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ABSTRACT
Intended as an introduction to the field of biomedical engineering, this book covers the topics of 
biomechanics (Part I) and bioelectricity (Part II). Each chapter emphasizes a fundamental principle 
or law, such as Darcy’s Law, Poiseuille’s Law, Hooke’s Law, Starling’s Law, levers and work in the area 
of fluid, solid, and cardiovascular biomechanics. In addition, electrical laws and analysis tools are in­
troduced, including Ohm ’s Law, Kirchhoff’s Laws, Coulomb’s Law, capacitors and the fluid/electrical 
analogy. Culminating the electrical portion are chapters covering Nernst and membrane potentials 
and Fourier transforms. Examples are solved throughout the book and problems with answers are 
given at the end of each chapter. A semester-long Major Project that models the human systemic 
cardiovascular system, utilizing both aM atlab numerical simulation and an electrical analog circuit, 
ties many of the book’s concepts together.

KEYWORDS
biomedical engineering, biomechanics, cardiovascular, bioelectricity, modeling, Matlab
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P r e f a c e

N O T E  O N  O R G A N IZ A T IO N  O F T H IS  B O O K
The material in this book naturally divides into two parts:

1. Part I: Chapters 1-7 cover fundamental biomechanics laws, including fluid, cardiovascular, and 
solid topics (1/ 2 semester).

2, Part II: Chapters 8-15 cover bioelectricity concepts, including circuit analysis, cell potentials, 
and Fourier topics (1/2 semester).

A  Major Project accompanies the book to provide laboratory experience. It also can be divided 
into two parts, each corresponding to the respective two parts of the book. For a full-semester course, 
both parts of the book are covered and both parts of the Major Project are combined.

The chapters in this book are support material for an introductory class in biomedical en­
gineering1. They are intended to cover basic biomechanical and bioelectrical concepts in the field 
of bioengineering. Coverage of other areas in bioengineering, such as biochemistry, biomaterials 
and genetics, is left to a companion course. The chapters in this book are organized around several 
fundamental laws and principles underlying the biomechanical and bioelectrical foundations of bio­
engineering. Each chapter generally begins with a motivational introduction, and then the relevant 
principle or law is described followed by some examples of its use. Each chapter takes about one week 
to cover in a semester-long course; homework is normally given in weekly assignments coordinated 
with the lectures.

The level of this material is aimed at first-semester university students with good high-school 
preparation in math, physics and chemistry, but with little coursework experience beyond high school. 
Therefore, the depth of explanation and sophistication of the mathematics in these chapters is, of 
necessity, limited to that appropriate for entering freshman. Calculus is not required (though it is a 
class often taken concurrently); where needed, finite-difference forms of the time- and space-varying 
functions are used. Deeper and broader coverage is expected to be given in later classes dealing with 
many of the same topics.

Matlab is used as a computational aid in some of the examples in this book. W here used, it is 
assumed that the student has had some introduction to Matlab either from another source or from 
a couple of lectures in this class. In the first half of the cardiovascular Major Project discussed below,

1At the University of Utah, this course is entitled Bioen 1101, Fundamentals of Bioengineering I.
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Matlab is used extensively; therefore, the specific Matlab commands needed for this Major Project 
must be covered in class or in the lab if this particular part of the project is implemented.

A Major Project accompanies these chapters at the end of the book. The purpose of the 
Major Project, a semester-long comprehensive lab project, is to tie the various laws and principles 
together and to illustrate their application to a real-world bioengineering/physiology situation. The 
Major Project models the human systemic cardiovascular system. The first part of the problem takes 
approximately one-half of a semester to complete; it uses Matlab for computer modeling the flow 
and pressure waveforms around the systemic circulation. Finite-difference forms of the flow/pressure 
relationships for a lumped-element model are combined with conservation of flow equations, which 
are then iterated over successive cardiac cycles. The second half of the problem engages a physical 
electrical circuit to analyze the same lumped-element model and exploits the duality of fluid/electrical 
quantities to obtain similar waveforms to the first part. This Major Project covers about 80% of the 
topics from the chapter lectures; the lectures are given "just-in-time" before the usage of the concepts 
in the Major Project.

Although the Major Project included with this book deals with the cardiovascular system, 
other Major Project topics m aybe conceived and substituted instead. Examples include modeling 
human respiratory mechanics, the auditory system, human gait or balance, or action potentials in 
nerve cells. These projects could be either full- or half-semester assignments.

ACKNOWLEDGEMENTS
The overarching organizational framework of these chapters around fundamental laws and princi­
ples was conceived and encouraged by Richard Rabbitt of the Bioengineering Department at the 
University of Utah. Dr. Rabbitt also provided much of the background material and organization of 
Chapters 2 and 4. Angela Yamauchi provided the organization and concepts for Chapter 3. David 
Warren contributed to the initial organization of Chapter 8 . Their input and help was vital to the 
completion of this book.

Douglas A. Christensen 
University of Utah 
March 2009
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a n d  R e s i s t a n c e
8.1 INTRODUCTION
Biological organisms rely upon myriads of electrical activities for proper functioning. These electrical 
processes occur continuously and are vital to life. For example, ion (charged particle) movement is 
responsible for all signal transmission along nerves and for all muscle contraction. Right now, as you 
read these words, several billions of ions are being rapidly transported back and forth across the cell 
membranes of the neurons in your retina, optic nerve, and brain, not to mention your heart muscle, 
kidney, blood vessels and all other cellular tissue. Ions commonly involved in biological activity 
include calcium (Ca++), potassium (K+), sodium (Na+), chloride (Cl- ) and bicarbonate (H C O 3 ). 
These ions flow through the fluid environment both inside and outside the cells, as shown in stylized 
form in Fig. 8.1.

Figure 8.1: Some common ions found in the fluid inside and outside biological cells.

A major component1 of the force causing these ions to move (or not move) across the cell 
wall is electrostatic, that is, the force produced on a charged particle by the presence of other nearby 
charged particles, some having the same electrical sign, some with opposite sign. The charge of a 
single electron is q =  —1.60 x 10_19 C, where C is the symbol for coulomb, the SI unit of charge. 
The sign of the electron is negative, thanks in large part to choice by Benjamin Franklin. The 
charge of an ion is determined by how many electrons are missing from its atomic shell (a deficit of

'This is not the only component ot torce. Another important torce on the ions is a dittusional torce produced by concentration 
differences. The balancing of the electro-diffusional forces is covered in Chapter 14.
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electrons, giving a positive sign to the net charge) or are added to the atomic shell (an excess, giving 
a negative sign to the net charge). For example, since a sodium ion (Na+ ) is missing one electron, 
its charge is +1.60 x 10-19 C. The charge of a chloride ion (Cl- ), which has one excess electron, 
is —1.60 x 10-19 C, and the charge of a calcium ion (Ca++), which is missing two electrons, is 
+3.20 x 10“ 19 C.

Bare, mobile electrons also occur in nature (although not to any great extent in biological 
tissues). Mobile electrons are present in large concentrations only in metals and semiconductors. In 
these materials, they flow as electron currents and are an essential part of modern electronic devices 
and circuits. In general, an electric circuit is composed of a source and one or more elements con­
nected together by metallic wires and leads (usually copper, but sometimes gold, silver or aluminum) 
to form a closed path. Figure 8.2 is an example of a simple circuit. The Major Project that models 
the human systemic circulation uses an analog electric circuit in its second half.

Figure 8.2: Example of an electric circuit consisting of a source, resistor and diode connected in a closed 
path by wires (assumed ideal, with zero resistance).

To quantitatively describe ion (and electron) movement, we first need to define the concepts 
of charge, electric field, current and voltage.

8.1.1 CHARGE
Figure 8.3 shows two charged particles, <71 and <72 (both positive in this example) in close proximity 
to each other. It is well known that like charges repel and unlike charges attract. This phenomenon

1

2 2  
force F  that it experiences due to the presence of <71 is directed away from <71 (since <71 is positive);

1 2
2

is an equation relating these various quantities, and will be covered in more detail in Chapter 11. As 
mentioned earlier, the SI unit of charge is the coulomb, with symbol C.
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F

\

X 
t /

path/  %

E  ^  ^  O
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F ^ — O "  1

+ q 2

Two charges q \ andg2 of the same sign repel. Thus, each charge experiences a force F  (which 
can also be represented by an electric field E). As the charge q2  moves, it produces a current i and it may 
also change its potential energy, or voltage.

8.1.2 E L E C T R IC  F IE L D
The existence of the force F  on charge q 2  due to charge q \ can be represented by an electric field E  
at the position of q 2 , whose direction is the same as the force F  (thus i i  is a vector, with direction 
and magnitude) and whose magnitude is given by E  =  F  f q 2 - Because of the division by q 2 , the 
magnitude of E  is not dependent on the size of the test charge q 2 , but only on the size and sign of 
the charge q \ (and also inversely upon the distance between the charges, as will be evident when 
we cover Coulomb’s Law in Chapter 11). The electric field is a conservative field, as defined in 
Section 7.4.2 in Part I.

8.1.3 C U R R E N T
Now suppose that the charge q 2  in Fig. 8.3 moves along the path shown by the arrows from the 
lower left to the upper right. The movement of charge produces a current (denoted by the symbol 
i). Current is the measure of the rate of flow of charge, and it has the SI uni t  of ampere (A). I f  an 
amount of charge Aq passes a certain point such as X during time A t ,  the current i is given by

i =  A q / A t .  (8.1)

In the limit as A t  approaches zero, (8.1) becomes the differential equation

i = d q / d t .  (8.2 )

By convention, electrons flow in the opposite direction to the flow of positive current, since the 
electron has a negative charge. This may be initially confusing, but it will become more comfortable 
with experience. For ions, positive current flows in the same direction as the flow of positively charged 
ions, but it flows in the opposite direction of negatively charged ions.
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8.1.4 V O LT A G E
As the charge <72 moves, it may move closer to q i (or further away). I f  so, its movement is against (or 
with) the force F. As we have seen in the previous chapter, work— a change in energy— is equal to

2
1

force. The former case is shown in the example of Fig. 8.3. This form of energy is properly called
2 1

energy into kinetic energy.
I f  we divide the potential energy of the charged particle by its charge, we obtain the voltage2 

i'. Thus,

2

where E p is the charge’s potential energy at any given position. Voltage is the amount of work needed 
to move a unit charge between two points. A  large voltage represents the potential to do a large 
amount of workJ . The SI unit of voltage is the volt, with symbol V. From (8.3) it can be seen that 
the unit of volt (V) is equivalent to a joule per coulomb (J/C).

2
1

relative-, often in circuits, one point on the circuit is chosen to be at zero voltage, and the voltages at 
all other points are measured in reference to this point.

t
voltage V

[VI

position

The voltage (proportional to potential energy) of the charge q2  in Fig. 8.3 as it moves along 
the path. Its voltage increases because it moves closer to q \.

2Voltage is sometimes referred to as “potential,” or “electrical potential,” which is understandable since it is related to potential 
energy.

3 But remember, voltage is work per unit charge. So a large amount of charge must flow (i.e., a large current) in order to achieve this 
amount of work. As we will see later, power equals voltage multiplied by current.
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8.2 OHM’S LAW
Figure 8.5 shows a particularly simple electrical circuit consisting of a voltage source connected 
across a single resistor with ideal wires. To a very good approximation, the current i flowing through 
the resistor is related to the voltage drop v  across the resistor in a linear manner:

i R O hm ’s law (8.4)

where the proportionality constant is the resistance R  of the resistor. This linear relationship between 
current and voltage is known as Ohm’s Law, named after German physicist Georg Simon Ohm. 
It holds for resistors in circuits, for resistive conductors and wires, and for the flow of electrolytes 
through solution, and even is used to help describe the electrical behavior of the cell wall (where the 
current is carried by ions)4. Any device or material that obeys Ohm ’s Law is termed “ohmic.”

, ideal w ire

Figure 8.5: Simple electrical circuit demonstrating Ohm’s Law for the resistor R.

W hen a plot is made of the voltage across an ohmic element as a function of the current 
through it, the linear relationship is obvious; see Fig. 8 .6 . Note that the line passes through the 
origin; that is, when the current reverses sign, the voltage also reverses sign. Also, if the current is 
zero, the voltage is zero. The slope of the line is constant and has a value equal to the resistance R  
of the element. R  is always a positive number for passive elements like resistors. R  has the SI unit 
of ohms, with the Greek symbol f2. From (8.4) it can be seen that an SI is equivalent to V / A.  In 
some instances (for example, an ideal wire), the resistance is assumed to have a value of zero (a short 
circuit). On the other hand, when there is no conductive path at all between two points, the value 
of the resistance is infinite (an open circuit) and no current can flow.

Occasionally, the reciprocal of resistance, called the conductance G, is used instead of re­
sistance. The SI unit of conductance is the siemen, or S. Conductance and resistance are related 
by

1 (8.5)

4 A useful electrical model of a cell membrane includes a capacitor in parallel with several resistors and voltage sources. The values 
of the resistors change dramatically as ion channels open and close, causing voltage spikes (action potentials) to propagate down 
nerves. This model is covered in Chapter 14.
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Figure 8.6: Voltage-current relationship for an ohmic element.

8.2.1 F L U ID  A N A L O G IE S
By now, it should be obvious that there is a close analogy between fluid flow (where the flowing 
particles are molecules of fluid) and electrical current (where the flowing particles are electrons or 
ions). In fact, the equations below describing the linear relationship between the driving force and 
the flow rate are of exactly the same form for both fluids and electrical current.

* For fluid flow though a porous membrane (Chapter 2, Part I), the driving force is the pressure 
difference A P  across the membrane, and the flow is the fluid passing through the membrane. 
Darcy’s Law,

A P  =  Q R ,  (2.5)

states that the pressure is proportional to the flow, with the proportionality constant called the 
hydraulic or fluid resistance R , given by (2.5).

* For fluid flow through a tube (Chapter 3, Part I), the driving force is the pressure difference 
A P  between the two ends of the tube, and the flow is fluid flow through the tube. Poiseuille’s 
Law,

A P  =  Q R ,  (3.7)

shows that with laminar flow conditions, the pressure is again proportional to flow; the pro­
portionality constant is similarly called hydraulic or fluid resistance R , given by (3.7).

* For electrical current (this chapter), Ohm ’s Law,

v =  i R, (8.4)
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states that the voltage drop across a resistive element is proportional to the electrical current, 
with the proportionality constant given by the resistance R .

Note the similar form of all three equations above. O f course the quantities are different, but 
their mathematical behavior is identical. Conservation laws also apply to both the conservation of 
fluid molecules in a fluid network and the conservation of electrical charge in an electrical circuit. 
This is the basis for using an electrical circuit as an analogy for a fluid circuit. In particular, in the 
second half of the Major Project that models the human systemic circulatory system, an electrical 
circuit is used to model the pressures and the blood flow.

8.3 SIGN CONVENTIONS FOR VOLTAGE AND CURRENT
W hen doing an analysis of the resistors in circuits or resistive elements in biological models, it is 
important to keep accurate track of the signs of both the current and the voltage across the resistor. 
Figure 8.7 shows the symbol for a resistor used in schematic diagrams. A current i is assumed to flow 
through the resistor. The reference direction for positive  current is the same as the direction of the 
arrow, shown to the side of the symbol. The voltage v  across the resistor is given by the difference

1 2
symbol A v  should be used instead of v, but this becomes cumbersome after a while, so is usually 
shortened to just v.)

f

i ------ ►

Figure 8.7: Circuit symbol for a resistor o f value R. The order of the signs o f v and the direction o f i is 
given by the passive sign convention.

The order of the signs in Fig. 8.7 follows the passive sign convention (psc) which states that 
the positive sign fo r  the voltage reference is p u t  on the side o f  the resistor where the positive current enters. 
We will always follow the passive sign convention in this book.

Although the arrow points from left to right in Fig. 8.7, that does not mean that the current i 
always flows in that direction. It merely sets the reference direction of flow for positive  current; that 
is, when the sign of the current i is positive, it flows in the direction of the arrow, or from left to right 
in Fig. 8.7 (and— hold on— electrons flow from right to left). But when the current i has a negative 
value, it flows in the opposite direction of the arrow, or from right to left in Fig. 8.7 (and—you 
guessed it— electrons flow from left to right).

Similarly, the voltage v  can have either a positive or negative value. I f  v  has a positive value,
1 2

On the other hand, if v  has a negative value, the voltage on the left is less than the voltage on the

\
■ W
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1 2
passive sign convention, when i is positive, v  is also positive, and vice versa.

The direction initially chosen for the current arrow is usually arbitrary when setting up a circuit 
analysis. In every case, however, the passive sign convention—which relates the order of the signs 
of v  to the direction of i— must be used in setting up the circuit references. For example, Fig. 8. 8 
shows a case where the positive current direction has arbitrarily been chosen to be from right to 
left. Note that the order of the signs for v  in Fig. 8. 8 has been reversed from Fig. 8.7 in order to 
follow the passive sign convention. Although the direction of the positive current arrow is often 
arbitrary, once that direction has been chosen, the order of the voltage signs must follow the passive 
sign convention!

v2 ~  V + V’l

M A
R

Figure 8.8: The direction of the positive current flow through the resistor R has been reversed compared 
to Fig. 8.7. The order of the signs of v has also been reversed to follow the passive sign convention.

8.3.1 R E S IS T IV IT Y  O F  B U L K  M A T E R IA L S
In the previous discussions, the resistive device was considered as a whole, possessing a net resistance 
R . In circumstances where microscopic behavior is o f more interest, it is useful to consider the 
resistive properties of a small incremental volume of the material making up the larger device. This 
property is called the resistivity p  of the material, and it is specific to the material being considered, 
not to the particular geometry or size of the device. The SI unit of resistivity is ohm-meter (f2-m). 
This quantity is especially useful when analyzing bulk materials such as ionic solutions or insulating 
layers. An insulator such as quartz has a resistivity of about p  =  1 0  x  10+17 f2-m. Normal saline

0 20
p  =  1.7 x  10- 8 f2-m.

For elements with certain common geometries, there exists a simple relationship between the 
bulk resistivity p  (a material property) and the overall resistance R  of the element. For example, if 
the cylindrical resistor shown in Fig. 8.9 is composed of a homogeneous material with resistivity p , 
the net resistance of the resistor is given by6

R =  p i / A .  (8.6)

Remember that R is always a positive number for resistors.
6To practice consistency checking, use a units check and a ranging check on (8.6) to confirm that it has the correct form.
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Figure 8.9: A cylinder made from material with a bulk resistivity of p.

Sometimes the reciprocal of resistivity, called the conductivity a ,  is used. The two quantities 
are related by

or =  1 /p . (8.7)

The SI units of conductivity are siemen per meter, or S/m.

8.4 DIODES AND OTHER NON-OHMIC CIRCUIT 
ELEMENTS

Although many electrical elements follow Ohm’s Law at least over some range of their operation, 
other elements do not. Some circuit elements, such as the diode, are purposely made to behave in a 
non-ohmic manner.

The schematic symbol for a diode is shown in Fig. 8.10. Note that the voltage signs and 
current direction are set up to follow the passive sign convention.

anode ca thode

+ v

--------- ► i

Figure 8.10: The symbol for a diode. It allows easy current flow in the direction of the arrow, but blocks 
flow in the opposite direction.

A diode is used as a one-way “valve” of current. It allows easy flow in the direction of the 
arrow (the “forward” direction, from anode to cathode) when the voltage v  is positive (i.e., when the 
voltage on the left side in Fig. 8.10, or anode side, is more positive than on the right side, or cathode 
side). But the diode is highly resistant to flow in the opposite direction (the “reverse” direction) when
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the voltage v  is negative (i.e., when the right side has greater voltage than the left side in Fig. 8.10). 
This asymmetric current-voltage behavior is plotted in Fig. 8.11(a) for a typical diode. Note that the 
current is large and positive when v  is positive, equivalent to a low forward resistance, but that the 
current is small and negative when v  is negative, equivalent to a high reverse resistance.

a. t ♦ 1 b. 1 ♦
current i 

[Al |  actual 
I /  diode

current i 
[Al ideal 

/  model

0 + 
voltage v [V] — ► 0 ,

voltage v

Figure 8.11: (a) The current-voltage relationship for a typical diode; (b) the idealized model of a diode, 
consisting of a short circuit in the forward direction and an open circuit in the reverse direction.

Often an ideal model of a diode is employed in circuit analysis. This makes the analysis 
considerably simpler. In the ideal model, it is assumed that in the forward direction, the diode 
possesses zero resistance (a short circuit); this means that there is no voltage drop across the diode 
regardless of the amount of current through it. However, in the reverse direction, the diode acts like 
an open circuit with infinite resistance, and no current flows regardless of the amount of voltage. 
This ideal model behavior is shown in the current-voltage plot of Fig. 8.11(b).

Several other important circuit elements are also non-ohmic. The transistor and the opera­
tional amplifier are examples of active devices that have gain and do not follow Ohm ’s Law. The 
operational amplifier is covered in Chapter 10.

8.5 POWER LOSS IN RESISTORS
To pass a current i through a resistor of value R  requires an electrical force, measured by the voltage 
drop v  across the resistor. Analogous to the formula for power loss in fluids [see Equation (3.9)], 
the electrical power loss in a resistor is given by the product of current and voltage:

P =  iv ,  (8 .8)

in SI units of watts (W ). Equivalent expressions can be obtained by using Ohm ’s Law (8.4) in (8 .8):

P =  i 2R =  v2/ R . (8.9)



8.6 PROBLEMS
8.1. A tungsten resistance wire is 100 m long with around cross section and a diameter of 0.20 mm. 

W hen a variable voltage is applied between its ends, a current is measured as plotted below.

a. W hat is the resistance R  of this wire?

[ans: R =  180 fi]

b. W hat is the resistivity p  of this wire?

fans: p  =  5.7  x  10_8fi • m]

8.6. PROBLEMS 11

voltage v (V)

Figure 8.12: Plot of current-voltage relastionship for wire analyzed in Problem 8.1.
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C H A P T E R  9

K i r c h h o f f ’s  

L a w s :

9.1 INTRODUCTION

e  a n d  C u r r e n t

s i s

As we have seen, fluid networks consist mainly of tubes, pipes and valves connected together and 
to pressure sources. The tubes have various degrees of resistance, and sometimes the tubes have 
compliance. An excellent example of a fluid network in biology is the cardiovascular system. Similarly, 
electrical networks— electrical circuits— are also composed of elements connected together. In this 
case, the basic elements are resistors, capacitors (discussed later), inductors (also discussed later), and 
voltage or current sources. We will start with the three basic elements whose symbols are shown in 
Fig. 9.1.

resistor independent

R
V ( + ] voltage 

s source

independent 
I ( A  ) current 

source

Figure 9.1: The symbols for three basic electrical elements.

The resistor’s symbol and its ohmic voltage/current behavior have already been introduced in 
Ohm ’s Law unit. The independent voltage source is a source whose voltage Vs across its terminals 
is always the same regardless of the current through the source (it is therefore called a “constant- 
voltage” source). This is an ideal model, never really found in practice, but batteries and voltage 
power supplies come close to this behavior for low to moderate currents. The independent current 
source is a mirror image of the voltage source: the current / s out of this source is always the same 
regardless of the voltage across its terminals (a “constant-current” source). Again this is an ideal 
model and is only an approximation of real current sources.

For every fluid network model, there is an equivalent electrical network model. For example, 
two very simple fluid networks are shown in Fig. 9.2 along with their electrical equivalents. The 
wide tubes are assumed to have negligible resistance, as are the wires.
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FLUID ELECTRICAL

node 1

equiv to indep.

source

node 1

Figure 9.2: Two simple fluid networks on the left with their equivalent electrical circuits on the right.

The fluid network in the upper part of Fig. 9.2 is driven by a constant-pressure pump, such as 
an air-diaphragm pump; for this type of pump, Ps is constant but Q is not. Thus, if the resistance R 
of the narrow-tube section increases somehow, the flow rate Q will go down. Its electrical equivalent 
on the right, using an independent voltage source, shows the same behavior. The voltage Vs is always 
constant. The voltage is the same across both the source and the resistor, and the same current i goes 
through both the source and the resistor. By Ohm ’s Law, if the resistance R  increases, the current i 
will decrease.

The fluid network in the lower part of Fig. 9.2 is driven by a constant-flow pump, such as 
a roller pump. The flow rate Q s out of this source is constant, but the pressure across it is not. 
(Although more complex than constant-pressure pumps, a constant-flow pump is often used in 
hydraulic elevators, where the rate of ascent and descent needs to be constant regardless of the load 
inside the elevator.) I f  the resistance of the narrow-tube section increases, the pressure drop across the 
tube (and correspondingly the pump) goes up. The electrical equivalent, which uses an independent
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current source, has this same behavior. The voltage v is the same across both the source and the 
resistor, and the same current goes through both the source and the resistor.The current I s is always 
constant. By Ohm ’s Law, if the resistance R  increases, the voltage v will increase.

9.2 KIRCHHOFF’S VOLTAGE LAW (KVL)
Kirchhoff’s Voltage Law applies to all electrical circuits. I t states:

The algebraic sum o f  voltages around any closed pa th  (loop) is zero.

The application of this principle to circuits is straightforward. Going around any loop while summing 
its voltages is called taking a “Kirclilioff s T our” (K T).The tricky part is keeping track of the signs. 
To help with getting the signs correct, we must always use the passive sign convention (psc) for 
resistors (see Ohm ’s Law in Chapter 8), and then follow Rule 1:

Rule 1 -  W hen using KVL around a loop, the sign of the voltage contribution across 
any element is the sign first encountered in the direction of the tour.

L et’s apply KVL to a simple example. In the upper-right electrical circuit of Fig. 9.2, start the KT at 
the part of the circuit labeled node 1. Go clockwise around the loop summing voltage contributions 
from each element (only two in this case) until you get back to the starting point. The first voltage 
crossed is +u; it is positive since the +  sign was encountered first when going in a clockwise direction. 
The next voltage term is — V̂ ; it is negative because the — sign was encountered first. T hat gets us 
back to node 1, the starting point. KVL says that the sum of these voltages is zero, or

+  v -  Vs =  0. (9.1)

Thus, v =  V;, as is perhaps obvious (and was already anticipated in the figure labels). W e’ll use KVL 
for more complex examples later.

9.3 KIRCHHOFF’S CURRENT IAW (KCL)
This law also applies to all electrical circuits. I t states:

The algebraic sum o f  currents a t any node is zero
-or- The currents entering any node equal the currents leaving.

The strict definition of a node is any point at which two or more circuit elements join, although in 
awhile we will be concerned only with nodes where more than two elements join (called essential 
nodes). In fluids, nodes are called junctions. Note that KCL is just a statement of the conservation 
of mass, identical to the rule for incompressible fluid volumetric flow. In fluids, the mass is composed 
of fluid molecules; in the electrical case, the mass is that of charged particles.

Once again, the application of KCL is straightforward as long as the signs of each current are 
accounted for correctly. L et’s apply KCL to the simple example shown in the lower-right part of
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Fig. 9.2. At the (nonessential) node labeled node 1, the current entering is / v.T he current leaving is
i. Using KCL,

/ =  (9.2)

as is again perhaps intuitive (and already labeled as such in Fig. 9.2).

Example 9.1. Four-W ire Node
Another example of KCL, applied to an essential node with four connections, is shown in Fig. 9.3. 

Here KCL gives

i\  +  1 3 =  12 +  14,

' l + '3 - '2 - '4 = 0 .  (9.3)

Figure 9.3: KCL applied to an essential node with four connections.

9.4 RESISTIVE CIRCUIT ANALYSIS USING THE BRANCH 
CURRENT METHOD

A somewhat more complex circuit is shown in Fig. 9.4. Kirchhoff’s Laws and Ohm ’s Law can be 
applied to solve for the voltages and currents in all elements of this circuit by one of three possible 
circuit analysis methods. Here we will use the Branch C urrent M ethod (the other two methods 
will be left for later classes). The circuit of Fig. 9.4 has two essential nodes (i.e., nodes with more 
than two connections) labeled node 1 and node 2. A branch is defined as a single path that connects 
one essential node to another. In this circuit there are three branches connecting essential node 1 to 
essential node 2 .
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Figure 9.4: Example of a circuit to be analyzed by the Branch Current Method.

The Branch C urren t M ethod has four steps:

Step 1. Assign a current to each branch that does not have a current source. Give the current a name 
(using i symbols) and a direction. You can choose each direction arbitrarily. (Exception: for 
branches which contain a current source, the current i is always in the same direction and of 
the same value as specified by the source.)

Step 2. Assign a voltage to each element that does not have a specified voltage. Give the voltage 
a name (using v symbols) and arrange the signs of the voltage according to the passive sign 
convention. (Exception: sources, being active, do not have to follow the passive sign convention. 
The voltage value and polarity of voltage sources are always as specified by the source; the 
current direction through the voltage source, however, is arbitrary.)

Step 3. Apply KVL to each independent loop, Ohm ’s Law to each resistor, and KCL to each essential 
node. This results in a series of simultaneous algebraic equations.

S te p 4. Solve the simultaneous equations for each desired i> and i.

L et’s apply these steps to Fig. 9.4. After assigning names and directions by Steps 1 and 2, we 
have something that looks like Fig. 9.5. Note the correct application of the in Fig. 9.5.
Now apply KVL of Step 3 to Fig. 9.5. The first KT we will take is around the left loop in the 
clockwise direction (denoted K T l) starting at the lower left comer. Summing voltages around this 
loop and following Rule 1, we get

-  Va +  ui +  u3 =  0. (9.4)

Next, take a KT around the right loop starting at node 2 and going in the clockwise direction 
denoted KT2. Summing voltages, we get
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no d e 2

Figure 9.5: The circuit of Fig. 9.4 after current and voltage labels have been added.

- V 3 - V 2 - V b =  0. (9.5)

W e’ll stop KVL here. W hy not apply KVL to the outer loop? Because no new equation would result 
that is independent of the two we already have. Thus, Rule 2 :

Rule 2 -  Each independent loop must include at least one new  branch not included in 
any other loop.

Now apply Ohm ’s Law to each resistor:

v \ =  i \ R \ ,  

V2 =  i i R i ,  
V3  =  i iR i -  (9.6)

Note that the psc has automatically taken care of signs. But before we go any farther, we can imme­
diately put the three Equations (9.6) into their respective places in (9.4) and (9.5) to get

+ ii/? i +  i 3 / ? 3- Vfl =  0. (9.7)
- h R i - V b -  i3R3 =  0. (9.8)

In fact, in all future K T’s we’ll be able to write down equations like (9.7) and (9.8) directly using 
Ohm ’s Law and KVL together, thus skipping the intermediate step (9.6).

Now use KCL at node 1 o f Fig. 9.5 to get

i l  +  12 =  13- (9.9)
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W e’ll stop KCL here. W hy not apply KCL to the other node? Because no new equation would result 
that is independent of the one we already have. Thus, Rule 3:

Rule 3 -  For n nodes, KCL gives (n  — 1) independent equations.

Now we go to Step 4. We have three independent simultaneous Equations [(9.7), (9.8), 
and (9.9)] with three unknowns [ii, 12, and 13]. There are various ways to solve them (such as 
Kramer’s Rule and Matlab), but we’ll simply use substitution. Solving for i 1 from (9.9):

i i  =  j‘3 — i2.

Substituting this into (9.7) gives

2 1 3 1 3
2 2 3 3

1 2

2 3 1 3 1 1
+  »2 +  »3(fl3/fl2) =  -Vfc/ / ?2.

2 3

. R i R 2  

13 R 1 +  R 3  R 3  ■ 
R i R 2

Now that we have an equation for 13, we could find the equations for i i  m d  1*2 if desired. We 
could also find equations for v i ,  V2 , m d  113 easily by multiplying the currents by their respective 
resistances. Also if values have been given for the various components, we could calculate the values 
of all currents and voltages in the circuit. An example using another circuit is given next.

Example 9.2. A nother C ircuit Analysis Using K irchhoff’s Laws
In the circuit below,

2

2 2

(9.10)

(9.11)
(9.12)

(9.13)
(9.14)

(9.15)

I s =  1 mA 
/?i =  10 kQ

Va =  Vh =  1 0 V  
R2 =  10 kQ R 3 =  2 0  k Q
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V V,

Figure 9.6: Circuit analyzed in Example 9.2.

Solution
a. Steps 1 and 2 of the Branch Current M ethod have already been done in the figure above. Note

3
in that branch. Now proceed with Step 3:
KVL around the left loop:

KVL around the right loop:

KCL at upper node:

i i 3 0

V, +  Is R3 -  i2 R 2 - V b =  0.

(9.16)

(9.17)

h  +  h  +  h  =  0. (9.18)

Step 4: Now solve these equations. Add (9.16) to (9.17), immediately. Several terms cancel, leaving

i

Put (9.20) into (9.19):

i i 2 2 0

i 2

(9.19)

(9.20)

Va - h R i - h ( R i  +  R 2) - V b = 0 (9.21)
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i2 =  - W a  +  Vh + Is R i ) / ( R i  +  R i) .  (9.22)

b. Putting the values from Fig. 9.6 into (9.22) gives

i i  =  - ( 1 0 + 1 0 +  10)V/(10 +  10) kQ =  - 3 / 2  mA =  - 1 . 5  mA,

v 2 =  i2R 2 =  ( -1 .5  mA)(10 kQ) =  - 1 5  V. (9.22)

W hat does the negative sign for i i  mean? It says that the current in R i  is really going in the opposite 
direction of the arrow, or left to right. We guessed wrong when we set up the current arrows, but 
it’s fine. The signs of the answers will give the correct final directions. W hat does the negative sign 
for i>2 mean? I t says that the magnitude of the voltage on the left side of R i  is really larger than the 
voltage on the right side. Once again, the signs of the answers will give the correct polarity.

9.5 PROBLEMS
9.1. Let R  =  2.0 kQ in the circuit of Fig. 9.7. M ark on the figure the correct polarity for the voltage 

v using the passive sign convention, then use KVL and Ohm ’s Law to solve for the current i 
and the voltage v.

T his can be solved directly for ii'.

Figure 9.7: Circuit to be analyzed in Problem 9.1.

fans: u =  —10 V and i =  —5.0 mA]

9.2. a. Use the Branch Current M ethod (KVL and Ohm ’s Law) to solve for the current i and the 
voltage V2  across the 1.0 kQ resistor in the circuit of Fig. 9.8.

fans: i =  — 2 .0  mA and v i  =  —2 .0  V]

b. How many electrons will pass point a in the circuit during 5.0 seconds?
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Tans: 6.3 x  1016 electrons]

c. Is the direction of the electron flow clockwise or counterclockwise?

Tans: clockwise] 

point a

Figure 9.8: Circuit to be analyzed in Problem 9.2.

9.3. a. For the circuit shown in Fig. 9.9, use the Branch Current M ethod to find an expression for
3

[ans: 13 =  - V a (R i +  +  R 2 R 3  +  R ^ 3 )]

b. Do at least two ranging checks on the answer of part a.

3

600

3
3

3 V b R l - V g  ( *1 +  Rl )  

_ Ri R2  +  R 1 R 3  +  R 2 R 3  _
3

b. Perform a units check on this equation.

c. Perform one ranging check on this equation.
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Figure 9.9: Circuit to be analyzed in Problem 9.3.

R,

Vu

M r
R ,

+ 1

+ A R,

-\MAr
V3 +

Figure 9.10: Circuit to be analyzed in Problem 9.4.
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10.1 INTRODUCTION

There are several sources of electrical signals produced inside the body: signals from cardiac muscle 
(recorded as electrocardiograms, E C G  or EKG), skeletal muscle (electromyograms, EM G), and brain 
activity (electroencephalograms, EEG ).These voltage signals can be measured with electrodes on the 
surface of the body, that is, noninvasively, to diagnose diseases and determine the physiological state 
of various organs. Rut the voltages are very weak by the time they propagate to the body’s surface— 
usually on the order of just a few microvolts (\.iV ). By the time they reach the measurement and 
recording devices, they are even smaller. Figure 10.1(a) models an E C G  signal on the surface of the 
body as an independent voltage source Vecg. This model is simplified, because in reality the EC G  
signal is time-varying and not constant, but at any given time it may be approximated by this model. 
Electrodes and wires connect the source to a measurement device (for example, an oscilloscope or an

1
and the input resistance (also known as the input impedance) of the measurement device is modeled 

2

measuring

+

Figure 10.1: (a) Measurement of an internal electrical source Vecg with electrodes on the body’s surface. 
The wires and electrodes are modeled by R i , and the input impedance r f  the measurement device by R 2 - 
The measured voltage is t’2 - (b) An amplifier with gain A  (denoted by the triangle) is inserted between 
the source and the measurement device.

2
the simple circuit of Fig. 10.1(a). KCL applied to any (nonessential) node around the circuit shows 
that the current i must be the same in all segments of the circuit. This has already been noted in the
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figure. KVL around the loop, starting at the lower-left corner and going clockwise, gives

- V ecg +  i R i + i R 2  =  0,  (10.1)

i 2

From Ohm ’s Law,

V2 =  i R 2 = (  Vecg- (10.3)
i 2

2

2 i 2
voltage is applied to a string of resistors in series, and the measured voltage is taken across one

i

2 2  
can be difficult to measure in the presence of noise. Some means of amplifying the source voltage is 
needed.

Figure 10.1(b) shows a simple amplifier with a voltage gain of A  (and a very high input 
impedance) inserted between the source and the measuring device. The amplifier in this example 
has a single input, denoted by voltage i I t s  output voltage v„ is related to the input voltage by

v0 =  A v ,. (10.4)

The voltage gain A maybe large (up to perhaps i x  i0 5). Thus, the measured voltage can be boosted 
with the amplifier to the neighborhood of a volt or a significant fraction of a volt, which is easy to 
measure and record.

10.2 OPERATIONAL AMPLIFIERS
A  very popular and versatile type of amplifier is the operational amplifier, or op amp. It forms 
the building block for a number of convenient amplifier circuits. The device itself consists of a 
tiny integrated circuit (IC) with many transistors, diodes, resistors and capacitors performing the 
amplifying function. We will not be concerned here with the internal electronics of the op amp. 
Instead we treat it as a module, and model it with an equivalent circuit that describes its overall 
electrical behavior.

The physical package of a typical op amp is much smaller than a postage stamp, and from 
the outside it looks like a “bug” with wire legs, at least in the popular dual-in-line (DIP) package, 
or “chip”. Figure 10.2 shows how an 8-pin D IP  package looks from a top view. There is always 
some registration mark (a dot or a cutout) at one end to orient the numbering order of the pins. By 
convention, the pin numbers start from 1 on the left of the mark and increase in the counterclockwise
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1 c ) 8
2 C 5 7
3 C 5 6
4 C

\
5 5

8-pin DIP
top view

noninverting 
input ____

inverting" 
input

positive power supply 

output 

negative power supply

Figure 10.2: The physical layout of an example of an op amp package. Also shown are typical symbols 
used in op amp circuit diagrams.

direction as seen from the top, shown in Fig. 10.2. An 8-pin D IP  package can actually house two 
separate op amps, which is common.

The complete symbol for one op amp is given at the center of Fig. 10.2. Note that the op amp 
has two inputs (labeled inverting and noninverting) and one output, so it is a type of dual-input, 
or differential, amplifier. Since the output voltage is often larger than the input voltage, the output 
power is often much larger than the input power. The conservation of energy principle requires that 
there be some other external source of power supplied to the amplifier to provide this increase in 
power. This takes the form of one or (usually) two power supplies that must be connected to the 
amplifier for it to function properly. These are labeled as the positive power supply and the negative 
power supply connections on the symbolic diagram.

An abbreviated symbol is often used in op amp circuit diagrams, shown on the right of 
Fig. 10 .2 . The location of the inverting input is denoted by a — sign, and the noninverting input by 
a +  sign. It is important to note that the +  and — signs inside the symbol for the two inputs have 
nothing to do with the actual polarity of the input voltages; they merely denote the inverting and 
noninverting nature of the two inputs, explained shortly. The power supply voltage leads are labeled 
V+ and V_. Here the +  and — signs do denote the polarity of the supply voltages.

A diagram of how an op amp is hooked up is given in Fig. 10.3. The power supplies can 
be either bench-type voltage supplies or batteries (for portability); the positive supply requires a 
constant positive voltage (usually + 1 2 V or +15 V) and the negative supply requires a constant 
negative voltage (usually —12V o r —15 V). These are denoted + V CC and — Vcc.The input voltage to 
the noninverting terminal is labeled v f, and the input voltage to the inverting terminal is labeled v„. 
Both are referenced to the bottom wire, which is usually tied to ground at zero volts. The output 
voltage is v„, again referenced to ground. The ground is indicated by a series of short lines inside an 
inverted triangle.



28 CHAPTER 10. OPERATIONAL AMPLIFIERS 

Hookup

or b a tte ry  ------ V cc

We now need an equivalent circuit model to represent how the output voltage is related to the 
two input voltages. One version of an op amp equivalent circuit model is given in Fig. 10.4. (There 
are much more complex models that can be used, including such effects as offset input voltages 
and capacitances, but they are more detailed than we require here.) In this model, the two inputs 
are joined together by a large input resistance /?;. The output voltage is generated by a dependent 
voltage source in the shape of a diamond (discussed in the next section). Its voltage A { v p — vn) 
is proportional to the difference between the noninverting input voltage vp and the inverting input 
voltage i'„.T he proportionality constant is the gain A. This dependent voltage source is connected 
to the output terminal through a small series output resistor R 0.

Figure 10.4: Equivalent circuit model for an op amp.
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Typical values for a good op amp are listed in Table 10.1 along with simplifying approximations 
to these values. The input resistance R i is usually very large— several hundreds of megohms. Thus, 
it can be approximated as an infinite resistance, or open circuit. The output resistance R„ is usually 
small— less than 75 ohms— compared to other resistors in the circuit. Thus, it can be approximated 
as zero resistance, a short circuit or an ideal wire. The voltage gain A  is very large. This leads to a 
further simplification in the model, as will be apparent shortly.

Table 10.1: Op Amp Parameters

Typical Values Approximate Values
Ri 1012 fi Ri oo
R 0 < 75 fi R o ^ 0
A  =  105 — 106 A  —*• oo

W hen these approximations are made in the equivalent circuit, the ideal op amp model of 
Fig. 10.5 results. In the ideal model, the inputs both terminate in open circuits in the amplifier; 
therefore no current can flow into these input terminals, regardless of the input voltage. Also the 
output is directly connected to the dependent voltage source (since R 0 =  0), so the output voltage is 
the same as the dependent source voltage. From now on, we will use this ideal model in the analysis 
of various amplifier configurations.

Figure 10.5: The ideal op amp equivalent circuit.

10.3 DEPENDENT SOURCES
We have just introduced a new type of electrical source, the dependent source. Independent sources 
were described in Chapter 9, where it was seen that an independent source (for example, an inde­
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pendent voltage source) is characterized by the fact that its output voltage is fixed at a constant value. 
A  battery is an example of this kind of source. Independent sources are identified by the shape of a 
circle or by a battery symbol.

D ependent sources, on the other hand, have outputs that are variable, depending upon the 
value of some voltage or current in another part of the circuit. Dependent sources are identified by 
a diamond shape. There are four possible types, categorized in Fig. 10.6.

Current-Controlled 
Voltage Source 

(CCVS)

Voltage-Controlled 
Voltage Source 

(VCVS)

Cu rrcnt-Control led 
Currcnt Source 

(CCCS)

Voltage-Controlled 
Currcnt Source 

(VCCS)

symbol

somewhere 
else in 
circuit vWV

q-v,

— M/V— —\AA/V— — M/V—

Figure 10.6: Dependent sources of four possible types.

The current-controlled voltage source (CCVS) is a dependent source whose output voltage is
1

1
with units of V/A. The voltage-controlled voltage source (VCVS) is a source whose output voltage 
is proportional to the voltage v i  across some element in another part of the circuit. The output 
voltage of this source is q ■ v i  regardless of the current through the source. The proportionality 
constant is q , with units of V/V, so it is dimensionless.The VCVS inside the ideal op amp equivalent 
circuit is an example of this type of source, extended such that the output voltage is proportional 
(with proportionality constant A ) to the difference (lip — v„) of two voltages on other parts of the 
circuit. To complete the possible dependent source configurations, Fig. 10.6 also shows a VCCS and 
a CCCS.

10.4 SOME STANDARD OP AMP CIRCUITS

Op amps are used in hundreds of different applications and configurations (for example, the car­
diovascular Major Project utilizes one such specialized circuit: the capacitance-multiplier circuit), 
but there are three or four standard op amp configurations that are used again and again. They are 
described and analyzed next.
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10.4.1 IN V E R T IN G  A M P L IF IE R
This arrangement is used when it is desired to amplify and invert an input signal so that the output 
voltage is larger than the input but of opposite polarity. Its circuit diagram is shown in Fig. 10.7(a).

with its ideal equivalent circuit.

Rs is the resistor connecting the source to the op amp. R f  is a “feedback” resistor connecting 
the output back to the inverting input. The feedback resistor must always be connected back to 
the inverting input, not the noninverting input. Otherwise the amplifier will go unstable. Note 
in Fig. 10.7(a) that the inverting input is above the noninverting input; this order may vary from 
diagram to diagram.

To analyze this circuit, we always redraw the circuit, replacing the op amp symbol with its 
(ideal) equivalent circuit. We then can use the Branch Current M ethod or any appropriate method 
to find the output voltage in terms of the signal voltage. The redrawn circuit is shown in Fig. 10.7(b). 
vn , Vp, and va are identified at their respective terminals, labeled a, b, and c.

We first use KCL at the node near a. Its result is obvious: since no current can enter terminal 
a, the current entering the node must equal the current leaving, or

h  =  is- (10.5)

This result is so intuitive that from now on, whenever there is a continuous branch with multiple 
elements but containing no essential nodes (i.e., no places with a third wire branching off to the 
side), we will let the current be the same throughout that continuous branch.

KVL can be applied to the far-right loop— the one that includes the dependent source. This 
loop is indicated by the dotted line labeled KTx. Starting in the lower-left comer, we get

-  A ( v p -  vn ) +  v0 =  0. (10.6)

so
Vp -  V„ =  v t, f  A . (10.7)



Now a very important approximation can be made. Since in the ideal op amp model, A  oo, (10.7) 
shows that

v p -  vn % 0 , (10.8)

or
Every ideal op amp (10.9)
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Therefore, in the ideal model, the voltages at the inverting and noninverting input terminals are the 
same! We will employ this simplification from now on, and it makes the analysis of op amps much 
easier, as we will see. Also, when the relationship in (10.9) is used, we will never need (or want) to 
take a KT through the dependent source again.

Now apply KVL around the loop labeled K T l. Start at the lower left and go clockwise. The 
first voltage term encountered is the signal voltage V^The next term is the voltage across the resistor 
R s , which is + isR s . Now we need to get from terminal a (with voltage v„) to terminal b (with voltage 
V p ) .  Since (10.9) states that V p  =  v,u  there is no voltage drop encountered when going from point a 
to point b. So there is a zero contribution to the voltage sum here. T hat takes us to point b.There is 
a wire from this point back to the start of the loop (note that this means that v p =  0 in this circuit), 
so the total K T l tour results in:

V5 +  is R s + 0  =  0, (10.10)

or
is =  Vs/ R s . (10.11)

There is one branch we have not yet used in KVL, the one containing R f ,  so we apply KVL 
to the loop labeled KT2. Note that KT2 avoids going through the dependent source to make things 
simpler, and instead goes through v0. Applying KVL to KT2 gives

+  is R f  +  v0 — 0 . 

Putting (10.11) in (10.12) and solving for va gives

R r

*  1 v "
Inverting amp

(10.12)

(10.13)

We check the units of (10.13) for consistency, and since both sides have the units of volts, we know 
that the derivation hasn’t gone terribly astray somewhere.

Equation (10.13) states that the output voltage of this amplifier is equal to the input voltage 
multiplied by the ratio of R f  to /?s.This ratio gives the absolute value of the gain of this circuit, and 
is set by resistance values (and is therefore more stable compared to other electronic ways of setting 
the gain). The gain can be set to be low, moderate, or very high, as desired, by choosing the proper 
resistors, but cannot be larger than the native (open-loop) gain A  of the op amp. The negative sign
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means that the polarity of the output is inverted from that of the input (thus the name “inverting” 
amplifier); for example, if  R f / R s =  100 and V5 =  + 6  mV, the output voltage is v0 =  —600 mV.

10.4.2 N O N IN V E R T IN G  A M P L IF IE R
This configuration is used when it is desired that the output voltage have the same polarity as 
the input voltage. The original circuit is shown in Fig. 10.8(a). The circuit redrawn with the ideal 
equivalent circuit substituted for the op amp symbol is shown in Fig. 10.8(b). This configuration is 
similar to the inverting amplifier, but the signal voltage source is now connected to the noninverting 
input rather than the inverting input.

Figure 10.8: (a) Noninverting amplifier; (b) redrawn circuit using ideal op amp equivalent circuit.

We don’t need to use KCL explicitly here, since there are no branching currents. KVL around 
K T l gives

0

so
is =  - V s/ R s . (10.15)

In getting (10.14) we have already used the fact that v p =  v„. Next, we do not need or want to take 
a loop through the dependent source. W h a t’s left is KVL around KT2, giving

0

Solving for va and using (10.15) results in

Noninverting amp (10.17)

This result shows that the gain of the noninverting amplifier is also related to the ratio of 
resistances, as was the case with the inverting amplifier, but with a slightly different form due to the



first term in the parentheses.The gain of the noninverting amplifier is always greater than unity, even 
for small ratios of R f / R s ■ W hen R f  > >  R s , the gains of the two configurations are essential the 
same in absolute magnitude. Note that the sign of the gain for this noninverting amplifier is positive, 
so the input and the output voltages have the same sign (as the name “noninverting” indicates). For 
example, if R  f / R s =  10 and Vs =  + 6  mV, the output voltage is v 0 =  + 6 6  mV.

10.4.3 V O LT A G E F O L L O W E R
This op amp configuration is the simplest possible one, and it is often used when it is necessary to 
avoid “loading down” a source. The term “loading” refers to the current that is required from a source 
when it is connected to a measuring or recording device, called the load. If the resistance of the load 
is low, then an appreciable amount of current will be drawn from the source. If the resistance of the 
source is not small (it often isn’t, especially in the case of chemical electrodes), then this current draw 
will lower the effective voltage that can be measured at the load. A demonstration of this loading 
effect was seen in the example of Fig. 10.1 (the voltage-divider phenomenon). For instance, if the 
internal resistance of a chemical electrode is R i  =  1 MSI and the input resistance of the measuring 
device is R 2 =  1 kf2, then (10.3) shows that only about 1/1000 of the electrode voltage will actually 
be seen at the terminals of the measurement device. In order for the measured voltage to be nearly 
as large as the electrode voltage, R 2 must be > >  Ri .

The voltage-follower configuration accomplishes this inequality while at the same time pre­
serving the signal voltage in both sign and magnitude. In other words, the voltage follower has a 
very high input impedance and a voltage gain of positive unity. Figure 10.9(a) shows the op amp 
circuit and Fig. 10.9(b) is the redrawn circuit with the ideal equivalent circuit.

a. b.
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Figure 10.9: (a) Voltage follower circuit; (b) the circuit redrawn using the ideal equivalent circuit.

The key to analyzing this circuit is to note that since the branch that contains the signal source
0

in the source branch. In turn, this means that there is no voltage drop (from Ohm ’s Law) across the



source resistance Rs (in fact, Rs has no effect at all on the output of this circuit). Then using KVL 
around K T l gives
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Vs +  vo = 0 .

Vo =  Kv Voltage follower

(10.18)

(10.19)

This result confirms that the voltage follower’s output voltage is exactly the same as the signal 
voltage, thus the name “voltage follower.” This circuit is also sometimes called a unity gain amplifier. 
In addition, due to the (approximately) infinite input impedance of the op amp, no current is drawn 
from the source and there are no loading effects. Therefore, this circuit is also often called a buffer 
amplifier.

A slightly more complex op amp configuration is treated in the next example.

Example 10.1. T h e  Sum m ing Am plifier
This amplifier is used in situations where the voltages from two or more sources are to be added 
together, with perhaps different gains for each voltage. Its circuit is shown in Fig. 10.10.

b.

Figure 10.10: Summing Amplifier analyzed in Example 10.1.

Solution
Since we have an essential node at the node labeled e, KCL must be applied at this node to give

+  ia +  ib ~~ i f  =  °  (10.20)

Now apply KVL around K Tl:
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0

Apply KVL around KT2:

0

Solving for ia and ib from (10.21) and (10.22), and substituting in (10.20) gives

i f  =  ( Va / Ra)  +  (V h /R h )• (10.23)

Now use KVL around KT3, which includes the remaining branch, to get

0

or _______________________________________

=  —i fR f =  —V{7 ( —— J — Vb ( —— J • Summing amp (10.25)
\ R a  J  \  Rb )

Thus, the output voltage is the weighted sum of the input voltages (with inverted signs), where the 
weighting factors in the parentheses depend on the values o f the resistors chosen. For example, if 
R f  =  R a =  R lu then v0 =  ~ ( V a +  Vb).

10.5 PROBLEMS
10.1. Use the Branch Current M ethod to analyze the circuit in Fig. 10.11. Remember to redraw 

the circuit using the ideal op amp equivalent circuit.

a. Based on the equivalent circuit and Ohm ’s Law, what is the voltage across the 330 £2 resistor?

0

b. W hat is the output voltage v0}

[ans: vp =  —5.4 V]

10.2. Use the Branch Current M ethod to analyze the circuit in Fig. 10.12. (Remember to redraw 
the circuit.) W hat is the output voltage u„?

fans: v0 =  —9 .0  V]
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8700 Q.

Figure 10.11: Op amp circuit to be analyzed in Problem 10.1.

1.0 kQ .

Figure 10.12: O p amp circuit to be analyzed in Problem 10.2.
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C o u l o m b ’s  L a w , a n d

11.1 COULOMB’S LAW
W e’ve seen earlier how electrical charges with the same sign repel each other and charges with 
opposite signs attract (this is usually stated “like charges repel and unlike charges attract”). W e’ll 
now add some detail in describing this phenomenon, and show how it leads to the concept of an 
electrical capacitor. Two charged particles are diagrammed in Fig. 11.1. The forces F  exerted on 
each charge act in a direction along a line between the two charges. I f  F  has a positive value, the 
forces tend to push the particles apart. I f  F  has a negative value, the forces tend to pull the particles 
together.

Figure 11.1: The force F  between two charges depends on their charge, their separation, and the medium 
between them.

Coulom b’s Law is a mathematical formulation of this principle:

F  =  g ig i  
A n s r 2 ’

i i  
r is the separation (m), and
£ is the permittivity of the medium between the charges.

The permittivity of free space (a vacuum) is

(11.1)
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eo =  8.854 x  l O ^ C 1/ ^  • m1). (11.2)

The permittivity of other media, such as insulating materials called dielectrics, is larger than that 
of free space by a factor known as the relative permittivity s r of the material; s r is also called the 
relative dielectric constant. For example, the relative permittivity of polystyrene (for slowly varying 
voltages) is 2.551. For a material with a relative permittivity of sr , then s =  so sr .

Note from Coulomb’s Law that the closer the charges are to each other (the smaller r), the 
greater the force. This is similar to the inverse distance relationship in Newton’s law of gravity. Also 
note that when <71 and q i  are of opposite sign, the force is negative and inward; when <71 and q i  have 
the same sign, the force is positive and outward. A popular demonstration of this is when a student 
places her hand on one electrode of a Van de Graaff generator (a generator of static electricity that 
is a source of excess electrons on one electrode). Because they repel each other, the excess electrons 
will rapidly spread out over her entire body—including her hair— causing her hair to literally “stand 
on end.”

11.2 CAPACITORS
We are now able to address the following question: Can we store excess charges in some chosen 
place in a circuit in spite of Coulomb’s Law, which says that they will repel each other, especially 
when packed densely with small r  values? L et’s try to store excess electrons in a metal wire. A  metal 
is composed of atoms whose outer electrons can escape easily from the atomic shell, and therefore 
can move under a force to produce a current. These negatively charged electrons are called “free” 
or “conduction” electrons. But they leave behind the immobile positively charged shell of the atoms 
(as ions) that are fixed in place by the lattice of the metal. Therefore, a free electron cannot move 
very far away from its fixed ion (due to the attractive force described by Coulomb’s Law) unless it is 
replaced by another free electron entering the vicinity of the shell to take its place. The whole metal 
wire is electrically neutral since the number of free electrons is equal to the number of fixed atomic 
cores.

Figure 11.2 shows such a metal wire, with — signs, or e symbols, representing free electrons 
and +  signs representing the fixed metal ions. W hat would happen if we forced another (that is, an 
excess) electron into one end of the wire? Its negative charge is not balanced by a positive ion, so 
a Coulomb’s repulsive force would be exerted on neighboring electrons, which would move slightly 
and in turn exert forces down the wire on other neighboring electrons, so on down the wire. These 
forces would result in one electron being expelled out the other end of the wire (assuming the wire 
is connected to a conductive path), and current flows.

Because there was no increase in the number of free electrons in the wire, there was no storage. 
Essentially, excess charges cannot be stored in normal wires.

1 1 .iving tissue can also be characterized by permittivity and conductivity values, usually specified for alternating (ac) electromagnetic 
fields in the kHz to GHz frequency range. For example, at 1 MHz, muscle has a conductivity of about 0.5 S/m and a relative 
permittivity of about 500.
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metal wire free electrons e '

e ------►
+

-> e ’

fixed ions

Figure 11.2: A metal wire with an excess electron forced into one end, causing expulsion of an electron 
from the other end (a current).

The situation is different in the arrangement of Fig. 11.3, showing a parallel-plate capacitor. 
In this configuration, two metal plates of area A are facing each other separated by a very thin layer of 
insulating material of thickness d , such as polystyrene, mylar, or mica. Wires connect to each plate, 
but charges cannot pass across the insulating layer. Can we store excess charges on these plates? At 
first you might say no, because the concentration of charges would cause very large repulsion forces, 
prohibiting the storage of the charges close together as in the wire example discussed above. But if 
there was some nearby attraction forces, these would partially cancel out the repulsion forces and 
storage may be possible.

m etal plate .

+ r r ^ r
V

[

excess charge q

t

excess charge q 

d
+"'+  + + I

I 1
area A thin dielectric 

insulating layer

t
Figure 11.3: A parallel-plate capacitor (side view) that can store excess charge on one plate because the 
opposing plate holds the opposite charge.

Indeed, in the parallel-plate capacitor, when negative charges (electrons) are placed on one 
plate (the lower plate in Fig. 11.3), electrons are forced off the other (upper plate), passing through



the wire connected to this plate and producing a current i .The absence of electrons on the upper plate 
leaves behind a concentration of positively charged fixed ions on the upper plate, exactly matching the 
concentration of electrons on the lower plate. Since these two concentrations are close to each other 
(at a distance d )  and are of opposite charge, there is an attractive Coulombs force which partially 
balances the repulsive force due to the concentration of electrons and helps keep the charges in place!

Now think of adding one more electron (or a charge q through the lower wire and onto the 
lower plate. It would take some force (measured by voltage) to do so, because we would be adding to 
the concentration of electrons already stored there. But the voltage is not nearly as large as it would 
be if there were no compensating positive charges nearby. So we can postulate that the voltage v 
required to add another charge q  might take the form

,  =  (11.3)
As,

This form for the equation is justified by the following reasoning: The required voltage is 
proportional to the amount of charge q  added, as is intuitive, and v is smaller if rf is smaller since the 
opposing charge is closer, v is also smaller if A  is larger because the charge is not being concentrated 
as much on the plate. The permittivity s  of the dielectric layer helps increase the attractive force 
across the layer, as (11.1) shows. The larger s , the less voltage that is required, or conversely, for a 
given voltage, the more charge can be stored.

The constants in (11.3) are defined by the geometry and dielectric material of the capacitor, 
and can be combined to define the capacitance C  of the particular capacitor:
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A s
C =  — . (11.4)

a
Then (11.3) can be rearranged to give

Cu. (11.5)

which is the basic relationship between the charge on and the voltage across a capacitor. The units 
of C, are farads (in honor of scientist Michael Faraday) with the unit symbol F. From (11.5) the 
unit of F  can be seen to be equivalent to C /V  = C 2/(N-m). Also, from (11.4) it can be seen that 
permittivity s, can be expressed in units of F/m.

In practice, the unit of F is very large (a 1.0 F capacitor is huge!), so most electronic capacitors 
are measured in subdivisions of F, such as nF or jxF. Also, although all capacitors have two or more 
conducting plates facing each other as shown in the concept drawing of Fig. 11.3, to save space they 
are usually rolled up into cylinders or compressed by connecting many interleaved plates in parallel.

11.3 FLOW INTO AND OUT OF CAPACITORS
The symbol for a capacitor is simple: two lines close to each other representing the opposing plates 
of the capacitor. This is shown in Fig. 11.4. Also shown is a current i into one side (an identical
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current i flows out the other side) and a voltage v across the capacitor related to the stored charge 
by (11.5).

+
V

I 1

I 1
Figure 11.4: The symbol for a capacitor.

W hen the charge changes by an amount Aq, the voltage will also change by an amount At). 
The capacitance C is constant, so (11.5) gives

A q =  C  Ai).

Now, from the definition of current in the Ohm ’s Law chapter [see (8.1)],

i =  A q / A t .

Putting (11.6) into (11.7) yields

A i) 
A t

i

C '

(11.6)

(11-7)

(11-8)

showing that the current into (or out of) a capacitor causes a time rate-of-change of the voltage across
0

differential form

dv
d t

i

C '
(11.9)

11.4 ANALOGY BETWEEN FLUID AND ELECTRICAL 
CIRCUITS

Equations (11.5) and (11.8) look familiar. We derived equations of similar form (but with obviously 
different variables) when we were dealing with fluids. L et’s exploit this similarity between fluids 
and electricity. Table 11.1 is a summary of some important fluid equations in the left column, and 
analogous electrical equations in the right column.

W ith  a little study ofTable 11.1, we can start to pickout^tffVi ofquantities (a fluid quantity and 
its electrical counterpart) that appear in the same place in the analogous equations. The quantities
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Table 11.1: Fluid and Electrical Analog;ous Equations

Fluid Electrical

A P  =  Q R Poiseuille’s Law v =  iR Ohm ’s Law

A V
Q = —A t

Definition II | ^ Definition

A  P  _ Q  

A t  C
From Hooke’s Law

A i) i

a7 c From Coulomb’s Law

i f  = R C Time constant Te = R C Time constant

Table 11..2: Analog rairs
Fluid Electrical
resistance R R resistance
compliance C C capacitance
volume flow rate Q i current
pressure p V voltage
volume V <7 charge
time constant Te time constant

that pair up are called analogs of each other. We can then make a table o f fluid/electrical analogs, 
Table 11.2.

Caution: Be careful not to confuse symbols. Note that Q  and q  are used in two different places 
in Table 11.2. They are used for completely different quantities, not even analogs of each other. The 
same is true of V  and v. Don’t get them confused. To help, lower-case symbols are used for electrical 
variables in this book, and upper-case symbols for fluid variables. Luckily the circuit parameters R  
and C  have the same symbols for both fluid and electrical circuits (and resistance even has the same 
name).

W hat does the term “analog” mean in Table 11.2? Certainly the quantity in the left (fluid) 
column is a different physical substance from its analog in the right (electrical) column. So they are 
not identical quantities. But they behave the same, since they follow the same equations, including 
the difference equations. So analog pairs behave the same when their circuits are configured the 
same.
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Therefore, it is possible— and indeed is an important engineering tool— to make an electrical 
circuit whose variables (various v, i , and q  around the circuit) would mimic the behavior of the fluid 
variables ( P , Q , and V , respectively) in any fluid circuit being modeled. Thus, a compliant fluid 
vessel is modeled by a capacitor and a resistive fluid element is modeled by a resistor. The voltage v 
at a given node in the electrical circuit model represents the pressure P  at the corresponding node 
in the fluid circuit. The cardiovascular Major Project exploits this analogy to model and analyze the 
human CV system.

11.4.1 SCALING TH E ANALOG PAIRS
But we still must deal with the translation of the resistance and compliance values from the fluid 
domain into resistance and capacitance values in the electrical domain. Is a 100 mmHg-s/L resistance 
in a fluid tube represented by a 100 fi resistor? Probably not. In fact, the units are different. Remember, 
the analog pairs are not identical quantities; they only behave the same. So in general, when translating 
from one domain to the other, we must use a scaling factor S. To translate a fluid resistance R  f  to 
an electrical resistance R e, we’ll use

R e =  S / iR f ,  (11.10)

where the factor S r must have units such that the right-hand side of (11.10) has the units of fi. 
Similarly, for capacitance:

Ce =  S c C f . (11.11)

The factor S c  must have units such that the right-hand side of (11.11) has the units of F.
Now, are we free to choose any values for the translating scale factors S r and S c  ? Not without 

impacting other scale factors. Note from Table 11.1 that

t  f  =  R f C f  (11.12)

and
r ,  =  R eC e . (11.13)

If  we now make the reasonable decision that we want the time scale in the electrical domain to be 
the same as in the fluid domain2 (that is, that one second in the fluid circuit corresponds to one second 
in the electrical model), then from (11.10)—(11.13):

T /■ =  R f C f  =  Te =  R ec e =  S RS c R f C f .  (11.14)

Canceling R f C f  terms in (11.14) gives

’There are some instances where it is desirable to slow down or speed up time in the analogous model compared to the system 
being analyzed, but we won’t do that for the cardiovascular Major Project since we want the electrical model to display the same 
heart rate as in real life.
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or

S r S c  =  1  

S s  =  1 / S C .

(11.15)

(11.16)

Once S c  is chosen, S r  is set by (11.16). It is often the case that the electrical capacitance size is 
limited by the largest value available conveniently, so that will determine the scale factor S c • Then 
S r  is found using (11.16).

11.5 PROBLEMS
11.1. In the circuit shown in Fig. 11.5, at time t =  0 the voltage V3 =  +5 .0  V.

a. W hat is the charge q  on the capacitor at t =  0?

[ans: q  =  5.0 x  10^4 C]

b. Assuming the currents i i  =  2.00 mA and i2 =  2 5 0  mA shown in Fig. 11.5 are constant, 
what is the voltage 1)3 on the capacitor at time t =  400 ms?

fans: V3 = + 3 .0  V]

i1 = 2.00 mA i9= 2.50 mA

VWVI
+

V ,  —

V

=  C =3 —

VWV

Figure 11.5: RC circuit analyzed in Problem 11.1.

11.2. The windkessel fluid circuit shown in Fig. 11.6 has the fluid element values: resistance R 1 =  
145 mmHg-s/L, R 2 =  505 mmHg-s/L, and compliance C  =  00700 L/mmHg.

You wish to model this circuit with an equivalent electrical circuit. To keep the resistor values 
from being too large, you want to use the largest capacitor value possible. The maximum 
capacitor value you have available is 100 /xF. Determine the two scaling factors that will find 
the electrical values corresponding to the fluid values, one for resistors and one for capacitors,
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R1 = 145 mmHg.s/L R 2= 505 mmHg.s/L

vw v V\M r

C = 0.0700 L/ininHg

Figure 11.6: Windkessel circuit to be converted in Problem 11.2.

including the correct units for the conversions. Then calculate the values for the two equivalent 
resistors and the capacitor.

fans: S r = 700 (L-Q)/(mmIig-s), S c  = 0.00143 (F-mmHg)/L, 
/?i = 102 kQ, = 354 kQ, and C  =  100 /i ¥]
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a n d  P a r a l l e l  

C o m b i n a t i o n s  o f  R e s i s t o r s  a n d

12.1 INTRODUCTION

We have encountered series and parallel combinations of resistive fluid elements in earlier units. 
We now consider series and parallel combinations of electrical resistors and of capacitors. We will 
initially use Kirchhoff s Laws and O hm ’s Law to analyze the combinations and to reduce them to 
single equivalent elements, but once formulas are derived for the value of the equivalent elements, 
we can use these formulas directly to simplify circuits. We will see that the equations for combining 
electrical components are identical to those for combining analogous fluid components.

12.2 RESISTORS IN SERIES

W hen two or more resistors are connected in a line, as shown in Fig. 12.1 for three resistors of 
different values, the same current i must flow through each resistor. This is a consequence of applying 
Kirchhoff s Current Law (KCL) at each (nonessential) node between the individual resistors.

R eq

\

Figure 12.1: A series combination of three resistors. The equivalent resistance is R eq
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Kirchhoff’s Voltage Law (KVL) can be applied by taking a Kirchhoff’s Tour clockwise around 
the loop in Fig. 12.1, using Ohm ’s Law directly to express the voltage drop across each resistor. This 
gives

(12.1)

or
i = ------------------- . (12.2)

i 2 3

Now the three resistors can be replaced by a single equivalent resistor R eq (as far as the effect 
at the outer terminals is concerned) if the current i is the same for the equivalent resistor as for the 
original series combination. Thus, we require

R,eq

Comparing (12.2) and (12.3) shows

Req =  ^1 +  ^2 +  ^3 Series R  (for N  =  3)

for three resistors. In general, for N  resistors,

(12.3)

(12.4)

Series R  (any N ) (12.5)

Note from (12.4) or (12.5) that the equivalent resistance is always larger than the largest of the 
individual resistors.

12.3 RESISTORS IN PARALLEL
In a parallel combination, the resistors are connected side-by-side, as shown in Fig. 12.2 for two 
resistors of different values. The currents ^ m d i 2 can be found by using Ohm ’s Law for each resistor:

v v
ii =  —  and i 2 =  — .
1 r 1 2 r 2

Applying KCL at node a  and using (12.6),

v v (  1 1 
i — /1 in —  -f- —  — v 1 —  —  1 .

1 2 1 2 1 2

(12.6)

(12.7)

Again we require that the current i is the same when the parallel combination is replaced 
(across the outer terminals) by an equivalent resistance R eq. Comparing (12.3) with (12.7) gives



o -

a
/

12.3. RESISTORS IN PARALLEL 51

R eq
R,

V
O

R~

Figure 12.2: A parallel combination of two resistors having an equivalent resistance Rcq.

1 1
+

1 i
R eq R i R i  R i R i

Inverting (12.8),

R eq
R i R i  

R i +  R i
Parallel R  (for N  =  1 only)

(12.8)

(12.9)

for two resistors. In general, for N  resistors in parallel,

1 ^  1
-----=  V  —  Parallel R  (any N )

1
(12.10)

Note from (12.9) or (12.10) that R eC[ is always smaller than the smallest of the individual resistors. 
For example, for the simple case of two resistors of equal resistance R , (12.9) gives R eq =  ( 1 /2 ) R .

Example 12.1. Resistor Netw ork
Find the equivalent resistance of the resistor networkbetween the terminals markedX-X in Fig. 12.3.

Solution
First combine the three resistors that are in parallel (the lower three) using (12.10):

1 1 1 1
+ _______+

R p 5 0 .0 Q  100.0 G 7 0 0  a
0.0443/S^,

1
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20.0 0

— W W -------------x

VWV
70.0 0

50.0 0

—\/W\r
100.0 0

■X

Figure 12.3: Parallel and series network of resistors analyzed in Example 12.1.

to obtain
R p =  22.6 Q .

The network then reduces to two resistors in series (see Fig. 12.4), which can be replaced by a 
single R eq.

20.0 0  

VWV- X

R p =
22.6 0

X

R,eq

X--------------------------------X

Figure 12.4: The circuit of Fig. 12.3 simplified in steps.

Using (12.5), the overall equivalent resistance is

20 0 22 6

12.4 CAPACITORS IN SERIES
Figure 12.5 shows two capacitors in series. Using KVL around the loop gives

1 2 (12.11)
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Therefore, any change in the voltage across the capacitors A v  divided by the increment in 
time A t  is

1 i
A t  ^  A t  +  A t  '

(12.12)

o -

r + i

C eq <

C, =!= v,

Co =±= v0

V
o -

Figure 12.5: Two capacitors in series. The effect is the same as a single equivalent capacitor Ceq.

The relationship between the change in voltage across each capacitor and the current into the 
capacitor is given by (11.8) from the Coulomb’s Law chapter:

(12.13)
A v  i

a7 c'
Since the current i is the same into each capacitor, using (12.13) in the right-hand side of (12.12) 
gives

A v  i i (  1 1
~Kt c 1 +  c i

(12.14)

We can define an equivalent capacitance relating the current i to the change A v  in the overall voltage

A v

A t  C,eq

Comparing (12.15) with (12.14) shows that

1 1 1
Ceq c [ + c i ’

c,eq
C 1C i 

C1 +  C i
Series C  (for N  =  i  only)

(12.15)

(12.16) 

(12.17)
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for the case o f two capacitors in series. In general, for N  capacitors in series,

Series C  (any N ) (12.18)

Note that the formula for combining capacitors in series is the same as for combining resistors in 
parallel.

12.5 CAPACITORS IN PARALLEL
The combination of three capacitors in parallel is shown in Fig. 12.6. Applying KCL to node a  gives

i =  i\  +  i 2 +  h - (12.19)

Ceq

O
+

o

7 *  ji |  

c,"

' 2 111 
cu

II ir

n UJ
II

Figure 12.6: Three capacitors in parallel, giving an equivalent capacitance C el{.

From (12.15), the equivalent capacitance can be found from

i
Ce

Putting (12.19) in (12.20):

C,
11 12 13

/A iA  ' / A iA  ' / A dV

(12.20)

(12.21)

V A t )  \  A t  )  \  A t  )

Since the same voltage v appears across all capacitors, each term on the right-hand side of (12.21) 
is equal to [using (12.13)] the capacitance of the respective individual capacitors, giving

C eq =  C i +  C2 +  C 3 Parallel C  (for N  =  3) (1 2 .2 2 )
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for three capacitors in parallel. In general, for N  capacitors in parallel,

N

£  Cj Parallel C  (any N ) (12.23)
1

Note that the formula for combining capacitors in parallel is the same as for combining resistors 
in series: the capacitances add. A good way to remember that capacitors in parallel add  together, 
as (12.23) shows, is to recall that the equation for capacitance, (11.4), is

Ae
C =  T '

(12.24)

where A  is the area of the capacitor plates. Putting capacitors in parallel effectively adds their areas, 
so the equivalent capacitance is just the addition of the individual capacitances.

Example 12.2. Capacitor Netw ork
Find the equivalent capacitance of the following network at the terminals markedX-X (see Fig. 12.7).

X

17 |uF —i—

= =  i o mf

=  = 1 0 MF

X

Figure 12.7: Capacitor network analyzed in Example 12.2.

Solution
First combine the two capacitors that are in series (on the right) using (12.18):

1 _  1 1 _  2 _  1
C s 10 (iF  ^  10 ( iF  10 5 f i F ’



56 CHAPTER 12. SERIES AND PARALLEL COMBINATIONS

to obtain
Cs =  5 f i  F.

The network then reduces to two capacitors in parallel, which can be replaced by a single Ceq (see 
Fig. 12.8), and, using (12.23), the overall equivalent capacitance is

C eq =  H  +  5 =  22 iiF .

1 7 | i F ^ =

X

=!= C

X

cq

Figure 12.8: The circuit of Fig. 12.7 simplified in steps.

12.6 VOLTAGE DIVIDER
It is often desirable in electrical circuits to reduce the voltage from a source to a smaller value than the 
original source voltage. A circuit that will accomplish this is the voltage divider, shown in Fig. 12.9. 
Here a chain of resistors (two or more) in series is attached to the source, and the voltage across one 
of the resistors, say v i , is measured.

The equivalent resistance of the series network is found from (12.4), R eq =  R \  +  R 2 +  R 3 , 
so the current i from Ohm ’s Law is

i =  —  = --------—-------- . (12,25)
Req R l  +  ^2 +  ^3

Using Ohm’s Law again, the voltage V2 equals i R i ,  or

V2 =  Vs
R i

R i +  R 2 +  R 3
Voltage divider (for N  =  3) (12.26)

Notice that the voltage Vi has been reduced by the fraction in the parenthesis of (12.26). This 
fraction is the ratio of the resistance across which the voltage of interest is measured {R i)  to the
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Figure 12.9: A voltage-divider network.

sum o f all the resistances in series ( R 1 +  R i  +  ^ ^ .T h u s ,  the larger the resistor R i ,  the greater the
i

12.7 CURRENT DIVIDER
W hen the current from a current source is split among two or more branches, this configuration is 
known as a current divider, shown in Fig. 12.10.

Figure 12.10: A current-divider network.

To find the common voltage v across the parallel combination of resistors, we use the equivalent 
resistance from (12.9) in conjunction with Ohm ’s Law:

'The number oi resistors in the chain oi the voltage divider is arbitrary. There could be two, or tour, or more in series. In every 
case, the numerator o f (12.26) remains the same, while the denominator is the sum of all the resistances in the chain.
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R i R 2 j 

\ ^ + ^ 2 /

2

fe =  JL  =  , ,  ( _ 5 i _ ' )  
2 2 i 2

Current divider (for N  =  2 only) (12.28)

2
of the opposite resistor (R i)  to the sum of the resistances (R i +  R 2). Thus, the larger the opposite 
resistor R i ,  the larger the current shunted through /?2-

Example 12.3. Voltage Divider
2

3.0 k£2

Figure 12.11: Voltage divider circuit analyzed in Example 12.3. Only the bottom portion needs to be 
considered in finding t'2 -



The voltage source across the terminals marked A -A  is an independent voltage source with a value of 
—5.0 V. Notice that it has a negative sign when it is referenced to the positive side of the voltage v i .  
This source voltage is also across the three resistors at the bottom of the circuit. (The upper part of 
the circuit does not affect the voltage across A -A  since the 5.0 V source is a constant voltage source.)

i
can be found easily using (12.26):

Tr /  5.0 \  /  5.0 \
v i  =  - 5 .0  V ------------------- --------------- —  =  -5 .0  V -----  =  -1 .0  V.
i
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Solution

Example 12.4. C urren t D ivider
1

Figure 12.12: Current divider circuit analyzed in Example 12.4.

Solution
1

The sum of the two resistances is 3.0 k£2. Thus, using (12.28) and the reasoning following it,

/  2.0 k£2 \  A /  2.0 \  
i\ =  6.0 mA I --------------------—  I =  6.0 mA I —  I =  4.0 mA.

\  1.0 k £2 +  2.0 k£2/  \3 .o y

12.8 PROBLEMS
12.1. a. Calculate the equivalent resistance across the terminals X-X in the circuit on the left of 

Fig. 12.13.
[ans: R eq =  16.8 k£2]
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b. Calculate the equivalent capacitance across the terminals X-X in the circuit on the right of 
Fig. 12.13.

fans: Ceq =  1.9 /iF]

15.0 k a 4.7 (iF

2.2 k Q

Figure 12.13: Two circuits to be reduced to their equivalents in Problem 12.1.

12.2. a. Calculate the voltage i>i in the circuit on the left of Fig. 12.14. You don’t need to do a full 
Kirchhoff’s analysis; just use the voltage divider equation.

fans: v i =  —2.6 V]

i
Kirchhoff’s analysis; just use the current divider equation.

fans: i i  =  + 1 .2  A]

10k£l 

— VWV-
4.7 kQ.

A W -

16 V 8.0 V ;
2.2 k i r

© 2.0 A ii ■ 33 kQ. ■47 kQ

Figure 12.14: Two circuits (voltage divider on the left, current divider on the right) to be analyzed in
Problem 12.2.
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a n d  F i r s t - 1 

C o n s t a n t s

13.1 THEVENIN EQUIVALENT CIRCUITS
It is possible, and often convenient, to transform a source from one form into another without 
changing its effect on the remainder of the circuit at all. One example o f this is shown in Fig. 13.1. 
On the left is an example of a source consisting of an independent current source in parallel with 
a source resistance R s (this arrangement is commonly called a Norton source) and connected to a 
load resistor R i .  On the right, we have transformed the source into a Thevenin  equivalent circuit, 
which consists of an independent voltage source in series with the same value of source resistance 
R s . The value of the Thevenin voltage source is Vs =  ISR S.

Norton T hevenin

----------------------------------* — equivalent — w — *—
+ to Rs

Q vs = isRs

Figure 13.1: The Thevenin circuit on the right is equivalent to the Norton source on the left.

To show that this transformation has no effect on the voltage or current going to the load 
resistor, let’s find the current coming from the Norton source (on the left in Fig. 13.1) into R l .  The 
load resistor and the source resistor are in parallel, so R eq =  R i R s/ { R i  +  R s). Since the current 
into the parallel combination is fixed at Is , the voltage v i  is

=  =  ( m >  
Now consider the Thevenin equivalent circuit on the right in Fig. 13.1. The resistors are now 

in series, so the voltage across the load can be found from the voltage-divider formula:
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V L  = Vs
R l

Is
R l R s (13.2)

R l  +  R s J  \ R l  +  Rs . 
which is the same value as found in (13.1) using the Norton source.Thus, the voltage (and current 
by Ohm ’s Law) across the load resistor is unchanged by the source transformation.

Actually, this principle is much more general. The transformation of a source into a simpler 
Thevenin equivalent can be done for any linear source, no matter how complex, and the transfor­
mation will not change the state of the remaining circuit, no matter how complex. This is shown 
schematically in Fig. 13.2 for any source (circuit A) and any load (circuit R).

a
------*------
—► +

any i any
circuit V circuit
A B

------x-----
b

can be 
rcplaccd

Figure 13.2: Replacing a general source by its Thevenin equivalent circuit.

Since the Thevenin equivalent circuit contains only two elements (an independent voltage 
source Vj/, and a series resistor /?//,), it only takes two steps to find the Thevenin equivalent for a 
general circuit: first determining V//7 and then determining /?//,.The procedure is as follows:

Step 1. F ind ing  V//7 -  I f  Thevenin’s principle is true for any circuit R in Fig. 13.2, it will be true if 
circuit R is an open circuit, as shown in Fig. 13.3. In Fig. 13.3, no current can flow through R th since 
it ends in an open circuit. Thus, there is no voltage drop across /?//, for this situation, and Vth =  voc. 
So Step 1 can be summarized:

Step 1 - L eave the terminals o f  the original circuit open a n d fin d  the voltage across them. This 
open-circuit voltage, voc , is the Thevenin voltage; therefore V//7 =  voc.

Step 2. F ind ing  R th -  Here it is necessary to look back into the original circuit at its open terminals 
and calculate the equivalent single resistance appearing across those terminals. Refore doing so, you 
must deactivate all independent sources.This means setting all independent voltage sources to a short 
circuit (since theirvoltage does not depend upon current) and setting all independent current sources 
to an open circuit (since their current does not depend upon voltage).Then the remaining resistances 
can be combined into a single equivalent resistance, which is /?//,. So Step 2 can be summarized:

Step 2  - D eactivate the independent sources (see Table 13.1) and  look back into the original 
circuit at its open terminals. Combine the resistances into one equivalent resistance R eq. Then 

Rfh =  Req-
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open 
oc circuit

Figure 13.3: The open-circuit voltage is the same as theThevenin voltage.

Table 13.1: Deactivating Sources 
Independent voltage source —»• short circuit 
Independent current source —»• open circuit

13.2 ELECTRICAL BEHAVIOR OF CAPACITORS
Resistors and capacitors behave much differently from each other with regard to their voltage and 
current interactions. For resistors, Ohm ’s Law (v =  iR )  shows a direct proportional relationship 
between the current through the resistor and the voltage across it. Capacitors, on the other hand, 
follow a more complex relationship. From (11.9) in Coulomb’s Law chapter, in differential form the 
current-voltage relationship is

-  =  03.3)
d t C

showing that the tim e rate-of-change of voltage, not the voltage directly, is proportional to the current 
in a capacitor. Figure 13.4 indicates the polarities of the current through a capacitor and the voltage 
across it.

Figure 13.4: Current and voltage polarities for a capacitor.



Based upon the mathematical form of (13.3), we can investigate the validity of several possible 
scenarios for the waveforms of the voltage and current in a capacitor. Figure 13.5 illustrates on the 
upper graphs four examples of possible capacitor voltage waveforms. We ask: W hat must the current 
waveforms look like for each of these voltage waveforms in order to satisfy (13.3), and is it physically 
possible to have such currents?
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b)

vft)

OK

d)

vft)

0-

i(t) i(t) i(t)
OK

if t)
OK

Figure 13.5: Four possible scenarios for the voltage and current waveforms across a capacitor. All of 
these waveforms are physically realizable.

The key for determining the current waveforms for each voltage example is to note that d v / d t  
is the local slope ofthe voltage curve.Thus, a voltage that increases with time corresponds to apositive 
current, while a decreasing voltage corresponds to a negative current. The currents corresponding to 
the various voltage waveforms are shown on the lower graphs in Fig. 13.5. All four examples have 
currents that are physically realizable, so all four are valid and feasible waveforms.

Figure 13.6 shows a different case. Flere the voltage across the capacitor takes an instantaneous 
jump (a discontinuity) at one particular time. A t this point, the slope of the voltage has an infinite 
value. Thus, the current necessary to achieve the instantaneous jump in capacitor voltage is infinite, 
which is course is a physical impossibility. The behavior illustrated in Fig. 13.6 is not physically 
realizable1. In other words:

Concept The voltage across a capacitor cannot change (jump) instantaneously.

Another consequence of (13.3) is seen under conditions where a very long time has elapsed. 
As t —*• oo, the only possible value for d v / d t  (the time rate-of-change of the capacitor voltage) is 
zero. Otherwise the voltage would keep rising to an infinite absolute value, which is not possible in 
the real world. Thus,

as f -> oo, d v / d t  0 (13.4)

1The only other way the voltage across a capacitor could jump instantaneously is it the capacitance value C suddenly took an 
instantaneous jump. But this is difficult to do physically, and is only achievable in computer simulations.
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Figure 13.6: An instantaneous jump in capacitor voltage requires an infinite current, which is not phys­
ically possible.

for a capacitor. Using (13.4) in (13.3) shows that the current into the capacitor must also go to zero 
for long times. This means that the capacitor acts like an open circuit. In other words:

Concept: A fte r  a long tim e has elapsed (between changes in the source voltage j, a capacitor acts 
like an open circuit.

The two concepts just presented will greatly facilitate the analysis of circuits containing capac­
itors. But note carefully: These concepts apply only to capacitors and capacitor voltages, not to other 
electrical quantities in a circuit. It is possible, for example, for the current into a capacitor to jump 
instantaneously. Also, the voltage across a resistor can change instantaneously. In fact, they often do.

13.3 RC TIME CONSTANTS
W hen a capacitor is connected with a resistor to a source, a simple “R C ” circuit is formed, as in 
Fig. 13.7. I f  the source voltage v \ changes abruptly (which is possible; remember that it is a source 
voltage, not the voltage across a capacitor), then the output voltage, labeled i>(0> changes more 
slowly. Being the voltage across a capacitor, v( t )  cannot change instantaneously. Rather it moves 
in an exponential manner from its initial value to some final value. Let the source voltage v\  jump 
abruptly from a value of Va to a value of Vg at some point in time, as indicated in Fig. 13.7. We will 
assume that the source has been at the original value Va for a long time prior to its jump. We can 
also assign the time of the jump to occur at t =  0, since the time reference is arbitrary.

L et’s analyze the circuit in Fig. 13.7 using Kirchhoff’s and Ohm ’s Laws. Using KVL around 
the loop,

— v \ +  i R  +  v { t )  =  0. (13.5)
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V B

VA

T
t = 0 t — ►

- w -

\  c  4= v(t)

< '

+

Figure 13.7: A simple RC circuit for analyzing the time behavior of the voltage across the capacitor 
when the source voltage vi  changes.

(Notice that we have written the voltage across the capacitor as v( l )  to show explicitly that it is a 
function of time.) Putting (13.3) into (13.5) and rearranging results in

v( t )  +  R C  d v / d t  =  v \ .  (13.6)

Equation (13.6) is a first-order differential equation describing the behavior of this circuit. 
You will get plenty of experience in solving equations such as this in later courses. Here we will just 
offer the general solution to this equation, without proof, and then use it in examples.

The general form of the solution to (13.6) is

v ( t ) =  (Vj — V f ) e  !^T +  V f (13.7)

where

and

Vi is the initial value of v( l )  (at t =  0), same as i>(0), 
v f  is the final value of v( l )  (as t —*• oo), same as v(oo ), 
x is the first-order time constant for voltage.

Substituting (13.7) back into (13.6) gives

R C Time Constant (13.8)

so the time constant of the circuit is given by the product of the resistance and the capacitance2.
L et’s check to make sure that the designations Vj for initial value and V f for final value are 

correct in the formula of (13.7).

Initial value: W hen t =  0, e t! r =  e° =  1, so (13.7) becomes

u(0) =  (Vi -  v f ) 1 +  v f  =  Vi, (13.9)

'■Note that the exponential nature o f the voltage waveform is identical to that found in Chapter 6 (Part I) for the pressure in a 
resistive and compliant fluid system [see (6,15)]; this is not surprising since the differential equation is the same. The fluid time 
constant is also o f identical form, being the product o f the resistance and the compliance [see (6.16)].



which shows that the value of v( l )  as t —*• oo is the final value Vf ,  as the subscript f  indicates.

In order to plot the waveform of (13.7) for the source voltage of Fig. 13.7, we need to find 
values for Vj and v f .  Here the concept of a capacitor acting like an open circuit after a long time has 
elapsed will help greatly.

1. F ir s t fin d  Vj. Since the voltage v \ has been at Va for a long time before 1 = 0 ,  the capacitor looks
0 0  

0

2. N o w fin d  v f .  Since the final voltage is approached by waiting a very long time (actually many time 
constants) after the source voltage has jumped, the capacitor again looks like an open circuit. This

0
v j  =  Vb -

We can now plot Equation (13.7). The waveform is shown in Fig. 13.8. Note that v ( t ) is
0 0  

0 
0

closer and closer to Vb  for longer times, but the rate of rise decreases as v ( t ) approaches Vb ­
A measure of how rapidly the voltage is changing is given by the value of the RC time constant 

r .  A t a time that is one time constant after the jump in the source voltage (that is, at t =  r) , (13.7) 
gives

d ( t)  =  (vj — V f ) e ^ ^ T +  v f  =  { Vi — V f ) e ^ 1 +  Vf  
=  Vf  — Vj +  Vj — V f e ^ l + V j e ^ 1 
=  Vi  +  ( V f  -  V i ) (  1 -  e ^ 1 )

=  Vi +  (V f -  Vi)(0.63). (13.11)

Since Vj is the starting value of v( l ) ,  and ( v f  — Vj) is the extent of the change (the “excursion”) in 
v( l ) ,  then (13.11) leads to the following conclusion:

0

This is shown graphically on the plot in Fig. 13.8. We will use the general formula (13.7) to 
solve a slightly more complex RC circuit containing two resistors in next example.

J Afterfiv e  time constants it — 5 t), the voltage has gone 99.3% of its way to the final value.
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v f “  VB

A

v(t)

v i= /

0.63 (vf - v.)

f

(vf - v . )

excursion

% = R C  

r=0 t=x
t — >-

Figure 13.8: The time behavior o f the capacitor voltage for an RC circuit.

Example 13.1. Voltage across a Capacitor (and T hevenin Equivalent Resistance)
An RC circuit is shown in Fig. 13.9. The voltage vi  jumps from +2.00 V to +4.00 V at t =  0.

2 00  
200

+4.00V

+2,00 V

t = 0
t — ►

Figure 13.9: Voltage-divider circuit with a capacitor whose time behavior is analyzed in Example 13.1.
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We always start by writing the general formula (13.7) for the voltage across a capacitor when the
0

Solution

v( t )  =  (vj — Vf ) e  >/ T +  Vf . (13.7)

The task is to find the values of Vj ,  V f ,  and r  for the particular circuit being analyzed.

2 00 0
0

Figure 13.10: The state of the circuit just before t =  0.

This is a simple voltage divider. Using the voltage-divider formula,

„  =  =  B .0 0 V ) ( 2 0 ^  =  i .0 0 v .
1 \ R i  +  R 2 j  V 4.00k£2/ 

0 
i 4 00

2 00

2 00 
v f  =  (400  V) I  —  =  2 0 0  V. 

4 00

F in d  t :This is more complicated than the earlier example in Fig. 13.7 since we have tw o  resistors
i 2

resistance at the terminals of the capacitor. We deactivate the independent voltage source (replace it 
with a short circuit) and look back into the circuit at the terminals o f the capacitor. This situation is 
shown in Fig. 13.11
Note that the resistors are in parallel, so the equivalent resistance is
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same as

*
R 2= 2.00 k Q

R i = 2.00 k Q

Figure 13.11: Finding the Thevenin equivalent resistance to determine r.

_  R i R 2 (2.00 kQ)(2.00 kQ) _  1 00 
eq R i +  R 2 (2 0 0  k Q  +  2 0 0  k£2) ' '

Then x =  R eqC  =  (1.00 kQ)(100 /xF) =  0.100 s =  100 ms . We can now find v at 200 ms by 
substituting values into (13.7):

i>(200 ms) =  (1.00 -  2.00) <^200/100 +  2.00 =  2.00 -  1 .00e^2'00 =  2.00 -  0 1 4  =  1.86 V.

13.4 PROBLEMS
13.1. Find the Thevenin equivalent for the circuit that is to the left of the terminals X-X shown in 

Fig. 13.12.

soon

R L

Figure 13.12: Circuit to be analyzed in Problem 13.1.
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fans: see Fig. 13.13]

Figure 13.13: Answer to Problem 13.1.

13.2. (Lab Experim ent) In the lab, set up the following circuit using a prototyping board (Fig. 13.14). 
1

1

from function generator 
center connector

(red) +

from function generator 
ground connector

(black)

2.2 k Q.

"VWV—
100 J.IF

+
v-,

+ 15V

-15V

LF353

to oscilloscope 
probe center 
(channel 1)

to oscilloscope 
probe center 
(channel 2)

to oscilloscope 
probe ground wire

v l

(V)

250 500 750 1000 1250 

t (ms)

1500 

------ ►

Figure 13.14: Circuit to be set up in lab for measuring voltages.



voltage follower and the second channel of the oscilloscope to simultaneously observe the 
voltage V2 . By hand and with a ruler, plot both the v \ voltage waveform and the V2 voltage 
waveform on the same graph axes as a function of time for a cycle or two. Label the vertical 
axis in units of V, but also label the vertical axis (that is, use a dual label) with “equivalent” 
blood pressure— assuming that 10 V is equivalent to 100 m m Hg of pressure.

Use a sheet of green ‘engineering’ paper for this graph (it will be provided). Follow proper 
graphing techniques when doing this graph; points will be deducted from your score if proper 
techniques are not used. (The graph is all you need to turn in as homework for this problem, 
one graph per student.)

13.3. In Problem 13.2 the function generator charged a single capacitor through a resistor when its 
voltage Dx was at its high value of +10 V, then discharged it when the voltage was 0 V. The

2

a. Assuming the voltage V2 at the beginning of the charging period was +0.30 V, calculate the 
voltage at the end of the charging period.

fans: 1)2 at 0.250 s =  +6.9  V]

b. Compare your answer in part a with the value you actually measured and plotted in Prob­
lem 13.2. I f  they are not identical, give one reason why.

13.4. The voltage V\ in the circuit below has been +10 V for a long time, then drops to +5.0  V at 
t =  0, as shown in Fig. 13.15. Find the voltage V2 at ? =  35 ms.

fans: i>2(35 ms) =  +2.9  V]
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33 kO

10 V

■5.0 V

t = 0 t — ►

Figure 13.15: Circuit to be analyzed in Problem 13.4.

v 21

0
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N e r n s t  P o t e n t i a l :  C e l l  

M e m b r a n e

14.1 INTRODUCTION
We have seen in the Darcy’s Law chapter how important the cell membrane is to the proper func­
tioning of the cell in its various roles in the body. An excellent example is the neuron, the cell of 
the nervous system, which triggers, controls, and transmits signals to and from all parts of the body. 
The neuron uses action potentials— electrical impulses that travel down the length of the axon of 
the neuron— to transmit signals within the interconnected network of the nervous system. The ion 
permeability properties of the neuron produce the membrane’s electrical state, and changes in that 
electrical state initiate and propagate the action potential. Modeling the cell membrane will employ 
of many of the electrical concepts covered in the previous chapters, in particular Kirchhoff’s Laws 
(Chapter 9), the Thevenin equivalent circuit (Chapter 13), and the behavior of capacitors in circuits 
(Chapters 11 and 13).

14.2 CELL MEMBRANE STRUCTURE
The membrane of the neuronal cell, like that of all cells, is not an impervious barrier, as first discussed 
in Chapter 2 of Part I. Nutrients can enter the cell and waste products can be excreted; otherwise the 
cell would die. Moreover, the membrane selectively allows various ions (charged atoms or molecules) 
to cross its walls, setting up an electrical potential (voltage) across the membrane. This voltage, vm , 
is a key element in the production of action potentials in neurons.

Figure 14.1 is a drawing of the cross-section of the cell wall of a typical neuron1. The mi­
crostructure of the membrane reveals two major features responsible for its selective permeability to 
ions and other molecules:

1. Channels, -  These are tiny water-filled pores formed by membrane-spanning proteins that extend 
across the thickness of the membrane, allowing movement of ions from inside to outside the cell, 
and vice versa. They generally are partially selective to passing a specific ion or ion type, selecting 
either by size or by charge. For example, there are potassium-ion (K+ ) channels, sodium-ion (Na+) 
channels, and chloride-ion (Cl- ) channels.
The channels, in turn, can be put into two categories:

11n drawings in this book, the membrane segment is oriented such that the region above the membrane is inside the cell while the 
region below is outside the cell. This is because the voltage outside the cell is usually set to be the reference (ground) voltage, and 
by convention, circuit diagrams usually have the ground voltage located at the bottom of the diagram (see Fig. 14.6, for example).
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©  ©
inside cell

+ + 
gated Na1 
channel

carrier protein: 
Na-K pump

[Na ]o(greater)

©  ©

[Cl ] ./greater)

gated K 4 
channel

outside of cell

Figure 14.1: Stylized drawing of the channels (open and gated) and carrier proteins responsible for 
transporting ions across the cell membrane. Only a section o f the neuronal cell wall is shown here.

a. Open, or passive, channels -  These channels are almost always open to allow ion passage (at 
least for the species of ions that the channel is selective for).There is, however, some resistance 
that must be overcome as the ions pass through the channels.

b. Gated, or active, channels -  These channels change their state (with electrical, mechanical, 
or chemical stimulus) from being either open or closed to the opposite, thereby modulating 
the flow of the specific ions. For instance, gated N a+ channels that open when the membrane 
voltage reaches above a threshold value are responsible for generation o f neuronal action 
potentials.

2. Carrier proteins, or ion pum ps -  Some of the proteins that span the membrane actively transport 
specific ions across the membrane barrier. These ion pumps consume metabolic energy to transport 
the ions against the forces that are simultaneously causing the ions to flow through open channels 
in the opposite direction. The carrier proteins are specific for a particular ion or pair of ions. For 
example, there is a Na+ -K+ pump in the membrane of neurons that transports Na+ ions out of the 
cell while at the same time transporting K+ ions into the cell.



14.2.1 MECHANISMS OFTRANSPORT
There are three main mechanisms that can cause the transportation of ions and other molecules 
across membranes:

1. Hydraulic pressure-driven transport -  We have covered this topic in the Darcy’s Law chapter. 
Pressure-driven transport plays an important role in regulating blood volume in the capillaries and 
water balance in the kidneys, but it is normally not involved in the flow of ions across cell walls, and 
will not be considered further here.

2. Electro-chemical diffusion-driven transport -  This is the major determinant of ion transport across 
cell walls. As the name implies, there are two components:

a. Electrically-driven flow  -  Coulomb’s Law describes the electrostatic force that causes like 
charges to repel and unlike charges to attract. I f  there is an excess accumulation of one species 
of ions on one side of the membrane, such as shown in Fig. 14.2, an electric field will be set

electric field
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..... * © — O n  O
u  o

+  V -

drift current----- ►

charges ©  ©  

©  ©

Figure 14.2: An accumulation of charge sets up an electric field, causing a drift current of ions toward 
the opposite charge.

up across the membrane which exerts a force on similarly charged ions, pushing them in a 
direction across the membrane away from the accumulation and toward the oppositely charged 
ions. This flow of ions under the influence of an electric field is termed drift current.

b. Concentration-driven flow  -  Due to the random motion of atoms and molecules at a finite 
temperature (Brownian motion), whenever there is a non-uniform concentration of any species 
within a volume, such as shown in Fig. 14.3 for a concentration difference across a membrane, 
the species tends to spread out to eventually produce a uniform concentration. Fick’s Law 
describes the flow of atoms or molecules under the influence of a concentration gradient. It 
applies to charged ions as well. This flow of ions is termed diffusion current.

3. A ctive  Transport -  This mechanism describes the transport of ions or other molecules across the 
membrane by the carrier proteins, as discussed in the previous section. I t is responsible (in combina­
tion with electro-chemical diffusion) for setting up and maintaining ionic and other concentrations
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membrane

^  diffusion 
current *

/  1 

^  [C1‘

f  ^  ^  -  

■ J  ' - V f
^  —  V  

[ C ] 2  ^  ^  

/  /  [ 1

beaker

Figure 14.3: The higher concentration of C molecules on the right side of the beaker will result in a 
diffusion current across the selectively permeable membrane. The current is proportional to the concen­
tration gradient (i.e., the difference between the concentration of the right side [C]2 and the left side
[C]i).

across the membrane. Active transport requires metabolic energy, since often the movement is against 
voltage or concentration gradients.

14.3 NERNST POTENTIAL

Consider the situation shown in Fig. 14.4, representative of the ion distribution for a simple cell 
with channels selective to only one ion species. The fluid inside the cell (the intracellular fluid, or 
cytoplasm) is separated from the fluid outside the cell (the extracellular fluid) by the selectively 
permeable membrane. A t least one species of ions (for example, K+) has unequal concentrations in 
the two compartments— a higher concentration of K+ inside than outside the cell, say. The open 
channels for K+ allow ion flow in both directions depending on the prevailing forces. This means 
that there is a diffusion current flowing through the channels from the side that has the higher 
concentration (the inside) toward the lower concentration (the outside).

There is also a background of negatively charged ions (Cl-  if KC1 was the original compound 
dissociated in the fluid) whose concentration almost balances the concentration of K+ in the two 
regions to maintain approximate charge neutrality in each region. But there is a slight excess of 
C l-  ions (not balanced by K+ ions) in a layer immediately next to the inside of the membrane, 
and an equal slight excess of K+ ions (not balanced by Cl-  ions) in a layer immediately outside
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© inside cell
open
K channels [K lj (greater)

membrane
voltage

+
v„

+  +  +

Figure 14.4: Example of a simple membrane with open K+ channels. The concentration of K+ inside 
the cell [K+ ](- is larger that on the outside [K+ ]„ causing a diffusion current o f K+ out o f the cell. However, 
positive charges on the outside of the membrane produce an electrical force that causes a drift current of 
K+ into the cell. W hen the membrane voltage vm is at the Nernst potential, these opposing currents just 
cancel.

the membrane. This slight imbalance is initially set up by the diffusion current described in the 
previous paragraph. In turn, this excess charge causes a negative voltage vm across the membrane. 
The magnitude of the unbalanced charge is tiny compared to the total charge in each region (less 
than 1 part in 10,000), but its effect in producing vm is major. (Note that the reference polarity of vm 
is taken with respect to the outside fluid, as shown by the + / — signs of vm in Fig. 14.4. A negative 
vm then means that the inside voltage is lower than the outside voltage.)

The presence of the membrane voltage means there is an electric field whose force tends to 
push K+ ions from the outside to the inside of the cell. This K+ drift current will flow through the 
open K+ channels, opposing the diffusion current in the other direction. A t a certain membrane 
voltage, called the N ernst potential, the two opposing currents will just cancel, so the net K+ current 
is zero and the cell is in equilibrium with respect to K+ ions. This special voltage is given (for K+ ) 
by the formula2

’This formula will be derived formally later in courses in Biology, Biophysics, or Physiology. It is sometimes written in a form 
where the ratio in the argument o f the In function is inverted, with the outside concentration in the numerator and the inside 
concentration in the denominator; the negative sign then disappears.
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Vk
K T  [K+l

------1n — -j—
q [K+l

Nernst Potential for K+ (14.1)

where K  is Boltzmann’s constant,
T  is temperature in Kelvin, 
q is the charge of the ion, including sign,
1n is the natural logarithm,
[K+l; is the concentration of the K+ ion inside the cell, and 
[K+l,, is the concentration of the K+ ion outside the cell.

26

[K

at room temperature. For N a+ ions, the Nernst equation is

fK+ l; Tr ,
VK =  - 2 6 1n mV (14.2)

^N‘i — —2 6 1n -— T^-m V , (14.3)
[Na 1„

and for C l-  ions, the Nernst equation is

r c r i -
y  _  _j_261n--------- mV (14.4)

[CU !,,

where the positive sign is due to the negative charge of the chloride ion.
It is important to note that the Nernst potential for any ion depends on the two concentrations 

of the ion across the membrane, and will change if the concentration changes. Also, the Nernst 
potential is not usually the actual voltage vm across the membrane, especially when there are two or 
more ion species for which the membrane is permeable, as will be seen shortly. This is because vm is 
influenced by other factors in addition to the Nernst voltages, including the permeability values for 
each ion species and the existence of ion pumps in the membrane. Examples of finding the actual 
membrane voltage using the membrane equivalent circuit are given in the next section.

14.4 EQUIVALENT CIRCUIT FORTHE MEMBRANE
For a simple membrane such as shown in Fig. 14.4 that has only channels for one species of ions, an 
equivalent circuit can be constructed like Fig. 14.5. It consists of an independent voltage source of 
Nernst potential magnitude, V k , in series with a resistor representing the electrical resistance 
of the channels to K+ -ion flow. The top terminal is at the potential of the intracellular fluid, while 
the bottom terminal is at the potential of the extracellular fluid, usually taken at zero voltage as the 
reference.
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inside

at equ ilib rium  /  +
V K N ern st po ten tia l

o
outside

Figure 14.5: Equivalent circuit for the ion flow across a simple membrane (such as Fig. 14.4) with 
channels permeable only to K+ ions.

Since K+ -ion flow provides the only current through this simple membrane, there are no 
other branches to its equivalent circuit. W hen the net current is zero (at equilibrium), there is no 
voltage drop across the resistor and the membrane voltage vm is equal to the Nernst potential V k - 
This single-ion equilibrium situation is one of the few cases where the membrane potential is equal 
to the Nernst voltage.

For a more general membrane, such as was shown earlier in Fig. 14.1 for a neuron, the 
equivalent circuit is more complicated. Each ion forwhich the membrane has channels is represented 
by a separate branch with its own Nernst voltage source in series with a unique resistor, as shown 
in Fig. 14.6. The upper wire represents the cytoplasm inside the cell (which has relatively high 
conductivity compared to the channels and whose resistance can therefore be ignored), and the 
lower wire represents the extracellular fluid (which also has high conduct! vity)J .

Although the + / — polarity of all the sources shown in Fig. 14.6 is oriented in a direction 
such that the reference voltage is at the bottom (i.e., outside the cell), individual Nernst voltages 
may have negative values depending upon the particular concentration differences and sign of the 
ion charge. Also, the values of the resistances can, and will, change as the respective gated channels 
open and close. In addition, to represent the capacitance of the membrane with its opposite charges 
separated across a barrier, a capacitor Cm has been added to the equivalent circuit in Fig. 14.6.

For the squid giant axon, a much-studied neuron, the values of the ion concentrations and 
equivalent resistances are listed in Table 14.1. The concentration values can be used to find the 
Nernst potentials for each ion using (14.2)—(14.4), and these are also listed in Table 14.1.

°The simple equivalent circuit shown in Fig, 14,6 assumes that the ion current through each branch is linearly related to the 
voltage across that branch, which is approximately correct for the channels in a squid giant axon membrane. O ther cells are better 
described by a slighdy more complex, and nonlinear, model defined by the Goldman-Hodgkin-Katz (or simply the Goldman) 
equation. However, the qualitative behavior o f  the ion currents and membrane voltage is similar in both models.
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cj) ^  inside

+ '—

v rm —i-  v-

outside

Figure 14.6: Equivalent circuit for the membrane of a typical neuronal cell, as illustrated in Fig. 14.1, 
which is permeable to three ions. Also included is a capacitor representing the capacitance of the mem­
brane.

Table 14.1: Values for a Squid Giant Axon at Rest

^NemSt Cff
K+ 397 mM 20 mM 2.7 kQ -7 8  mV
Na+ 50 mM 437 mM 30.0 kQ +56 mV 1.0 / iF
c r 40 mM 556 mM 3.3 kQ —68 mV

The values from Table 14.1 can then be put into the equivalent circuit, as done in Fig. 14.7. 
A study of this figure shows that for the general case, the membrane voltage is not the same as 
any of the Nernst potentials, since in general current must be flowing through the resistors, even at 
equilibrium. The actual membrane voltage is found by a circuit analysis of the complete circuit; this 
will be done in an example next.

But first some observations can be made here: The magnitudes of the Nernst voltage sources are 
all different, and in fact, some have opposite signs. The overall membrane voltage will be determined, 
therefore, by the relative magnitudes of the series resistors. The smaller the resistance, the closer the 
membrane voltage will be to the Nernst voltage of that branch; the larger the resistance, the more 
isolated the membrane voltage is from the Nernst voltage of that branch. Since in Fig. 14.7 the K+ 
branch and the C l-  branch have much smaller resistances (corresponding to larger permeabilities) 
than the Na+ branch, the membrane voltage will be negative, close to (but not quite as negative 
as) the Nernst voltage for K+ and for C l- . In fact, as will be seen in the example next, the resting 
membrane voltage for the squid giant axon is about —67 mV.
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Figure 14.7: Equivalent circuit with three ion channels for the squid giant axon at rest.

Also, a careful study of the equilibrium condition shown in Fig. 14.7 reveals a seeming in­
consistency A t equilibrium, no net current flows out of the top of the complete circuit. This means 
that the current flowing down the K+ branch, composed of K+ ions flowing from inside to outside 
the cell, must equal the current flowing up in the N a+ branch, composed of Na+ ions flowing from 
outside to inside the cell. (Note: It will be seen shordy that the C l-  current is nearly zero.) But these 
two currents carry different ions, and after a while, if left alone, these currents would lead to changes 
in the respective concentrations inside and outside the cell, a violation of the equilibrium condition. 
The answer to this enigma is that there is an active Na-K pump across the membrane— not shown 
for simplicity in the equivalent circuit but illustrated in Fig. 14.1— that pumps K+ ions into the cell 
and Na+ ions out of the cell, thus maintaining the concentrations at their equilibrium values.

Finally, a note about units. In practice, the magnitude of the membrane branch resistances 
for the total cell are often given in terms of conductance G , which is the inverse of the resistance 
R; so G =  l / R ,  in units of l/ohm=siemens (S). Even more, the membrane conductance is usually

2
G =  g ■ A m, where A m is the total surface area of the membrane under consideration. (Similarly, the

2
In this case, r  =  l / g  and R  =  r / A m .) The capacitance Cm is also often given as a capacitance per

2
Then if the branch conductance g  (or resistance r) and capacitance cm values are specified per 

unit surface area, they can be inserted into the equivalent circuit of Fig. 14.7 in one of two ways:

• Each g  and cm value can be adjusted by multiplying it by the total surface area of the membrane
l

C m are pu t in the circuit; or



* The r =  l / g  and cm values can be inserted directly as they stand into the equivalent circuit, 
in which case the equivalent circuit represents a unit area of the membrane (and the branch 
currents are then found per unit area). This latter case is illustrated in a homework problem at 
the end of this chapter.

In either case the resulting membrane voltage and membrane time constant are the same.
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Example 14.1. Resting Potential Across Cell M em brane

For the membrane properties of a squid giant axon given in Table 14.1:
a. Calculate the Nernst potential for each ion.
b. Calculate the resting membrane voltage using only the K+ and N a+ branches.
c. Find the RC time constant of the membrane.

Solution
a. Equations (14.2)-(14.4) can be used to find the Nernst potential at room temperature. Straight­
forward math gives the values shown in Table 14.1.The equivalent circuit is then given by Fig. 14.7.
b .T o  find the resting membrane potential, we redraw the equivalent circuit of Fig. 14.7 using only 
the K+ and N a+ branches. (The reason why the C l-  branch is not included here will be explained 
shortly.) The capacitor is not included since it acts like an open circuit in the steady-state or resting 
condition. The redrawn circuit is shown in Fig. 14.8.

Figure 14.8: Equivalent circuit of squid giant axon membrane to find the resting membrane voltage.

The branch-current method can then be used to solve for vm. Using KVL around the loop labeled 
K T l gives
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-  ( -7 8  mV) +  i (2.7 t o )  +  i (30 k£2) +  56 mV =  0, (14.5)

i =  ( -1 3 4  mV)/32.7 k£2 =  -4 .1  f iA .  (14.6)

Using KVL around the loop labeled KT2 gives

30 56 0

Putting the value for i from (14.6) into (14.7) gives the resting membrane voltage:

vm =  56 mV +  (—4.1 ^A )(30 k ^ )  =  56 mV — 123 mV =  —67mV. (14.8)

Note that the value of the resting membrane voltage is very close to the Nernst potential for the 
C l-  ions as given in Table 14.1. This means that there is essentially no current flowing through the 
C l-  branch, and it has little effect on the remainder of the circuit. I t is therefore valid to exclude 
it from the equivalent circuit when calculating the membrane voltage. The basic reason for this is 
that C l-  is passively distributed across the membrane by open channels only with no ion pump for 
C l-  involved, and the C l-  concentrations on both sides therefore adjust themselves to match the 
membrane voltage set by the K+ and Na+ concentrations.
c. The time constant is given by the product of R eqC m, where C m is the capacitance (1.0 f iF)  of 
the membrane and R eq is the equivalent resistance of the membrane at rest. This resistance is found 
by calculating the Thevenin equivalent resistance of the circuit as seen from the terminals o f the 
capacitor. The circuit includes all branches of the equivalent circuit. After disabling the independent 
voltage sources (replacing with shorts), the circuit looks like Fig. 14.9.

equiv. to

Figure 14.9: Finding the Thevenin equivalent resistance to determine the membrane time constant.

The equivalent resistance is the parallel combination of the three resistors, so

1 / R eq =  1 /2 .7  kto  +  1/30 kQ +  1/3.3 k Q . (14.9)



Thus,
R eq =  l . 4 k Q ,  (14.10)

and
r  =  R eqC m =  1.4 ms. (14.11)

Note: I f  it remained constant, this RC time constant of 1.4 ms would be problematic (as shown in 
Chapter 13 and Fig. 13.8), since the voltage across the membrane capacitance, vm, cannot change 
at a rate faster than the time constant. In fact, it reaches only 63% of its excursion during one time 
constant and thus takes several time constants (perhaps 5 to 6 ms for a time constant of 1.4 ms) to 
accomplish an appreciable change. Yet nerve action potentials require a much faster rate of rise and 
fall than this; the complete rise and fall phases of the membrane voltage that comprise an action 
potential take less than about 3 ms. Luckily, as will be seen in the next example, the RC time constant 
of the membrane decreases significantly during the course of an action potential.

14.5 ACTION POTENTIALS
The situation shown in Table 14.1 and Fig. 14.7 holds for a resting axon only. W hen the cell is 
resting, the gated K+ and N a+ channels are in their resting position, having not been stimulated to 
change their state. But under stimulation through its synapse with neighboring neurons, the cell’s 
membrane voltage and the state of the gated channels change dramatically. W hen the membrane 
voltage is raised above a threshold (about —40 mV for the squid giant axon) by stimulation from 
adjacent cells, many gated Na+ channels open rapidly with a major effect. The resistance of the 
Na+ branch declines precipitously to a very low value, much lower than the resistance of the K+ 
branch. This rapidly moves the membrane voltage to a value close to the N a+ Nernst voltage, which 
is positive at +56 mV.

The gated K+ channels also begin to open, but at a slower rate than the N a+ channels. This 
delayed action moves the membrane voltage back from its positive value again toward the K+ Nernst 
voltage at —78 mV. The overall result is a voltage spike in the membrane voltage, called an action 
potential, which begins at the resting voltage, rises rapidly to a positive voltage as the N a+ channels 
open, then declines back toward the resting voltage (actually overshooting in the negative direction) 
as the K+ channels open and the Na+ channels close again. The K+ channels then close shortly 
after, returning the cell to its resting state ready for the next stimulation.

The situation leads to action potentials as plotted in Fig. 14.10. The upper graph shows the 
time behavior of the conductance G  ofboth the K+ and Na+ channels just after the stimulus, when 
the membrane voltage rises above threshold. (It is easier to graph conductance G  than resistance

l
conductance of the Na+ channels increases rapidly, causing the membrane voltage— shown in the 
lower graph— to rise abruptly toward the positive N a+ Nernst potential. The rise in K+ conductance 
is delayed slightly, so by the time it starts to increase, the Na+ conductance is decreasing. This causes 
the membrane voltage to fall back toward the negative K+ Nernst potential, producing the declining
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Figure 14.10: W hen the gated Na+ channels rapidly open as the membrane voltage crosses the threshold 
value in response to a stimulus, the N a+ conductance Gjs;., rises (upper graph) and the membrane voltage 
rises (lower graph) toward the positive N a+ Nernst potential, starting the action potential. I t falls when 
the N a+ conductance Gjs;., falls and the K+ conductance G k  rises, slightly later.

segment of the action potential. The increased K+ conductance during this phase actually results 
in a more negative voltage than at rest, so the declining segment dips below the resting value. It 
slowly returns to the resting potential when the K+ conductance declines to its resting value. This 
completes the cycle of the action potential, and the nerve is in a state to again be stimulated.

The generation of the action potential, with its accompanying transmission down the nerve 
axon, is the major electrical event responsible for the signaling and control functions of the nervous 
system. As we have seen, it is made possible by the unique ion permeability characteristics of the 
neuronal cell membrane.

Example 14.2. R ising Phase o f the A ction Potential
For the squid giant axon analyzed in the previous example:
a. Assume that the Na+ channels now open up rapidly upon stimulation such that the Na+ con­
ductance rises to G Na =  0.12. Using the equivalent circuit from the previous example with a new



Figure 14.11: Equivalent circuit for estimating the peak voltage of an action potential.

Following steps similar to before, KVL around loop K T l gives

78 2 7 8 3 56 0 

i =  (-1 3 4  mV)/2.7083 kQ  =  -4 9 .5  f i A .  (14.13)

Then KVL around loop KT2 gives

8 3 56 0 

56 49 5 8 3 56 0 4

which is very close to the N a+ Nernst voltage of +56 mV. The peak voltage of the action potential
50

Gnu ar|d an increase in G k ) cause it to drop back again, completing the action potential spike.
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b. The new time constant is much shorter than its resting value due to the reduced resistance of the 
membrane. The new Thevenin equivalent resistance is given by

1 / R eq =  1/2.7 t o  +  1/8.3 fi +  1/3.3 kfi, (14.16)

R eq =  8.25 fi, (14.17) 

T =  R eqCm =  (8.25 fi)(1 .0  x  10^6F ) =  8.25 /as. (14.18)

This time constant (reached when G ^ a is at its maximum value) is now short enough not to restrict 
the rapid rise and fall of the action potential voltage, whose timing is really determined by the 
changes in ion conductance.

In obtaining the peak voltage during the action potential in the previous example, it was 
assumed that the N ernst voltages for Na+ and K+ did not change during the course of the action 
potential. But when the gated Na+ channels open up (and the delayed K+ channels also), ions 
of both species will cross the membrane at rates greater than at rest, potentially changing their 
concentrations inside and outside the cell, thereby upsetting the Nernst potentials, which are based 
upon these concentration values. It is shown next, however, that the relative concentration changes 
that occur during an action potential are very small compared to the resting concentrations.

We first find the number of ions that cross the membrane during a typical action potential 
rise where the initial membrane voltage is — 67 mV (resting value) and the peak voltage is +50 mV. 
The voltage change is A v  =  50 mV — (—67 mV) =  117 mV, According to Eq. (11.6) and using 

1 0

A q  =  C A v  =  (1.0 x  10“ 6 F)(117 x  10^3 V) =  1.2 x  10^7 C. (14.19)

Since the charge of each ion is q =  1.6 x  10-19 C, this means that (1.2 x  10_7)/(1 .6  x  10-19) =  
7 5  1011 ions cross the membrane. This seems like a large number, except when compared to 
the number of ions already in solution. Assuming an equilibrium concentration of Na+ ions, for 
example, of 50 mM, a squid giant axon cell volume of about 1 x  10-5 L, and using the Avogadro 
constant, the number of N a+ ions inside the cell at equilibrium is

N  =  (molarity) (Avogadro constant) (volume in L)
=  (50 x  10_3)(6.02 x  1023)(1 x  10“ 5) =  3.0 x  1017. (14.20)

or about 3 parts per million, or 0.0003%, which is insignificant.

7 5 1011 3 0 1017) =  2.5 X 10 6
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14.6 PROBLEMS
14.1. The table below gives the characteristics of a typical frog muscle cell. Note that the ion 

conductance and membrane capacitance values are givenper u n it area:

Values for Frog Skeletal M uscle a t Rest

[conc], [conc]t, S ^Nernst
K+
Na+
c r

140 mM 
13 mM 
3.0 mM

2.5 mM 
110 mM 
90 mM

0.21 mS/cm2 
0.023 mS/cm2 
0.11 mS/cm2

2.1 /zF/cm2

a. Calculate the Nernst potentials at room temperature for each of the ions, and draw the 
equivalent circuit for the cell membrane at rest. Let this equivalent circuit represent a unit 
area of the membrane surface (i.e., 1 cm2). Remember that conductance g is the inverse of

1

T ans: VK =  -1 0 5  mV, VNa =  +56 mV, VC1 =  -8 8  mV]

b. Using the equivalent circuit with only the K+ and Na+ branches, calculate the membrane 
voltage at rest.

89

c. Calculate the RC time constant of the membrane at rest.

61

14.2. M uscle Action Potential (M A P )

a. Now assume that the gated Na+ channels in the muscle cell of Problem 14.1 quickly open
2

Calculate the resulting membrane voltage. (This represents the voltage toward which the 
action potential is rising. Use the equivalent circuit from Problem 14.1 again with only the 
Na+ and K+ branches but with the new r  for the N a+ branch.)

50 2 54

b. Calculate the new RC time constant of the membrane under the condition of the new r  for 
the opened Na+ channels.

fans: x  = 0 .1 0  ms]
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c. In 1-2 sentences, explain why is it essential for the membrane time constant found in this 
problem to be so much lower than that of Problem 14.1 (at rest) in order to allow a muscle 
action potential spike.
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C H A P T E R  15

F o u r i e r  T r a n s f o r m s :  

C u r r e n t s  ( A C )  a n d  t h e

15.1 INTRODUCTION - SINUSOIDS
Many of the voltages we have encountered so far have been constant, or nearly constant. An example 
is a battery modeled as an independent voltage source. Such steady sources are called dc signals, 
for “direct current” (even though they may be voltages or pressures, not strictly currents). But some 
important signals are time-varying, such as the aortic pressure pulse and the action potential in 
neurons. I t is useful to describe these time-varying signals not only by their time waveforms but by 
a complementary viewpoint: their frequency content. Signals that vary in time are called ac signals, 
for “alternating current.”

A very important and common time-varying waveform is the sinusoid. A voltage that has a 
sinusoidal time behavior can be written in general as1

v =  V o Q m ( 2 7 r f t - 4 > ) ,  (15.1)

where cos is the cosine function,
Vo is the peak voltage (V),
/  is the frequency (hertz, or Hz, equivalent to 1/s), 
t is time (s), and
<t> is a phase angle (radians or degrees, dimensionless).
Figure 15.1 plots the sinusoidal waveform of (15.1) in two ways: (a) as a function of the 

argument of the cosine term, and (b) as a function of time. The phase angle <t> represents the offset
0

case when <t> =  7t/ 2 (or 90°), the cosine wave can be written as

v =  Vo cos(2k  f t  -  jt/2 ) =  Vo sin (2 jr/f). (15.2)

In the time plot, the sinusoid repeats with period T .  This occurs whenever its argument 
increases by 2x . So from (15.1), the relationship between period T  and frequency f  is 2 n f T  =  2 n ,
or

f  =  l / T . (15.3)

1 General sinusoidal waves, like (15.1), are usually called “sine” waves for short, even though they may be written in terms of cosines.
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Figure 15.1: Plots of the sinusoidal wave given by (15.1): (a) as a function of the argument of the cosine 
term, and (b) as a function of time t.

The reason sinusoidal waves are so important in engineering analysis is that the natural response 
of second-order systems (a mass on a spring, or a combined capacitor-inductor electrical circuit, 
for example) follows a sinusoidal behavior in time. Thus, many physical phenomena, including the 
displacement of a vibrating string and the pressure of ultrasound waves in tissue, can be described 
by sine waves at discrete frequencies.

15.2 FOURIER SERIES FOR ARBITRARY REPEATING 
WAVEFORMS

In fact, sine waves at all possible frequencies form a “complete set.” This means that any2 arbitrary 
waveform (a pulse, a square wave, a triangular wave) can be written as a combination of sine waves 
of various amplitudes and phases. I f  the arbitrary waveform is one-time only, a continuous spectrum 
of frequencies is needed to represent the signal. However, if the waveform is repetitive, sine waves 
of only certain discrete frequencies are needed. The lowest of these components has a frequency of 
zero, or f o  =  0, which is the dc or steady component. The next lowest frequency is the fundam ental 
frequency, with a value of

f l  =  1 / r ,  (15.4)

where T  is the repeat period of the waveform. In addition, a series of higher frequencies, called 
harmonics, which are integral multiples of the fundamental frequency, are required to completely 
describe the waveform. The harmonic frequencies are given by

’There are some very unusual waveforms—those with an infinite number o f infinite discontinuities—that cannot be represented 
by a Fourier series, but these are not o f interest to us.
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f n = n f l = n / T for n  = 0,1)2.... (15.5)

where n  is the harmonic number. For example, /2  is the second harmonic, /5 is the fifth harmonic,
0 

1
Mathematically, any arbitrary repetitive signal g( t )  with fundamental period T  can be written 

as a Fourier series:

(15.6)
n=0

where A„ is the amplitude of the n ,h harmonic component,
<t>„ is the phase of the n ,h harmonic component, and 
f n is the harmonic frequency given by (15.5).

The individual terms in the series (15.6) are called the Fourier components.The “sharper” the features 
of the signal, the larger the amplitudes A n of the higher harmonics making up the waveform. For 
example, a sharp spike contains a large number of significant high-frequency Fourier components. 
On the other hand, a smooth single sinusoidal wave has only one component: the fundamental.

As a simple example of a repetitive waveform, consider the rectangular waveform shown in 
Fig. 15.2 as a function of time (that is, in the “time domain”). Its “on” time is 250 ms, its “off” time

t
g(t)

250 800 1600 t(ms)

Figure 15.2: A repetitive rectangular waveform.

is 550 ms, and it repeats with a period of 800 ms. Its Fourier frequency components are shown 
in Fig. 15.3 (in the “frequency domain”). Roth the amplitude A n and phase <t>„ are plotted for 
each frequency component. Note that the fundamental frequency is 1 / T  =  1 /(800 ms) =  125 Hz, 
and that the higher harmonics are integral multiples of 1.25 Hz. The amplitude of the dc term 
is just the average value of the signal, which can be calculated in another way for a rectangular 
waveform by finding the peak value multiplied by the ratio of the “on” time to the period, or
1 x  (250 ms/800 ms) =  0.3125.



94 CHAPTER 15. FOURIER TRANSFORMS: ALTERNATING CURRENTS (AC)

Figure 15.3: The amplitude A„ and phase tp„ of the Fourier components of the rectangular wave shown 
in Fig. 15.2.

It is important to realize that Figs. 15.2 and 15.3 are just two different ways of representing 
the same signal. Roth contain all the information inherent in the signal. In fact, the time waveform— 
Fig. 15.2— can be reconstructed by adding together all its Fourier terms using the amplitudes and 
phases from Fig. 15.3 for all frequency components. The result of this progressive summation at 
different stages (for increasing numbers S  of terms added in) is shown in Fig. 15.4, starting with the 
first two terms (5 =  2 ,fo rn  =  O andn =  1), and ending with all the terms (S  =  16) added together.

I t ’s evident from the S  =  2 curve in Fig. 15.4 that the fundamental term sets the overall 
period of the wave, and the higher harmonics represent the sharper details of the wave. As the

16

15.3 FFT: CALCULATING THE DISCRETE FOURIER 
TRANSFORM

There are several formulas available for finding the frequency components o f a general time waveform. 
Mathematically they involve integrals over the time variable of the product of the waveform and 
sine waves. You will use one or more of these mathematical formulas in later courses (math and 
engineering classes), but for this book we will use the computer to find the frequency components, 
in particular by using Matlab as our programming and analysis tool.

The algorithm that most software programs employ to find frequency components is the FFT 
algorithm, which stands for “Fast Fourier Transform.” To use this method, the time waveform first 
needs to be sampled at discrete, uniformly spaced time intervals. According to the Nyquist criterion, 
the sampling interval A t  should be small enough that there are at least tw o  samples per period 7/, 
of the highest frequency component contained in the original waveform (we’ll see why shortly), or 

2 1
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0  100  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0

t ( m s ) ----- ►

Figure 15.4: The recombination of the Fourier series for the rectangular wave at different stages. Shown 
are the results for adding 2 terms, 5 terms, 11 terms, and 16 terms (the maximum), respectively.

A t  <  1 /(2 //,) Nyquist Criterion (15.7)

where / ,  is the highest frequency contained in the waveform.
As an example of the use of the F F T  algorithm, Fig. 15.5 shows the waveform of a typical 

repeating action potential (discussed earlier in the Nernst Potential chapter) for one cycle. Plotted 
on the continuous voltage curve are the points where the voltage value has been sampled., at 16 
points in this example. The array of these values (a row vector in Matlab language) represents the 
sampled waveform. Call this array of voltage values g. After the points of g  have been entered into 
the workspace of Matlab, the Fourier components of g  are found by typing

G = f f t ( g ) .  (15.8)

The transform always has the same number of elements as the original sampled time waveform, so the 
complex vector G  is 16 elements long. [Incidentally, the original time waveform can be reconstructed 
by performing an inverse discrete Fourier transform on G, using the Matlab function i f  f t .  Type

g = i f  f t  (G) (15.9)

and g  will be identical to the original time waveform.]
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t (ms) ----- ►

Figure 15.5: Simplified model of an action potential voltage waveform. This action potential repeats 
every 16 ms. The vector of sample points (denoted by circles) is labeled g.

Although the frequency spectrum G  is readily found in Matlab by the command (15.8), 
some care must be taken in interpreting the results. In particular, fo u r  issues must be dealt with in 
interpreting the frequency components given by G:

1. Converting to real values — The vector G  is complex, meaning that each element of G  [for example, 
G(i)] has two parts: a real value and an imaginary value. Complex values are used here because the 
F F T  algorithm is more efficient when put in terms of complex exponentials. For our use, we need 
to convert the complex notation of G  into an all-real form (amplitude and phase) that can be used 
in formulas like (15.6). To do this, we first find the amplitude A of the frequency components by 
taking the absolute value of each element of G, multiplying by a factor of 2, and dividing by the 
number of samples N . In Matlab we enter

A = 2*abs(G )/N . (15.10)

The phase of the components is the inverse tangent of the ratio of the imaginary to real parts of G, 
found in Matlab by typing

p h i = an g le (G )* 1 8 0 /p i. (15.11)

The factor 180/pi in (15.11) converts the angle from radians to degrees. A and phi are real vectors 
16 elements long. Plots of A and phi for the waveform above are shown in Fig. 15.6.
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I
phi
(deg!

f ( Hz ) f  (Hz) ■

Figure 15.6: The amplitude and phase of the frequency components of the action potential shown in 
Fig. 15.5, before the redundancy is removed.

2. Rem oving  redundancy in A  and  p h i — Because the time waveform we started with in Fig. 15.5 is real 
(as are nearly all of the waveforms of interest in practical signals), the Fourier transform is H erm itian. 
T hat means that the right half of both the A  and phi vectors in Fig. 15.6 are mirror images of the 
left half, and all necessary information is contained in the first half (9 elements, including the first, 
or dc, term) of each3. Thus, without loss of information we can cut the 16-element A  and phi vectors 
in Fig. 15.6 nearly in half, preserving only the first 9 elements. The results are shown in Fig. 15.7.

3. Special treatm ent o f  the dc term — In Step 2 above we removed the right half of the spectrum rep­
resenting the redundant negative frequencies. Since cos(«) =  COS(—a ) ,  these negative frequencies 
were compensated for by using the factor of 2 in the multiplication of (15.10). Rut the amplitude 
of the dc component is given by the first element of A ,  which is A(1). This dc term, having zero 
frequency, should not be multiplied by 2 since it is not included as part of the negative frequencies. 
Instead we should multiply by a factor of 1. Thus, A(1) is calculated in Matlab by typing

A( l )  = a b s ( G ( l ) ) / N .  (15.12)

Also note that the dc term (i.e., for /  =  0) is located in the first element (j =  1) of A , not the 
“zeroeth” element, since Matlab starts with the index i =  1; it does not allow an index i =  0.

4. D eterm in ing  thefrequency scale -  The last step is determining the correct scale for the frequencies 
of the Fourier components. The vector g  describing the original time waveform does not contain 
any information about the actual time scale. That is, it is merely an indexed array of sampled values: 
t?(1)> g(2) ,  g(3) ,  etc. It is up to the user to know that the time interval A t  between the samples has a

3The right half o f the complex vector G actually represents negative frequencies, needed in the general case of a complex time 
signal. But since we are dealing here only with real signals, the right half o f G (and A and phi) is redundant with the left half.
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Figure 15.7: The amplitude and phase after the redundant negative-frequency right half has been re­
moved.

certain value. Similarly, the frequency spectrum A  does not contain any indication of the frequency 
scale; it is an indexed array of spectral amplitudes: A( 1) ,  A( 2 ) ,  A( 3 ) ,  etc. Therefore i t  is up to the user 
to calculate the frequency scale. This is done as follows:
There are N  samples in the time vector, each A t  apart. The total length of the time sample is therefore

T  =  N A t .  (15.13)

(It is implicit that the time signal is repetitive, so T  is also the period between repetitions of the 
signal.) The frequency spectrum from the F F T  algorithm also has N  samples. The frequency spacing 
between each sample A f  is given by

1

and therefore the total frequency length of the spectrum of g  is, using (15.13),

1

But after the vectors A  and phi are cut in half (Step 2) to eliminate redundancy, the length of the 
frequency spectrum is

Fo =  F / 2 =  1/(2A f). (15.16)

Notice from (15.16) that the highest frequency possible in the calculated spectrum is f h  =  Fo =
1 2
sampling rate.
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Figure 15.7 above was obtained by applying these four steps. It plots the amplitude A  and the 
phase phi of the frequency components of the action potential in Fig. 15.5, found by using (15.8), 
(15.10), (15.11), and (15.12). The correct frequency scale in Fig. 15.7 was found using the following 
calculations:

From Fig. 15.5, A t  =  1 ms and N  =  16, so from (15.13), T  =  16 ms.

Then from (15.14), A  f  =  1/(16 ms) = 62.5 Hz, 

and from (15.16), Fo =  1/(2)(1 ms) =  500 Hz.

Example 15.1. F inding a Frequency Spectrum
The voltage recorded by a small electrode placed inside a certain sensing cell is repetitive. One cycle 
of this voltage waveform is shown in Fig. 15.8.

time (ms)

Figure 15.8: Sample voltage waveform whose spectrum is found in Example 15.1. 

Tasks
a. Find the fundamental frequency of this waveform.



b.Use the F FT  function in Matlab to find and plot the amplitude and phase of the Fourier frequency 
components of the waveform.

Solution
a. From (15.4), f i  =  1 / T  =  1/160 ms =  6.25 Hz.
b. First we enter in the command window of Matlab a 16-element vector^ of equally spaced samples 
of the voltage (obtaining the value at each sample point from the graph above), and the number of 
samples N:

g = [10 20 35 50 70 52 37 22 12 8 8 .5  9 9 .5  10 10 10];
N = 16;

Then we find the complex Fourier spectrum of g  using (15.8):

G = f f t ( g ) ;

To calculate the real amplitude A  and phase phi of the frequency components, we follow Steps 1-3 
above using (15.10), (15.11), and (15.12). Therefore, concerning ourselves with only the first half 
(9 elements) of A  and phi, we enter

A = 2 * a b s ( G( l : 9 ) ) / N ;
p h i = an g le (G ( 1 : 9 ) ) * 1 8 0 /p i ;
A(1) = a b s ( G ( l ) ) / N ;

To plot A  and phi, we need to find the correct frequency scale (Step 4). Since T  =  160 ms and 
A t  =  (160 ms)/16 =  10 ms from the original waveform, (15.14) gives A  f  =  1/160 ms =  6.25 Hz,

0 1 2 10 50
the frequency scale by entering

f  = [ 0 : 6 . 2 5 : 5 0 ]  ;

and plot A  and phi by entering

p l o t ( f , A , f , A , ’o ’ ) ; 
x l a b e l ( ’freq u en c y  ( Hz ) ’ ) ;  
y l a b e l ( ’am p litu d e  A’ ) ;  
f i g u r e
p l o t ( f , p h i , f , p h i , ’o ’ ) ;  
x l a b e l ( ’freq u en c y  ( Hz ) ’ ) ;  
y l a b e l ( ’p hase  ( d e g ) ’ ) ;

The results are shown in Fig. 15.9.
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Figure 15.9: Spectrum of sample waveform in Example 15.1.

15.4 PROBLEMS
15.1. m. An electrocardiogram (EKG) recording for a healthy heart has the approximate waveform 

shown in Fig. 15.10.

It repeats every 800 ms for a resting heart.

a. Calculate the fundamental frequency of this waveform.

fans: f \  =  125 Hz]

b. Using Matlab, find the amplitude A  and the phase O of the frequency components of this 
wave. Sample the waveform at 16 uniformly spaced points. Then plot the amplitude A  and 
phase O as a function of frequency. You only have to turn in these plots as your homework 
answer. Re sure your frequency scale is correct!

fans: see plots below]
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0 100 2 00  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  800

t (ms)  --------►

Figure 15.10: EKG waveform analyzed in Problem 15.1.
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frequency (Hz)

frequency (Hz)

Figure 15.11: Spectrum results o f Problem 15.1.





A P P E N D I X  C

N ote on O rganization o f M ajor Project
This project can be arranged into two halves:

Computer modeling only (1/2 semester) -  Section C .l (Background) and Section C.2 (Matlab
Model).

Electrical circuit modeling only (1/2 semester) -  Section C .l (Background) and Section C.3
(Electrical Circuit Analog).

For a full-semester project, all sections are covered.

C .l BACKGROUND (AND PRELIMINARIES)
C .1.1 M O D E L IN G  T H E  C A R D IO V A SC U L A R  SY STEM
Models are used extensively in engineering analyses. This is sometimes because experimenting with 
the real thing is too expensive or cumbersome (e.g., determining the failure modes of a large bridge 
during an earthquake, or finding the most likely fracture planes of a hip-joint replacement fixture), 
and sometimes because experimenting would be unethical (testing chemical warfare agents in public 
places, or testing the effects of zero blood flow to the kidneys in humans). In such cases, computer 
models, animal models or electrical models can be used to simulate the procedure and predict its 
various effects.

NASA is interested in finding how the human cardiovascular (CV) system behaves under the 
unusual environmental conditions that astronauts will encounter. These include the high acceleration 
forces (up to 4 G) that astronauts experience during lift-off, and the zero gravity (0 G) environment 
they encounter in orbit and outside the earth’s gravity field. Gravity plays an important role in 
determining the distribution of blood volume in various parts of the body, so changing gravity 
conditions (especially when protracted) can alter the functioning of the entire CV system.

To study the effects of various gravity conditions on the heart, vessels, blood flow, and blood 
pooling, NASA relies upon computer models. For example, a study at the University of Utah led 
by Dr. Keith Sharp (then a research associate professor in the Department of Bioengineering) and 
performed by graduate student Kristy Peterson developed an extensive computer model of the human 
CV system1. This research predicted the changes in blood distribution for several posture positions 
that the astronauts might take during lift-off and under zero-gravity exposure. O ur computer model

1K. Peterson, A  Numerical Simulation o f the Cardiovascular System to Investigate Changes in Posture and Gravitational Acceleration, 
M aster of Science Thesis, University of Utah, Dec. 1999.



for this major project will be similar to their model (though much simpler), but without any gravity 
effects. However, it will still give valuable insight into the behavior of the human circulation system 
for both healthy and diseased physiology

C .1.2 O V E R V IE W  O F  M A JO R  P R O JE C T
A  major goal of this project is to use engineering modeling and simulation tools for examining the 
dynamic behavior of the human CV system, which is shown in a simplified anatomical drawing in 
Fig. C .l. Although we will focus on the CV system, the techniques you will learn can be applied to 
a vast variety of other bioengineering problems, such as orthopedic modeling, imaging, biosensing, 
and biomaterials behavior.

We will use a lumped-element model of the CV systemic system, explained in much more 
detail in Section C .l.5. It has been simplified in many regards, such as ignoring the pulmonary 
circulation and using only a single-chambered heart in order to be more easily analyzed, but it still 
retains enough detail to display and predict many of the essential features of the CV system. It is 
essential in our model to keep the two valves that form the entrance port (the mitral valve) and 
exit port (the aortic valve) of the left ventricle. The arrangement of these two valves around the left 
ventricle is depicted near the top in Fig. C .l.

The body of this project is comprised of two major sections:

M atlab (Section C.2) -  In this part, you write equations relating the variables of the CV model 
to each other, then numerically solve these equations using the Matlab computer language 
by stepping through time in small increments during a heart cycle. As input parameters to 
the Matlab program, you will need to calculate typical values for a healthy CV system. You 
will plot pressures and other essential quantities during successive heart cycles for a healthy 
circulation. Then you will model three disease states to see their effects on CV performance.

Electrical Analog (Section C.3) -  In this part, you will see that electrical circuits follow the same 
equations as fluid-mechanical circuits (such as the CV system), once pairings that relate elec­
trical quantities to corresponding fluid quantities are made. The electrical circuit is identical 
to the Matlab model, except that a special op amp circuit is needed to model the left ventricle 
and an extra branch is needed to add or bleed “blood volume” to the circuit. You will determine 
the values of the circuit components, then assemble the circuit, run it, and measure equivalent 
CV variables (such as the voltage waveform representing the aortic blood pressure waveform). 
You will initially model a healthy heart, then change the circuit to represent two more disease 
states to see their effects on CV performance.

C .1.3 N O T E B O O K  R E Q U IR E M E N T S
One hallmark of a good engineer is that she or he always keeps complete and accurate records of 
derivations and experimental observations. The record should be so complete that another engineer 
can follow the derivation or repeat the experiment several years later based upon this written record
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Figure C .l: A much simplified schematic diagram of the human circulatory system, showing major 
categories of vessels. Our heart model will use only the left ventricle, its two valves—the mitral (entrance) 
valve and the aortic (exit) valve—and the systemic vessels. Thus, the pulmonary circulation will not be 
included in our model. (Adapted from Guyton and Hall, Textbook of Medical Physiology, Saunders, 
2000, Fig. 14-1.)



alone. This means that it needs to contain all the detail that was originally needed to solve the 
problem, including even false starts and mistakes!

Another reason for keeping a complete record is for patent purposes. Many organizations 
have a “patent notebook” policy requiring engineers to keep a legal record of all work as proof 
of inventorship. This involves keeping a contemporary record (on-the-spot entries) in a bound 
notebook, in ink, with all pages numbered, dated, and signed. For this project, you will gain experience 
keeping this type of notebook. All written work related to the project must be recorded in this 
notebook. The rules for keeping the notebook are:

1. The notebook must be about 8 1/2 x 11” in size with fastened-inpages', no folders or loose-leaf 
binders. This means that no pages can be added or taken away from the original. A spiral- 
bound notebook will suffice for us. (Actually, true patent notebooks should have sewn-in pages, 
but these are somewhat expensive for us.)

2. A ll entries must be in ink. I f  you make a mistake, cross it out with an X and start again. Do 
not try to erase or obliterate.

3. All pages must be numbered in order from the front of the notebook. Do this in ink by hand. 
You can use one or both sides of the page (use one side if your writing shows through the 
paper).

4. Make all your entries immediately in the notebook. Do not do them first on a loose piece of 
paper to transfer later—you won’t have time. Your notebook does not have to be overly neat, 
just complete and readable by someone else like a fellow engineer or the teaching assistant. 
Don’t spend a lot of time making the tables and drawings fancy, just complete and clear.

5. For purposes here, you can tape in computer printouts and graph printouts on blank pages of 
the notebook to keep a record of all your work.

6. After you have filled a page, date it in ink at the top and sign each page.

C .1.4 G R A D IN G  A N D  C H E C K O F F  D A T E S
There are four checkoff periods: two for the Matlab section and two for the electrical circuit section. 
You will be required to show your work and resulting data to the teaching assistant four times during 
the semester in your scheduled lab session within the weeks shown in the schedule given in the class 
syllabus. Your grade on the major project will be determined by how well you have followed and 
completed the tasks given in this handout, as evidenced by your notebook entries and records, your 
filled-in tables, your printouts, your assembled circuit, measurements on your circuit, and answers 
to questions by the teaching assistant.

No checkoffs of any Major Project section will be allowed after the scheduled week for that 
section. I f  you have any questions about how you are graded, please first see the teaching assistant, 
then the instructor if you still have unresolved questions. Table C .l shows the four checkoff sections, 
what items will be graded, and how many points are assigned to each item.
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Table C.l:
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Checkoff To Be Completed Points

#1

□ Good notebook practice (guidelines followed).
□ Filled-in Table 2.
□ Filled-in Table 4.
□ Calculations of all fluid R & C values (in notebook).
□ Equations relating CV variables (in notebook).
□ Vectorized and Euler's form of these equations (in notebook).
□ Matlab m-file with FOR loops started (display or printout) -  

[Note: At this stage, the program does not have to be finished,
ju st started. ]

* 15 

► 15

#2

□ Matlab m-file completed (printout in notebook).
□ Matlab simulation for healthy CV parameters:

demo of program to teaching assistant,
printout of graph of pressure waveforms (in notebook),
printout of parameter file for healthy CV (in notebook).

□ Matlab simulations of three diseases; for each disease:
demo of program to teaching assistant,
printout of graph of pressure waveforms (in notebook),
printout of parameter file for each disease (in notebook).

□ Relevant boxes in Table 5 filled in.

*• 15 

► 20
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#3

□ Filled-in Table 6.
□ Calculations of all electrical R & C  values (in notebook).
□ Circuit diagram for left ventricular module (in notebook).
□ Assembly of left ventricle module, including two voltage followers:

demo of working circuit to teaching assistant, 
dual plot—by hand—of voltage waveforms for both excitation 
and vh, with vertical axis in units of both V and equiv mmHg (in 
notebook). [Note: points will be deducted i f  graph is not done 
carefully and completely. ]

} ‘ 5 

* 20

#4

□ Assembly of entire systemic CV circuit.
□ Measurements of electrical waveforms for healthy CV system:

demo of circuit to teaching assistant,
dual plot of voltage waveforms for vh and v (in notebook)—see 
comments above regarding grading of dual waveform plot, 
record of cardiac output (in notebook).

□ Measurements of affected electrical variables for two diseases:
demo of circuit to teaching assistant, 
graphs of voltage waveforms for vh and v (in notebook), 
record of cardiac output, percentage change, and resulting BP for 
each disease (in notebook).

□ Table 5 completed.

* 20 

► 15
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C .1.5 O U R  M O D E L
A  schematic of the CV model we will use for both the Matlab simulation and the electrical circuit 
simulation is given in Fig. C.2. It is obvious that several simplifying approximations have been made, 
as can be seen by comparing our model to even a simple anatomical drawing of the actual human 
CV system. Rut our model does have enough components to give the correct overall blood flow and 
pressure behavior, and to predict the effects of many of the common CV disease states, such as the 
high blood pressure that results from atherosclerosis.

Your first task will be to calculate from measured data of the healthy human CV system the 
values of the components in Fig. C.2, namely the resistance elements (R) that represent the pressure 
drop across major vessels and the capacitance elements (C) that represent the compliance of these 
windkessel vessels. Note in Fig. C.2 that we have lumped major categories of vessels together (for 
example, large and small arteries and arterioles) in the model for simplicity. This lumped-element 
approximation loses some information about spatial details, but helps keep the number of equations 
to a manageable level. The labels in Fig. C.2 show which elements correspond to the various segments 
of the CV system. W ith  some study of the model, you will see that once a certain blood volume is 
inside the system, it just keeps circulating around the loop with no leakage out (unless some is bled 
away or added on purpose).

Also note in Fig. C.2 that in addition to the model parameters R  and C, there are several 
variables which represent the state of the system at any given time. These include the pressure P  of 
various vessels, the volume V  in these vessels, and the volumetric flow rate Q through the vessels. 
These are the variables you will solve for using Matlab during time increments of a heart cycle. It 
is very important to keep track of the traditional clinical units used when measuring these variables 
and to consistently use these same units throughout the problem. To help keep track, fill in Table C.2 
below with the clinical units you will use for each variable. (Note: The entire class should decide on 
common units to make communication and cross-checking easier.)

Table C.2: Traditional Clinical Units to be Used in Solution
Variable C linical Units

Pressure P  
Volume V  
Volumetric Flow Q

To keep the number of variables reasonable, we have modeled the heart by only one chamber— 
the left ventricle—which is the major pump responsible for ejecting blood into the aorta. Its pumping 
action is modeled by a time-varying compliance; the ventricle’s compliance changes from a higher 
value Cfrj during diastole to a lower value C/,.v during systole in an exponential manner, as shown 
in Fig. C.3. This exponential behavior mimics reasonably well the compliance changes during an 
actual cardiac cycle, and is similar to the compliance waveform that will be generated by the electrical 
circuit in the second half of the project.
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Figure C.2: Simple model of cardiovascular system.
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t
Left
Ventricle
Compliance

systole diastole

Figure C.3: Exponential model for the left ventricular compliance.

During the systolic segment, the ventricular compliance follows the equation2

Ch = (Ch d - C hs) e - ' ^ + C h s ,  (1)

where xs is the time constant representing the onset of systole (r5 =  30 ms fits our model best). 
During the diastolic segment, the compliance follows the equation

Ch = (Chs -  Chd) e +  Chll, (2)

where td  is the time constant representing the onset of diastole (r^ =  60 ms fits best here).
To help you determine the compliance (C ) and resistance (R ) values of each of the vessel 

groups shown in Fig. C.2, you will need some important properties of a typical healthy human CV 
system given in Table C.3, including the blood volume contained in each compliant vessel category 
as well as the (estimated) residual volume in each compartment. Note that the total blood volume in 
the systemic loop (not including the pulmonary circulation) is 5.0 L — 0.8 L =  4.2 L. In addition, 
Fig. C.4 shows typical pressures around the systemic circulation, and Fig. C.5 shows the pressure 
waveforms of the left ventricle and aorta during one cardiac cycle. You will use these data sources to 
calculate the values of the model parameters in Section C.7.

C .1.6 A P P R O X IM A T IO N S
Any engineering model (mathematical, electrical or otherwise) must make some simplifying approxi­
mations to be useful; otherwise, it is so complex that it is impossible to solve. But these approximations 
can’t go too far or the essence of the problem will be lost. For example, in our CV model we have 
reduced the four-chambered heart to a single chamber to keep the number of equations smaller, but 
we have to keep at least one chamber lest there would be no pumping action in the heart.

'■In these equations, the time variable t is referenced to zero at the beginning ot each segment. In the actual com puter program, 
each segment must be shifted to match the systole and diastole tim ing shown in Fig. C.5.
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Figure C.4: Pressures around the human systemic circulating loop. Adapted from Enderle, Blanchard 
and Bronzino, Introduction to Biomedical Engineering, Academic Press, 2000, Fig. 10.7.

Some approximations have a minor effect on the accuracy of the model’s predictions; others 
are more profound. W hile you are working on this project, fill in Table C.4 (pencil is okay here) 
with a list of five  of the several approximations that we make, give a judgment as to whether each 
approximation has a minor, medium or major effect on the accuracy of the model, and list one thing 
lost by making each approximation. Fill in Table C.4 in time for Checkoff #1.

C . l .7 C A L C U L A T IO N  O F  R  A N D  C VALUES
This is the important first step in obtaining the parameters for our CV models. To do this, calculate 
values (from the data sources in this appendix for the healthy circulation) for all the elements (R ’s and 
C’s) of the model of Fig. C.2, including the two C’s that model the left ventricle, C/,,/ and Cils- W hen
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Figure C.5: Wiggers diagram showing the relationship between various blood pressures and ventricular 
blood volume during a cardiac cycle. Adapted from D. Silverthorn, Human Physiology, an Integrated 
Approach, Prentice Hall, 1998, Fig. 14-27.
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Table C.3: Characteristics of typical human circulatory system
Contained Residual Average

Vessels volume volume (est.) velocity
(mL) (mL) (cm/s)

Left ventricle 100 0*
Aorta 150 85 40
Arteries 350 170 10-40
Arterioles 50 20 0.1-10
Capillaries 300 60 <0.1
Venules 300 60 <0.3
Veins 2500 500 0.3-5
Vena cava &

left artrium 450 90 5-30
Pulmonary

circulation 800
Heart rate (beats/min) 60-80 Cardiac output (L/min) 5-6
Total blood volume (L) 5.0 Stroke volume (mL) 70

Adapted from Berger, Goldsmith and Lewis, Introduction to 
Bioengineering, Oxford Press, 2001, Table 3.1.

* Estimate from H. Senzaki et al., Circulation 94:2497-2505,1996.

calculating compliances, take the residual volumes listed in Table C.3 into account. (However, assume 
that the residual volume of the left ventricle is zero because this gives a more reliable calculation of 
the heart’s compliance.)J W hen calculating the resistances in the two segments containing valves 
(Rho and R vh), take into account the fact that the flow through these valves is pulsatile— i.e., that 
the cardiac output passes through these two valves only during the periods of systole and diastole, 
respectively. Be sure to include proper units for each value, following the units listed in Table C.2. 
Do the calculations in your notebook, and then make a table in your notebook that summarizes all 
these values.

C.2 MATLAB MODEL
TASKS:

2.1. W rite equations relating all of the variables (P, Q, and V) shown in the model of Fig. C.2 
to each other. You should use pressure/volume/compliance relationships, Poiseuille’s Law, the 
conservation of volume law, and equations that relate volume changes to flow. Some sets of 
equations will be simple algebra and some will contain a time-derivative term. Also, some

"This assumption has been validated by a human study, which found that the left ventricle behaves dynamically as though its 
residual volume was approximately zero. See H . Senzaki et al.. Circulation 94:2497-2505,1996.
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equations will be conditional (with an IF  statement) describing the flow through the valves. 
You should end up with about 22 final equations, not counting the equations that generate the 
waveform for C/,. Do all the mathematics in your notebook.

2.2. Break the period of one heart cycle into many increments, each with time length A?. Then apply 
Eulers method  to approximate by forward differences the time derivatives of those equations 
developed in Task 2.1 that contain such derivatives.

Then write all of the final equations of Task 2.1 in vector notation. That is, let all the variables 
(for example: Pu or V,,) be represented by row vectors, whose elements Pu (i)  or V;, O') are the 
values of the variable at each increment of time. For those equations that use Euler’s method, 
solve for the value at the next increment of time Va O' +  1) in terms of the value at the current 
time step Vu (;'). This will allow your Matlab program to step through time during a heart cycle. 
Since you will be coding these equations in Matlab in the next task, collect them all (after 
you’ve finished putting them in vectorized format) on one or two pages of your notebook.

2.3. W rite a Matlab script m-file that contains two FO R  loops. The inner FO R  loop (the major 
one) steps through the time increments during one heart cycle (say 800 steps) solving for 
the time behavior of all the variables (P ’s, Q ’s, and F ’s) shown in Fig. C.2. This uses the 
equations developed in Task 2.2. Also inside this loop will be some conditional sections using 
IF  statements to handle the conditional flow through the valves.

The outer FO R  loop repeats the heart cycle again and again for as many times as necessary to 
reach steady state (perhaps 10 or more cycles). Be sure to “glue” the start of each cycle to the

1
values at the very end of the previous cycle Va (801).

Also, figure out away to calculate the cardiac output (CO) of each cycle. CO  is defined as the 
blood volume being pumped out of the left ventricle per minute (so its units are L/min), but 
it can be calculated on a beat-to-beat basis. You will write out the CO  after each heart cycle 
in the next task, along with writing out the blood volume in the venous side and plotting all 
the pressure waveforms after each cycle.

Before entering into the outer FO R  loop for the first time, your program must first read in all 
the parameters for your model (for example, the R  and C  values for a healthy circulation, all 
timing parameters, and the residual volumes) and the initial distribution of the blood volume 
in the various compliant vessels. (Im portant: The distribution of blood volume throughout 
the system will surely adjust during the simulation run, so exactly what the distribution is when 
you start is not very important. But the total blood volume will remain constant, so make sure 
you have the proper total starting volume, which is 4.2 L for the normal CV systemic system.) 
It is convenient to use a separate m-file which contains all those parameters for a healthy 
circulation and to read in this separate file by “inputting” its name (without the .m extension) 
at the beginning of the run of your main script file. Then other abnormal circulation states 
(e.g., hypovolemia) can have their own parameter files.



Also, before entering the outer FO R  loop for the first time, you should calculate a row vector 
representing the left ventricular compliance waveform C/,. Use the equations found in Sec­
tion 1.5, with each segment (systole and diastole) shifted appropriately to correspond to the 
timing found in Fig. C.5.

2.4. In your main script m-file, put the capability to p lo t out on the same graph on the screen the 
following waveforms updated after each heart cycle:

* Left ventricular pressure.

* Aortic pressure.

* Arterial pressure.

* Capillar}' pressure.

* Venous pressure.

On the graph axes, put labels and correct units. To identify each pressure, use separate line 
styles and colors for each of the five lines. Also, use the T E X T command to write inside the 
graph the values of: a) CO  for the heart cycle, and b) total venous blood volume (venules, veins 
and vena cava) at, say, the start of that heart cycle. Put these values in a text line (somewhere 
inside the graph) that looks like this:

C O  = 5.3 L /m in Venous Vol = 3.3 L.

At the end of the plot section, put a PAUSE command [e.g., pause(0.5)] to allow time for the 
program to print the graphs on the computer screen before continuing the FO R  loop. Print 
out a copy of the final version of your main m-file and tape it in your notebook.

2.5. Run your script m-file using healthy circulation parameters for several cycles, until steady state 
is reached. On the graph on the screen, watch the changes in the pressure waveforms as the 
total blood volume redistributes itself throughout the various compartments of the system. 
Watch for changes in CO  and venous volume. After steady state is reached, stop your program 
and print out the last graph, representing the behavior of a healthy circulation, and tape it in 
your notebook along with a copy of the healthy parameter file. Be prepared to demonstrate 
this program and answer questions about it during Checkoff #2.

2.6. Several CV diseases have been observed and categorized in humans. A few of the more impor­
tant ones are listed in Table C.5. In this task, you are to simulate three of them— anaphylactic 
shock, left-heart failure (sometimes called congestive heart failure), and hypovolemia—by 
using your Matlab program to see what effects these pathologies have on CV performance. To 
see how each disease state should be modeled, consult relevant books or explore the internet 
to learn about each disease. Then make new parameter m-files representing each disease state 
with its modified values. Run your Matlab program for each of these abnormalities, and note
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the major effects on certain pressures, CO and venous volume. Print out a representative graph 
to tape in your notebook along with its corresponding parameter file for each pathology. Then 
fill in (pencil is okay) the various columns in Table C.5 for these three diseases. (The last two 
diseases will be simulated with the electrical circuit, next.)

C.3 ELECTRICAL CIRCUIT ANALOG
As you learned earlier, there is a one-to-one correspondence between the differential equations 
describing major fluid-mechanical components and the equations describing electrical circuits once 
the electrical variables are identified which correspond to the respective fluid variables. Thus, the 
model shown in Fig. C.2 can be directly implemented as an electrical circuit, and pressures and flows 
can be measured as electrical quantities from this circuit. This is the overall goal of Section C.3 of 
this project.

TASKS:
3.1. Fill in Table C.6 with the units you used in Table C.2 for the fluid CV variables, then with 

the names and units of the electrical variables that correspond to the fluid variables.

3.2. Translate all of the fluid-element values that you previously calculated in Section C.1.7 for a 
healthy circulation (all R ’s and C’s) into their respective electrical-element values. To find the 
translation scaling factor for the C’s, use the fact that that the largest compliance value found 
in Section C.1.7 should correspond to the largest practical capacitance size available in the 
lab (100 n F). Then, to find the translation scaling factor for the R ’s, use the fact that tim e  is 
the same in both systems (fluid and electrical); the result is that the scaling factor for the R ’s 
will depend on the scaling factor found for the C ’s. Be sure to include units in your scaling 
equations. Then make a table of all the electrical R  and C  values for Fig. C.2 for a healthy 
circulation, with proper units. Do this work and record your values in your notebook. (Note: 
Another scaling equation— relating fluid pressure to electrical voltage—will be left unspecified 
until later, when it can be adjusted to keep the voltages of the circuit within a reasonable range.)

3.3. The left ventricle poses a special challenge for the electrical-circuit model. The capacitance of 
capacitor C/7 must change from a high value C m  during diastole to a low value C/1S during 
systole w ithout changing the electrical charge (which is analogous to ventricular blood vol­
ume) stored on the capacitor during the rapid changeover— this corresponds to isovolumic 
contraction of the ventricle.

An active circuit that can achieve this by using two op amps and an analog switch is shown in 
Fig. C.6. The portion containing the two op amps is called a "capacitance multiplier" circuit 
since the effective capacitance seen across the input terminals (marked by X-X) can be larger 
than the physical capacitance value C \. It can be shown that, using the branch current method 
and an ideal op amp model, the effective capacitance is given by
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Table C.5:
ac
5

60 O  1/1
Oh
>
j

a
9.
ou

u
£P «-• § O
6 U

CCS
GO
Oft
P

03
G
O

Oft
P

CD"O£ o -(U
03 ^  GH G CS <3 *rt xJ&H O □60
5  g $  
fe: -= l> U

U  ca
i  .a 
« Q 
■§

CD
X ) ^

at !£ I— M S' *g r̂t wj*i > gj
03> CD w'S* .r t

r t  CD
cs G  X O

o>o
f t;>>

X

cfS P

X3 0> 0̂3 
CjlJ *£3 T5 

s_

-rt ^
•S ~ -23 £  ES 4J 1)
>>>2- o
1 - u O
1 2 £<  •§ - a

G
j>
1 3

M

►>
o jap

3
o Oii

<
CD



C.3. ELECTRICAL CIRCUIT ANALOG 121

Table C.6: Fluid/Electrical Pairs (Note: pencil is 0 kay here)

F luid
Q uantity

Symbol F lu id
Units

Corresponding 
Electrical Q u an ­
tity

Symbol Electrical
Units

Resistance element R R

Compliance
element

C C

Pressure P V

Volume V 9

Volumetric flow Q i

C# - ( 1 +  R l ) C l '

In Fig. C.6, the analog switch is in the down position (open) during systole and is up (closed) 
during diastole; the resulting changes in C eff- are used to model the desired changes in C/7. 
During diastole, for example, the circuit resistance R i =  10 kQ, but during systole the circuit

1
your notebook, write two expressions for C/, (that is, C ef f )  in terms of Ci ,  S ^ ^ d  R 2 : write 
one for C/w (systole— switch open) and one for C/,d (diastole—switch closed). Then use these 
expressions and the values for C/w and C/,d you derived in Task 3.2 above to derive the values 

1 2

(Note: The 4.7 /iF capacitor is added here only so the variation in C/7 follows a more gradual 
exponential waveform rather than an abrupt change between systole and diastole. Ignore the 
presence of the 4.7 /iF capacitor in your calculations above.)

3.4. Redraw the complete left ventricular module diagram of Fig. C.6 in your notebook. Show pin 
numbers on your diagram by referring to the pin-out diagrams of the op amps (Fig. C.7) and 
analog switch (Fig. C.8). Show the power connections to the op amp chip and the switch chip. 
Also show values for the capacitors and resistors to give the desired values for C/„/ and C/7 S as 
determined in Task 3.3.

3.5. In the lab, assemble the left ventricle circuit you designed in Task 3.4 using the left half of a 
prototyping board, jum per wires, op amp chip, analog switch chip, and a function generator. 
Connect apower supply to the circuit and adjust the function generator to represent the cardiac
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Figure C.6: Left ventricular module consisting of a capacitance multiplier circuit and an analog switch. 
The effective capacitance seen across terminals X-X represents C/,, which changes exponentially between 
a high value during diastole and a low value during systole.

cycle of Fig. C.5 with the proper systolic and diastolic periods. Ifyou use electrolytic capacitors, 
be sure to observe the proper polarity of the leads by orienting the “+ ” lead toward the positive 
voltage and the ” lead toward ground.

The voltage across the effective capacitance represents left ventricular pressure, and it will be a 
function of how much charge (representing blood volume) is stored on the capacitor. The scale 
factor relating circuit voltage to blood pressure can now be set. A good signal voltage range 
for the op amp is 0 to 4 V, so a recommended scale factor for translating between voltage and 
pressure is one such that 100 m m H g pressure is represented by a voltage o f 4.0 V. Thus if 
the oscilloscope vertical scale is set at 2 V per division, then a blood pressure of 100 m m Hg is 
represented by a height of 2 divisions (2 “boxes”) on the oscilloscope screen.

Run your left ventricle circuit and observe the changing voltage across the effective capacitor 
with an oscilloscope. To inject a proper amount of charge onto the capacitor in your circuit, 
use the charge injector arrangement shown in the dotted box in Fig. C.2. Inject enough charge 
into the capacitor to get a reasonable systolic blood pressure for a healthy left ventricle using 
the scale factor above. By hand, plot the voltage waveforms for both the excitation voltage 
(i.e., the voltage from the function generator driving the analog switch) and for the ventricular 
voltage Vh. Overlay the two waveforms on the same graph with the same horizontal axis (time) 
and the same vertical axis. Label the vertical axis with two scales: one in voltage (units of V) 
and one in equivalent blood pressure (units of mmHg) using the scale factor above. The graph
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Connection Diagram 
LF353 Dual Operational Amplifier

Figure C.7: Connection diagram for the LF353 op amps.

must be neat and complete, or points will be deducted from your score! Do the plot in your 
notebook, and be prepared to demonstrate this circuit during Checkout #3.

Im portan t note: An oscilloscope has a large but not infinite input impedance, meaning that a 
small amount of current will be drained off the capacitor when the oscilloscope is connected, 
bleeding away most of the charge after a minute or two. This has undesirable consequences, 
both from an electrical point of view and a physiological point of view (obviously, excessive 
bleeding of a patient in order to take many repeated measurements of blood gases can lead to 
hypovolemia and eventual death). Therefore, we need to use an impedance “buffer” between 
the oscilloscope and the circuit to be measured. The arrangement in Fig. C.9 shows two 
voltage followers, and takes advantage of the extremely large (1012 £2) input impedance of 
an op amp. Connect up two voltage followers on the top side of your prototyping board 
(using one additional op amp chip) between your circuit and the oscilloscope. Refer to the 
pin-out diagram of Fig. C.7 for correct connections. You can reuse the voltage follower setup 
that you have already employed in Problem 13.2. Connect one channel of the two-channel 
oscilloscope to the excitation (function generator) voltage and the other channel to the left 
ventricle (capacitor) voltage.

3.6. After the left ventricle module is working, you can assemble the entire circuit of Fig. C.2 on 
the prototyping board. Use the R  and C values for a healthy heart found in Tasks 3.2 and 3.3. 
Inject enough charge into the circuit to get the correct systolic peak pressure in the aorta (this
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Connection Diagram 
DG419 Analog Switch

source: Vishay Siliconix Databook

Switching Conditions

Vin s, S2

OV on off

5 V off on

Figure C.8: Connection diagram for the DG419 analog switch.

Figure C.9: Two voltage followers act as buffers between the electrical CV model circuit and the oscil­
loscope to avoid draining charge off the capacitors.

is close to the blood pressure measured in your upper arm) as given in Fig. C.5. There are 
several seconds of time lag between the time that charge is injected and the time the voltage 
settles to a final value, so have patience when injecting the charge. (The time lag represents 
the redistribution of blood within the various compartments of the body.) In order to measure 
the voltages iv, and v0 simultaneously, use the two voltage followers from the previous task 
connected to the channels of a two-channel oscilloscope. By hand, plot the voltage waveforms 
for both the ventricular voltage iv, and the aortic voltage vQ. Overlay the two waveforms on the
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same graph with the same horizontal axis (time) and the same vertical axis. Label the vertical 
axis with two scales: one in voltage (units of V) and one in equivalent blood pressure (units of 
mmHg) using the scale factor above. The graph must be neat and complete, or points will be 
deducted from your score! Do the plot in your notebook, and compare this graph to Fig. C.5. 
Be prepared to demonstrate your circuit performance and answer questions from the teaching 
assistant in Checkoff #4.

Since blood volume and electrical charge are analogs, cardiac output (CO) is represented by 
the average current flow around the circuit. To measure CO, you could insert an ammeter in 
any link of the circuit, but in practice the current is so low that most ammeters won’t read it 
accurately So use Ohm ’s Law to relate the voltage across one of the resistors to the current 
through it, and connect a hand-held voltmeter across this resistor to measure dc voltage. (Rcv 
is a convenient place to measure CO since the flow is rather steady here.) Record this voltage 
proportional to CO  in your notebook after reaching steady state.

3.7. Now model the two remaining diseases in Table C.5, atherosclerosis and aortic valve re­
gurgitation, using your electrical circuit. Determine which electrical components need to be 
changed (using only resistors) to represent each disease, then modify your circuit accordingly 
For each disease, run the circuit, plot in your notebook the waveforms for i>/, and vot record the 
new blood pressures in the ventricle and aorta, and record the new voltage proportional to CO. 
Calculate and record the percentage change in the CO  compared to the healthy system. W hen 
adding, removing or changing resistors, keep the circuit running (“hot swap” the resistors) and 
avoid draining any charge off the capacitors while changing the resistors. Fill in the remaining 
boxes in Table C.5 based upon your results. You will be asked to demonstrate one of these 
pathologies during Checkoff #4.

G O O D  LUCK (and remem ber to  take care o f your cardiovascular system during your lifetime)!
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