
TIME W ARP ON A SHARED MEMORY MULTIPROCESSOR

Richard M. Fujimoto1
Computer Science Department

University of Utah
Salt Lake City, U T 84112

Technical Report Number UUCS-88-021a

January 10,1989

JThis work was supported by ONR Contract Number 00014-87-K-0184 and NSF grant DCR-8504826

A b stra ct

A variation of the Time Warp parallel discrete event simulation mechanism is presented that is

optimized for execution on a shared memory multiprocessor. In particular, the direct cancella

tion mechanism is proposed that eliminates the need for anti-messages and provides an efficient

mechanism for cancelling erroneous computations. The mechanism thereby eliminates many of

the overheads associated with conventional, message-based implementations of Time Warp. More

importantly, this mechanism effects rapid repairs of the parallel computation when an error is

discovered.

Initial performance measurements of an implementation of the mechanism executing on a BBN

Butterfly™ multiprocessor are presented. These measurements indicate that the mechanism

achieves good performance, particularly for many workloads where conservative clock synchro

nization algorithms perform poorly Speedups as high as 56.8 using 64 processors were obtained.

However, our studies also indicate that state saving overheads represent n significant stumbling

block for many parallel simulations using Time Warp.

Discrete event simulation has long been a task with computation requirements that challenge

the fastest available computers. For example, simulations of communication networks, parallel

computer architectures, and battlefield scenarios often require hours, days, or even weeks of CPU

time using traditional, single processor techniques. Simulator performance may be improved using

vectorizing techniques [CB83], processors dedicated to specific simulation functions [Com84], exe

cution of independent trials on separate processors (replicated trials) [B*85], or the execution of

a single instance of a simulation program on a parallel computer. The last technique, commonly

referred to as distributed or parallel simulation, is the subject of this paper.

In existing parallel discrete event simulation mechanisms, one typically assumes that the sim

ulation program consists of some number of logical processes (LPs), each modeling some portion

of the system under investigation. For example, in simulating a communication network (e.g.,

ARPANET), each communication processor could be modeled by a logical process. Logical pro

cesses communicate exclusively by exchanging timestamped event messages (or simply events).

Event messages typically trigger a change in system state at the receiving logical process, and

cause zero or more additional events to be scheduled (sent). Each LP must process incoming

messages in non-decreasing timestamp order to ensure that the cause-and-effect relationships in

the system being modeled are faithfully reproduced by the simulator.

Simulation would initially appear to be a natural candidate for parallel processing because many

of the aforementioned applications contain a high degree of parallelism. However, the exploitation

of this parallelism is elusive because the global notion of simulated time does not easily map to a

distributed computer. Ensuring that each LP processes events in non-decreasing timestamp order

presents a difficult problem. This property distinguishes distributed simulation from other forms

Several schemes have been proposed to attack this problem. A survey of the literature has

been reported by Kaudel [Kau87]. Clock synchronization algorithms broadly fall into two cate

gories: “conservative” and “optimistic” mechanisms. In an earlier paper, we discussed aspects

of simulation workloads that have a direct bearing on the performance of conservative simulation

mechanisms [Fuj88]. In this paper, we focus our attention on the performance of optimistic simula

tion mechanisms, and compare performance with that which we earlier observed for the conservative

The Time Warp mechanism developed by Jefferson is by far the most well-known optimistic ap

proach [Jef85]. Time Warp offers several attractive properties over conservative approaches. First,

processes and the communication pattern among them may vary dynamically throughout the sim

ulation. Existing conservative mechanisms require static processes and interconnections; structures

designed to circumvent this problem (e.g., creating everything that might be needed in advance and

setting up a complete interconnection among them) generally increase the associated overheads to

unmanageable levels, although some progress has been made in this realm [WLB88]. Secondly, it

has been observed that there are many workloads of practical interest that contain a significant

amount of parallelism, yet existing conservative methods have considerable difficulty obtaining any

speedup [Fuj88,RMM88]. In particular, poor performance often results if the simulation application

has poor lookahead properties [Fuj88], or if the connectivity of the network topology is high relative

to the number of unprocessed events. Later in this paper, we will present empirical evidence that

suggests that Time Warp does not suffer from these difficulties.

We assume throughout this paper that the parallel simulation is performed on a shared-memory

multiprocessor. This could, in principle, be implemented on top of a message passing machine

architecture, as discussed in [Li88]. However, the underlying communication mechanism should be

relatively efficient if one is to achieve the performance advantages discussed in this paper.

The next section discusses the rationale behind the proposed mechanism, and why we feel it will

significantly improve the performance of Time Warp programs. We will also compare our approach

to that of others with similar goals. Next, our variation of Time Warp is described, as well as the

direct cancellation mechanism. Finally, we present measurements of an implementation running on

a BBN Butterfly Plus™ multiprocessor, and compare its performance with that of a sequential

event list implementation, as well as conservative parallel simulation algorithms. We assume the

reader has at least a general familiarity with the Time Warp algorithm as described in [Jef85].

2 Motivation

The simulation mechanism described here was developed to overcome inefficiencies that we ob

served in an initial, message-based implementation of Time Warp that we had previously developed

for the Butterfly. Overheads in conventional, message-based, implementations of Time Warp that

are not present in sequential, event list simulators (and therefore threaten to diminish I11'' cv>™,dup

that can be obtained) arise from several sources:

2

History maintenance: Time Warp must maintain a history of the computation so that it may

later be rolled back. The state of the logical process must be periodically saved, and a copy

of each outgoing message must also be kept. The latter gives rise to Time Warp’s output

queue containing an anti-message for each positive message that was generated.

Message passing: A substantial amount of overhead may be required to package a message,

reliably transmit it to another processor, and receive it at the destination processor.

Implementing rollback and cancellation: Rolling back the queues for a single logical process

does not represent a significant overhead. The more important overhead arises from canceling

the erroneous computations spawned by the rolled back computation. In particular, message

passing overheads must be incurred for each anti-message that must be transmitted.

Erroneous computations: Each rolled back event represents time that was wasted performing

an erroneous computation. If 25% of all events performed by the simulation are eventually

rolled back, then the maximum speedup that can be obtained is only 75% of ideal. Therefore,

it is important that one minimize the number of erroneous computations that are performed,

although this must be done in a way that does not interfere with the progress of correct

computations.

The mechanism proposed here attempts to minimize Time Warp overheads arising from each of

these sources. First, although the mechanism does not alleviate state saving overheads, it eliminates

the need to keep extra copies of outgoing messages (i.e., anti-messages). Second, message passing

overhead is largely eliminated by allowing processes to schedule events directly into the event

list of other processes. Here, the only additional penalty associated with scheduling an event,

when compared to a sequential event list implementation, is that for remote memory references,

and locking overhead (both invocation of the locking primitive and contention; the latter can be

reduced, however, using well-known techniques [RK88]).

Third, rather than using anti-messages to cancel erroneous computations, a tree traversal is
used, as will be described later. While event cancellation in conventional implementations of Time

Warp requires one to (1) invoke the send primitive to output an anti-message, (2) transmit the

anti-message to another processor, (3) invoke the receive primitive to input the anti-message, and

(4) locate the corresponding positive message in the receiver’s input queue, the direct cancellation

3

mechanism proposed here merely dereferences a pointer variable to locate the event that is to be

cancelled.

The cancellation mechanism is perhaps the most innovative aspect of the proposed approach,

and critical to its achieving good performance. The number of nodes visited in the aforementioned

tree traversal is exactly equal to the number of events that are cancelled and/or rolled back, so

little time is wasted. Further, one can parallelize the traversal to further speed it up and reduce

the number of remote memory references that are required.

Although the above factors would lead one to expect that direct cancellation will yield a signif

icant, albeit constant factor, improvement in overhead over the anti-message approach, we argue

that this improvement is actually secondary to the real reason it was introduced: direct cancella

tion helps to minimize the amount of erroneous computation that is performed (the final overhead

item listed above). It is essential in any implementation of Time Warp that one be able to cancel

erroneous computations more rapidly than they propagate throughout the system. This becomes

especially problematic when (1) little computation is required to process each event, and (2) the

number of unprocessed events is continually either less than, or not much greater than the number

of processors. If this situation exists, erroneous computations will spread throughout the system

at a rapid rate, while anti-messages frantically give chase, trying to outrun them. It has been our

experience that this “dog chasing its tail” effect can easily cripple Time Warp simulations unless

appropriate precautions are taken. This phenomenon has also been independently observed by

Abrams, where Time Warp simulations of queuing networks were reported to execute many times

slower than a sequential implementation [Abr88]. This contrasts sharply with our performance

results using direct cancellation, as will be discussed later.

The direct cancellation mechanism has still another important benefit. Not only does it slow

the spread of erroneous computations, but it also hastens the creation of correct ones. After all,

rollback is essentially a redirection of the computation from an incorrect path to what is hoped

to be the correct one. The faster the cancellation and rollback mechanism, the more rapidly the

computation will be placed back onto the correct path. This can lead to a significant advantage

that cannot be easily obtained through other means (in particular, scheduling): if the system

contains enough correct computations mixed in with the erroneous ones, an intelligent scheduler

could, at least in principle, discriminate against the incorrect ones. However, if generation of correct

computations is delayed (as it might be if message passing is used as the cancellation nnL,. nism),

4

even an omniscient scheduler may not achieve satisfactory performance because there could be too

few correct computations to keep all of the processors busy doing useful work.

3 Other Approaches

Other approaches with goals somewhat similar to direct cancellation have been proposed. In

the JPL implementation of Time Warp, anti-messages are given high priority [Jef88]. Although

this helps, message-based cancellation is still orders of magnitude slower than direct cancellation

in existing machines. However, in a loosely coupled message-based system, no better solution may

exist.

Madisetti, Walrand, and Messerschmitt propose a mechanism in W OLF in which a straggler

message causes a process to send special control messages to other processes in the “sphere of

influence” of the straggler, i.e., the set of processes that might be executing erroneous computations

because of the straggler [MWM88]. These processes are instructed to stop computing if they are

ahead of the straggler in order to prevent the error from propagating. The disadvantage of this

approach is that some processes may be unnecessarily frozen, which is somewhat counter to the

“full speed ahead” philosophy behind the Time Warp mechanism. Also, the overhead to implement

this mechanism becomes excessive in certain applications because the sphere of influence will be

very large.

The Moving Time Window approach proposed by Sokol, Briscoe, and Wieland prevents pro

cesses from advancing too far ahead of others by limiting execution to only those events within a

global time window [SBW88]. Like the approach used in WOLF, this has the disadvantage that it

may unnecessarily impede the progress of correct computations, and some additional overhead is

required to manage the time window.

In contrast, direct cancellation does not impede the forward progress of any logical process. It

merely provides an efficient mechanism to clean up a process’s mistakes.

4 The Direct Cancellation Mechanism

The parallel simulator is essentially a collection of autonomous, sequential, event list simulators,

one per logical process. Event lists are stored in the global address space of the parallel processor,

allowing one process to directly examine and modify another process’s event list. More importantly,

this arrangement allows additional links to be added between events of distinct event lists.

5

Each logical process maintains a timestamp sorted list (i.e., a priority queue) of events. Each

event list is identical to that of a conventional sequential simulator except:

• Both previously processed and unprocessed events are kept in the list. Storage for very old

events is reclaimed using fossil collection after computing global virtual time, just as it is in

message-based implementations of Time Warp.

• A record is associated with each event E which contains pointers to all other events F\...Fn
that were scheduled as a result of processing event E. We call this record the causality
record because it explicitly represents the cause-and-eflfect relationships of the system being

simulated. E is referred to as the parent of Fi (i = 1,2, ...n), and F{ are called the children of

E.

The event list and causality records for a single process perform the same function as the input

and output message queues in conventional implementations of Time Warp.

One implementation of the event list data structure is shown in figure 1. Both the priority

queues and causality records are implemented as linear lists. Each event E contains two fields: the

Causality field is a pointer to E's children, which are in turn linked through the NextCause field.
In figure 1, portions of the event lists for three logical processes are shown. Here, event A caused

events D, F, and E to be scheduled (the order of these events in the list is not important). In turn,

event D caused a single event C to be scheduled. Some links have been omitted from the figure to

clarify the drawing.

The data structure formed by the causality records (ignoring the priority queue links) is a forest

of trees. The set of events caused either directly or indirectly by event E is simply the subtree with

E at its root; we call this structure J5’s causality tree. Unprocessed events and events that do not

create any new events lie at the leaves of the forest.

In addition to the event list structures, a state queue identical to that used in Time Warp is

required. To simplify the discussion that follows, we will assume that a new state queue element is

created after processing each event. Therefore, one may assume that each processed event contains a

pointer to the state of the corresponding logical process the moment after that event was processed.

Each event contains a flag indicating whether or not that event has been processed. We call

this the Processed flag, which is TR U E if the event has been processed, or is now being processed,

4.1 D ata Structures

6

and FALSE otherwise.

Finally, locks are required to ensure mutual exclusion during accesses to the priority queues.

The locking protocols necessary to implement the mechanism are straight-forward, so we will not

discuss them further.

4.2 The Synchronization Mechanism

Assume logical process iP 2 is processing event D, and sends an event message C to LP\. LP2

simply inserts C into LP\& event list, and adds C to £>’s causality record. The results of these

operations are shown in figure 1.

If the event immediately following C in LP\S priority queue has not yet been processed (i.e.,

its Processed flag is FALSE), no additional work is required. Otherwise, C is a straggler event,

and LP\ must be rolled back. In particular, all processed events in LP\s priority queue that are

positioned later than C must be rolled back.

Rolling back an event involves resetting its Processed flag to FALSE, and canceling all events

in its causality tree. Canceling an event A involves removing A from the priority queue in which it

resides, rolling back any and all processed events residing later in that priority queue, and cancelling

the events in .A’s causality tree.

Therefore, undoing the effects of a straggler message amounts to traversing the causality tree,

and rolling back event lists as necessary. The amount of work that is required is proportional to

the number of cancelled and rolled back events. In particular, no event list searches are required.

One important question remains: who performs the rollback/cancellation computation? One’s

initial response might be to have the process that sent the initial, straggler message perform this

task. This is a poor choice, however, because the sender of the straggler message is likely to be the

process that is “bringing up the rear” of the simulation, i.e., the process that is furthest behind in

simulated time and preventing the others from progressing forward. Forcing this process to also

perform the cancellation computation will only delay it further. Even if the process is not the

one that is furthest behind, forcing it to do the rollback computation will tend to push it in that

direction, so more likely than not, it soon will become the “millstone” process slowing down the

rest of the computation.

A better solution is to off-load the cancellation computation to another process, thereby giving

the straggler process a chance to catch up. For example, one might off-load the cancellation of events

7

for a rolled back process to the process being rolled back. This tends to parallelize the rollback

computation, and for machines such as the Butterfly in which shared memory is implemented by

allowing accesses to another processor’s local memory, this strategy also tends to reduce the number

of remote memory references. Our current implementation of the mechanism uses this approach.

Another alternative is to dedicate one or more processors to do nothing but roll back and cancel

erroneous computations, or if hardware modifications are possible, add a coprocessor in each node

to perform this function.

4.3 Lazy Cancellation

In aggressive cancellation [Jef85], all events that were scheduled by rolled back events are im

mediately cancelled as soon as the rollback occurs. In lazy cancellation [Gaf88], events scheduled

by rolled back computations are not cancelled until it has been determined that the recomputation

of the event does not regenerate the same event. Aggressive cancellation works best if the recompu

tation after rollback is dissimilar from the original. Lazy cancellation avoids unnecessary rollbacks

when the recomputation is nearly the same, but requires some additional overhead to check that the

same event messages were regenerated. Further, if it turns out that the originally scheduled event

was incorrect, a delay is incurred before cancellation begins, allowing the erroneous computation to

propagate further than it would if aggressive cancellation had been used. The relative effectiveness

of these cancellation policies is application dependent.

Aggressive and lazy cancellation are policies that dictate when the cancellation mechanism is

invoked. Direct cancellation is a mechanism for efficiently cancelling the computation once it lias

been determined that cancellation is required. Direct cancellation can be used with either lazy or

aggressive cancellation. The simulation mechanism described above uses aggressive cancellation.

Adaptation to lazy cancellation is more or less identical to that in message-based implementations

of Time Warp.

5 Experimentation

A prototype implementation of Time Warp using the direct cancellation mechanism was de

veloped to test the effectiveness of this approach. This implementation is one component of a

distributed simulation testbed that has been developed. The testbed facilitates direct comparison

of alternative approaches to discrete event simulation.

8

An 18 processor BBN Butterfly Plus multiprocessor was used for experimentation.1 Each

processor node contains a 16 MHz MC68020 with MC68881 floating point coprocessor, 4 MBytes

of memory, memory management hardware, and a processor node controller (PNC). Each processor

can access the memory of any other processor. The PNC is a microcoded engine that forwards

remote memory references to the switch (which is configured as an Omega network), and processes

remote memory references coming in from the switch. The ratio between the time required for

a remote 32-bit memory reference to that which is required for a local reference is 16 to 1 (5

microseconds versus 312 nanoseconds) [BBN87].2 Atomic test-and-set like memory operations are

also implemented in the PNC.

Each processor executes a single operating system process. This process is a scheduler that time

multiplexes execution of the simulation processes mapped to that processor. This strategy avoids

excessive context switching overhead, and allows more direct control over the process scheduling

mechanism. Only a few simple Butterfly primitives, namely lock and a few other atomic operators,

are used by the testbed after initialization is complete.

Conservative parallel simulation algorithms based on deadlock avoidance and deadlock detection

and recovery [Mis86] have been in place on this testbed for some time. These implementations take

advantage of shared memory in several ways:

• Deadlock detection is accomplished by maintaining a single global variable indicating the

number of running or scheduled processes; the deadlock recovery algorithm is invoked when

ever this variable becomes zero.

• Global variables are used during the deadlock recovery computation.

• Processes directly enqueue messages in one of the message queues in destination process

rather than through a separate message passing mechanism. Each logical process owns a

set of FIFO queues to hold incoming messages (one queue for each process that may send it

a message). Several processes may concurrently place messages into the queues of a single

receiving process.

'Contention for access to the machine by other Butterfly users prevented us from using all 18 nodes, so most of the

performance results described here assume only 8 processors. However, experiments using as many as 64 processors

on a Butterfly at the University of Maryland are described later.

2The ratio of instruction execution times between a remote and local reference is only about 5:1, however, because

an additional reference is required for the instruction fetch.

5.1 A b ou t th e T estbed

9

• Sending a NULL message in the deadlock avoidance algorithm is implemented by writing into

a shared variable, rather than enqueuing a message.

• Logical processes are only awakened when they have a non-null message that is ready to be

processed. Lazy blocking avoidance, proposed by Wagner, Lazowska, and Bershad, is used

[WLB88], This means that deadlock avoidance computations to determine lower bounds

on the timestamp of future messages is performed by the simulator kernel executing on a

processor only when that processor has no other useful work to be done (i.e., no pending,

processable messages). It has been reported that this offers some performance advantage over

the more conventional, eager blocking avoidance.3

Because a cycle of processes may exist in which the cumulative timestamp increment of a message

traversing this cycle is zero, certain deadlock situations are unavoidable [PWM79]. Therefore,

the deadlock avoidance mechanism was augmented to invoke the deadlock recovery mechanism

whenever deadlock occurs.

Finally, a sequential event list simulator was developed to allow comparison with a conventional,

uniprocessor implementation. In order to obtain a fair comparison, this simulator was constructed

by modifying the parallel simulator. All code specific to parallel computation (e.g., synchronization

locks) was eliminated. The uniprocessor simulator only uses memory that is local to the processor

on which it executes.

The event list for the sequential simulator was implemented as a splay tree [ST85]. Empirical

evidence suggests that splay trees provide a very efficient mechanism for implementing priority

queues [Jon86]. An alternative implementation using a singly linked linear list was also developed.

It was found that this implementation yielded performance comparable to the splay tree for small

simulations, but as expected, ran much more slowly for the larger simulations. The splay tree

implementation is used in all comparisons with uniprocessor simulations that are reported here.

All of the sequential and parallel (both conservative and optimistic) simulation programs share

a substantial amount of code. The application programs are identical across all of the simulators.

Further, the parallel simulators use virtually identical mechanisms for common functions such as

logical process scheduling and allocation of storage for new events. Moreover, all of the sequential

and parallel simulators maintain the same overall structure, organization, programming style, and

3We earlier performed extensive experimentation with eager blocking avoidance, and obtained results that are
qualitatively similar to those reported here.

10

5.2 About the Time Warp Implementation

The prototype implementation of Time Warp uses the simulation mechanism described ear

lier. Aggressive cancellation is used in all of the measurements reported here. Fossil collection is

performed on demand, whenever a processor runs out of memory, and involves a global synchro

nization of all of the processors. From a pragmatic standpoint, this has the disadvantage that it

delays commitment of irrevocable actions (e.g., I/O). However, from an experimental view, this al

lows one to easily separate the overhead attributed to GVT computation and fossil collection. Our

measurements indicate that the amount of time required to perform these tasks for the benchmark

programs discussed here is negligible.

5.3 About the Benchmarks

The benchmark programs are simulations of closed queuing networks configured in a hypercube

topology. A fixed number of jobs (messages) randomly circulate throughout the network. This

number is referred to as the message population. To process an event, the simulator first selects

an outgoing link using a uniformly distributed random variable. A server is associated with each

outgoing link. Several different queuing disciplines were used, as will be discussed later. The

service time is selected from an exponentially distributed random variable with mean of 1.0.4 The

minimum value of the service time distribution is 0.0; this is permissible because the deadlock

avoidance mechanism is augmented with the ability to detect and recover from deadlock, as was

discussed earlier.

No additional delays or busy wait loops are inserted into the program to artificially increase the

execution time of each event. The amount of time spent performing application specific computa

tions within each event is relatively modest, typically on the order of a few hundred microseconds

per event (this excludes the time for event list management and Time Warp overheads). Much of

this time is spent computing random numbers.

The queuing network simulation described above is a useful benchmark for testing any parallel

4Nicol has proposed precomputing service times to improve the performance of conservative simulation algorithms

using first-come-first-serve queues [Nic88]. We refrain from using this technique because it cannot be generalized to

other applications; for example, when simulating a communication network, the service time depends on message

length information that is held within the incoming message; therefore, the service time cannot be determined until
the message actually arrives.

c o d in g c o n v e n tio n s .

11

simulation mechanism. There are enough favorable properties that one would expect any parallel

simulation algorithm “worth its salt” would obtain a reasonable speedup. In particular, it contains

a reasonable amount of parallelism, assuming an appropriate message population is selected. Also,

it is homogeneous and highly symmetric, so it is free from any inherent bottlenecks, and a good

mapping of processes to processors can be found.5 On the other hand, this benchmark also contains

aspects that make it reasonably challenging, and reflect situations that commonly arise in practice.

For example, the network topology contains numerous feedback loops and an intermediate node

degree.

5.4 Performance Metrics and the Experimental Method

Here, speedup is defined as the execution time of the sequential event list implementation

using a splay tree divided by the execution time of the parallel simulation program. The sequential

execution times were obtained by running the splay tree simulator on a single node of the Butterfly.

The same compiler as that used by the distributed simulator was used. Therefore, compiler and

processor speed dependencies are factored out of the speedup figures.

For the Time Warp simulations, efficiency is defined as the number of correct event executions

(i.e., the number of events that were neither rolled back nor cancelled later on in the simulation)

divided by the total number of events executed by the parallel simulator. The latter number

includes partially executed events as whole events; if an event is either rolled back or cancelled

while that event is being executed, it may be aborted before execution of the event completes. This

makes the efficiency figures reported here somewhat conservative, i.e., lower than their true value.

The efficiency figure gives an indication of the fraction of the time in which the parallel simulator

was performing useful work (as opposed to processing erroneous events). It provides an upper bound

on performance. We caution, however, that ultimately, speedup is the only performance metric that

really matters. If the application intrinsically contains little parallelism, a low efficiency figure is

inevitable. Also, the efficiency metric defined here does not consider idle processor time.

The experiments described here were performed with no other applications running on the

Butterfly processors that were allocated to the simulator. Facilities such as the window manager

were run on processors different from those executing the simulation program. These measures

were taken to minimize interference with the computation.

Experiments using irregular workloads are planned.

12

Experimental data was well behaved. The 95 percent confidence intervals for the measured data

was less than three percent of the reported value, and typically less than one percent. Each data

point in the speedup curves described below represents the execution of over a million events on

the Butterfly, using several runs and different initial seeds for the random number generator.

6 Performance Measurements

All performance measurements of the parallel simulator use eight Butterfly processors. Four

and six dimensional hypercubes (16 and 64 logical processes, i.e., 2 and 8 processes per proces

sor, respectively) were used. The four dimensional hypercube benchmark provides a particularly

challenging test case for the direct cancellation mechanism because when combined with the rela

tively small event granularity and a modest message population, an erroneous computation tends

to spread very rapidly.

The hypercube was mapped to the Butterfly by assigning individual sub-cubes to each Butterfly

processor. This clusters many pairs of communicating processes onto a single processor, thereby

minimizing the number of remote memory references that are required.

6.1 FCFS Queues

First-come-first-serve (FCFS) queues are a very favorable queuing discipline for conservative
simulation algorithms because they contain a high degree of lookahead. By lookahead, we mean the

degree to which simulation processes can predict what will happen in the future based on what has

happened in the past. If FCFS queues are used, one can immediately predict the departure time of

each incoming message (job) as soon as it is received by merely keeping track of the departure time

of the last message sent on each outgoing link. Therefore, one can forward incoming simulation

messages as soon as they are received, unless of course, the simulation mechanism prevents one

from doing so.

Speedup of the Time Warp mechanism as a function of the message density (the message pop

ulation divided by the number of processes) using direct cancellation are shown in figure 2. For

comparison, speedup using the deadlock avoidance and deadlock detection and recovery approaches

are also shown. As can be seen, the Time Warp simulator far outperforms the conservative ap

proaches when there is a low to moderate message density. The conservative algorithms operate

at peak efficiency when there are unprocessed, incoming messages on each input link. In that

13

case, clock synchronization overheads become negligible. As can be seen, the performance of the

conservative algorithms begins to approach that of Time Warp as the message density increases.

The Time Warp programs perform better for the larger hypercubes because there is a larger

amount of parallelism, so (at least for this application) the minimum timestamp message that is

executed next is less likely to be an erroneous one. In contrast, the conservative programs perform

worse for the larger hypercube. This is because the larger cube contains a larger node degree, so

one is less likely to have an unprocessed message on every input link for a given message density.

Some of the data points in figure 2 indicate that the Time Warp mechanism yields speedup

greater than eight using eight processors. This is an artifact of the way the event lists are imple

mented in Time Warp and the sequential simulator. The Time Warp implementation uses a linear

list for each process, while the sequential version uses a single, global, splay tree. If there are N
events waiting to be processed that are uniformly distributed over n logical processes, the amount

of time required for a queue insertion in Time Warp is ki(N/n), while that in the splay tree is

(approximately) ka(logN), where k[and ka are implementation dependent constants. Insertion in

the linear list will be faster than the splay tree if N is not much larger than n. For instance, if n is

64, ks = ki, and N is 256, then a queue insertion is two times faster in Time Warp than the splay

tree.6 Further, a queue deletion from the linear list is much faster than a deletion in the splay tree;

a linear list deletion requires constant time (in fact, a negligible amount of time because one only

needs to advance the “front-of-list” pointer), while that in the splay tree is O(logiV). These factors

account for the fact that speedup exceeded the number of processors in some experiments.

For large message densities, the linear list search in Time Warp becomes more expensive relative

to insertions into the splay tree, accounting for the dip in speedup in the Time Warp curves. Because

the Time Warp program must often search through a list that resides on a remote processor, and

these applications use relative small grained events, the search time becomes a significant overhead.7

This dip is not a reflection on the efficiency of Time Warp. Figure 3 shows the corresponding

efficiency figures for the Time Warp experiments that were performed (including simulators that

will be discussed later). Efficiency for the 64 process simulator ranges from 75% to over 95%, while

6 A more precise analysis requires one to consider the cost of locking and remote memory references (if the processes

are on different processors), and several other factors. This is beyond the scope of the present discussion.
rFor example, each step in the search requires a minimum of three remote 32-bit memory references if the event

list is on another processor: two to fetch the timestamp (a double precision floating point number) and one the fetch

the pointer to the next list element. Measurements indicated that the average search distance by the Time Warp

programs for large message densities was often as high as 30 events, so a typical remote search requires a minimum

of 450 microseconds. This is comparable to the time required to execute the application code for an entire event.

14

that in the 16 process cube varies from about 58% to over 90%. It is seen that except in one case

where a small decrease is observed, the efficiency of the Time Warp simulations does not diminish

We note that the aforementioned performance dip is not present in the conservative algorithms

because those mechanisms constrain processes to send messages from one process to another in

non-decreasing timestamp order; therefore, it suffices to use a FIFO queue between each pair of

communicating logical process, leading to constant time insertions and deletions, independent of

the size of the queue. Obviously, the Time Warp simulator could also exploit this fact if it added

this restriction to logical process behavior.8 Alternatively, one could circumvent this degradation in

Time Warp without sacrificing generality by using a different data structure for the priority queue

in each process, i.e., one with an insertion time that is logarithmic in the number of events.

The second benchmark program assumes some fraction of the message population are high

priority jobs, while the rest are low priority. Whenever a link server finishes serving a job, it always

gives preference to high priority jobs. A low priority job only receives service if there are no high

priority jobs waiting to use that server. No preemption is allowed; if a high priority job arrives while

a low priority job is being serviced, the high priority job must wait until service for the low priority

job is completed. Each job maintains the same priority level throughout the entire simulation. Jobs

In this simulator, the departure time of high priority jobs can be determined as soon as the

message denoting its arrival is received, for exactly the same reasons as before. However, messages

corresponding to low priority jobs cannot be forwarded until the simulated time of the process has

reached the time at which the job begins service. Until this time is reached, the logical process

cannot determine whether or not a high priority job will arrive that will receive service ahead of

the low priority job. The lookahead properties of this application are considerably poorer than the

Performance of the parallel simulators is shown in figure 4 where 50% and 1% of all jobs have

high priority. Performance of the conservative algorithms degrades as the lookahead properties

8 Also, as noted earlier, the use of separate F IFO queues allows concurrent queue insertions by different processes
that simultaneously send a message to a single destination; our current implementation of Time Warp does not allow

of the application diminish, as reported earlier [Fuj88]. However, performance of the Time Warp

program is not as sensitive to this property. Again, the Time Warp simulator far outperforms the

conservative simulators for the message densities used in these experiments.

The performance dip discussed earlier for the Time Warp programs at high message densities

is not evident in the simulations using a small number of high priority jobs. This is because there

tend to be fewer unprocessed events when there are many low priority jobs because the logical

process must internally buffer them, waiting to see if a high priority job will arrive and receive

service ahead of it. As a result, the previously discussed degradation due to the length of the event

list does not axise unless there are many high priority jobs.

6.3 Prioritized Jobs with Preemption

The third benchmark is similar to that using prioritized jobs, however, preemption is now added.

If a high priority job arrives while a low priority job is being serviced, the high priority job receives

service immediately, and the low priority job is returned to the queue of waiting jobs. When the

low priority job resumes service, it starts afresh, i.e., a new service time is selected.

In the simulator, messages corresponding to high priority messages can be processed and for

warded as soon as they are received. Low priority messages cannot be forwarded until the simulated

time of the process has advanced to the departure time for the job, since a high priority job could

preempt it at any time. Because this simulator contains very poor lookahead properties, especially

when there are few high priority jobs, this benchmark represents an application where conservative

algorithms tend to perform very poorly, even at very high message populations.

Performance of the parallel simulators is shown in figure 5 where 50% and 1% of all jobs have

high priority. As expected, the conservative mechanisms have difficulty obtaining any speedup at

all, even at high message densities. More often than not, they execute many times more slowly
than even the sequential simulation.

Again, the performance of the Time Warp simulator is generally not as sensitive to this change

in the workload as the conservative mechanisms. However, some degradation can be observed in

the Time Warp programs when there are few high priority messages. This can be attributed to the

fact that there is less parallelism in the simulation. If a yet to be received message A is deslined

to preempt an already received message B, then the computation to determine 5 ’s depn-H'ire time

(and forward it to another processor) cannot be correctly performed until A has been received;

16

this would not be the case if FCFS queues were used, or equivalently, if both messages had high

priority. Therefore, it is not surprising that Time Warp’s performance is somewhat lower when

there are few high priority messages. However, this degradation is modest, and the Time Warp

simulator still manages to achieve a respectable speedup. As before, the Time Warp simulator

again far outperforms the conservative mechanisms.

7 Other Considerations

Although the initial performance results are encouraging, some important aspects of these ex

periments must be pointed out. First, the workloads are homogeneous and highly symmetric.

Additional experiments are required to test the robustness of these results under irregular work

loads. However, the JPL implementation of Time Warp has reported good speedup figures for

several irregular workloads [W*89], so we are optimistic (pun intended) that this implementation

will also perform well. Further experiments are planned to examine this issue.

A second, more troublesome problem is state saving overhead. The current implementation of

Time Warp performs this function by copying the entire state vector of the process before processing

each event. The benchmarks were designed to contain very little state (approximately 100 bytes

per process or less in most cases) so that state saving overhead could be easily separated from the

efficiency of the Time Warp mechanism. Only the minimum amount of state necessary to schedule

future events is used in these benchmarks; no state for other functions, e.g. statistics collection, is

used.

Figure 6 shows the performance degradation that results as the size of the state vector in each

process is increased. These curves reflect degradation for the 6 dimensional cube (64 processes)

with a message density of 16 messages per process (1024 messages). As can be seen, even for a

modest sized state vector (2K bytes), performance is reduced by 50%. Degradation results from

both state saving overhead, and the fact that fossil collection must be performed more frequently.

However, the former overhead is by far the more significant.

The state saving overhead problem is especially troublesome in Time Warp because of the nature

of many Time Warp programs. First, state saving must be performed relatively frequently because

rollbacks in Time Warp tend to be relatively short. Figure 7 shows a plot of the average rollback

distance (number of processed events rolled back on each rollback) for the benchmark programs

discussed earlier; as can be seen, it is not unusual for the average rollback to be only one or two

17

events.9 If state saving were performed infrequently, one would often be forced to roll back much

further than is actually required to reach the last saved state; this necessitates the recomputation

of many additional events to recreate the desired state.

As an aside, it is interesting to note that figure 7 indicates that simulators with good lookahead

(i.e., the FCFS simulator and those with many high priority messages) tend to have longer, albeit

fewer, rollbacks. This is because they tend to be more “aggressive” in trying to advance through

the simulation.

Getting back to the state saving problem, we also note that rollbacks occur in Time Warp with

sufficient frequency that one cannot allow the restoration of the correct state after a rollback to

become very expensive. This contrasts sharply with the situation in most fault tolerance applica

tions where state saving is also widely used. In many of our benchmarks, rollbacks occurred several

hundreds of times per second (in a few cases, over a thousand times per second), while the program

still posted a respectable speedup. One must be wary of incremental state saving schemes that

reduce the cost of the state save operation at the expense of the restoration operation.

State saving overhead is the one dark cloud looming on the Time Warp horizon. It limits the

effectiveness of Time Warp to applications where the amount of computation required to process an

event can be made significantly larger than the cost of doing a state save. A more general approach

to circumvent this problem is to use hardware support, as described in [FTG88a,FTG88b],

8 Scalability

The measurements reported thus far were obtained using eight processors. An important ques

tion remains: does performance scale as the problem size and the number of processors increase?

Additional performance measurements were obtained to try to answer this question.

The Time Warp program was ported to a Butterfly-1 multiprocessor that is housed at the

University of Maryland. The Butterfly-1 differs from the Butterfly Plus on which the earlier ex

periments were performed in several respects. Each processor node contains an 8MHz 68000 and

only 1 MByte of memory. Also, no floating point hardware is available, and data paths within each

processor node are only 16 bits wide. However, one would expect these factors to have little affect

on the speedup curves because performance of both the single and multiple processor programs are

affected similarly. The ratio of time between a remote and local memory reference is approximately

9This is consistent with measurements of the JPL implementation for a completely different set of benchmarks

[Jef88].

18

Porting the program to Maryland’s Butterfly did not require any substantial changes. Most

changes only involved the modification of configuration constants to accommodate the smaller

amount of memory.

A series of experiments were perform for benchmark programs containing 256 logical processes

(an 8 dimensional hypercube) and up to 64 Butterfly processors.10 Among the queuing disciplines

examined here, our earlier measurements indicated that first-come-first-serve queues generally ob

tained the best speedup, and queues with priority and preemption yielded the worst; therefore,

simulations were performed for both of these cases. The message density was set at either 256 or

1024, i.e., 1 or 4 messages per process, respectively. Larger message densities could not be used

because insufficient memory was available to perform the sequential simulation, which is necessary

to compute speedup. This highlights one advantage of parallel simulation over the replicated trials
approach (execution of independent sequential simulators on distinct processors); in the latter,

sufficient memory must exist on each processor to accommodate the entire simulation.

Figure 8 shows the measured speedup of the hypercube simulation as a function of the number of

processors. Speedup is relative to the splay tree simulator executing on one processor of Maryland’s

Butterfly. These curves indicate that speedup does scale as the problem and machine size are

increased, at least for these benchmarks. Speedup was observed to be as high as 56.8 using 64

processors. We hypothesize that even higher speedups are achievable for larger message densities.

Figure 9 shows the corresponding efficiency measurements. As expected, efficiency is highest

when the problem is much larger than hardware configuration. The speedup and efficiency curves

are consistent with our earlier measurements using eight processors. In particular, better perfor

mance is obtained with a higher message density, and with first-come-first-serve queues (relative to

those using preemption).

9 Conclusions

We have described qualitatively and quantitatively some important aspects regarding the per

formance of the Time Warp parallel discrete event simulation mechanism. We argue that a key

to successfully speeding up simulation problems using Time Warp is to have the ability to rapidly

10These benchmarks are slightly different from those discussed earlier in that an exponentially distributed random

variable with mean of 1.0 and minimum value of 0.1 was used (before, the minimum value was 0.0). This has little

impact on the performance of the Time Warp programs, however.

4 to 1.

19

stop and repair the damage caused by erroneous computations. We propose an efficient mechanism

called direct cancellation to achieve this task.

Initial performance measurements of an implementation of Time Warp using direct cancellation

are encouraging. These performance results demonstrate the advantages of optimistic synchroniza

tion methods over conservative methods, particularly when the number of unprocessed events is

low relative to the connectivity of the network topology, and when the simulation application has

poor lookahead characteristics. These measurements also provide evidence to support the claim

that Time Warp performance does scale to larger problems and hardware configurations. However,

we caution that further performance evaluation studies across a wide variety of workloads are re

quired before one can make a more definitive statement regarding the performance of optimistic

techniques relative to conservative approaches for arbitrary simulation problems.

Effective exploitation of Time Warp for parallel discrete event simulation relies on three key

ingredients: (1) a mechanism to efficiently cancel erroneous computations so that errors do not

propagate very far and processes are quickly placed back onto the correct path, (2) an effective

scheduling/dynamic load balancing mechanism that gives preference to executing those events

that are least likely to be incorrect, and (3) a mechanism to efficiently perform state saving and

state restoration operations. We argue that the direct cancellation mechanism provides the first

piece of the parallel discrete event simulation puzzle. We conjecture that dynamic load balancing

mechanisms that favor processing the smallest timestamp events (across the entire system), coupled

with considerations for increasing locality of memory references, can provide a good solution to the

second problem. Finally, work reported elsewhere suggests that state saving and state restoration

overheads can be virtually eliminated through the use of special purpose hardware, even if the state

vector is very large (megabytes), independent of the amount of state that is modified between state

save operations [FTG88a,FTG88b]. When these three ingredients are combined, we feel that Time

Warp offers excellent potential for speeding up most large scale discrete event simulation problems

that are today computationally intractable.

10 Acknowledgements

The author wishes to thank David Jefferson, John Cleary, and Arthur Goldberg for providing

comments on an earlier draft of this paper. The cooperation of the Computer Science Department

at the University of Maryland in obtaining access to their Butterfly is also gratefully acknowledged.

20

[Abr88] M . Abrams. The Object Library for Parallel Simulation (O L P S). 1988 W in te r S im ulation Con
ference Proceedings, December 1988.

[B*85] W . Biles et al. Statistical Considerations in Simulation on a Network of Microcomputers. 1985
W in te r S im ula t ion Conference Proceedings, 388-393, December 1985.

[BBN87] B B N Advanced Computers, Inc. Inside the B u tterf ly P l u s ™ . B B N A C I, October 1987.

[CB83] A. Chandak and J . C. Browne. Vectorization of Discrete Event Simulation. Proceedings o f the
1983 In te rn a tio n a l Conference on Paralle l Processing, 359-361, August 1983.

[Com84] J . C. Comfort. The Simulation of a Master-Slave Event Set Processor. Sim ulation , 42(3): 117-124,
March 1984.

[FTG88a] R . M . Fujimoto, J . J . Tsai, and G. C. Gopalakrishnan. D esign and E va lua tion o f the Roll
back Chip: Special P u rpose Hardware f o r T im e Warp. Technical Report UUCS-88-011, Dept of
Computer Science, Univ. of Utah, Salt Lake City, U T 84112, Ju ly 1988.

[FTG88b] R . M. Fujimoto, J . J . Tsai, and G. C. Gopalakrishnan. Design and Performance of Special
Purpose Hardware for Tim e Warp. Proceedings o f the 15th A n n u a l S y m p o s iu m on C o m p u te r
Architecture , 401-408, June 1988.

[Fuj88] R . M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. Proceedings o f the 1988
In tern a tio n a l Conference on Paralle l Processing, Vol. S, 34-41, August 1988.

[Gaf88] A . Gafni. Rollback Mechanisms for Optimistic Distributed Simulation Systems. In D istr ibuted
S im ula tion , 1988, pages 61-67, Society for Computer Simulation, February 1988.

[Jef85] D. R . Jefferson. V irtua l Time. A C M Transactions on Program m ing Languages and System s,
7(3):404-425, Ju ly 1985.

[Jef88] D. R . Jefferson, private communication, 1988.

[Jon86] D. W . Jones. An Em pirical Comparison of Priority-Queue and Event-Set Implementations.
C o m m u n ic a t io n s o f the A C M , 29(4):300-311, April 1986.

[Kau87] F . J . Kaudel. A Literature Survey on Distributed Discrete Event Simulation. Sim uletter ,
18(2): 11 —21, June 1987.

[Li88] K . Li. IV Y : A Shared V irtua l Memory System for Parallel Computing. Proceedings o f the 1988
In tern a tio n a l Conference on Paralle l Processing, Vol. 2, 94-101, August 1988.

[Mis86] J . Misra. Distributed Discrete Event Simulation. A C M C om puting Surveys, 18(1):39—65, March
1986.

[M W M 88] V . Madisetti, J . Walrand, and D. Messerschmitt. W O L F : A Rollback Algorithm for Optimistic
Distributed Simulation Systems. 1988 W in te r S im ulation Conference Proceedings, December
1988.

[Nic88] D. M . Nicol. Parallel Discrete-Event Simulation of F C F S Stochastic Queueing Networks. P aralle l
P rogram m ing: Experiences with Applica tions, Languages and S ystem s, 23(9): 124—137, September
1988. A C M S IG P L A N Notices.

[PW M 79] J . K . Peacock, J . W . Wong, and E . G . Manning. Distributed Simulation Using a Network of
Processors. C o m p u te r N etworks, 3(1):44—56, February 1979.

[RK88] V . N. Rao and V . Kumar. Concurrent Insertions and Deletions in a Priority Queue. Proceedings
o f the 1988 In te rn a tio n a l Conference on Paralle l Processing, Vol. S, 207-211, August 1988.

[RMM88] D. A . Reed, A. D. Malony, and B. D. McCredie. Parallel Discrete Event Simulation Using Shared
Memory. IE E E Transactions on Software Engineering, 14(4):541 —553, April 1988.

References

21

[SBW 88] L. M . Sokol, D. P. Briscoe, and A. P. W ieland. M T W : A Strategy for Scheduling Discrete
Simulation Events for Concurrent Execution. In D istr ibu ted S im ulation , 1988, pages 34-42,
Society for Computer Simulation, February 1988.

[ST85] D. D. Sleator and R. E . Tarjan. Self-Adjusting B inary Search Trees. Jou rn a l o f the A C M ,
32(3):652-686, Ju ly 1985.

[W*89] F. W ieland et al. Distributed Combat Simulation and Time W arp: The Model and its Perfor
mance. In D istr ibu ted S im ulation , 1989, Society for Computer Simulation, March 1989.

[W LB88] D. B . Wagner, E . D. Lazowska, and B . N. Bershad. Techniques f o r Efficient S h ared-M em ory P a r
allel S im ulation . Technical Report TR-88-04-05, Dept of Computer Science, Univ. of Washington,
Seattle, W A 98195, August 1988.

22

s d S p e e d u p U s i n g F C F S Q u e u e s

Message Density (messages per process)

Figure 2. Speedup of the queuing network simulator using first-come-first-serve queues. Time

Warp performance degrades for large message densities because the time required for event list

insertions dominates (the conservative algorithms use FIFO queues so they do not suffer from

this problem).

E f f i c i e n c y o f T i m e W a r p S i m u l a t i o n s
Efficiency

Six Dimensional Cube (64 processes)

• First-Come-First-Serve

0N0 Preemption, 50% high priority

□ No Preemption, 1% high priority

x Preemption, 50% high priority

V Preemption, 1% high priority

Four Dimensional Cube (16 processes)

* First-Come-First-Serve

+ No Preemption, 50% high priority

t No Preemption, 1% high priority

t Preemption, 50% high priority

= Preemption, 1% high priority

i i I

16 32 48 64

Message Density (messages per process)

Figure 3. Efficiency of the Time Warp programs (fraction of all processed events that were not

either rolled back or cancelled).

0.40-

0 .2 0 -

0 .0 0

0

S p e e d u p U s i n g P r i o r i t i z e d J o b s

1 % Have High Priority
Speedup

Message Density (messages per process)

Figure 4. (b) One percent of all jobs have high priority.

S p e e d u p U s i n g P r i o r i t i z e d J o b s a n d P r e e m p t i o n

5 0 % Have High Priority
Speedup

*16 Processes

0 16 32 48 64

Message Density (messages per process)

Figure 5. Speedup curve for queuing network simulator with prioritized jobs and preemption

(a) Half of all jobs have high priority.

Figure 5. (b) One percent of all jobs have high priority.

S p e e d u p A s S t a t e S i z e I s I n c r e a s e d

64 Processes, 16 Messages Per Process
Speedup

0 2000 4000 6000 8000

State Size (bytes)

Figure 6. Performance degradation as state size is increased. These experiments simulate a 64

node hypercube with message population of 1024 (16 per process).

