1 0 0 0

Precision 1 1 1 1 0
Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-031

Incomplet e Query
Missing one image and weight measures

Coefficient 0 1 0 0 0
Precision 1 1 1 1 0

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31

Incomplete Query
Missing all but dimensional and weight measures

Coefficient 0 0 0 0 1]
Precision 0.0500 0.7500 0.2500 0.3215 0.0259

Recall 0.0333 0.5000 0.1667 0.2143 0.0176

Incomplete Record
Missing texts and dimensional measures

Coefficient o i o o o;
Precision 1 1 1 1 0

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31

Incomplete Query & Record
Record missing one image and text
Query missing one image and weight measures

Coefficient [1 1 0 0 0]
Precision 0.9000 1 1 0.9970 2.4343e-04

Recall 0.6000 0.6667 0.6667 0.6647 1.08196-04

69

Table 4.16. Performance Test 3.2

Min I Max I Median I Mean I Variance I

Complete Query and Complete Records
Coefficient [0 1 000]

Precision 1 1 1 1 0
Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-031

Incomplete Query
Missing one image and weight measures

Coefficient [0 1 000]
Precision 1 1 1 1 0

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31

Incomplete Query
lVIissing all but dimensional and weight measures

Coefficient [0 0 0 0 1]
Precision 0.0500 0.7500 0.2500 0.3215 0.0259

Recall 0.0333 0.5000 0.1667 0.2143 0.0176

Incomplete Record
Missing texts and dimensional measures

Coefficient [0 1 000]
Precision 1 1 1 1 0

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31

Incomplete Query & Record
Record missing one image and text
Query missing one image and weight measures

Coefficient [1 1 0 0 0]
Precision 0.9000 1 1 0.9970 2.4343e-04

Recall 0.6000 0.6667 0.6667 0.6647 1.081ge-04

70

All six color histograms from two images take a same weight coefficient and two

edge histograms from two images take the same weight coefficient. Coefficients are

stored in a vector, in the order of: color histograms, edge histograms, text data,

dimensional data, and weight measures. For instance, coefficient set [0 1 0 0 0] can

be read as putting zero weight on color histograms, text data, dimensional data,

and weight measures and only using edge histograms to classify objects.

Results from Performance Test 3.2 are interesting. Four out of five tests show

the maximum average precision has been reached. The last one, where queries

contain only dimensional and weight measures, the average precision is somewhat

better than the one presented in Test 3.1 (0.3215 vs. 0.2705). This low precision is

understandable as neither dimensional data nor weight measures are good classifiers

for our sample data. The weight coefficient analysis computes the coefficient set as

[0 0 0 0 1]. This suggests that weight measures are slightly better than dimensional

data, and this can be verified by querying Robot Share with only dimensional

measures or weight measures, respectively. Results from the last test in this group

could be difficult to understand. The test is set as the two most useful features for

object classification, image information and text information are corrupted, with

one third of the samples estimated by sample means. The query is missing the other

image and weight measures. However, with coefficients equal to [0 1 0 0 0], Robot

Share is still able to achieve an average retrieval precision very close to its maximum.

To understand this, we have to review the basic test setting. The database contains

480 samples, which are derived from 16 real world objects. The way we define the

siblings search is as follows: relevant items are items replicated from the same

master copy. In this test, one third of the database is corrupted, which means on

average 10 copies from every 30 replicated group are corrupted. However, since

the ranking tests only analysis results from the first 20 items, Robot Share just

happily reports that using edge histograms as the sole classifier, it could find all of

the 20 siblings with ease. Hence we again obtained a near perfect score on average

precision. When we increase the number of returned items to 30, which equals to

the number of siblings one object has, we obtain results displayed in Table 4.17.

70

All six color histograms from two images take a same weigtIt coefficient and t wo

edge histograms from two images take the same weight coefficient . Coefficients are

stored in a vector , in the order of: color histograms, edge histograms, text da ta,

dimensional data, and 'weight measures. _ For instance, coefficient set [0 1 0 0 0] can

be read as putting zero weight on color histograms, text da ta, dimensional da ta,

and weight measures and only using edge histograms to classify obj ects.

Results from Performance Test 3.2 are interesting. Four out of five tests show

the maximum average precision has been reached. The last one, where queries

contain only dimensional and weight measures, the average precision is somewhat

better than the one presented in Test 3.1 (0.3215 vs. 0.2705). This low precision is

understandable as neither dimensional data nor weight measures are good classifiers

for our sample data. The weight coefficient analysis computes the coefficient set as

[0 0 0 0 1]. This suggests that weight measures are slightly better than dimensional

data, and this can be verified by querying Robot Share wit h only dimensional

measures or weight measures, respectively. Results from the last test in this group

could be diffi cult, to understand. The test is set as the two most useful features for

obj ect classification , image information and t ext information are corrupted , wi th

one third of the samples estimat ed by sample means. The query is missing the other

image and weight measures. However , wi th coefficients equal to [0 1 0 0 0], Robot

Share is still able to achieve an average retrieval precision very close to its maximum.

To underst and this, \ve have to review the basic test set ting. The database contains

480 samples, which are derived from 16 real world obj ects. The vvay we define the

siblings search is as follows: relevant items are items replicated from the same

master copy. In this test , one third of the dat abase is corrupted, which means on

average 10 copies from every 30 replicated group are corrupted. However , since

the ranking tests only analysis resul ts from the first 20 items, Robot Share just

happily reports that using edge histograms as the sole classifier, it could find all of

t he 20 siblings with ease. Hence we again obtained a near perfect score on average

precision. vVhen we increase the number of returned items to 30, which equals to

the number of siblings one object has, we obtain results displayed in Table 4.17 .

71

Table 4.17. Performance Test 3.3

M i n M a x M e d i a n M e a n Variance

Coefficient [0 1 0 0 0]
Precision

Recall
Retrieved

0.4667
0.4667

30

0.9000
0.9000

30

0.7333
0.7333

30

0.7143
0.7143

30

0.0095
0.0095

0

Coefficient \i o o o l
Precision

Recall
Retrieved

0.6000
0.6000

30

0.9000
0.9000

30

0.7667
0.7667

30

0.7567
0.7567

30

0.0062
0.0062

0

Coefficient I I I I r
Precision

Recall
Retrieved

0.1333
0.1333

30

0.9000
0.9000

30

0.5333
0.5333

30

0.5113
0.5113

30

0.0239
0.0239

0

We observe that the measured precision drops about 30%. We compute weight

coefficients under this new condition, and obtain another set of coefficients, which

brings a slightly better result. Compared with setting all coefficients to one, the

performance gain is more evident.

4.1.4 Supplemental Exper iment I

The above experiments have demonstrated Robot Share performance on object

data that are collected by ourselves. We have also received a set of object images

taken by Prof. Dillmann's hunianoid robot research group. These images are used

in their textural related recognition research and are quite different from images we

collected. Only one image is taken at each object and some images do not capture1

the entire object. Combining these images with images we found using the Google

image search, we have constructed a second database that contains 103 images.

We tested Robot Share performance with these images. Experiment results are

presented in Table 4.18.

From Table 4.18, we can see the retrieved accuracy is lower than results from

previous tests. This is expected as data samples are of lower quality than previous

71

Table 4.17. Performance Test 3.3

Min I Max I Median I Mean I Variance I

Coefficient [0 1 000]
Precision 0.4667 0.9000 0.7333 0.7143 0.0095

Recall 0.4667 0.9000 0.7333 0.7143 0.0095
Retrieved 30 30 30 30 0

Coefficient [1 0 0 0 1]
Precision 0.6000 0.9000 0.7667 0.7567 0.0062

Recall 0.6000 0.9000 0.7667 0.7567 0.0062
Retrieved 30 30 30 30 0

Coefficient [1 1 1 1 1]
Precision 0.1333 0.9000 0.5333 0.5113 0.0239

Recall 0.1333 0.9000 0.5333 0.5113 0.0239
Retrieved 30 30 30 30 0

We observe that the measured precision drops about 30%. We compute weight

coefficients under this new condition, and obtain another set of coefficients , which

brings a slightly better result. Compared with setting all coefficients to one, the

performance gain is more evident.

4.1.4 Supplemental Experiment I

The above experiments have demonstrated Robot Share performance on object

data that are collected by ourselves. We have also received a set of object images

taken by Prof. Dillmann's humanoid robot research group. These images are used

in their textural related recognition research and are quite different from images we

collected. Only one image is taken at each object and some images do not capture

the entire object. Combining these images with images we found using the Google

image search , we have constructed a second database that contains 103 images .

vVe tested Robot Share performance with these images. Experiment results are

presented in Table 4.18.

From Table 4.18, vve can see the retrieved accuracy is lower than results from

previous tests . This is expected as data samples are of lower quality than previous

72

Table 4.18. Supplemental Experiment I

Ob jec t s # o f Samples Precis ion (T o p 2 I tems) Precis ion (T o p 3 I tems)

Bottle: 7 . 0.64 0.52
Bowl: 15 0.67 0.54
Box: 7 0.79 0.57
Can: 5 0.67 0.72
Chopstick: 8 0.69 0.45
Cup: 7 0.57 0.38
Fork: 7 0.64 0.47
Jar: 12 0.71 0.61
Plate: 17 0.76 0.71
Spoon: 18 0.61 0.46

experiments, i.e., only one image is record for each object, and no text or any other

information is presented. It also reveals the fact that the color, edge histograms

based identification is less suitable for randomly collected object samples.

To summarize, in this section, we have examined Robot Share performance

from various angles. We have tested how Robot Share performs under optimal

conditions. We see that results measured in precisions and recalls are both high.

We then have tested queries with incomplete information. Performance drops

accordingly. However, the amount of performance degeneration depends on features

that are missed. Incomplete records show similar behaviors. Missing certain

features in database items are more harmful to the retrieval performance than

others. The last group of tests on using weight coefficients to control ranking

demonstrates that using the right set of weight coefficients could result in better

performance to the system. However, coefficients computations are expensive as

this is a multidimensional minimization problems. Coefficients obtained from this

procedure are both query and database dependent.

72

Table 4.18. Supplemental Experiment i

Objects I # of Samples I Precision (Top 2 Items) I Precision (Top 3 Items) I
Bottle: 7 - 0.64 0.52
Bowl: 15 0.67 0.54
Box: 7 0.79 0.57
Can: 5 0.67 0.72
Chopstick: 8 0.69 0.45
Cup: 7 0.57 0.38
Fork: 7 0.64 0.47
Jar: 12 0.71 0.61
Plate: 17 0.76 0.71
Spoon: 18 0.61 0.46

experiments , i. e., only one image is record for each object, and no text or any other

information is presented. It also reveals the fact that the color , edge histograms

based identification is less sui table for randomly collected obj ct samples.

To summarize, in this section, we have examined Robot Shar performance

from various angles. \1I/e have test d how Robot Share performs under optimal

conditions. Vie see that results measured in precisions and recalls are both high.

We then have tested queries with incomplete information. Performance drops

accordingly. However , the amount of performance degeneration depends on features

that are missed. Incomplete records show similar behaviors. Missing certain

features in database items are more harmful to the retrieval performance than

others. The la.st group of tests on using weight coefficients to control ranking

demonstrates that using the right set of weight coefficients could result in better

performance to the system. However, coefficients computations are expensive as

this is a multidimensional minimiza.tion problems. Coefficients obtained from this

procedure are both query and database dependent.

73

4.1.5 Supplemental Exper iment II

We have obtained a set of humanoid robot activity data from Prof. Dillmann's

group. Chapter 2 presented the VooDoo data representation. These data con

tain eight activities with each activity performed multiple times. A total of 120

instances of activities is recorded. Since all instances are performed by a human

experimenter, recorded lengths of instances range from 41 frames to 151 frames.

We randomly select query templates from the activity database. Since the purpose

of activity recognition is to identify human activities, Nearest-Neighbor search is

more appropriate than k-Nearest-Neighbor search or a-cut search used in previous

experiments. We then limit the number of returned activities for each search to be 2

(since every search always returns the query template itself as the first activity.) We

define the classification as correct if the second returned item is the same activity as

the query template. Results are presented in Table 4.19. Ref. [24] indicates these

results are comparable to the FFNS approach used by Prof. Dillmann's group.

Table 4.19. Supplemental Experiment II

Ac t iv i t y Cor rec t
Hold Out Hand 91.0%
Hold Out Object 95.5%
Put Object On Table 89.9%
Read Book 73.6%
Sitting 89.9%
Standing 86.3%
Take Object From Table 77.7%
Typing On Laptop 100%

73

4 .1.5 Supplemental Experiment II

vVe have obtained a set of humanoid robot activity data from Prof. Dillmann's

group. Chapter 2 presented the VooDoo data representation. These data con

tain eight activities with each activity _performed multiple times. A total of 120

instances of activities is recorded. Since all instances are performed by a human

experimenter , recorded lengths of instances range from 41 frames to 151 frames.

We randomly select query templates from the activity database. Since the purpose

of activity recognition is to identify human activities, Nearest-Neighbor search is

more appropriate than k-Nearest-Neighbor search or a -cut search used in previous

experiments. We then limit the number of returned activities for each search to be 2

(since every search always returns the query template itself as the first activity.) We

define the classification as correct if the se ·ond returned item is the same activity as

the query template. Results are presented in Table 4.1 9. Ref. [24] indicates these

results are comparable to the FFNS approach used by Prof. Dillmann 's group.

Table 4 .19 . Supplemental Experiment II

I Activity I Correct I

Hold Out Hand 91.0%
Hold Out Object 95 .5%
Put Object On Table 89 .9%
Read Book 73.6%
Sitting 89.9%
Standing 86.3%
Take Object From Table 77.7%
Typing On Laptop 100%

C H A P T E R 5

F U T U R E W O R K A N D CONCLUSION

Humans started to share knowledge even before the birth of human natural lan

guage. Since then, knowledge sharing has played a major role in human civilization.

The study of knowledge sharing in man-made intelligent systems, such as robots and

software agents, has a relatively young age in the study of artificial intelligence, even

though recent developments in Robotic, Semantic Web and Semantic Grid start to

touch this topic from various angles. There still is a lot of room for exploration.

Previous chapters presented our work on the design and implementation of

Robot Share, a knowledge sharing framework for robots. We have demonstrated

how two types of knowledge, object knowledge and activity knowledge, can be

shared through this framework. We have discussed reasons behind various method

selections and have compared tradeoffs between different designs. The R,obot Share

system has been examined on a set of different experiment data sources and we have

discussed experiment results.

Future research can be divided into two categories: Robot Share refinement

and Robot Share expansion. In the refinement department, we propose a set of

approaches that are worth trying to discover if any of them gives better search

retrieval results. In the expansion department, the concept of a machine-readable

knowledge search engine for knowledge sharing can be taken to other domains, such

as intelligent software agent. Detailed discussion follows.

5.1 Robot Share Refinement
The current proof-of-concept Robot Share system is centered at image data, even

though the framework has been deliberately designed for multiple data formats.

Robot Share performance on other types of data such as laser range finder, sonar,

CHAPTER 5

FU TU RE WORK AND CONCLU SION

Humans started to share knowledge even before the birth of human natural lan

guage. Since then, knowledge sharing has played a major role in human civilization.

The study of knowledge sharing in man-made intelligent systems, such as robots and

software agents, has a relatively young age in the study of artificial intelligence , even

though recent developments in Robotic, Semantic Web and Semantic Grid start to

touch this topic from various angles . There still is a lot of room for exploration.

Previous chapters presented our work on the design and implementation of

Robot Share, a knowledge sharing framework for robots. vVe have demonstrated

how two types of knowledge, object knowledge and activity knowledge, can be

shared through this framework. We have discussed reasons behind various method

selections and have compared tra.deoffs between different designs. The Robot Share

system has been examined on a set of different experiment data sources and we have

discussed experiment results .

Future research can be divided into two categories: Robot Share refinement

and Robot Share expansion. In the refinement department , we propose a set of

approaches that are worth trying to discover if any of them gives better search

retrieval results. In the expansion department , the concept of a machine-readable

knowledge search engine for knowledge sharing can be taken to other domains, such

as intelligent software agent. Detailed discussion fo llows.

5.1 Ro bot Share R efinem ent

The current proof-of-concept Robot Share system is centered at image data, even

though the framework has been deliberately designed for multiple data formats.

Robot Share performance on other types of data such as laser range finder , sonar,

75

etc. is yet to be examined. To support a new data type in Robot Share, the data

type needs to be processed and a vector representation needs to be extracted. Poly

nomial coefficient representation has been used for existing image data. Additional

approaches for dimension reduction need to be evaluated for data from other types

of sensors. Similar to dimension reduction methods, distance measures should be

evaluated as well. In the current implementation, LI and weighted LI distance

measures are used. Since the selection of distance measures is tied to the data

representation, more distance measures should be evaluated for new data types.

For image based object identification, more object recognition methods should

be evaluated. The current approach is based on color and edge histograms. These

approaches, especial the edge orientation histograms, are good properties to classify

objects, given that a clean background segmentation and textures on objects are

not too strong to give false identification on object edges. However, under certain

conditions, clean and easily distinguishable edges cannot be found. Even though

we have stated that image segmentation is not the problem Robot Share tries to

solve, we realize that other object identification techniques, which do not rely on

strong edges, can be adopted. Another limitation associated with edge based object

identification is, using the edge based object identification, only a broad type of

object classification can be obtained rather than fine grained answers. For instance,

it is impossible for an edge based object identification system to distinguish a can of

Coke from a can of Sprite. However, there are times that the ability to distinguish

Coke from Sprite is important. Texture and image pattern based techniques and

their associated indexing structures should be investigated.

Feedback systems have been heavily used in today's Internet search engines. We

have mentioned that a feedback system could help to adjust better weight measures

for object properties in the cross analyzer in Robot Share. We are certain about

that feedback process would be a very helpful tool to adjust various parameters in

Robot Share. However, the issue we are not so certain about is how feedbacks can

be generated by robots. At an abstract level, the merit of a feedback system comes

from the robot in field, which sends query to the Robot Share, knowing certain

75

etc. is yet to be examined. To support a ncvv da ta type in Robot Share, the dat a

type needs to be processed and a vector representa tion needs to be extracted. Poly

nomia.1 coefficient representation has been used for existing image data . Additional

approaches for dimension reduction need to be evaluated for dat a from other types

of sensors. Similar to dimension reduction methods, dist ance measures should be

evaluated as well. In the current implementa tion , L1 and weighted L1 dist ance

measures are used . Since the selection of dist ance measures is tied to the data

representa tion, more distance measures should be evaluated for new data types.

For image ba ed object identification , more obj ect recognition methods should

be evaluated. The current approach is based on color and edge histograms. These

approaches, especial the edge orientation histograms, are good properties to classify

obj ects, given that a clean background segmentation and textures on obj ects are

not too strong to give false identification on obj ect edges. However , under certain

conditions, clean and easily distinguishable edges cannot be found. Even though

we have sta ted that image segmenta tion is not the problem Robot Share tries to

solve, we realize tha t other obj ect identifica.tion techniques, which do not rely on

strong edges , can be adopted. Another limitation associa ted with edge based obj ect

identification is, using the edge based obj ect identification , only a broad type of

obj ect classification can be obtained rather than fine grained answers. For instance,

it is impossible for an edge based obj ect identification system to distinguish a can of

Coke from a can of Sprite. However, there are times that the ability to distinguish

Coke from Sprite is impor tant . Texture and image pattern based techniques and

their associated indexing structures should be investigated .

Feedback systems have been heavily used in today's Internet search engines. vVe

have mentioned that a feedback system could help to adjust better weight measures

for obj ect properties in the cross analyzer in Robot Share. vVe are certain about

that feedback process would be a very helpful tool to adjust various parameters in

Robot Share. However , the issue we are not so certain about is how feedbacks can

be genera ted by robots. At an abstract level, the merit of a feedback system comes

from the robot in field , which sends query to the Robot Share , knowing certain

76

information that Robot Share does not know. Therefore it is able to evaluate

query answers generated by Robot Share better and give useful feedback. This

model works perfectly for human users. As the interfaces between human users

and computers, especially the input interface, e.g., keyboard and mouse, are highly

limited. It is not possible for a user to convey much information to the search

engine. However, conveying information between two machines, i.e., a robot and

the Robot Share, is much less tedious. Hence it is possible for Robot Share to know

all information the querying robot knows, hence the querying robot may not have

much additional information to generate useful feedbacks. In this case, the decision

for feedback system utilization is more like a burden-shifting between the query

robot and Robot Share, i.e., which one takes the responsibility to ensure query

responses are properly ranked. We can imagine that there are situations where

a query robot cannot give Robot Share all information to rank query responses

most properly, due to privacy and other reasons. In these cases, the ability to take

feedback from the query robot can be important.

Chapter 3 has mentioned that Robot Share has the potential to discover un

derlying relations between data from different sensors. For instance, there is a link

between the color histograms and the text description of the object, e.g., the word

"yellow" implies a certain shape of color histograms. The ability to discover these

links can be very helpful as it not only helps Robot Share to estimate missing

information in incomplete queries and records, but also provides ground for higher

level knowledge abstraction. The method of discovering these underlying relations

is a topic yet to be studied.

In the previous chapter, where Robot Share performance was evaluated, we

reached the conclusion that certain data properties are more helpful to classify

objects than others. In particular, we have found that text descriptions, which are

processed through the LSI technique, and edge histograms of objects are better

classifiers than dimension and weight measures. It has been noticed that certain

properties with low classifying power, e.g., weight measures, when paired with

properties with high classifying power, e.g., text description, the performance of

76

information that Robot Share does not know. Therefore it is. able to evaluate

query answers generated by Robot Share better and give useful feedback. This

model works perfectly for human users. As the interfaces between human users

and computers, especially the input interface, e.g., keyboard and mouse, are highly

limited. It is not possible for a user to convey much information to the search

engine. However , conveying information between two machines, i. e., a robot and

the Robot Share, is much less tedious. Hence it is possible for Robot Share to knO\v

all information the querying robot knows, hence the querying robot may not have

much additional information to generate useful feedbacks. In this case, the decision

for feedback system utilization is more like a burden-shifting between the query

robot and Robot Share, i. e., which one takes the responsibility to ensure query

responses are properly ranked. vVe can imagine that there are situations where

a query robot cannot give Robot Share all information to rank query responses

most properly, due to privacy and other reasons. In these cases, the ability to take

feedback from the query robot can be important.

Chapter 3 has mentioned that Robot Share has the potential to discover un

derlying relations between data from different sensors. For instance, there is a link

between the color histograms and the text description of the object , e.g., the word

"yellow" implies a certain shape of color histograms. The ability to discover these

links can be very helpful as it not only helps Robot Share to estimate missing

information in incomplete queries and records, but also provides ground for higher

level knowledge abstraction. The method of discovering these underlying relations

is a topic yet to be studied.

In the previous chapter , where Robot Share performance was evaluated , we

reached the conclusion that certain data properties are more helpful to classify

objects than others. In particular , we have found that text descriptions, which are

processed t hrough the LSI technique, and edge histograms of objects are better

classifiers than dimension and weight measures . It has been noticed that certain

properties with low classifying power , e.g., weight measures, when paired with

properties with high classifying power, e.g. , text description , the performance of

77

this combination is worse than using text description as the solo classifier. However,

what is uncertain to us is the relation, in terms of classifying power, between these

properties, i.e., we know that more information does not always yield a better

classifier, the pattern of property selection and the resulting classifying power is still

unknown. Intuitively, we think certain properties complement others for classifying

certain group of objects, and certain properties only correctly classify a subset

of object other properties classify. Hence a combination of two complementary

properties may result in a much higher classifying power and a combination of

two overlapped properties may result in a lower classifying power. However, it is

unknown to us that if these relations are object dependent, and if they are impacted

by the selected distance measure. Another problem that is directly related to

this issue is the cross analyzer. In the current implementation, the cross analyzer

aggregates sorted listed from every indexing structure and produces a single list

using the weighted LI distance. Another approach to realizing the function of

the cross analyzer is to use a decision tree, i.e., the cross analyzer sequentially

examines a list returned by each indexing structure, if an item listed in the list

satisfies a certain condition, e.g., within distance a of the query template, and it is

also accepted by previous indexing structures, then adds it to the output list. The

output list is then sorted. It is unclear to us if this approach is mathematically

equivalent to the current implementation.

The previous chapter has presented the Robot Share performance on three sets

of data. The second set of experiments, which examines Robot Share with image

data collected from the Google image search and Prof. Dillmarm's group, shows

worse performance than the first set of experiments, which use data collected by

ourselves. One of the major differences between these two sets of images is the image

taking condition. Existing algorithms can compute the invariance in 2D graphs, i.e.,

moments are invariant under rotation. Similar algorithms that compute invariants

of 2D projections of 3D space objects are yet to be discovered. Even though various

kinds of mathematical techniques can be applied to approximate information that

is not directly captured in an image, there is a limit on the amount of information

77

this combina tion is worse than using text description as the solo dassifier . Howev~r,

what is uncertain to us is the relation , in terms of classifying power , between these

properties , i. e., we know that more information does not always yield a better

classifier , the pattern of property selecti \l~ and t he resulting classify ing power is still

unknown. Intuitively, we think certain properties complement others for classifying

certain group of obj ect s, and certain properties only correctly classify a subset

of object other properties classify. Hence a combination of two complementary

properties may result in a much higher classifying power and a combination of

two overlapped properties may result in a lower classifying power. However , it is

unknown to us that if these relations are obj ect dependent , and if they are impacted

by the selected distance measure. Another problem that is directly related to

this issue is the cross analyzer. In the current implementation , the cross analyzer

aggregates sorted listed from every indexing structure and produces a single list

using the weighted L1 dist ance. Another approach to realizing the function of

t he cross analyzer is to use a decision t ree, i. e., t he cross analyzer sequentially

exammes a list returned by each indexing structure, if an item list ed in t he list

satisfies a cer tain condi tion, e.g., wit hin distance 0: of the query template, and it is

also accepted by previous indexing structures, then adds it to the out put list . The

output list is then sorted. It is unclear to us if t his approach is mathematically

equivalent to the current implementation.

The previous chapter has presented the Robot Share performance on three sets

of data. The second set of experiments, which examines Robot Share with image

da ta collected from the Google image search and Prof. Dillmann 's group , shows

worse performance than t he first set of experiments, which use dat a collected by

ourselves. One of the major differences between t hese two sets of images is the image

t aking condition. Existing algorithms can compute the invariance in 2D graphs, i.e .,

moments are invariant under rotation. Similar algorithms that compute invariants

of 2D proj ections of 3D space objects are yet to be discovered . Even though various

kinds of mathematical techniques can be applied to approximate information that

is not directly captured in an image , there is a limit on the amount of information

78

that can be correctly approximated by those techniques. Therefore, it is exceedingly

difficult to detect if two images taken at different angles represent the same object.

Hence, single image based object identification is limited. We have noticed the

recent development in a 3D scanner, which results in 3D scans that are relatively

small and low cost and generate 3D model of objects in short amount of time. It

will be very interesting to see if algorithms can compare a 3D model of an object

to an image to detect if they show the same object. Such algorithms solve a large

class of object classification problems for robots. As robots can create databases

that contain 3D models for all kind of objects, then robots in the field only need to

take images and emery such databases for identifications. We human rarely do 2D

image to 2D image comparison when we see objects around us. We always compare

images, which are projected in our retinas, to some models, which capture much

more information than a simple 2D projection, stored in our brains.

5.2 Robot Share Expansion
The previous section discussed various opportunities to improve Robot Share

performance. This section discusses the possibility of expanding Robot Share

use into other domains. We first explain how a third type of knowledge, scene

knowledge, can be added into Robot Share. Then we discuss how the Robot Share

architecture can be adopted in the software intelligent agent world.

The idea of scene knowledge arises from the DARPA Urban Challenge project,

in which we also participate. The main objective of the DARPA project is to build

an autonomous vehicle that runs on urban streets. There are a lot of similarities

between an autonomous vehicle and a humanoid robot. For instance, both of

the two have sensors and actuators and need to execute in complex real world

environment and know a large amount of information to reach an acceptable level

of performance. These similarities ensure that an autonomous vehicle also benefits

from knowledge sharing frameworks such as Robot Share. However, there are

substantial differences between autonomous vehicles and humanoid robots. For

an autonomous vehicle, the ability of distinguishing a dinner plate from a dinner

78

that can be correctly approximate9 by those techniques. Ther:efore, it is exceedingly

difficult to detect if two images taken at different angles represent the same object.

Hence, single image based object identification is limited. We have noticed the

recent development in a 3D scanner, w!lich results in 3D scans that are relatively

small and low cost and generate 3D model of obj ects in short amount of time. It

will be very interesting to see if algorithms can compare a 3D model of an obj ect

to an image to detect if they show the same object. Such algorithms solve a large

class of object classification problems for robots. As robots can create databases

that contain 3D models for all kind of objects, then robots in the field only need to

take images and query such dat abases for ident ifications. VYe human rarely do 2D

image to 2D image comparison when we see obj ects around us. \"'e al'ways compare

images , which are projected in our retinas , to some models, which capture much

more information than a simple 2D projection , stored in our brains.

5.2 Robot Share Expansion

The previous section discussed various opportunities to improve Robot Share

performance. This section discusses the possibility of expanding Robot Share

use into other domains. We first explain how a third t.ype of knowledge, scene

knowledge, can be added into Robot Share. Then we discuss how the Robot Share

architecture can be adopted in the software intelligent agent world.

The idea of scene knowledge arises from the DARPA Urban Challenge proj ect ,

in which we also participate . The main obj ective of the DARPA project is to build

an autonomous vehicle that runs on urban streets. There are a lot of similarities

between an autonomous vehicle and a humanoid robot . For instance, both of

the two have sensors and actuators and need to execute in complex real 'world

environment and know a large amount of information to reach an acceptable level

of performance. These similarities ensure that an autonomous vehicle also benefi ts

from knowledge sharing frameworks such as Robot Share. However , there Rre

subst antial differences between autonomous vehicles and humanoid robots. For

an autonomous vehicle, the ability of distinguishing a dinner plate from a dinner

79

knife is less useful than recognizing a scene of a blocked road, or an interaction with

a detour sign. Hence we propose the idea that, in addition to the existing object

knowledge and activity knowledge, we add a third type of knowledge: scene knowl

edge into the framework to support queries from autonomous vehicles. Problems

needing to be solved include:

• Developing mechanisms to process sensor, especially image, data for the

purpose of scene recognition. In the current implementation, image based

object identification is based on identifying objects' color and edges, scene

identifications require other mechanisms.

• Defining an ontology based semantic description to communicate identified

scenes to autonomous vehicles. This helps to define the scene description

language between Robot Share and autonomous vehicles.

• Investigating a fast query-response system that supports real-time response

to autonomous vehicles queries with high accuracy.

Scene knowledge can be used in other fields beyond autonomous vehicle control,

such as emergency control in surveillance systems. Investigating requirements

and limitations of using Robot Share supported scene knowledge sharing in those

environments is an interesting topic to explore.

In Chapter 1, we stated that robots resemble many characters of software intelli

gent agents. Agent systems have demonstrated their ability to solve many problems

in software engineering. We believe agents also have an unrevealed potential in Grid

computing. Grids are large, heterogeneous, and open environment. The size and

complexity of such systems suggests that centralized control structures usually fail.

Decentralized designs, modularized components, and the ability of localized decision

making make agent systems suitable for Grid applications. However, for agents to

succeed in Grid, a knowledge sharing framework designed for agents is also needed.

Considering the difference between cyberspaces and the real world environment,

before we expend the Robot Share into agent world, we need to answer a number

of important questions.

79

knife is less useful than recognizing a scene of a blocked road.or an inte.raction wjth

a detour sign. Hence we propose the idea that , in addition to the existing object

knowledge and activity knowledge, we add a third type of knowledge: scene knowl

edge into the framevvork to support ql~eries from autonomous vehicles. Problems

needing to be solved include:

• Developing mechanisms to process sensor , especially image, data for t he

purpose of scene recognition. In the current implementation, image based

object identification is based on identifying objects' color and edges, scene

identifications require other mechanisms.

• Defining an ontology based semantic description to communicate identified

scenes to autonomous vehicles. This helps to define the scene description

language between Robot Share and autonomous vehicles.

• Investigating a fast query-response system that supports real-time response

to autonomous vehicles queries ,\lith high accuracy.

Scene knowledge can be used in other fields beyond autonomous vehicle control ,

such as emergency control in surveillance systems. Investigating requirements

and limitations of using Robot Share supported scene knowledge sharing in those

environments is an interesting topic to explore.

In Chapter 1, we stated that robots resemble many characters of software intelli

gent agents. Agent systems have demonstrated their ability to solve many problems

in software engineering. We believe agents also have an unrevealed potential in Grid

computing. Grids are large, heterogeneous, and open environment . The size and

complexity of such systems suggests that centralized control structures usually fail.

Decentralized designs, modularized components, and the ability of localized decision

making make agent systems suitable for Grid applications. However , for agents to

succeed in Grid , a knowledge sharing framework designed for agents is also needed.

Considering the difl"erence bet.ween cyberspaces and the real world environment ,

before we expend the Robot Share into agent world , we need to answer a number

of important questions.

80

• How to define knowledge for agents? For robots, knowledge is defined as:

information about objects and activities, in string format, stored in robots'

memory. This definition is not suitable for software agents as object informa

tion is less useful for them. Activity knowledge may be useful, as if we define

activity knowledge as knowledge about carrying out certain computations.

• How to represent knowledge? In the current implementation, ontology based

rneta data are less consulted for the purpose of indexing. However, for soft

ware agents, it could be that the most efficient way to index agent knowledge

is through meta data, even though it is difficult to generate high quality meta

data for a large amount of information. How to overcome limitations of meta

data based indexing is a problem that needs to be solved.

• How to define the communication language for agents? Chapter 1 has pre

sented some research on a semantic web, which aims at developing machine

readable web content. How to utilize results from this research to solve

problems in Grids is another topic that needs to be explored.

Seeing the potential of intelligent agent systems and similarities between intelli

gent agents and robots, we believe it is possible to port the Robot Share architecture

into agent world and to bring the power of intelligent agents to the next level.

80

• How to define knowledge for agents? For robots, knowle.dge is . defined q,s :

information about obj ects and activities, in string format , stored in robots'

memory. This definition is not suitable for software agents as obj ect informa

tion is less useful for them. Activi~y knowledge may be useful , as if we define

activity knowledge as knowledge about carrying out certain computations.

• How to represent knowledge? In the current implementation , ontology based

meta data are less consulted for the purpose of indexing. However , for soft

ware agents , it could be that the most efficient way to index agent knowledge

is through meta data, even though it is difficult to generate high quality meta

data for a large amount of information. How to overcome limitations of meta

data based indexing is a problem tha t needs to be solved.

• How t o define t he communication language for agents? Chapter 1 has pre

sented some research on a semantic web , which aims at developing machine

readable web content. How to utilize results from this research to solve

problems in Grids is another topic that needs to be explored.

Seeing the potential of intelligent agent systems and similari t ies between intelli

gent agents and robots, we believe it is possible to port the Robot Share architecture

into agent world and to bring the power of intelligent agents to the next level.

A P P E N D I X A

DIMENSIONALITY R E D U C T I O N

APPE_NDIX A

DIMENSIONALITY REDUCTION

Figure A . l . Confusion Matrix of the Edge Direction Histogram in Kullback-
-Leibler Divergence

82

Original Data, KL

Figure A.I. Confusion Matrix of the Edge Direction Histogram 111 Kullback
-Leibler Divergence

Figure A . 2 . Confusion Matrix of the Edge Direction Histogram in LI Distance

83

Original Data, L 1

Figure A.2 . Confusion Matrix of the Edge Direction Histogram in L1 Distance

Figure A . 3 . Confusion Matrix of the Edge Direction Histogram in L2 Distance

84

Original Data, L2

Figure A.3. Confusion Matrix of the Edge Direction Histogram in L2 Distance

Figure A . 4 . Confusion Matrix of the Edge Direction Histogram in Weighted LI
Distance

85

Original Data, Weighted L 1

Figure A.4. Confusion Matrix of the Edge Direction Histogram in \rVeighted L1
Distance

86

Figure A . 5 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Kullback-Leibler Divergence

86

FFT,KL

Figure A.S. Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Kullback-Leibler Divergence

Figure A . 6 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in LI Distance

87

FFT. L1

Figure A.6 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coeffi cient in Ll Distance

88

FFT, L2

Figure A . 7 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in L2 Distance

88

FFT, L2

Figure A.7 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in L2 Distance

89

FFT, Weighted L1

Figure A . 8 . Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Weighted LI Distance

89

FFT, Weighted L 1

Figure A.8. Confusion Matrix of the Edge Direction Histogram Represented by
Fourier Coefficient in Weighted Ll Distance

Figure A . 9 . Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Kullback-Leibler Divergence

90

Polyfit, KL

Figure A .9. Confusion NIa trix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Kullba.ck-Leibler Divergence

Figure A . 10. Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a, Polynomial in LI Distance

91

Polyfit, L 1

Figure A.lO. Confusion Matrix of the Edge Direct ion Histogram Represented by
Coefficients of a Polynomial in Ll Distance

Figure A . l l . Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in L2 Distance

92

Polyfit, L2

Figure A.II. Confusion Matrix of the Edge Direction Histogram Represented by
Coefficient, of a Polynomial in L2 Distance

Figure A . 12. Confusion Matrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in Weighted LI Distance

93

Polyfit , Weighted L 1

Figure A.12. Confusion l\/Iatrix of the Edge Direction Histogram Represented by
Coefficients of a Polynomial in 'Weighted L1 Dist ance

Figure A . 13. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Kullback-Leibler Divergence

94

Statistics, KL

Figure A.13. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Kullback-Leibler Divergence

Figure A . 14. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in LI Distance

95

Statistics, L 1

Figure A.14. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L1 Distance

Figure A . 15. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L2 Distance

96

Statistics, L2

Figure A.15 . Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in L2 Distance

Figure A . 16. Confusion Matrix of the Edge Direction Histogram Represented by
Statistical Properties in Weighted LI Distance

97

Statistics, Weighted L 1

Figure A.16. Confusion .Matrix of the Edge Direction Histogram Represented by
Statistical Properties in 'Weighted L1 Distance

98

Moment, KL

Figure A . 17. Confusion Matrix of the Edge Direction Histogram in Represented
by Central Moments Kullback-Leibler Divergence

98

Moment, KL

Figure A.17. Confusion Matrix of the Edge Direction Histogram ill Represented
by Central Moments Kullback-Leibler Divergence

Figure A . 18. Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in LI Distance

99

Moment, L1

Figure A .IS . Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in L1 Distance

Figure A . 19. Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in L2 Distance

100

Moment, L2

Figure A.19 . Confusion 'Matrix of the Edge Direction Histogram Represented by
Central Moments in L2 Distance

Figure A .20 . Confusion Matrix of the Edge Direction Histogram Represented by
Central Moments in Weighted LI Distance.

101

Moment, Weighted L 1

Figure A .20 . Confusion NIatrix of the Edge Direction Histogram Represented by
Central Moments in \iVeighted L1 Distance.

A P P E N D I X B

THE K N O W L E D G E DEFINITION

G R A M M A R

This grammar describes the definition of object knowledge that is supported by

Robot Google,

knowledge

—> (Knowledge) knowledgeBody (\Knowledge)

knowledgeBody

—> imageData* dimensionalData textData metaData

imageData

—> fileType image

fileType

(FileType) type (\FileType)

type

- * JPg

—> bmp

image

—> (Image) img (\Image)

img

-> STRING

dimensionalData

—> (Dimension) dimension (\Dimension)

dimensional

APPENDIX B

THE KNOWLEDGE DEFINITION

GRAMMAR

This grammar describes the definit ion of obj ect knowledge that is supported by

Robot Google.

knowledge

----7 (Knowledge) knowledgeBody (\Knowledge)

knowledgeBody

----7 imageData * dimensionalData textData metaData

imageData

----7 fileType image

fileType

----7 (FileType) type (\FileType)

type

----7 J pg

----7 bmp

Image

----7 (Image) img (\Image)

Img

----7 STRING

dimensionalData

----7 (Dimension) dimension (\Dimension)

dimensional

file:///Knowledge
file:///FileType
file:///Image
file:///Dimension

103

—> length width height

length

-> (Length) NUM (\Length)

width

-> (Width) NUM (\Width)

-> (Height) NUM (\Height)

text Data

- * (Text) text (\Text)

text

—» name description name

-> (Name) STRING (\Name)

description

-> (Description) STRING (\Description)

metaData

—> (MetaData) ineta (\MetaData)

meta

—> time location

time

-> (Time) STRING (\Time)

location

-> (Location) STRING (\Location)

~ length width height

length

~ (Length) NUM (\Length)

width

~ (Width) NUM (\ Width)

height

~ (Height) NUM (\Height)

textData

~ (Text) text (\ Text)

text

~ name description name

~ (Name) STRING (\Name)

description

~ (Description) STRING (\Description)

metaData

~ (MetaData) meta (\MetaData)

meta

~ time location

time

~ (Time) STRING (\ Time)

location

~ (Location) STRING (\Location)

103

file:///Length
file:///Width
file:///Height
file:///Text
file:///Name
file:///Description
file:///MetaData
file:///Time
file:///Location

STRINGs are printable character strings.

NUMs are positive numerical values.

STRINGs are printable character strings.

NUMs are positive numerical values.

104

A P P E N D I X C

THE QUERY RESPONSE G R A M M A R

This grammar describes the definition of query response sent by Robot Google.

The definition of Knowledge is adopted from Appendix B.

response

—> (Response) responseEntry* (\Response)

responseEntry

—> knowledge url

url

-> (URL) URLSTRING (\URL)

URLSTRINGs are regular Uniform Resource Locator strings.

APPENDIX C

THE QUERY RESPONSE GRAMMAR

This grammar describes the definition of query response sent by Robot Google.

The definition of Knowledge is adopted from Appendix B.

response

---7 (Response) responseEntry* (\Response)

responseEn try

---7 knowledge urI

urI

---7 (URL) URLSTRING (\ URL)

URLSTRJNGs are regular Uniform Resource Locator strings.

file:///Response

REFERENCES

A. Arasu, J. Clio, H. Garcia-Molina, A. Paepke, and S. Raghavan. Searching
the web. Databases and the Web 37, Stanford, December 2002.

P. Azad, T. Asfour, and R. Dillmann. Toward an Unified Representation for
Imitation of Human Motion on Humanoids. Unpublished Manuscript, 2006.

R. Becher, P. Steinhaus, R. Zollner, and R. Dillmann. Design and implementa
tions of an interactive object modeling system. In IRS 2006 37th International
Symposium on Robotics, Munich, 2006.

A. Califano and R. Mohan. Multidimensional indexing for recognizing visual
shapes. IEEE Trans. Pattern Anal. Mach. Intell, 16(4):373-392, 1994.

V. Castelli and L. Bergman. Im.age Databases: Search and Retrieval of Digital
Images. John Wiley and Sons, New York, NY, 2002.

P. Cohen and C. Beal. Natural semantics for a mobile robot. Department of
Computer Science 2000-59, University of Massachusetts, 2000.

J. Davies, D. Fensel, and F. V. Harmelen. Towards the Semantic Web
Ontology-driven Knowledge Management. John Wiley and Sons LTD, West
Sussex, England, 2003.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. Journal of the American
Society of Information Science, 41 (6):391 -407, 1990.

M. Dekhil and T. C. Henderson. Instrumented logical sensors systems. Inter
national Journal of Robotics Research, 17(4):402-417, 1998.

R. Dillmann and T. Asfour. Perception, action and cognition through learning
of object-action complexes. Technical report. University of Karlsruhe, Ger
many, Project FP6-2004-IST-4-27657 2005.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
W. Equitz. Efficient and effective querying by image1 content. J. Intell. Inf.
Syst, 3(3-4):231-262, 1994.

J. Ferber. Multi-Agent Systems An Introduction to Distributed Artificial
Intelligence. Addison-Wesley, England, 1999.

N. Fielden and L. Kunt. Search Engine Handbook. McFarland and Company,
Inc., Jefferson, NC, 2002.

REFERENCES

[1] A. Arasu, J . Cho, H. Garcia-lVlolina, A. Paepke, and S. Raghavan. Searching
the web. Databases and the \lVeb 37, Stanford, December 2002.

[2] P. Azad, T. Asfour , and R. Dillmann. Toward an Unified Representation for
Imitation of Human Motion on Humanoids. Unpublished Manuscript , 2006.

[3] R. Becher, P. Steinhaus , R. Zollner , and R. Dillmann. Design and implementa
t ions of an interact ive object modeling system. In IRS 2006 37th International
Symposium on Robotics, lVlunich, 2006.

[4] A. Califano and R. "Mohan. Multidimensional indexing for recognizing visual
shapes. IEEE Trans. Pattern Anal. Mach . Intell. , 16(4):373- 392, 1994.

[5] V . Castelli and L. Bergman. Image Databases: Search and Retrieval of Digital
Images. John Wiley and Sons, New York , NY, 2002.

[6] P. Cohen and C. Beal. Natural semantics for a mobile robot. Department of
Computer Science 2000-59, University of Massachusetts, 2000.

[7] J. Davies, D. Fensel, and F. V. Harmelen. Towards the Semantic W eb
Ontology-driven Knowledge Management. John Wiley and Sons LTD , \lVest
Sussex, England, 2003.

[8] S. C. Deerwester , S. T. Dumais, T. K. Landauer , G. \IV. Furnas, and R. A.
Harshman. Indexing by latent semant ic analysis. Journal of the American
Society of InfoTmation Science, 41(6):391- 407, 1990.

[9] M. Dekhil and T. C. Henderson. Instrumented logical sensors systems. Inter
national Journal of Robotics ReseaTch, 17(4) :402- 417, 1998.

[10] R. Dillmann and T . Asfour . Percept ion, action and cognition through learning
of object-action complexes. Technical report, University of Karlsruhe, Ger
many, Project FP6-2004-IST-4-27657 2005.

[11] C. Faloutsos , R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
\IV. Equitz. Efficient and effective querying by image content . 1. Intell. Inf.
Syst., 3(3-4):231- 262 , 1994.

[12] J . Ferber . M ulti- A gent Systems An J ntrodliction to Distributed A Ttificial
Intelligence. Addison-Wesley, England, 1999.

[13] N. Fielden and 1. Kunt. SeaTch Engine Handbook. McFarland and Company,
Inc., Jefferson, NC, 2002.

107

M. Flickner, H. Sawhney,, W. Niblack, J. Ashley, .Q, . Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: The qbic system. Computer, 28(9):23-32, 1995.

K. Fukunaga. Introduction to statistical pattern recognition (2nd ed.). Aca
demic Press Professional, Inc., San Diego, CA, USA, 1990.

V. Gaede and O. Gunther. Multidimensional access methods. Sonder-
forschungsbereich 373 1996-69, Humboldt Universitaet Berlin, 1998. available
at http://ideas.repec.org/p/wop/humbsf/1996-69.html.

M. Genesereth. Knowledge interchange format. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Second International Con
ference, pages 389-396, Cambridge, MA, 1991.

R. Grupen and M. Huber. A framework for the development of robot behavior.
In 2005 AAAI Spring Symposium Series: Developmental Robotics, Stanford,
CA, March 2005.

S. Hart, R. Grupen, and D. Jensen. A relational representation for procedural
task knowledge. In Proceedings of the AAAI Conference, Pittsburgh, 2005.

T. Henderson and E. Shilcrat. Logical sensor systems. Journal of Robotic
Systems, 1(2):169-193, 1984.

T. C. Henderson and R. Grupen. Logical behaviors. Journal of Robotic
Systems, 7(3):309-336, 1990.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
New York, NY, USA, 1986.

A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A
review. IEEE Trans. Pattern Anal. Mack. Intell, 22(1):4-37, 2000.

S. Knoop, S. Brannstrom, S. Vacek, and R. Dillmann. Extraction, evaluation
and selection of motion features for human activity recognition. In Proceedings
of the International Conference on Robotics and Automation, Rome, Italy,
2007.

S. Knoop, S. Vacek, and R. Dillmann. Sensor fusion for 3d human body
tracking with an articulated 3d body model. In Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, Orlando, Florida, 2006.

B. Kuipers, P. Beeson, J. Modayil, and J. Provost. Learning from experience
in the ssh. In AAAI Spring Symposium, Series: Learning Grounded Represen
tations, Stanford, CA, March 2001.

M. Lew, editor. Principles of Visual Information Retrieval. Springer-Verlag,
London, UK, 2001.

107

[14J M. Flickner, H. Sawhney, . VV. Niblack, J. Ashley, .Q. . . Huang, B. Dom,
M. Gorkani , J. Hafner , D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: The qbic system. Computer, 28(9):23- 32 , 1995.

[15J K. Fukunaga. Introduction to statistical pattern recognition (2nd ed.). Aca
demic Press Professional, Inc. , SaIl_Diego, CA , USA , 1990.

[16J V. Gaede and O. Gunther. NIultidimensional access methods. Sonder
forschungsbereich 373 1996-69 , Humboldt Universitaet Berlin , 1998. available
a t http://ideas.repec.org/p/ wop/ humbsf/ 1996-69.html.

[17J M. Genesereth. Knowledge interchange format. In Principles of Knowledge
R epresentation and Reasoning: Proceedings of the Second International Con
f erence, pages 389- 396, Cambridge, MA, 1991.

[18J R. Grupen and M. Huber. A framework for the development ofrobot behavior.
In 2005 AAAI Spring Symposium Series: Developmental Robotics, Stanford,
CA , NIarch 2005.

[19J S. Hart , R. Grupen , and D. Jensen. A relational representa tion for procedural
t ask knowledge. In Proceedings of the AAAI Conferen ce, Pittsburgh , 2005.

[20J T. Henderson and E. Shilcrat. Logical sensor systems. Journal of Robotic
Systems, 1(2):169- 193, 1984.

[21] T. C. Henderson and R. Grupen. Logical behaviors. Journal of Robotic
System s, 7(3):309- 336, 1990.

[22J R. A. Hom and C. R. Johnson . Matrix Analysis. Cambridge University Press,
New York , NY, USA , 1986.

[23J A. K. J ain , R. P. W. Duin, and J. :Mao . Sta tisti cal pattern recognition: A
review. IEEE Trans. Pattern Anal. Ma ch. Intell. , 22(1):4- 37, 2000.

[24J S. Knoop, S. Brannstrom, S. Vacek, and R. Dillmann. Extraction , evaluation
and selection of motion features for human activity recognition . In Proceedings
of the International Conference on Robotics and Automation, Rome, Italy,
2007.

[25J S. Knoop , S. Vacek, and R. Dillmann . Sensor fusion for 3d human body
tracking with an articula ted 3d body model. In Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, Orlando , Florida, 2006 .

[26] B. Kuipers, P. Beeson, J. Modayil , and J. Provost. Learning from experience
in the s8h. In AAAI Spring Symposium Series: Learning Grounded Represen
tations, Stanford , CA , March 2001.

[27J M. Lew, editor. Principles of Visual Information Retrieval. Springer-Verlag,
London, UK , 2001.

http://ideas.repec.org/p/wop/humbsf/1996-69.html

108

[28] C.-S. Li and V. Castelli. Deriving texture feature set for-content-based retrieval
of satellite image database. In ICIP 797: Proceedings of the 1997 International
Conference on Image Processing (ICIP 797) 3-Volume Set-Volume 1, page 576,
Washington, DC, USA, 1997. IEEE Computer Society.

P. Maes. Designing Autonomous Agents Theory and Practice from Biology to
Engineering and Back, The MIT Press, Cambridge, MA, 1990.

J. Puzicha, Y. Rubner, C. Tomasi, and J. M. Buhmami. Empirical evaluation
of dissimilarity measures for color and texture. In ICCV (2), pages 1165-1172,
1999.

J. T. Robinson. The k-d-b-tree: a search structure for large multidimensional
dynamic indexes. In Special Interest Group on Management Of Data SIG-
MOD781: Proceedings of the 1981 ACM SIGMOD International Conference
on Management of Data, pages 10-18, New York, NY, USA, 1981. ACM Press.

D. Roy. Grounding words in perception and action: computational insights.
Trends in Cognitive Sciences, 9(8):389-396, 2005.

D. Roy. Semiotic schemas: a framework for grounding language in action and
perception. Artif Intell., 167(l-2):170-205, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, Upper Saddle River, NJ, 2003.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Boston, MA. USA, 1990.

S. Sclaroff, M. L. Cascia, S. Sethi, and L. Taycher. Unifying textual and visual
cues for content-based image retrieval on the world wide web. Computer Vision
and Image Understanding, 75(1-2):86-98, July 1999.

J. F. Sowa. Knowledge Representation Logical, Philosophical, and Computa
tional Foundations. Brooks Cole Publishing Co., Pacific Grove1, CA, 2000.

M. Strieker and M. Swain. The capacity of color histogram indexing. In
CVPR94, pages 704 708, 1994.

V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and
R. Ross. Heterogeneous Agent Systems. The MIT Press, Cambridge, MA,
2000.

G. Weiss. Multiagent Systems A Modern ApproacJi to Distributed Artificial
Intelligence. The MIT Press, Cambridge, MA, 1999.

Wikipedia. Information retrieval — wikipedia, the free encyclopedia, 2007.

Wikipedia. Knowledge — wikipedia, the free encyclopedia, 2007.

M. Wooldridge. Reasoning About Rational Agents. The MIT Press, Cam
bridge, MA, 2000.

108

[28J c.-S. Li and V. Castelli. Deriving texture feature set for. content-based retri eval
of satelli te image database. In I CIP '97: Proceedings of the 1997 International
Conferen ce on Image Processing (I CIP '97) 3- Volume Set- Vol1.lm e 1, page 576 ,
vVashington, DC, USA, 1997. IEEE Computer Society.

[29J P. Maes. Designing A1.ltonomO'l.ls Agents Theory and Practice f rom B iology to
Engin eering and Back. The MIT -Press, Cambridge, 1VIA, 1990.

[30J J. Puzicha, Y. Rubner , C. Tomasi, and J. M. Buhmann. Empi rical evaluation
of dissimilarity measures for color and texture. In I CCV (2) , pages 1165- 1172,
1999.

[31J J. T. Robinson . The k-d-b-tree: a search st ructure for large mult idimensional
dynamic indexes. In Special Interest Gro1.lp on Manag em ent Of Data SI G
MOD '81: Proceedings of the 1981 ACM SIGMOD International Conferen ce
on Manag em ent of Data, pages 10- 18, New York, NY, USA, 1981. ACM Press .

[32J D. Roy. Grounding words in perception and action: computational insights.
Trends in Cognitive S cien ces, 9(8) :389- 396 , 2005.

[33J D. Roy. Semiotic schemas: a framework for grounding language in action and
perception. Artif. Intell., 167(1-2) :170- 205, 2005.

[34J S. J. Russ 11 and P. Norvig. Artificial Int elligence: A Modern Approach.
Pearson Education , Upper Saddle River , NJ , 2003.

[35J H. Samet . Th e D esign and Analysis of Spatial Data Struct7.lres. Addison
vVesley, Boston , 1VIA , USA, 1990.

[36] S. Sclaroff, l\1. 1. Cascia, S. Sethi , and 1. Taycher. Unifying textual and visual
cues for content-based image retri val on the world wide web. Com p1.lter Vision
an,d Image Un derstanding, 75 (1-2):86- 98, July 1999.

[37] J. F. Sowa. J{ now ledge Representation Logical, Philosophical, and Computa
tional Foundations. Brooks Cole Publishing Co ., Pacific Grove, CA, 2000.

[38J M. Stricker and M. Swain . The capacity of color histogram indexing. In
C VPR94, pages 704- 708, 1994.

[39] V. S. Subrahmanian, P. Bonatti , J. Dix, T. Eiter, S. Kraus, F . Ozcan, and
R. Ross. Heterogen eo1.ls Agent System s. The MIT P ress, Cambridge, MA ,
2000 .

[40J G. \iVeiss. Nhtltiagent System s A Modern Approach to Distributed Artifi cial
Intelligen ce. T he MIT Press, Cambridge, MA, 1999.

[41] \iVikipedia. Information retrieval - wikipedia, the free encyclopedia, 2007 .

[42J \iVikipedia. Knowledge - vvikipedia, the free encyclopedia , 2007 .

[43J M. vVooldridge. R easoning A bout Rational Agents. The MIT Press, Cam
bridge, MA, 2000.

