
A C o m p a r i s o n o f J i a z z i a n d A s p e c t J

f o r F e a t u r e - w is e D e c o m p o s i t i o n

Bin Xin, Sean McDirmid, Eric Eide, and
Wilson C. Hsieh

U U C S -04 -001

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

March 23, 2004

A b s t r a c t

Feature-wise decomposition is an important approach to building configurable software
systems. Although there has been research on the usefulness of particular tools for feature-
wise decomposition, there are not many informative comparisons on the relative effec­
tiveness of different tools. In this paper, we compare AspectJ and Jiazzi, which are two
different systems for decomposing Java programs. AspectJ is an aspect-oriented exten­
sion to Java, whereas Jiazzi is a component system for Java. To compare these systems, we
reimplemented an AspectJ implementation of a highly configurable CORBA Event Service
using Jiazzi. Our experience is that Jiazzi provides better support for structuring the system
and manipulating features, while AspectJ is more suitable for manipulating existing Java
code in non-invasive and unanticipated ways.

A C o m p a r i s o n o f J i a z z i a n d A s p e c t J f o r F e a t u r e - w i s e

D e c o m p o s i t i o n

Bin Xin Sean McDirmid Eric Eide Wilson C. Hsieh
xinb@cs.utah.edu mcdirmid@cs.utah.edu eeide@cs.utah.edu wilson@cs.utah.edu

University of Utah, School of Computing
50 South Central Campus Drive, Room 3190

Salt Lake City, Utah 84112-9205

ABSTRACT

Feature-wise decomposition is an important approach to building
configurable software systems. Although there has been research
on the usefulness of particular tools for feature-wise decomposi­
tion, there are not many informative comparisons on the relative
effectiveness of different tools. In this paper, we compare AspectJ
and Jiazzi, which are two different systems for decomposing Java
programs. AspectJ is an aspect-oriented extension to Java, whereas
Jiazzi is a component system for Java. To compare these systems,
we reimplemented an AspectJ implementation of a highly config­
urable CORBA Event Service using Jiazzi. Our experience is that
Jiazzi provides better support for structuring the system and manip­
ulating features, while AspectJ is more suitable for manipulating
existing Java code in non-invasive and unanticipated ways.

1. INTRODUCTION
Feature-wise decomposition is an important technique for modu­
larizing the implementation of a software system and for making
that system configurable. Informally, a feature is a unit of soft­
ware functionality: for example, the ability to use multiple fonts in
a word processor is a feature, and the ability to invoke a spelling
checker is a second feature. A great deal of research has been de­
voted to creating more formal models of software features (e.g., [12,
16,17]), particularly motivated by the goal of software reuse. The
general idea is to identify common and variable elements in the
requirements of similar software systems, and then to use that in­
formation in defining and implementing a set of software “parts”
that can be used in combination to construct all of the examined
systems.

Feature-wise decomposition leads to modularity within the soft­
ware implementation, because the implementations of different fea­
tures are encapsulated within separate software modules, compo-

This research was largely supported by the Defense Advanced Re­
search Projects Agency, monitored by the Air Force Research Lab­
oratory, under agreement F33615-00-01696. The U.S. Govern­
ment is authorized to reproduce and distribute reprints for Govern­
mental purposes notwithstanding any copyright annotation hereon.

nents, or other types of parts. This modularity is important for
developers, who need to understand the features in isolation from
each other. If all of the code for a feature is contained in one ele­
ment of the system, then the feature can be manipulated and main­
tained as a whole. Furthermore, modularity helps programmers to
understand the relationships between features, because the feature
interconnections are explicitly represented in the code.

Feature-wise decomposition also leads to configurability of the
system as a whole, because it allows designers to establish a soft­
ware product line in which any particular system can be configured
with all or just a subset of the possible features. Such configura­
bility can be important, for instance, when a software developer
needs to create a product that runs on a variety of computing plat­
forms. The modern diversity of computing environments — includ­
ing PCs, PDAs, cell phones, embedded chips in automobiles, and
embedded computers in consumer appliances — makes it infeasi­
ble (both in cost and time) to develop the product separately for
each platform. By using feature-wise decomposition, a developer
can implement a suite of software parts that allow a shared soft­
ware base to be customized for each platform to address concerns
such as resource availability (code footprint, CPU power, memory
size) and other environment-specific constraints (different user in­
terfaces across devices).

There are many technologies that facilitate feature-wise decom­
position [8,21,30], and there has been a significant amount of re­
search on how to use these technologies to develop applications
with configurable feature sets [5,15,19]. These technologies com­
monly correspond to programming language concepts such as mod­
ules, components, objects, and aspects. Because the underlying
concepts are quite different from each other, the technologies can
lead to implementations that have significant differences in terms
of their modularity and configurability.

However, despite these differences, there has been relatively lit­
tle research that compares the various technologies in a direct way,
i.e., for performing feature-wise decomposition of a common sys­
tem according to common set of identified features. Our work is a
step toward filling this gap.

In this paper, we compare the effectiveness of two of technolo­
gies, AspectJ and Jiazzi, for performing the feature-wise decompo­
sition of an event channel based on the CORBA Event Service [25].
AspectJ [8] is a Java language extension designed to separate and
localize crosscutting concerns: i.e., to modularize the implementa­
tion of a concern that would otherwise be scattered throughout the
system. A feature is such a concern that can be implemented as an
aspect (or collection of aspects) in AspectJ. The feature can then
selectively be composed into an application via aspect weaving. In
contrast, Jiazzi [21] is a Java component system designed to man­

1

mailto:xinb@cs.utah.edu
mailto:mcdirmid@cs.utah.edu
mailto:eeide@cs.utah.edu
mailto:wilson@cs.utah.edu

age imports and exports between modules that contain Java classes.
In Jiazzi, a feature can simply be implemented as a Jiazzi compo­
nent, called a unit. The feature can then selectively be composed
into an application via linking.

On the surface, AspectJ and Jiazzi do not have much in com­
mon. As we have previously shown, however, Jiazzi components
can be used to express some of the same crosscutting features that
AspectJ can [21,22], As a result, we decided that it would be use­
ful to compare the decompositions that AspectJ and Jiazzi support.
We took FACET [15], an AspectJ implementation of the CORBA
Event Service, and reimplemented it using Jiazzi. The CORBA
Event Service has a rich set of identifiable features that can be sep­
arated and selectively composed. As a result, it is a good target
system for comparing these two systems. It is important to note
that we are not comparing the ideas of aspects and components in
general: rather, we are comparing two implementations of these
concepts in terms of how well they solve a particular feature-wise
decomposition task. This paper describes our experience. This pa­
per also presents the conclusions that we have drawn, based on our
experience, that we think are applicable to the use of AspectJ and
Jiazzi for feature-wise decomposition tasks in general.

The main contributions of this paper are twofold:

1. We identify several important issues that arise when doing
feature-wise decomposition and composition. These con­
cerns include separate compilation, incremental composition,
compositional reasoning, feature dependency, composition
order, refactoring, and expressiveness and readability.

2. We evaluate AspectJ and Jiazzi in terms of these issues and
conclude that Jiazzi provides better support for structuring
a system and manipulating features, while AspectJ is more
suitable for modifying and extending existing Java code in
non-invasive and unanticipated ways, such as adding new
features without modifying existing code.

The rest of the paper is organized as follows. Section 2 presents
background on AspectJ, the CORBA Event Service, FACET, and
Jiazzi. Section 3 describes the reimplementation of the Event Ser­
vice in Jiazzi. Section 4 discusses the differences between AspectJ
and Jiazzi with respect to the feature-wise decomposition of the
event channel. Section 5 examines additional Jiazzi usability is­
sues. Section 6 discusses related work, and Section 7 concludes.

2. BACKGROUND

In this section, we provide some background information on As­
pectJ, Jiazzi, the CORBA Event Service, and FACET.

2.1 AspectJ

AspectJ [8, 18] is a Java language extension that enables program­
mers to modularize the implementation of crosscutting concerns.
Its design is based on the observation that no single decomposition
can modularize all the aspects or concerns in the system. There will
always be certain design concepts or elements that crosscut many
modules.

AspectJ provides an aspect construct to separate and localize the
implementation of a crosscutting concern. An aspect consists of
the application of advice to pointcuts. A dvice consists of code that
is introduced into a program. The base code is called the advised
code, and the aspects constitute the advising code. The process of
integrating advising code with advised code is called aspect w eav­
ing.

Pointcuts are descriptions ofthe points where the code is to be in­
troduced: each point is called a jo in point. Join points are dynamic:

they are events in the advised program’s execution. Pointcuts, on
the other hand, are static: they are syntactic descriptions of join
points. For example, a pointcut might consist of all of the method
calls where the method is named foo ().

AspectJ supports several kinds of advice. Before advice intro­
duces code to be executed at a join point before continuing the nor­
mal execution from that point. A fte r advice executes the introduced
code after the normal execution finishes at a particular join point.
A round advice shortcuts the normal execution at a join point with
the execution of the introduced code. The keyword proceed can be
used in the body of around advice to resume the execution of the
normal code; after the normal code finishes, the remaining part of
the around advice code is executed. AspectJ also offers the ability
to introduce new fields or methods into existing classes and declare
new parent interfaces and classes for existing types.

In the AspectJ programming model, there is an asymmetry be­
tween the advising code and the advised code: the references from
the advising code to the advised code are unidirectional. In other
words, the advised code does not have knowledge about how ad­
vising code will affect its behavior. This property makes AspectJ a
useful tool for retrofitting new features into existing systems. How­
ever, this unidirectional property can sometimes make the resulting
system hard to understand, because the advised code contains no
apparent references to the aspects. IDE support can alleviate this
problem by providing navigation between the advised code and the
advising code, but the dynamic nature of some AspectJ pointcut
designators (such as run-time type tests and control-flow tests) can
be difficult to visualize in an IDE.

By implementing features with aspects and by selectively incor­
porating aspects into a program during aspect weaving, AspectJ can
be used to do feature-wise decomposition. When multiple features
are selected for a configuration, aspects that implement these fea­
tures might introduce code at the same join points in the program’s
execution. AspectJ employs a set of nontrivial rules to prioritize
the running order of different pieces of advice when they are advis­
ing the same join point [8, 18]. These rules prioritize advice based
on advice type and specificity, and can be overridden by explicit
precedence declarations.

2.2 Jiazzi

Jiazzi [21] is a component system that we have developed for Java.
In Jiazzi, components are called units. A Jiazzi unit is a “con­
tainer” of Java classes that can be instantiated multiple times. A
unit imports and exports packages, which are groups of classes.
An important feature of Jiazzi is that classes in a unit can inherit
from imported classes. This feature allows a Jiazzi unit to support
mixin-like behavior. Jiazzi also allows a unit to specify that an im­
ported class must inherit from another imported class, or even from
an exported class. This latter feature is important, as we shall see.

Jiazzi provides its own language for defining and linking com­
ponents. In this language, signatures are used to describe groups of
classes and interfaces in a unit’s imports and exports. Signatures al­
low units to hide classes and class members between components.
Jiazzi’s signatures are designed to support type-safe separate com­
pilation, even in the presence of cross-unit inheritance.

Jiazzi provides support for feature-wise decomposition with the
open-class pattern [21,22], The open-class pattern is an organi­
zation of units that makes use of cross-unit inheritance and in­
heritance of imports from exports, as illustrated in Figure 1. The
feedback loops in the figure introduce the most derived versions of
classes into all intermediate classes in the inheritance hierarchies.
This ensures that only a single class type for a given class hierarchy
is used to instantiate objects in a final composed system. However,

2

inpkg y pkg

unit 1
package outpkg;

ĵ Class A extends inpkg. A ̂(Class B extends pkg.A ''j
J 1 i ... i ‘ 1

outpkg

inpkg f
unit 2

unit 3

package outpkg;
 ̂Class A extends inpkg. A
{ int m; ... |

1 pkg

outpkg

I
Class B extends inpkg.B
{ void f() { this.m ;.. f
void h() {this.t ; //wrong .Jj

inpfcg
package outpkg;
(Class A extends inpkg .A

{ String t; ... f

1 pkg

Class B extends inpkg.B
{ void g() {this.m this.t 11

outpkg

single unit

I____)
composed by

open class
classes package

import/export

Figure I : Inheritance across units and inheritance of imports
from exports. Import and export packages are named and are
mapped correctly when units are composed.

interface PushConsumer {
void disconnect.push.consumer ():
void push():

}interface PushSupplier {
void disconnect.push.supplier ():

class EventCarrier {
EventCarrier ():

}class EventChannellmpI {
public void pushEvent(EventCarrier eventCarrier):
public void destroy():
public ConsumerAdmin for.consumers ():
public SupplierAdmin for.suppliers ():

}class ConsumerAdminlmpI {
protected EventChannellmpI eventChannel.:
public ProxyPushSupplier obtain.push.supplier ():

}class SupplierAdminlmpI {
protected EventChannellmpI eventChannel.:
public ProxyPushConsumer obtain_push_consumer ():

}class ProxyPushConsumerlmpI {
ProxyPushConsumerlmpI (EventChannellmpI ec):
public void connect-push.supplier(PushSupplier

push.supplier):
public void disconnect.push.consumer ():
public void push():

}class ProxyPushSupplierlmpI {
ProxyPushSupplierlmpI (EventChannellmpI ec):
public void push(EventCarrier eventCarrier):
public void connect_push_consumer(PushConsumer

push.consumer):
public void disconnect.push.supplier ():

}

Figure 2: This graph shows the components and interactions in
an event channel. Components in the shadowed box are imple­
mented by the Event Service. Arrows indicate the direction of
method invocations.

in each unit, class members introduced by the downstream units are
not visible (In Figure 1. B cannot access A.t in unit 2). More im­
portantly. the open-class pattern supports the construction of class
frameworks, where a group of related classes can all be subclassed
together.

This pattern implements open classes, as supported in Multi-
Java [71. Open classes allow a programmer to add new members
to existing classes. The open-class pattern allows members to be
added through inheritance between units in Jiazzi. This support
for open classes enables Jiazzi to be used for feature-wise decom­
position. Classes and class members that implement a feature are
packaged into a Jiazzi unit. For each configuration, feature units
are selectively chosen as the parts of an open-class pattern instance.
These feature units are then linked together in the open-class pat­
tern to form the target configuration.

2.3 CORBA Event Service
CORBA [25.311 is a distributed object system designed to enable
communication between objects that may be written using differ­
ent programming languages, possibly executing in different pro­
cesses. and possibly running on different hardware platforms. The

Figure 3: A skeleton of an implementation of the CORBA
Event Service. All the XXXImpl classes implement the cor­
responding XXX interfaces and the ProxyPushConsumer and
ProxyPushSupplier interfaces extend the PushConsumer and
PushSupplier interfaces, respectively. An event consumer
proceeds by first obtaining a reference to an EventChannel
object, through which a reference to a ConsumerAdmin object
is obtained. The consumer can then obtain a reference to a
ProxyPushSupplier object, to which the consumer can con­
nect itself. Then, when events are available, they are pushed to
the consumer. An event producer works similarly.

Event Service is one of the Common Object Services defined by
CORBA; the Event Service implements event channels. An event
channel decouples event suppliers from event consumers, and pro­
vides proxies for consumers and suppliers to register themselves.
Figure 2 shows the architecture of an event channel.

Push and pull modes are used to communicate events between
suppliers and consumers. In push mode, the supplier controls the
flow of events. When an event is generated by the supplier, it
pushes the event to the event channel without knowledge of which
consumers will receive the event. The event channel pushes the
event to registered consumers, and can also perform filtering and
aggregation. In pull mode, the consumer initiates communication
and pulls events from the event channel that in turn pulls events
from registered suppliers. If no event is available, the consumer
will block. Alternatively, the consumer can poll to determine if

3

events are available. Push and pull modes can also be used in
combination: for example, a supplier may push events to the event
channel, which can later be pulled by a consumer.

Event data can be generic or typed. In the generic case, all event
data are packaged into a single object, for example, a CORBA Any
object. In the typed case, the event data is defined in the Object
Management Group’s (OMG) Interface Definition Language (IDL)
and can have an arbitrary structure. For example, the event data
structure can be defined to have a custom header and payload. The
event header field can be visible to the event channel so that filtering
can be done based on the header.

A general Event Service implementation can incorporate all of
the features that an end-user might need. However, such a mono­
lithic implementation is not satisfactory for situations in which some
features cannot be supported or are not needed. For example, the
memory footprint of a certain feature might be too large for the fea­
ture to be used in a resource-constrained embedded system. There­
fore, an Event Service implementation with a configurable feature
set is desirable.

2.4 FACET
FACET [15] is a feature-wise decomposition of a CORBA Event
Service using AspectJ.1 FACET incorporates features found in the
CORBA Event Service, the CORBA Notification Service, and the
TAO Real-time Event Service [13,25], The FACET event channel
implementation has 25 features. Although not all the features are
concrete or directly usable from an end-user’s point of view, most
of them are what an end-user might need in an Event Service con­
figuration. These features are listed in Table 1.

In FACET, features are implemented using aspects and auxiliary
classes. Feature composition is performed through aspect weav­
ing using AspectJ. Features desired for a configuration of an Event
Service are selected using a configuration file. At build time, a
set of aspects specified by the configuration file are passed to the
AspectJ compiler and woven into the base implementation of the
Event Service. The base implementation of the Event Service of­
fers only the push feature with no event payload. In other words,
the base implementation of the Event Service allows the supplier
to notify the consumer that an event has occurred, but not to in­
clude any data about the event. The Event Service implementa­
tion skeleton is shown in Figure 3. We follow this implementa­
tion structure of the Event Service in the Jiazzi approach. All the
XXXImpl classes implement the corresponding XXX interfaces and
the ProxyPushConsumer and ProxyPushSupplier interfaces ex­
tend the PushConsumer and PushSupplier interfaces, respec­
tively. An event consumer proceeds by first obtaining a reference to
an EventChannel object, through which a reference to a Consuaier-
Admin object is obtained. The consumer can then obtain a reference
to a ProxyPushSupplier object, to which the consumer can con­
nect itself. Then, when events are available, they are pushed to the
consumer. An event producer works similarly

3. EXPERIMENT

To compare AspectJ and Jiazzi, we reimplemented the feature-wise
decomposition of the event channel in FACET using Jiazzi. We
started by examining the features identified by FACET, shown in
Table 1. In our Jiazzi implementation, we included only those
features that are identifiable from an end-user’s point of view and
excluded those features that are merely artifacts in FACET: i.e.,

’FACET contains other subsystems, including an automatic testing
framework. For our comparison we focus on the parts of the system
that contribute to a deployed event delivery service.

those that are not intrinsic features of the Event Service. The ex­
cluded features are the tracing feature and the features marked as
abstract in Table 1. The tracing feature has been referred to un­
der many situations as an example that demonstrates the expressive
power of AspectJ and how AspectJ improves modularity. Although
these arguments about the tracing aspect are true, they do not gen­
erally apply to other aspects: the tracing aspect only introduces
printing code at uniform locations in the program. In FACET, the
features marked as abstract are used to do dependency checking
among features selected for a configuration. Feature dependencies
are managed differently in Jiazzi, so these abstract features can be
excluded.

In this section, we first show how a feature unit is constructed
in AspectJ and Jiazzi in Section 3.1. Then we demonstrate how a
feature is composed with other features in Section 3.2.

3.1 Construct a Single Feature

We use the Event Pull feature to demonstrate the difference be­
tween how features are implemented in AspectJ and Jiazzi. The
Event Pull feature adds pull-mode event communication to the Event
Service and is optional since some users might only need push
mode. In both AspectJ and Jiazzi, the code for the pull feature
should be separated into a separate module that can be included in
or excluded from an Event Service configuration. The files used to
implement the pull feature in AspectJ and Jiazzi are summarized in
Table 2. Files in the same row serve similar functions in the two
approaches.

In AspectJ, new members (fields or methods) can be introduced
into existing types from aspects. These members are scoped rel­
ative to the aspects, not to the target types. This idiom is called
“inter-type member declaration”. In FACET, the implementation
of the pull feature relies on this idiom to extend interfaces and
classes. A code snippet is shown in Figure 4. It shows how various
methods are introduced to various types using an aspect (pull-
IntroAspect.aj). The implementations of introduced methods
are added at different places for existing classes and new classes.
For existing classes, they are placed in an aspect (pullAspect.aj).
For new classes, normal Java class files are created (ProxyPull-
Supplierlmpl.java and ProxyPullConsumerlmpl. java). It is
also clear that there is no direct language support for describing
the feature or the connections with other features. The mechanism
to separate the pull feature from other features is by organizing all
the implementation files into a directory. The pull feature is se­
lected into a configuration by instructing the build tool to include
the source files in the directory.

In Jiazzi, the pull feature is implemented using a unit, as illus­
trated in Figure 5. The dotted boxes represent other Jiazzi units.
The rounded boxes represent normal Java classes. For the nested
rectangle boxes, the inner one represents the Java code implemen­
tation of the pull feature, and the outer box represents a Jiazzi
unit that wraps the Java code with a unit definition described by
pull.unit. The unit definition describes the import and export
packages of the unit. Parts of the Jiazzi code are shown in Figure 6.
The unit definition file describes the structure of the pull feature
and the location of the Java code that implements the feature. The
signature files describe the structure of the packages that the pull
features import and export. These mechanisms force the designer
to describe the structure of the system explicitly, which helps oth­
ers to understand the system. The pull feature can be developed
separately from other features: the unit can be compiled and saved
in a binary format, which can then be linked with other features.

The open class pattern is the main vehicle for doing feature-wise
decomposition in Jiazzi. In Figure 6, lines commented with “ocp”

4

NO Feature Dep. Function

1 Base (none) The base implementation of the Event Service
2 Consumer Dispatch 12 Filter events when received by consumers
3 Consumer QoS 1 Support for consumers to register quality of service requirements
4 Correlation Filter 10, 12 Deliver events to consumers only when a combination of events are

received
5 Dependency 3 Support for consumers to specify dependencies upon events
6 Dispatch Mutex 1 (abstract) Prevent two dispatcher features from being used simultaneously
7 Event Any 13 Provide Any as a container for event data
8 Event Header 10 Add a header field to the Event struct
9 Event Pull 10 Add pull mode interfaces for consumers and suppliers
10 Event Struct 13 Provide Event struct to replace Any as event data
11 Event Type 8 Add a type field to the event header
12 Event Type Filter 5, 11 (abstract) Provide common code for all event type filtering features
13 Event Type Mutex 1 (abstract) Prevent Event Struct feature and Event Any feature from being

enabled simultaneously
14 Event Vector 10 Support for sending multiple events to consumers at once
15 Eventbody Any 10 Support CORBA Any payloads in the event structure
16 Eventbody Object 10 Support Obj ect payloads in the event structure
17 Eventbody Octetseq 10 Support octet sequence payloads in the event structure
18 Eventbody String 10 Support String payloads in the event structure
19 Realtime Dispatch 2, 6, 20 Support for event dispatch based on consumer priorities
20 Source Filter 5 Filter events based on the source field in the event header
21 Supplier Dispatch 6, 12 Filter events when received in an event channel
22 Throughput Test 8 Calculate throughput of the Event Service
23 Timestamp 8 Add timestamps to events
24 Time-to-Live 8 Provide TTL support for connected event channels
25 Tracing 1 Support for tracing and debugging calls to the Event Service

Table 1: This table shows features in FACET, features on which they depends, and their functions. Abstract features have no meaning
to end-users, and are only used to support dependency checking in FACET.

AspectJ Approach Jiazzi Approach
File Name (line counts): What the code does File Name (line counts): What the code does

pullAspect.qj (28):

New methods obtain_pull_supplier() and
obtain_pull_consumerO are introduced into classes
ConsumerAdminlmpl and SupplierAdminlmpl, respectively. With
these new methods, consumers and suppliers can set up the link for
pull-mode event communication.

ConsumerAdminlmpl.java (20) and SupplierAdminlmpl.java (19):

ConsumerAdminlmpl. java extends the imported class
ConsumerAdminlmpl as described in base.sig with a new method
obtain_pull_supplier0 . SupplierAdminlmpl.java performs a
similar task, adding a new method obtain_pull_consumerO.

pulllntroAspect.aj (15):

New abstract methods, pu llO , try_pull(),
connect_pull_consumerO, disconnect_pull_supplierO etc.,
are introduced into interfaces, PullSupplier, PullConsumer,
ConsumerAdmin. SupplierAdmin, ProxyPullSupplier, and
ProxyPullConsumer. These introductions will enable end-users to use
the pull feature.

EventComm.sig (17) and EventChannelAdmin.sig (21):

Describes the interfaces to be implemented by this unit. The end-users
use the pull feature through these interfaces.

ProxvPullSupplierlmpl.java (81) and ProxvPullConsumerlmpl.java

(51): '

Two auxiliary classes that implement the pull feature.

ProxvPullConsumerlmpl.java (51) and ProxvPullSupplierlmpLjava
(80): '

Two new classes introduced to implement the pull feature.

(What is required and what is produced are implicit in AspectJ’s
approach. They are scattered out in the files pu llA spect.a j and
pu llln troA spect .a j .)

base.sig (10) and pull.sig (15):

base.sig is the signature file for the imported package which
corresponds to an Event Service implementation without pull feature,
pull.sig is the signature file for the exported package which describes
an Event Service implementation with pull feature.

(There is no way to describe features directly in AspectJ. Features are
identified implicitly by grouping the files implementing the same feature
into one directory.)

pull.unit (16):

pull.unit is the unit definition file that describes the signature of this
unit.

Table 2: Summary and comparison of the files used to implement the pull feature in AspectJ and Jiazzi. Only non-comment, non­
blank lines are counted towards the line numbers of each file.

5

// file . / pullAspect. aj : introduce method definitions,
aspect pullAspect {

ProxyPullSupplier ConsumerAdmlnlmpI. obtain_pull_supplier ()
{ ... }
ProxyPullConsumer SuppllerAdmlnlmpI. obtain_puii_consumer ()
{ ... }

// file . / pulllntro Aspect . aj : introduce method signatures,
aspect pulllntroAspect {

ProxyPullSupplier ConsumerAdmin. obtain.pull.supplier ();
ProxyPullConsumer SuppllerAdmln . obtain_pull_consumer ();
Event PuiiSuppiier. puii ();
Event PuiiSuppiier. try.pull (BooleanHolder has.event);
void PuiiSuppiier. disconnect .puii.suppiier ();
void Pull Consumer. disconnect.pul I.consumer ();
void ProxyPullConsumer. connect _pull_supplier(

PuiiSuppiier puii.suppiier);
void ProxyPullSupplier. connect.pull.consumer(

PullConsumer puii.consumer);

// file . / ProxyPullConsumerlmpI. java : method implementations,
public class ProxyPullConsumerlmpI {

private EventChannellmpI eventChannel.;
protected ProxyPullConsumerlmpI EventChannellmpI ec)
{ ... }
synchronized void connect.puil.supplier(

PuiiSuppiier puii.suppiier)
{ ... }
synchronized void disconnect.pull.consumer()
{ ... }

// file . / ProxyPullSuppllerlmpI. java : method implementations,
public class ProxyPullSuppllerlmpI {

private EventChannellmpI eventChannel.;
protected ProxyPullSuppllerlmpI(EventChannellmpI ec)
synchronized void connect.puii.consumer(

PullConsumer puii.consumer)
{ ... }
synchronized void disconnect_pull_supplier ()
{ ... }
Event pul I () { ...}
Event try.pu 11 (BooleanHolder has.event)
{ ... }

Figure 4: FACET’S implementation of the event pull
feature using AspectJ. It shows how various meth­
ods are introduced to various types using an aspect
(pulllntroAspect .aj). The implementations of intro­
duced methods are added at different places for existing
classes and new classes. For existing classes, they are placed
in an aspect (pullAspect .aj). For new classes, normal Java
class files are created (ProxyPullSupplierImpl.java and
ProxyPullConsumerlmpI. java). It is also clear that there is
no direct language support for describing the feature or the
connections with other features.

show how to prepare the pull feature unit to be used in an open class
pattern instance. Also shown in the figure is the inheritance from
export declaration which prepares the pull unit for a feedback loop
link when the pull unit is composed with other units, as discussed
in Section 2.2.

Compared to AspectJ, extra code in Jiazzi is needed to express
unit and package signatures. However, this gives us the power
to develop each unit separately, as we discuss in the next section.

: CosEventComm
: CosEventChannelAdmin
; (interface Proxy Pul ICon -timer]

ecora: EventComm.sig \ eca: EventChannelAdmin.sig

A event channel

[Con sumer Ad min I mpi)

//Java implementation code
package out:
Com timer Ad mi n I mpi extends
in.Com timer Admin Impl {

eca.ProxyPullConsuraer:

pull.unit

Event Pull Feature

Figure 5: The Event Pull feature as a unit in Jiazzi. The dotted
boxes represent other Jiazzi units. The rounded boxes repre­
sent normal Java classes. For the nested rectangle boxes, the
inner one represents the Java code implementation of the pull
feature, and the outer box represents a Jiazzi unit that wraps
the Java code.

This example does not show how features implemented by before,
after and around advice in AspectJ are implemented in Jiazzi.
Simulating these types of advice in Jiazzi presented no great dif­
ficulty. However, in some cases a function that implements one
aspect in FACET had to be spread over multiple Java files when the
same feature was implemented in Jiazzi.

3.2 Feature Composition
The Jiazzi decomposition and the FACET decomposition also dif­
fer in how feature units are selected and composed. In our decom­
position, one can follow a high-level “boxes and arrows” approach
by treating each feature unit as a box and the connection from one
unit’s export to another unit’s import as an arrow. The composi­
tion task involves a couple of declarative statements as shown in
the following Event Service configuration with pull mode support:

compound pushPullAny.config {
export EventComm : EComm.pullAny;
export EventChannelAdmin : ECA.pullAny;
export EventConfig : pullAny;

H base , pat
pull.cc ;

link unit bt
cc

link package
cc@EventComm to *@EOamm,
cc@EventChannelAdmin to *@ECA,

pushAny, pt : pull

bt@outbase to pat@inbase,
pat@outbase to pt@inbase,
pt@outbase to *@base, // open—class
cc@EventComm to EventComm,
cc@EventChannelAdmin to EventChannelAdmin ,
pt@outbase to EventConfig ;

The export clauses define exported packages from this composi­
tion in the form of <package name> : <package signatures
The link unit clause declares unit instances that are composed in
this configuration in the form of Cunit instance name> : Cunit
def in it ion>. The link package clauses connect the imports
and exports of the unit instances in the form of either Cunit name>
0 <export package> to Cunit name> 0 <import package>
or Cunit name> 0 <export package> to <export package of
this conf iguration>. The * can be used to denote all the units
that have an import package named < import package>. The code
also illustrates how exported package outbase from pt is fed back

6

// file ./pull.unit: unit definition
atom p u i i {

import EComm : EventComm.sig;
import ECA : EventChannelAdmin.sig;
import inbase : base.sig; / /oop
export outbase extends inbase : pull.sig; //oop
import base extends outbase; //oop, inherit from

bind package
base to *@base, //oop

}

// file ./EventComm.sig: interfaces implemented
// by the pull feature.
// (similarly for EventChannelAdmin.sig)
signature EventComm = {
interface PullConsumerOperations {

abstract void disconnect.pull.consumer ();
}interface PullSupplierOperations {

abstract corba.Any puli ();
abstract corba.Any try_pull(

corba. BooleanHolder aO);
abstract void disconnect.pull.suppller ();

}

r

// file ./base.sig: what the pull feature imports
signature base = {

public class ConsumerAdminlmpl { ... }
public class SupplierAdminlmpl { ... }

r

// file ./pull.sig: what the pull feature exports
signature pu 11 = {

public class ConsumerAdminlmpl {
EventChanneiAdmin. ProxyPullSupplier

obtain .pull .supplierQ;
}public class SupplierAdminlmpl {

EventChanneiAdmin. ProxyPullConsumer
obtain.pull.consumer ();

}public class ProxyPullConsumerlmpI {
ProxyPullConsumerlmpI ();
void disconnect.pull.consumer ();

}public class ProxyPullSupplierlmpI {
ProxyPullSupplierlmpI ();
Event pull ();
Event try.pull (BooleanHolder hasEvent.);
void disconnect.pull.supplier ();

}

r

Figure 6: Jiazzi’s implementation of the event pull feature. It
shows the direct support for describing features in Jiazzi, us­
ing the unit definition file, and the explicitness of describing the
connections of this feature with regard to other possible fea­
tures, using the import/export package signatures. These are
the key mechanisms available in Jiazzi that ease the structur­
ing and the understanding of a system. The lines commented
with “ocp” are related to the usage of open-class pattern.

to all three units (bt, pat and pt) in an open-class pattern (cf. Fig­
ure 6.).

Composing features in FACET does not have any explicit sup­
port from the AspectJ language. To configure a system, all the
source files for all the features in the system have to be fed to the
AspectJ compiler. This can be done by a simple script or a more
sophisticated, custom-built configuration system a la FACET. In

exp0rtFACET, each feature aspect must register itself and its feature re­
quirements in a central registry. These aspects are compiled first
and run to generate metadata about all the features in an XML file,
including the source file names and required feature names for each
feature. This information only needs to be updated each time new
features are added to the feature repository. With this information,
one can simply supply the build system with the feature names and
the build process will automatically include other required features
and build the configuration. However, the developer may still need
to resolve ambiguities under certain circumstances, such as when
multiple features can satisfy the requirements of a selected feature.

To summarize, Jiazzi’s “boxes and arrows” approach to feature
configuration is conceptually simple and helpful to the understand­
ing of the system, which we consider important in constructing a
system with many features. FACET, on the other hand, provides
some implicitness with regard to specifying connections between
features and can potentially help a system scale. However, since
this implicitness relies on a global namespace, it will also make it
harder to reuse aspects. Furthermore, we believe that understand­
ing the structure of all the features in AspectJ is harder.

4. DISCUSSION

In this section, we discuss what we learned from applying feature-
wise decomposition using Jiazzi to the CORBA Event Service and
comparing it with an existing decomposition using AspectJ. An
overall comparison of the decomposition results is given in Sec­
tion 4.1. We then discuss incremental composition in Section 4.2,
composition order and dependency in Section 4.3, refactoring in
Section 4.4, and expressiveness and readability in Section 4.5.

From the discussion in this section, we conclude that Jiazzi is a
better language tool to architect a system design, which specifies
how one decomposes a system into modules, what each module
requires and provides, and how modules can be connected. This
capability is reflected in the typical process of using Jiazzi to de­
velop a system, as discussed in Section 4.1.

In comparison, AspectJ is a better implementation tool when the
scopes of aspects are limited to a local subsystem. It is a better
tool to retrofit crosscutting concerns onto existing code due to its
flexibility. However, if aspects crosscut an entire system, they pre­
vent the system from being developed, debugged, and composed
incrementally, and can also make it more difficult to understand the
code.

4.1 Overall Decomposition Results
In our Jiazzi implementation, the decomposition of the Event Ser­
vice corresponds closely to the decomposition in FACET. This is
not surprising, since in doing feature-wise decomposition, the num­
ber of feature units is largely decided by the number of features in
a system. However, there are certain abstract features in FACET
that do not have meaning to an end user of the Event Service, and
are only used to do feature dependency management. Since the
dependency issue presents itself differently in Jiazzi (as discussed
in Section 4.3), these abstract features are not needed in the Jiazzi
decomposition.

An interesting comparison is how different language idioms or

7

design patterns are used in the AspectJ and Jiazzi approaches. Hun-
leth summarized three AOP design patterns used in FACET [14]:
the encapsulated parameter pattern, the template advice pattern,
and the interface tag pattern. The encapsulated parameter pattern
groups parameters into a container, which can be extended to add
parameters. The template advice pattern decouples the definition of
pointcuts from the definition of advice, which reflects the principle
of encapsulation and can be useful when the coding responsibilities
of base and extensions fall onto different developers. Finally, the
interface tag pattern tags a set of classes and interfaces that might
undergo the same upgrade. Besides, the “inter-type member decla­
ration” idiom has proven very useful in FACET.

In the Jiazzi implementation of the Event Service, we also used
the encapsulated parameter pattern. For example, the Event Struct
feature adds support for an Event structure to be communicated
between suppliers and consumers. We used the encapsulated pa­
rameter pattern to implement features surrounding the Event Struct
feature. This pattern solves the problem of maintaining a constant
signature while enabling additional parameters to be added. For
example, a client can always call push(Event) to push an event,
but the actual members of Event can be different for clients using
different Event Service configurations.

In Jiazzi, the open class pattern is the main vehicle to extend and
compose a system. Writing Jiazzi code is a top-down process which
makes the connections between components clear and improves the
structure of the system. For example, when writing Jiazzi code, we
designed the “interfaces” for each unit first, by specifying its pack­
age signatures for import and export. Skeletons are automatically
generated by Jiazzi as an implementation of the unit. Finally, spe­
cific code is manually inserted into the skeletons. The top-down
approach helps one to focus on the overall design of a system from
the start.

In comparison, the AspectJ language supports a bottom-up ap­
proach to composition. A specific base implementation of a sys­
tem is constructed first. Extensions are modeled as aspects that
rely on pointcut definitions. However, pointcuts are low-level pro­
gramming constructs that are not suitable for modeling connections
between components, since specifying connections is a high-level
system design task. The authors of FACET reported that many core
interfaces and aspects had to be substantially refactored in the pro­
cess of adding new features to FACET [14].

4.2 Incremental Composition
Incremental composition allows the composition of a system to be
performed step by step. Feature components can be composed into
units that can be further used in bigger units or in the final system.
Incremental composition enables a certain degree of incremental
development. It helps reduce the compositional complexity of the
final system, helps find bugs earlier, and enables better reasoning
about the code. With such support, debugging of the units can be
performed incrementally, and the number of units used in the com­
position of the final system decreases. When reasoning about the
resulting code, the decreased number of units also means fewer
connections between units and a higher level of abstraction, which
reduces cognitive complexity.

Jiazzi provides better support for doing incremental composition
than AspectJ, because Jiazzi provides type checking of unit compo­
sition. Of course, type checking comes at a cost: as we showed in
Section 3, a Jiazzi programmer must write signature files for every
unit. In Jiazzi, after a feature is packaged into a unit, the unit can be
compiled and debugged with respect to its import and export sig­
natures. Also, several units representing a subsystem can be linked
into a single unit, which can be used to build a bigger system. As

long as its import requirements are met, a unit will provide what­
ever is in its exported package signatures. For example, the Event
Struct and Event Header features in Table 1 frequently appear to­
gether in various configurations. By composing them first into an
“Event Struct with a Header” feature, we reduced the number of
components in composing a final configuration. More specifically,
we have reduced the number of linking clauses in the final config­
uration. (Section 4.3 gives an example of linking and connecting
units in Jiazzi.) This incremental composition ability helps manage
the complexity in a large system with a great number of compo­
nents.

The AspectJ language, on the other hand, does not provide sup­
port for type checking and debugging aspects incrementally.2 As a
consequence, errors in aspects may not be discovered until a com­
plete system is in place. Because AspectJ lacks a signature mecha­
nism to enable type checking, it is not as effective as Jiazzi in sup­
porting incremental composition. In return, this lack of type check­
ing enables AspectJ to express useful non-type-safe code transfor­
mations.

4.3 Feature Dependencies and Ordering
In this section, we compare Jiazzi and AspectJ with respect to the
following issues: feature dependencies, feature execution order,
feature composition order, and feature composition error detection.
By “feature dependency,” we mean that support for one feature re­
quires the presence of other features. By “feature execution order,”
we mean that one feature’s code must be executed before or after
another feature’s code. By “feature composition order,” we mean
an explicit specification of the order in which features are com­
bined. Feature dependencies and feature execution order are tightly
coupled in Jiazzi, while in AspectJ, aspect dependencies and advice
execution order are relatively independent of each other. The dif­
ferences have certain implications.

Feature dependencies require different treatment in Jiazzi and
AspectJ. Consider the Event Struct, Event Header, and Timestamp
features (as shown in Table 1): the Event Header feature introduces
a header field into the event struct, which can be used in the event
channel to do content-based filtering. The Timestamp feature intro­
duces a field into the event header to record the system time when
an event reaches an event channel. Hence, the Timestamp feature
depends on the Event Header feature, and the Event Header feature
depends on the Event Struct feature. These dependencies rule out
some feature composition orders.

In Jiazzi, feature dependencies translate directly into a specific
feature composition order that is specified by the linking clause in
the definition of a compound unit. Here is how order is specified in
Jiazzi to match the dependencies for the above example:

compound pushEvent.config {
link unit es: EventStruct , eh :EventHeader, 11:TimeStamp;
link package

es@outparam to eh@inparam,
eh@outparam to tt@inparam ,

}

This compound links the exported outparam package from the
Event Struct feature to the imported inparam package into the
Event Header feature, and similarly for the Timestamp feature, which

2AspectJ release 1.1 takes advantage of the incremental compila­
tion ability of the underlying Eclipse compiler, which is a different
issue from separate compilation or incremental composition.

8

fixes the composition order. When reflected in the class hierarchy,
classes in the EventStruct unit will be the super classes for those
in the EventHeader unit.

In AspectJ, dependencies between features imply that one cannot
weave a feature without the code for the features on which it de­
pends. Features can be implemented with many aspects, and each
aspect can contain many pieces of advice. In AspectJ, the notions
of feature dependency, aspect application order, and advice order
are distinct: there are well-defined rules for ordering the execution
of advice, but the containing aspects are conceptually applied to
a base program in a simultaneous fashion, and inter-aspect depen­
dencies are resolved in a simultaneous manner. For example, if two
aspects are used to represent the Event Header and Timestamp fea­
tures, and they use inter-type member declarations to implement
these features, one can apply those two aspects simultaneously. If
the Event Header feature is somehow missing, then compiling the
Timestamp feature results in type-checking errors.

Composition order also needs to be considered for independent
features in some cases. For example, application semantics can
be affected by feature execution order, which might require a spe­
cific feature composition order. Given two independent features,
different composition orders will produce different results. For ex­
ample, the Consumer Dispatch feature in the Event Service blocks
on events with types not registered by an event consumer, and the
Throughput Test feature is used to count the number of events re­
ceived by a consumer. Both of these features are implemented as
refinements of the ProxyPushSupplier class. The execution or­
der of these two features will determine the count number returned
by the Throughput Test feature.

In Jiazzi, the placement of super () calls in subclasses deter­
mines the execution order of the code in the parent and child classes.
In addition, when composing two independent units, programmers
can choose which unit will be the parent unit. As a result, after
several individual features have been coded and packaged, differ­
ent application semantics can be obtained by just choosing different
composition orders. For example, if a composition causes classes
in the Consumer Dispatch feature to be superclasses of classes in
the Throughput Test feature, the number of events being pushed to
the proxy supplier will be counted, regardless of whether the events
are filtered by the Consumer Dispatch feature. However, if the in­
heritance relationship is inverted between these two features, the
actual number of events received by the consumer will be counted.

In AspectJ, the desired application semantics can be achieved
by ensuring an appropriate execution order for advice. For exam­
ple, the Consumer Dispatch and Throughput Test features are im­
plemented using two aspects that advise the same pointcut: calls
to ProxyPushSupplier. push (EventCarrier). The Consumer
Dispatch feature can be implemented as around advice, while the
Throughput Test feature can be implemented using before advice.
According to the precedence rules of AspectJ, the execution order
of these two unrelated pieces of advice is undefined. If a particu­
lar AspectJ compiler runs the around advice first, only the number
of events actually received by the consumer will be counted. If
these semantics are not expected, i.e., the events filtered out by the
Consumer Dispatch feature should be counted, then the following
explicit precedence declaration should be used:

declare precedence:
ThroughputTestAspect , ConsumerDispatchAspect

As demonstrated by this example, programmers must be extremely
careful when two pieces of advice advise the same join point. If the
implicit (or undefined) ordering of advice is not acceptable, explicit
ordering must be specified.

Composition order and execution order are approached at differ­
ent levels of abstraction in AspectJ and Jiazzi. In Jiazzi, both kinds
of order are dealt with at the unit level, where order is largely de­
cided by the order in which units are composed. In AspectJ, com­
position order is not meaningful, because aspects are applied simul­
taneously. Execution ordering is dealt with individually for each
piece of advice. Execution order between advice is determined us­
ing AspectJ’s implicit rules or using explicit precedence declara­
tions on the enclosing aspects. Because a single aspect can provide
multiple pieces of advice, managing execution order is nontrivial
in AspectJ. By considering the composition order issue at a higher
level, Jiazzi provides better support for managing unit dependen­
cies and for wiring units together, especially in a system with a
large number of components.

The tight coupling between dependencies and composition or­
der in Jiazzi can make it easier to understand the structure of a
feature configuration, but could conceivably cause difficulties in
implementing some feature combinations. For example, in some
situations the “sandwiching” technique [27] may be necessary to
decompose features, so that all of the features’ units can be as­
sembled in a way that both satisfies unit dependencies and yields
the desired run-time execution order. In other words, the designer
may be forced to implement a feature as two separate units, due
to the limitations of composing features-as-units in Jiazzi.J While
decomposing the CORBA Event Service with Jiazzi, however, we
did not encounter any such complex cases. Except for the Trac­
ing feature, which we did not implement, the non-abstract features
defined by FACET (listed in Table 1) were each mapped onto a
single unit in our implementation. The units implementing these
features compose naturally and easily. This suggests that “unnatu­
ral” decompositions of features into fine-grain units may be needed
rarely, if at all, in real systems. Although Jiazzi’s ability to com­
pose units is perhaps more “coarse-grained” than AspectJ’s ability
to combine aspects, our experience is that the unit model is en­
tirely adequate for feature-wise decompositions: the more complex
composition rules of AspectJ are not generally required. Future ex­
periments will be required to test this hypothesis for systems other
than FACET and our implementation of the Event Service.

In Jiazzi, dependencies are directly resolved by composition or­
der. Units cannot be wired together in Jiazzi if a required unit is
missing. In contrast, AspectJ does not support dependency man­
agement very well. In fact, the implementors of FACET found it
necessary to implement a special mechanism to validate dependen­
cies between aspects that could not be expressed directly in As­
pectJ. Additionally, AspectJ silently ignores cases where advice
pointcut designators are never matched, which results in function­
ality of an aspect not being used. This behavior might surprise
developers. In contrast, in our implementation of the Event Ser­
vice, Jiazzi prevents us from making invalid feature compositions
and from accidentally omitting features.

4.4 Refactoring Effort

As pointed out by Murphy et al., features are usually identified dur­
ing the development of a system [24]. Thus, it is often the case
that one is forced to go back and refactor the base code when new
features need to be added. For example, in the Jiazzi approach,
we often need to change the visibility of class members in previ­
ously developed features, from private to protected and sometimes
to public.

Since we did not perform the AspectJ decomposition of the Event

J Analogous refactorings are sometimes necessary in AspectJ. In
AspectJ, though, the refactorings are usually used to expose join
points.

9

Service, we have no direct knowledge about the refactoring effort
that was required to add new features. However, the authors of
FACET reported that many key interfaces and classes underwent
significant refactoring during the course of adding new features.
We can infer such effort from the interface tag pattern and from
other programming idioms used. For example, the TypeFilter-
(EventCarrier) and the SourceFilter (EventCarrier) meth­
ods perform two types of filtering operations. They are called only
once in the ProxyPushSupplierlmpl class, where these filtering
operations are implemented. Thus, their function could have been
coded directly in the calling function. However, separating them
out provides opportunities to easily add the Consumer Dispatch
and the Source Filter features (shown in Table 1) in FACET.

It may appear that AspectJ provides better support for retrofitting
new features onto poorly structured code than Jiazzi because As­
pectJ constructs for adding extensions to classes are more expres­
sive than those in Jiazzi. Therefore, it should be the case that less
refactoring of base code is needed when adding new features using
AspectJ. However, as discussed above, refactoring in FACET in­
volved significant invasive changes to the base code. When prepar­
ing a system for future extensions, the programming idiom used in
AspectJ tends to refactor functionality into methods, or implement
interfaces that are only used to tag classes. Because these idioms
directly affect the base code, we believe that AspectJ’s flexibility
does not automatically benefit the process of extending systems.

4.5 Expressiveness and Readability
The programming model of AspectJ makes it difficult to under­
stand AspectJ code in some situations. Although IDE support can
make this task easier for programmers, traditional procedural and
operational reasoning does not work well with AspectJ code. For
example, finding the code affected by the following aspect is not
easy for a big system:

aspect EventBodyAnyUpgrader {
pointcut upgradeLocations () :

t h i s (Upgradeable) &&
! th is (CorbaEventBodyAnyFeature);

after () returning (Event data) :
cal I (Event .new())
&& upgradeLocations ()

{ ■■■ }
}

This code exemplifies one of the AOP design patterns used in FACET:
the interface tag pattern. There are a dozen classes implementing
the Upgradeable interface in FACET, and there are also many that
do not. The choices of which class or interface to tag is not an obvi­
ous decision, because this sets up hooks for future extensions with­
out knowing what those extensions might be. In Jiazzi, more code
is needed to implement the same upgrade feature, but the upgraded
classes are explicitly specified. To implement this upgrade feature
in Jiazzi, the Event class is extended. In particular, an overriding
no-argument constructor is added to the extending class. The rest
of the system will use this extended Event class to create objects.

AspectJ can offer extremely succinct implementations for func­
tionality that would otherwise be implemented with very complex
and tangled code. The tracing concern is an often mentioned ex­
ample in the literature. FACET provides the tracing feature, which
would have required tedious and verbose implementation in Jiazzi.
There is a tradeoff between the degree of separation of a feature and
the readability of the resulting code. For example, AspectJ offers a
higher degree of separation of concerns, while Jiazzi has a simpler
model of how code might interact with other code and thus enables

better readability. We can also think of the difference as the width
of the interface that AspectJ and Jiazzi can manipulate. In AspectJ,
this width is every method invocation, whereas in Jiazzi it is ev­
ery method declaration. The tradeoff has been further explored by
Bryant et al. [4]: their approach is to localize the implementation
of a concern, but to make the crosscutting nature of this concern
known to the rest of the system. Compared with AspectJ, their ap­
proach offers better readability, but always requires explicit hooks
in the base code.

5. JIAZZI USABILITY

Although our primary goal is to compare feature-wise decompo­
sition in Jiazzi and AspectJ, we also found certain issues in using
Jiazzi that are not comparable with AspectJ. These issues are im­
portant to consider when designing similar tools.

5.1 Signature Management
Although signatures are crucial for supporting separate compila­
tion and incremental composition, signature management in Jiazzi
is a non-trivial issue. For example, our project defines 20 feature
units that depend on 39 package signatures. Even with this many
package signatures, all legal feature compositions have yet to be ex­
plored. One reason for the all these different signatures is that each
feature unit must specify its most general import requirements to
maximize reusability. When two packages are composed, an ad­
ditional export package signature is needed that exports a superset
of what are exported in these two packages. An automatic tool for
signature extraction might be useful to a limited extent.

5.2 Open Class Pattern Usage
Although the open class pattern is the main vehicle in Jiazzi for
extending systems, there are subtle issues in using it correctly. For
example, in using the open class pattern, each unit creates a new
version of the extended classes and interfaces through subclassing.
In the source code of each unit, the most extended version of these
types should always be used. These types are imported into the
unit by the back link in the open class pattern. (See Figure 1.) For
example, in the pull unit of Figure 6, the inbase, outbase, and
base packages describe three versions of the same set of types. It
is important to use only the types in the base package.

When using the open class pattern, the constructor definitions
in units might place surprising restrictions on composition order.
In this project, we ran into the task of composing five units repre­
senting the Base, Event Struct, Event Vector, Consumer QoS and
Correlation Filter features as shown in Table 1.

// order 1 : incorrect
Base —> Event Struct —> Event Vector —> Consumer QoS
—> Correlation Filter
//order 2: correct
Base —> Consumer QoS —> Event Struct —> Event Vector
—> Correlation Filter

These five units extend the same package, base. As shown above,
there are two composition orders for the five units: one is correct
and the other is not. The reason for the incorrect order is that the
EventCarrier class in the Correlation Filter unit has a construc­
tor that is not present in the Consumer QoS unit, although it does
appear in the Event Vector unit. The problem arises because con­
structors are not inherited in Java. Therefore, a super call in the
EventCarrier constructor will cause a static error in the first com­
position.

This example illustrates that the non-inheritance of constructors
interacts poorly with Jiazzi’s module system. More generally, the

10

use of inheritance across modules in Jiazzi conflicts with the non­
inheritance of constructors. In future languages with component
systems, it might be useful to design some mechanisms that would
allow constructors to be inherited.

5.3 Abstract Methods
In Java, a class declared as concrete is required to implement all
abstract methods inherited from any superinterface. In the same
spirit, when the implementation class is separated from the inter­
face by being placed in different units or components, care must be
taken to prevent introducing abstract methods into concrete classes
when these components are composed together. However, there
is one issue in this checking as illustrated by the following exam­
ple. In the Jiazzi implementation of the Event Service, the base,
push, and pull feature units all import the EventComm and Event-
ChannelAdmin packages. However, the imported signatures for
these two packages are different in the three units. The push unit
imports an obtain_push_consumer0 abstract method in the in­
terface SupplierAdminOperations in EventChannelAdmin, the
pull unit imports an obtain_pull_consumer () abstract method
in the same interface, and the base unit imports neither of these
methods. When composing these three units, only a single ver­
sion of the EventComm package and a single version of the Event­
ChannelAdmin packages are provided, which will have signatures
that are the sum of the signatures for those three units. In this way,
we have introduced an abstract method obtain_pull_consumer ()
into a concrete class in the push unit. (The same problem exists for
the classes implementing SupplierAdminOperations interface
in the base and pull units.) However, by using open class pattern,
the three classes in these three units, together, implement all the
methods in the SupplierAdminOperations interface.

The above problem is not generally associated with program­
ming in Jiazzi, but is due to the conflict between programming
the CORBA objects and programming an extensible system (in this
case, the Event Service). The implementation of a CORBA object
must implement the Java interface generated by a IDL compiler
from its IDL definition. The IDL definition is determined by the
features that are selected; the interface generated from the defini­
tion is then used by the implementation. However, in doing feature-
wise composition, the implementation is divided into multiple units
using the open-class pattern. As a result of this usage of Java in­
terfaces, the Jiazzi signatures had to contain abstract methods.4 As
a solution, we relaxed the default checking of abstract methods at
the unit level in Jiazzi. We still ensure composition safety, though:
when a complete program is linked, Jiazzi ensures that all abstract
methods are implemented in at least one constituent unit.

The binary compatibility rules in the Java Language Specifica­
tion [11] address the same problem when the Java library is ex­
tended in unforeseen ways. The fundamental issue lies is in the use
of Java interfaces. While Java interfaces are good for separating
specification from implementation, they do not support evolution,
which is common when reusing code and adding new functional­
ities, or designing a configurable and extensible system from the
beginning. This problem is more generally referred to as the “sub­
jectivity” problem [1] to provide different interfaces to a system
depending on the system’s configuration.

6. RELATED WORK
Jiazzi’s component model was drawn from the research work on
mixins and units. Mixins are class extensions with parameterized

4For Jiazzi, a better solution would be to have the IDL compiler
generate Jiazzi signatures instead of Java interfaces.

superclasses. Bracha studied mixins as a possible mechanism to
bring some of the flexibilities of multiple inheritance 00 languages
back into single inheritance 00 languages [3]. Flatt explored the
benefits of integrating mixins with units, a component model with
explicit module linking, in facilitating modular object-oriented pro­
gramming [9,10].

General issues regarding system decomposition and program fam­
ilies were explored in some of Pamas’s classic papers [26, 28].
In constructing a complete program, decisions need to be made
about data structures and algorithms. Designing program fami­
lies is about representing programs at intermediate stages where
certain decisions have already been made and some undesirable
and uninteresting programs have been excluded, but where some
more critical decisions has yet to be made to get a complete pro­
gram. Step-wise refinement and module specification were con­
sidered two complementary techniques to develop program fami­
lies. Using the former technique, decisions are made sequentially at
each step and a (partial) program is obtained after each step. Thus,
it does not add significant cost to get the first complete program
running, but it is challenging at each step to decide which decisions
will likely to change. Using the later technique, all the decisions are
faced up-front. However, the decision making is hidden by some
well-defined interfaces and placed in separate modules. The cost of
designing modules and defining interfaces can be significant, but
broader program families are produced. Jiazzi is a realization of
the module specification technique with some enhanced features
like the open-class pattern.

Subsetting and extending programs is a problem much related to
program families [27]. Several techniques can ease the process,
including identifying the minimal subset and all minimal incre­
ments in the system at requirement analysis stage, using modules,
and designing proper “use” structure for subprograms. The “use”
structure problem underlies the problem of managing feature de­
pendency as discussed in this paper. Many concerns that we use
to evaluate decomposition results in this paper can be found in the
above work.

Feature-wise decomposition and feature management have been
active research areas. Cardone et al. developed the Fidget [5] sys­
tem to decompose a graphical user interface using the mixin layer
approach. Lai et al. demonstrated techniques to decompose two
Java packages, jFTPd and gnu .regexp, using Hyper/J [19]. Our
work differs from both of these efforts in that we are not trying
to show how feature-wise decomposition can be done with a par­
ticular system, but instead what we can learn from these different
approaches to perform the same task, and how we can make such
tools better.

Another approach to support feature composition is using soft­
ware generators, including Batory et al’s GenVoca model and Pre-
hofer’s feature-oriented programming model [1,2,29]. In both of
these systems, features are composed by writing equations. In Gen­
Voca, interfaces to components or features are called realms and
implementations of realms are called components. GenVoca also
generalizes the concept of parameterization to allow realm and data
member name parameters, besides constant and type parameters.
Component composition equations models a series of transforma­
tions, which are similar to function composition in mathematics.
GenVoca also enables certain design rules to be specified for com­
ponents that can be automatically checked for every compositions.
Prehofer’s feature-oriented programming model has a similar fla­
vor with regard to feature compositions. A lifter is required for
each pair of features that need method overwriting when composed
together. Thus, lifters explicitly embody feature interactions.

Comparison studies try to bring into perspective the often incom-

11

patible evaluation found in the literature of each individual technol­
ogy involved in the comparison. Lieberherr et al. [201 identified the
tension between aspect-oriented programming (AOP) and modular
programming (MP) [261 and the inadequacies of AspectJ and Hy-
per/J as flexible modular programming tools. They proposed a new
language, called Aspectual Collaboration (AC), as a way to com­
bine the expressiveness found in AOP and the modularity found in
MP. They compared these three languages in decomposing an ar­
tificial problem, where the task is to verify that containers do not
exceed their capacity and the task is augmented with a caching con­
cern to improve performance.

We share with them a common set of desired programming tool
properties that are used to compare different tools. Although the
examples used differ in scale, we arrived at similar conclusions in
regard to AspectJ: AspectJ is designed to be a flexible programming
tool rather than a powerful module system. Aspectual Collabora­
tion requires radical changes to Java language syntax; Jiazzi re­
quires no such changes, but instead superimposes the definition of
units onto ordinary Java packages. AC and Jiazzi also differ in how
composition is performed. AC adopts the Hyper/J style of compo­
sition, where classes defined in different “modules” are combined
and class members renamed when necessary, while Jiazzi uses a ex­
plicit module linking language. AC also provides direct support for
intercepting method invocations, which is more reusable than the
method interception mechanism in AspectJ and more fine-grained
than unit composition in Jiazzi.

Murphy et al. presented an exploratory comparison study on con­
cern separation using Hyper/J, AspectJ and a lexically-based tool
called LSOC [231. They studied two cases of concern tanglement:
tangled in a single method and tangled across a small number of
classes. They compared the effects on base and separated code
structures constructed by these three tools. They evaluated the ef­
fects using code cohesion and “knows-about” relation. The results
were mixed. AspectJ was reported to produce a more clean and
complete separation, but reasoning about aspects alone was poten­
tially difficult, and the ordering constraints between aspects effec­
tively coupled separated concerns. Hyper/J was reported to produce
less cohesive base code, but it was easier to understand and main­
tain the system because separated concerns were colocated with
the base structure. Compared with our study, their work focused on
decomposition on a smaller granularity (within a method or a few
classes), and as such, complements our work.

There have also been comparison studies conducted on differ­
ent component frameworks. Casagni et al. developed a framework
to structure the comparison process [61. The framework identi­
fied three sets of features about a component framework. They
include design properties, which describe the characteristics of re­
sulting system using some component framework; framework im­
pact issues, which describe framework features supporting com­
ponent hosting and design ramifications due to framework con­
siderations; and quality attributes, which describe the availabil­
ity, usability, and modifiability of the resulting components. The
authors applied their framework to a FIPA-compliant multi-agent
system and the Web-centric J2EE platform, and they made sugges­
tions as for which component framework is recommended to use
when developing a new system. This framework is not generally
suitable for our comparison on tools supporting feature-wise de­
composition. For example, design size—number of components in
the application—is one of the design properties compared in this
framework, but it is not included in our comparison, since the num­
ber of components is largely decided by the features identified in
the application. However, we do share a common subset of com­
parison elements, including interactions between components and

7. CONCLUSION
We have described a comparison study of feature-wise decomposi­
tion using AspectJ and Jiazzi. As part of this study, we identified
a set of concerns that are important for developers. Among these
concerns, Jiazzi provides better support for doing separate com­
pilation, incremental composition, compositional reasoning of the
system, and writing loosely coupled features. AspectJ, on the other
hand, provides more support for the ability to retrofit a new feature
into a poorly structured code base and the ability to write concise,
localized code for crosscutting features. Managing dependencies
and execution order among features can be done at a higher level
on units in Jiazzi, but requires explicit specification of the compo­
sition order of units. In AspectJ, dependency has to be managed
outside the language and execution order has to be resolved at a
lower level, namely advice and join points. However, AspectJ has
implicit rules to resolve execution order of advice; it requires ex­
plicit specification in fewer cases than Jiazzi does. Finally, we have
made some observations about language design that should aid in
the future design of similar language tools.

8. REFERENCES
[11 D. Batory and B. J. Geraci. Composition validation and

subjectivity in GenVoca generators. IEEE Transactions on
Software Engineering, 23(2):67-82, Feb. 1997.

[21 D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and
M. Sirkin. The GenVoca model of software-system
generators. IEEE Software, 11(5):89—94, Sept. 1994.

[31 G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. PhD thesis, University
of Utah, 1992.

[41 A. Bryant, A. Catton, K. D. Voider, and G. C. Murphy.
Explicit programming. In Proceedings of the 1st
International Conference Aspect-Oriented Software
Development, pages 10-18, University of Twente, Enschede,
The Netherlands, Apr. 2002. ACM.

[51 R. Cardone, A. Brown, S. McDirmid, and C. Lin. Using
mixins to build flexible widgets. In Proceedings o f the 1st
International Conference Aspect-Oriented Software
Development, pages 76-85, University of Twente, Enschede,
The Netherlands, Apr. 2002. ACM.

[61 M. Casagni and M. Lyell. Comparison of two component
frameworks: The FIPA-compliant multi-agent system and
the Web-centric J2EE platform. In Proceedings o f the 25th
International Conference on Software Engineering, pages
341-351, Portland, Oregon, May 2003. IEEE Computer
Society.

[71 C. Clifton, G. T. Leavens, C. Chambers, and T. D. Millstein.
MultiJava: modular open classes and symmetric multiple
dispatch for Java. In Proceedings o f the 2000 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 130-145,
Minneapolis, Minnesota, Oct. 2000. ACM.

[81 Eclipse Project. AspectJ Web site, http://eclipse.org/aspectj/,
2003.

[91 R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In SIGPLAN Notices,
volume 34, pages 94-104. ACM Press, 1999.

[101 M. Flatt and M. Felleisen. Units: cool modules for HOT
languages. In Proceedings o f the ACM SIGPLAN1998

component reusability.

12

http://eclipse.org/aspectj/

conference on Programming language design and
implementation, pages 236-248, Montreal, Quebec, Canada,
1998. ACM Press.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracba. The Java
Language Specification. The Java Series. Addison-Wesley,
second edition, June 2000.

[12] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating
feature modeling with the RSEB. In Proceedings ofthe Fifth
International Conference on Software Reuse, pages 76-85,
Victoria, BC, June 1998.

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design
and performance of a real-time CORBA event service. In
Proceedings ofthe 1997 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 184—200, Atlanta, Georgia, Oct. 1997.
ACM.

[14] F. Hunleth. Building customizable middleware using
Aspect-Oriented programming. Master’s thesis, Washington
University, Saint Louis, Missouri, May 2002.

[15] F. Hunleth and R. Cytron. Footprint and feature management
using aspect-oriented programming techniques. In
Proceedings ofthe 2002 Joint Conference on Languages,
Compilers, and Tools for Embedded Systems & Software and
Compilers for Embedded Systems (LCTES ’Q2-SCOPES ’02),
pages 38—45, Berlin, Germany, June 2002. ACM.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, 1990.

[17] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software
Engineering, 5:143-168, 1998.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In J. L.
Knudsen, editor, ECOOP 2001 — Proceedings ofthe 15th
European Conference on Object-Oriented Programming,
volume 2072 of Lecture Notes in Computer Science, pages
327-353, Budapest, Hungary, June 2001. Springer.

[19] A. Lai, G. C. Murphy, and R. J. Walker. Separating concerns
with Hyper/J: An experience report. In International
Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering at ICSE, May 2000.

[20] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual
Collaborations: Combining modules and aspects. Technical
Report NU-CCS-02-03, Northeastern University, Nov. 2002.

[21] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age
components for old-fashioned Java. In Pmceedings ofthe
2001 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
211-222, Tampa, Florida, Nov. 2001. ACM.

[22] S. McDirmid and W. C. Hsieh. Aspect-oriented
programming with Jiazzi. In Pmceedings ofthe 2nd
International Conference Aspect-Oriented Software
Development, pages 70-79, Boston, Massachusetts, Mar.
2003. ACM.

[23] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard.
Separating features in source code: an exploratory study. In
Proceedings ofthe 23rd International Conference on
Software Engineering, pages 275-284, Toronto, Ontario,
Canada, 2001. IEEE Computer Society.

[24] G. C. Murphy, R. J. Walker, E. L. Baniassad, M. P. Robillard,

A. Lai, and M. A. Kersten. Does aspect-oriented
programming work? Communications ofthe ACM,
44(10):75-77, Oct. 2001.

[25] Object Management Group. Object Management Group Web
site, http://www.omg.org/, 2003.

[26] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12): 1053-1058, Dec. 1972.

[27] D. L. Parnas. Designing software for ease of extension and
contraction. In Software fundamentals: collected papers by
David L. Parnas, pages 269-290. Addison-Wesley Longman
Publishing Co., Inc., 2001.

[28] D. L. Parnas. On the design and development of program
families. In Software fundamentals: collected papers by
David L. Parnas, pages 193-213. Addison-Wesley Longman
Publishing Co., Inc., 2001.

[29] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In M. Aksit and S. Matsuoka, editors, ECO O P ’97 -
Preceedings ofthe 11th European Conference on
Object-Oriented Programming, volume 1241 of Lecture
Notes in Computer Science, pages 419̂ 143, Jyvaskyla,
Finland, June 1997. Springer.

[30] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. In Proceedings ofthe 21st International
Conference on Software Engineering, pages 107-119, Los
Angeles, CA, May 1999. ACM.

[31] S. Vinoski. CORBA: Integrating diverse applications within
distributed heterogeneous environments. IEEE
Communications Magazine, 35(2), Feb. 1997.

13

http://www.omg.org/

