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ABSTRACT

The design of integrated circuit (IC) requires an exhaustive verification and a thorough

test mechanism to ensure the functionality and robustness of the circuit.

This dissertation employs the theory of relative timing that has the advantage of enabling

designers to create designs that have significant power and performance over traditional

clocked designs. Research has been carried out to enable the relative timing approach

to be supported by commercial electronic design automation (EDA) tools. This allows

asynchronous and sequential designs to be designed using commercial cad tools. However,

two very significant holes in the flow exist: the lack of support for timing verification and

manufacturing test.

Relative timing (RT) utilizes circuit delay to enforce and measure event sequencing on

circuit design. Asynchronous circuits can optimize power-performance product by adjusting

the circuit timing. A thorough analysis on the timing characteristic of each and every timing

path is required to ensure the robustness and correctness of RT designs. All timing paths

have to conform to the circuit timing constraints.

This dissertation addresses back-end design robustness by validating full cyclical path

timing verification with static timing analysis and implementing design for testability (DFT).

Circuit reliability and correctness are necessary aspects for the technology to become

commercially ready. In this study, scan-chain, a commercial DFT implementation, is applied

to burst-mode RT designs. In addition, a novel testing approach is developed along with

scan-chain to over achieve 90% fault coverage on two fault models: stuck-at fault model

and delay fault model. This work evaluates the cost of DFT and its coverage trade-off then

determines the best implementation.

Designs such as a 64-point fast Fourier transform (FFT) design, an I2C design, and

a mixed-signal design are built to demonstrate power, area, performance advantages of

the relative timing methodology and are used as a platform for developing the backend

robustness. Results are verified by performing post-silicon timing validation and test. This

work strengthens overall relative timed circuit flow, reliability, and testability.
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CHAPTER 1

INTRODUCTION

Scaling has enabled the transistor revolution, allowing the industry to embed as many

as 4 billion transistors on a single chip. This increase in capabilities in semiconductor

manufacturing has enabled the design of large, concurrent integrated circuits and systems.

Computer-aided design (CAD) algorithms and tools enhance productivity and reliability

of complex circuits. However, design methodology has not kept up with improvements in

manufacturing. The clocked design flow is largely unchanged over the last 35 years and is

targeted toward designs that operate at a single frequency.

Multiple frequency designs offer additional opportunities for optimization on power and

performance avenues. Relative Timing (RT) is an asynchronous design methodology that

empowers multiple frequency designs [1]. RT designs commonly demonstrate significant

energy reduction and performance enhancement. Previous studies have show that several

RT designs achieve 3× energy reduction [2]–[11]. Some representative designs are listed in

Table 1.1. Clocked design forms the baseline. Numbers larger than 1.00 are improvements

for all metrics. Pentium front end results are comparing the fabricated designs. The area

reported for the 2-phase link design does not include transistor area. The mixed signal

design will be described in Section 6.2.7.2. The 64-point FFT design will be discussed in

Section 6.1.

RT design enforces circuit timing by constraining a circuit design with a set of timing

constraints. The circuit is functional if, and only if, all the constraints are hold. This

method for handling circuit timing requires more in-depth algorithmic support to validate

the correctness of the circuit operation during the design phase. Postmanufacturing testing

is one other essential step in the process needed to validate and observe the correctness of

the designs. Reliability and correctness are two main qualities that must be assured if the

technology is to be considered commercially ready. This dissertation develops the backend

support for RT designs. Backend robustness is achieved by validating event sequencing of

the design and implementing design for testability (DFT).
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Table 1.1. ASIC Design Comparison Between Clocked and Relative Timed Designs

Design Energy Area Freq. Latency Aggregate

Pentium F.E. [3] 2.05 0.85 2.92 2.38 12.11×
10-bit FIFO [4] 2.37 1.61 1.06 2.91 11.77×
2-phase Link [5] 1.11 0.92 0.98 1.77 1.77×
SAS [5],[6] 2.54 1.36 1.00 9.54 32.95×
Mixed Signal 3.25 1.02 1.00 1.00 3.32×
NoC - Aeth/Orion [7] 4.85 6.54 2.10 1.84 122.56×
NoC - COSI [8] 1.87 5.72 1.19 2.25 28.18
64-pt FFT [9] 2.43 2.42 1.97 3.17 36.72×
UART [10] 3.99 0.92 1.00 1.00 3.67×
OCP Socket [11] 4.65 1.36 2.75 – 17.39×

1.1 Background

1.1.1 Asynchronous Method

Asynchronous designs use handshake protocols to communicate between modules. There

are two common types of handshake protocols: 2-phase and 4-phase. For this study, the

4-phase handshake protocol, which is shown in Figure 1.1, has been selected. Communication

between modules starts with the sender raising the request signal. The receiver responds

with an acknowledgment of the received signal. The sender then releases the request and

the receiver returns to the initial state. Signal transitions are used for communication in

the 2-phase handshake protocol. Circuit applies the 4-phase protocol generally have less

overhead and are smaller than the one uses the 2-phase protocol [12], [13].

There are two common design styles for asynchronous circuits; bundled-data and delay-

insensitive (DI) [14],[15]. The bundled-data style combines a standard combinational data

path with a handshake mechanism to control data flow. The DI style encodes the handshake

signals with the data to form 1-of-N encoding for communication [16]. In this study, bundled-

data is the style chosen for asynchronous circuit design because of its superior power and

performance over DI style, and due to the fact that timing verification is more complicated.

Figure 1.1. 4-Phase handshake signals
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1.1.2 Relative Timing

Timing in circuit design is where the proverbial rubber hits the road. The effect of time

on a system is to order and sequence events. Timing is where asynchronous designs differ

from clocked designs.

This creates problems and challenges for circuit optimization and validation because

commercial electronic design automation (EDA) tools only support clocked design. However,

asynchronous design is still of high interest because it can provide significant power and

performance benefits.

Circuit timing in asynchronous circuits can be modeled and observed by applying the

relative timing methodology. Relative timing is a method of expressing the signal ordering

property of time with the logical expression is shown in Eqn. 1.1. The relative timing

constraints have a common timing reference point called the point of divergence (pod). The

timing paths between the two points of convergence (poc0 and poc1) with respect to pod

are constrained relative to each other to ensure signal ordering is guaranteed.

The maximum delay of the path from the pod to poc0 must be less than the minimum

delay of the path from the pod to poc1 for signal ordering to hold. The margin m is added

to provide for a more robust event separation.

pod 7→ poc0 +m ≺ poc1 (1.1)

Relative timing constraint paths can be directly translated into a set of synopsys delay

constarint (SDC) set max delay and set min delay commands, as shown in Table 1.2.

Note that the keyword magin below is a supportive command that refers to m in Eqn. 1.1.

1.1.3 Relative Timing Tool Flow [2]

Extending the application of relative timing to the entire end-to-end design and synthesis

flow is addressed. There are four main phases of the basic design flow where additional steps

are added to the traditional clocked flow.

1. The design and characterization of the relative timed design elements.

Table 1.2. SDC Constraint Translated from RT Constraint

set max delay $dpoc0 -from pod -to poc0
set min delay $dpoc1 -from pod -to poc1
#margin m -from pod -to poc0 -from pod -to poc1
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2. Mapping of the RT constraints and timing values onto the physical architecture.

3. Performing timing closure on the timing targets supplied in the previous step.

4. Performing complete postlayout validation of the relative timing constraints.

Figure 1.2 shows the flow including necessary steps to seamlessly integrate with current

commercial clocked CAD tools. The highlighted portions in Figure 1.2 are additions to

the traditional clocked flow. This study directly addresses (iv) and addresses area (iv) by

expanding it to include DFT with RT designs.

1.1.4 Timing Validation

Circuits will only perform correctly when all timing constraints are met. The purpose of

timing validation for circuits is to guarantee the correctness of the circuit after the circuit.

The typical approach for performing timing validation for physical design is implement-then-

verify [17]. This approach requires multiple iterations of time-consuming tasks, including

circuit synthesis followed by place and route. The validation flow consists of two inner

iterations as shown in Figure 1.3. Automation of the timing validation is needed to optimize

the circuit designs and reducing overall nonrecurring engineering cost on the iterations.

Commercial tools and flows use well-developed algorithms to automate timing valida-

tion for clocked systems. However, these algorithms only work with circuits that can be

represented as a direct acyclic graph (DAG). Asynchronous circuits are naturally cyclic,

thus, they are not supported by commercial tools. Although there is a handful of timing

validation methods for asynchronous circuits that use timed protocol or time separation of

events, such approaches require additional custom tools and modifications on the circuit

representation [18],[19].
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Timing validation with clocked designs uses static timing analysis (STA) to compute

the critical path delays. The setup and hold time of register banks are verified using those

critical path delays to compare against global clock signal [20]. Static timing analysis is

capable of quickly reporting path delays in a system without feedback. Circuit behavior is

not evaluated by using static timing analysis because it reports only the longest or shortest

path delay between two timing endpoints. The false paths have to be excluded when applying

static timing analysis [21].

An approach to validate timing of asynchronous blocks using STA has been reported

for scalable delay-insensitive circuits [22]. A custom timing verification tool is built using

STA algorithms. A statistical static timing analysis is reported to analyze asynchronous

circuits models [23]. This approach requires custom timing models for each asynchronous

component. A tool set to automates the generation of bundled data implementation has been

developed [24]. The design methodology uses a desynchronization approach [25]. The tool

set includes the use of primetime to analyze path delays. However, the tool only evaluates

three specific timing constraints including setup time, hold time, and branch constraints.

The tool is not capable of handling timing paths with cycles.

The timing validation for asynchronous circuits requires analyzing delays through cyclic

paths. In addition, the tools and flows need to be general and support the richness of

asynchronous designs. There are 137 protocols for the family of controllers that implement

a 4-phase handshake with data valid on the rising edge of the request. There is also a myriad

of different clocking schemes for each of the 137 protocols, including timing intense pulsed

clock approaches as well as robust delay insensitive schemes [26].

Finally, there are also various data validity schemes that cooperate with 4-phase hand-

shake protocols, including a scheme where the data is valid on the falling edge of the request

signal. The protocol family where the data is valid on the rising edge of the request as well

as on the falling edge of the request, along with a pulse clocked scheme for each is shown in

Figure 1.4. A flexible and efficient RT validation mechanism, that utilized the commercial

tools, is presented in this dissertation.

1.1.5 Design for Testability (DFT)

Manufacturing failures exists due to impurities or imperfect silicon crystalline structure,

dust particles, nonplanarity of the wafer, etc [27]. DFT is necessary for developing and

producing any IC in the market since it helps identify chips with manufacturing defects

postfabrication and ensures the defective chips are discarded, or that workarounds are
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Figure 1.4. Pulse Clocking Schemes

devised to account for the defects. DFT enables circuit manufacturers to have the ability

to test the IC by supplying a known state and to determine if the result is correct.

DFT also helps detect and diagnose the faulty ICs and save on overall chip cost and

improve yield [28]. Finally, DFT is an essential component for better understanding the

characteristic of manufactured ICs and providing a way to analyze and improve the prod-

uct [29]. Including test structure in an IC allows designers and manufacturers to determine

the reliability of the chip as well as debug the design after fabrication. Functional fault test

and delay fault test are both required in this case since the relative timing methodology

uses local clocks rather than a global clock signal. Typical clock systems can slow down

the global clock to account for small delay variations caused by process variation. The RT

circuit produces an invalid result if timing failures occur within any of the pipe stages.

Namely, incorrect data will be stored if the data arrives later than the local clock signal.

There are several DFT approaches using scan design for various asynchronous circuits,

including DI circuits, micropipelined, and self-timed circuits [30]–[34]. However, the app-

roaches presented use in-house tools and require drastic modification in order to cooperate

with other design approaches.

Similarly, automatic test pattern generation (ATPG) for asynchronous circuits has been

implemented, but only applies to macro level asynchronous designs [35]. This ATPG ap-

proach did not scale to larger circuits or circuits with multiple asynchronous controllers.

MOUSETRAP, an asynchronous pipeline deisng, uses a D-latch as its state holding
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element [36]. Thus, DFT can be performed on the control path by modifying the D-latch.

However, the modification of D-Latch introduces 2.36× area and 3.45× power overhead.

The addition of DFT to any designs will result in designs that consume more power and

are larger and slower.

One approach is to attach additional fault detector circuitry onto the handshake control

channels [37].

However, delay faults could not be detected with this approach. Another approach for

detecting delay faults is developed [38]. A latch and muxes are inserted into the handshake

control channels in order to control the handshake protocol.

This work targets DFT using scan design for the RT-based bundled-data circuits. These

designs have a data path structure similar to those found in a clocked system so that

commercial tools can be used to insert scan chains. The control network of the RT design

remains unchanged and a functional test is applied. The control network achieves over 90%

fault coverage with sequential test patterns.

1.1.6 Contribution of this Dissertation

This dissertation enables the ability to optimize and manufacture timed asynchronous

circuit. Algorithms are developed and implemented to automate the analysis for circuit

reliability and testability. Major contributions of this work are as follows:

• A methodology is presented that removes combinational cycles in the timing graph of

an asynchronous design. This enables the ability to perform timing-driven synthesis

and place and route using commercial EDA tools. The methodology includes a for-

mal verification and a cycle cutting algorithm to correctly characterize asynchronous

designs.

• Algorithms are developed to perform timing validation for asynchronous designs.

The timing validation is capable of analyzing cyclic timing paths using static timing

analysis from the commercial tools.

• A flow for design for testability (DFT) of asynchronous designs is presented. The

overall test coverage of the asynchronous design is investigated using such flow.

• An algorithm specifies timing constraints for asynchronous designs to incorporate with

commercial EDA tools is presented. Specifying design constraints on asynchronous

designs is necessary for circuit correctness and performance and this is a manual step.

The algorithm addresses these issues.
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• Synchronous 16-point and 64-point fast Fourier transform (FFT) designs are imple-

mented to compare with the asynchronous implementations. The asynchronous design

is also used as the testbench for the timing validation and DFT flow.

• A clock gating technique for synchronous design is introduced that adopted relative

timing methodology. A mixed-signal design and a digital design are implemented using

this technique and show power saving benefit.

1.1.7 Thesis Organization

The thesis is organized as follows. Chapter 2 presents a method using a generic cycle

cutting algorithm with true timing path to from a directed acyclic graph (DAG) that

optimize timing driven synthesis and place and route. The DAGs generated are used for

timing validation of true paths in Chapter 3. Chapter 4 presents the design for testing on

the asynchronous circuits, including data path and control network. The automatic timing

constraints mapping algorithm is introduced in Chapter 5. Chapter 6 shows several design

applications that was used as test cases for Chapter 3, 4, and 5. In addition, a new design

method for synchronous design is discussed in Chapter 6. Finally, a conclusion is drawn and

future research works are discussed.



CHAPTER 2

TIMING PATH-DRIVEN CYCLE

CUTTING FOR SEQUENTIAL

CONTROLLERS1

Asynchronous handshake protocols and their associated controllers are used to imple-

ment the timing and sequencing of the design. The development of a complex asynchronous

design can be simplified due to the modularity and composability of these controllers. All

asynchronous circuits have cycles in their communication and timing graphs. Cycles in

these graphs come from three primary sources. First, the handshake controllers themselves

are often sequential controllers. The state memories in these sequential controllers are

commonly implemented using combinational gates with feedback. Second, the basic nature

of asynchronous handshake protocols produces cyclical feedback loops; the acknowledge

signal creates a circuit cycle that responds to the request. This cyclical ring of request

acknowledge logic gates produces an oscillator that dictates the operational frequency of

each asynchronous pipeline stage. Thirdly, cycles are created in system level architectures

where data is fed back to previous pipeline stages.

Many asynchronous design approaches leverage commercial electronic design automation

(EDA) tools to optimize and validate power, performance, and timing correctness, and

to perform timing driven optimizations for synthesis and place and route [40]–[45]. The

timing driven algorithms in commercial EDA tools employ fast static timing analysis (STA)

algorithms which require circuit models to be represented as directed acyclic graphs (DAGs).

Unfortunately the sequential nature of asynchronous controllers and design approaches

results in numerous topological feedback paths, presenting a fundamental challenge in

employing commercial EDA tools.

1This section has been published in TODAES , 2016 [39]. c© 2016 ACM, Inc.
http://doi.acm.org/10.1145/2893473. Reprinted, with permission, from William Lee, Vikas Vij, Kenneth S.
Stevens, ”Timing Path-Driving Cycle Cutting for Sequential Controllers,” in ACM Transactions on Design
Automation of Electronic Systems Volume 21, Issue 4, Article No. 64, June 2016
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Sequential asynchronous circuits must be modeled with acyclic timing graphs to employ

commercial EDA tools. This can be achieved with two fundamental elements which are

directly supported by the commercial EDA flows in the Synopsys design constraints (sdc)

format. First, circuit timing can be defined with a set of path-based timing constraints

and their delay targets. Second, a set of timing cuts can be defined that model the native

cyclic timing graph of the design as an acyclic graph without cutting the path-based timing

constraints.

Following are three key observations for supporting cyclical circuits in the DAG-based

commercial tools with the above two constraint sets.

1. If a cyclic circuit is given directly to a commercial EDA tool, a DAG representation

will automatically be created without respect to timing paths. If a timing path is cut,

it will not be employed in the timing driven algorithms of the commercial EDA tools.

This is true for both optimization and validation. The cut timing paths are considered

to be vacuously true and are not reported as failures since they can not be evaluated.

2. A DAG representation of a sequential circuit can not directly model all of the necessary

timing of a sequential circuit. For instance, a handshake cycle in an asynchronous

design can be implemented with a controllable ring oscillator that has a target fre-

quency based on the function of the pipeline stage. A DAG-based model will cut the

ring, and thus, one can not give a frequency based delay target to optimize the design

or validate its performance. Thus, sequential timing constraints of an asynchronous

design require two or more timing runs to validate full cyclical timing paths.

3. All design approaches that map sequential asynchronous designs to commercial EDA

tools will require an additional methodology for cycle cutting, timing validation, and

performance verification. The methodology and CAD tool reported here for creating

DAGs are developed in such a way that it should be applicable to nearly all high level

methodologies that address system level timing for asynchronous designs.

Providing a DAG that supports a timing model of a sequential circuit to commercial EDA

tools results in several benefits. In some design approaches, such as bundled data design,

a nonfunctional design results if timing constraints do not hold. This can occur if timing

constraints are cut in creating the DAG. Likewise, commercial EDA can not be employed to

evaluate circuit timing unless the graph is represented as a DAG and the timing paths used

for evaluation are not cut. Providing a DAG with associated timing constraints enables the
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commercial EDA tools to better optimize designs, resulting in significant improvement in

the power, area, and performance of such designs.

The fundamental problem is addressed of creating a DAG timing model for sequential

controllers and systems that does not cut the set of timing paths used for design synthesis,

optimization, and validation. This is the first published work to do so. path-based timing

constraints are identified by timing endpoints, just as is done using sdc constraints in

the commercial EDA tools. This approach thus simplifies the translation of the timing

directives to the commercial EDA tools. An algorithm is implemented that creates cycle

cuts that preserve the path-based timing constraints. This work also introduces the concept

of identifying paths that must be cut in a design in order to remove cycles formed by netlist

connectivity external to the controller, along with its associated algorithm. This algorithm

is also used to remove false paths in the design. The tool uses vectorless graph traversal

algorithms similar to commercial static timing analysis approaches. It assumes that the

design has been technology mapped to specific gate implementations, and inputs the Verilog

used in the design. The CAD algorithm is intended to be applied to single asynchronous

sequential controllers making them the focal point for timing paths and system level cycle

cuts. The combination of vectorless algorithms and controller-based focus makes this CAD

tool applicable to most if not all asynchronous design methodologies and styles. The tool

writes out sdc constraints that are directly supported by the commercial EDA tools. The

tool reports coverage and the quality of the results of the cycle cutting algorithm.

A timed burst-mode protocol along with its circuit realization is employed as an example

for this paper. The CAD algorithms in this paper are applied to several examples and com-

pared against the commercial EDA tool. Results for applying the algorithm to 131 separate

asynchronous sequential control circuits and to eight benchmark designs are reported. The

comparison of these designs is made with respect to forward latency, backward latency,

cycle time, area, power and energy per token. The results are also analyzed for quality by

ensuring that the cycle cuts produce a DAG, false paths have all been cut, and the number

of gates that have no timing path passing through them. Having at least one timing path

passing through each gate in a design results in the gates being power and performance

optimized based on the timing path constraints.

2.1 Related Work

Combinational cycles are generally associated with sequential circuit designs like async-

hronous circuits. Cycles can also be present in combinational logic, and some cyclic com-
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binational circuits have been shown to substantially reduce area [46]. Since algorithms in

EDA tools require acyclic timing graphs, the problem of finding cycles and analyzing the

combinational nature of circuits with cycles has been investigated [47]. Algorithms that

generate an equivalent acyclic combinational circuit which reproduces all the combinational

behavior of the original cyclic circuit have been developed [48]–[50]. These approaches can

not be applied to sequential circuits because they change the sequential behavior when

state-holding feedback of a circuit are removed. In order to support general sequential

circuits built as combinational logic with feedback, the cyclic circuit must be represented

as a DAG without modifying its structure or behavior.

The work that is most closely related applies cycle cutting to the testing of digital circuits

with feedback [51]. This is formulated as a covering problem where the sets of paths form

the cycles, the solution is to find the minimal number of paths that cut all the cycles. The

drawback of this approach is similar to the algorithms in current commercial CAD tools

which also cut cycles. A set of cycle cuts, even if they are minimal, will create a DAG, but

timing driven optimizations can not be performed because timing paths are cut.

A core function of the algorithms in this work is to identify cycles and paths in a

circuit graph. Reconvergent paths and circuit cycles are particularly problematic. Indeed,

it has been shown that a circuit can have an exponential number of paths based on the

number of gates. This path explosion has proven to be particularly challenging for the

delay fault testing community. While path explosion is problematic in some domains, it has

not been demonstrated to be a problem in this application. The sequential modules being

evaluated have normally been designed to minimize hazards that can often be a byproduct

of reconvergent paths. Our algorithms are applied to single sequential controllers which

contain fewer than 100 gates. We have applied our tool to the largest published sequential

controller designs which tax the limits of what can be synthesized. For all but one circuit,

the run times are less than one second in the exhaustive search mode. Pipeline controllers

used in nearly all commercial and academic design are more closely represented by the 131

controller set used in our example set.

2.2 Background

2.2.1 Circuit Representation

The circuit is represented as a directed graph G = (V,E) where each gate, primary input,

and primary output vi ∈ V is a vertex (node) of the graph, and edges ei = (vx, vy) ∈ E

map primary inputs and gate outputs to primary outputs and gate inputs of the design.
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We represent a path as a sequence of vertices (nodes) that are connected by edges in G. A

cycle is a path that starts and ends with the same vertex.

The path [lc1, lc2, lc1] is a cycle in the Figure 2.1 circuit. All noncyclic paths employed in

this work are simple paths where repetitions of vertices and edges are not allowed. Each edge

in the path can be directly derived; this cycle contains the edge set {(lc1, lc2), (lc2, lc1)}.

Four inputs are provided to this tool. A sequential circuit specified in structural Verilog

that has been technology mapped to a set of library gates, a data structure that defines the

input and output pins for each gate in the library, a set of timing endpoints pi = (vx, vy) ∈ Θ

which preserve the greatest common path (or GCP) uncut between vx and vy, and a set of

timing endpoints ti = (vx, vy) ∈ Φ that cuts all paths between vx and vy that are not GCP

paths defined by Θ. In this paper we represent timing endpoints in Θ and Φ as a pair of

nodes (A,B) or the relationship pair (A→B). The set Θ defines timing paths that must be

preserved, and the set Φ defines the cut paths.

Each primitive gate in the cell library will have one or more input and one or more

output. Each input for gate vy will be associated with one or more edge (vx, vy) ∈ E; each

output for gate vx will be associated to one or more edge (vx, vy) ∈ E.

The algorithms that perform timing driven optimization in the EDA tools employ

vectorless static timing analysis (STA). This is accomplished by employing the structural

netlist, largely ignoring the functional behavior of the circuit. The simple directed graph

G is sufficient to represent the timing graph of a circuit for such purposes. The algorithms

developed in this thesis also use only the structural netlist, identifying paths using graph
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traversal algorithms.

2.2.2 Greatest Common Path Between Timing Endpoints

A GCP is a minimal structural path between a pair of timing endpoints. If the node

sequence in a shorter path is contained in a longer path between the same endpoints, then

the longer path is not a GCP. For example, there are two simple paths that do not contain

cycles which connect the timing endpoint lr and rr in Figure 2.1: [lr, lc1, lc2, lc5, lc3, lc4, rr]

and [lr, lc3, lc4, rr]. The longer path is not a GCP because it is not minimal; it contains the

shorter path. Note that paths that contain cycles will not be GCPs.

2.2.3 Path Identification from Timing Endpoints

Our specification approach does not identify or enumerate individual paths through a

circuit; rather we employ timing endpoints to correctly identify both the true and false

paths in a circuit. The specification employed in this tool identifies all shortest unique paths

(GCPs) between timing endpoints in Θ. These are identified as true paths in the design.

Conversely, all simple structural paths between the timing endpoints are identified by the

timing endpoints in Φ. This set is used to identify false paths.

2.2.4 Cutting the Timing Graph

The liberty timing file that is used by the commercial EDA tools defines the path delay

from the inputs to outputs of the primitive gates. For example, the NOR gate in Figure 2.1

has a timing path from pin A to pin Y and from pin B to pin Y . These liberty gate level

timing paths can be cut with the sdc command set disable timing. This is the mechanism we

employ for cutting timing paths and cycles in a circuit, and the tool outputs the results in

the sdc format.

Assume we want to cut the Figure 2.1 cycle [lc3, lc4, lc3]. This can be accomplished by

cutting either of the two edges (lc3, lc4) or (lc4, lc3). Removing edge (lc3, lc4) is implemented

by disabling the liberty timing edge (A, Y ) in gate lc4. We write this out as the sdc

constraint set disable timing -from A -to Y for the lc4 gate in the design. Using

this mechanism, our tool can create a timing graph DAG that is supported by commercial

EDA.

Edge (lc4, lc3) is the preferable arc to cut in the above example to remove the cycle from

the timing graph. If edge (lc3, lc4) is cut, the circuit has no timing path from the primary

inputs lr and ra to the primary output rr.



16

2.2.5 True and False Path Specification

Many structural paths in a design will be false paths that are not behaviorally sensi-

tizable. True paths are the result of the logical sequential behavior of the circuit and how

it responds to changes in the primary inputs and internal state. Since both STA and the

algorithms employed in this tool are structural, a mechanism must be employed to specify

the true and false paths in a design. True paths must be preserved, and false paths in a

circuit must be cut. Otherwise timing results will be incorrect and the quality of the timing

optimizations performed by the commercial EDA tools will be significantly degraded.

True paths in a design are identified by the timing endpoints in Θ. False paths are

identified by the timing endpoints in Φ.

Often the true timing paths can be directly identified as a GCP. Assume we need to

specify that the timing path between lr and rr is to remain uncut because a timing path

passes through those nodes. Two simple paths exist between these vertices in Figure 2.1:

[lr, lc1, lc2, lc5, lc3, lc4, rr] and [lr, lc3, lc4, rr]. In this case, the GCP identifies the shorter

true path, thus placing the timing endpoints (lr, rr) into Θ correctly identifies the true

paths of the circuit. (The longer path is false because it can not behaviorally occur in this

design. Lowering rr is only sensitized by ra. For rr to rise, ra and y must be asserted and

lr must rise. For the longer path to occur, y would need to rise, which only occurs when

la falls.)

A GCP can identify multiple paths. For instance, timing endpoints (lr, lc5) identify two

paths as part of the GCP: [lc1, lc2, lc5] and [lc3, lc4, lc5]. In this case, both of these paths

are true paths through the circuit.

In some designs, the true path is not identified as a GCP. Assume that the longer path

from lr to rr through the circuit, [lr, lc1, lc2, lc5, lc3, lc4, rr], is the true path which we want

to identify. The two timing endpoints (lr→rr) will not correctly identify this path since

its GCP will cut the longer path and preserve the shorter path [lr, lc3, lc4, rr]. Non-GCP

paths can be identified as true paths by creating sets of timing endpoints whose transitive

closure covers the full true path. By selecting lc2 as an intermediate timing endpoint, two

sets of timing endpoints {(lr→lc2), (lc2→rr)} are created to identify the longer true path

and ensure it remains uncut. The GCP for (lr, lc2) is [lr, lc1, lc2] and the GCP for (lc2, rr) is

[lc2, lc5, lc3, lc4, rr]. Together these two paths ensure that the longer true path from lr→lc2

is identified as true.

Simply identifying true paths through a design is not sufficient to ensure correct timing

evaluation of the design. The false paths must also be identified and then cut. Assume that
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both simple paths between timing endpoints lr and rr remain uncut. Also assume for a

moment that the delay of each gate is roughly identical. When a minimum delay analysis

is performed on these endpoints, the shorter path will be selected since the latency will

be two gate delays. When a maximum delay analysis is performed, the longer path will be

employed since it has five gate delays. If the longer (shorter) path is false, it must be cut

to ensure correct timing evaluation of the design. Thus, every simple path between timing

endpoints that is not a true path of a design must be cut.

When the true path is modeled as a GCP, it will be identified by placing the timing

endpoints into set Θ. All false paths are identified by placing the same timing endpoints

into set Φ iff the GCPs identified in Θ are not cut by paths identified in Φ. If the true

timing path requires multiple GCPs to be identified, then each of these pairs will be placed

in Θ. However, only the single pair that is the timing endpoints of the transitive closure of

these paths is included in Φ to identify false paths. Thus, if the true path of lr→rr is the

longer path, the set {(lr, lc2)(lc2, rr)} will be added to Θ but only the single pair (lr, rr)

will be added to Φ. The GCPs in Θ will ensure the longer path remains uncut, but the

shorter path will be cut as it is a path identified in Φ.

The set of timing endpoints that correctly identify the true and false timing paths

through the circuit is provided as an input to this algorithm because this tool is intended

to support many circuit families and design methodologies. The generation of the timing

paths is dependent on the circuit family and high level timing methodology employed.

2.2.6 Classification of Cycles

Handshake controllers and asynchronous sequential state machines are the primary

source and convergence locations of combinational cycles in asynchronous architectures.

Thus, high-level timing and optimization methodologies can eliminate most, if not all, cycles

by pruning paths in the controllers. This work refers to two classes of combinational cycles

based on their relationships to the controller under analysis, expressed below. This work

supports cutting both classes of cycles.

1. Local Cycles: Cycles which can be identified by examining the structural netlist of the

controller under analysis. Two of the eight local cycles of this circuit are [lc1, lc2, lc1]

and [lc3, lc4, lc3], as shown in Figure 2.2.

2. External Cycles: Cycles which pass through the controller, but can not be identified

from the structural netlist of the controller. The leftmost external cycle in Figure 2.3

is [LC0/rr, LC1/lr, LC1/la, LC0/ra, LC0/rr].
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Unmarked Cycles Exist, such as [LC0/rr, LC2/lr, LC2/la, LC0/ra, LC0/rr].

Figure 2.2 highlights the eight local cycles to the burst-mode controller. As drawn, three

cycles converge pass through lc1, three through lc3, and two cycles through lc6. Figure 2.3

highlights external cycles that are formed when a handshake controller is connected in a

linear pipeline. A common set of paths, based on the design and timing methodology, can

be identified which will remove the cycles created from the handshake channels. Cutting

all paths between the (ra9rr) endpoints will cut the handshake channel cycle. Such an

approach allows a single cut path constraint local to the pipeline controller to remove all

handshake channel cycles in a design2.

Therefore, this algorithm will accept timing endpoints to a controller that will cut

external cycles. These cuts are identified by placing the timing endpoints into the set Φ.

Three observations can be made based on cycles external to the controllers being eval-

uated. First, placing a path that should be cut due to an external cycle into Φ does not

guarantee the path will be cut. If there exists a path between the timing endpoints that is

fully covered by GCPs in Θ, the path will not be fully cut. This will result in combinational

cycles which remain in the timing graph of an architecture. Specifically, this condition will

be reported as an error.

2The location and expression of these cycles are dependent on the high level design methodology employed.
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Second, each handshake controller will have its cycle cut values generated independently.

Therefore, if multiple different controllers are used in a single design, and they employ

a different handshake cut methodology, then cycles can remain in an architecture. (For

instance, assume one controller cuts the handshake cycle with the (lr, la) endpoints and

another with the (ra, rr) timing endpoints. If both are used in a design, the system can have

cycles left uncut.) Thus, the application of this work is dependent on correctly conforming

to the system-level methodology employed, and ensuring that it is applied uniformly to the

control modules.

Finally, while this work helps support different circuit and timing validation methodolo-

gies, it remains dependent on the high level models employed. External cycles created by

data path feedback may not be directly supported by adding a cut path in Φ for all timed

asynchronous circuit and timing methodologies.

2.3 Key Contributions

A tool which performs cycle cutting that preserves timing paths was introduced and

implemented [2]. The implemented tool is capable of producing a DAG of a circuit once a

set of GCPs is provided. The primary contribution of this section is forming an algorithm

that integrates with the implemented cycle cutting tool. First, all true paths within the

sequential module are identified. Second, the false paths are generated with respect to the

true paths. Then, both the true paths and false paths are integrated with the developed cycle

cutting tool. The provided true path information guides timing driven synthesis and place

and route on circuit optimization. In addition, all false timing paths are removed from

the timing graph to improve timing correctness and runtime of the commercial tools. A

comparison of implemented tool with and without the true and false timing paths approach

is studied.

2.4 Evaluation Approach

This flow is evaluated using a micropipeline approach [14]. A micropipeline consists of

a traditional boolean logic data path and an asynchronous control path. The data path

contains acyclic combinational logic (CL) and registers (L). The control path consists of

linear control blocks (LC), which perform via handshaking the role of the clock. Handshake

clocking generates the appropriate timing and sequencing for the design. It is elastic in

nature and can stall if required. The minimum latency through the control logic plus a

margin must be greater than the maximum delay of the combinational logic in order to
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fulfill the setup and hold time constraints at the register bank. Thus delay elements may

be required between LC blocks.

The C-element used in the Sutherland micropipeline is replaced with each controller

in the full family of four-cycle handshake controllers with data valid on the rising re-

quest [52],[53]. To simplify the evaluation and to focus on the controllers, the data path

of the micropipeline has been removed. Since there is no data path, this implements a token

FIFO where the handshake controllers are allowed to operate at maximum frequency. The

FIFOs are pipelines of a depth of four. The simulations employ controllable interfaces on the

input and output of the pipeline that operate faster than the response time of the controller

under test.

A set of relative timing constraints specific to each controller are generated that must

hold for the circuit to perform hazard free. These are mapped onto each controller as a

set of path-based constraints that are provided to the tool in the true path set Θ and

the cut path set Φ. Three additional path constraints are added to reduce the cycle time

of the controller: a constraint from lr of the current controller to lr of the downstream

controller, lr of the downstream controller to ra of the current controller, and ra of the

downstream controller to ra of the current controller. These endpoints are identified as red

dots and black arrows in Figure 2.3. Those endpoints are mapped onto the local controller

constraints {(lr, rr)(lr, la)(ra, la)} that are passed to the tool in Θ and Φ (adjusting timing

endpoints to identify true paths in each of the specific controllers). The handshake channel

cycles are cut by adding timing endpoint (ra, rr) to the cut set Φ.

The sdc constraints generated by the tool are employed in synthesis and simulation,

where delays are attached to each of the three high-level timing paths. The delays are

customized to each specific controller design based on its response time such that negative

slack does not occur.

The pipelines are synthesized with a commercial CAD tool employing optimization for

power and performance using the Artisan 65nm library. This tool automatically cuts cycles

in the design based on a minimum cut algorithm which does not respect timing paths

provided to the design. The designs are then placed and routed with SoC Encounter to

determine layout area and parasitics. The numbers for forward latency, backward latency,

and cycle time are generated by simulating the post routed design using sdf (standard delay

format) back annotation. The designs are tested for 50 handshake cycles to generate a vcd

(value change dump) file that reports node activity. The vcd file is used with PrimeTime

to generate power and simulation time numbers on the post APR (automatic place and
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routed) design using back annotated parasitics extracted from the layout.

2.5 Preliminary Results

2.5.1 Benefits of Correct Cycle Cutting

Path-based timing driven optimizations are not able to be performed if timing paths

through the circuit have been cut. The LC circuit in Figure 2.1 is used as a preliminary

example. Optimization results are significantly degraded when commercial EDA tools cut

cycles without respecting timing paths because the tools must perform untimed circuit

optimization. We show the power, area, and performance benefits of applying timing driven

optimizations on an asynchronous handshake controller when timing paths are ensured to

remain uncut through the application of the algorithms in this paper. However, performance,

power, and area degradation is a secondary problem. When true timing paths are cut, the

circuit can not be optimized nor evaluated for that path. If this is a path that is required

for correct operation, the circuit may fail.

The three timing constraints used for the micropipeline performance analysis described

in Section 2.4 are employed. Verification identifies additional constraints that must hold in

this design for correct operation. The relative timing constraint lr↑ 7→ y↑ ≺ rr↓ states

that y must rise before rr falls. A correctness timing endpoints (lr, y) is also included for

the design. These four timing endpoints are added to both Θ and Φ. The external cycle cut

constraint (ra, rr) is added to Φ. The tool is passed these constraints and the Verilog design.

A set of sdc constraints are generated which create a DAG. All false paths and cycles are

cut, and at least one timing path specified in Θ passes through every gate in the design. The

design has 10 true paths identified as GCPs, cuts 8 cycles, and 14 false paths or external

cycles. This is accomplished with 8 timing graph cuts.

The design is evaluated under the following four scenarios. This demonstrates the im-

portance of supplying paths from Θ that can not be cut as well as paths from Φ that must

be cut to create a DAG.

• No Constraints: Commercial CAD tool cuts all cycles in the design.

• Local Cut Constraints: The local cycles are cut using the timing constraint path

driven algorithms in this paper using Θ, but the commercial CAD tool creates external

cycle cuts.

• External Cut Constraints: Only the external cut path endpoint pair is provided.

The commercial CAD tool creates the local cycle cuts.
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• Full Constraints: The algorithms in this paper are given the full Θ and Φ endpoint

sets and performs all cycle cutting. No paths are cut by the commercial EDA tool.

There is a substantial improvement in circuit quality obtained by employing cuts from

the timing path constrained algorithms in this paper when compared to cuts automatically

generated by the commercial CAD tool. Improvements for this circuit include 1.3× for cycle

time, 2.5× for area, and 2.7× for energy per token which are shown in Table 2.1. Moreover,

the cuts generated by the commercial tool remove two true timing paths. The table also

points out the importance of including both the performance / correctness constraints and

external cycle cut constraint paths. If only the external cycle cut path constraints are

included, the results are generally worse than having the commercial CAD tool perform all

cycle cutting. Simply employing the performance and correctness constraint paths helps, as

this reduces energy by 1.5× over the commercial CAD tool. However, there still remains

a penalty of 1.8× in energy over our algorithm if one allows the commercial CAD tool to

perform external cycle cutting.

2.5.2 Generality of Approach

This tool can be used with any design methodology and applied to any controller design.

This is illustrated by applying this to a well known quasi delay-insensitive (QDI) controller.

A weak-condition half-buffer (WCHB) design is implemented [15]. This design, as shown in

Table 2.1. Comparison of Performance Metrics Using Timing Path Cycle Cutting (TPCC)
Versus a Commercial EDA Tool Algorithm

No TPCC External Cut Local Cut All TPCC

Constraints Constraints Constraints Constraints

Forward Latency (ps) 97.5 127.5 85.0 107.5

Backward Latency (ps) 327.5 347.5 305.0 232.5

Cycle Time (ps) 520.0 540.0 460.0 390.0

Area (um2) 361.8 384.0 236.6 145.7

Power (mW) 2.29 2.30 1.72 1.01

Simulation Time (nS) 32.5 34.2 29.3 27.8

Energy/token (fJ) 374 395 253 141

No. of Cut Timing Paths 2 2 0 0
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Figure 2.4, has been mapped to the same cell library and characterization flow described in

the previous section.

Timing endpoints {(I0, O0), (I1, O1), (I0, Iack), (I1, Iack)} are included in the constraint

sets Θ and Φ for this circuit. Two cut path endpoints {(Oack, O0), (Oack, O1)} are used to

remove cycles in the handshake channel are added to Φ. The cycle cuts are generated by

specifying timing cut points. The cut points are highlighted in Figure 2.4.

Postlayout results for a four-deep pipeline are generated. Table 2.2 shows that using

both local and external cycle cut constraints clearly results in the correct design without

any true timing paths removed. This timing optimized implementation has nearly a 2×

improvement in forward and backward latency and cycle time, a 1.4× area advantage, and

a 3.2× energy per token advantage.

2.6 Rules for Timing Path Driven Cycle Cutting

The developed tool will create a DAG where true paths remain uncut and false paths

and external cycles are cut when a correct set of timing paths are provided. If the set of

paths are inconsistent and a DAG can not be generated, or external cycle paths can not be

cut, an error is raised.

Paths are identified by a pair of timing endpoints. The timing paths consist of (a) a set

Θ of timing endpoints that identify the true paths where the paths between the endpoints

are GCPs, and (b) a set Φ of cut-paths which cut all paths between the timing endpoints

that are not GCPs in Θ. Three rules are established to specify the overall cycle cutting

algorithm which integrates the developed tool.
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Table 2.2. Comparison Using Timing Path Cycle Cutting (TPCC) Versus the Algorithm
in a Commercial CAD Tool for WCHB

No TPCC External Cut Local Cut All TPCC
Constraints Constraints Constraints Constraints

Forward Latency (ps) 162.5 160.0 152.5 82.5

Backward Latency (ps) 272.5 270.0 252.5 145.0

Cycle Time (ps) 510.0 520.0 460.0 270.0

Area (µm2) 1269.5 1214.3 1232.7 890.6

Power (µW) 717 607 646 344

SimTime (nS) 53.8 54.3 52.5 34.5

Energy/token (fJ) 770 659 678 237

No. of Cut Timing Paths 2 2 2 0

2.6.1 Specifying True Paths and Ensuring Timing Arc Fidelity

The greatest common path, or GCP, is used to represent true paths in sequential

circuits. A GCP is a minimal structural path between a pair of timing endpoints. If the

node sequence in the shorter path is contained in a longer path between the same endpoints,

then the longer path is not a GCP.

A GCP will not contain any cycles. Assume the following two paths between timing

endpoints A and C: [A,B,C] and [A,B,E,B,C]. Path [A,B,E,B,C] can not be the GCP

since shorter path [A,B,C] exists.

• Rule 1 All timing paths that are GCPs between timing endpoints in set Θ are

considered true paths and must remain uncut.

If at least one structural path exists between pairs of timing endpoints ∀(A,B) ∈ Θ,

then there exists at least one GCP between each pair of timing endpoints. If all timing

paths covered by a GCP can not be cut, then at least one timing path will be preserved

for each pair of timing endpoints. The GCP(s) defines the true timing path(s) for a pair of

timing endpoints. This rule takes precedence over the other rules.

2.6.2 False Path and External Cycle Removal

Only the true timing path(s) can be left uncut to correctly perform timing driven opti-

mization. For example, a true path [lr, lc3, lc4, rr] and a false path [lr, lc1, lc2, lc5, lc3, lc4, rr]

exist between timing endpoints lr→rr in Figure 2.1.

If both paths remain uncut, maximum delay calculations from (lr→rr) will use the

longer false path. The delay calculation through the false path will be substantially larger

than the true path, resulting in timing optimization performing on the false path.
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• Rule 2 All paths between timing endpoints in the cut path set Φ which are not GCPs

from set Θ must be cut.

This rule will require that all paths are identified between the timing endpoint pairs.

All these paths will be cut, unless they are true paths which have been identified as GCP

paths from the paths in set Θ.

All false paths can be removed by placing the first and last node for every true timing

path into the cut path set Φ. This means that the true timing paths are also being identified

as cut paths that will not be cut. Such paths are readily identified and are not counted in

the quality metrics of cut paths that remain uncut. Thus this algorithm requires that the

initial and final endpoints of every timing path be included in Φ.

For example, the true timing path from lr to rr in the controller of Figure 2.5 must

be identified with the two timing endpoint pairs (lr→3) and (3→rr). Each of these end-

points identifies a single path, which is the GCP. No false paths are identified individually

by these two endpoint pairs. However, there are multiple false paths between lr and rr

which must be cut. By including (lr→rr) in Φ the true path remains uncut, and all false

paths are cut. The complete sets of constraints used to identify the true timing paths

through the controller in Figure 2.5 are Θ = {(lr, 0), (0, la), (lr, 3), (3, rr)(ra, la)} and

Φ = {(lr, la), (lr, rr), (ra, la), (ra, rr)}. Under these constraints, all cycles are cut, there

are no uncut false paths.

2.6.3 Creating an Acyclic Timing Graph

Timing driven optimization algorithms in commercial EDA operate on DAGs. The

following rule will result in an acyclic graph.

0

1 2

3 4

5 6

7

8

lr
ra

rst

la

rr

csc0

csc0

lr

rst

rr
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Figure 2.5. Handshake Controller L222 ◦ R2242 Synthesized with Petrify.
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• Rule 3 All cycles in the controller must be cut.

Algorithms in this tool automatically cut all cycles in the circuit while preserving the

true timing paths specified in Θ.

2.6.4 Additional Information

2.6.4.1 Full Design Module Optimization

Best circuit optimization occurs with timing driven design, as shown in Section 2.5.

Ideally every gate will have a timing path passing through it to define the intended delay

bounds. An orphan is defined as a gate that does not have a timing path passing through

it as defined by Rule 1. The optimization of handshake controllers will require multiple

timing paths through the design to minimize or eliminates orphans and to create timing

paths between primary inputs and outputs of a sequential controller.

2.6.4.2 Consistency and Rule Correctness

If set Θ consists of a single pair of timing endpoints, then rules 1–3 are necessary and

sufficient to create a DAG with only true timing paths passing through the design for

optimization. Unfortunately, these rules can not all be guaranteed to hold when more than

one pair of timing endpoints exists in Θ.

If true paths cover a cycle, rule 3 will fail, permitting the cycle to remain uncut. For

example, the controller in Figure 2.6 contains 18 cycles, 26 cut paths, and three GCP

paths. The true path for timing endpoints (lr, rr) is [lr, 9, 10, 1, 2, 3, 7, 5, 6, 0, 1, 9, 10, 7, 4, rr]

(which contains a cycle) while the true path for (lr, la) is [lr, 9, 10, 1, 2, la]. A set Θ =

{(lr, 10), (10, 1), (1, la), (3, 5), (5, 0), (0, 10), (10, rr)} is provided to represent the true paths.

The algorithm reports that three cycles remain uncut including [0, 1, 2, 3, 7, 5, 6, 0], [0, 1, 2,

3, 7, 5, 6, 0], and [1, 9, 10, 1]. This is due to GCPs that overlap to cover all 3 cycles in the

true path.

Likewise, a false path in a design may be covered by a set of GCPs. Therefore, any uncut

path between timing endpoints in Φ which are not true paths are reported as an error by

the tool.

2.6.4.3 Providing Correct Endpoint Sets

An internal CCS formal verification engine, Blacart, is used to extract the true timing

path from all the sequential controller. The true timing path is gathered using a path

searching algorithm. The verification engine starts searching, creating a causal string of

events fired from one timing end point. The search continues similarly from the event of the
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Figure 2.6. Handshake Controller L400 ◦ R0000 Synthesized with Petrify.

other timing endpoint until a common causal ancestor is found. This other timing endpoint

becomes the point of divergence. A complete true timing path is reported for each of the two

paths. The true path includes a sequence of internal nodes. Multiple true paths are reported

if there exist multiple true paths between two timing end points. Table 2.3 presents all true

timing paths associated with the sequential controller, which is shown in Figure 2.2. These

true timing paths are required to be represented as GCPs for the cycle cutting algorithm.

The conversion from the full path representation to the GCP representation is performed

manually and listed in Table 2.3. Additionally, single GCP can express multiple true paths.

For example, the GCP (lr 7→ y) expresses both true paths, (lr, lc1, lc2, lc5, lc6, y) and

(lr, lc3, lc4, lc5, lc6, y).

2.7 Developed Cycle Cutting Algorithm

This section describes the developed algorithm which automates the process of generat-

ing cycle cuts for sequential circuit modules [2]. The structural Verilog circuit description

is parsed and stored as an adjacency list G = (V,E), where V is the list of vertices and E

the edges of the circuit. Figure 2.7 demonstrates a graph representation of the Figure 2.1

circuit. All cycles present in the circuit module are identified. Based on the timing endpoints

specified, a set of cycle cut constraints in the sdc format are output as well as a list of

violations to the rules. These constraints can then be passed through the synthesis and

place and route flows to allow the circuits to be automatically power and performance

optimized by commercial EDA tools and then validated for timing correctness.
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Table 2.3. Full Paths to GCPs Conversion

Full path GCP

(lr, lc1, lc2, la) lr 7→ la
(lr, lc3, lc4, rr) lr 7→ rr
(ra, lc0, lc1, lc2, la) ra 7→ la
(lr, lc1, lc2, lc5, lc6, y)

lr 7→ y
(lr, lc3, lc4, lc5, lc6, y)

ra lc0 lc3 lc4 rr

rst lc5 lc6

lr lc1 lc2 la

Figure 2.7. Graph Representation for LC circuit

2.7.1 Finding All the Cycles Present in the Circuit

A brute force algorithm is implemented to find all the local cycles in a circuit. These

structural cycles are independent of the path constraints supplied to the tool.

A depth first search is performed for each vertex vi ∈ V in the adjacency list G to find

paths that return to the vertex vi. If such a path exists then the stack which stores the trace

is recorded as a cycle. The LC controller in Figure 2.2 highlights the eight circuit cycles as

shown in Table 2.4.

Note that Cycle2 and Cycle3 have the same gate sequence because the output of gate

lc2 goes into two separate inputs of gate lc5. This can be verified from the adjacency list

Table 2.4. Internal Cycles

Cycles Path

Cycle0 [lc1 lc2 lc1]
Cycle1 [lc1 lc2 lc5 lc1]
Cycle2 [lc1 lc2 lc5 lc1]
Cycle3 [lc3 lc4 lc3]
Cycle4 [lc3 lc4 lc5 lc3]
Cycle5 [lc3 lc4 lc5 lc3]
Cycle6 [lc5 lc6 lc5]
Cycle7 [lc5 lc6 lc5]
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with gate lc5 appearing twice as the successor of gate lc2. Similarly, Cycle5 and Cycle6

and also Cycle7 and Cycle8 have the same gate sequence but are two separate cycles. This

implies that two timing cuts may be necessary to cut a single cycle.

The fanout and fanin of paths through the pins of the gate (or through independent

gates) can result in an exponential number of paths and cycles in a design. Hence, the

complexity of finding paths and cycles is theoretically exponential based on the number

of vertices (gates) in a design. Fortunately, sequential controllers generally have few gates

(typically less than 20). Finding the paths and cycles for the circuits under investigation

result in small run times, even with fanin and fanout as observed above.

2.7.2 Timing Paths with False Path Removal Using GCP

A depth first search is performed to generate all paths between the timing endpoints

in set Θ specified by the user. All the timing paths from sets of timing endpoints in

set Θ are identified and pruned to only GCPs for each pair of timing endpoints. The

following paths are returned for a set of timing endpoints (lr→la) for the LC controller

are shown in Figure 2.1. These are pruned to the GCP by removing the covered paths

[lc1, lc2], [lc3, lc4, lc5, lc1, lc2]. Table. 2.5 shows the complete set of GCPs for Θ.

2.7.3 Generating Cycle Cuts

Two algorithms have been implemented to generate cycle cuts:

• V1: This is a polynomial time greedy approach in terms of the number of cycles. The

solution is created by cutting maximum occurring edges in the covering table.

• V2: This is an exponential time approach in terms of the number of cycles which

searches through the complete list of solutions possible to find the highest quality

solution.

Quality metrics for the tool flow report the status whether all cycles are cut, if any cut

paths remain uncut, and if there are any orphaned gates without a timing path passing

Table 2.5. The Set of GCPs for Θ

Endpoints Paths

lr → la [lr, lc1, lc2]× 2
lr → rr [lr, lc3, lc4]
ra → la [ra, lc0, lc1, lc2]
lr → y [lr, lc1, lc2, lc5, lc6]× 4
lr → y [lr, lc3, lc4, lc5, lc6]× 2
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through them. There is no need to create a minimal set of cuts; what matters is that the

“right” set is created which does not violate any of the rules in Section 2.6.

The basis of both algorithms is the same. Up to this point, all cycles and true timing

paths have been defined. The problem of generating the cycle cuts is converted into a

covering problem for which a covering table is generated with the cycles as the rows and

the edges as columns. Only the edges present in the cycles which can be cut are considered.

All the edges which are present on a GCP are excluded since they can not be cut due to

Rule 1 precedence.

Edges that have the same source and destination gates are combined into a single column

for the covering table even though they might generate multiple set disable timing constraints.

Shorthand is used in the following table. Columns la0, y 0, y 1, y 2, and rr0 represent the

edges (lc2, lc1), (lc5, lc1), (lc5, lc3), (lc5, lc6), and (lc4, lc3) respectively. Figure 2.8 presents

the covering table for the circuit of Figure 2.1.

After the generation of the covering table, the V1 algorithm selects the edge that cuts the

maximum number of cycles (rows). Each selected edge is removed from future consideration

by removing that column. One or more set disable timing constraints are written out, and all

rows representing cycles which get cut by this edge are removed. The algorithm iterates

through the table to find a solution by repeatedly selecting an edge that is present in the

most rows and updates the table.

The generation of the local cycle cuts ends when there are either no more edges (some

cycles were not cut), or there are no more rows (all cycles have been cut) in the table.

There are four edges which can result in cutting two cycles for the covering table of the

circuit of Figure 2.1. Assume the rightmost edge y is selected. Cycle6 and Cycle7 are cut

by removing this edge. This leads to the cycle count for the y 2 edge to become zero, and

hence that column is also removed. Continuing this process leads to the cut set shown in

la0 rr0 y 0 y 1 y 2 y
[lc1 lc2 lc1]

√

[lc1 lc2 lc5 lc1]
√

[lc1 lc2 lc5 lc1]
√

[lc3 lc4 lc3]
√

[lc3 lc4 lc5 lc3]
√

[lc3 lc4 lc5 lc3]
√

[lc5 lc6 lc5]
√ √

[lc5 lc6 lc5]
√ √

Figure 2.8. Covering Table of the Local Cycles for the Linear Controller
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Figure 2.9, which removes all the cycles with 6 cuts, graphically shown in Figure 2.10.

Algorithm V2 also creates the covering table but goes one step further. It generates the

complete list of solutions. A solution cost heuristic is employed to select the best solution.

After generating each new solution, its cost is calculated and compared against the previous

best solution. The solution with the minimum cost is selected as the best solution. Following

is the cost heuristic, which gives priority to remaining uncut cycles. The constant K gives

different weights for number of uncut cycles and number of orphaned gates. A orphaned

gate exists when no timing path passes through the gate. This paper assigns K = 3 to give

a higher cost for uncut cycles.

cost = K × number of uncut cycles (2.1)

+ number of orphaned gates

The search ends when the first solution with zero cost is found, or when all the partial

solutions have been generated. In the latter case, the partial solution with the lowest cost

is returned.

After generating cycle cut constraints for all the local cycles, the cut path constraints

are applied to remove false paths and external cycles. These cuts are generated from set

Φ. A depth-first search is performed to find all the cut paths in the circuit. This results in

total of 24 paths listed in Table 2.6.

A covering table is constructed where the rows define paths and columns define the edges

on those paths that can be cut. Similar to local cycle cutting, edges that are on true timing

paths are not added to the table. Note that paths that are covered by transitive closures of

GCPs will not be included in the table, just their individual segments. Edges which have

already been removed from the graph to cut cycles are also excluded from the table, as well

as paths that have been cut as part of cycle removal. The V1 algorithm, that eagerly selects

cuts based on the number of paths cut, is employed. A set disable timing cycle cut constraint

is written out, and all rows representing cut paths by this edge are removed. The algorithm

set_disable_timing -from A2 -to Y [find -hier cell *lc1]
set_disable_timing -from A2 -to Y [find -hier cell *lc3]
set_disable_timing -from B1 -to Y [find -hier cell *lc5]
set_disable_timing -from C1 -to Y [find -hier cell *lc5]
set_disable_timing -from B1 -to Y [find -hier cell *lc1]
set_disable_timing -from B1 -to Y [find -hier cell *lc3]

Figure 2.9. The sdc Constraints Generated to Remove All Cycles
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Figure 2.10. LC Circuit Implementation Showing Local (Red) and External (Orange)
Timing Arc Cuts Through the Marked Gates

Table 2.6. The Timing Endpoints Specified in Set Φ

Endpoints Paths

ra9 rr [ra, lc0, lc1, lc2, lc5, lc3, lc4]× 2
ra9 rr [ra, lc0, lc3, lc4]× 2
lr 9 la [lr, lc1, lc2]× 2
lr 9 la [lr, lc3, lc4, lc5, lc1, lc2]× 2
lr 9 rr [lr, lc1, lc2, lc5, lc3, lc4]× 4
lr 9 rr [lr, lc3, lc4]
ra9 la [ra, lc0, lc1, lc2]
ra9 la [ra, lc0, lc3, lc4, lc5, lc1, lc2]× 4
lr 9 rr [lr, lc1, lc2, lc5, lc6]× 4
lr 9 rr [lr, lc3, lc4, lc5, lc6]× 2

ends when there are either no more edges (some cut paths could not be cut), or there are

no more rows (all cut paths have been cut) in the table.

Since edge (lc5, lc3) and (lc5, lc1) have been cut to remove cycles, those two columns

and the 12 associated rows that are cut with these edges are not included in the table. This

leaves just two rows to be cut with only a single edge as an option since the other 10 paths

are GCPs. Figure 2.11 illustrated the covering table. Two associated sdc constraints are

generated to remove these two rows in the covering table. which is shown in Figure 2.12.

The cut points for the circuit are illustrated in Figure 2.10. The algorithm has now

generated a complete DAG for the system with all of the true paths intact, all of the cycles

cut, all of the false paths cut, without leaving any orphaned gates such that true paths pass

through each gate in the design. Timing targets can be placed across each of the timing
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(lc0, lc3)
[ra, lc0, lc3, lc4]

√

[ra, lc0, lc3, lc4]
√

Figure 2.11. Covering Table for Set φ

set_disable_timing -from A0 -to Y [find -hier cell *lc3]
set_disable_timing -from B0 -to Y [find -hier cell *lc3]

Figure 2.12. The sdc Constraints to Remove Timing Paths

endpoints in Θ to optimize the sizing and placement of the gates to ensure that hazards

to not occur in the design resulting in failure, and the performance of the circuit can be

optimized.

2.8 Results

The algorithm described in this paper is written in C++. The results are reported for

runs on an Intel core i7 processor with 4GB memory. Most sequential control circuits are

relatively small and so this problem is not constrained by runtime or memory.

2.8.1 Four-Cycle Handshake Controllers

This example set consists of the complete family of 131 untimed four-cycle handshake

controllers with data valid at the rising edge of request (lr) [52],[53]. The specifications are

generated from concurrency reduction rules, and they are synthesized with Petrify. This

creates a rich set of controller modules with various properties, such as half and full data

buffered pipelines. The concurrency reduction rules were applied to the most concurrent

protocol to generate the complete set of untimed (speed-independent and delay-insensitive)

protocols.

The evaluation approach described in Section 2.4 is employed. This includes the three

performance paths (lr→la), (lr→rr), and (ra→la). Additional timing paths specific to each

controller that are required to remove hazards from the design are also included. The cut

path (ra9rr) is included to remove cycles on the handshake channel.

Data are included in a tabular and graphical form. Table 2.7 shows results for each

individual controller. Some of the handshake controllers failed synthesis from Petrify and

are marked as ‘–’ in the table. Those that deadlock due to too much concurrency reduction

are marked with ‘.’. Graphical results collect data into sets for each of the left cut (Lxxx).



34

Thus, from 6 to 16 controllers are included for each Lxxx value in the graphs.

The table and graphs generally display data from higher to lower concurrency. (The

improved left cut nomenclature of [53] is employed.) Larger Lxxx numbers represents

increased concurrency reduction on the output rr/ra channel. Likewise, Rxxxx cuts for

each Lxxx set create orthogonal concurrency reduction on the input lr/la channel. All

concurrency reduction values for the input channel are included in the Lxxx value, so the

numbers can have significant variance. The average value for the left cut set is identified by

the line with the maximum and minimum values identified with the error bars.

Table 2.7 shows the total cycles, cycles and false paths left uncut, and orphans for

the design. The total number of cycles in these controllers is identified in the table. The

amount of concurrency in a design is directly proportional to the number of state variables

required [26]. As expected, the most concurrent protocols contain the largest number of

cycles due to more state holding feedback signals. Table 2.7 also shows the number of cycles

and false paths left uncut, and the number of orphaned gates. The uncut false paths are

reported next to the uncut cycles since false paths are removed when cycles are cut. Six

designs have one false path that was left uncut, and two designs have two uncut false paths.

All cycles were removed in 118 of the 131 test cases employing the given constraint paths.

Table 2.7. Total Cycles Found / Cycles Left Uncutfalse path / Orphans for the V1 Algorithm

LoR L000 L200 L400 L220 L420 L222 L422 L440 L442 L444

R0000 – – 18/32/0 35/0/2 – – 11/0/2 24/30/7 7/10/0 5/10/0

R0020 38/0/1 – 17/22/1 14/0/0 11/0/0 13/0/0 9/11/0 13/0/0 9/0/0 8/0/0

R0040 20/0/0 23/0/1 15/0/0 14/0/0 44/0/6 19/0/8 8/0/0 5/0/0 8/0/0 10/0/0

R0022 25/0/0 59/0/9 7/11/0 10/0/4 19/0/9 8/0/0 7/0/0 3/0/0 4/0/0 4/11/0

R0042 39/0/15 13/0/1 14/0/0 – 16/0/0 35/0/7 7/0/0 10/10/0 6/0/0 5/10/0

R2022 22/0/11 30/0/6 44/0/12 7/0/0 12/0/5 12/0/3 8/0/0 6/0/0 4/0/0 .

R2042 50/0/6 20/0/1 10/0/0 5/0/3 7/0/0 8/0/0 6/0/0 4/0/0 4/0/0 .

R0044 10/0/0 7/0/0 10/0/1 4/0/0 5/0/5 10/0/6 4/0/0 6/0/0 3/0/3 3/10/0

R2044 7/0/1 9/0/0 7/0/0 4/0/6 6/0/7 6/0/1 4/0/0 2/0/0 3/0/5 .

R4044 18/0/0 7/0/1 . 3/0/0 . 5/10/0 . . . .

R2222 19/0/8 7/0/3 5/0/0 3/0/0 5/0/0 5/0/3 4/0/0 4/0/0 2/0/1 .

R2242 17/0/0 9/0/0 8/0/0 7/0/3 6/0/5 5/0/2 4/0/0 3/0/0 3/0/0 .

R2262 7/0/2 7/0/0 10/0/0 4/0/0 5/21/0 . . 3/0/0 . .

R2244 3/0/1 4/0/0 4/0/1 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 .

R2264 5/0/0 6/0/0 5/0/0 1/0/0 2/0/0 . . 1/0/0 . .

R4244 5/0/4 6/0/3 . 1/0/0 . 2/0/0 . . . .

R4264 4/0/1 4/0/0 . 1/0/3 . . . . . .
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A number of gates were orphaned. Gates are orphaned for two reasons: first, there is no

timing path through the gate, and second, all input to output timing arcs get cut.

Further investigation reveals that all the orphan gates have no timing constraint path

passing through them in both V1 and V2 algorithms. Theses gates are primarily associated

with reset and the local state variable logic. Thus, these gates can be sized by applying

constraint paths that are specific to the state logic of each design.

A summary reports the maximum, minimum, and average values of the reported parame-

ters for the aggregate set of controllers. The parameters are listed including the energy-delay

product, the forward latency, the backward latency, the cycle time, the postlayout area, the

power consumption, the power consumption, the completion time, and the energy per token

as shown in Table 2.8. Figures 2.13 to 2.20 presents the individual parameters of the set of

controllers across the left cuts.

Figure 2.13 shows the energy delay product comparing cycle cutting being performed

by the V1 algorithm and a commercial CAD tool. The benefit of the V1 algorithm ranges

from an improvement of 13.7× to 1.2× over a commercial CAD tool. Figure 2.14 shows

the forward latency, Figure 2.15 shows the backward latency, and Figure 2.16 shows the

cycle time of each module with cycle cutting performed by a commercial CAD tool and our

timing path driven cycle cutting. A comparison of these graphs show that the commercial

CAD tool typically generates a slower circuit except for a few cases where it used big gates

that improved performance by consuming substantially more energy.

Figure 2.17 shows the postlayout area. Gates are substantially over-sized when the com-

mercial CAD tool performs cycle cutting. Four of the five cases with small area advantage

(1.9× times or less) are for the circuits with uncut cycles. In these five cases, the commercial

CAD tool creates additional cycle cuts after our timing driven algorithm is employed as it

Table 2.8. The Parameters for the Aggregate Set of Controllers

This Work Commercial CAD
min max mean min max mean

eτ2 30.0 56.7 38.7 31.0 96.9 54.34

Forward Latency (ps) 260 2120 895 360 3400 1393

Backward Latency (ps) 90 2540 846 30 4000 1388

Cycle Time (ps) 260 2120 895 360 3400 1392

Area (µm2) 56 442 145 145 882 450

Power (mW) 0.2 2.4 0.7 0.7 4.8 1.9

Completion Time (ns) 30.0 56.9 38.7 31.0 96.9 54.3

Energy per token (pj/token) 0.2 2.2 0.5 0.6 4.1 2.0
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Figure 2.13. eτ Ratio Averaged Across Left Cuts. Interval Shows Largest and Smallest
Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using Commercial
CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.14. Forward Latency Averaged Across Left Cuts. Interval Shows Largest and
Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using
Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.15. Backward Latency Averaged Across Left Cuts. Interval Shows Largest and
Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using
Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.16. Cycle Time (Post APR) (10ps) Averaged Across Left Cuts. Interval Shows
Largest and Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line
Depicts Using Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.17. Core Area Averaged Across Left Cuts. Interval Shows Largest and Smallest
Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using Commercial
CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.18. Power Comsumption Averaged Across Left Cuts. Interval Shows Largest and
Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using
Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.19. Computation Time Averaged Across Left Cuts. Interval Shows Largest and
Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using
Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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Figure 2.20. Averaged Energy Averaged Across Left Cuts. Interval Shows Largest and
Smallest Values for the Cut, Line Passes Through the Mean. Dotted Line Depicts Using
Commercial CAD Tools While Solid Line Depicts Using Our Algorithm
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synthesizes and optimizes the design.

The same conclusion can be made by comparing the power consumption, completion

time, and energy reported in Figure 2.18, Figure 2.19, and Figure 2.20. There are five designs

that have higher performance when the commercial CAD tool performs cycle cutting, but

the performance improvement again comes at the cost of expending lots more power.

The energy numbers for the pipeline design average 3.84× larger for the case when the

commercial CAD tool performs cycle cutting.

2.8.2 Benchmark Circuits

A number of benchmark circuits of varying complexity were also evaluated, including

the largest published asynchronous finite state machines which sequential synthesis tools

are able to create. These benchmarks include a GCD design and modules from the Post

Office and pipelined small computer system interface (PSCSI) controllers [54],[55]. These

designs were synthesized using Petrify to generate a gate level netlist to which reset was

added by hand.

The test setup for these designs is similar to that for the examples in Section 2.5. The

notable exception is that the circuits were not formally verified for correctness against

the specification in order to generate the true timing paths in the design. Instead manual

analysis of these designs was performed to identify the true paths taken for each input to

output path in the design. Only one true path from each primary input to each primary

output was identified, if one exists. These true paths are supplied to the algorithm. Also,

the external connectivity of these designs is ignored, so no external cut paths were employed

to cut handshake channel cycles.

Table 2.9 gives a comparison for the cycle cuts generated by the algorithms with and

without true path information in terms of, area, energy per token, and run time performance.

The complexity of each design is based on the number of paths, cycles, and gates. The generic

algorithm uses primary inputs and outputs to form GCPs and generates cycle cuts [2]. These

numbers give a comparison on the effectiveness of providing true paths of sequential designs.

The average benefit for comparing the designs with and without true timing paths are 40%

area reduction, 30% energy reduction with a 5% performance improvement. This gives an

average 1.4× eτ benefit.

2.9 Summary

Timing paths must be cut to represent the timing graphs of sequential circuits as

DAGs in the current state-of-the-art EDA tools. An algorithmic approach is presented
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Table 2.9. Results Comparison for Benchmark Circuits

GCP of PI to PO True timing paths Benefit

No. of Gate Area Energy/ Comp Area Energy/ Comp Area Energy/ Comp

Cycle Count Paths (um2) token (pJ) time (ns) (um2) token (pJ) time (ns) token time

rcv-setup 1 8 4 54.9 0.03 87.86 42.0 0.03 91.15 1.3 1 0.96

sbuf-send-ctl 12 28 120 122.6 0.34 329.45 103.2 0.29 316.09 1.18 1.17 1.04

pscsi-trcv-bm 6 26 32 152.6 0.25 139.69 100.8 0.16 149.78 1.51 1.56 0.93

pscsi-tsend-bm 10 33 377 197.2 0.32 234.11 115.2 0.22 199.47 1.71 1.45 1.17

pscsi-tsend 100 35 1819 193.7 0.3 213.77 122.4 0.21 188.61 1.58 1.42 1.13

pscsi-isend 325 43 6122 261.4 0.54 277.51 204.0 0.44 258.79 1.28 1.23 1.07

gcd 22 72 175 428.6 0.77 302.74 348.6 0.61 299.97 1.23 1.26 1.01

Average Benefit 1.40 1.30 1.05

for automating the timing path driven generation of these cycle cuts so that the EDA

tools can properly perform gate sizing for performance, area, and energy optimizations

on sequential circuits without modifying the underlying structural netlist. The algorithm

leverages the CAD tool that performs cycle cutting and preserve timing paths [2]. True

paths are generated using a verification engine and supplied to the developed tool. It is

passed as timing endpoints of two forms: those that identify the true timing paths in the

circuit and thus can not be cut to preserve necessary timing paths, and those that identify

false paths and external cycles which must be cut. A method based on the greatest common

path is provided for specifying the correct timing paths in the sequential circuits based on

timing endpoints composition. The developed tool reports on the quality metrics of the

results, consisting of the number of cycles left uncut, the number of false paths that were

not cut, and the number of gates that do not have a timing path passing through them.

Two versions of the algorithm are presented: a faster greedy search as well as an exhaustive

algorithm that returns a result of the highest quality.

The cycle cutting constraints in the sdc format is generated by the tool. This timing

path driven cycle cutting algorithm is a key component of any design and CAD flow that

enables asynchronous designs to be synthesized, placed and routed, power and performance

optimized, and validated for postlayout timing correctness using commercial EDA tools. The

input is the structural Verilog design of sequential controllers that implement handshake

protocols and sequencing in asynchronous designs.

The algorithms are general to any sequential circuit. The algorithm is demonstrated on

a test bench of 131 four-cycle bundled data asynchronous controllers, one delay-insensitive

design, and a set of large gate count benchmark circuits. Circuits in this example set have
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as many as 325 cycles and over 6K paths in the implementation.

It is shown that allowing EDA tools to generate a DAG employing algorithms that do

not respect timing paths passing through the sequential circuit leads to issues in timing

optimization and validation, as well as producing inferior circuits. The generic cycle cutting

algorithm generates on average of 40% smaller in size, 30% less in energy, and 5% faster

designs while the true paths are provided. More importantly, true timing paths of the circuit

can not be evaluated using STA unless a DAG is generated that respects the timing paths.

If some timing paths do not meet specified delays, the circuit will fail to operate correctly.



CHAPTER 3

PATH BASED TIMING VALIDATION FOR

TIMED ASYNCHRONOUS DESIGN1

The advent of novel circuit design methodologies, like asynchronous circuits, can enable

a circuit to operate at multiple frequencies with power and performance benefits. Numerous

advantages are accrued through employing commercial EDA tools for asynchronous design

approaches. These tools have support for leading technology features such as double pat-

terning and multiple timing corners, hence, design productivity is enhanced. Unfortunately,

asynchronous circuit designs can not be directly supported with commercial EDA tools.

The lack of commercial EDA support is largely due to the disconnect in the timing

models employed for clocked and asynchronous design. Numerous challenges must be over-

come to support asynchronous timing models in commercial EDA tools. Timing paths

in asynchronous design are not simple combinational paths, as is the case with clocked

design. Many timing paths in asynchronous design must be calculated based on the specific

logic being employed. Such timing constraints often consist of two or more related paths.

Nearly all asynchronous designs contain combinational cycles, which also must be evaluated.

Asynchronous sequential controllers often have hazards that can be avoided if specific delay

relationships hold. Timing constraints that make hazards unreachable must hold for design

correctness. Other timing constraints exist in timed asynchronous circuits to optimize and

validate performance. Most of the timing constraints to ensure circuit performance are

cyclical.

These challenges need to be resolved for asynchronous design to employ commercial EDA

tools. This paper specifically addresses the challenge of creating accurate path based delays

for asynchronous sequential circuits, including paths that contain cycles. A methodology

1This section has been published in VLSI design, 2016 [56]. c© 2016 IEEE. Reprinted, with permission,
from William Lee, Tannu Sharma, Kenneth S. Stevens, ”Path Based Timing Validation for Timed
Asynchronous Design,” in proceedings of the 29th International Conference on VLSI Design and 15th
International Conference on Embededd Systems (VLSI-Design), January, 2016.
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is developed that utilizes the static timing analysis (STA) algorithms used by commercial

EDA tools.

3.1 Background

Timing in a system is employed to enforce specific event sequencing in a design. This

is normally enforced with a clock signal, where the cycle time must be greater than the

combinational propagation delay between pipeline stages. Timing is where asynchronous

design differs from the clocked designs. Bundled data asynchronous design employs similar

timing requirements, but timing is localized, flexible, and irregular. This creates problems

and challenges for circuit optimization and validation, but also can provide power and

performance advantages.

3.1.1 Asynchronous Designs

Asynchronous designs communicate and synchronize based on local handshake signals

which identify data validity and the ability to accept new data transactions. The communi-

cation link is called a handshake channel that consists of data wires, a request signal (req)

identifying data validity, and an acknowledgment signal (ack) indicating the data has been

accepted [57],[58].

Performance evaluation for asynchronous designs is inherently different than that for

clocked design because each handshake channel implements a silicon oscillator designed to

operate at a particular frequency that matches the delay of the associated data path. The

handshake channel implements the oscillator as a timing cycle. The timing path is even

more complicated in four-cycle protocols since each data transfer consists of both rising and

falling transitions on req and ack with these signals propagating along many if not all the

gates in the handshake cycle. Commercial CAD does not support combinational cycles, and

so external means must be implemented to support such cyclic timing paths.

Many asynchronous design styles, such as bundled data, require timing constraints to

hold for the circuit to operate correctly. The LC blocks in Figure 3.1 implement the silicon

oscillator that control the frequency of operation for a pipeline stage, the synchronization

between pipeline stages, and generate a clock signal to store data in pipeline latches. These

are implemented as asynchronous finite state machines (AFSM). Here, we assume these

controllers are implemented with combinational logic where state holding logic contains

combinational cycles. These AFSMs often have hazards which must be made unreachable

by controlling the delays in the circuit. The hazards are commonly associated with the

combinational cycles that implement the state holding function.
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This design approach poses multiple requirements which are not directly supported by

the commercial EDA tool flow. First, timing paths must be explicitly identified that relate

to the specific AFSM used in the design. Second, the timing graph of the circuit must be

represented as a DAG. Third, cyclical timing paths must be evaluated based on a DAG

timing graph representation.

In general, all the timing paths required evaluating a sequential circuit can not be known

in a single iteration if the timing graph is represented as a DAG. Also, a DAG has some

of the timing paths cut [59]. Thus, complete timing path analysis requires multiple timing

path partitions, multiple acyclic timing graph representations, and multiple STA runs.

3.1.2 Controller Indexing for Mapping Timing Constraints

In our approach, asynchronous sequential controllers become the focal point for timing

validation, much like the registers are in a clocked design. Every AFSM controller has been

characterized with a set of RT constraints which must hold for its correct operation. The

source of all timing paths to be validated are RT pods, which are all located inside the

characterized controllers. The ending points of the paths are RT pocs which may be inside

or outside of the controller.

Since timing evaluation is performed local to each controller, a representation is con-

structed to specify external module location relative to the current controller. The controller

under evaluation is identified with an instance label “$i1.” Upstream controllers (accessed

through the “ack” port in Figure 3.1) are referenced as “$i0” design blocks; downstream

pipeline elements (accessed through the “req” port) are referenced as “$i2” macros. Reg-

isters are connected to the controller through the “clk” output port and are identified by

appending a capital R to the label (e.g., $i0R, $i1R, $i2R).
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3.2 Relative Timing Verification

The relative timing verification flow used in this work is shown in Figure 3.2. This flow

enables commercial EDA tools to be used with sequential controllers and asynchronous

circuit design. Figure 3.3 is an example circuit used to explain the flow [44].

Relative timing constraints specify timing paths by listing their endpoints. The true

timing path(s) between these endpoints must be identified because the structural STA

algorithms may not select the true timing path through the circuit. Some of the paths may

have cycles. The RT timing endpoints, along with the true timing paths, are provided as an
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Figure 3.2. Relative Timing Verification Flowchart.
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input to this work. False paths are removed from the timing graphs by cutting timing arcs

in the timing graph while preserving the true timing paths to ensure that the STA tools

produce correct results. A separate CAD tool performs the timing path preserving cycle

cutting operation [59].

Since timing validation can not be performed in a single pass, the RT constraints are

grouped into compatibility sets. One set is used for timing driven synthesis and physical

design. The full set of RT constraints are employed for timing validation. When performing

timing validation, the full path delays are calculated along with RT slacks associated with

each RT constraint.

A delay violation exists in an RT constraint when the margin is less than the min-delay

minus the max-delay. The design will be signed-off if there are no violations. If timing

violations are identified in the validation process, the delay targets associated with the RT

constraints need to be updated and rerun synthesis and/or physical design or perform an

ECO.

3.2.1 Graph Representation of a Circuit

Each asynchronous pipeline controller is represented as a cyclic graph G = (V,E) where

the input pins of each gate, the primary inputs, and the primary outputs are vertices (nodes)

vi ∈ V of the graph, and edges ei = (vx, vy) ∈ E map connectivity between the vertices. The

primary input and output vertices of G are identified with a double circle in figures. The

sequential asynchronous handshake pipeline controller used in Figure 3.3, which is shown

in Figure 3.4, can be represented to a directed graph form. Figure 3.5 is the directed graph

representation for the controller.

A path is a sequence of vertices connected by edges in E in a directed graph. The

starting and ending nodes of a path are called timing endpoints. There can be multiple

paths between timing endpoints. One of the paths between the timing endpoints lr and rr

is [lr, 1/A0, 2/A, 5/A0, 3/A2, 4/A, rr]. A cycle is a path that starts and ends with the same

vertex. For instance, path [1/B1, 2/A, 1/B1] is a cycle.

3.2.2 Identify Timing Paths for Each Controller

The control path is formed using pipeline controllers (LC). A set of RT constraints are

associated with each controller and these constraints are mapped to the full design. Each

relative timing constraint identifies two timing path sets: max-delay path(s) from pod to

poc0 and min-delay path(s) from pod to poc1. The min-delay path must be at least m time

units greater than the max-delay path.
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Figure 3.5. Graph Representation for the Linear Controller in Figure 3.4

The min-delay and max-delay paths for RT constraints (2) and (3) in Table 3.1 are

both contained within the controller. A constraint may specify multiple true paths, as

is the case for the min-delay path of (1) and the max-delay path of (8). The min-delay

paths of constraints (0) and (1a) contain cycles because nodes 4/A and 2/A appear twice

in the respective paths. These cycles are caused by the system-level interconnect of the

handshake channel and the four-cycle RTZ handshake protocol. RT constraints (8) and

(9) have timing endpoints at the datapath which are external to the controller. These two

constraints represent the setup and hold time of the register or latch.
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Table 3.1. Relative Timing Constraints and True Paths Representation of Figure 3.4

RT constraint Full Timing Path

rr+ 7→ y+ ≺ rr- 4/A-, 5/A1+, 6/A-, 5/B1+ < (0)
4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0-, 4/A+,
5/A1-

lr+ 7→ y+ ≺ la- lr+, 3/A1+, 4/A-, 5/A1+, 6/A-, 5/C1+ < (1a)
lr+, 1/A0+, 2/A-, la+, $i0/ra+, $i0/rr-, lr-, 1/B0-, 2/A+,
5/A0-
lr+, 1/A0+, 2/A-, 5/A0+, 6/A-, 5/C1+ < (1b)
lr+, 1/A0+, 2/A-, la+, $i0/ra+, $i0/rr-, lr-, 1/B0-, 2/A+,
5/A0-

y + 7→ y- ≺ la+ 5/C0-, 6/A+, 5/B1- < (2)
5/C0-, 1/A2+, 2/A-, 5/B0+

y + 7→ y- ≺ rr+ 5/C0-, 6/A+, 5/C1- < (3)
5/C0-, 3/A2+, 4/A-, 5/C0+

lr+ 7→ ck+ ≺ la + lr+, 1/A0+, 7/A-, ck+ < (4)
lr+, 1/A0+, 2/A-, la+, $i0/ra+, $i0/rr-, lr-, 1/B0-, 7/A+

lr- 7→ ck- ≺ la - lr-, 1/A0-, 7/A+, ck- < (5)
lr-, 1/A0-, 2/A+, la-, $i0/ra-, $i0/rr+, lr+, 1/B0+, 7/A-

lr+ 7→ rr+ ≺ lr- lr+, 3/A1+, 4/A-, 3/B1+ < (6)
lr+, 1/A0+, 2/A-, la+, $i0/ra+, $i0/rr-, lr-, 3/A1-

lr+ 7→ la+ ≺ ra+ lr+, 1/A0+, 2/A-, 1/B1+ < (7)
lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 1/A1-

lr+ 7→ $i2R/D ≺ $i2R/CLK- lr+, 1/A0+, 7/A-, ck+, $i1R/CLK+, $i1R/Q, $i2R/D, < (8a)
lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0-
, 4/A+, rr-, $i2/lr-, $i2/ck-, $i2R/CLK-
lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/ck+, $i2R/CLK+,
$i2R/Q <

(8b)

lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0-
, 4/A+, rr-, $i2/lr-, $i2/ck-, $i2R/CLK-

lr- 7→ $i1R/CLK- ≺ $i1R/D lr-, 1/A0-, 7/A+, ck-, $i1R/CLK- < (9)
lr-, 1/A0-, 2/A+, la-, $i0/ra-, $i0/ck+, $i0R/CLK+,
$i0R/Q, $i1R/D

3.2.3 True Timing Path Driven Cycle Cutting

Asynchronous controllers contain cycles which must be cut to perform timing driven

optimization and static timing analysis. These cycles must be cut in such a manner that

the true timing paths in the circuit remain uncut. For example, as shown in Figure 3.5, the

cycle [1/B1, 2/A, 1/B1] can be cut at edge (1/B1, 2/A) or (2/A, 1/B1). If the latter cut is

employed, all timing paths passing through gate 2 will also be cut. Thus, the preferred cut

point for this cycle is the edge (1/B1, 2/A).

In this paper, we assume that all the cycles through linear controllers are cut in the

design. An external tool is employed to create a DAG when given a Verilog controller along

with the associated set of true and false paths. A set of cut points are produced which
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create acyclic timing graph that cuts all the cycles and false paths, while preserving the

true paths. The tool also gives cut paths which will remove system level cycles in the design

as described below.

In order to accurately gather the delay value of a cyclic RT constraint, at least two

iterations of STA are required. We implement an algorithm to partition the design into

independent timing runs that can be composed to create accurate full path timing, including

paths with cycles. This is performed by partitioning the constraints into two partitions:

forward cycle cut (FCC) to preserve downstream ($i1→$i2) paths, and backward cycle cut

(BCC) to preserve upstream ($i1→$i0) paths. This works due to the locality of the timing

constraints that are tied to each individual controller.

Each linear controller in a design will have an upstream and downstream channel

connecting it to the adjacent pipeline stages, as shown in Figure 3.1. Consider controller

LC1, and the cycles in the channel connecting it to LC0 and LC2. After applying FCC

(where timing path ra→rr is cut) and BCC (where timing path lr→la is cut), we obtain

the DAGs shown in Figure 3.6 and Figure 3.7, respectively.

A search algorithm is implemented to generate overlapping cut points to allow more

accurate delay calculations of paths, that must be cut to create a DAG. For instance,

path [rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0−, 4/A+, rr−] is a cycle. The total delay of

the path can be computed by cutting it at ra and calculating the timing from rr +→ra+,

then cutting the path at $i2/la and calculating delay from $i2/la+→rr−, adding the two

delays, then subtracting the $i2/la+→ra+ delay from the total.
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Figure 3.6. Local Cycles Have Been Cut and Handshake Channel Cycles are Removed
with Forward Cycle Cutting (FCC) by Cutting All Timing Paths Between ra and rr.
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Figure 3.7. Local Cycles Have Been Cut and Handshake Channel Cycles are Removed
with Backward Cycle Cutting (BCC) by Cutting All Timing Paths Between lr and la.

3.2.4 Graph Coloring Algorithm

An algorithm is written to break all paths with cycles into overlapping acyclic path

segments. This generates a set of path segments and timing cut points which are composed

to accurately time the full path.

A greedy graph coloring algorithm is applied to group nonintersecting true paths into

sets for each controller instances in the design [60]. Two timing paths are intersecting if an

endpoint of a timing path is also an internal node of another timing path. The algorithm

ensures that a path in the set will not introduce a cut point in another path in the same

set. Partitioning timing paths reduces the number of STA iterations required to generate

full-path timing.

Table 3.2 reports the results of cutting cycles and partitioning path segments for the

RT constraints for the controller shown in Figure 3.4. Each set contains a number of non-

intersecting paths.

Asynchronous designs can be constructed using more than one type of linear controller.

Each controller type will have its associated partition table. The RT constraints are applied

to each controller instance in a design. The design shown in Figure 3.3 is built using a single

type of controller so it requires only one partition table. The RT constraints are applied on

each controller instance with independent delay targets.

All the path delays in each set can be analyzed in one iteration. However, when analyzing

a pipelined design, the odd controllers (LC0,LC2) and even controllers (LC10,LC11) of

Figure 3.3 must be evaluated in separate STA runs. Because the same constraint sets
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Table 3.2. Relative Timing Graph Nodes as Timing Paths

Set No. Constraint

A

1 (5/C0-, 6/A+, 5/B1-)
2 (5/C0-, 6/A+, 5/C1-)
3 (lr+, 1/A0+, 7/A-, ck+, $i1R/CLK+, $i1R/Q, $i2R/D)
4 (lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0-)
5 (lr+, 3/A1+, 4/A-, 3/B1+)

B
1 ($i0/ra+, $i0/rr-, lr-, 3/A1-)
2 (3/A2+, 4/A-, 5/C0+)
3 (5/C0-, 1/A2+, 2/A-, 5/B0+)

C

1 (lr-, 1/A0-, 7/A+, ck-)
2 (lr+, 1/A0+, 7/A-, ck+)
3 (4/A-, 5/A1+, 6/A-, 5/B1+)
4 (4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 3/B0-)
5 (lr+, 3/A1+, 4/A-, 5/A1+, 6/A-, 5/C1+)
6 (lr-, 1/A0-, 2/A+, la-, $i0/ra-, $i0/ck+, $i0R/CLK+, $i0R/Q, $i0R/D)
7 (lr+, 1/A0+, 2/A-, la+, $i0/ra+, $i0/rr-)

D

1 (0/A+, 3/B0-, 4/A+, 5/A1-)
2 (la-, $i0/ra-, $i0/rr+, lr+, 1/B0+, 7/A-)
3 (la+, $i0/ra+, $i0/rr-, lr-, 1/B0-, 7/A+)
4 (la+, $i0/ra+, $i0/rr-, lr-, 1/B0-, 2/A+, 5/A0-)
5 (0/A+, 3/B0-, 4/A+, rr-, $i2/lr-, $i2/ck-, $i2R/CLK-)

E
1 (lr+, 3/A1+, 4/A-, rr+, $i2/lr+, $i2/la+, ra+, 0/A+, 1/A1-)
2 (lr+, 1/A0+, 2/A-, la+, $i0/ra+)

are employed for all the controllers, some external constraints would overlap its adjacent

controllers’ constraint sets. The number of STA iterations required to perform timing

validation would be twice the largest number of constraints with a controller.

The results report the implemented algorithm that cut paths into overlapping segments

(including with and without cycles when necessary), partition path segments into compatible

sets, and partition controllers into odd and even sets.

3.2.5 Perform Static Timing Analysis

Static timing analysis is performed after synthesis or layout. A commercial tool such

as Synopsys PrimeTime or Cadence Tempus is invoked to perform STA. This paper uses

PrimeTime. Multimode, multicorner analysis is performed to incorporate process, voltage,

and temperate variation on timing path delays. Timing path delays from the complete set

of paths (e.g., Table 3.2) are stored into a database.

3.2.6 Evaluate RT Slack for Every Timing Path

The RT slack for the RT constraint is the amount of time difference between the max-

delay and min-delay timing paths. These slacks are calculated, stored, and compared against

the minimum value required for the design. A value less than the required value indicates a
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failed timing constraint (negative slack). Negative slack must be fixed by changing circuit

timing by modifying timing targets, rerunning synthesis or place and route, and then this

timing validation tool.

The slack of each RT constraint is plotted as a histogram in Figure 3.8. Constraint 8 is

the data setup, 9 is the hold time, and the rest make hazards unreachable. This data allows

designers to trade off performance and yield of a design.

Table 3.3 shows the detailed RT slack values obtained for the multiplier design in

Figure 3.3. The pod column is the timing start point, the poc0 column contains maximum

delay endpoint, and the poc1 column contains endpoint for the minimum delay path for the

specified RT constraint.

3.3 Results

The methodology is now demonstrated on a 16-point Fast Fourier Transform (FFT-16)

design will be shown in Section 6.1. The histogram in Figure 3.9 shows the cycle time

distribution for various categories of pipeline stages in this multifrequency design. The three

different color groups in the graph correspond to three different operational frequencies in

the FFT-16 design. The slack distribution for RT constraints which are required for circuit

correctness is shown in Figure 3.10. Figure 3.11 shows the setup time (blue) and hold time

(red) slack distribution for the design. Due to the multifrequency nature of the design some

paths are expected to have large setup and hold times.

3.4 Summary

Timing is the primary difference between asynchronous and clocked designs. Traditional

static timing analysis algorithms can not be directly applied to asynchronous designs due

to cycles and conflicting timing paths. A methodology and algorithm are presented which,
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Table 3.3. RT Slack Evaluation for the Multiplier Design

RT
RT Constraint pod poc0 poc1 slack

(ns)

rr+ 7→ y+ ≺ rr-
LC0/rr LC0/y LC0/rr 0.97
LC10/rr LC10/y LC10/rr 1.05
LC11/rr LC11/y LC11/rr 0.84

lr+ 7→ y+ ≺ la-
LC10/lr LC10/y LC10/la 0.97
LC11/lr LC11/y LC11/la 0.9
LC2/lr LC2/y LC2/la 1.07

y + 7→ y- ≺ la+

LC0/y LC0/y LC0/la 0.12
LC10/y LC10/y LC10/la 0.09
LC11/y LC11/y LC11/la 0.09
LC2/y LC2/y LC2/la 0.11

y + 7→ y- ≺ rr+

LC0/y LC0/y LC0/rr 0.12
LC10/y LC10/y LC10/rr 0.09
LC11/y LC11/y LC11/rr 0.09
LC2/y LC2/y LC2/rr 0.11

lr+ 7→ ck+ ≺ la +
LC10/lr LC10/ck LC10/la 1.12
LC11/lr LC11/ck LC11/la 1.07
LC2/lr LC2/ck LC2/la 1.18

lr- 7→ ck- ≺ la -
LC10/lr LC10/ck LC10/la 1.12
LC11/lr LC11/ck LC11/la 1.07
LC2/lr LC2/ck LC2/la 1.18

lr+ 7→ rr+ ≺ lr-
LC10/lr LC10/rr LC10/lr 1.02
LC11/lr LC11/rr LC11/lr 1
LC2/lr LC2/rr LC2/lr 0.9

lr+ 7→ la+ ≺ ra+
LC0/lr LC0/la LC0/ra 1
LC10/lr LC10/la LC10/ra 0.91
LC11/lr LC11/la LC11/ra 1.09

lr+ 7→ $i2R/D ≺ $i2R/CLK-
LC0/lr R10/D R10/CLK 0.31
LC0/lr R11/D R11/CLK 0.31
LC10/lr R2/D R2/CLK 0.45
LC11/lr R2/D R2/CLK 0.25

lr+ 7→ $i2R/CLK- ≺ $i2R/D
LC0/lr R10/CLK R10/D 0.76
LC0/lr R11/CLK R11/D 0.77
LC10/lr R2/CLK R2/D 0.78
LC11/lr R2/CLK R2/D 0.77
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Histogram of Pipeline Cycle Time
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Histogram of Setup and Hold Times
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when provided timing path information, allows arbitrary timing paths, including those with

cycles, to be evaluated using commercial static timing analysis tools such as PrimeTime.

Total run times are larger than for a comparably clocked design as multiple iterations

through the STA tool are required, but the runs can all be performed concurrently. The

paper demonstrates algorithms performing full cyclic path timing validation of a 57K-gate

16 point FFT design in under 10 min.



CHAPTER 4

FAULT COVERAGE FOR RELATIVE

TIMED ASYNCHRONOUS DESIGN

The testability of a synchronous design is measured automatically with commercial

CAD tools. The commercial tools perform automatic test pattern generation (ATPG) and

report the fault coverage with the generated test pattern. However, commercial tools such

as TetraMax can not perform ATPG and evaluate the fault coverage on the asynchronous

design because the control channels contain combinational feedbacks. Also, the commercial

tools have no support toward generating test patterns for asynchronous circuits. Therefore,

a flow that utilizes commercial CAD tools for testing asynchronous circuits is implemented.

The testing flow is discussed in the following two sections, testing the control channels

and testing the data path. A 4-point FFT and a 64-point FFT, which will be shown in

Section 6.1, are built to demonstrate the complexity and effectiveness of the testing flow.

4.1 Fault Coverage on the Control Channels

The fault detection on the control channels requires a tool that supports fault simulation

on sequential circuits or circuits with combinational feedback loops. COSMOS, a switch

level fault simulator, is adopted to perform the fault simulation of the control channels [61].

COSMOS takes a transistor level implementation of the design and translates it into a

compiled simulation program [62]. The tool requires the design to be expressed in a flattened

transistor level structure (”.sim”). The conversion is performed using a structural Verilog

to .sim script called IRSIM [63]. COSMOS performs fault simulation under a unit delay

model.

In this study, the functional test patterns are generated manually and the fault coverages

are reported on a various asynchronous designs including FIFOs, a 4-point FFT, and a

64-point FFT designs.
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4.1.1 Performing Stuck-At Fault Simulation

COSMOS uses a single stuck-at fault model. The single stuck-at fault model covers most

other faults such as bridging or multiple stuck-at faults. Both stuck-at 1 (SA1) and stuck-at

0 (SA0) faults are injected in the control channels. All the data paths and control channels

outputs are observable for detecting faults. Additionally, no faults are injected into the data

paths. Unlike the test patterns for the synchronous designs, a set of sequential test patterns

is needed to test the asynchronous control channels. Specifically, the control channels operate

with respect to its current state and the incoming input vectors. Certain input sequences

would change the control channels to a certain state. A sequential test pattern is required,

which needs to traverse all the internal states of an asynchronous design. Specific stuck-at

faults of internal nodes can be detected at the specific internal state.

In this work, the sequential test pattern is generated with the understanding of the

normal and illegal operations of the asynchronous design. The sequential test patterns are

manually derived.

4.1.1.1 Single Controller Sequential Test Pattern

Table 4.1 shows seven sets of sequential test patterns corresponding to seven modes

of operation of the single asynchronous linear controller. The D signal indicates the data

change on the registers connecting to the linear controller. Reset mode toggles the control

signals while holding the circuit in the reset state to detect reset failure. Left and right

handshake mode only toggles either upstream or downstream handshake signals. Filled-

then-drain mode starts with left handshakes that insert tokens into the controller until

the circuit stall, then apply the right handshake to remove tokens from the pipe-stages.

Concurrent mode puts the asynchronous controller under typical operation, which both

sides of the handshake channels are switching concurrently once the response is seen. Next,

a rising transition of the request is applied followed by activating the reset signal to detect

stuck-at faults with respect to the reset state. Lastly, a false operation sequence that assert

ra before lr to test the circuit response under incorrect input sequences. Moreover, the +

sign appended to the signal name presents a rising transition while - sign indicates a falling

transition.

4.1.1.2 Sequential Test Patterns

The set of sequential test patterns of a single controller is duplicated as many times as

the number of pipe stages within an asynchronous design. The reset signal is a special case

since it will only trigger once throughout the test pattern except for the Filled-then-reset
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Table 4.1. The Sequential Test Pattern for a Linear Controller

Operation Test Pattern Sequence

Reset reset+, lr+, ra+, lr-, ra-
Left-handshake reset-, D, lr+, lr-, D, lr+, lr-

Right-handshake reset-, ra+, ra-, ra+, ra-
Filled-then-drain reset-, D, lr+, lr-, D, lr+, lr-, ra+, ra-, ra+, ra-

Concurrent reset-, D, lr+, lr-, ra+, ra-, D, lr+, lr-, ra+, ra-
Filled-then-reset reset-, D, lr+, reset+
False operation reset-, ra+, lr+

case. For example, a three-stage linear pipeline can hold up to three data tokens. Thus, lr

has to toggle at least six times to fill up the pipeline. Once the pipeline is full, ra also has

to toggle six times to empty the pipeline.

4.1.1.3 Fault Analysis of Linear Controllers

Four FIFO structures are constructed with liner controllers and tested using COSMOS.

Again, stuck-at faults are only injected into the control channels. LC1, LC2, and LC4 are

linear FIFO with the depth of 1, 2, and 4, respectively. LC4P is a parallel FIFO structure

with a depth of 3. The test provides 89+% fault coverage among all the designs with the

sequential test patterns shown in Table 4.1. The test pattern is duplicated as many times

as the depth of the FIFO.

COSMOS reports two types of detected fault including hard faults (H) and soft faults

(S). When a stuck-at-0 or a stuck-at-1 at a signal is causing a faulty output, the hard

fault is reported. The soft faults are reported when the faulty output is observed while

either 0→1→0 or 1→0→1 transitions occurs at the fault location. Hard and soft faults are

considered as detected faults since both of them generates a faulty result. Undetected faults

(UD) is reported as a number of total faults subtracts by detected faults.

The falling-edge controller has the property that data is valid only at the falling edge of

lr. This controller is used as the asynchronous controller to construct the FIFOs and FFTs.

The controller can be forced into its reset state by asserting the reset signal. Table 4.2

shows four FIFO designs with detected hard faults, detected soft faults, and undetected

faults (UD). There are 2 UDs reported while testing a single controller (LC1). One of the

UD is a SA0 fault since the state is unreachable. The other fault is because of the sequential

redundancy of the internal state variable.

More faults are undetected once the design has a deeper pipeline. LC2 and LC4 are linear

FIFO with the depth of two and four. LC4T is a parallel FIFO that contains C-elements,



61

Table 4.2. Fault Coverage of FIFOs

Design H S UD Total Faults Fault Coverage

LC1 77 4 2 84 96.4%

LC2 148 9 7 164 95.7%

LC4 254 73 13 340 96.1%

LC4P 287 68 41 396 89.6%

as shown in Figure 4.1. LC4T has only 89% coverage because of the low coverage in the

C-elements (Figure 4.2). The highlighted stuck-at faults are not detectable due to the inputs

A and B switch at same step under unit-delay simulation. Input sequence of (A,B) as (0,1)

and (1,0) are not reachable in this architecture. The C-element can be replaced with a

testable C-element to detect those undetected faults [64].

4.1.1.4 Fault Coverage of FFT Designs

The structural 4-point and 64-points FFT designs are compiled with COSMOS. Faults

are only injected into the control channels. The control channels include controllers, fork and

join, and control steering elements such as the expander and the decimator. One assumption

is made that all the register within the design can be scanned out. Thus, all the registers

are considered as observable output. Table. 4.3 shows detected hard faults (H), detected

soft faults (S), total faults injected, and fault coverage of the control channels. The control

channels of 4-point FFT achieves 91.0% fault coverage while the 64-point FFT has 92.4%

fault coverage.

CClr
la

rr
raLC1

LC2

LC3

LC4

Figure 4.1. A 3-Deep Pipeline Contains a Broadcast Fork and a Join Element

A

B
Y

Figure 4.2. Circuit Implementation of a C Element. The Undetected Faults Have Been
Highlighted in Red (SA1) and Orange (SA0).
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Table 4.3. Fault Coverage of Control Channels

Design
Control channels

Run Time
H S Total Coverage

FFT 4 517 131 712 91% 0.76 seconds

FFT 64 46159 3861 55560 92.4% 60 hours

The undetected faults in the control channels are mainly the C-elements, the clock

pulse logic, and the internal gates of the controller. The increasing number of undetected

faults in the control channels is because the unreachable states of the controllers increase.

The fault coverage can be improved by applying Mr.Go to force the controllers to any

certain states [65]. The runtime for the fault simulator is reported in Table 4.3. Because

the simulation evaluates transitions on each transistor and the 64-point FFT consists of

complex multipliers, the runtime for testing the 64-point FFT is 60 hours. The run time

of the simulator is exponentially proportional to the number of transistors in the design.

Parallel fault simulation is performed to improve the runtime of the tool. Multiple fault

simulations are executed simultaneously. Other techniques such as deductive or concurrent

fault simulation can help the run time [66],[67].

4.2 Fault Coverage on the Data Path

An approach was explored that isolates the data path and use commercial CAD tools

to insert scan chains within the data path of the RT design [2]. The testing flow adopts this

approach for testing the data path of the RT design.

There are ATPG untestable faults, which are associated with the reset signal since

synchronous reset registers are used throughout the design. The stuck-at 1 with those reset

signals can not be detected because they are active low resets. The fault coverages are 93.24%

and 93.92% for 4-point and 64-point FFT, respectively. The registers can be substituted

into asynchronous reset registers to further improve the fault coverage in the data path.

The testing flow combines the detected and total faults from the control channels and from

the data path. Table 4.4 shows the overall fault coverage of the FFT designs. Although

both 4-point and 64-point FFT have low 90% fault coverage on the control channels, the

number of faults injected into the data path are 10× than the ones injected into the control

channels. In these examples, the fault coverage of the data path dominates the coverage

from the control channels.

Table 4.5 shows the power, area and performance overhead for adopting a scan-chain for

both 4-point and 64-point FFT designs. The 64-point design is implemented in the Artisan
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Table 4.4. Fault Coverage of Complete Asynchronous Designs

Design Faults Control Channels Data Path Combined Coverage

FFT 4
Detected 648 9798 10446

93.1%
Total 712 10508 11220

FFT 16
Detected 50020 632123 682143

93.6%
Total 55560 673027 728587

Table 4.5. Results Comparison

Design Cycle Forward Power Area Energy per Relative Relative
Time (ns) Latency (ns) (mW) (mm2) Point (pJ) Area Energy

FFT-64 1.184 177.8 50.0 716,189 68.3 1.00 1.00

FFT-64-Test 1.162 178.7 79.2 1,235,667 106.6 1.73 1.56

FFT-4 2.267 20.4 28.0 95,628 64.2 1.00 1.00

FFT-4-Test 2.690 22.4 30.5 135,521 82.9 1.42 1.29

65nm library. The 4-point design is implemented using the IBM7RF 180nm library. Each

design operated across 1024 samples. The designs without test used latches for sequential

storage elements; the designs with the test used scan flops. This resulted in a 73% and 42%

increase in area for the 64 and 4-point designs respectively. Likewise, the average energy per

point increased 56% and 29% for the designs. There is about 10% performance degradation

while adopting the test to the designs. All numbers are for postlayout design and simulation

with power from extracted parasitics and the vcd activity file.

4.3 Summary

Bundled-data asynchronous designs are tested in two sections, the data path, and the

control channels. The data path is inserted with a scan chain. ATPG was performed by

commercial tools on the data path and achieves 93% coverage with area, power, and perfor-

mance penalty. The control channels remain unchanged. A functional test was performed

on the control channels. A set of sequential test patterns is generated. Multiple control

structures, including FIFOs and FFTs, are tested with a fault simulator. The 4-point FFT

has an overall 93.1% fault coverage while 64-point FFT achieves 93.6% coverage. Future

work includes improve the fault coverage on the control network, improve the run time of

the fault simulation, and performing delay fault on asynchronous designs.



CHAPTER 5

MACRO-BASED TIMING CONSTRAINT

MAPPING TO TIMED ASYNCHRONOUS

SYSTEMS

A macro based method for automatically mapping timing constraints onto system level

asynchronous designs using commercial EDA tools is presented. This method is a path-based

approach which uses netlist information and symbolic asynchronous timing constraints to

create a Synopsys Design Constraints (sdc) file to drive system level design and optimiza-

tion. The automatically generated constraint set enables timing driven optimization by

commercial EDA tools for synthesis, place and route, and performance verification.

This work starts with a set of simple circuit macros and a design which deploys the

macros. The macros are typically asynchronous handshake controllers or other sequential

asynchronous design blocks, such as the LC handshake controller blocks in Figure 5.1. The

macros have been designed and mapped to a standard cell library using AND/OR/AOI

and other gates found in the library. The macros are then characterized using relative

timing (RT) [1]. This provides three types of constraints for the macro. (1) Timing paths

between two endpoints are expressed as either maximum or minimum delay paths. A pair of

maximum and minimum paths are linked to form a relative timing constraint; delay targets

and margins are annotated to the paths. (2) Constraints that cut the timing graph of a cyclic

sequential circuit into a directed acyclic graph the do not cut constrained timing paths. (3)

Constraints which do not allow synthesis and place and route tools to re-synthesize or

modify the library gate footprints of the macro.

This section of the thesis presents algorithms which take circuit macros with their

associated constraints and a design which employ the macros to produce an sdc file to

use commercial EDA tool such as Synopsys Design Compiler or IC Compiler for system

level synthesis and place and route.

This work is divided into the front-end and backend. The frontend identify all control
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Figure 5.1. Three Stage Pipeline Design

and data connections. The backend uses the identified connection and the macro charac-

terization information to construct a search map and apply symbolic timing constraints

onto the system level design. This algorithm enables designing large asynchronous system

by automating the application of timing constraints. A multirate Fast Fourier Transform

circuit is used to demonstrate the benefit of this algorithm.

5.1 Related Work

There are several approaches to asynchronous circuit design. Each approach bears dif-

ferent levels of complexity in terms of logic composition, timing assertion, and circuit

validation. However, a predominant issue of asynchronous design techniques is CAD flow

support. Many approaches rely on custom languages, custom libraries, tools, and flows to

generate asynchronous designs [68],[69]. Synthesis, place and route, and timing optimization

are under the control of the custom tool suite. Several other approaches attempt to leverage

existing EDA tools and flows to build asynchronous circuits [24],[25],[40],[70],[71]. However,

these tools either relied upon manual timing driven optimization or do not specified a

method of applying timing constraints.

The presented work builds upon RT characterized and verified asynchronous macros [44].

Timing constraint templates, supplied from the macros, are applied to asynchronous systems

in order to enable automatic timing driven synthesis and place and route using commercial

EDA tools.

5.2 RT Constraint Template

5.2.1 End Point Specification Format

Eqn. 1.1 shows the generic form of the timing relation between the path pod 7→ poc1

and pod 7→ poc0. Such RT constraints must be mapped onto specific timing paths that

must hold when a design macro is used in a system level architecture. Observe the timing



66

constraints shown in Figure 5.1. The same timing equations in the caption apply to all

instances of the design. These handshake macros communicate with other upstream blocks

(with the ack signal), downstream blocks (with the request signal), and the local latch or

flip-flop.

A representation is constructed for specifying the relative location in a pipeline of the

current macro under evaluation. Rather than enumerate pipeline stages, as is implied in

Figure 5.1, a relative instance identification mechanism was developed. The current macro

is identified with an instance label “$i1”. Macros and memory elements upstream in a

pipeline (accessed through “ack” handshakes) are referenced as “$i0” design blocks, and

downstream pipeline elements (accessed through “req” handshakes) are referenced as “$i2”

macros. Registers are typically connected through an additional “clk” output port from the

macros. They are identified separately from asynchronous macros by appending a capital

R to the back of the label.

Using this mechanism, general RT constraints from Eqn. 1.1 can be written that identify

timing endpoints relative to the current macro ($i1). Eqn. 5.1 expresses the constraint in

the caption of Figure 5.1 in our new format that identifies timing endpoints. This says that

the maximum delay plus margin m from the local LC macro’s req input to the downstream

register’s data input ($i2R/d) must be less than the minimum delay from the local LC

macro’s req input to the downstream register’s clk input. (Note that the macro pin label

for req has been renamed lr.)

$i1/lr 7→ $i2R/d+m ≺ $i2R/clk (5.1)

5.2.2 Timing Path Constraint

In order to represent Eqn. 5.1 in a symbolic sdc constraint format that can be mapped to

a design, Eqn. 5.1 is translated into the set of sdc constraints shown in Table 5.1. Note that

due to cycle cutting to create a DAG, the paths are broken into two segments. Constraints

(1) and (4) are derived from path $i1/lr 7→ $i2R/d. In this example, the path from $i1/lr 7→

$i2R/d is broken into two sdc constraints in order to individually specify the target clock tree

skew and data path delay. The combination of constraint (3) and (5) forms the RT constraint

for path $i1/lr 7→ $i2R/clk. Constraint (3) from Table 5.1 controls the optimization of the

gates driving $i1 req signal and the size of delay element inserted between the $i1 and $i2

controllers, while constraint (5) specifies the maximum clock tree delay of the downstream

controller.
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Table 5.1. A Subset of the RT Constraints Template for the LC Circuit (Figure 5.2)

set max delay $dpdelay -from $i1R/$CLK -to $i2R/$D (1)
set max delay $cdelay max -from $i1/lc3/A1 -to $i2/$lr (2)
set min delay $cdelay min -from $i1/lc3/A1 -to $i2/$lr (3)
set max delay $clk delay -from $i1/lc1/A0 -to $i1R/CLK (4)
set max delay $clk delay i2 -from $i2/lc1/A0 -to $i2R/CLK (5)
#margin $dpmarg -from $i1R/$CLK -to $i2R/$D \
-from $i1/lc3/A0 -to $i2R/$CLK (6)

set max delay $idelay max -from $i1/lc5/A1 -to $i1/lc1/A2 (7)
set min delay $idelay min -from $i1/lc5/A1 -to $i1/lc1/A2 (8)

The margin m is specified as the #margin command in constraint (6). The #margin

command is not interpreted by the EDA tools but serves two purposes. It identifies two

related paths in a relative timing constraint and specifies the size of the timing margin.

An additional maximum delay is specified by constraint (2) to maintain the performance of

the handshake network by ensuring that the minimum delay value does not grow to be too

large. There are variables included in the Table 5.1, such as $dpdelay, $dpmarg, $clk delay,

$cdelay min, $cdelay max, $idelay min, and $idelay max. The variables serve as the delay

target to determine circuit performance. Selecting the values of these variables depends

on the process node and the entire system. The system timing or circuit performance are

beyond the scope of this work.

There are external and internal timing path constraints to consider used in timing

specifications. The external timing path constraints start in one macro instance (e.g., $i1)

and ends in another macro (e.g., $i2 or $i0). The internal timing path constraints, on the

other hand, would have $i1 as its start and end points. The external timing path constraints

are timing relations between the control path and data path in a system. The internal

timing path constraints are required for state-holding and to prevent the asynchronous

controller from entering an unwanted state. Constraints (7) and (8) are internal timing path

constraints that guarantee internal feedback is settled before changes in external signals.

5.2.3 Timing Graph Specification

Part of the relative timing characterization of an asynchronous macro is to represent

the circuit timing graph as a directed acyclic graph. The algorithm that performing cycle

cutting has been discussed in Chapter 2. Often, creating a circuit timing graph that is a

DAG requires that some relative timing constraints be composed of multiple segments. The

timing endpoints of the critical timing paths are cut from the timing graph. Additionally, the

timing graph is automatically cut within registers since the “clk” pin of the register is always
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the timing end point in synchronous systems. However, combining segmented timing paths

introduces timing inaccuracies while performing timing-driven synthesis. Since the path is

separated, there is no timing relation such as rise delay or fall delay at the break point.

Segmented paths also reduce the optimization capability of timing driven synthesis because

delay cannot be re-distributed across path segments.

5.2.4 Function Constraint

The precharacterized asynchronous cell macros are verified for hazard freedom and

timing relationships based on the RT constraints and delays specified in the timing path

constraints. Commercial EDA tools can modify the internal gates and functions of the

asynchronous cell macros in their optimization functions. The set size only constraint

is required to prevent the commercial EDA tools from modifying the gate footprints of the

macros.

5.2.5 Symbolic Pins and Keywords

Keywords and symbolic pins are introduced to identify ports and paths of a macro in a

general and portable manner.

5.2.5.1 Symbolic Pins

Symbolic pins are used to specify endpoints of timing paths in the controller network

and the data path. The $lr, $la, $rr, and $ra pins represent the left (upstream) request,

left acknowledge, right (downstream) request, and right acknowledge handshake signals.

The $clk keyword represents the clock key of the register banks, and $Q and $D symbols

represent data inputs and outputs of register banks. The application uses symbolic pins to

direct mapping to external instances.

5.3 Constraint Mapper

The constraint mapping application is written in C++ and uses STDIO commands to

interact with Synopsys Design Compiler and Cadence RTL Compiler. The mapped results

are printed out to a sdc file, which can be interpreted by synthesis, place and route, and

timing validation tools.

5.3.1 Path Reporting and Parsing

The application starts by identifying all the asynchronous macros used in the design.

This macro set, along with the design and the macro characterization information, is used



69

to identify all relative timing path instances in the design. The procedure reports path

instances in the system-level design using commercial synthesis tools.

The path finding function first locates the hierarchical instances of the asynchronous

marcos in the system. The module-instance relation for the macros is reported.

Paths between asynchronous macros and either macros or registers are found by iterating

with Design Compiler or RTL Compiler over all macro symbolic input pins. The pin

instances are found with the all fanin function and matched to the symbolic pins. Macro

to macro paths are formed if the start pin is from a macro while register to macro paths

are formed when the start pin is from a register pin. The function calls all register

-data pins to obtain all the register’s data input pins and then calls all fanin to

identify register to register paths. Finally, the function calls all register -clock to

obtain all the register’s clock pins, and then uses all fanin to create register to macro

connections.

The reported paths are filtered into four output categories: macro to macro paths

(c path), macro to register paths (clk), register to macro paths (dc path), and register to

register paths (d path). Table. 5.2 shows the result of running the algorithm for reporting

and filtering the resultant paths on this example. The dc path is empty since there exists

no direct path starts from a register and ends at a controller.

The reported paths are stored as directed edges that are indexed by both the beginning

and ending vertexes.

5.3.2 Mapping

The mapping process is performed by iterating through all the controller macro instances

within the design. For each controller type, the necessary cycle cutting and optimization

Table 5.2. Connectivity Between LC0 - LC2

c path

LC0/rr0 7→ LC1/lr1

LC1/la1 7→ LC0/ra0

LC1/rr1 7→ LC2/lr2

LC2/la2 7→ LC1/ra1

clk
LC0/clk 7→ L0/clk
LC1/clk 7→ L1/clk
LC2/clk 7→ L2/clk

d path
L0/q 7→ L1/d
L1/q 7→ L2/d

dc path N/A
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disabling commands are printed out once. Internal timing constraints have both endpoints

inside the same local $i1 macro. These paths are mapped using the current controller

instance and symbolic information associated with the controller. Using this information,

controller paths are located by performing an exhaustive depth-first search to all controllers.

5.4 Experiments

The experiments are developed using IBM’s 180nm 7RF process. The circuits are de-

signed in behavioral Verilog, synthesized using Synopsys Design Compiler. Place and route

is performed with Synopsys IC Compiler and simulated with ModelSim with post-layout

parasitic back-annotation. Every timing path constraints contain positive slack, as well

as the asynchronous systems, are functioning. The asynchronous controller used in these

experiments is in Figure 5.2 and consists of 20 symbolic timing constraints, 8 optimization

constraints, and 6 cycle cutting constraints.

5.4.1 64-Point Multirate FFT

The asynchronous FFT design is hierarchical and fully pipelined. There is a total of

864 asynchronous controllers and associated latch banks that construct a 28 deep pipeline

design. There is the total of 7000+ constraints generated with 5s of run-time. The design

has three levels of hierarchy and is constructed using 4-point FFTs and 16-point FFTs.

Relative timing constraints are applied within FFT modules and in between 4-point and

16-point FFT blocks as well as at the top level I/O ports. Table 5.3 shows RT constraints in

this design that specify controllers across different hierarchy levels. Constraints (1) and (2)
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are paths that go from the top hierarchy level to the inside of a 16-point FFT. Constraints

(3) and (4) are for inside a 16-point FFT to the 4-point FFT inside the 16-point FFTs.

5.5 Summary

The approach uses asynchronous controller macros which have been precharacterized.

The characterization provides information to create a timing graph represented as a directed

acyclic graph, prevent macros from being resynthesized, and provide correct timing and

signal sequencing information. The application uses asynchronous design macros as well as

system design connectivity information to generate an sdc constraint set. The constraint set

enables clocked EDA tools to synthesize and optimize an asynchronous design. In the past,

timing constraints have been applied manually, which is time-consuming, error-prone, and

has limited the feasibility for large scale asynchronous designs. The constraint mapping has

been applied to a 64-point FFT and enables designers to quickly and easily use asynchronous

macros in large scale digital systems.

Table 5.3. A Subset of RT Constraints for a 16-Point FFT Design

set min delay $cdelay min -from tk00/lc3/Y -to F16 0/tk0/lc1/A1 (1)
set max delay $dpdelay -from P00/clk -to F16 0/P0/d (2)

set min delay $cdelay min -from F16 0/tk0/lc3/Y \
-to F16 0/F4 0/tk0/lc1/A1 (3)
set max delay $dpdelay -from F16 0/P0/clk -to F16 0/F4 0/P0/d (4)



CHAPTER 6

CASE STUDIES

Various sizes of designs are developed to demonstrate the effectiveness of the backend

robustness tools and flows. This chapter describes multiple frequency designs which are

constructed and used as the benchmark circuits.

6.1 Synchronous and Asynchronous
64-Point FFT Design2

A case study exploring multi-frequency design is presented for a low energy and high

performance FFT circuit implementation. An FFT architecture with concurrent data stream

computation is selected. An asynchronous and synchronous implementations for a 4-point,

a 16-point and a 64-point FFT circuit were designed and compared for energy, performance,

and area. Both versions are structurally similar and are generated using similar application

specific integrated circuits (ASIC) CAD tools and flows. The asynchronous design shows a

benefit of 2.4×, 2.4× and 3.2× in terms of area, energy and performance respectively over

its synchronous counterpart. The circuit is further compared with a low power design that

is not streaming and shows a 0.4×, 4.8× and 32.4× benefit with respect to area, energy,

and performance.

6.1.1 Key Contribution

• A synchronous FFT that operates with multiple frequency domain is developed.

• A golden model is constructed using Matlab.

• Analysis is performed on various published FFT works to present the area, power,

and performance benefits.

2This section has been published in DATE, 2013 [9]. c© 2013 IEEE. Reprinted, with permission, from
William Lee, Vikas S. Vij, Anthony R. Thatcher, Kenneth S. Stevens, ”Design of Low Energy, High
Performance Synchronous and Asynchronous 64-Point FFT,” in Proceedings of the Conference on Design,
Automation and Test in Europe, March, 2013.
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6.1.2 FFT Architecture

The FFT is an algorithm that requires global dependencies, but it can be derived

in a multirate form that allows a hierarchical representation as shown in Eqn. 6.1 [72].

This multirate architecture exploits performance from concurrency by allowing parallel

computations to occur at reduced frequencies. The equation represents N2 FFTs using

N1 values as the inner summation, which are scaled and then used to produce N1 FFTs of

N2 values. This representation has the advantage that it takes a high frequency stream and

decimates it so that each of the internal FFTs operate at a lower decimated data stream

frequency. This allows the architecture to simultaneously have lower energy and higher

performance.

Xm1(m2) =

N2−1∑
n2=0

[
Wm1n2

N

N1−1∑
n1=0

xn2(n1)Wm1n1
N1

]
Wm2n2

N2
(6.1)

The general architecture derived from Eqn. 6.1 is shown in Figure 6.1. There are three

architectural control structures: a decimator, expander, and crossbar block. Each of the Ni

blocks can be another hierarchical instance of the design where i is the size of the FFT

performed in that block. The values of N1 ×N2 equals N1 or N2 at the higher level in the

hierarchy.
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The decimator block down-samples the input stream [73]. For a sampled signal x(n), the

output of the M -fold decimator is given by y(Mn). The sampling of the N2 decimator is

arranged in a regular repeating fashion where the first sample is steered to the first output

stream, the second to the second stream and so on. The M th item is steered back to the

first stream. This effectively produces M parallel streams operating at 1/M the frequency

of the input.

The expander block is the dual of the decimator block. They take M low-frequency

streams and up-sample by combining them into a stream that has an M -fold higher fre-

quency. In the FFT architecture, the expander operates on a stream of data x0(m2), . . . , xN−1(m2)

reproducing a stream at the original frequency and in the correct functional order for the

algorithm.

Product blocks multiply a stream of results coming from the N1 point FFT units by

a set of constant values. Both constants and results are complex numbers, requiring four

multiplications and two additions per sample. The constants are calculated by Wm1n2
N ,

where m1 = 0, . . . , N1 − 1 and n2 = 0, . . . , N2 − 1.

The crossbar switch maps results from the product block to the N2 FFT units. The N2

FFT units take a transform of time displaced Fourier transform samples. Each N1-point

FFT provides one data sample to each of the N2-point FFT units. The first row of the

N2 FFT units takes the first sample from each of the N1 rows, the second row the second

sample, and so on. This is implemented by performing an N2 up-sampling followed by a N1

down-sampling. Another solution is to steer the data to N2 N1-way decimators, followed

by N1 N2-way expanders. Decimator sequencing here is different than that of the top level

block because it steers the first N2 samples to each row before moving onto the next row.

6.1.3 FFT Design

Multifrequency asynchronous and clocked 64-point FFT designs are implemented from

the architecture block diagram shown in Figure 6.1. Both designs are hierarchically decom-

posed at the top level such that N1 = 16 and N2 = 4. The 16-point FFT implementations

are also hierarchically decomposed with N1 = N2 = 4. The terminal hierarchical nodes in

the designs are the 4-point FFT blocks since it can be implemented with simple add and

subtract operations due to the value of the constant data values. There are four frequency

domains in this design. The frequency of the incoming data is f , which gets decimated to

derive f/4, f/16, and f/64 frequencies.

The data path for all the designs is specified behaviorally with the control being the only
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differentiating point. The asynchronous design is implemented as a bundled data pipeline

(Figure 3.1). The LC block that controls timing and sequencing is a 4-phase handshake

protocol similar to that in Figure 2.1. This cell generates a local clock signal to control the

pipeline stage based on the handshake with the adjacent handshake controllers.

These designs operate on fixed-point data. The input and output are 32 bits wide, with

the upper 16 bits representing the real value and the lower 16 representing the imaginary

value. The fields use two’s complement representation of signed numbers that are decimal

values less than or equal to plus or minus one. The first four bits are used for the whole

part of the number and the rest 12 bits for the fractional part.

6.1.4 Synchronous Design

The synchronous FFT is designed using the architecture in Figure 6.1. The 4-point

synchronous FFT design is a six deep pipeline. The 16-point and 64-point FFTs are 19

deep pipelines and 32 deep pipelines, respectively.

A decimator and a expander are built (Figures 6.2 and 6.3). These two modules act as

a 2-flop synchronizer while crossing between different frequency domains.

Figure 6.2 shows the clocked 4-way decimator. The design consists of a high frequency
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register bank and a low frequency register bank, a clock divider, and a shift register to track

the relationship between the two clocks. The shift register must be properly initialized in

relation to the global state of the circuit based on data arrival to ensure proper data steering.

The data is incrementally stored into the high frequency register bank. At the low frequency

clock the data is then shifted into the low frequency register bank, where it is sampled at

a 1/N2 frequency. The expander in Figure 6.3 is the dual of the decimator. The parallel

data stored into a low frequency register is streamed and stored in the output register based

on the higher frequency clock. The channel selection is dependent on the shift register and

requires properly initialization similar to the decimator.

Additional timing constraints are needed for the CAD tools to properly synthesis the

multi-frequency design. The fastest clock (f) is ditributed into f/4, f/16, and f/64 slower

clocks. There are multiple clock dividers at every level of hierarchy. Extra timing margin is

required for the clock network to accommodate the clock skew and jitter. The sdc constraint

set generated clock creates correct timing relation across frequency domains.

6.1.5 Asynchronous Design

The first step in an RT asynchronous design is to create and characterize the hand-

shake elements. This design uses four circuit elements: a linear pipeline controller (LC)

(Figure 2.1), a 2-input Fork/Join element, the decimator, and expander. The LC circuit

interfaces two pipeline stages by controlling the protocol between the stages and storing

one data word (Figure 3.1). The fork (Figure 6.4) broadcasts a request from a sender to

two receivers. The ack from the two receivers is synchronized with a C-element before being

passed on to the sender [74]. The join element contains the same logic and is dual of the

fork. Requests from two senders are first synchronized before being sent to a receiver while

the ack signal from the receiver is broadcasted to both the senders.

A 4-way asynchronous decimator is designed and implemented. It consists of a ring

connected shift register with one bit asserted to steer the requests to four different pipelines

based on the value in the shift register. The req and the ack signals are active high. Since

only one acknowledgment is active at a time, the four ack signals are passed through an

��C
rb r0r

r1
ab

a0

a1

Figure 6.4. Fork/Join Template
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OR gate. Values in the shift register update when the input request goes low. The circuit

is characterized for its timing constraints. As long as the shift register can change in one

half cycle time (before the next req occurs), this logic will operate correctly. Note that this

block adds a 2-input AND gate delay on the request path and a 4-input OR gate delay on

the acknowledge path. This is the only overhead of the decimator, and adds approximately

8 gate delays to the cycle time of the architecture, allowing it to operate at approximately

a 16 gate delay cycle time. This resulted in a frequency that was close to 1.3 GHz, which

we deemed as a sufficiently fast performance target. The design is shown in Figure 6.5.

The design of the asynchronous expander in Figure 6.6 is similar to the decimator. It

includes an Ni-bit ring connected shift register and some combinational gates to select the

data and control signals to be driven to the output channel.

Once these blocks were designed the top level asynchronous architecture was built by

simply composing the pipeline control and datapaths together. We employed a hierarchical

structural design style which was almost identical to drawing and connecting block level

schematics for the design. In this method, a functionally correct design was hierarchically
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designed and validated for performance and correctness. First a simple 4-point FFT was

built, which was used to build a 16-point FFT, and then these components were integrated

into the 64-point FFT.

The design of the pipeline was almost as simple as drawing the figure on the paper. The

dataflow graph of a 4-point FFT is shown in Figure 6.7. The pipelined asynchronous control

logic for that design is shown in Figure 6.8. The butterfly network and first set of adders

are between stages LC1 and LC2, the second butterfly network and adders are between

stages LC2 and LC3, and the last network convolution is between stages LC3 and LC4.

Following is a code snippet from the design to give you a flavor of the RTL (Figure. 6.9).

Some liberty is taken in the syntax to compress the example. This shows a pipeline stage

at the input of the design that feeds into the next stage of 16-point FFTs. Each pipeline

stage and the structural block are similarly designed.

Performance and functionality optimizations in an asynchronous design are somewhat

independent operations. A design that is functionally correct can be created relatively

quickly. However, particularly for multi-frequency designs, some effort is needed to balance
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Im{x[0]} + + Im{X[0]}
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Re{x[3]} - - Re{X[3]}

Im{x[3]} - - Im{X[3]}

Figure 6.7. Data Flow Graph of 4-Point FFT Calculation
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module FFT_64 (ri, ai, DI, ro, ao, DO, rst);
input [‘WORD_SIZE-1:0] DI; ...
// input pipeline
linear_control LC0 (.lr(ri), .la(ai), .rr(p0r),

.ra(p0a), .ck(ck0), .rst(rst));
latch P0 (.d(DI), .clk(ck0), .q(P0D0));

decimator_4 D4_0 (.DI(P0D0), .D1(P0DT1), .D2(P0DT2),
.D3(P0DT3), .D4(P0DT4),
.ri(p0r), .ai(p0a), .rst(rst),
.r1(p0rt1), .r2(p0rt2), .r3(p0rt3), .r4(p0rt4),
.a1(p0at1), .a2(p0at2), .a3(p0at3), .a4(p0at4));

// The FFT_16 modules.
FFT_16 F16_0 (.ri(p0rt1), .ai(p0at1), .ro(p1rt1),

.ao(p1at1), .DI(P0DT1), .DO(P1DT1), .rst(rst));

Figure 6.9. RTL of FFT Design

the cycle times and pipelining to optimize performance. This is very different from clocked

design where performance and pipelining are essential for correct functionality, and part of

the initial specification.

A primary aspect of optimizing performance of an asynchronous architecture is to

calculate the critical paths and focus on those. Experimenting with the power-performance

tradeoffs allowed us to quickly identify the critical paths in the asynchronous design. Due

to the multirate architecture, it was not the complex multipliers or adders that operate at

1/4, 1/16, or 1/64 the input frequency. Rather, the top level decimators and expanders limit

the operating frequency of the design. We, therefore, focused on designing high throughput

decimators and expanders.

The performance optimizations will be illustrated with the 4-point FFT pipeline shown

in Figures 6.7 and 6.8. From a correctness perspective, the data through the expander could

pass straight through the expander through the butterfly network to the adders. However,

this would create too long a cycle time at the decimators. Increased performance is obtained

by adding pipeline stages before and after the decimators and expanders since they are the

critical paths in the design.

The next power-performance optimization of the asynchronous 4-point FFT design was

to determine the frequency target for the smallest area and lowest power adder in the given

technology. A 16-bit ripple carry adder needed about 860ps in this technology, so that

became the performance target of the 4-point FFT design. This was less than the time

available for the computation (3ns in the top level 64-point block and 12ns in the 16-point

blocks at 1.3 GHz operating frequency). However slowing the operation down beyond 860ps
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simply adds more area, energy, and latency to the control path.

An additional performance critical aspect of a design is due to pipeline synchronizations.

Adding or removing pipeline stages in an asynchronous design can be employed to remove

forward and backward stalls in an architecture. This has been referred to as “slack matching”

in the asynchronous literature [15]. Therefore, a version of the performance critical 4-way

decimator was designed as a 2×2 pipelined decimator to increase throughput and reduce

sensitivity to backward stalls. Likewise the crossbar and 16-way expander in the 64-point

design of Figure 6.10 have been pipelined.

The asynchronous design was built using “natural” pipelining for each block with pipeline

performance targets based on the top level architecture. For example, pipeline stages exist

between the adders of the design whereas they can be removed from a performance per-

spective. A few modifications to the original pipeline structure have been made to improve

area in the “async-opt” design.

6.1.6 Results

These circuits use the Artisan academic library in IBM’s 65nm 10sf process. The circuits

were designed in behavioral Verilog, synthesized using Design Compiler, and place and

routed using SoC Encounter. Circuits were simulated for timing and functional correctness
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using Modelsim with post layout parasitics back-annotated. Testing was performed using

pre-defined input vectors which included 1024 random numbers. Both 64-point FFT circuits

have less than ±0.3% variation as compared to MATLAB FFT computation. Various

performance parameters including forward latency, cycle time, and throughput were also

generated from the simulation along with vcd (value change dump) file. The simulation vcd

file along with the parasitics of the place and routed design was used to calculate the power

numbers for each design by PrimeTime.

Tables 6.1 and 6.2 summarize these multirate designs against several other designs. These

16-point implementations are compared against a design that is similar in architecture [75].

The 64-point benchmark is a low power Texas Instruments design [76]. Performance is

measured as the time to completely process 1024 samples.

The simplicity of making architectural and performance modifications to the async-

hronous design allowed us to quickly explore a simple area improvement to our asynchronous

architecture. The 64-point architecture contains four 16-point FFT’s. Each of these contain

three complex multipliers operating at 1/16 the top level frequency. At this frequency, the

multipliers could be shared, removing 8 complex multipliers from the design (Async-opt)

resulting in an overall 18% area reduction. This modification had a minor positive affect

on performance and negative affect on latency and energy per point. Other modifications

that reduce area at little or no energy and performance cost can also be explored, as well

as other optimizations based on target versus required frequencies. Asynchronous designs

are particularly amenable to such architectural explorations.

For comparison, results in these tables are optimistically scaled to an equivalent for

65nm technology node by using theoretical constant-field scaling assuming the scaling factor

κ = 1.43 per node (let s = 1/κ = 0.7) [77]. This results in delays in the tables multiplied

by s, s2, and s6 for the 90nm, 130nm, and 600nm nodes. Energy values are scaled by s3,

s6, and s18. Area reduces by s2 per generation.

The biggest advantage of this multifrequency architecture against the others comes in

the form of throughput. These designs can sustain a rate of one data point per clock cycle,

at a relatively constant frequency regardless of the point size. The asynchronous design

also provides a substantial reduction in latency. From an idle start, the asynchronous 16

and 64-point designs can complete processing 1024 samples over 8 and 32 times faster

respectively than the benchmark designs. Multifrequency design also shines in energy per

sample. The asynchronous designs consume approximately one-fourth the energy per sample

of the competitors. This 16-point pipelined design is less than half the size of this comparable
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Table 6.1. The 16-Point FFT Comparison Result (* Constant Field Scaled to 65 nm Technology)

Design Tech. Points – Word Clock 1K-point Exec. Power Energy/point Area Exec.Time Energy Area
nm Samples bits MHz Time µs mW pJ Kgates Benefit Benefit Benefit

This Design (Async) 65 16-1024 16 1,274 0.83 30.9 25.05 54 8.32 3.93 2.73

This Design (clock) 65 16-1024 16 588 1.73 24.7 41.83 71 3.98 2.35 2.07

Guan [75] 130 16-1024 16 653∗ 6.91∗ 14.6∗ 98.33∗ 147 1.00 1.00 1.00
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Table 6.2. The 64-Point FFT Comparison Result (* Constant Field Scaled to 65 nm Technology, + Nominal Process
Voltage)

Design Tech. Points – Word Clock 1K-point Exec. Power Energy/point Area Exec.Time Energy Area
nm Samples bits MHz Time µs mW pJ µm2 Benefit Benefit Benefit

This Design (Async-opt) 65 64-1024 16 1,357 0.87 69.4 59.23 395 32.24 4.51 0.47

This Design (Async) 65 64-1024 16 1,316 0.87 65.5 55.65 479 32.39 4.80 0.39

This Design (Clock) 65 64-1024 16 667 2.76 50.2 135.30 1,160 10.21 1.97 0.16

Baireddy [76] 90 64-4096 – 514∗ 28.18∗ 9.7∗ 266.95∗ 186∗ 1.00 1.00 1.00

Chong (1.1V) (Async) [78] 350 128-128 16 – 1,633.64∗ – 4.45∗ 45∗ 0.02 59.98 4.12

Chong (3.5V) (Async)+[78] 350 128-128 16 – 513.43∗ – 45.06∗ 45∗ 0.05 5.92 4.12

Baas (3.3V) [79] 600 1024-1024 20 1,470∗ 3.53∗ 11.7∗ 40.31∗ 679∗ 7.98 6.62 0.27

Baas (5V)+[79] 600 1024-1024 20 2,228∗ 2.33∗ 40.7∗ 92.55∗ 679∗ 12.10 2.88 0.27
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clocked hierarchical pipelined design. When comparing this design against the low power 64-

point design from Texas Instruments, the clocked design and area optimized asynchronous

designs consume six and two times the area. This points out the very different design targets

and architecture styles. Their architecture shares the computation units for area efficiency

at a cost of higher energy and much lower performance.

The Async-opt design is significantly better than the clocked design of the same archi-

tecture. The 64-point design shows an improvement of 2.28× the energy per data point and

3.16× the performance while costing only one-third the area.

Accurately comparing FFT designs with different point sizes, technology nodes, and

architectures is challenging. Table 6.3 therefore provides a design comparison based on

three metrics - Benefit Product [79] and eτ2 using Baireddy as the reference, and Normalized

FFTs per Energy [78]. Benefits Product is the product of the area, energy, and execution

time. Baas and Chong employ voltage scaling to quadratically reduce energy. Energy times

square of the execution time (eτ2) provides a reference that is independent of voltage scaling.

The Normalized FFTs per Energy metric largely disregards performance. Those results are

normalized to the 350nm node to produce the same values as reported in [78].

6.1.7 Summary

Multirate asynchronous and a synchronous 16 and 64-point FFT circuits were imple-

mented and compared against published FFT designs. A novel relative timing design flow

which enables the use of precharacterized sequential templates with synchronous CAD tools

and flows to develop asynchronous circuits is used. This work demonstrated that the flow

can be efficiently applied to a large asynchronous design.

Table 6.3. Design Comparisons (+ Nominal Process Voltage)

Design eτ2 Normalized FFTs Benefit
Advantage per Energy [78] Prod. [79]

This Design (Async-opt) 4,683.38 17.35 68.54

This Design (Async) 5,031.00 18.47 60.37

This Design (Clock) 205.60 7.60 3.23

Baireddy [76] 1.00 – 1.00

Chong (Async-1.1V) 0.02 8.33 4.26

Chong (Async-3.5V) + 0.02 17.01 1.34

Baas (3.3V) [79] 421.98 8.44 14.48

Baas (5V)+[79] 421.98 3.31 9.56
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The relative cost of development of asynchronous circuits with the new flow is similar

to its synchronous counterpart for the development of these multirate designs. The FFT

circuit operates at 1.4GHz and consumes 59.2pJ of energy per data point.

A 2.4×, 2.4× and 3.2× benefit in terms of area, energy and throughput respectively

over its synchronous counterpart is achieved. Also a 0.48×, 4.5× and 32.20× benefit over

a low power 64-point FFT design by Texas Instruments [76] as well as a 2.77×, 8.01× and

8.32× benefit over a similar 16-point FFT architecture [75] are reported respectively for

area, energy and throughput.

6.2 Relative Timed Clocking

The synchronous methodology relies on a global clock signal to store data into registers.

The clock signal toggles periodically and continuously. The clocked design does not contain

explicit signals or information for forking or joining information; cycle counts are used to

ensure correct data flow.

Synchronous designs rely on a global clock signal to store data into registers. The clock

signal ensures the data sequencing and allows pipelining to parallelize computation. The

system clock signal dissipates 30%-70% of the total dynamic power [80]. The clock network

is the best candidate for reducing the overall power of a design. Traditional synchronous

methodology implies at every clock edge the registers are storing a new data. The assump-

tion is that any data presented at the input port is crucial and valid. This results in a waste

of energy in many systems which new data will be presented only when the certain control

signal is asserted.

Clock gating is one of the power reduction techniques largely used in the clocked design.

The system clock signal is gated with a clock gating cell, which consists of a latch and the

logic AND gate. A data dependent clock gating can achieve power reduction of 15%-20% [81].

This approach uses an XOR gate to compare the current computation with the one stored

to determine if clocking is necessary for the current operation. However, the evaluation

requires area and power penalty and is unnecessary when the data is changing.

Relative timed clocking is a clock gating method utilizing the relative timing method-

ology. The local clock signal is either directly derived from enable signal transitions or use

the enable signal along with the global clock. Specifically, the data validity token is directly

associate with the enable signal.
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6.2.1 RT Clocking Method

Asynchronous circuit design carries data validity tokens with each data item. Multiple

convergent data paths will not interact until valid data is present on all paths. If data on one

path is early or late, the stage where data interacts will stall until all data arrives. Clocked

design, on the other hand, has optimized the logic to remove data validity information from

the system. Therefore, clocked design instead relies on cycle counts to ensure that multiple

convergent data paths interact correctly. This is achieved by ensuring that data from all

paths will always arrive at the stage where they interact in the exact same cycle. While this

leads to some efficiencies, it is inefficient in others. All the explicit data validity information

and logic is removed, at the expense of wasting energy by clocking registers when no new

data is present or will be used.

6.2.2 RT Clocking Types

There are two types of RT clocking, direct and indirect (Figures 6.11 and Figure 6.12).

Direct RT clocking is using the control signal from data as the clock connecting to the

register blocks. The control signal has to be hazard free to prevent any clock glitching.

Also, the control signal has to be a pulsing signal. Namely the control signal has to toggle

at every clock edge or only on rising or falling transitions indicates a new data is presenting.

Figure 6.11 shows a direct RT clocking design. The setup time and hold time of the flop

can be constrained by delaying the data clk. In this example, when a clocked register bank

conditionally updates its values, rather than use the global clock, the output of the clocked

Figure 6.11. Direct RT Clocking
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Figure 6.12. Indirect RT Clocking

flop is directly employed as a local clock to other register(s). Thus, no clock gating energy

is used in the system.

Indirect RT clocking (Figure 6.12) uses the system clock and the control signals to clock

the next stage registers. Indirect RT clocking is required when the control signal of logic

level 1 indicates a continuous operation through multiple global clock cycles. Inputs to the

combinational or sequential block Func can come from two different sources: it can be data

coming from a register, as in the previous example, multiple registers, and even employ the

clock signal itself as an input to the Func block. The delay through this block will result in

a delayed clocking of the second Flip-Flop in relation to the first Flip-Flop. One property

that must hold for this approach to work is that the data clk signal must be monotonic.

Any glitch on the data clk results in the incorrect circuit. The methods that generating a

glitch free circuits are known [82],[83].

6.2.3 Verilog Conversion

An example of such a modification from a traditional clocked design to the design of

this invention can be expressed in Verilog code as follows. In the traditional expression of

clocked design, the register is clocked by the clk signal (it is in the always @ block). The

verilog coding is shown in Figure 6.13. The data signal trigger is sampled every clock cycle.

When trigger is true on the rising edge of the clock, the value of function will be stored in

register result.

Rather than sample the signal trigger every clock cycle, the following Verilog code will

store the value of the function in the register result every time trigger rises. This is a

much more energy efficient implementation than the above code. In order to implement this

change, the way the Verilog code is written must be modified, and the timing of the design
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always @ (posedge clk) begin
if (trigger) begin

result <= function;
end

end

Figure 6.13. Code Snap of Typical Register

changes, as shown in Figure 6.14.

The power advantages can be proportional to the number of cycles that trigger is true

compared to the total number of clock cycles. In many designs, this savings is significant.

A mechanical translation of a design into a design using this invention can result in a

more energy efficient circuit. Ideally the modification would not modify the behavior or

performance of the design. This general translation changes the timing of the design and

can change the behavior of a design as well.

6.2.4 Direct RT Clocking

The timing for direct RT clocking is explained using a 32-bit counter design as an

example. A synchronous 32-bit counter contains 32 registers and a 32-bit increment (+1)

function to compute the result.

When direct RT clocking is employed, the following structure is designed (Figure 6.15).

This design contains four 2-bit shift registers, which are initialized with the higher bit to

be logic zero and the lower bit to be logic one. The global clock only connects to the first

2-bit shift register, while the rest are clocked from the previous stage. A 28-bit counter is

built and clocked by the output of the final 2-bit shift register. The 32-bit output is from

by concatenating the output of the four 2-bit shifter registers and the 28-bit counter. Four

additional registers are required for RT clocking design.

However, the dynamic clocking energy of this implementation is equivalent to clocking

5.5 registers, as shown in the following equation.

Direct RT clocking : 2 ∗ 1 + 2 ∗ 1

2
+ 2 ∗ 1

4
+ 2 ∗ 1

8
+ 28 ∗ 1

16
= 5.5 (6.2)

The RT clocking also reduces the design complexity of the adder in this design. A 28-bit

increment function is used rather than a 32-bit one. The lower 4 bits are computed using

the shifting of the shifter registers. The 28-bit counter only being clocked once every sixteen

cycles.
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always @ (posedge trigger) begin
result <= function;

end

Figure 6.14. Code Snap of RT Clocking Register

Figure 6.15. Direct RT Clocking 32-Bit Counter

Timing that results from RT clocking is different than typical clocked design. The timing

validation would rely on method presented in Chapter 4 rather than traditional method

that employ to clocked designs. Additional delay is introduced in RT clocking. For this

example, the local clock of the 28-bit counter is delayed for 4 clock-to-q delay as illustrated

in Figure 6.16. The counter output is not stable until div28 is stable. The more pipe stages

are cascaded using direct RT clocking, the larger the clock skew would be for the output.

When interfacing the RT clocking design to the traditional clocked design, sufficient setup

and hold time is required.

6.2.4.1 Additional Setup and Hold Time

Considering the design in Figure 6.17, the data clk signal as well as the input of FF1

are sourced from the same trigger signal. The setup time and hold time constraints of the

FF1 needs to hold for correct operation. Those constraints can be satisfied by adding path

delay in one of the two location. If data are to arrive at FF1 before the clock (data clk),

then minimum delay buffering is added to the data clk signal path. This delay must be

sufficient in the worst case corners to allow the data input to the flip-flop to arrive a setup

time before the clock. If data are to arrive at FF1 after the clock, then minimum delay

buffering is added to the FF0 to FF1 data path through Func. This delay must ensure in

the worst case corner that sufficient hold time occurs on the data input to FF1 before the
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Figure 6.16. Waveform of Direct RT Clocking

clock signal can change. The size of the delays that are necessary can be calculated with

traditional EDA tools that evaluate circuit timing.

6.2.5 Indirect RT Clocking

The local clock is generated by ANDing the trigger with the global clock. The local clock

toggles if the trigger signal remain at the logic level 1. However, there is a timing problem

with directly connect the clock signal and the trigger to the AND gate which invalidates

the monotonicity requirement. Since trigger signal (data clk in Figure 6.12) is generated

from the clock, it will normally become asserted after the clock. This results in a shorter

width clock pulse and a glitch when the trigger signal switch to logic level 0. The shorter

clock pulse can violate the minimum clock width constraint for registers. The small pulse

at the end of the trigger can result in a runt pulse or false data latched into the register, as

shown in Figure 6.18.

These two problems can be solved by ANDing the trig signal with a delayed clock signal

(signal clkd). The delay of the clock has to be greater than the combinational delay of the

trigger signal. Figure 6.19 demonstrates a correct glitch-free operation.

6.2.6 Cycle Accuracy

A second potential form for design failure is related to the cycle in which events occur.

This can be illustrated from the example in Figure 6.17. In a clocked system, trigger and

data clk are both tied to the global clock. In this case, data through Func will be stored in

FF1 on the next clock cycle after it is stored in FF0. However, both direct and indirect RT

clocking, the designer can store data into FF1 within the same global clock period. Once the

data clk is delayed to assert after the data from FF0 through Func is valid, the computed
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Figure 6.17. Direct RT Clocking with Data

clk

trig

trig&clk

Figure 6.18. Waveform of Indirect RT Clocking that Glitches

clk

clkd

trig

trig&clkd

Figure 6.19. Glitch-Free Waveform of Indirect RT Clocking

data is stored in FF1. If data from FF1 is used in a convergent data path with other clocked

data words, failure will occur as the data from this path will be off by one cycle.

6.2.7 Design Examples

6.2.7.1 I2C with RT Clock Gating

The I2C design consists of two finite state machine (FSM) such as byte-control and bit-

control FSMs [84]. The byte-control monitors number of bits transferred and received, sends

commands to the bit-control, and interfaces with the digital system. Once the commands



92

are sent, the byte-control is waiting for the bit-control to send a completion signal when

the operation is completed. The bit-control decodes the two signal channel SCL and SDA

of the I2C bus. SCL is the clock line driven by the master and SDA is the data line shared

between the I2C master and slave. The indirect RT clocking is applied to both of the FSMs.

The trigger for the byte-control is the completion signal and the trigger for the bit-control

is the commands.

Table 6.4 pinpoints the benefit of applying RT clocking by comparing area and power

with the clocked version. The design is synthesized using Design Compiler with 180nm

IBM7RF library. PrimeTime is used to extract power number. Switching power, internal

power, and leakage power are reported. The switching power and internal power drop by

around 40% since the FSM operates only when command or completion signal is asserted.

The RT clocking removes the redundant clock switching while in the idle state or waiting

for data on I2C bus. The I2C bus operates at 400KHz while the byte-control operates at

20MHz. The power saving from RT clocking is because of the 50× difference in operational

frequency.

6.2.7.2 Mixed-Signal Design

The indirect RT clocking is implemented on a sub-module of the digital part in the

magnetic stripe reader [85]. The original reader design is sponsored by the industry partner

ON Semiconductor. This design consists of an FSM and an up counter for measuring the

period of the input analog signal.

Indirect RT clocking is applied to the FSM. There are two operations that the FSM

performs. First, the FSM samples the analog signal and starts the computation. Second,

once the computation starts, the FSM has to traverse through multiple states to finish the

computation with respect to the analog inputs, counter values, and digital control signals.

Finally, the FSM returns to the initial state and waits for the change of analog inputs.

The analog signal triggers once per milisecond while the FSM is operating with a 20MHz

clock. The switching rate difference creates unnecessary switching for the state holding

registers while in the polling stage. In addition, after the analog signal is sampled, the FSM

Table 6.4. I2C Design Comparison

Design Area(µm2) Switching(µW) Internal(µW) Leakage(µW) Total(µW)

RT clocking 13585 376 223 0.12 599
Clock 12938 569 314 0.12 883

Benefit 95% 1.51× 1.4× 1× 1.47×
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Figure 6.20. Digital Compute Unit

has to check for the value in the counter to update its state. Again, no actual computation

is required while waiting for the counter to reach a threshold. An indirect RT clocking

element, which considered the scenarios discussed above, is designed. Figure 6.20 shows the

block diagram of the design while the indirect RT clocking design is highlighted in yellow.

The RT clocking is a Boolean function of (Analog | gating) & delayed sclk. The FSM also

takes input digital signals for the computation. The gating signal is generated based on the

current state, counter threshold, and the input digital signals.

Two timing constraints are required for this design. First, gating signal has to arrive

before delayed sysclk arrives at 1/B. Second, the data feeding back to the register has to

be stable before the gated clock arrives for the setup time of the state register. This design

is implemented in half a micron and 350 nm technology nodes. Power is the main metric for

optimization for this design since the frequency of change of the analog input is low. The

computation of the digital part can easily be accomplished within the required sampling

time window of the analog input. Hence, cycle accuracy is not required for this design.

Table 6.5 shows the benefit of applying indirect RT clocking comparing the original clocked

design. The power saving is 3× with 1% area penalty. The power saving comes from the low

frequency of change of the analog signal because RT clocking removes unnecessary clock

switching when the design is waiting for the analog inputs.

Table 6.5. Mixed Signal Design Comparison

Design Gate Counts Power (µW)

RT clocking 2709 1064
Clock 2672 3534

Benefit 99% 3.32×
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6.2.8 Summary

Two RT clocking methods are introduced, direct and indirect RT clocking. Direct RT

clocking can directly employ the data signal, or send it through a function. If the data

clock can be asserted multiple cycles, indirect RT clocking is considered in order to create

multiple edges on the trigger signal that will store new data in a register.

This data clock gating can result in significant power reductions. Two designs are shown

with 50% power saving with less than 5% area overhead on a purely digital design. When

employed on a mixed-signal chip, the design resulted in a 3.5× reduction in energy for

the digital portion of the design. The ability to use data signals directly to gate a system

allows it to becomes reactive, and can respond the same cycle data is produced. This is a

property of asynchronous designs, that can be inherited in clocked designs. RT clocking can

improve performance. It can also introduce cycle inaccuracies as events occur a cycle early.

To preserve cycle accuracy, outputs would need to be delayed until the next clock cycle.

When direct RT clocking is employed, the data clock signal must be monotonic. The same

principle applies to the data clock generated by a function. Timing is quite different from

traditional clocked design, as data is delayed and skewed each time this approach is cascaded

and not synchronized back to the clock. This can result in extra hold time requirements

and performance considerations.

The data clock trigger signals will all be initially referenced from the global clock. The

global clock derived signals are used to store data in subsequent registers, and these signals

in turn can be used to store data in registers, and so on. Thus later derived trigger signals

can have a significant delay in relation to the global clock.

Additional timing constraints are needed to ensure the setup time and hold time of the

registers with RT clocking. RT clocking creates different skew in relation to the global clock.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The backend tools and flows to facilitate and validate the functionality of asynchronous

designs are presented in this dissertation. This flow utilized the synchronous computer aided

design (CAD) tools with additional asynchronous supports.

Timing driven synthesis and place and route algorithm are well developed for syn-

chronous design. These algorithms only works with timing graph that is represented as

a directed acyclic graph (DAG). Asynchronous circuits are naturally cyclic and sequential

thus a generic cycle cutting algorithm is applied to represent its timing graph as a DAG.

Moreover, the true timing paths of the asynchronous design are observed and verified.

The true paths are supplied to the generic cycle cutting to perform timing path driven

cycle cutting. When true timing paths are provided to a set of benchmark circuits, they

exhibited 40% smaller size, 30% energy reduction and 5% performance improvement when

synthesized using Design Compiler.

Most of the timing paths of asynchronous circuits are cyclic. The cyclic timing paths

are not supported by the commercial CAD tools. A path based timing validation for timed

asynchronous circuits is introduced that uses static timing analysis (STA). The validation

performs iterative STAs with multiple timing graphs to compute the full path delay of

a cyclic timing path. Histograms of slacks are reported to reveal the potential timing

optimization. A 57K-gate design is fully validated under 10 minutes total run time.

Asynchronous circuits are tested using both scan-chain and functional test. The scan

chain is inserted in the data path and ATPG are performed using commercial CAD tools.

Functional tests are used to determine the fault coverage of the control channels of an

asynchronous circuit. A list of sequential test patterns is generated and is supplied to a

switch level fault simulator. Stuck-at-faults are injected on every node. The outputs of the

control network are observable. The combination of the two shows 93% fault coverage on a

225K-gate 64-point FFT circuit.
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An automatic timing constraint mapping algorithm is developed to aid the overall design

flow. Asynchronous macros are characterized with timing constraints. These constraints are

translated to a template based representation. A path search algorithm is used to traverse

the system and identify connections between macros. An sdc constraint set is formed for

the system and thus timing driven synthesis and place and route can be performed by

commercial CAD tools.

Asynchronous designs are built as demonstration applications to demonstrate the algo-

rithms developed above. Synchronous and Asynchronous 64-point FFTs are constructed.

It has shown that the asynchronous FFT achieves 2.4×, 2.4× and 3.2× benefit in terms

of area, energy and throughput respectively over the synchronous design. An asynchronous

inspired clocking mechanism is introduced.

This approach uses data signals for the clock to reduce the redundant clock switching.

A digital design is built and achieves 50% power saving with less than 5% area overhead.

A 3.5× energy reduction is achieved on the digital portion of another mixed signal chip.

This research work can be summed up as follows: backend support significantly im-

proves all aspects of relative timed asynchronous design. This supports provide guidance

that enables the future optimization towards faster, smaller, less power and, more robust

circuit designs. Also, integration with commercial CAD tools for automatic validation of

asynchronous designs is achieved.

7.2 Future Work

This dissertation addresses the validation portion of the backend tools and flows. The

adoption of this research work can be enhanced by automation of design optimization.

Future research works include the following:

• Slacks reported by timing validation can be used as an input for the timing optimiza-

tion. The optimization can be accomplished by changing the timing constraints, either

increase the delay target for the max path or reduce the delay target for the min path.

This optimization aids the synthesis tool on better sizing the gates as well as aids the

place and route tool for better placement and routing algorithms. Automation on

bringing the slack between the min and max path toward zero helps the development

time and can achieve a better design.

• Sequential test patterns are generated manually in this research work. Since the

number of sequential test patterns is bounded, an automatic sequential test pattern
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generation can be developed to remove the redundant test patterns thus improve the

testing time. The sequential test patterns can be supplied to an asynchronous test

processor [86] to test the manufactured chip.

• Asynchronous circuits are event-driven and data tokens are propagated freely once

there is an empty place. In order to detect delay faults, single stepping from controllers

to controllers is necessary. Mr.Go provides the ability to start and stop single controller

thus provide single stepping support [65]. Modification of relative timed controller as

well as the power, performance, and robustness trade-off have to be studied to optimize

design.

• The RT clocking method provides a power advantage with minor design overhead.

An automatic RT clocking adoption with multiple frequency designs or mixed signal

designs can achieve power reduction easily. Evaluation on the power benefit and area

overhead on more designs is needed to find the optimal RT clocking design.
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