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Abstract

Many applications need a lexicon that represents semantic information but acquiring lexical
information is time consuming. We present a corpus-based bootstrapping algorithm that
assists users in creating domain-specific semantic lexicons quickly. Our algorithm uses a
representative text corpus for the domain and a small set of ‘seed words’ that belong to
a semantic class of interest. The algorithm hypothesizes new words that are also likely to
belong to the semantic class because they occur in the same contexts as the seed words. The
best hypotheses are added to the seed word list dynamically, and the process iterates in a
bootstrapping fashion. When the bootstrapping process halts, a ranked list of hypothesized
category words is presented to a user for review. We used this algorithm to generate a semantic
lexicon for eleven semantic classes associated with the MUC-4 terrorism domain.

1 Introduction

Natural language understanding requires both syntactic and semantic knowledge,

yet there are surprisingly few resources available for lexical semantic information.

In contrast, a variety of dictionaries and computational tools are available for

acquiring syntactic information (e.g. Brill 1994, Church 1989, Marcus, Santorini and

Marcinkiewicz 1993, Weischedel, Meteer, Schwartz, Ramshaw and Palmucci 1993).

Ideally, one would like to have a semantic knowledge base that contains semantic

representations of all words, phrases and concepts in the language. Given the vast

scope of human knowledge and the practical limitations of manual knowledge

engineering, it is unrealistic to expect a complete semantic knowledge base any time

soon. Nevertheless, there have been two noteworthy efforts to build general-purpose

semantic knowledge bases, WordNet (Miller 1990) and Cyc (Lenat, Prakash and

Shepherd 1986).

† This research is supported in part by the National Science Foundation under grants
IRI-9509820 and IRI-9704240.
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While general-purpose semantic information may be sufficient for some tasks, it

is unlikely to be sufficient for domain-specific applications. For example, consider

a Natural Language Processing (NLP) application for extracting information from

medical texts. A medical information extraction system needs a lexicon of syntactic

and semantic information about medical terms and concepts. A general-purpose

semantic lexicon will not contain the specialized medical jargon and terminology

that are required for medical information processing. Even within the context of a

single domain, different applications may require different levels of specialization.

For example, an NLP system for cardiology texts would probably need a different

dictionary than an NLP system for podiatry texts.

One possible solution is to develop automated methods for generating domain-

specific semantic lexicons, which can be used to replace or supplement broad-

coverage dictionaries. We define a domain-specific lexicon as a dictionary that

contains lexical information pertaining to a specific subject matter. For example,

a domain-specific lexicon for cardiology would contain the words, phrases, and

concepts that are most important for understanding cardiology texts.

Creating a domain-specific lexicon has several benefits. First, by definition, a

domain-specific lexicon contains the specialized terminology that is required for

in-depth understanding of the subject matter. Second, many ambiguity problems

in natural language can be simplified by taking advantage of the limited domain.

For example, the word ‘monitor’ has several noun word senses, including one that

refers to a computer screen and one that refers to a lizard. Within the context of a

specific domain, one of the word senses will dominate. The noun ‘monitor’ usually

refers to a computer screen in computer science texts, but usually refers to a lizard

in zoology texts. If an NLP system is designed for a limited domain, including only

relevant word senses in the lexicon can substantially reduce ambiguity resolution

problems.

Many NLP systems do rely on domain-specific lexicons, but these dictionaries

are usually constructed by hand. Manual dictionary construction is time consuming

and prone to errors of omission. To address these problems, we have adopted a

semi-automated approach to semantic lexicon construction. Given a few sample

words that belong to a semantic class, our algorithm automatically hypothesizes

new words that are also likely to belong to the semantic class. The most confident

predictions are added to the lexicon automatically and the process repeats in a

bootstrapping fashion. When automatic bootstrapping is finished, a human reviews

the list of hypothesized category members and decides which ones to add to the

lexicon. This corpus-based approach has several advantages over manual dictionary

construction: a semantic lexicon can be built very quickly, the lexicon will be tailored

for the domain represented by the text corpus, and important domain words are less

likely to be omitted from the dictionary.

First, we present the corpus-based bootstrapping algorithm that automatically

generates candidate words for a semantic category. Next, we present an experiment

to evaluate the effectiveness of this algorithm empirically by generating a semantic

lexicon for eleven semantic classes associated with terrorism. Finally, we compare

our approach to related work and summarize our conclusions.
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2 A corpus-based bootstrapping algorithm

The goal of our approach is to begin with just a handful of seed words that are

known to belong to a semantic class, and then leverage those seed words to find

new words that also belong to the semantic class. Our algorithm is based on the

observation that members of a semantic category often appear near other members

of the category in natural language text. Four common syntactic constructions often

group together members of the same semantic class:

Conjunctions lions and tigers and bears

Lists lions, tigers, bears

Appositives the horse, a black stallion

Compound Nouns tuna fish ; oak tree

These syntactic constructions will not always contain members of the same

semantic class, but they have a tendency to do so. Conjunctions and lists often

group together similar items. Appositives and compound nouns frequently represent

subclass/superclass relationships. For example, the appositive phrase “the horse, a

black stallion” is a superclass followed by its subclass, and the phrase “the stallion,

an impressive horse” is a subclass followed by its superclass. Compound nouns

usually have the superclass as head noun with the subclass as a modifier (e.g. “tuna

fish”).

Since these four types of syntactic constructions are very common in natural

language text, their affinity for semantically similar words can be exploited by a

corpus-based bootstrapping approach. The general idea of our algorithm is to begin

with a small number of known category words and then identify other words that

are collocated near the known category words with unusual regularity.

2.1 Overview of the algorithm

The input to our algorithm is a text corpus that is representative of the domain, and

a small set of seed words for the semantic category of interest. The output is a list

of new words that are hypothesized to belong to the same semantic class, in ranked

order based upon their strength of association with the class.

During the first iteration, the algorithm generates a ranked list of new words that

are hypothesized to belong to the same semantic category as the seed words. The

top N words in the ranked list are assumed to be correct, and are dynamically added

to the seed word list as new seed words. The enhanced seed word list represents a

larger context in which to look for additional category members during the next

iteration. The process repeats for a fixed number of iterations, or until no new seed

words can be found. When the bootstrapping process halts, the final ranked list of

hypothesized category members is reviewed by a person to confirm (or disconfirm)

whether each word should be added to the lexicon.
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2.2 Bootstrapping algorithm

The general idea behind our approach is motivated by Yarowsky’s (1992) word sense

disambiguation algorithm, and the notion of statistical salience. Our algorithm uses

a somewhat different statistical measure, but it is based on the same general principle

of looking for words that are more frequent within a category context than in the

corpus as a whole. The bootstrapping algorithm for hypothesizing words that belong

to a semantic category can be broken down into five steps.

1. Identify all sentences in the corpus that contain a seed word. Run each

sentence though a parser to segment the sentence into simple noun phrases,

verb phrases, and prepositional phrases. (A partial parser is sufficient.)

2. Collect a narrow context window around each seed word that occurs as a head

noun in a noun phrase. Restricting the seed words to be head nouns ensures

that the seed word is the main concept of the noun phrase. Also, this reduces

the chance of finding different word senses of the seed word (although multiple

noun senses can still be a problem). The context window consists of only two

words: the closest noun to the left of the word, and the closest noun to the right

of the word. Only nouns are collected under the assumption that most, if not

all, true category members should be nouns. The context windows do not cross

sentence boundaries. Note that our context window is much narrower than

those used by other researchers (e.g. (Yarowsky 1992)). We experimented with

larger context windows and found that the narrow window more consistently

includes words of the same semantic class, presumably because it focuses on

local syntactic constructions. For simplicity, we will refer to the set of nouns

gathered during this step as the category context for a semantic class.

3. Compute a category score for each word in the category context. The category

score of a word W for category C is defined as:

Score(W,C) =
frequency of W in C ′s context windows

frequency of W in corpus

This score is essentially the conditional probability that the word appears in a

category context. Note that this is not exactly a conditional probability because

a single word occurrence can belong to more than one context window. For

example, consider the sentence: They seized one M-16, a rifle, and a .45-caliber

pistol. The word rifle is in the context windows for both M-16 and pistol even

though there is just one occurrence of it in the sentence. Consequently, the

category score for a word can be greater than 1.

4. Remove stopwords, numbers and words with a total frequency ≤ 5 (these

words are assumed to be statistically unreliable). We used a stopword list

containing about 30 general nouns, mostly pronouns (e.g. I, he, she, they) and

determiners (e.g. this, that, those). Finally, sort the remaining nouns by category

score so that the nouns most strongly associated with the category appear at

the top.

5. Add the top five nouns (that are not already seed words) to the seed word

list, go back to Step 1, and repeat the process. The process halts after a fixed
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number of iterations or if no new seed words are found. This bootstrapping

mechanism dynamically grows the seed word list so that each iteration produces

a larger category context. In our experiments, the top five nouns were added

automatically without any human intervention, but this sometimes allows non-

category words to dilute the seed word list. A few inappropriate words are

not likely to have much impact, but many inappropriate words or a few high

frequency words can weaken the feedback process. One alternative is to have a

person verify that each word belongs to the target category before adding it to

the seed word list, but this would require human intervention at each iteration

of the feedback cycle. We chose to avoid this additional human interaction.

3 Experimental results

To determine the effectiveness of our bootstrapping algorithm, we built a semantic

lexicon for a real application. Our experiments focused on the domain of Latin

American terrorism, which was the topic of the information extraction task for the

Fourth Message Understanding Conference (MUC-4) (MUC-4 Proceedings 1992).

We used the 1700 texts in the MUC-4 data set as our text corpus, and chose eleven

semantic classes representing items that needed to be extracted for the MUC-4 task:

building, civilian, energy, financial, government official, location, military, terrorist, time,

vehicle, weapon. Some of these classes represent people who are common perpetrators

or victims of terrorism: civilian, government official, military, terrorist. A few of the

classes represent objects that are frequent targets of terrorism: building, energy,

financial, vehicle. The other classes represents dates (time), locations (location), and

types of weapons (weapon).

As input to our algorithm, we also need a set of seed words for each semantic

class. We used two general criteria as guidance when selecting seed words:

1. The word should be frequent in the domain. This is necessary to ensure that

there will be many occurrences of the word in the corpus.

2. The word should be (relatively) unambiguous. This minimizes the risk of

finding inappropriate contexts around the word.

Using this criteria, we defined five seed words for each of the eleven semantic

classes. They are shown in Table 1. We do not claim that this is the best possible

set of seed words, but they worked well in our experiments. More experimentation

is needed to determine the effect of the initial seed words on the final output. We

experimented with different numbers of seed words and found that using five initial

seed words worked about as well as using more.

We ran the bootstrapping algorithm for eight iterations, adding five new words

to the seed word list after each iteration. When the bootstrapping process finished,

we had a ranked list of hypothesized words for each of the eleven semantic classes.

The bootstrapping algorithm found many new members of each class, although

the quality of the ranked lists varied depending on the semantic class. In the next

section, we evaluate the results of this experiment quantitatively.
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Table 1. Seed word lists for the terrorism domain

Building: building buildings hotel homes office
Civilian: civilians peasants businessmen passengers residents
Energy: fuel gas gasoline oil power
Financial: bank banking currency dollar money
Gov’t Official: governor mayor ambassador president senator
Location: city town region district neighborhood
Military: army commander infantry soldier troop
Terrorist: terrorists terrorist guerrillas guerrilla rebels
Time: hour day week month year
Vehicle: airplane car jeep plane truck
Weapon: bomb dynamite explosives gun rifle

3.1 Evaluating the results

To evaluate the effectiveness of the bootstrapping algorithm, we manually reviewed

the top 500 words on the ranked lists for each semantic class. We judged a word to

belong to a semantic category if:

1. The word is a member of the category. For example, TNT and rifle are

members of the weapon category. Or,

2. The word refers to a part of a member of the category. For example, cartridge

and clips are parts of a weapon. The rationale behind judging subparts to be

category members is that the subpart belongs to the same semantic class as

the whole object.

The manual review process took about 30 minutes for each semantic class, except

for a few categories that required dictionary lookup (e.g. the human reviewer did not

recognize many of the weapon names). In general, however, reviewing the ranked

lists is quite fast for someone who has knowledge of the domain. Figure 1 shows the

words that were judged to be legitimate category members for the building, civilian,

and weapon classes.

When the manual review process was finished, the semantic lexicon for terrorism

contained 494 words. Since 500 words were reviewed for each of the eleven classes

(except the financial and weapon classes which produced fewer than 500 words), this

result implies that only about 10% of the words on the ranked lists were members

of their respective semantic categories. This viewpoint is misleading though, because

we should only expect the most highly ranked items to be true category members.

The density of true category members should decrease as one progresses down the

list.

We reviewed 500 words for each category because we did not know how quickly

the density of true category members would drop off, or how far down the lists

we would need to go. We answered these questions empirically by analyzing the

density of true category members at various points in the ranked lists. Table 2 shows

the results of this analysis. We walked down each ranked list and measured the

percentage of true category members after each set of 50 words. The actual number

of true category members appears in parentheses. For example, Table 2 shows that



A corpus-based bootstrapping algorithm 153

Building: ministry hospital garrison house bank prison embassy home stores offices palace
schools doors residence gas station room houses tower ministries establishments hospitals
housing registry entrance restaurant entry gate walls office buildings building windows floor
homes mansions hotel apartment properties Sheraton

Civilian: Salvadoran Salvadorans jesuits person police Colombian priests personnel students
Msgr Panamanian citizens people advisers families civilian judges body persons brothers
Ecuadoran family peoples employees peasant journalists woman men owners victims crew
policeman bishops witnesses bodies policemen foreigners newsmen women nuns crowd Amer-
icans activists children clergymen faces manager workers friend child corpses leg residents
professionals farmers brother Nicaraguans industrialists lady Indian survivors businessmen
passengers civilians peasants intellectuals pedestrians drivers

Weapon: rockets bombs car bomb missile missiles tanks arms bullets rocket bullet weapons
car bombs artillery firearms guns machinegun pistol cannon submachinegun gun bomb mor-
tars explosives ammunition submachineguns cartridges pistols fuse machineguns grenades
rifles dynamite AR-15 M-60 clips AK-47 M-16 rifle cartridge mortar grenade TNT M-79

Fig. 1. The semantic lexicon for three categories.

13 of the top 50 hypothesized building words (26%) were actually buildings. Only

four additional building words were found among the next 50 words, so the density

of true category members drops to 17% after reviewing the top 100 words.

Table 2 confirms our hypothesis that the density of true category members is

highest at the top, which suggests that our scoring metric is doing a good job

of promoting the most likely category members. The effectiveness of the ranking

scheme yields a law of diminishing returns: the payoff of finding additional category

members steadily decreases as you walk down the list.

Of the eleven semantic classes in our experiment, none of them added many new

category members after the 400th item. And only a few categories were still adding

new members after the 300th item, which suggests that reviewing only the top 300

words is probably sufficient. Table 2 also suggests a mechanism for automatically

deciding when to stop the manual review process: if the number of new category

members does not change much after reviewing a fixed number of words, then it

is probably safe to assume that there are not many new category members lying

ahead. For example, 43 government officials were found among the top 150 words,

but no new government officials were found thereafter. If we had noticed this trend,

we could have stopped the review process after reviewing 200 words.

Another interesting aspect of our results is the varying levels of effectiveness

for different semantic classes. The location class performed best: the bootstrapping

algorithm found 164 locations, with a 74% hit rate for the top 50 words and nearly

a 50% hit rate even after 250 words. The energy class was the most problematic: the

bootstrapping algorithm found only six energy words. The MUC-4 texts primarily

describe terrorist and military incidents, so energy sources are mentioned only when

they are the target of an attack. The corpus does contain a few descriptions of attacks
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Table 2. Density of category members in the ranked lists

Building Civilian Energy Financial Govt Location

After 50 0.26 (13) 0.36 (18) 0.12 (6) 0.28 (14) 0.38 (19) 0.74 (37)
After 100 0.17 (17) 0.22 (22) 0.06 (6) 0.19 (19) 0.35 (35) 0.57 (57)
After 150 0.15 (22) 0.18 (27) 0.04 (6) 0.15 (22) 0.29 (43) 0.51 (77)
After 200 0.13 (26) 0.19 (38) 0.03 (6) 0.11 (22) 0.21 (43) 0.50 (100)
After 250 0.11 (28) 0.17 (42) 0.02 (6) 0.09 (23) 0.17 (43) 0.46 (114)
After 300 0.11 (32) 0.17 (51) 0.02 (6) 0.08 (23) 0.14 (43) 0.43 (129)
After 350 0.10 (36) 0.16 (55) 0.02 (6) 0.07 (23) 0.12 (43) 0.40 (139)
After 400 0.09 (37) 0.14 (58) 0.01 (6) 0.06 (23) 0.11 (43) 0.37 (150)
After 450 0.09 (39) 0.14 (62) 0.01 (6) −(−) 0.10 (43) 0.35 (158)
After 500 0.08 (39) 0.14 (68) 0.01 (6) −(−) 0.09 (43) 0.33 (164)

Military Terrorist Time Vehicle Weapon

After 50 0.28 (14) 0.34 (17) 0.06 (3) 0.30 (15) 0.58 (29)
After 100 0.19 (19) 0.23 (23) 0.05 (5) 0.19 (19) 0.34 (34)
After 150 0.17 (26) 0.18 (27) 0.04 (6) 0.15 (22) 0.25 (38)
After 200 0.15 (30) 0.17 (35) 0.04 (8) 0.13 (26) 0.20 (40)
After 250 0.14 (34) 0.15 (38) 0.03 (8) 0.10 (26) 0.16 (40)
After 300 0.13 (40) 0.13 (39) 0.05 (14) 0.09 (27) 0.14 (43)
After 350 0.11 (40) 0.12 (43) 0.05 (19) 0.08 (28) 0.12 (43)
After 400 0.10 (41) 0.11 (45) 0.06 (23) 0.07 (29) 0.11 (43)
After 450 0.09 (42) 0.10 (47) 0.05 (23) 0.06 (29) 0.10 (43)
After 500 0.09 (43) 0.10 (48) 0.05 (24) 0.06 (29) −(−)

on oil pipelines and electricity substations, but it is doubtful that a wide variety of

energy words are present in the corpus. Therefore the energy category illustrates an

important point: it is probably overkill to use this algorithm for a semantic class that

will not be well-represented in the domain. For most of the eleven semantic classes,

however, a substantial number of new category members were found. Recently,

we used the terrorism semantic lexicon as part of another algorithm to generate

conceptual case frames automatically (Riloff and Schmelzenbach 1998). The semantic

lexicon allows the algorithm to infer the conceptual roles and semantic constraints

for case frame slots.

4 Related work

Semantic lexicons are built by hand for most NLP applications, but several tech-

niques have been developed to learn lexical semantic information automatically.

Most of these methods learn the meanings of an unknown word by using contextual

expectations from the definitions of surrounding words (e.g. Granger 1977, Car-

bonell 1979, Jacobs and Zernik 1988, Cardie 1993, Hastings and Lytinen 1994). An

alternative approach is to derive knowledge automatically from on-line dictionaries

(Dolan, Vanderwende and Richardson 1993). All of these approaches rely on an

existing dictionary or knowledge base as a starting point. Our system is the first

aimed at building semantic lexicons from scratch using only a representative text

corpus and a handful of predefined seed words. The only additional knowledge used
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by our system is a part-of-speech dictionary for syntactic segmentation. We used

a hand-crafted part-of-speech dictionary for these experiments, but statistical and

corpus-based taggers are widely available (e.g. Brill 1994, Church 1989, Weischedel

1993).

One other relevant piece of related research is Roark and Charniak’s work (Roark

and Charniak 1998), which improves upon preliminary results that we reported

in (Riloff and Shepherd 1997). Roark and Charniak confirmed our intuition that

conjunctions, appositives, lists, and compound nouns can help identify items of the

same semantic class by adapting our algorithm to look exactly for those syntactic

constructions.

5 Conclusions

Semantic lexicons are essential for many NLP applications, but creating lexical

resources by hand is extremely time consuming. Furthermore, hand-built lexicons

are often incomplete because humans can easily overlook words that are important

for the domain. The corpus-based bootstrapping algorithm that we presented can

assist humans in building semantic lexicons quickly and in providing assurance that

important words are not overlooked. This algorithm requires no pre-existing seman-

tic knowledge or specialized resources. To use this technique for a new application

domain, the user only needs to supply a representative text corpus and a handful

of seed words for each semantic category of interest. The corpus-based bootstrap-

ping algorithm illustrates how text corpora can be exploited to acquire semantic

information semi-automatically, without the need for special resources.
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