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A B S T R A C T 

Knowledge representation is a traditional field in artificial intelligence. Re

searchers have developed various ways to represent and share information among 

intelligent agents. Agents that share resources, data, information, and knowledge 

perform better than agents working alone. However, previous research also reveals 

that sharing knowledge among a large number of entities in an open environment 

is a problem yet to be solved. Intelligent robots are designed and produced by 

different manufacturers. They have various physical attributes and employ different 

knowledge representations. Therefore, any nonstandard or non-widely-adopted 

technology is unsuitable to provide a satisfactory solution to the knowledge sharing 

problem. In this research, we pose robot knowledge sharing as an activity to be 

developed in an open environment - the World Wide Web. Just as search engines 

like Google provide enormous power for information exchange and sharing for hu

mans, we believe a searching mechanism designed for intelligent agents can provide 

a robust approach for sharing knowledge among robots. We have developed (1) a 

knowledge representation for robots that allows Internet access, (2) a knowledge 

organization and search indexing engine, and (3) a query/reply mechanism between 

robots and the search engine. 

ABSTRACT 

Knowledge representation is a traditional field 111 ar t ificial intelligence. Re

searchers have developed various ways to represent and share information among 

intelligent agents. Agents that share resources, data, information , and knowledge 

perform better than agents working alone. However , previous research also reveals 

that sharing knowledge among a large number of entities in an open environment 

is a problem yet to be solved . Intelligent robots are designed and produced by 

different manufacturers. They have various physical at tributes and employ different 

knowledge representa tions. Therefore, any nonstandard or non-widely-adopted 

technology is unsuitable to provide a satisfactory solution to the knowledge sharing 
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like Google provide enormous power for information exchange and sharing for hu
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C H A P T E R 1 

I N T R O D U C T I O N 

1.1 Motivation 
Knowledge representation is a traditional field of study in artificial intelligence 

[34, 37]. More recently, knowledge sharing has attracted research interest. Pre

vious research has been focused on the formation of knowledge, representation of 

knowledge, categorization and partition of knowledge, etc. Various knowledge base 

structures, knowledge interchange languages, and knowledge sharing infrastructures 

have been developed. Knowledge sharing among intelligent agents, e.g., robots, 

brings more power to each participating agent as it can accomplish its jobs more 

rapidly and/or at a lower cost. 

One problem of the previous studies was that most dealt with a closed en

vironment and defined a specific set of knowledge representation structures and 

communication languages in a somewhat nonstandard fashion. This limits the 

adoptability and the flexibility of those systems. Another problem is the scalability 

of these systems, as most of them are designed to operate among a small number 

of participants. These systems may work well in a small LAN, but when they are 

adapted to an open WAN, various problems emerge, i.e., network latency, platform 

incompatibility, communication language incompatibility, etc. One major goal is 

to vastly increase the scale of robot knowledge sharing. 

We build a knowledge sharing framework that supports a large number of data 

formats, is able to scale to process large amounts of data and is accessable to a 

large number of robots. To avoid some of the problems of earlier approaches, we 

develop a web-based approach for knowledge sharing among robots. 

Thesis : R o b o t s sharing knowledge is more efficient and successful 

than r o b o t s learning and act ing on their own . A web-based o p e n archi-

CHAPTER 1 

lNTRODU CTlON 

1.1 Motivation 

Knowledge representation is a traditional field of study in art ificial intelligence 

[34, 37] . More recently, knowledge sharing has attracted research interest . Pre

vious research has been fo cused on the formation of knowledge, representation of 

knowledge, cat egorization and partition of knowledge, etc. Various knowledge base 

structures, knowledge interchange languages, and knowledge sharing infrastructures 

have been developed. Knowledge sharing among intelligent agents, e.g ., robots, 

brings more power to each participating agent as it can accomplish its jobs more 

rapidly andl or at a lower cost . 

One problem of the previous studies was that most dealt with a closed en

vironment and defined a specific set of knowledge representation structures and 

communication languages in a somewhat nonstandard fashion. This limits t he 

adoptabili ty and the flexibility of those systems. Another problem is the scalability 

of these systems, as most of them are designed to operate among a small number 

of participants. These systems may work well in a small LAN, but when they are 

adapted to an open WAN , various problems emerge, i.e., network latency, platforrn 

incompatibility, communication language incompatibility, etc. One major goal is 

to vastly increase the scale of robot knowledge sharing. 

Vie build a knowledge sharing fr amework that supports a large number of dat a 

formats, is able to scale to process large amounts of data and is access able to a 

large number of robots. To avoid some of the problems of earlier approaches, we 

develop a web-based approach for knowledge sharing among robots. 

Thesis: Robots sharing knowledge is more efficient and successful 

than robots learning and acting on their own. A web-based open archi-



2 

l ec ture helps t o bring more robo t s into the sys tem and enhances their 

per formance . 

1.2 Introduction 
In the past, when we needed to know something, we would look it up in an 

encyclopedia or find a book on the subject. Nowadays, we turn to web search 

engines, such as G o o g l e ™ 1 or Y a h o o ™ 2 , and are given pointers to a large amount 

of information. We usually find what we are looking for relatively quickly and easily. 

The semantic web holds promise for the future in which communities of practice 

will share knowledge to meet their needs or solve problems. We propose to develop 

similar capabilities for physical robots, including humanoid robots, which act in 

the world and must know a great deal about it. Humanoid robots in our research 

include robot butlers, surgeons, drivers, hospital orderlies, homecare nurses, etc. 

Thus, when a robot encounters an unfamiliar or unknown object in its environment, 

or when it needs to know how to perform a particular task with or on an object 

(e.g., clean it), it will be able to query a Robot Google™ in order to get pointers 

to relevant information available in the world wide web, or it will interact with a 

robot knowledge ontology-based sharing community. 

Humans achieve this sharing mainly through natural language: queries are 

words that are matched to document content. For robots, it is not clear how to 

achieve this, and the question arises as to what representations best facilitate robot 

knowledge sharing. Restricting for the moment our consideration to 3-D physical 

objects, a description may include geometry, physical properties, functional use, 

context, and natural language descriptions. Other knowledge, e.g., task procedures, 

may require representation of desired forces, torques, wrenches, etc., described in an 

appropriate sharable representation (e.g., some form of configuration space). The 

GOOGLE is a trademark of Google Inc. 

2Yahoo is a trademark of Yahoo Inc. 
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development of and access to networked robot knowledge can provide the basis for 

very robust intelligence for robot systems. 

The developed framework for our solution is shown in Figure 1.1. In this figure, 

each participant robot creates web accessible knowledge repositories; the Robot 

Share server harvests knowledge from each of the participant robots and then 

organizes and creates efficient indexes into the database. Participant robots query 

the Robot Share server for knowledge and receive URLs pointing to other robots' 

knowledge. Robots, in this view, act as agents [12, 29, 39, 40, 43], and we assume 

their ability to generate the necessary knowledge structures; this is not an issue of 

investigation here. 

Imagine a scenario like the following. A kitchen robot works in a kitchen. It 

is told to clean all kitchenware. After successfully cleaning a few plates, forks and 

spoons, the robot notices that there is a pair of wooden sticks. The robot is confused 

by this pair of wooden sticks as it has never seen this before. The robot does not 

know what to do with them. By asking a nearby human, the robot learns that this 

Create web-accessible 
knowledge repositories 

queries 

Knowledge Harvesting 

Query 
Server 

Knowledge Organization 
and Indexing 

DB DB 

Figure 1.1. The Robot Share Framework. 
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pair of wooden sticks is called "chopsticks." The robot then formulates a query 

and sends it to the Robot Share server through its on-board Internet connection. 

It wants to know if these chopsticks need to be cleaned (as it is told to clean all 

kitchenware) and if so, how to clean them. The Robot Share server processes the 

query, and responds with: please go to www.robot_chopstick.com/info to see more 

information about chopsticks and please go to www.robot_chopstick.com/clean to 

see how they can be cleaned. The robot then connects to those two provided URLs 

and downloads a few packages that contain the needed information. It then cleans 

the pair of chopsticks successfully. 

From the scenario described above, we can see that there are at least two types 

of knowledge a robot may be interested to know, 

• The knowledge of object identification, i.e., the knowledge to answer questions 

like: what is this? 

• The knowledge of object manipulation, i.e., the knowledge to answer questions 

like: what can be done to/with this object? 

Both of the two types of knowledge are closely tied to a robot's physical ca

pacities, i.e., a robot's sensors and its actuators, as sensor data are utimately what 

a robot knows about the external world and actuators define what a robot can 

possibly do to the external world. Therefore, the proposed framework emphasizes 

sensor information. We believe sensor data provide a solid grounding for this 

research. 

Goals for this research are: 

• develop robot knowledge sharing framework, 

• study robot knowledge representation, 

• study knowledge indexing structure, 

• study accuracy of retrieved knowledge, 

• study performance of sharing. 
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1.3 Relevant Work 
The study of knowledge representation can be traced back to ancient Greece. 

Epistemology, the study of the nature of knowledge and its justification, was 

established by Plato in the fifth century B.C. [37]. Since then, the study of 

knowledge, including its nature, representation, development, etc., has been carried 

on by philosophers, mathematicians, linguists, and scientists. Most knowledge 

representation developed today is rooted in various logics. Recently, some computer 

scientists have expressed belief that grounding knowledge purely in logic, e.g., in 

symbolic languages, is insufficient for building intelligent agents and robots. They 

propose to develop sensor grounded and context-aware knowledge representations 

for robots [32, 33]. Even though their work is promising, they are still far from 

providing a comprehensive and satisfactory solution. 

Although still in its formative stages, several groups are making progress on 

sensor-grounded robot knowledge creation. In our provisioning effort we intend to 

take advantage of this. Cohen et al. [6] describe a natural semantics approach 

in which robots learn meanings through their interaction with the environment. 

Traditional AI approaches rely on the reduction of semantics to syntax, and such 

systems have no real understanding of the symbols that they manipulate. In natural 

semantics, such meanings are acquired and maintained by the robot system, and 

not specified externally by human programmers or knowledge engineers. In this 

work, a robot is provided with a small number of behaviors (e.g., move, turn, open 

gripper, etc.), and the robot records sensor data streams. From this, prototype 

sequences are segmented and serve as the basis for more complex tasks. In this 

way, the robot learns a sensor data based ontology through interaction with the 

environment, and concepts are related to the sense data. 

Another approach is the Spatial Semantic Hierarchy which allows bootstrap 

learning from uninterpreted experience. This involves solving three problems: (1) 

feature learning from the sense data, (2) control learning for achieving desired states, 

and (3) place recognition to identify distinctive states. Ref. [26] explains this 

approach in detail. 

5 

1.3 Relevant Work 

The study of knowledge representation can be traced back to ancient Greece. 

Epistemology, the study of the nature of knowledge and its justification, was 

established by Plato in the fifth cen_tury B.C. [37]. Since then, the study of 

knowledge, including its nature, representation , development, etc., has been carried 

on by philosophers, mathematicians, linguists, and scientists. Most knowledge 

representation developed today is rooted in various logics. Recently, some computer 

scientists have expressed belief that grounding knowledge purely in logic, e.g. , in 

symbolic languages , is in ufficient for building intelligent agents and robots. They 

propose to develop sensor grounded and context-aware knowledge representations 

for robots [32, 33] . Even though their work is promising, they are still far from 

providing a comprehensive and satisfactory solution. 

Although still in its formative stages, several groups are making progress on 

sensor-grounded robot knowledge creation. In our provisioning effort we intend to 

take advantage of this. Cohen et al. [6] describe a natural semantics approach 

in which robots learn meanings through their interaction with the environment. 

Traditional AI approaches r lyon the reduction of semantics to syntax, and such 

systems have no real understanding of the symbols that they manipulate. In natural 

semantics, such meanings are acquired and maintained by the robot system, and 

not specified externally by human programmers or knowledge engineers. In this 

work, a robot is provided with a small number of behaviors (e .g., move, turn, open 

gripper , etc.), and the robot records sensor data streams. From this, prototype 

sequences are segmented and serve as the basis for more complex tasks. In this 

way, the robot learns a sensor data based ontology through interaction with the 

environment , and concepts are related to the sense data. 

Another approach is the Spatial Semantic Hierarchy which allows bootstrap 

learning from uninterpreted experience. This involves solving three problems: (1) 

f eat'ure learning from the sense data, (2) control learning for ach ieving desired states, 

and (3) place recognition to identify distinctive states. Ref. [26] explains this 

approach in detail. 



6 

Starting with completely uninterpreted sense and motor vectors, as. ., 
well as an unknown environment, we show how a learning agent can 
separate the sense vector into modalities, learn the structure of individ
ual modalities, learn natural primitives for the motor system, identify 
reliable relations between primitive actions and created sensory features, 
and can define useful control laws for homing and path following. 

This fits well with our robot knowledge provisioning scheme since raw data, as well 

as learned structures, will be available. 

Grupen et al. have based their approach on human developmental theory [18]. 

They have demonstrated a framework for the development of robot behavior in 

which: 

All behavior is initially constructed from a set of innate control laws 
and events that delineate control decisions and are derived from the 
pattern of (dis)equilibria on a working subset of sensorimotor policies. 
We show how this architecture can be used to accomplish sequential 
knowledge gathering and representation tasks and provide examples of 
developmental learning using a quadrupedal walking robot. 

In addition, they have proposed a relational representation for procedural task 

knowledge [19]. Joint probability estimates are learned which relate features of 

the sensorimotor stream to desired behavior quality. In this way, the robot can 

determine salient features in its world experiences (sensor/actuator mediated) and 

choose action policies. This group has examined many issues related to human-like 

activity (e.g., grasping, walking, etc.). 

As a last example of a group producing sharable robot knowledge (there are 

many more; we have selected a representative sample here), Dillmann et al. have 

focused on robot knowledge related to their humanoid project [3]. Their recent 

PACO-PLUS project aims to develop a cognitive robot [10]: 

[Our approach is] capable of developing perceptual, behavioral and 
cognitive categories in a measurable way and of communicating and 
sharing these with humans and other artificial agents. To achieve this, 
the project brings together a consortium of robotics researchers, engi
neers, computer vision scientists, linguists, theoretical neuro-scientists 
and cognitive psychologists. The systems we aim at are supposed to 
interact and function together with humans. They are meant to be able 
to cooperate and to enter a dialogue communicating with the human. 
Therefore they need to understand both, what they perceive and what 
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well as an unknown environment, we show how a learning agent can 
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they do. Our hypothesis is that such understanding can only be attained 
if we consider perception and action together. In this process the 
artificial system needs to learn and adapt to the momentarily existing 
situation to be able to act and react appropriately. 

Their work will provide a way to bridge knowledge between humans and robots. 

They have recently proposed a reference model for human kinetics just for the 

purpose of enabling sharing [2]. 

In order to exchange knowledge, robot agents also require a common language 

for the expression of their data and processes. As a starting point, common sensors 

and actuators give a direct mechanism for exchange. Analysis of the sensor data 

is then straightforward, as well as control of actuators. More abstract sharing 

mechanisms are possible when specific sensors and/or actuators differ. For example, 

Logical Sensor Systems [9, 20] provide such a framework. In this case, sensors are 

abstracted as a data type in an object-oriented sense. Physical operations by the 

agent on the world may be expressed as a sequence of force closures to be achieved 

(e.g., in terms of forces, torques, wrenches, etc.) [21]. 

Another influential work in knowledge sharing is the Knowledge Interchange 

Format, known as KIF [17]. KIF was defined as an ANSI standard by the NCITS 

T2 committee on Information Interchange and Interpretation in 1998. KIF is a 

version of typed predicate logic. It is still unclear what is the most appropriate 

knowledge representation format for robots, and exchanging knowledge between 

robots in an unrestricted environment is still a problem to be solved. 

We are aware the current research on the Semantic Web [7], which is led by 

the World Wide Web Consortium. The aim of the Semantic Web project is to 

create a universal medium for information exchange by putting documents with 

computer processable meaning on the World Wide Web. Using the Semantic Web, 

information can be better organized and more accurately delivered to a human 

reader. The book by Davies et al. [7] provides a very clear review of methods 

and tools developed for the human semantic web, including methods to extract 

information from text, retrieve information from other sources, and to compress, 

visualize and disseminate information. 
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We would like to position Robot Share to a starting point for sharing data and 

information among robots. How to reformat the structure of Semantic Web to suit 

robots will be an interesting topic for furture research. It would also be an exciting 

and difficult task to introduce a mathematical theory to model this problem. 

Chapter 2 presents our view of robot knowledge. It introduces the knowledge 

representation we have developed. Chapter 3 presents various issues involved in 

a search engine construction and introduces the architecture of the Robot Share 

search engine. Chapter 4 presents the performance of Robot Share. Chapter 5 gives 

an overview of possible future research and conclude this thesis. 
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C H A P T E R 2 

K N O W L E D G E REPRESENTATION 

2.1 Robot Knowledge 

2.1.1 Sensor G r o u n d e d K n o w l e d g e 

Humans recognize the external world first through sensory organs. When we 

visit a museum, we see a number of artifacts on display. Suppose there is an object 

we do not recognize, and we would like to know what it is. We look at it to see its 

shape; we lift it (assuming it is permitted to do so) to feel its weight; we may smell 

it, even though it may not be very helpful for this case, to determine its odor; we 

may tap it with our finger to see how it sounds (again, assume it is permitted to do 

so). With this collected sensory information, we try to associate this new object to 

some object we already know. Association is a pattern matching process, i.e., we 

try to find a known object, which has its sensory property close to the new object, 

in our memory. If we cannot find such an object, or we find multiple ones and we 

are not so sure which one is the closest, we may check out the museum description 

card, as it provides some verbal information that may help us to distinguish the 

best match. We may also look around to see where this object is placed, as knowing 

the object's environment may help us to recognize the object. To summarize, we 

recognize an object first by collecting information through our sensory organs. This 

information comes in various formats. Some of them are more accurate than others; 

some of them are more abstract than others; some of them have temporal properties 

while others do not. It seems there is enough evidence for us to believe that sensory 

information, i.e., information collected by our sensory organs, is the ground for all 

of our object recognition process. 

We believe robots can behave similarly and that the best way for a robot to 

recognize objects is through sensor data. We would not deny ontology information 
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like a fork is a hitchenware; a kitchenware is a tool used for dining or relevant 

purpose; a tool used for dining or relevant purpose usually is an artifact; an artifact 

is an object could be helpful at some place in our intellectual system. However, we 

believe such information is less consulted, if at all, when we encounter something 

previously unknown. Therefore, we would not deny ontology or logic, at least to 

some extent, could be helpful for a robots. However, we would like to focus this 

research towards a sensor data grounded approach. 

We are aware that currently there is a good deal of research dedicated to various 

aspects of robot vision [5, 27] to find methods for object segmentation, object 

tracking, etc. Albeit interesting, these topics are beyond the scope of this research. 

We assume robots are able to identify objects in the environment (i.e., segment 

them in senser data) and measure physical properties of the object using on-board 

sensors. 

2.1.2 K n o w l e d g e Definit ion 

The definition of knowledge is still fuzzy at this point, as philosophers love 

to debate this type of topics. The classic definition, found in Plato, states that 

three criteria define knowledge: knowledge needs to be a statement, such that it 

is justified, true, and believed [42]. For the purpose of this research, we restrict 

the scope of robot knowledge to be: strings, which contain information about 

objects and activities. This includes physical properties of objects and verbal 

descriptions, which are usually assigned by a human to objects and strings that 

contain information about activities that includes verbal descriptions and activity 

components recorded in temporal sequence. Physical properties of objects are 

present in various forms; some of them are temporal, e.g., acoustic information, 

whereas others are static, e.g., curvature of a surface. Activities can also be 

represented in various formats. However, from a robot's point of view, they are 

not much different from each other, as they are all strings. As long as the robot 

knows how, i.e., has the program, to decode the string, they are considered the 

same. For the sake of simplicity, and also to avoid some of the less practically 
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useful philosophical debate, we consider that for a robot to know an object or an 

activity merely means to have information about the object or activity stored in its 

memory. Therefore, for a human, a verbal description of an object is quite different 

from the size, weight or other physical properties of the object as language usually 

roots deeply to the meaning or concept of the object. To say it in a different way, 

language provides a representation of the object, as one needs to understand the 

word in the description to extract information embedded in the description. On 

the other hand, for a robot, a verbal description is the same as sensor collected 

physical properties. They are all byte strings stored in the memory. If a keyboard 

can be viewed as a sensor, then key strokes are sensor inputs and character strings 

are the sensor outputs. 

Sensory information is the first step for humans and robots to perceive the 

external world. However, there is much more than simple perception when humans 

live in the real world. We not only perceive things, but also understand them. We 

build concepts out of percepts. In the previous paragraph, we stated that for a 

robot, to know is to have information stored in its memory. This is clearly not 

the case for humans as someone could easily memorize a physics formula without 

knowing its meaning, or someone could read out a poem word by word without 

understanding it. Could we do something similar when we build robots? W7hat 

does it mean for a robot to understand a concept? Could a robot really understand 

anything, not just react based on programs run on the robot? 

We believe those are interesting questions. However, rather than addressing 

them in this research, we would like to take a functional point of view. We believe 

robots are built to help humans to perform certain tasks which are either impossible 

or inconvenient for humans to perform. Therefore, if it is beneficial to have a robot 

to know there are similarities between a fork and a spoon, i.e., the distance measure 

between a fork and a spoon is less than a fork, say, a chair, then we should program 

a distance evaluation function, which always returns a smaller number when a fork 

arid a spoon are compared. In such a measure, we define that identical objects 

have a distance measure equal to zero, and this measure returns only nonnegative 
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numbers. If a robot can use this function to perform tasks better, then we may 

say that the robot knows, or is able to infer, that forks, spoons and probably 

dinner knives, belong to one group, whereas tables, chairs and bookshelves belong 

to another. 

In a nutshell, robot knowledge is information about objects and activities, in 

string format, stored in a robot's memory. For a robot, to know an object means 

to have information about that object stored in its memory. Relations between 

objects help robots to perform tasks better. However, relations are developed or 

discovered based on information acquired through sensors. 

2.2 Knowledge Extraction 
In the previous section, we have presented our definition of robot knowledge. 

We have emphasized that grounding knowledge to sensor data is essential to this 

work. This section introduces how knowledge can be extracted from sensor data, 

and presents the data sample set that has been used for this work. 

2.2.1 Da ta T y p e and Ext rac t ion 

Sensors produce data in many formats. Typical sensors available to robots are 

sonar, laser range finder, weight scale, CCD camera, infrared, odometers, etc. In 

general, these sensors can produce results in two categories: direct measures and 

derived measures. For instance, a weight measure of an object is a direct measure 

of a weight scale; an RGB histogram of an image is a derived measure of a CCD 

camera. The accuracy of direct measures depends on the accuracy of the sensor. 

The accuracy of derived measures depends on the accuracy of the sensor and the 

algorithm used to produce the measure. Therefore, it is our hope to set standards 

on algorithms used to produce derived measures, and to regulate the format of 

these measurements. Therefore, comparable results can be obtained. 

To test the suitability of the direct/derived data measure taxonomy and the 

possibility of the measurement standardization, and to provide a solid ground for 

our research, we collect sample data for objects and measure their properties. Since 
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the prototype of this framework is to be applied to kitchen robots, we collect our 

sample data from kitchenware, e.g., forks, spoons, knives, cups, plates, etc. CCD 

cameras are readily available and the produced images are information intensive. 

We choose to work with images as our starting point. 

Since the 1970s, image analysis and retrieval has been an active research area 

in database and computer vision [5]. Image retrieval is primarily text-based in 

research of database, whereas in research of computer vision, it relies on visual 

properties of the data. In the early 1990s, content-based image retrieval (CBIR) 

was proposed. Ref. [5] summarized CBIR as: 

In CBIR, images are automatically indexed by summarizing their 
visual contents through automatically extracted quantities or features 
such as color, texture, or shape. ... Since the inception of CBIR, many 
techniques have been developed along this direction, and many retrieval 
systems, both research and commercial, have been built. 

The basis of CBIR is feature extraction, as shown in Figure 2.1. Typical features 

are color, texture, shape, sketch, etc. Normally, each feature has more than one 

representation. For instance, color histogram and color moments both represent 

color features. There are several ways to compute a color histogram. Contrast, 

uniformity, coarseness, roughness, frequency, density, and directionality are exam

ples of texture features. They contain information about the structural arrangement 

of surface elements and their relationship to the surrounding environment. 

To ensure system flexibility, we build our framework to support as many feature 

extraction techniques as possible. Determining the most appropriate set of image 

features for knowledge sharing in the context of robot knowledge would be interest

ing as well. However, to make the research concrete, we predefine an image1 feature 

set and collect a data sample set. 

2.2.2 Da ta Sample 

Sixteen objects, including four bowls, one cup, two forks, three knives, two 

plates, and four spoons, are selected. Two images are taken of each object, one from 

the top view, and the other one from the side view. All images are taken against a 
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white background and objects are later manually segmented. Images are stored in 

JPEG format in the size of 640-%-480 pixels. For each image, the histograms of its 

color in RGB channels are computed, with 256 bins for each channel. The image 

is then converted to HSV color space, where the histogram of the hue channel is 

computed, with 256 bins. The Sobel edge detection algorithm is applied to compute 

the distribution of edge orientations, and a histogram with 256 bins is obtained. 

The color image is then converted to a binary image. The perimeter and the area 

of connected components in the binary image are computed. In order to capture 
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the uncertainty of the real world, we have studied how these measures may vary 

under different picture-taking conditions, e.g., various lighting conditions. We use 

natural light (indoor sunlight), two incandescent lights, and a flash light as our 

light sources in this test. Four objects - a cup, a plate, a spoon and a knife - are 

imaged. Twenty images under these four different light settings are taken of each 

object. The RGB histograms, the hue histogram, the edge direction histogram, 

the perimeter and the image area are computed. Figure 2.2 shows an image of a 

bowl from our sample set. Figure 2.3 shows three concatenated color histograms of 

this image from each color channel. Figure 2.4 shows the edge histogram computed 

using the Sobel algorithm. 

2.3 Knowledge Formulation 
In order to build the Robot Share search engine, which supports a large amount 

of data and fast retrievals, data indexing is needed. The indexing structure is 

discussed in the next chapter. Knowledge representation is presented here. 

Figure 2.2. A Sample Image. 
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Unlike a traditional database query system, where system architects also control 

the data source, Robot Share has the problem that it knows little about its data 

source. It is normal for a robot to know certain features about an object, and it is 

willing to share this knowledge with other robots though Robot Share. However, 

Robot Share may know little about this feature. Hence, Robot Share does not 

know how to process this knowledge. It is also possible that a robot wants to share 

knowledge of an object even though it does not know every feature of this object. 

In order to make Robot Share to support these two common cases, two knowledge 

transformations are required. 

The first transformation takes place in robots, where knowledge is transformed 

from a robot's internal representations, which are probably only known to robots 

themselves, to a form such that they are understandable to other parties, e.g., 

Robot Share and other robots. The second transformation takes place in Robot 

Share, where knowledge, which is represented in the format produced by the first 

transformation, is then transformed into a representation that can be efficiently 

indexed. 

2.3.1 T h e First Transformation 

The purpose of the first transformation, from a robot's internal format to an 

open standard, is to transform knowledge in such a way that an unambiguous and 

widely-adoptable format is achieved. Two requirements need to be satisfied for 

this purpose. First, the data source of the transformation needs to be collected 

uniformly. We propose the idea of the asymmetric spatial-temporal coherence for 

objects. When a robot collects information about an object, i.e., measures its 

properties, we assume the robot does this in a uniform way such that all properties 

are measured with the least intervention among them. For instance, it is not 

desirable for a robot to measure one property of an object and somehow manipulate 

the object and then measure another property. Once all information is collected, 

the robot packages it tightly to maintain data integrity. Therefore, it is clear to 
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both the robot and Robot Share that information about one particular object is 

collected. 

Having a clear distinction between an object instance and an object class is 

significant to this work for two reasons. First, Robot Share has deep roots in the 

concept of sensor data grounded knowledge, i.e., sensor data are the ground for all 

higher level knowledge structure. Therefore, knowing which instance a sensor data 

refers to is important to all higher levels, e.g., semantic level, knowledge structure 

formation. Second, it is desirable to support instance-based query in addition to 

the general class-based query. For example, to be able to detect that an image 

represents a human face is useful (the class-based query), but to be able to detect 

whose face it is (instance-based query) can be more useful for some applications. 

We employ the standard Extensible Markup Language (XML) to represent 

knowledge as the result of the first transformation, as the XML format is widely 

used arid accessible. We give a precise definition of the language our framework 

supports by using the Knowledge Definition Grammar (KDG). KDG is designed to 

be flexible enough to capture various type of knowledge and parser friendly. The 

definition of KDG is included in Appendix B. As all knowledge about objects in our 

framework is sensor grounded, even though KDG provides the ability to support 

virtually any type of object property, we define a set of XML tags to describe 

certain common object properties. 

2.3.2 T h e Second Transformation 

The purpose of the second transformation is to convert the easy-to-communicate 

XML format into a representation that is easy to index. Hence we can build the 

search engine efficiently. We take the vector space approach. 

Every piece of knowledge in our system can be divided into three parts: text 

data, sensor data and meta data. Text data are provided by humans. They include 

the name, function, use and possible other related descriptions about an object. 

Sensor data are collected through sensors. They represent physical properties of 

an object. They are recorded by numerical values. For instance, the weight of an 
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object is usually recorded with a single numerical value, given a standard unit is 

used; the shape of an object can be recorded by a histogram of the direction of the 

object's edge, where a histogram is usually represented by a vector. Meta data are 

recorded when the object is measured by sensors. They contain information about 

collected sensor data. For instance, the location of where the object is encountered, 

the time when the object is encountered, the type/band/model of the sensor used 

to collect data, etc. 

These three types of data can be indexed using two different approaches: dif

ferent data types are either indexed separately, using multiple indexing structures, 

or they are combined and indexed by a uniform structure. 

There are pros and cons to either of these two approaches. Separated indexing 

has the advantage that each type of data can take its own indexing method. The 

indexing method of a particular data type can be entirely based on the type of 

the data. For instance, LSI and reverse index are commonly used text indexing 

methods. They can be evaluated and selected for the text data indexing. Image 

data have a different set of properties. They can utilize some other indexing method. 

So do meta data. Finer grained discrimination is possible as well. Sonar and laser 

range finder generate output in different formats. Data generated from each of 

the two can hence be indexed differently. Data-class based indexing could result 

in a better retrieval performance, if queries contain only one type of data sample, 

i.e., text query, sonar query, etc. However, if a query contains more than one 

type of data, then the query has to be first divided into multiple smaller queries 

and the search engine issues each of these queries into each individual indexing 

structure accordingly. Retrieved results from each of the indexing structures are 

cross-processed before they are returned to the querying robot. One drawback 

of this approach is the high maintenance cost. Since multiple indexing structures 

needs to be implemented and data consistency between indexing structures needs to 

be maintained, the complexity of building and updating this system is considerably 

high. 
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If we combine all data types and use a single indexing structure, the multiple 

indexing structure data coherency problem is eliminated. Upon receiving a multiple 

fields query, we no longer need to worry about how to cross process results generated 

by separated subqueries. However, missing an indexing field in a query now becomes 

a problem. Many other problems exist in uniform indexing. For instance, we 

need to develop a technique that combines all three data types (text, sensor, and 

meta data) into one indexing structure. Even though some information carried by 

these data can be compromised during the grouping process, the end result must 

contain enough information to ensure a clear classification. Considering the verity 

of data types, the only sensible solution is to build the indexing structure in a high 

dimensional vector space where each object is mapped into a point in this space, 

i.e., every object is represented by a long vector. More consequences follow the 

choice of representation. This topic will be revisited in the next chapter, in which 

the two indexing mechanisms are further compared. 

Regardless the choice of indexing structure selection, we need to develop tech

niques that map data into vectors. Mapping sensor data into vectors is straightfor

ward enough as sensor data are naturally represented by either a single numerical 

value or a vector. We only need to arrange them in such a way that they can 

be indexed efficiently. Meta data, can be processed in a similar manner, as most 

of information can be represented by numerical values. For instance, time can be 

unambiguously represented by a UNIX time string, locations can be represented by 

a GPS coordinate, and sensor type can be represented by an index of the sensor 

into a sensor database, such as 1 for Fairchild 9000, 2 for Serial No. 28753. Instead 

of using sensor models, logical sensor system frame can be employed.1 Converting 

text into numerical vectors appears to be problematic on the first glance. However, 

techniques such as the LSI have been well studied. LSI converts documents into 

vectors in a mathematically meaningful way. Details of the LSI will be presented 

in the next chapter. 

^ v e n though such a complete database does not exist today, we do not see any technology 
barrier that prevents researchers from building one. given enough demand. 
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The length of a data vector needs to be controlled. As will be explained in 

the next chapter, vector space index in high dimensions is much more problematic 

than in low dimensions. In another words, vector concatenated by a 256-6/y-l color 

histogram, a 256-6?/-1 edge histogram and a few other data fields cannot be indexed 

efficiently without further process. Therefore, we have to shorten the length of 

some of these data fields, especially histograms. The next chapter will introduce 

various methods to achieve this goal of dimension reduction. For the purpose of this 

research, we have evaluated four different methods: Fourier coefficient representa

tion, polynomial coefficient representation, statistics representation and moment 

representation. Using each of these methods, we reduce 256-element vectors to 

5-elernent vectors. For the Fourier coefficient method, the first five coefficients 

are selected. For the polynomial coefficient method, a fourth-order polynomial 

approximation is used. For the statistics method, variance, median, standard 

deviation, median of the first half values, and median of the second half values 

are used. For the moment method, the first five moments are computed. Since 

all algorithms have the same reduction rate, i.e., they all transform a 256-element 

vector to a 5-element vector, we would like to select the transformation that mostly 

preserves the distance measures of data in its original space. 

Distance measure complicates this comparison as distances are determined by 

the selected measure. It is possible that one transformation provides better results 

than another transformation under one distance measure but provides worse results 

under a different measure. It is also possible for a, transformation function and 

distance measure pair to perforin better on one set of histograms but perform 

worse on another one, e.g., the pair good for edges are bad for colors. Indexing 

structure selection further complicates the comparsion. Indexing structures can 

divide the search space based on a particular subset of a vector, instead of using 

all information stored in the vector. Hence the distance between two points, which 

are represented by two vectors, becomes less meaningful. For instance, suppose the 

LI distance d is measured between two points in a 10—dimensional space. When 

the indexing structure is constructed, only the first two elements in a vector are 
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considered.2 In this case, the distance obtained through the LI distance measure 

d becomes less meaningful than, for instance, the sum of the two differences of the 

first and the second elements from each vector. 

Transformation function and distance measure selection problems do not stop at 

the indexing structures. Since one of the goals of this research is to build a search 

engine for robots, we have to further consider how transformation function and 

distance measure may affect query processing, especially because queries can come 

in with missing fields. We may conclude it is sufficient to judge our design decision 

solely based on retrieval performance, assuming we can ignore any consideration 

on computational cost. However, knowing the exact consequence of adjusting 

parameters in internal states of Robot Share could help us to improve the entire 

system. Performing a complete study on all parameter selections may not be 

possible given the complexity of the system and the variety of data. Nevertheless, 

it is possible to gain some insights into those problems once enough experiments 

are conducted. This leads to interesting future research. 

Transformation functions and distance measures have been examined through 

a series of experiments. Edge histograms are selected for examination. In order 

to simulate the real world uncertainty, we add noise into the data set. For each 

histogram, noise drawn from a Gaussian distribution with mean equals to 20% of 

the histogram mean is added. Thirty noise-added samples are created for each his

togram; 480 histograms are obtained. We then apply four vector-length-reduction 

transformations to the sample set and obtain four sets of samples. Each sample 

set contains 480 5-element vectors. For each new sample set, we measure distances 

between every two vectors and produce a confusion matrix for each measure. Four 

distances measures are applied in this process, LI, L2, KL and weighted LI. Sixteen 

480-%-480 confusion matrices are produced (please see Appendix A for printouts.) 

Confusion matrices give us a good visual to this experiment. Among these distance 

2 Th i s is possible as when using a k-d-tvee as the indexing structure. One algorithm selects 
the split based on the spread of data in that dimension, so when the first two elements in vectors 
have spreads larger than the rest of dimensions, they will be repeatedly selected. 
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measures, LI and weighted LI are better (in term of keeping separated classes sep

arate) than K-L and L2 measure. Fourier Coefficients and polynomial coefficients 

are better vector length reduction techniques than the other two. To perforin 

a qualitative analysis, we have created a perfect classification confusion matrix 

sample, in which we manually assert the value of each element in this matrix. Then 

we compare 16 confusion matrices against this sample by using the normalized 

correlation. We have concluded that polynomial coefficient representation is the 

most reasonable choice. Figure 2.5 shows an example of an how edge histogram is 

approximated by a polynomial. 

2.3.3 Example 

We conclude this section with a simple example from our data set to demonstrate 

the experiment. A robot notices an object in a kitchen. The robot measures physical 
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Figure 2.5. An Edge Histogram and its Polynomial Approximation. 

24 

measures, L1 and weighted L1 are better (in term of keeping geparated classes sep

arate) than 1(-L and L2 measure. Fourier Coefficients and polynomial coefficients 

are better vector length reduction techniques than the other two. To perform 

a qualita tive analysis, we have created a perfect classification confusion matrix 

sample, in which we manually assert the value of each element in this matrix. Then 

we compare 16 confusion matrices against this sample by using the normalized 

correlation. VVe have concluded that polynomial coefficient representation is the 

most reasonable choice. Figure 2. 5 shows an example of an how edge histogram is 

approximated by a polynomial. 

2.3.3 Example 

'vVe conclude this section with a simple example from our data set to demonstrate 

the experiment. A robot notices an obj ect in a kitchen. The robot measures physical 

0 .02 

0.018 

0 .016 

0.014 

0.012 
Q) 
:::J 

0 .01 "iii 
> 

0.008 

Edge Histogram vs. a fourth order polynomial approximation. 

50 100 

.......... Polynomial Approximation 
-- Histogram 

150 
Bins 

200 250 300 

Figure 2.5. An Edge Histogram and its Polynomial Approximation . 



25 

properties of the object as the following: the length is 12.5 centimeters; the height 

is 5 centimeters; the width is 12.5 centimeters; and the weight is 2.5 ounces. Two 

images are taken of this object, one from the top view and one from the side view. 

Images are segmented; color and edge histograms are computed. The robot has 

learned from a human that this object is a "Knife with black handle." Since the 

robot wants to share information about this object, in addition to organizing and 

uploading these data into a web space, the robot registers this information at Robot 

Share. It then packages the object into a Robot Share understandable XML file 

and sends it to Robot Share. 

After Robot Share receives this file, Robot Share parses the XML file and 

constructs a set of vectors to capture information stored in this file. The text 

part, i.e., "Knife with black handle," goes through the LSI process, and becomes 

a four-element vector. The two images go through a sequence of image processing 

procedures. Color histograms and edges are produced. Then dimension reduction 

techniques are applied, and histograms are reduced to short length vectors. Dimen

sion and weight measures are extracted. The final result can be viewed in Table 2.1. 

Using this information, Robot Share builds an index for these data and stores them 

in the Robot Share database. 

2.4 Activity Knowledge 
The previous section has discussed how object knowledge can be represented. 

Object knowledge is one type of knowledge we would like to share. Another 

type of knowledge is activity knowledge. Activity knowledge represents a much 

broader range of knowledge. If we consider object knowledge is mostly about object 

identification and classification, then activity knowledge can be used not only for 

identification but also for the execution of activities. 

One of the most challenging problems to solve in activity knowledge sharing 

comes from the uncertainty of the real world environment. For instance, it is 

possible that one robot specifies a procedure that performs a certain activity in 

its own environment, i.e., under a set of conditions. It is difficult for a second 
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Table 2.1. A Sample Object. 

Field Value 

redl: [1.8464e-011 -6.6396e-009 4.4481e-007 3.0729e-005 -4.8032e-004] 
green 1: [2.2378e-011 -8.7258e-009 8-.0668e-007 8.9936e-006 -2.2540e-004] 

bluel: [2.2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4.5634e-004] 
red2: [1.4509e-012 2.5196e-009 -9.8969e-007 8.7476e-005 -2.4578e-0()4] 

green2: [3.1170e-012 1.8227e-009 -9.2036e-007 8.8420c-005 -3.8085c-004] 
blue2: [4.2376e-012 1.3480e-009 -8.7116e-007 8.9412e-005 -5.5129e-004] 
edgel: [-1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063] 
edge2: [-1.3743e-010 6.9991e-008 -1.1638e-005 6.9704e-004 -0.0070] 

LSI: [-0.0509 0.2674 0.2571 0.4403] 
phy_vec: [6.0190 1.6906 11.3570 0.4998] 

weight: 0.4244 
filename: 'knife2a.jpg' 

desc: 'Knife with black handle' 

robot to blandly adopt this procedure to perform the same task as the second 

robot lives in a different environment. Two approaches can solve this problem. 

The first approach focuses on the environment. A detailed description of a robot 

environment can be recorded and shared with the activity description. When the 

learner robot learns the new procedure, the learning robot checks if it is in a similar 

environment with the sharing robot. The second approach is to bring intelligence 

into the learning robot, i.e., when it receives an activity description, it adopts the 

knowledge selectively. For instance, if certain instruction in the activity description 

is not suitable for the learning robot's own environment, it generates and executes 

substitute instructions with equivalent functions. Either of these two approaches 

requires an extensive amount of research. Approach one assumes the ability of 

environment recognition and representation, and approach two assumes the ability 

of environment recognition, local planning and activity result prediction. All of 

these requirements point to interesting topics for future research. 

The Robot Share research focuses on activity knowledge identification. The 

problem statement can be summarized as one robot records a sequence of human 
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body movements and queries Robot Share for information to identify the activity 

that being performed by these movements. 

Collaborating with Prof. Dillmann's humanoid robot research group at the 

University of Karlsruhe, we have obtained data generated by the VooDoo human 

motion capture system [24, 25], which gathers data of the human configuration 

over time, resulting in 3D trajectories for every modeled limb and joint angle 

of the human body. In VooDoo, the human body is represented by 19 A-by-A 

transformation matrices, where each matrix describes the state of a limb joint. In 

each transformation matrix, the upper left 3-by-3 submatrix describes the rotation 

of the joint, the right most column describes the movement of the joint. (See [25] for 

a complete discussion of the VooDoo system representation.) We exploit two of these 

matrices: one that describes the trunk of the body transformation and the other 

that describes the right forearm transformation, from each activity instance frame. 

The motion description is based on six values from each of the two transforms: 

three diagonal elements of the rotation matrix and three translation components. 

This results in 12 feature vectors. We then approximate the trajectory of every 

feature field across frames of an activity instance by a fourth order polynomial. 

The end result looks similar to object knowledge that has been described in the 

previous sections, i.e., each activity is represented in 12 vectors that can be indexed 

using techniques will be described in the next chapter. 
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C H A P T E R 3 

K N O W L E D G E SEARCH ENGINE 

3.1 Robo t Knowledge Search Engine 
As described by Frieden and Kuntz [13], the three main tasks of a search engine 

are to (1) match query keywords with related material on the web, (2) rank web 

documents according to relevance, and (3) provide pointers to the documents. 

Arasu et al. [1] set their major emphasis to be the creation of scalable index 

structures. Note that search engines for human created web documents try to 

make the linkage among web pages explicit and exploit this to create structure 

indexes. 

When adopting their strategy to the robot world, one of the major issues is 

the diversity of the data format. Unlike text documents, which are focused by 

current web search engine, sensor data produced by robots exists in many ways, 

e.g., images, sound wave files, etc. These data need to be processed before they are 

entered into database. Multiformat data also lead to various difficulties in database 

design. Research in multimedia database shares some common problems we have. 

Ortega-Binderberger et al. [5] pointed out that a multimedia database need to 

provide four functionalities: 

• Mul t imed ia O b j e c t Representa t ion. Techniques or models to succinctly 

represent both structure and content of multimedia objects in databases. 

• Content Ext rac t ion . Mechanisms to automatically or semiautomatically 

extract meaningful features that capture the content of multimedia objects 

and that can be indexed to support retrieval. 

• Mul t imed ia Informat ion Retr ieval . Techniques to match and retrieve 

multimedia objects on the basis of the similarity of their representation. 

CHAPTER 3 

KNOWLEDGE SEARCH ENGINE 

3.1 Robot Knowledge Search Engine 

As described by Frieden and Kuntz [13], the three main tasks of a search engine 

are to (1) match query keywords with related material on the web, (2) rank web 

documents according to relevance, and (3) provide pointers to the documents. 

Arasu et a1. [1] set their major emphasis to be the creation of scalable index 

structures. Note that search engines for human created web documents try to 

make the linkage arnong web pages explicit and exploit this to create structure 

indexes . 

When adopting their strategy to the robot world , one of the major issues is 

the diversity of the data format . Unlike text documents, which are focused by 

current web search engine , sensor data produced by robots exists in many ways, 

e.g., images , sound wave files , etc . These data need to be processed before they are 

entered into database. Multifonnat data also lead to various difficul t. ies ill database 

design. Research in multimedia database shares some common problems we have. 

Ortega-Binderberger et a1. [5] pointed out that a multimedia database need to 

provide four functionalities: 

• Multimedia Object Representation. Techniques or models to succinctly 

represent both structure and content of multimedia objects in databases. 

• Content Extraction. Mechanisms to automatically or semiautomatically 

extract meaningful features that capture the content of multimedia objects 

and that can be indexed to support retrieval. 

• Multimedia Information Retrieval. Techniques to match and retrieve 

multimedia objects on the basis of the similarity of their representation . 



29 

• Mul t imed ia Database Managemen t . Extensions to data management 

technologies of indexing and query processing to effectively support efficient 

content-based retrieval in database management systems. 

The previous chapter has addressed the first two issues. This chapter focuses 

on the latter two. 

3.2 Knowledge Harvesting 
In this first generation robot search engine research, we do not foresee a major 

role for web crawlers. Even if web pages that contain robot information exist, the 

meta data are not available to determine what pages to download and what is of 

interest in them (e.g., there are no words to count and no lexicon to help define any 

semantics.) There is no popularity measure and no standard place to find things 

(e.g., specific sites, in homepage, etc.) We decide to let robots register with the 

Robot Share and provide direct meta data and links. 

In the previous chapter, we presented the format for knowledge communication 

between a robot and Robot Share. Since the XML file presented in the previous 

chapter solely contains the data of objects, a few extra fields are helpful for Robot 

Share. The most important one is the link to the web address, where the original 

data can be found. Storing information about the robot that registered the infor

mation could be helpful as well. Therefore!, three fields are added into a knowledge 

registration XML file, the identity of the robot, the time of this registration, and 

the link to the web page, where original data are stored. 

3.3 Knowledge Query 
Before we present the object retrieval architecture of Robot Share, we first 

discuss some related technologies. Section 3.3 is dedicated to search queries, section 

3.4 discusses distance measures, and section 3.5 introduces indexing structures. 
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• Multimedia Database Management. Extensions to data management 

technologies of indexing and query processing to effectively support efficient 

content-based retrieval in database management systems. 
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3.3.1 Query T y p e 

Similarity retrieval can be divided into whole match and partial match. In the 

first class, every object is considered in whole, i.e., the query is considered as an 

object and then matched against objects stored in the database. In the second 

class, the query is compared to portions of objects in the database. Therefore a 

portion of certain object can be returned to a query as a response. Research in 

CBIR provides us good examples of both of these two classes. Projects dedicated 

to photographic image retrieval are mostly in the class of whole match [11, 14] and 

image analysis projects usually support partial/subirnage match [28]. Partial match 

systems usually bring the problem of data segmentation, which itself contains a lot 

of variations. Robot Share supports whole match. 

3.3.2 Query Interface 

Query interfaces of retrieval systems vary. Query-by-example, query-by-feature, 

and other miscellaneous methods have been demonstrated [5]. In a query-by-

example system, the query is treated as an object as every other object stored 

in its database. The query is first analyzed to extract its features. Extracted 

features are then used to query the database. Most CBIR systems belong to this 

group. In a query-by-feature system, the user specifies a set of feature and their 

values for the retrieval system to match. Keyword, image-annotation and meta 

data based image retrievals belong to this group. Since the 1990s, multimedia, 

especially image, query languages have been developed in the database research 

society. Most of them are SQL extensions or variations, including PSQL, Spatial 

SQL, QL/G, MOQL, etc. Ref. [27] contains an survey of them. Query-by-feature 

systems usually require support from a dedicated query language. For Robot Share, 

query-by-example is supported. No specific query language is employed in Robot 

Share. 
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3.3.3 Search T y p e 

Unlike text based retrieval system, a multimedia retrieval system does not 

rely on exact queries. Instead, multimedia retrievals are similarity based. Using 

interfaces described above, the user specifies a feature set, the retrieval system then 

tries to find data that have a similar feature set. Three types of search exist. 

• R a n g e Search. Find all data in which feature f\ is within range feature 

f2 is within range r2, etc. Query-by-feature systems work with this type of 

search. 

• /c-Nearest-Neighbor Search. Using distance measure JD, find k objects 

that are closest to the query object. Note this type of query requires at 

least k objects to be returned, regardless of their actual distance to the query 

template. This could potentially result in returning objects that are very 

different from the query template. Returned objects are usually ranked based 

on their similarities to the query template. 

• Wi th in -Dis tance (or a -cu t ) . Using distance measure D, find all objects 

that are within distance a to the query template. In contrast to the fc-nearest-

neighbor class, a-cut search could result in no return or returning the entire 

database. Returned objects are usually ranked based on object similarities. 

The /i;-Nearest-Neighbor search and the a-cut search are both supported in 

Robot Share. 

3.4 Similarity Functions 

3.4.1 Dis tance Measures 

The previous section has introduced a set of query types. Among them, k-

nearest-neighbor and a-cut both require the distance measure between two objects 

to be computed. This section presents some commonly used methods to measure 

object distances. 

A similarity function is a mapping between pairs of feature vectors and a positive 

real-valued number, which represents the similarity between two objects. Some of 
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the commonly used dissimilarity measures are listed (See Ref. [5, 30] for a more 

complete discussion.) 

Let the descriptor be represented as an ra-dimensional vector / = [/]...fm] . 

Given two objects, I and J, let D(I, J) be the distance between the two objects as 

measured using the descriptors f) and fj. 

L I distance 

D(I,J) = \fi-fj\ = Y,\fk,i-fi k.J 
k=l 

Euclidean distance (L2 Dis tance) 

D(I,J) = \\fi-fj\\ = (fi-fj)T(fi-fj) 

• L q q distance 

D(I, J) = rnax\fkJ - fkyJ\ 

Weigh ted L I distance 

rn I f i- I 

D ( / . J ) = ^ 

ok is the standard deviation of the kX\\ feature component in the database. 

Mahalanobis distance 

D(i,j) = (fI-fj)Ti:-\fI-fj) 

E is the covariance matrix that 

E = J S 7 [ ( / - / i / ) ( / - / i / ) T ] a n d fxf = E[f}. 

Kullback-Leibler ( K - L ) d ivergence (relative en t ropy) 

If / is a normalized histogram, then 
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• Euclidean distance (L2 Distance) 

D(I , J) = Il h - h ll = (fI - h f( h - i J) 

• Loo distance 

D(I , J ) = maxlik,1 - i k,JI 

• Weighted Ll distance 

D(I , J) = f= lik ,I - i k,JI 
k = ) (Jk 

(Jk is the standard deviation of the kth feature component in the database. 

• Mahalanobis distance 

I: is the covariance matrix t hat 

I: = E [(f - vl)(i - vl f] and Vl = E [i ']. 

• Kullback-Leibler (K-L) divergence (relative entropy) 

If i is a normalized histogram, then 

m f 
"'"' . k,I 

D(I , J ) = ~ i k,Ilog ik ,J . 
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LI, L2, and distance belong to the category of Minkowski-form metric, 

which has the general form: 

A/-1 

d'„,t = [ E \h,,(m) - h,(m)\r} 

where hq and are two objects with M features. (In the case of L ^ , it is interpreted 

as linip-^oo Dp.) 

LI distance is commonly known as the Manhattan distance, city block distance, 

or walk distance. When it is used to compare color histograms, it is also known as 

the Histogram Intersection [38]. 

L2 distance is refered as Euclidean distance. It can be written as 

M - l 

D(I,J) = \\fl- fj\\= E l / i M - / » f . 
r n = 0 

One character of a Minkowski metric is that it compares the proportion of a 

specific feature within object q to the proportion of the same feature within object t, 

but not to the proportions of other similar features. For instance, when a Minkowski 

metric is applied to compare color histograms, [5]: 

the distance between a dark red image and a lighter red image is 
measured to be the same as the distance between the same dark red 
image and a perceptually more different blue image. 

The main computational cost in this family is due to computing the power functions. 

The weighted LI distance is a special case of the weighted Minkowski family. It 

has the general form as: 

D<«(J,. /) = [ X > . ~ h W \ ' -
? ; = i 

Weighted Minkowski matric contains a weighting parameter u for every individ

ual feature. The standard deviation of the k\\\ feature, is a common selection 

for this weighting parameter. 
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Mahalanobis distance is a special case of the quadratic-form metric, which has 

its general form as 

D(I,J) = (fI-fj)TA-1(f,-fJ). 

Its use on the color histogram can be found in the IBM QBIC system [14]. For some 

application, it generates more desirable results than matrices from the Minkowski 

family as the Minkowski family compares only like bins, whereas quadratic-from 

metrics consider the cross-relation of the bins. 

Kullback-Leibler (K-L) divergence is defined only for probability distributions. 

Unlike others, relative entropy is not technically a distance measure as it is not 

symmetric, and it does not satisfy a triangle inequality. (Mahalanobis distance 

satisfies these two requirements when A is positive definite.) For query purposes, 

the first argument is set to the query template where the second argument comes 

from the database. 

Ref.[5] discusses various properties of these distance measures in depth. A com

parison of some of these matrices applied in image retrieval is presented. Despite 

manually selected and relative small sample sizes used in their study (which contains 

no more than 50 images in each of the tests), they provide some informative results, 

including simple metrics such as LI and L2 alone with the more sophisticated 

Mahalanobis distance all give reasonable performances. K-L measure is not included 

in this test, but reported with good performance elsewhere in ref. [5]. 

3.4.2 Exper iment Da ta 

In the previous chapter, we have discussed the combined effort of distance 

measure and vector-length-reduction transformations. We have covered a series 

of experimental data in the form of confusion matrix measures. We then conclude 

that weighted LI distance1 and polynomial coefficient provide the best performance. 

Here we compare the four original histogram samples, without reducing the vector 

length, to the same perfect sample and collect measures. This test is needed for 

search result ranking. 
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3.5 Feature Indexing 
Indexing schemes are commonly used in multimedia database queries. The oper

ation required to perform content-based search in such systems are computationally 

expensive. It is also known that indexing in multimedia databases is very different 

from indexing in text-based databases as multimedia data are stored in form of 

feature vectors. The previous chapter introduced the knowledge representation, 

array of short vectors, Robot Share uses. This section explains reasons behind 

this selection by explaining the difficulty of building indexing structures over long 

vectors. We then review a few commonly used indexing structures and discuss pros 

and cons of each of them. 

3.5.1 Curse o f Dimensional i ty 

The most problematic issue caused by long feature vectors is the curse of 

dimensionality. This effect has been noticed by researchers from various domains. 

This phenomenon appears as numerous geometric properties that hold in low-

dimensional spaces no longer hold in high-dimensional spaces. As ref. [5] explains: 

...in two dimensional a circle is well-approximated by the minimum 
bounding square; the ratio of the areas is 4 / T T . However, in 100 dimen
sions the ratio of the volumes becomes approximately 4.2 * 10 3 9 : most 
of the volume of a 100-dimensional hypercube is outside the largest in
scribed sphere - hypercubes are poor approximations of hypersphers and 
a majority of indexing structures partition the space into hypercubes or 
hyper rectangles. 

For example, the widely used R-tree indexing schemes become inefficient for 

a-cut queries using the L2 distance. As ref. [5] explains: 

[R-tree indexing are inefficient] as they execute the search by trans
forming it into the range query defined by the minimum bounding 
rectangles of the desired search regin, which is a sphere centered on the 
template point, and by checking whether the retrieved results satisfy 
the query. In high dimensions, the R-trees retrieve mostly irrelevant 
points that lie within the hyperrectangle but outside the hypersphere. 

Another problem of high-dimensional space is that points randomly sampled 

from the same distribution appear uniformly far from each other and each point 

sees itself as an outlier. For instance, we can have an example such as the following: 
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• We first generate 20,000 independent 100-dimensional vectors, with the fea

tures of each vector independently distributed as the standard Normal random 

variables. 

• Then we compute the Euclidean distance from a random vector from the same 

distribution to all vectors in the database. 

• We observe that the minimum distance between the query point and database 

sample is above 10, the average distance is about 14, and the maximum 

average distance is above 17. Figure 3.1 shows the shape of the distribution. 

Comparing Figure 3.2 to Figure 3.3, with vector lengths of one and five, re

spectively, we can see the distance distribution in high-dimensional spaces differs 

from distributions in low-dimensional spaces. This effect makes a-cut queries very 

sensitive to the choice of the threshold in high-dimensional spaces. For instance, 

when the threshold is smaller than 10, no result is returned: with a threshold of 

12.5, the query returns 5.3% of the database; and when the threshold is increased 

to 13, 14% percent of the database is returned. 

3.5.2 Feature Select ion 

The curse of dimensionality can also be seen in the field of patten classification 

[27]. We can view an object query as classifying a new object into a known category. 

In this view, the classification error should decrease when additional measurements 

are applied. However, this is not always true in practice. When a classifier is 

constructed, there may not be enough sample to train the classifier, i.e., determine 

the most appropriate parameters for each feature, e.g., the threshold for a a-cut 

emery of certain feature. Specifically, the classifier would be well tuned for the 

training set, but would fail when new instances are presented. Therefore, we would 

need to minimize the feature set for a, classifier to minimize the number of unknown 

parameters. 
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Figure 3.1. Distances Between a Query Point and Database Samples. 
Sample Size = 20,000; Vector Dimension = 100; Bin Number = 100. 
Dmin = 10.22, Dmax = 17.41, Davg - 13.94 
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Figure 3.2. Distances Between a Query Point and Database Sam
ples. Sample Size = 20,000; Vector Dimension = 1; Bin Number = 100. 
-Drain ~ 0, Dmax 5.16, Davg 1.11 
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Figure 3.2. Distances Between a Query Point 
pIes. Sample Size = 20 ,000; Vector Dimension = 1; 
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Figure 3.3. Distances Between a Query Point and Database Sam
ples. Sample Size = 20,000; Vector Dimension = 5; Bin Number = 100. 
Drrnn — 0.28, D,max = 6.05, Davg = 2.72 
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Feature selection can be viewed as a typical searching problem formed as: Select 

d < D from 

V = {vi\j = 1,2, . . . , £ } 

arriving at 

U = {ui\i = 1,2, 

where V is the complete feature set, each u?; is an element of I/, and U maximizes a 

criterion function, which is the probability of correct classification. Clearly, brute 

force feature selection is not feasible, as the permutation of M choose TV grows 

exponentially with the growth of M and N, e.g., selecting 10 features out of 100 

would necessitate evaluation of more than 10 1 3 feature sets. Thus, a computation

ally feasible method must be used. 

Feature selection hence has been studied and a few algorithms have been pro

posed. Among them, the sequential forward selection (SFS), the sequential back

ward selection (SBS) and their derived variations are popular methods. Ref. [27] 

states the following: 

SFS is a bottom-up, hill climbing search procedure, where one fea
ture class is added at a time to the current feature set. At each iteration, 
the feature class to be included in the feature set is selected from among 
the remaining feature classes such that the new feature set yields the 
greatest possible value of the criterion function. ... The two major 
drawbacks ... are the local peak problem and the ridge problem. 

The local peak problem and the ridge problem are common to all hill climbing 

search algorithms. The first one occurs when there are multiple maxima and the 

search is trapped in one local maximum. The second one occurs when the path to 

a local maximum is not within available search directions. A typical hill climbing 

algorithm stops when a local maximum is achieved without searching for the global 

maximum. It also stops when none of its operation yields a higher score in its 

evaluation function, i.e., reaches a ridge. In case of SFS, it reaches a local maximum 

such as adding no other feature to a particular feature set Vi could results a higher 

evaluation index. It also fails when a high evaluation index is reachable only when 

multiple features are added at once. 
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exponentially wi th the growth of NI and N, e.g., selecting 10 features out of 100 

would necessitate evalua tion of more than 1013 feature sets. Thus, a computation-

ally feasible method must be used . 

Feature selection hence has been studied and a few algorithms have been pro

posed. Among them, the 'equential forward selection (SFS), t he sequential back

ward selection (SBS) and their derived varia tions are popular methods. Ref. [27] 

states the following: 

SFS is a bottom-up , hill climbing search procedure, where one fea
ture class is added at a time to the current feature set . At each iteration, 
t he feature class to be included in the feature set is selected from among 
t he remaining feature classes such that the new feature set yields the 
greatest possible value of the criterion function. 00. The two major 
drawbacks ... are the local peak problem and the ridge problem. 

The local peak problem and the ridge problem are common to all hill climbing 

search algorithms. The first one occurs when there are multiple maxima and the 

search is trapped in one local maximum. The second one occurs when the path to 

a local maximum is not within available search directions. A typical hill climbing 

algorithm stops when a local maximum is achieved without searching for the global 

maximum. It also stops when none of its operation yields a higher score in its 

evaluation function, i. e., reaches a ridge. In case of SFS, it reaches a local maximum 

such as adding no other feature to a particular feature set VI could results a higher 

evaluation index. It also fails when a high evaluation index is reachable only when 

multiple features are added at once. 
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SBS is the top-down counterpart to the SFS. The complete feature set is the 

starting point. At each stage, one feature is removed until removing no feature can 

result a higher evaluation index. It suffers from same problems as SFS. 

To overcome, or reduce the chance of getting into, the ridge problem, generalized 

sequential forward selection (GSFS) and generalized sequential backward selection 

(GSBS) are developed. In these methods, instead of adding/deleting one feature at 

a time, multiple features are added/deleted. In general, GSFS and GSBS produce 

better results than SFS and SBS, but, again, with higher computational costs. 

Another variation is the plus L take away R selection (LRS), where SFS and 

SBS are applied interchangeably. Again, better results are reported, but with an 

increased computational cost. 

Nonfixed L and R sizes at each step can be utilized, i.e., instead of adding or 

removing a fixed number of features at each step, a floating number of features are 

considered. This further increases the possibility of finding the global maximum. 

More discussion on techniques such as stochastic methods and neural networks 

on feature selection can be found in ref. [23, 27]. Even though progress has been 

made in this area, selecting a small yet representative set of features for general 

applications is an open problem. 

3.5.3 Dimensional i ty R e d u c t i o n 

Feature selection is a useful technique that helps to overcome the curse of dimen

sionality. However, as some of the most popular indexing methods, including R-Tree 

and Quad-Tree, perform suboptimally when the dimensionality of the feature space 

barely exceeds 10, we usually need to further decrease the dimensionality of the 

feature space. Three classes of methods have been investigated. 

Variable-subset selection works just like the feature selection. Certain features 

are discarded upon indexing. A small set of useful ones are left to keep the 

dimensionality low. The main problem of this approach is the error induced 

by approximating the original vectors with their lower-dimensionality projections. 

Techniques in this group are Karhunen-Loeve transform (KLT) [15], singular value 
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decomposition (SVD) [22] and principal component analysis (PCA) [27]. A variable-

subset selection step discards dimensions that have smaller variance. It can be 

shown that when Euclidean distance is used to measure distance, the distance 

between original vectors is closer than the distance measured with their projections 

using above techniques. The main disadvantage in above techniques is the compu

tational cost, as KLT, SVD and PCA are data-dependent. They are poorly suited 

for dynamic databases, in which items are added and removed on a regular basis. 

Multidimensional scaling is another technique used in this field. In general, this 

technique tries to remap the original feature space Rn into Rm (m < n) using m 

transformations, each of which is a linear combination of appropriate radial basis 

functions. Various implementations exist in this category. The drawback of these 

algorithms is the high computational cost. Hence they are not suitable for dynamic 

databases. 

Geometric hashing [4] consists of hashing from a high-dimensional space to a 

very low-dimensional space (usually one or two dimensions.) As hashing functions 

are not data-dependent, the metric properties of the hashed space can be signif

icantly different from the original one. The design of a good hashing function 

becomes increasingly difficult as the dimensionality of the original space grows. 

To summarize, a good dimension reduction algorithm should maintain the dis

tance measure when the feature set is transformed from a high-dimensional space 

to a low-dimensional space. It also must be computationally efficient if dynamic 

databases need to be supported. 

3.5.4 Indexing Structures 

Ref [5] contains an intensive discussion on the topic of indexing structure. 

A handful indexing scheme are reviewed. In general, we distinguish indexing 

structures in three ways: (1) vector space indexes versus metric space indexes; (2) 

recursive partitioning methods versus projection-based methods; and (3) spatial 

access methods (SAM) versus point access methods (PAM). 
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Vector space indexes represent objects and feature vectors as sets of points in 

a d-dimensional vector space. Metric space indexes pairwise distances between 

objects in a set instead of indexing objects. It tries to capture the metric structure 

of the search space. Recursive partitioning methods organize the search space into 

a tree like structure. Projection-based methods employ algorithms that perform 

searches on the projections of database point onto a set of directions. SAM indexes 

spatial objects, e.g., lines, polygons, surfaces, solids, etc. PAM index points in 

multidimensional spaces. More detailed discussion of indexing structures can be 

found in ref. [5, 16, 35]. 

Among these techniques, recursive partitioning methods have been widely used 

and reported with good results. The three most commonly used categories in this 

group are quad-trees, k-d trees, and R-trees. Castelli [5] explained this as the 

following: 

Quad-trees divide a d-dimensional space into 2d regions by simulta
neously splitting all axes into two parts. Each nonterminal node has 
therefore 2d children, and, as in the other two classes of methods, corre
sponds to hyperrectangles aligned with the coordinate axes. K-d trees 
divide the space using (d— l)-dimensional hyperplanes perpendicular to 
a specific coordinate axis. Each nonterminal node1 has therefore at least 
two children. The coordinate axis can be selected using a round-robin 
criterion or as a function of the properties of the data indexed by 
the node. ... R-trees divide the space into a collection of possibly 
overlapping hyperrectangles. Each internal node corresponds to a hy-
perrectangular region of the search space, which generally contains the 
hyperrectangular regions of the children. The indexed data is stored at 
the leaf nodes of the tree. 

Quad-trees are a large class of indexing structures. Besides the classic algorithm 

described above, its variation includes region quad-tree, point quad-tree, etc. How

ever, quad-trees are not well-suited for high-dimensional (d > 10) indexing [5]. For 

instance, when d = 20, the quad-tree becomes very sparse, i.e., most of its nodes 

are empty. In higher dimension, hypersphercs are not well-approximated by hyper

rectangles. Therefore quad-trees are not suitable for o-cut and nearest-neighbor 

queries. 
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The ^-dimensional tree, known as k-d tree, is another commonly used hierar

chical indexing structure. As its name suggests, it gives better performance than 

quad-trees in high-dimensional space. Constructing a k-d tree is more costly than 

constructing a quad-tree in general. Furthermore, when the data node cannot be 

efficiently split, k-d trees suffer from the utilization imbalance problem. A modified 

version, k-d,-b tree, was proposed [31]. Unlike the original version, it supports 

dynamic node insertion and deletion. K-d trees are expected to give reasonable 

performance for d < 20. 

R-trees and their large variations are probably the most-studied multidimen

sional indexing structures. An R-tree splits the space using hyperrectangles rather 

than hyperplanes. The properties of R-trees differ from the previous two families as 

it allows overlapping rectangles. Derivations of R-trees include /?+-trees, i?*trees, 

packed R-trees, X-trees, VAMSplit R-tree, S-tree, etc. It has been reported that 

R-tree shows enough efficiency in up to 20 dimensions [11]. 

3.5.5 Indexing Text Da ta 

Text indexing has a much longer history than multimedia data indexing. In 

fact, most early research in image retrieval was based on text-based retrieval though 

image annotation [5]. However, the researcher then realized image annotation based 

retrieval was limited, as to have a human annotate the ever increasing large amount 

of image data is not practical. Then we saw the birth and growth of CBIR, On 

the other hand, up to date, text-based retrieval has been more successful than 

image-based systems. Robot Share utilizes text indexing as well as content based 

image indexing. 

We unify textual and multimedia sensor data in our system as we believe an 

integrated system is easier to maintain and gives a better performance. To achieve 

this goal, all text information needs to be represented in numerical vectors and a 

low dimensional representation is desired. As suggested in ref. [36], we investigated 

the latent semantic indexing (LSI) [8]. Ref. [36] explains LSI as: 
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LSI works by statistically associating related words to,the semantic 
context of the given document. The idea is to project words in similar 
documents to an implicit underlying semantic structure. 

LSI tries to solve the synonymy and polysemy problems. The synonymy problem 

is that the same object can be described in multiple words. The polysemy problem 

is that a word can mean multiple things. There is a many-to-many relation that 

exists between objects and words. 

The singular-value decomposition (SVD) is the main workhorse in LSI. The 

algorithm used in ref. [36] works in the following way: 

• Construct the term x document matrix A, where the element ai?- represents 

the frequency of term i in document j . Therefore, each column of the matrix 

A is a term histogram of a document. 

• Decompose A using the SVD: 

A = UJ:VT 

where UTU = VTV = I, E = diag{o\,crn), E is the singular value matrix 

of A. 

• Then select k most significant dimensions from the original space. This is 

achieved by selecting the first A: rows in E where ox has a higher value. 

• Then the A:-dimensional vector representation of the qM\ document is: 

X = qTUkZ^ 

where q is the word frequency histogram of the qth document, is a matrix 

composed of the first k columns in U, and E^ is a matrix composed of the 

first k rows and k columns of E. 

Ref [8] does not provide a systematic approach in selecting k. The hope is k 

should be large enough so most "latent semantic" in one document can be captured. 

It is also needs to be small enough so data noise can be removed. 

LSI works by statistically associating related words .to the semantic 
context of the given docume~t . The idea is to proj ect words in similar 
documents to an implicit underlying semantic structure. 
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3.6.1 Indexing Structure Considera t ion 

In the previous chapter, we explained that representing objects in a vector space 

is a sensible approach for the construction of indexing structures. However, there 

was a debate on whether a unified single indexing structure (Figure 3.4.) is better 

than a set of small, potentially heterogeneous, indexing structures (Figure 3.5.) 

Considering the need of knowledge representation, a unified single indexing struc

ture requires a long vector concatenated by a set of small vectors, where each small 

vector records certain property of the object. A set of smaller indexing structures 

requires every small indexing structure to take a small vector. Therefore there is 

no need to concatenate vectors, which represent different properties, into a long 

one. Hence objects are effectively represented by arrays of vectors. The previous 

chapter summarized the advantage of the unified long vector approach as simple, 

easy to implement and maintain and the advantages of the set of small vectors as 

more elegant and having better performance with incomplete queries. We see more 

evidence points that the set-of-small-vectors approach is a more feasible solution if 

more things are taken into consideration. 

X M L 

c -> 

Indexing 
Structure 

V ) 

Response 
Fonnalizer XML 

Figure 3.4. The Singie-indexing-structure Architecture. 

3.6 Robot Share Architecture 
After reviewing the concept and related technologies of search engine, we are 

ready to present the Robot Share architecture. We first revisit the single indexing 

structure vs. multiple indexing structure discussion; then we give detailed discus

sion on each component in Robot Share. 
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Figure 3.5. The Multi-indexing-structure Architecture. 

First, the curse of dimensionality determines that the length of vectors used for 

indexing needs to be short. Even though various mathematical techniques help to 

reduce the size of long vectors, such as histograms, there is a limit on the amount 

of size reduction can be applied without losing a significant amount of information. 

One good way to measure the amount information that has been preserved after 

dimension reduction is to compare the confusion matrix that is generated using the 

original data, i.e., long length vectors, against the confusion matrix generated using 

reduced vectors. Since a confusion matrix is a good measure of the classifying power 

of a certain property of an object, comparing two confusion matrices is informative. 

If too much information has been lost, then this resulted representation loses the 

power of classifying object. For example, edge histograms are usually good at 

distinguishing objects, where each histogram can contain more than a hundred bins, 

hence each of these histograms is represented by a vector with more than a hundred 

elements (256 in our sample data.) If we compare distances between histograms 

stored in our database, we can construct a confusion matrix, which shows how those 

histograms can be classified. A similar confusion matrix can be constructed using 

reduced vector, e.g., approximate a histogram by a fourth-order polynomial, and 

the five coefficients can be used to represent the original histogram. The second 

matrix cannot be identical to the first, as some amount of information must be lost 

during dimensional reduction. However, if the second matrix is close enough to 
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the first matrix, then we conclude that the classifying power of the original data is 

mostly preserved.1 A series of experiments have shown that transforming a 256-bin 

histogram to a 5-element vector using polynomial coefficient representation yields 

a reasonable performance. More aggressive reductions sacrifice from performance 

losses. However, in our sample data, each object contains eight histograms. Even 

if all of them are reduced to 5-element vectors, the length of the concatenated final 

vector approaches 50. Building a indexing structure supports a 50-dimensional 

space without suffering from the curse of dimensionality is a challenge. 

Second, from a software engineering point of view, a single big indexing structure 

suffers from poor scalability. One of the most significant characteristics distin

guishes Robot Share from other work in multimedia database or CBIR is the 

flexibility Robot Share aims at. Robot Share is designed to support as many data 

format/object representations as possible. However, if we commit to a specifically 

designed indexing structure for all data Robot Share takes, then it is very likely that 

the desired system flexibility will be lost. On the contrary, if we divide indexing 

structures into multiple ones, where each of them handles one type of data, it will 

be easy to add more object properties by adding more indexing components. 

We had briefly mentioned before was separating indexing component into smaller 

ones could help us to improve the performance of each of these components. For 

example, in the current implementation, LSI is used to handle text data. Even 

though we report good retrieval results with LSI, it inherently has the problem 

of being too static, as adding any new document into the database requires a 

recompute on the entire structure. Any modification made to keywords requires a 

1 No te that wc are not stating that a transformation from a high dimension to a lower one 
always decreases the classifying power. It is possible that in certain cases, a low-dimensional 
representation has more classifying power than its high-dimensional counterpart. For two reasons, 
(1) data stored in the high dimension vector are intercorrelated, so information redundancy exists; 
(2) some portion of the high dimension data is noise. In either case , the high dimension to low 
dimension transformation works more like a low pass filter, where useful information is extracted 
from the original data. However, for the purpose of this discussion, i.e., transforming a 256-bin 
edge histogram to a 5-element vector, we always see losing classification power rather than gaining 
it. Hence the difference between the two confusion matrices can always be interpreted as a loss 
of classifying power. 
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be easy to add more object properties by adding more indexing components. 

vVe had briefly mentioned before was separating indexing component into smaller 
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1 Note tha t we are not sta ting that a transformation from a high dimension to a lower one 
always decreases the classifying power . It is possible tha t in certain cases, a low-dimensional 
representation has more classifying power than its high-dimensional coun terpar t . For two reasons, 
(1) data stored in the high dimension vector are intercorrelated , so information redundancy exists; 
(2) some portion of the high dimension da ta is noise . In either case , the high dimension to low 
dimension transform ation works more like a low pass filter , where useful information is extracted 
from the original data . However , for the purpose of this disc Llssion , i. e. , transforming a 256-bin 
edge histogram to a 5-element vector , \ove always see losing classification power rather than gainillg 
it. Hence the difference between the two confusion matrices can always be interpreted as a loss 
of classifying power . 
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recompute as well. It has been noticed that a SVD decomposition, which is at the 

core of LSI, is computationally expensive. Therefore, we may need to reconsider 

if there is any substitute, as we can replace the text indexing component with the 

new module without worrying about the rest of Robot Share. Another example 

is finding better transformations for histograms. Different histograms come in 

different shapes, hence they are better if approximated using different techniques, 

e.g., polynomial approximation and trigonometry function approximation. If we 

separate the indexing structure into components, we can efficiently study each 

component hence achieving a better overall performance. 

Robot Share supports both instance-based query and class-based query. Instance-

based query focuses on finding additional information for a particular object. Class-

based query focuses on object classification. Even though both of the single-big-

indexing-structure and the set-of-small-indexing-structures are able to perforin the 

instance-based query, the single indexing structure struggles to support class-based 

queries. For instance, there are four objects stored in the database, two bowls and 

two knives. Two bowls are represented by: [1,2,2], [10,2,2]: and two knives are 

represented by [1,8,8] and [10,8,8]. The confusion matrix measured using LI is: 

Based on measured distances using LI, two bowls are grouped together in one 

group while two knives are also grouped together in another group. Figure 3.6 shows 

a k-d tree placement of these four vectors. In this case, suppose a bowl represented 

by [1,1,1] is received for a query, even though the closest bowl, represented as 

[1,2,2], is returned correctly; the other bowl, [10,2,2], will be missed, and the 

knife, represented as [1,8,8], is also incorrectly returned. The upshot is, indexing 

structure such as a k-d tree is best for the nearest neighbor query. Its performance 

on fc-nearest-neighbor queries is largely data depended. Therefore, if we are able 

to separate a large k-d tree into a few smaller ones, we have more control over 

the search procedure, hence better retrieval performance can be achieved. For 
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Figure 3.6. K-d Tree Structure of Two Bowls and Two Knives. 

instance, we can use weight coefficients to put emphasis on properties that might 

better classify a certain group of objects than other properties. It can be viewed 

that we can use weight coefficient to dynamically enlarge or shrink the space in 

different dimensions. For instance, if we want to ignore certain features in a query, 

we put a small weight coefficient for this feature. This is equivalent to shrinking the 

space in dimensions that represent this feature. In this case, coordinates of objects 

in these dimensions no longer matter, as distances between points are dominated 

by distances measured in other dimensions. 

Based on these four reasons, even though the set-of-small-indexing-structure 

approach has disadvantages in its complexity, we build Robot Share using this 

approach. 

3.6.2 R o b o t Share C o m p o n e n t 

In the current implementation, Robot Share is composed of four groups of 

components: a query processor, indexing structures, a cross analyzer and a response 

forrnalizer. In the future, a feedback analyzer can be added into the system. 
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The query processor is the first component in a Robot .Share query process. 

It takes queries, in the format of XML hies, and translates them into an array of 

vectors and sends each vector to a corresponding indexing structure to find matches. 

The query processor functions as a simple XML parser as it converts data stored in 

XML to vectors, and computes various derived features from raw data stored in the 

XML file. For instance, for object knowledge, it computes color and edge histograms 

and transforms them into low dimensional representations. It also computes the 

vector representation of text information into vectors using LSI. In the future, the 

query processor could be built more intelligently so it not only parses data but also 

preprocesses them. For example, currently, robots perform image segmentation if 

a query contains an image. We may later add an image segmentation component 

into the query processor. 

Another interesting topic to be studied is to have the query processor to discover 

underlying relations between information stored in different fields in the same 

object. For example, when an object conies with an image and a text description 

as a "yellow bowl," a color histogram is computed from the image. We know there 

is an underlying relation between the word "yellow" and the shape of the color 

histogram. Developing a systematic approach to discover all relations cross feature 

fields is an open problem. If a such an approach is developed, among other things, 

it can help Robot Share to approximate missing fields in both queries and data 

entries stored in its database, and possibly improve the retrieval performance. 

The second group of components is indexing structures. They are arguably 

the most significant group of components in Robot Share. They take inputs from 

the query processor in form of vectors, and produce ordered lists of objects. They 

sort objects using measures between the query sample and objects stored in Robot 

Share and return the sorted list. 

In the current implementation, 11 indexing components are created for object 

knowledge processing. Six of them are built for color histograms (two images of 

an object, three color channels in each image); two of them are built for edge 

histograms (two images for each object); one of them is built for text data produced 
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from an LSI process; one of them is built for dimensional information of the object, 

i.e., length, height, width, and the cube root of the product of the three; the last 

indexing structure is built for the weight measure of an object. These properties are 

summarized in Table 3.1. K-d trees have been used to index all of these fields except 

the weight measure, which uses a binary tree. In all k-d trees, branch dimensions 

are selected in the round-robin fashion. Branching starts from the left most element 

of a vector. This decision is made due to the fact that the eight histograms in one 

object are all approximated by polynomials, in which high order terms contribute 

more to the shape of the polynomial. Text data are processed by LSI, which has 

the same property that high order terms capture more information than low order 

ones. All indexing components return 15 items for each query, except the LSI text 

indexing and dimensional properties component, in which 30 items are returned. 

For activity knowledge, in contrast to the 11 index structures developed for ob

ject knowledge sharing, 12 index structures are constructed for activity recognition 

as 12 trajectories are selected from each activity. K-d trees are used to index all 

trajectories. For the reason described above, branch dimensions in each k-d tree 

are selected in a round-robin fashion. Each indexing component returns five items 

Table 3.1. The Robot Share Component Length Summary. 

C o m p o n e n t V e c t o r Length Re tu rned i tems 
Red Channel (iml) 5 15 

Green Channel (iml) 5 15 
Blue Channel (iml) 5 15 
Red Channel (irn2) 5 15 

Green Channel (im2) 5 15 
Blue Channel (im2) 5 15 

Edge Orientation (iml) 5 15 
Edge Orientation (im.2) 5 15 

Text Data 4 30 
Dimensional Properties 4 30 

Weight 1 15 
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for each query. Items are then sent to the next module in Robot Share, the cross 

analyzer. 

The cross analyzer takes item lists from each indexing component, "cross an

alyzes" them and produces a single sorted list. Cross analyzer creates the sorted 

list based on a weighted summation of all query-item distances. The cross analyzer 

first creates a list containing all received items. It then computes distance from 

the query sample to every item in the list. The distance measure is a weighted LI, 

which can be expressed as, the overall distance D(A, B) between two objects A and 

B is equal to: 
k 

D(AiB) = 'E\widi(Ai,Bi)\. 
i=l 

In this equation, k equals to the number of fields presented in the query, wl is 

the weight coefficient of the zth component, and di is the distance between zth 

components in the two objects. All <-/,(. 1,. /;>,) are computed using the LI distance 

measure, where 
k 

d.j(At, Bi) = ^ | A ; , j ~~ 
.7=1 

For all image histograms represented by polynomial coefficients, k equals to 5; 

for the LSI indexed text field, k equals to 4; and for the singleton weight field, 

k equals to 1. We are at the very beginning stage of developing a systematic 

approach of computing weight coefficients Wi. The ideal ranking order is query 

dependent. It is related to the intentional use of the knowledge, the content of 

the database, and the content of the emery template. To find optimal weight 

coefficients, information about query robots must be taken into consideration. 

Currently, a static analysis approach is taken. We design experiments for various 

data conditions and query types. In each experiment, we evaluate Robot Share 

performance using the standard information retrieval measures: precision and recall 

[41]. We then search for weight coefficients that maximize these measures. The 

searching algorithm is an n-dimensional binary search, which is a good compromise 

between simplicity and performance. 
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There are two special cases making the distance computation more complicated. 

They are both related to missing fields in objects. The first case is: the query 

comes incomplete, e.g., a query that has no text description or misses one image. 

In this case, only indexing structures that associate with presented fields are used. 

As briefly mentioned in the previous section, if Robot Share is able to discover the 

underlying relations between fields, it is possible for Robot Share to fill some of these 

missing fields. We also consider objects stored in Robot Share that contain missing 

fields. In this case, ignoring information contained in queries by not using indexing 

structures associated with these fields would certainly yield a poor performance 

as (a) there are objects stored in Robot Share containing these fields and some of 

them could be what the querying robot looks for. Not using information stored in 

these fields can negatively impact the ranking of these objects, (b) Robot Share 

should utilize as much information in a query as possible. However, if Robot Share 

uses all indexing structures, then the distance between fields in the query sample 

and objects stored in Robot Share has to be estimated for objects with missing 

fields. This distance is approximated by measuring the query sample to a pseudo 

object, which approximates a missing field with the sample mean of that field. 

This approximation may not be a very good choice as when the sample variance is 

large, the sample mean becomes less representative of the actual value of an object. 

Future research is required to solve this problem better. 

Once distances between the query sample and all items returned by indexing 

structure are computed, the cross analyzer sorts the item list based on these 

distances and sends the sorted list to the next module: the response formalize!". 

The response formalizer takes input, which is a sorted object list from the cross 

analyzer, and generates an XML file that is understandable to the querying robot. 

The size of returned files, i.e., the length of the returned list, should be large enough 

so there is a, high chance for the querying robot to find the information it needs 

in the returned file. The file also needs to be reasonablely small so (a) the file 

transmission can be done in a small amount of time and (b) after receiving the file, 

a robot can determine if any useful information can be found in this file quickly. To 
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find a compromise between these two requirements, there are two questions to be 

answered: (a) how many results should be returned, and (b) what information does 

one result contain? In the current implementation, for object knowledge, every 

indexing components returns either 30 or 15 items to the cross analyzer, and there 

are 11 indexing components in Robot Share, so the number of items generated by 

the cross analyzer ranges from 30 to 180. If all indexing components return the 

same set of items, then the length of the list cross analyzer generated is 30. If all 

indexing components return lists that are mutually exclusive to each other, then 

the length of the the list generated by the cross analyzer is 180. It is simple for 

Robot Share to adjust the length of its returned list. As if more return items are 

desired, Robot Share can increase the items returned by each indexing component; 

if fewer items are demanded, Robot Share can cut off the return list created by the 

cross analyzer. As for the content of a result, the most important information is 

URL links to web addresses, where original object data can be found. It also would 

be useful that certain object information, which is stored in R,obot Share, could 

be presented to a querying robot along with the URL. So the querying robot can 

quickly scan through the list to eliminate objects that are not interesting to the 

robot. The format of returned XML files can be expressed in a simple grammar. 

The definition of the grammar is included in Appendix C. 
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C H A P T E R 4 

K N O W L E D G E EXPLOITATION 

In the previous chapter, we have discussed the architecture of Robot Share 

and reasons behind a number of design choices. This chapter is dedicated to 

performance studies of Robot Share. One can realize that giving a complete 

evaluation to a complex system like Robot Share is a challenging task. To make 

this task manageable, we limit the scope of our study and divide the evaluation into 

small areas. Each area focuses on one performance aspect of Robot Share. These 

performance tests give us a comprehensive overview of the system and help us to 

study future improvement. 

4.1 Object Knowledge Experiment 
This section presents Robot Share performance on object knowledge. In all 

of these experiments, we have used common information retrieval performance 

measures, precision and recall, to evaluate our system. Precision in information 

retrieval is defined as the following: 

[relevant document f] retrieveddocuments] 
'precision — . — . . 

I retrieveddocuments \ 

It is a measure of the percentage of results that are desired in the total retrieved 

list. Recall in information retrieval is defined as: 

.. [relevant document fl retrieveddocuments] 
recall — 

| relevant documents \ 
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Recall is the percentage of desired retrieval results in the entire database. Neither 

precession nor recall alone can indicate the performance of an information retrieval 

system1. But by combining the two, a comprehensive evaluation can be reached. 

4.1.1 General Per formance 

We first examine how Robot Share performs in general. Two hundred samples 

are randomly selected from the R,obot Share database. They are used as query 

templates to query Robot Share. The Robot Share sample database contains 480 

sample objects that are derived from 16 real world collected sample objects. Each 

object duplicates 29 copies, and 20% random noise is added to each copy. All 

samples in the Robot Share database, including query samples, are complete, i.e., 

there is no missing information in either queries or database samples. Weight 

coefficients used for distance measure, in the cross analyzer, are set to one. All 

items returned from Robot Share are retrieved. Relevant items are siblings of 

images that are duplicated from the same sample object with added noise. One 

result, measured in precision and recall, is presented in Table 4.1. 

We can observe that the recall for this experiment reaches its highest possible 

value, one. Due to the relatively large number of retrieved documents, and the 

relatively small number of relevant items in the database, the precision is on the 

low side. 

We then define relevant items as items from the same class, i.e., bowls, knives, 

etc. In this setting, the range of relevant items are enlarged. This test examines 

how Robot Share perform on class-based queries. 

From Table 4.2 we can see that since the average number of relevant items grows 

and the number of retrieved stays unchanged, the precision grows. For the same 

reason, the recall drops. 

'Precision approaches one (the highest score it can reach) when the number of retrieved 
document approaches zero; recall reaches one (the highest score it can reach) when the number 
of retrieved document approaches the size of the database. Neither of the two situations satisfies 
a user's need though the measure is high. 
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Recall is the percentage of desired retrieval results in the entire database. Neither 

precession nor recall alone can indicate the performance of an information retrieval 

system1 . But by combining the two, a comprehensive evaluation can be reached. 

4.1.1 General Performance 

We first examine how Robot Share performs in general. Two hundred samples 

are randomly selected from the Robot Share database. They are used as query 

templates to query Robot Share. The Robot Share sample database contains 480 

sample objects that are derived from 16 real world collected sample objects. Each 

object duplicates 29 copies, and 20% random noise is added to each copy. All 

samples in the Robot Share database, including ql.lery samples, are complete, i. e., 

there is no missing information in either queries or database samples . \ l\Teight 

coefficients used for distance measure, in the cross analyzer, are set to one. All 

items returned from Robot Share are retrieved. Relevant items are siblings of 

images that are duplicated from the same sample object with added noise. One 

result , measured in precision and recall , is presented in Table 4.l. 

\l\Te can observe that the recall for this experiment reaches its highest possible 

value , one. Due to the relatively large number of retrieved documents , and the 

relatively small number of relevant items in the database , the precision is on the 

low side. 

vVe then define relevant items as items from the same class, i.e. , bowls, knives, 

etc. In this setting, the range of relevant items are enlarged. This test examines 

how Robot Share perform on class-based queries. 

From Table 4.2 we can see that since the average number of relevant items grows 

and the number of retrieved stays unchanged, the precision grows. For the same 

reason, the recall drops. 

J Precision approaches one (the highest score it can reach) when the number of retrieved 
document approaches zero; recall reaches one (the highest score it can reach) when the number 
of retrieved document approaches the size of the database. Neither of the two situations satisfies 
a user 's need though the measure is high. 
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Table 4.1. Performance Test 1.1a 

M i n M a x Med ian M e a n Variance 
Precision 

Recall 
Retrieved 

0.2113 
1 

51 

0.5882 
1 

142 

0.3704 
1 

81 

0.3677 
1 

84.8400 

0.0048 
0 

321.5723 

Table 4.2. Performance Test L i b 

M i n M a x Med ian M e a n Variance 
Precision 

Recall 
Retrieved 

0.3488 
0.2500 

55 

0.9178 
1 

130 

0.6066 
0.5583 

80.5000 

0.6117 
0.5668 

83.2200 

0.0156 
0.0240 

239.8097 

4.1.2 Query wi th Missing Fields 

Robot Share is designed to be robust enough to handle incomplete queries, i.e., 

queries that miss certain fields. Robot Share also handles incomplete records, i.e., 

missing certain fields in objects from the Robot Share database. In the case of 

an incomplete query (Table 4.3 shows an example of a query representation that 

contains only one image and no weight measure), Robot Share utilizes information 

from fields that contain data. In the case of an incomplete record, Robot Share 

estimates values in a missing field using sample means from the database. 

We first present performance data of Robot Share on incomplete queries. Results 

of queries that miss one image and weight measure are shown in Table 4.4. The 

first half of the table shows results from siblings relevant searches, and the second 

half of the table shows results from class searches. (All subsequent tables follow 

this format.) 

Results can be interpreted as the following. We measure precision using all 

objects returned by Robot Share, and the number of items returned depends on 

the number of indexing components used for a query. In the case of missing fields in 

a query, the number of involved indexing components reduces. Therefore the overall 

number of returned items reduces. So the precision of searches grows. Compared 
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Table 4.1. Performance Test 1.1a 

Min Max Median Mean Variance 
Precision 0.2113 0.5882 0.3704 0.3677 0.0048 

Recall 1 1 - 1 1 0 
Retrieved 51 142 81 84 .8400 321.5723 

Table 4.2. Performance Test LIb 

Min Max Median Mean Variance 
Precision 0.3488 0.9178 0.6066 0.6117 0.0156 

Recall 0.2500 1 0.5583 0.5668 0.0240 
Retrieved 55 130 80.5000 83 .2200 239 .8097 

4.1.2 Query with Missing Fields 

Robot Share is designed to be robust enough to handle incomplete queries, i.e., 

queries that miss certain fields. Robot Share also handles incomplete records, i.e., 

missing certain fields in objects from the Robot Share database. In the case of 

an incomplete query (Table 4.3 shows an example of a query representation that 

contains only one image and 110 weight measure), Robot Share utilizes information 

from fields that contain data. In the case of an incomplete record , Robot Share 

estimates values in a mi. sing field using sample means from the database. 

vVe first present. performance data of Robot Share on incomplete queries. Results 

of queries that miss one image and weight measure are shown in Table 4.4. The 

first half of the table shows results from siblings relevant searches, and the second 

half of the table shows resul ts from class searches. (All subsequent tables follow 

this format.) 

Results can be interpreted as the following. We measure preCISIon using all 

objects returned by Robot Share, and the number of items returned depends on 

the number of indexing components used for a query. In the case of missing fields in 

a query, the number of involved indexing components reduces. Therefore the overall 

number of returned items reduces. So the precision of searches grows. Compared 
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Table 4.3. A Query With Only One Image and No Weight Measure. 

Field Value 

redl 
green 1 

[1.8464e-011 -6.6396e-009 4.4481e-007 3.0729e-005 -4.8032e-004] 
[2.2378e-011 -8.7258e-009 8.0668e-007 8.9936e-006 -2.2540e-004] 

bluel [2.2060e-011 -8.5507e-009 7.6566e-007 1.378()e-0()5 -4.5634e-004] 
red2 

green2 
blue2 
edgel [-1.2498e-010 6.3984e-008 -1.0713e-005 6.4745e-004 -0.0063] 
edge2 

LSI [-0.0509 0.2674 0.2571 0.4403] 
phy_vec [6.0190 1.6906 11.3570 0.4998] 

weight 
filename 'knife2a.jpg' 

desc 'Knife with black handle' 

Table 4.4. Performance Test 2.1 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.2439 
1 

44 

0.6818 
1 

123 

0.4478 
1 

07 

0.4550 
1 

68.6700 

0.0078 
0 

222.0415 

Precision 
Recall 

Retrieved 

0.3780 
0.2500 

47 

1 
1 

106 

0.6701 
0.5250 

67 

0.6815 
0.5250 

68.4800 

0.0193 
0.0291 

177.4036 

with Performance Test 1.1, the average precision grows from 0.3677 to 0.4550 for 

sibling searches and 0.6177 to 0.6815 for class searches. For the same reason, the 

measured recall drops for class searches. 

Then we test queries with no text description or dimensional measures. Results 

are in Table 4.5. For the same reason of further reducing the number of returned 

items, search precision grows for sibling searches. Even though the number of in

dexing components stays unchanged from the previous test, both text indexing and 

Table 4 .3 . A Query 'vVi th Only One Image and No \tVeight Measure. 

Field I Value 
redl: [1.8464e-011 -6.6396e-009 4,4481e-007 3.072ge-005 -4 .8032e-004] 

greenl: [2.2378e-011 -8 .7258e-009 .0668e-007 8.9936e-006 -2 .2540e-004] 
bluel: [2. 2060e-011 -8.5507e-009 7.6566e-007 1.3780e-005 -4.5634e-004] 
red2 : 

green2: 
blue2: 
edgel: 
edge2: 

[- 1.2498e-Ol0 6.3984e-008 -1.0713e-005 6,4745e-004 -0.0063] 

LSI: 
phy_vec: 

weight: 
filename: 

desc: 

[-0.0509 0.2674 0.2571 0.4403] 
[6.0190 1.6906 11.3570 0.4998] 

'knife2a. j pg' 
'Knife with black handle' 

Table 4.4. Performance Test 2.1 

M in I Max I Median I Mean I Variance I 

Precision 0.2439 0.6818 0,4478 0.4550 0.0078 
Recall 1 1 1 1 0 

Retrieved 44 123 67 68.6700 222.0415 

Precision 0.3780 1 0.6701 0.6815 0.0193 
Recall 0.2500 1 0.5250 0.5250 0.0291 

Retrieved 47 106 67 68,4800 177,4036 
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with Performance Test 1.1 , the average precision grows from 0.3677 to 0,4550 for 

sibling searches and 0.6177 to 0.6815 for class searches. For the same reason, the 

measured recall drops for class searches. 

Then we test queries with no text description or dimensional measures. Results 

are in Table 4.5. For the same reason of further reducing the number of returned 

items, search precision grows for sibling searches. Even though the number of in

dexing components stays unchanged from the previous test , both text indexing and 
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Table 4.5. Performance Test 2.2 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.3544 
0.9000 

34 

0.8824 
1 

79 

0.5000 
1 

59 

0.5195 
0.9840 

58.9400 

0.0117 
5.0460e-004 

112.5216 

Precision 
Recall 

Retrieved 

0.3718 
0.2500 

39 

0.9018 
1 

90 

0.5864 
0.3778 

63 

0.6089 
0.4393 

61.9800 

0.0183 
0.0317 

85.9996 

dimensional indexing return more items than other components. Hence removing 

the two reduces the number of returned items. 

Then we test queries with text description. Results are in Table 4.6. From 

the confusion matrix presented in the previous chapter, we know text description 

is a good instrument for classifying objects. Measured precisions and recalls have 

proved this again. Using only text description, the retrieved length is short, and 

both precisions and recalls are high. 

Then we test queries containing only dimensional data and weight measures. 

Results are in Table 4.7. This test shows the worst result in this group. Both 

precisions and recalls are low in either sibling searches and class searches. However, 

these results are not due to a high retrieved number as in previous tests. We hence 

conclude dimensional and weight measures are less efficient for object classification 

when the two are used in isolation. 

Table 4.6. Performance Test 2.3 

M i n M a x Med ian M e a n Var iance 

Precision 0.5000 1 1 0.9000 0.0404 
Recall 1 1 1 1 0 

Retrieved 30 60 30 36 145.4545 

Precision 1 1 1 1 0 
Recall 0.2500 1 0.3333 0.4342 0.0477 

Retrieved 30 60 30 35.7000 139.9091 
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Table 4 .5. Performance Test 2.2 

M in I Max I Median I Mean I Variance I 
Precision 0.3544 0.8824 0.5000 0.5195 0.0117 

Recall 0.9000 1 - 1 0.9840 5.0460e-004 
Retrieved 34 79 59 58.9400 112.5216 

Precision 0.3718 0.9048 0. 5864 0.6089 0.0183 
Recall 0.2500 1 0. 3778 0.4393 0.0317 

Retrieved 39 90 63 61.9800 85.9996 

dimensional indexing return more items than other components. Hence removing 

the two reduces the number of returned items. 

Then we test queries with text description. Results are in Table 4.6. From 

the confusion matrix presented in the previous chapter , we know text description 

is a good instrument for classifying objects. Measured precisions and recalls have 

proved this again. Using only text description, the retrieved length is short , and 

both precisions and recalls are high. 

Then we test queries containing only dimensional data and weight measures. 

Results are in Table 4.7. This test shows the worst result in this group. Both 

precisions and recalls are low in either sibling searches and class searches. However, 

these results are not due to a high retr ieved number as in previous tests. VYe hence 

conclude dimensional and weight measures are less efficient for object classification 

when the two are used in isolation. 

Table 4 .6 . Performance Test 2.3 

Min I Max I Median I Mean I Variance I 
Precision 0.5000 1 1 0.9000 0.0404 

Recall 1 1 1 1 0 
Retrieved 30 60 30 36 145.4545 

Precision 1 1 1 1 0 
Recall 0.2500 1 0. 3333 0.4342 0.0477 

Retrieved 30 60 30 35.7000 139.9091 
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Table 4.7. Performance Test 2.4 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.0732 
0.1000 

36 

0.5526 
0.7000 

44 

0.2558 
. 0.3667 

42.5000 

0.2786 
0.3863 

42.0900 

0.0150 
0.0245 
4.0221 

Precision 
Recall 

Retrieved 

0.0682 
0.0500 

36 

0.9524 
0.5833 

44 

0.6551 
0.2583 

42 

0.6258 
0.2886 

41.7700 

0.0473 
0.0159 
3.9567 

To summarize these results, two conclusions can be made: (1) since the number 

of returned items effects the measured search precision and the number of indexing 

components involved in a query determines the total number of returned items, 

removing certain indexing structures can increase the measured precision. (2) Some 

features are more useful for classifying objects than others. In the above tests, 

image features and text features show higher classifying power than dimensional 

and weight data. 

We then test Robot Share performance with incomplete records. First we 

randomly select 160 objects from the database (that is one third of the entire 

database) and replace all information obtained from the first image, i.e., color 

histograms and edge orientation histograms with mean values from the data sample, 

then evaluate the retrieval performance. Results are presented in Table 4.8. In this 

test and all subsequent tests on incomplete records, queries are always complete. 

Table 4.8. Performance Test 2.5 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.2055 
1 

60 

0.5000 
1 

146 

0.3409 
1 

88 

0.3382 
1 

91.4900 

0.0033 
0 

289.4039 

Precision 
Recall 

Retrieved 

0.2973 
0.2667 

69 

0.8462 
1 

150 

0.5594 
0.5667 

90 

0.5560 
0.5581 

92.9500 

0.0138 
0.0156 

261.4217 
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Table 4.7. Performance Test 2.4 

Min I Max I Median I Mean I Variance I 
Precision 0.0732 0.5526 0.2558 0.2786 0.0150 

Recall 0.1000 0.7000 - 0.3667 0.3863 0.0245 
Retrieved 36 44 42.5000 42.0900 4.0221 

Precision 0.0682 0.9524 0.6551 0.6258 0.0473 
Recall 0.0500 0.5833 0.2583 0.2886 0.0159 

Retrieved 36 44 42 41.7700 3.9567 

To summarize these results, two conclusions can be made: (1) since the number 

of returned items eff'ects the measured search precision and the number of indexing 

components involved in a query determines the total number of returned items, 

removing certain indexing structures can increase the measured precision. (2) Some 

features are more useful for classifying objects than others. In the above tests, 

image features and text features show higher classifying power than dimensional 

and weight data. 

\ iVe then test Robot Share performance with incomplete records . First we 

randomly select 160 objects from the database (that is one third of the entire 

database) and replace all information obtained from the first image, i. e. , color 

histograms and edge orientation histograms with mean values from the data sample, 

then evaluate the retrieval performance. Results are presented in Table 4.8. In this 

test and all subsequent tests on incomplete records , queries are always complete. 

Table 4.8. Performance Test 2.5 

Min I Max I Median I Mean I Variance I 
Precision 0.2055 0.5000 0.3409 0.3382 0.0033 

Recall 1 1 1 1 0 
Retrieved 60 146 88 91.4900 289.4039 

Precision 0.2973 0.8462 0.5594 0.5560 0.0138 
Recall 0.2667 1 0.5667 0.5581 0.0156 

Retrieved 69 150 90 92.9500 261.4217 
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These results show no surprise. Compare with results from Performance Test 

2.1, which contains complete data, average precisions in both sibling search and 

class search drop about 9%. 

Then we reset the Robot Share database to its original state, i.e., all records 

are complete, and randomly select 160 objects, replace text data and dimensional 

data with sample means of each of these fields, respectively. The performance is 

presented in Table 4.9. The average precision for sibling searches further drops 

from the previous test. However, the average precision for class searches grows. 

Since the average precision is still lower than results from Test 2.1, we think this 

still shows losing information in database degrades search performance. 

We again reset the Robot Share database to its original state and randomly 

select 160 objects, replace all of their data with sample means except one set of color-

histograms, one edge orientation histogram and text data. Results are presented in 

Table 4.10. 

More information is removed from the database. Precisions for both sibling 

searches and class searches drop. However, since text and image data contain most 

information needed for classifying objects, the precision drop is not dramatic. 

From these three tests, we can see that losing information in database items 

generally degrades search performance, especially measured precisions. However, 

since certain features bear more classifying power than others, losing information 

in less significant features degrades performance to a smaller extent. 

Table 4.9. Performance Test 2.6 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.2479 
0.8667 

64 

0.4688 
1 

121 

0.3125 
1 

95 

0.3209 
0.9933 

94.4100 

0.0018 
3.3670e-004 

141.6383 

Precision 
Recall 

Retrieved 

0.2992 
0.3889 

65 

1 
1 

127 

0.6392 
0.6111 

90 

0.5896 
0.6428 

92.5400 

0.0283 
0.0233 

211.4630 
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These results show no surprise. Compare with results frQm Performance Test 

2.1 , which contains complete data, average preCISIOns in both sibling search and 

class search drop about 9%. 

Then we reset the Robot Share database to its original state, I.e., all records 

are complete, and randomly select 160 objects, replace text data and dimensional 

data with sample means of each of t hese fields, respectively. The performance is 

presented in Table 4.9. The average precision for sibling searches further drops 

from the previous test. However , the average precision for class searches grows. 

Since the average precision is still lower than results from Test 2.1 , we think this 

still shows losing information in database degrades search performance. 

vVe again reset the Robot Share database to its original state and randomly 

select 160 objects, replace all of their data with sample means except one set of color 

histograms, one edge orientation histogram and text data. Results are presented in 

Table 4.10. 

More information is removed from the database. Precisions for both sibling 

searches and class searches drop. However , since text and image data contain most 

information needed for classifying objects, the precision drop is not dramatic. 

From these three tests , we can see that losing information in database items 

generally degrades search performance, especially measured precisions. However, 

since certain features bear more classifying power than others, losing information 

in less significant features degrades performance to a smaller extent. 

Table 4.9 . Performance Test 2.6 

Min [ Max [ Median [ Mean [ Variance [ 
Precision 0.2479 0.4688 0.3125 0.3209 0.0018 

Recall 0.8667 1 1 0.9933 3.3670e-004 
Retrieved 64 121 95 94.4100 141.6383 

Precision 0.2992 1 0.6392 0.5896 0.0283 
Recall 0.3889 1 0.6111 0.6428 0.0233 

Retrieved 65 127 90 92.5400 211.4630 



63 

Table 4.10. Performance Test 2.7 

M i n M a x M e d i a n M e a n Variance 

Precision 
Recall 

Retrieved 

0.1961 
1 

59 

0.5085 
1 

153 

0.3409 
1 

88 

0.3400 
1 

91.0400 

0.0034 
0 

287.5337 

Precision 
Recall 

Retrieved 

0.3093 
0.2500 

68 

0.9474 
1 

147 

0.5408 
0.5889 

87.5000 

0.5623 
0.5965 

91.2300 

0.0180 
0.0277 

292.1587 

The last group of tests in this section is on data with both incomplete queries 

and incomplete records. First, we estimate the first image information in one 

third of the database with sample mean, and test performance with queries with 

missing text information. Results are in Table 4.11. We see comparable results 

to Performance Test 2.5, where the query is complete but the database misses the 

same amount of information as in this test. Incomplete query reduces the number 

of returned items. Precisions stay the same. 

We then test the performance with one third of the database missing one image 

and text information and queries miss the other image and weight measure. Results 

are in Table 4.12. The result is comparable to the previous one. Since more 

information is missing in this test, precisions should be lower than in the previous 

Table 4.11. Performance Test 2.8 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.2389 
0.8333 

58 

0.5172 
1 

113 

0.3333 
0.9667 

87.5000 

0.3450 
0.9697 

86.3000 

0.0036 
0.0014 

140.6970 

Precision 
Recall 

Retrieved 

0.2545 
0.2500 

58 

0.8391 
1 

114 

0.5143 
0.5167 

89.5000 

0.5279 
0.5300 

87.3700 

0.0181 
0.0359 

145.4274 
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Table 4 .10 . Performance Test 2.7 

Min I Max I Median I Mean I Variance I 

Precision 0.1961 0.5085 0.3409 0.3400 0.0034 
Recall 1 1 _ 1 1 0 

Retrieved 59 153 88 91.0400 287.5337 

Precision 0.3093 0.9474 0.5408 0.5623 0.0180 
Recall 0.2500 1 0.5889 0.5965 0.0277 

Retrieved 68 147 87. 5000 91.2300 292.1587 

The last group of tests in this section is on dat a with both incomplete queries 

and incomplete records . First, we estimate the first image information in one 

third of the database with sample mean, and test performance with queries with 

missing text information. Results are in Table 4.1 1. We see comparable results 

to Performance Test 2.5, \vhere the query is complete but the database misses the 

same amount of information as in this t est. Incomplet e query reduces the number 

of returned items. Precisions stay the same. 

We then test the performance with one third of the database missing one image 

and text information and queries miss the other image and weight measure. Resul ts 

are in Table 4.12. The result is comparable to the previous one. Since more 

information is missing in this test, precisions should be lower than in the previous 

Table 4.11 . Performance Test 2.8 

Min I Max I Median I Mean I Variance I 

Precision 0.2389 0. 5172 0.3333 0.3450 0.0036 
Recall 0.8333 1 0.9667 0.9697 0.0014 

Retrieved 58 113 87.5000 86.3000 140.6970 

Precision 0.2545 0.8391 0.5143 0. 5279 0.0181 
Recall 0.2500 1 0.5167 0.5300 0.0359 

Retrieved 58 114 89.5000 87.3700 145.4274 
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Table 4.12. Performance Test 2.9 

M i n M a x Med ian M e a n Variance 

Precision 
Recall 

Retrieved 

0.2235 
0.6000 

50 

0.4906 
0.9333 

94 

0.3353 
. 0.8000 

76 

0.3351 
0.8097 

73.8100 

0.0032 
0.0058 

90.7211 

Precision 
Recall 

Retrieved 

0.2935 
0.2250 

46 

0.9565 
0.9000 

102 

0.5850 
0.4750 

75 

0.5843 
0.4787 

74.3900 

0.0288 
0.0219 

105.5938 

one. However, the number of returned items reduces as well. Hence precisions stay 

at the same level as before. 

In this section, we have presented Robot Share performance on incomplete data. 

In general we conclude that losing information in Robot Share database degrades 

search performances. However, as discussed previously, reducing the number of 

involved indexing components decreases the overall returned items, hence positively 

impacting measured precisions. 

4.1.3 Ranking 

All of our previous tests are based on one assumption that all results returned by 

Robot Share are used by querying robots. Therefore we constantly see high marks 

on recalls, but relatively low marks on precisions. For certain application, precisions 

are more important than recalls, and robots that send queries to Robot Share may 

be more interested in getting fewer results, which match the query template well, 

than getting a long and exhaustive list of data. Af-nearest-neighbor searches are 

more suitable to their needs. 

Knowing this need, we design another set of tests to evaluate the Robot Share 

ranking mechanism. Instead of analysis of all results returned for a query, we focus 

on the first 20 items. We measure precisions and recalls over them. To make this 

analysis more comprehensive, we have reused previous test settings. Test results 

are presented in Table 4.13, 4.14, 4.15. 
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Table 4.12. Performance Test 2.9 

Min I Max I Median I Mean I Variance 
Precision 0.2235 0.4906 0.3353 0.3351 0.0032 

Recall 0.6000 0.9333 -- 0.8000 0.8097 0.0058 
Retrieved 50 94 76 73.8100 90.7211 

Precision 0.2935 0.9565 0.5850 0.5843 0.0288 
Recall 0.2250 0.9000 0.4750 0.4787 0.0219 

Retrieved 46 102 75 74.3900 105.5938 

one. However , the number of returned items reduces as well. Hence precisions stay 

at the same level as before. 

In this section, we have presented Robot Share performance on incomplete data. 

In general we conclude that losing information in Robot Share database degrades 

search performances. However, as discussed previously, reducing the number of 

involved indexing components decreases the overall returned items, hence positively 

impacting measured precisions. 

4.1 .3 Ranking 

All of our previous tests are based on one assumption that all resul ts returned by 

Robot Share are used by querying robots. Therefore we constantly see high marks 

on recalls, but relatively low marks on precisions. For certain application, precisions 

are more important than recalls, and robots that send queries to Robot Share may 

be more interested in getting fewer results, which match the query template well, 

than get ting a long and exhaustive list of data. N-nearest-neighbor searches are 

more sui table to their needs. 

Knowing this need, we design another set of tests to evaluate the Robot Share 

ranking mechanism. Instead of analysis of all results returned for a query, vve focus 

on the first 20 items. vVe measure precisions and recalls over them. To make this 

analysis more comprehensive , we have reused previous test settings . Test results 

are presented in Table 4. 13,4.14,4. 15. 



Table 4.13. Performance Test 3.1 Part I 

M i n M a x Med ian M e a n Variance 

Complete Query and Complete Records 
Precision 

Recall 
Retrieved 

0.4500 
0.3000 

20 

1 
0.6667 

20 

0.9000 
0.6000 

20 

0.8580 
0.5720 

20 

0.0185 
0.0082 

0 

Precision 
Recall 

Retrieved 

0.5500 
0.1083 

20 

1 
0.6667 

20 

0.9500 
0.1667 

20 

0.9290 
0.2344 

20 

0.0102 
0.0173 

0 

Incomplete Query 
Missing one image and weight measures 

Precision 
Recall 

Retrieved 

0.0500 
0.0333 

20 

1 
0.6667 

20 

0.6500 
0.4333 

20 

0.6665 
0.4443 

20 

0.0400 
0.0178 

0 

Precision 
Recall 

Retrieved 

0.2500 
0.0417 

20 

1 
0.6667 

20 

1 
0.1917 

20 

0.9195 
0.2675 

20 

0.0171 
0.0291 

0 

Incomplete Query 
Missing texts and dimensional measures 

Precision 
Recall 

Retrieved 

0.4500 
0.3000 

20 

1 
0.6667 

20 

1 
0.6667 

20 

0.9785 
0.6523 

20 

0.0073 
0.0033 

0 

Precision 
Recall 

Retrieved 

0.7500 
0.1667 

20 

1 
0.6667 

20 

1 
0.2222 

20 

0.9925 
0.2562 

20 

0.0014 
0.0167 

0 
Incomplete Query 
Missing all information but texts 

Precision 
Recall 

Retrieved 

0 
0 

20 

1 
0.6667 

20 

1 
0.6667 

20 

0.8900 
0.5933 

20 

0.0989 
0.0440 

0 

Precision 
Recall 

Retrieved 

1 
0.1667 

20 

1 
0.6667 

20 

1 
0.1667 

20 

1 
0.1667 

20 

0 
0.0143 

0 
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Table 4 .13. Performance Test 3.1 Part I 

Min I Max I Median I Mean I Variance I 

Complete Query and Complete Records 
Precision 0.4500 1 0.9000 0.8580 0.0185 

Recall 0.3000 0.6667 0.6000 0.5720 0.0082 
Retrieved 20 20 20 20 0 

Precision 0.5500 1 0.9500 0.9290 0.0102 
Recall 0.1083 0.6667 0.1667 0.2344 0.0173 

Retrieved 20 20 20 20 0 

Incomplete Query 
Missing one image and weight measures 

Precision 0.0500 1 0.6500 0.6665 0.0400 
Recall 0.0333 0.6667 0.4333 0.4443 0.0178 

Retrieved 20 20 20 20 0 

Precision 0.2500 1 1 0.9195 0.0171 
Recall 0.0417 0.6667 0.1917 0.2675 0.0291 

Retrieved 20 20 20 20 0 

Incomplete Query 
Missing texts and dimensional measures 

Precision 0.4500 1 1 0.9785 0.0073 
Recall 0. 3000 0.6667 0.6667 0.6523 0.0033 

Retrieved 20 20 20 20 0 

Precision 0.7500 1 1 0.9925 0.0014 
Recall 0.1667 0.6667 0.2222 0.2562 0.0167 

Retrieved 20 20 20 20 0 

Incomplete Query 
NIissing all information but texts 

Precision 0 1 1 0.8900 0.0989 
Recall 0 0.6667 0.6667 0.5933 0.0440 

Retrieved 20 20 20 20 0 

Precision 1 1 1 1 0 
Recall 0.1667 0.6667 0.1667 0.1667 0.0143 

Retrieved 20 20 20 20 0 



Table 4.14. Performance Test 3.1 Part II 

M i n M a x Med ian M e a n Variance 

Incomplete Query 
Missing all but dimensional and weight measures 

Precision 
Recall 

Retrieved 

0.0500 
0.0333 

20 

0.7500 
0.5000 

20 

0.2500 
0.1667 

20 

0.2705 
0.1803 

20 

0.0259 
0.0115 

0 

Precision 
Recall 

Retrieved 

0.0500 
0.0083 

20 

0.9000 
0.2333 

20 

0.4500 
0.1000 

20 

0.4375 
0.0975 

20 

0.0592 
0.0029 

0 

Incomplete Record 
Missing one image 

Precision 
Recall 

Retrieved 

0.1000 
0.0667 

20 

1 
0.6667 

20 

0.7000 
0.4667 

20 

0.7080 
0.4720 

20 

0.0498 
0.0221 

0 

Precision 
Recall 

Retrieved 

0.2000 
0.0667 

20 

1 
0.6667 

20 

0.9250 
0.1889 

20 

0.8645 
0.2269 

20 

0.0248 
0.0178 

0 

Incomplete Record 
Missing texts and dimensional measures 

Precision 
Recall 

Retrieved 

0.3000 
0.2000 

20 

1 
0.6667 

20 

0.6500 
0.4333 

20 

0.6765 
0.4510 

20 

0.0368 
0.0164 

0 

Precision 
Recall 

Retrieved 

0.4000 
0.0667 

20 

1 
0.6667 

20 

0.9500 
0.2111 

20 

0.9060 
0.2478 

20 

0.0179 
0.0176 

0 

Incomplete Record 
Missing all but one image and texts 

Precision 
Recall 

Retrieved 

0.2000 
0.1333 

20 

1 
0.6667 

20 

0.6500 
0.4333 

20 

0.6735 
0.4490 

20 

0.0429 
0.0190 

0 

Precision 
Recall 

Retrieved 

0.2500 
0.0667 

20 

1 
0.6667 

20 

0.8500 
0.1778 

20 

0.8555 
0.2298 

20 

0.0194 
0.0204 

0 
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Table 4.14. Performance Test 3.1 Part II 

M in I Max I Median I Mean I Variance I 
Incomplete Query 
Missing all but dimensional and weight measures 

Precision 0.0500 0.7500 0.2500 0.2705 0.0259 
Recall 0.0333 0.5000 0.1667 0.1803 0.0115 

Retrieved 20 20 20 20 0 

Precision 0.0500 0.9000 0.4500 0.4375 0.0592 
Recall 0.0083 0.2333 0.1000 0.0975 0.0029 

Retrieved 20 20 20 20 0 

Incomplete Record 
Missing one image 

Precision 0.1000 1 0.7000 0.7080 0.0498 
Recall 0.0667 0.6667 0.4667 0.4720 0.0221 

Retrieved 20 20 20 20 0 

Precision 0.2000 1 0.9250 0.8645 0.0248 
Recall 0.0667 0.6667 0.1889 0.2269 0.0178 

Retrieved 20 20 20 20 0 

Incomplete Record 
NIissing texts and dimensional measures 

Precision 0.3000 1 0.6500 0.6765 0.0368 
Recall 0.2000 0.6667 0.4333 0.4510 0.0164 

Retrieved 20 20 20 20 0 

Precision 0.4000 1 0.9500 0.9060 0.0179 
Recall 0.0667 0.6667 0.2111 0.2478 0.0176 

Retrieved 20 20 20 20 0 

Incomplete Record 
Missing all but one image and texts 

Precision 0.2000 1 0.6500 0.6735 0.0429 
Recall 0.1333 0.6667 0.4333 0.4490 0.0190 

Retrieved 20 20 20 20 0 

Precision 0.2500 1 0.8500 0.8555 0.0194 
Recall 0.0667 0.6667 0.1778 0.2298 0.0204 

Retrieved 20 20 20 20 0 



Table 4.15. Performance Test 3.1 Part III 

M i n M a x Med ian M e a n Var iance 

Incomplete Query & Record 
Record missing one image 
Query missing texts 

Precision 
Recall 

Retrieved 

0.3000 
0.2000 

20 

1 
0.6667 

20 

0.7500 
0.5000 

20 

0.7190 
0.4793 

20 

0.0279 
0.0124 

0 

Precision 
Recall 

Retrieved 

0.2000 
0.0667 

20 

1 
0.6667 

20 

0.9500 
0.1667 

20 

0.8810 
0.2136 

20 

0.0195 
0.0134 

0 

Incomplete Query & Record 
Record missing one image and text 
Query missing one image and weight measures 

Precision 
Recall 

Retrieved 

0.1000 
0.0667 

20 

1 
0.6667 

20 

0.5500 
0.3667 

20 

0.5875 
0.3917 

20 

0.0385 
0.0171 

0 

Precision 
Recall 

Retrieved 

0.2000 
0.0333 

20 

1 
0.6667 

20 

0.9500 
0.1722 

20 

0.8805 
0.2276 

20 

0.0250 
0.0181 

0 
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Table 4.15. Performance Test 3.1 Part III 

Min I Max I Median I Mean I Variance I 
Incomplete Query & Record 
Record missing one image 
Query missing texts 

Precision 0.3000 1 0.7500 0.7190 0.0279 
Recall 0.2000 0.6667 0.5000 0.4793 0.0124 

Retrieved 20 20 20 20 0 

PI' cision 0.2000 1 0.9500 0.8810 0.0195 
Recall 0.0667 0.6667 0.1667 0.2136 0.0134 

Retrieved 20 20 20 20 0 

Incomplete Query & Record 
Record missing on image and text 
Query missing one image and weight measures 

Precision 0.1000 1 0.5500 0.5875 0.0385 
Recall 0.0667 0.6667 0.3667 0.3917 0.0171 

Retrieved 20 20 20 20 0 

Precision 0.2000 1 0.9500 0.8805 0.0250 
Recall 0.0333 0.6667 0.1722 0.2276 0.0181 

Retrieved 20 20 20 20 0 
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Several observations can be made. First, we see a large uniform increase in 

search precisions, from 50% or below to 80% or above. This is expected as we now 

limit the size of the the retrieved list. It also reveals that Robot Share performs 

very well in terms of search result ranking. The only surprise from this part comes 

from searches with incomplete queries, i.e., queries with texts and dimensional data 

missing. The average precision reaches 98% in this test, which is even higher than 

tests that are conducted with complete queries. This implies weight measures not 

only have less classifying power than other fields, such as text data or images, but 

negatively impact object classification in our sample data. This conclusion seems 

unrealistic on first glance. However, if wre look at the confusion matrix generated 

by weight measures, we see it mixes different objects badly. Searches on incomplete 

records show better performance as well. Precision nearly doubles when we compare 

results from Performance Test 2.5, 2.6, and 2.7. which are tests on the same 

conditions with full returns. This is expected, for the same reason that reducing 

the number of objects returned results in higher precision measures. Searches on 

incomplete records with incomplete queries also exhibit twice the performance, 

compared with searches returning the complete list on the same conditions. The 

measured precisions are still lower than searches on complete data, as expected. 

As explained previously, we know that certain fields have more classifying power 

than others. Section 3.6.1 explained the benefit of separating indexing structure 

into small components so a. different weight coefficient for each component can be 

applied. We have employed the static weight coefficients searching algorithm to find 

coefficients that maximize precisions. Using these coefficients, we see an increase 

on measured precisions. Results are presented in Table 4.16. Only siblings relevant 

searches are presented as class searches already show high marks on precision. Even 

though there are 11-indexing components currently implemented in the system, 

considering the computation cost of solving a 11-diinensional optimization problem, 

we decide to simplify this optimization problem by reducing it to a 5-dimensional 

one. We group color histograms in all channels into one, and edge histograms into 

another. 
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Several observations can be made. First, we see a larg~ uniform increase in 

search precisions, from 50% or below to 80% or above. This is expected as we now 

limit the size of the the retrieved list. It also reveals that Robot Share performs 

very well in terms of search result ranking . The only surprise from this part comes 
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tests that are conducted with complete queries. This implies weight measures not 

only have less classifying power than other fields, such as text data or images, but 
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unrealistic on first glance. However, if we look at the confusion matrix generated 

by weight measures , we see it mixes different objects badly. Searches on incomplete 

records show better performance as well. Precision nearly doubles when we compare 

results from Performance Test 2.5, 2.6 , and 2.7, which are tests on the same 

conditions with full returns. This is expected, for the same reason that reducing 

the number of objects returned results in higher precision measures. Searches on 

incomplete records with incomplete queries also exhibit twice the performance, 

compared with searches returning the complete list on the same conditions. The 

measured precisions are still lower than searches on complete data, as expected. 

As explained previously, we know that cer ta,in fi elds have more classifying power 

than others. Section 3.6 .1 explained the benefit of separating indexing structure 

into small components so a different weight coefficient for each component can be 

applied. vVe have employed the static weight coefficients searching algorithm to find 

coefficients that maximize precisions. Using these coefficients , we see an increase 

on measured precisions. Resul ts are presented in Table 4.16. Only siblings relevant 

searches are presented as class searches already show high marks on precision . Even 

though there are ll-indexing components currently implemented in the system, 

considering the computation cost of solving a ll-dimensional optimization problem , 

we decide to simplify this optimization problem by reducing it to a 5-dimensional 

one. vVe group color histograms in all channels into one, and edge histograms into 

another. 



Table 4.16. Performance Test 3.2 

M i n M a x Med ian M e a n Variance 

Complete Query and Complete Records 
Coefficient 0 1 0 0 0 

Precision 1 1 1 1 0 
Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-031 

Incomplet e Query 
Missing one image and weight measures 

Coefficient 0 1 0 0 0 
Precision 1 1 1 1 0 

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31 

Incomplete Query 
Missing all but dimensional and weight measures 

Coefficient 0 0 0 0 1] 
Precision 0.0500 0.7500 0.2500 0.3215 0.0259 

Recall 0.0333 0.5000 0.1667 0.2143 0.0176 

Incomplete Record 
Missing texts and dimensional measures 

Coefficient o i o o o; 
Precision 1 1 1 1 0 

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31 

Incomplete Query & Record 
Record missing one image and text 
Query missing one image and weight measures 

Coefficient [1 1 0 0 0] 
Precision 0.9000 1 1 0.9970 2.4343e-04 

Recall 0.6000 0.6667 0.6667 0.6647 1.08196-04 
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Table 4.16. Performance Test 3.2 

Min I Max I Median I Mean I Variance I 

Complete Query and Complete Records 
Coefficient [0 1 000] 

Precision 1 1 1 1 0 
Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-031 

Incomplete Query 
Missing one image and weight measures 

Coefficient [0 1 000] 
Precision 1 1 1 1 0 

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31 

Incomplete Query 
lVIissing all but dimensional and weight measures 

Coefficient [0 0 0 0 1] 
Precision 0.0500 0.7500 0.2500 0.3215 0.0259 

Recall 0.0333 0.5000 0.1667 0.2143 0.0176 

Incomplete Record 
Missing texts and dimensional measures 

Coefficient [0 1 000] 
Precision 1 1 1 1 0 

Recall 0.6667 0.6667 0.6667 0.6667 6.1007e-31 

Incomplete Query & Record 
Record missing one image and text 
Query missing one image and weight measures 

Coefficient [1 1 0 0 0] 
Precision 0.9000 1 1 0.9970 2.4343e-04 

Recall 0.6000 0.6667 0.6667 0.6647 1.081ge-04 
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All six color histograms from two images take a same weight coefficient and two 

edge histograms from two images take the same weight coefficient. Coefficients are 

stored in a vector, in the order of: color histograms, edge histograms, text data, 

dimensional data, and weight measures. For instance, coefficient set [0 1 0 0 0] can 

be read as putting zero weight on color histograms, text data, dimensional data, 

and weight measures and only using edge histograms to classify objects. 

Results from Performance Test 3.2 are interesting. Four out of five tests show 

the maximum average precision has been reached. The last one, where queries 

contain only dimensional and weight measures, the average precision is somewhat 

better than the one presented in Test 3.1 (0.3215 vs. 0.2705). This low precision is 

understandable as neither dimensional data nor weight measures are good classifiers 

for our sample data. The weight coefficient analysis computes the coefficient set as 

[0 0 0 0 1]. This suggests that weight measures are slightly better than dimensional 

data, and this can be verified by querying Robot Share with only dimensional 

measures or weight measures, respectively. Results from the last test in this group 

could be difficult to understand. The test is set as the two most useful features for 

object classification, image information and text information are corrupted, with 

one third of the samples estimated by sample means. The query is missing the other 

image and weight measures. However, with coefficients equal to [0 1 0 0 0], Robot 

Share is still able to achieve an average retrieval precision very close to its maximum. 

To understand this, we have to review the basic test setting. The database contains 

480 samples, which are derived from 16 real world objects. The way we define the 

siblings search is as follows: relevant items are items replicated from the same 

master copy. In this test, one third of the database is corrupted, which means on 

average 10 copies from every 30 replicated group are corrupted. However, since 

the ranking tests only analysis results from the first 20 items, Robot Share just 

happily reports that using edge histograms as the sole classifier, it could find all of 

the 20 siblings with ease. Hence we again obtained a near perfect score on average 

precision. When we increase the number of returned items to 30, which equals to 

the number of siblings one object has, we obtain results displayed in Table 4.17. 

70 

All six color histograms from two images take a same weigtIt coefficient and t wo 

edge histograms from two images take the same weight coefficient . Coefficients are 

stored in a vector , in the order of: color histograms, edge histograms, text da ta, 

dimensional data, and 'weight measures. _ For instance, coefficient set [0 1 0 0 0] can 

be read as putting zero weight on color histograms, text da ta, dimensional da ta, 

and weight measures and only using edge histograms to classify obj ects. 

Results from Performance Test 3.2 are interesting. Four out of five tests show 

the maximum average precision has been reached. The last one, where queries 

contain only dimensional and weight measures, the average precision is somewhat 

better than the one presented in Test 3.1 (0.3215 vs. 0.2705). This low precision is 

understandable as neither dimensional data nor weight measures are good classifiers 

for our sample data. The weight coefficient analysis computes the coefficient set as 

[0 0 0 0 1]. This suggests that weight measures are slightly better than dimensional 

data, and this can be verified by querying Robot Share wit h only dimensional 

measures or weight measures, respectively. Results from the last test in this group 

could be diffi cult, to understand. The test is set as the two most useful features for 

obj ect classification , image information and t ext information are corrupted , wi th 

one third of the samples estimat ed by sample means. The query is missing the other 

image and weight measures. However , wi th coefficients equal to [0 1 0 0 0], Robot 

Share is still able to achieve an average retrieval precision very close to its maximum. 

To underst and this, \ve have to review the basic test set ting. The database contains 

480 samples, which are derived from 16 real world obj ects. The vvay we define the 

siblings search is as follows: relevant items are items replicated from the same 

master copy. In this test , one third of the dat abase is corrupted, which means on 

average 10 copies from every 30 replicated group are corrupted. However , since 

the ranking tests only analysis resul ts from the first 20 items, Robot Share just 

happily reports that using edge histograms as the sole classifier, it could find all of 

t he 20 siblings with ease. Hence we again obtained a near perfect score on average 

precision. vVhen we increase the number of returned items to 30, which equals to 

the number of siblings one object has, we obtain results displayed in Table 4.17 . 
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Table 4.17. Performance Test 3.3 

M i n M a x M e d i a n M e a n Variance 

Coefficient [0 1 0 0 0] 
Precision 

Recall 
Retrieved 

0.4667 
0.4667 

30 

0.9000 
0.9000 

30 

0.7333 
0.7333 

30 

0.7143 
0.7143 

30 

0.0095 
0.0095 

0 

Coefficient \i o o o l 
Precision 

Recall 
Retrieved 

0.6000 
0.6000 

30 

0.9000 
0.9000 

30 

0.7667 
0.7667 

30 

0.7567 
0.7567 

30 

0.0062 
0.0062 

0 

Coefficient I I I I r 
Precision 

Recall 
Retrieved 

0.1333 
0.1333 

30 

0.9000 
0.9000 

30 

0.5333 
0.5333 

30 

0.5113 
0.5113 

30 

0.0239 
0.0239 

0 

We observe that the measured precision drops about 30%. We compute weight 

coefficients under this new condition, and obtain another set of coefficients, which 

brings a slightly better result. Compared with setting all coefficients to one, the 

performance gain is more evident. 

4.1.4 Supplemental Exper iment I 

The above experiments have demonstrated Robot Share performance on object 

data that are collected by ourselves. We have also received a set of object images 

taken by Prof. Dillmann's hunianoid robot research group. These images are used 

in their textural related recognition research and are quite different from images we 

collected. Only one image is taken at each object and some images do not capture1 

the entire object. Combining these images with images we found using the Google 

image search, we have constructed a second database that contains 103 images. 

We tested Robot Share performance with these images. Experiment results are 

presented in Table 4.18. 

From Table 4.18, we can see the retrieved accuracy is lower than results from 

previous tests. This is expected as data samples are of lower quality than previous 
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Table 4.17. Performance Test 3.3 

Min I Max I Median I Mean I Variance I 

Coefficient [0 1 000] 
Precision 0.4667 0.9000 0.7333 0.7143 0.0095 

Recall 0.4667 0.9000 0.7333 0.7143 0.0095 
Retrieved 30 30 30 30 0 

Coefficient [1 0 0 0 1] 
Precision 0.6000 0.9000 0.7667 0.7567 0.0062 

Recall 0.6000 0.9000 0.7667 0.7567 0.0062 
Retrieved 30 30 30 30 0 

Coefficient [1 1 1 1 1] 
Precision 0.1333 0.9000 0.5333 0.5113 0.0239 

Recall 0.1333 0.9000 0.5333 0.5113 0.0239 
Retrieved 30 30 30 30 0 

We observe that the measured precision drops about 30%. We compute weight 

coefficients under this new condition, and obtain another set of coefficients , which 

brings a slightly better result. Compared with setting all coefficients to one, the 

performance gain is more evident. 

4.1.4 Supplemental Experiment I 

The above experiments have demonstrated Robot Share performance on object 

data that are collected by ourselves. We have also received a set of object images 

taken by Prof. Dillmann's humanoid robot research group. These images are used 

in their textural related recognition research and are quite different from images we 

collected. Only one image is taken at each object and some images do not capture 

the entire object. Combining these images with images we found using the Google 

image search , we have constructed a second database that contains 103 images . 

vVe tested Robot Share performance with these images. Experiment results are 

presented in Table 4.18. 

From Table 4.18, vve can see the retrieved accuracy is lower than results from 

previous tests . This is expected as data samples are of lower quality than previous 



72 

Table 4.18. Supplemental Experiment I 

Ob jec t s # o f Samples Precis ion ( T o p 2 I tems) Precis ion ( T o p 3 I tems) 

Bottle: 7 . 0.64 0.52 
Bowl: 15 0.67 0.54 
Box: 7 0.79 0.57 
Can: 5 0.67 0.72 
Chopstick: 8 0.69 0.45 
Cup: 7 0.57 0.38 
Fork: 7 0.64 0.47 
Jar: 12 0.71 0.61 
Plate: 17 0.76 0.71 
Spoon: 18 0.61 0.46 

experiments, i.e., only one image is record for each object, and no text or any other 

information is presented. It also reveals the fact that the color, edge histograms 

based identification is less suitable for randomly collected object samples. 

To summarize, in this section, we have examined Robot Share performance 

from various angles. We have tested how Robot Share performs under optimal 

conditions. We see that results measured in precisions and recalls are both high. 

We then have tested queries with incomplete information. Performance drops 

accordingly. However, the amount of performance degeneration depends on features 

that are missed. Incomplete records show similar behaviors. Missing certain 

features in database items are more harmful to the retrieval performance than 

others. The last group of tests on using weight coefficients to control ranking 

demonstrates that using the right set of weight coefficients could result in better 

performance to the system. However, coefficients computations are expensive as 

this is a multidimensional minimization problems. Coefficients obtained from this 

procedure are both query and database dependent. 
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Table 4.18. Supplemental Experiment i 

Objects I # of Samples I Precision (Top 2 Items) I Precision (Top 3 Items) I 
Bottle: 7 - 0.64 0.52 
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Box: 7 0.79 0.57 
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experiments , i. e., only one image is record for each object, and no text or any other 

information is presented. It also reveals the fact that the color , edge histograms 

based identification is less sui table for randomly collected obj ct samples. 

To summarize, in this section, we have examined Robot Shar performance 

from various angles. \1I/e have test d how Robot Share performs under optimal 

conditions. Vie see that results measured in precisions and recalls are both high. 

We then have tested queries with incomplete information. Performance drops 

accordingly. However , the amount of performance degeneration depends on features 

that are missed. Incomplete records show similar behaviors. Missing certain 

features in database items are more harmful to the retrieval performance than 

others. The la.st group of tests on using weight coefficients to control ranking 

demonstrates that using the right set of weight coefficients could result in better 

performance to the system. However, coefficients computations are expensive as 

this is a multidimensional minimiza.tion problems. Coefficients obtained from this 

procedure are both query and database dependent. 
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4.1.5 Supplemental Exper iment II 

We have obtained a set of humanoid robot activity data from Prof. Dillmann's 

group. Chapter 2 presented the VooDoo data representation. These data con

tain eight activities with each activity performed multiple times. A total of 120 

instances of activities is recorded. Since all instances are performed by a human 

experimenter, recorded lengths of instances range from 41 frames to 151 frames. 

We randomly select query templates from the activity database. Since the purpose 

of activity recognition is to identify human activities, Nearest-Neighbor search is 

more appropriate than k-Nearest-Neighbor search or a-cut search used in previous 

experiments. We then limit the number of returned activities for each search to be 2 

(since every search always returns the query template itself as the first activity.) We 

define the classification as correct if the second returned item is the same activity as 

the query template. Results are presented in Table 4.19. Ref. [24] indicates these 

results are comparable to the FFNS approach used by Prof. Dillmann's group. 

Table 4.19. Supplemental Experiment II 

Ac t iv i t y Cor rec t 
Hold Out Hand 91.0% 
Hold Out Object 95.5% 
Put Object On Table 89.9% 
Read Book 73.6% 
Sitting 89.9% 
Standing 86.3% 
Take Object From Table 77.7% 
Typing On Laptop 100% 

73 

4 .1.5 Supplemental Experiment II 

vVe have obtained a set of humanoid robot activity data from Prof. Dillmann's 

group. Chapter 2 presented the VooDoo data representation. These data con

tain eight activities with each activity _performed multiple times. A total of 120 

instances of activities is recorded. Since all instances are performed by a human 

experimenter , recorded lengths of instances range from 41 frames to 151 frames. 

We randomly select query templates from the activity database. Since the purpose 

of activity recognition is to identify human activities, Nearest-Neighbor search is 

more appropriate than k-Nearest-Neighbor search or a -cut search used in previous 

experiments. We then limit the number of returned activities for each search to be 2 

(since every search always returns the query template itself as the first activity.) We 

define the classification as correct if the se ·ond returned item is the same activity as 

the query template. Results are presented in Table 4.1 9. Ref. [24] indicates these 

results are comparable to the FFNS approach used by Prof. Dillmann 's group. 

Table 4 .19 . Supplemental Experiment II 

I Activity I Correct I 

Hold Out Hand 91.0% 
Hold Out Object 95 .5% 
Put Object On Table 89 .9% 
Read Book 73.6% 
Sitting 89.9% 
Standing 86.3% 
Take Object From Table 77.7% 
Typing On Laptop 100% 



C H A P T E R 5 

F U T U R E W O R K A N D CONCLUSION 

Humans started to share knowledge even before the birth of human natural lan

guage. Since then, knowledge sharing has played a major role in human civilization. 

The study of knowledge sharing in man-made intelligent systems, such as robots and 

software agents, has a relatively young age in the study of artificial intelligence, even 

though recent developments in Robotic, Semantic Web and Semantic Grid start to 

touch this topic from various angles. There still is a lot of room for exploration. 

Previous chapters presented our work on the design and implementation of 

Robot Share, a knowledge sharing framework for robots. We have demonstrated 

how two types of knowledge, object knowledge and activity knowledge, can be 

shared through this framework. We have discussed reasons behind various method 

selections and have compared tradeoffs between different designs. The R,obot Share 

system has been examined on a set of different experiment data sources and we have 

discussed experiment results. 

Future research can be divided into two categories: Robot Share refinement 

and Robot Share expansion. In the refinement department, we propose a set of 

approaches that are worth trying to discover if any of them gives better search 

retrieval results. In the expansion department, the concept of a machine-readable 

knowledge search engine for knowledge sharing can be taken to other domains, such 

as intelligent software agent. Detailed discussion follows. 

5.1 Robot Share Refinement 
The current proof-of-concept Robot Share system is centered at image data, even 

though the framework has been deliberately designed for multiple data formats. 

Robot Share performance on other types of data such as laser range finder, sonar, 

CHAPTER 5 

FU TU RE WORK AND CONCLU SION 

Humans started to share knowledge even before the birth of human natural lan

guage. Since then, knowledge sharing has played a major role in human civilization. 

The study of knowledge sharing in man-made intelligent systems, such as robots and 

software agents, has a relatively young age in the study of artificial intelligence , even 

though recent developments in Robotic, Semantic Web and Semantic Grid start to 

touch this topic from various angles . There still is a lot of room for exploration. 

Previous chapters presented our work on the design and implementation of 

Robot Share, a knowledge sharing framework for robots. vVe have demonstrated 

how two types of knowledge, object knowledge and activity knowledge, can be 

shared through this framework. We have discussed reasons behind various method 

selections and have compared tra.deoffs between different designs. The Robot Share 

system has been examined on a set of different experiment data sources and we have 

discussed experiment results . 

Future research can be divided into two categories: Robot Share refinement 

and Robot Share expansion. In the refinement department , we propose a set of 

approaches that are worth trying to discover if any of them gives better search 

retrieval results. In the expansion department , the concept of a machine-readable 

knowledge search engine for knowledge sharing can be taken to other domains, such 

as intelligent software agent. Detailed discussion fo llows. 

5.1 Ro bot Share R efinem ent 

The current proof-of-concept Robot Share system is centered at image data, even 

though the framework has been deliberately designed for multiple data formats. 

Robot Share performance on other types of data such as laser range finder , sonar, 



75 

etc. is yet to be examined. To support a new data type in Robot Share, the data 

type needs to be processed and a vector representation needs to be extracted. Poly

nomial coefficient representation has been used for existing image data. Additional 

approaches for dimension reduction need to be evaluated for data from other types 

of sensors. Similar to dimension reduction methods, distance measures should be 

evaluated as well. In the current implementation, LI and weighted LI distance 

measures are used. Since the selection of distance measures is tied to the data 

representation, more distance measures should be evaluated for new data types. 

For image based object identification, more object recognition methods should 

be evaluated. The current approach is based on color and edge histograms. These 

approaches, especial the edge orientation histograms, are good properties to classify 

objects, given that a clean background segmentation and textures on objects are 

not too strong to give false identification on object edges. However, under certain 

conditions, clean and easily distinguishable edges cannot be found. Even though 

we have stated that image segmentation is not the problem Robot Share tries to 

solve, we realize that other object identification techniques, which do not rely on 

strong edges, can be adopted. Another limitation associated with edge based object 

identification is, using the edge based object identification, only a broad type of 

object classification can be obtained rather than fine grained answers. For instance, 

it is impossible for an edge based object identification system to distinguish a can of 

Coke from a can of Sprite. However, there are times that the ability to distinguish 

Coke from Sprite is important. Texture and image pattern based techniques and 

their associated indexing structures should be investigated. 

Feedback systems have been heavily used in today's Internet search engines. We 

have mentioned that a feedback system could help to adjust better weight measures 

for object properties in the cross analyzer in Robot Share. We are certain about 

that feedback process would be a very helpful tool to adjust various parameters in 

Robot Share. However, the issue we are not so certain about is how feedbacks can 

be generated by robots. At an abstract level, the merit of a feedback system comes 

from the robot in field, which sends query to the Robot Share, knowing certain 
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information that Robot Share does not know. Therefore it is able to evaluate 

query answers generated by Robot Share better and give useful feedback. This 

model works perfectly for human users. As the interfaces between human users 

and computers, especially the input interface, e.g., keyboard and mouse, are highly 

limited. It is not possible for a user to convey much information to the search 

engine. However, conveying information between two machines, i.e., a robot and 

the Robot Share, is much less tedious. Hence it is possible for Robot Share to know 

all information the querying robot knows, hence the querying robot may not have 

much additional information to generate useful feedbacks. In this case, the decision 

for feedback system utilization is more like a burden-shifting between the query 

robot and Robot Share, i.e., which one takes the responsibility to ensure query 

responses are properly ranked. We can imagine that there are situations where 

a query robot cannot give Robot Share all information to rank query responses 

most properly, due to privacy and other reasons. In these cases, the ability to take 

feedback from the query robot can be important. 

Chapter 3 has mentioned that Robot Share has the potential to discover un

derlying relations between data from different sensors. For instance, there is a link 

between the color histograms and the text description of the object, e.g., the word 

"yellow" implies a certain shape of color histograms. The ability to discover these 

links can be very helpful as it not only helps Robot Share to estimate missing 

information in incomplete queries and records, but also provides ground for higher 

level knowledge abstraction. The method of discovering these underlying relations 

is a topic yet to be studied. 

In the previous chapter, where Robot Share performance was evaluated, we 

reached the conclusion that certain data properties are more helpful to classify 

objects than others. In particular, we have found that text descriptions, which are 

processed through the LSI technique, and edge histograms of objects are better 

classifiers than dimension and weight measures. It has been noticed that certain 

properties with low classifying power, e.g., weight measures, when paired with 

properties with high classifying power, e.g., text description, the performance of 
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this combination is worse than using text description as the solo classifier. However, 

what is uncertain to us is the relation, in terms of classifying power, between these 

properties, i.e., we know that more information does not always yield a better 

classifier, the pattern of property selection and the resulting classifying power is still 

unknown. Intuitively, we think certain properties complement others for classifying 

certain group of objects, and certain properties only correctly classify a subset 

of object other properties classify. Hence a combination of two complementary 

properties may result in a much higher classifying power and a combination of 

two overlapped properties may result in a lower classifying power. However, it is 

unknown to us that if these relations are object dependent, and if they are impacted 

by the selected distance measure. Another problem that is directly related to 

this issue is the cross analyzer. In the current implementation, the cross analyzer 

aggregates sorted listed from every indexing structure and produces a single list 

using the weighted LI distance. Another approach to realizing the function of 

the cross analyzer is to use a decision tree, i.e., the cross analyzer sequentially 

examines a list returned by each indexing structure, if an item listed in the list 

satisfies a certain condition, e.g., within distance a of the query template, and it is 

also accepted by previous indexing structures, then adds it to the output list. The 

output list is then sorted. It is unclear to us if this approach is mathematically 

equivalent to the current implementation. 

The previous chapter has presented the Robot Share performance on three sets 

of data. The second set of experiments, which examines Robot Share with image 

data collected from the Google image search and Prof. Dillmarm's group, shows 

worse performance than the first set of experiments, which use data collected by 

ourselves. One of the major differences between these two sets of images is the image 

taking condition. Existing algorithms can compute the invariance in 2D graphs, i.e., 

moments are invariant under rotation. Similar algorithms that compute invariants 

of 2D projections of 3D space objects are yet to be discovered. Even though various 

kinds of mathematical techniques can be applied to approximate information that 

is not directly captured in an image, there is a limit on the amount of information 
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that can be correctly approximated by those techniques. Therefore, it is exceedingly 

difficult to detect if two images taken at different angles represent the same object. 

Hence, single image based object identification is limited. We have noticed the 

recent development in a 3D scanner, which results in 3D scans that are relatively 

small and low cost and generate 3D model of objects in short amount of time. It 

will be very interesting to see if algorithms can compare a 3D model of an object 

to an image to detect if they show the same object. Such algorithms solve a large 

class of object classification problems for robots. As robots can create databases 

that contain 3D models for all kind of objects, then robots in the field only need to 

take images and emery such databases for identifications. We human rarely do 2D 

image to 2D image comparison when we see objects around us. We always compare 

images, which are projected in our retinas, to some models, which capture much 

more information than a simple 2D projection, stored in our brains. 

5.2 Robot Share Expansion 
The previous section discussed various opportunities to improve Robot Share 

performance. This section discusses the possibility of expanding Robot Share 

use into other domains. We first explain how a third type of knowledge, scene 

knowledge, can be added into Robot Share. Then we discuss how the Robot Share 

architecture can be adopted in the software intelligent agent world. 

The idea of scene knowledge arises from the DARPA Urban Challenge project, 

in which we also participate. The main objective of the DARPA project is to build 

an autonomous vehicle that runs on urban streets. There are a lot of similarities 

between an autonomous vehicle and a humanoid robot. For instance, both of 

the two have sensors and actuators and need to execute in complex real world 

environment and know a large amount of information to reach an acceptable level 

of performance. These similarities ensure that an autonomous vehicle also benefits 

from knowledge sharing frameworks such as Robot Share. However, there are 

substantial differences between autonomous vehicles and humanoid robots. For 

an autonomous vehicle, the ability of distinguishing a dinner plate from a dinner 
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knife is less useful than recognizing a scene of a blocked road, or an interaction with 

a detour sign. Hence we propose the idea that, in addition to the existing object 

knowledge and activity knowledge, we add a third type of knowledge: scene knowl

edge into the framework to support queries from autonomous vehicles. Problems 

needing to be solved include: 

• Developing mechanisms to process sensor, especially image, data for the 

purpose of scene recognition. In the current implementation, image based 

object identification is based on identifying objects' color and edges, scene 

identifications require other mechanisms. 

• Defining an ontology based semantic description to communicate identified 

scenes to autonomous vehicles. This helps to define the scene description 

language between Robot Share and autonomous vehicles. 

• Investigating a fast query-response system that supports real-time response 

to autonomous vehicles queries with high accuracy. 

Scene knowledge can be used in other fields beyond autonomous vehicle control, 

such as emergency control in surveillance systems. Investigating requirements 

and limitations of using Robot Share supported scene knowledge sharing in those 

environments is an interesting topic to explore. 

In Chapter 1, we stated that robots resemble many characters of software intelli

gent agents. Agent systems have demonstrated their ability to solve many problems 

in software engineering. We believe agents also have an unrevealed potential in Grid 

computing. Grids are large, heterogeneous, and open environment. The size and 

complexity of such systems suggests that centralized control structures usually fail. 

Decentralized designs, modularized components, and the ability of localized decision 

making make agent systems suitable for Grid applications. However, for agents to 

succeed in Grid, a knowledge sharing framework designed for agents is also needed. 

Considering the difference between cyberspaces and the real world environment, 

before we expend the Robot Share into agent world, we need to answer a number 

of important questions. 
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• How to define knowledge for agents? For robots, knowledge is defined as: 

information about objects and activities, in string format, stored in robots' 

memory. This definition is not suitable for software agents as object informa

tion is less useful for them. Activity knowledge may be useful, as if we define 

activity knowledge as knowledge about carrying out certain computations. 

• How to represent knowledge? In the current implementation, ontology based 

rneta data are less consulted for the purpose of indexing. However, for soft

ware agents, it could be that the most efficient way to index agent knowledge 

is through meta data, even though it is difficult to generate high quality meta 

data for a large amount of information. How to overcome limitations of meta 

data based indexing is a problem that needs to be solved. 

• How to define the communication language for agents? Chapter 1 has pre

sented some research on a semantic web, which aims at developing machine 

readable web content. How to utilize results from this research to solve 

problems in Grids is another topic that needs to be explored. 

Seeing the potential of intelligent agent systems and similarities between intelli

gent agents and robots, we believe it is possible to port the Robot Share architecture 

into agent world and to bring the power of intelligent agents to the next level. 

80 

• How to define knowledge for agents? For robots, knowle.dge is . defined q,s : 

information about obj ects and activities, in string format , stored in robots' 

memory. This definition is not suitable for software agents as obj ect informa

tion is less useful for them. Activi~y knowledge may be useful , as if we define 

activity knowledge as knowledge about carrying out certain computations. 

• How to represent knowledge? In the current implementation , ontology based 

meta data are less consulted for the purpose of indexing. However , for soft

ware agents , it could be that the most efficient way to index agent knowledge 

is through meta data, even though it is difficult to generate high quality meta 

data for a large amount of information. How to overcome limitations of meta 

data based indexing is a problem tha t needs to be solved. 

• How t o define t he communication language for agents? Chapter 1 has pre

sented some research on a semantic web , which aims at developing machine 

readable web content. How to utilize results from this research to solve 

problems in Grids is another topic that needs to be explored. 

Seeing the potential of intelligent agent systems and similari t ies between intelli

gent agents and robots, we believe it is possible to port the Robot Share architecture 

into agent world and to bring the power of intelligent agents to the next level. 



A P P E N D I X A 

DIMENSIONALITY R E D U C T I O N 

APPE_NDIX A 

DIMENSIONALITY REDUCTION 



Figure A . l . Confusion Matrix of the Edge Direction Histogram in Kullback-
-Leibler Divergence 
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Original Data, KL 

Figure A.I. Confusion Matrix of the Edge Direction Histogram 111 Kullback
-Leibler Divergence 



Figure A . 2 . Confusion Matrix of the Edge Direction Histogram in LI Distance 
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Original Data, L 1 

Figure A.2 . Confusion Matrix of the Edge Direction Histogram in L1 Distance 



Figure A . 3 . Confusion Matrix of the Edge Direction Histogram in L2 Distance 
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Original Data, L2 

Figure A.3. Confusion Matrix of the Edge Direction Histogram in L2 Distance 



Figure A . 4 . Confusion Matrix of the Edge Direction Histogram in Weighted LI 
Distance 

85 

Original Data, Weighted L 1 

Figure A.4. Confusion Matrix of the Edge Direction Histogram in \rVeighted L1 
Distance 



86 

Figure A . 5 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in Kullback-Leibler Divergence 
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Figure A.S. Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in Kullback-Leibler Divergence 



Figure A . 6 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in LI Distance 
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Figure A.6 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coeffi cient in Ll Distance 
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FFT, L2 

Figure A . 7 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in L2 Distance 
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FFT, L2 

Figure A.7 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in L2 Distance 
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FFT, Weighted L1 

Figure A . 8 . Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in Weighted LI Distance 
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FFT, Weighted L 1 

Figure A.8. Confusion Matrix of the Edge Direction Histogram Represented by 
Fourier Coefficient in Weighted Ll Distance 



Figure A . 9 . Confusion Matrix of the Edge Direction Histogram Represented by 
Coefficients of a Polynomial in Kullback-Leibler Divergence 
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Figure A .9. Confusion NIa trix of the Edge Direction Histogram Represented by 
Coefficients of a Polynomial in Kullba.ck-Leibler Divergence 



Figure A . 10. Confusion Matrix of the Edge Direction Histogram Represented by 
Coefficients of a, Polynomial in LI Distance 
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Polyfit, L 1 

Figure A.lO. Confusion Matrix of the Edge Direct ion Histogram Represented by 
Coefficients of a Polynomial in Ll Distance 



Figure A . l l . Confusion Matrix of the Edge Direction Histogram Represented by 
Coefficients of a Polynomial in L2 Distance 
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Polyfit, L2 

Figure A.II. Confusion Matrix of the Edge Direction Histogram Represented by 
Coefficient, of a Polynomial in L2 Distance 



Figure A . 12. Confusion Matrix of the Edge Direction Histogram Represented by 
Coefficients of a Polynomial in Weighted LI Distance 
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Polyfit , Weighted L 1 

Figure A.12. Confusion l\/Iatrix of the Edge Direction Histogram Represented by 
Coefficients of a Polynomial in 'Weighted L1 Dist ance 



Figure A . 13. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in Kullback-Leibler Divergence 
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Figure A.13. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in Kullback-Leibler Divergence 



Figure A . 14. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in LI Distance 
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Statistics, L 1 

Figure A.14. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in L1 Distance 



Figure A . 15. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in L2 Distance 
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Statistics, L2 

Figure A.15 . Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in L2 Distance 



Figure A . 16. Confusion Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in Weighted LI Distance 
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Statistics, Weighted L 1 

Figure A.16. Confusion .Matrix of the Edge Direction Histogram Represented by 
Statistical Properties in 'Weighted L1 Distance 
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Moment, KL 

Figure A . 17. Confusion Matrix of the Edge Direction Histogram in Represented 
by Central Moments Kullback-Leibler Divergence 

98 

Moment, KL 

Figure A.17. Confusion Matrix of the Edge Direction Histogram ill Represented 
by Central Moments Kullback-Leibler Divergence 



Figure A . 18. Confusion Matrix of the Edge Direction Histogram Represented by 
Central Moments in LI Distance 
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Moment, L1 

Figure A .IS . Confusion Matrix of the Edge Direction Histogram Represented by 
Central Moments in L1 Distance 



Figure A . 19. Confusion Matrix of the Edge Direction Histogram Represented by 
Central Moments in L2 Distance 
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Moment, L2 

Figure A.19 . Confusion 'Matrix of the Edge Direction Histogram Represented by 
Central Moments in L2 Distance 



Figure A .20 . Confusion Matrix of the Edge Direction Histogram Represented by 
Central Moments in Weighted LI Distance. 
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Moment, Weighted L 1 

Figure A .20 . Confusion NIatrix of the Edge Direction Histogram Represented by 
Central Moments in \iVeighted L1 Distance. 



A P P E N D I X B 

THE K N O W L E D G E DEFINITION 

G R A M M A R 

This grammar describes the definition of object knowledge that is supported by 

Robot Google, 

knowledge 

—> (Knowledge) knowledgeBody (\Knowledge) 

knowledgeBody 

—> imageData* dimensionalData textData metaData 

imageData 

—> fileType image 

fileType 

(FileType) type (\FileType) 

type 

- * JPg 

—> bmp 

image 

—> (Image) img (\Image) 

img 

-> STRING 

dimensionalData 

—> (Dimension) dimension (\Dimension) 

dimensional 

APPENDIX B 

THE KNOWLEDGE DEFINITION 

GRAMMAR 

This grammar describes the definit ion of obj ect knowledge that is supported by 

Robot Google. 

knowledge 

----7 (Knowledge) knowledgeBody (\Knowledge) 

knowledgeBody 

----7 imageData * dimensionalData textData metaData 

imageData 

----7 fileType image 

fileType 

----7 (FileType) type (\FileType) 

type 

----7 J pg 

----7 bmp 

Image 

----7 (Image) img (\Image) 

Img 

----7 STRING 

dimensionalData 

----7 (Dimension) dimension (\Dimension) 

dimensional 

file:///Knowledge
file:///FileType
file:///Image
file:///Dimension
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—> length width height 

length 

-> (Length) NUM (\Length) 

width 

-> (Width) NUM (\Width) 

-> (Height) NUM (\Height) 

text Data 

- * (Text) text (\Text) 

text 

—» name description name 

-> (Name) STRING (\Name) 

description 

-> (Description) STRING (\Description) 

metaData 

—> (MetaData) ineta (\MetaData) 

meta 

—> time location 

time 

-> (Time) STRING (\Time) 

location 

-> (Location) STRING (\Location) 

~ length width height 

length 

~ (Length) NUM (\Length) 

width 

~ (Width) NUM (\ Width) 

height 

~ (Height) NUM (\Height) 

textData 

~ (Text) text (\ Text) 

text 

~ name description name 

~ (Name) STRING (\Name) 

description 

~ (Description) STRING (\Description) 

metaData 

~ (MetaData) meta (\MetaData) 

meta 

~ time location 

time 

~ (Time) STRING (\ Time) 

location 

~ (Location) STRING (\Location) 
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file:///Length
file:///Width
file:///Height
file:///Text
file:///Name
file:///Description
file:///MetaData
file:///Time
file:///Location


STRINGs are printable character strings. 

NUMs are positive numerical values. 

STRINGs are printable character strings. 

NUMs are positive numerical values. 
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A P P E N D I X C 

THE QUERY RESPONSE G R A M M A R 

This grammar describes the definition of query response sent by Robot Google. 

The definition of Knowledge is adopted from Appendix B. 

response 

—> (Response) responseEntry* (\Response) 

responseEntry 

—> knowledge url 

url 

-> (URL) URLSTRING (\URL) 

URLSTRINGs are regular Uniform Resource Locator strings. 

APPENDIX C 

THE QUERY RESPONSE GRAMMAR 

This grammar describes the definition of query response sent by Robot Google. 

The definition of Knowledge is adopted from Appendix B. 

response 

---7 (Response) responseEntry* (\Response) 

responseEn try 

---7 knowledge urI 

urI 

---7 (URL) URLSTRING (\ URL) 

URLSTRJNGs are regular Uniform Resource Locator strings. 

file:///Response
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