
DESIGN AND IMPLEMENTATION OF CLOCKED

OPEN CORE PROTOCOL INTERFACES FOR

INTELLECTUAL PROPERTY CORES AND

ON-CHIP NETWORK FABRIC

by

Raghu Prasad Gudla

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

The University of Utah

May 2011

Copyright c© Raghu Prasad Gudla 2011

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

This thesis of Raghu Prasad Gudla

has been approved by the following supervisory committee members:

Kenneth S. Stevens , Chair 01/14/2011
Date Approved

Alan L. Davis , Member 01/14/2011
Date Approved

Erik L. Brunvand , Member 01/14/2011
Date Approved

and by Gianluca Lazzi , Chair of

the Department of Electrical and Computer Engineering and by

Charles A. Wight, Dean of the Graduate School.

ABSTRACT

This thesis designs, implements, and evaluates modular Open Core Protocol (OCP)

interfaces for Intellectual Property (IP) cores and Network-on-Chip (NoC) that re-

duces System-On-Chip (SoC) design time and enables research on different archi-

tectural sequencing control methods. To utilize the NoCs design time optimization

feature at the boundaries, a standardized industry socket was required, which can

address the SoC shorter time-to-market requirements, design issues, and also the

subsequent reuse of developed IP cores. OCP is an open industry standard socket

interface specification used in this research to enable the IP cores reusability across

multiple SoC designs. This research work designs and implements clocked OCP

interfaces between IP cores and On-Chip Network Fabric (NoC), in single- and multi-

frequency clocked domains. The NoC interfaces between IP cores and on-chip network

fabric are implemented using the standard network interface structure. It consists of

back-end and front-end submodules corresponding to customized interfaces to IP cores

or network fabric and OCP Master and Slave entities, respectively. A generic domain

interface (DI) protocol is designed which acts as the bridge between back-end and

front-end submodules for synchronization and data flow control.

Clocked OCP interfaces are synthesized, placed and routed using IBM’s 65nm

process technology. The implemented designs are verified for OCP compliance using

SOLV (Sonics OCP Library for Verification). Finally, this thesis reports the perfor-

mance metrics such as design target frequency of operation, latency, area, energy per

transaction, and maximum bandwidth across network on-chip for single- and multi-

frequency clocked designs.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Related Work . 3

1.2.1 Bus-centric Protocols . 4
1.2.2 Core-centric Protocols . 5

1.3 Objectives . 8
1.4 Contributions . 8
1.5 Thesis Overview . 9

2. BACKGROUND . 10

2.1 Existing Architectural Designs with OCP . 10
2.2 Building Standard NoC Interfaces Using OCP 11
2.3 OCP Description . 12

2.3.1 Introduction to OCP . 12
2.3.2 OCP Operation and Its Key Features . 12
2.3.3 OCP Signals and Encoding . 15

2.3.3.1 Dataflow Signals . 15
2.3.3.2 Sideband Signals . 19
2.3.3.3 Test Signals . 19

2.3.4 OCP Signal Directions and Groups . 20
2.4 Prior Relevant Research Work . 21
2.5 Design Development, Implementation, and Testing 21

2.5.1 RTL Development Using Verilog HDL . 23
2.5.2 Logic Synthesis and Automatic Place and Route 23
2.5.3 Design Testing Environment . 24
2.5.4 Design Metrics Computation . 25

2.6 Validation of OCP Complaint IP cores . 27

3. DESIGN DESCRIPTION AND SPECIFICATIONS 29

3.1 Design Description . 29
3.1.1 Design Structure . 29

3.1.1.1 Modular Components Across Design 29
3.1.1.2 Synchronization and Buffering Placement 31

3.1.2 Network Interface Structure . 32
3.1.2.1 Back-end and Front-end Interfaces 33
3.1.2.2 Domain Interface . 33

3.1.3 Synchronization and Buffering . 34
3.1.3.1 Asynchronous Clocked Pointer FIFOs 34

3.1.4 Network-on-Chip Using Synchronous Routers 36
3.1.4.1 Data Packets Switching Technique 36
3.1.4.2 Data Packetization and Depacketization 37
3.1.4.3 Request Packet Format . 38
3.1.4.4 Response Packet Format . 38
3.1.4.5 Data Flit Implementation . 39

3.2 Design Specifications and Supporting Features 40
3.2.1 Proposed OCP Subset . 40
3.2.2 Supporting Features . 41

3.2.2.1 Modes of Operation . 41
3.2.2.2 Burst Transactions . 43
3.2.2.3 Tagging or Out-of-Order Response 43

4. DESIGN IMPLEMENTATION . 44

4.1 Clocked OCP Design Implementation . 44
4.1.1 Single-Frequency Clocked Domain Implementation 46

4.1.1.1 IP Cores Back-end Modules . 48
4.1.1.2 Domain Interface (DI) Module . 48
4.1.1.3 On-Chip Network Fabric Back-end Modules 49
4.1.1.4 OCP Master and Slave Entity Modules 50

4.1.2 Multifrequency Clocked Domain Implementation 51
4.1.2.1 DI Module with FIFOs . 52

4.2 Design Implementation Flow . 54
4.2.1 RTL Source Codes Using Verilog HDL . 55
4.2.2 Design Synthesis Using Synopsys Design Compiler 57
4.2.3 Design APR Using Cadence SoC Encounter 57

5. VALIDATION OF CLOCKED OCP COMPLIANT INTERFACES 59

5.1 OCP Checker Setup and Instantiation . 60

6. DESIGN TESTING AND RESULTS . 62

6.1 Testing Environment . 62
6.2 Performance Models and Results . 63

6.2.1 Performance Metrics . 63
6.2.2 Performance Models . 66

6.2.2.1 Model for Latency Cycles . 66
6.2.2.2 Model for Energy per Transaction . 68

v

6.2.2.3 Maximum Bandwidth . 68
6.2.3 Simulation Results . 69

6.2.3.1 Single-Frequency Clocked Domain . 69
6.2.3.2 Multifrequency Clocked Domain . 71

6.2.4 Design Evaluation . 81
6.2.4.1 Clocked Designs (SFCD and MFCD) 81
6.2.4.2 Network-On-Chip . 88

6.2.5 Results Summary . 89
6.2.5.1 NoC Performance . 96

7. CONCLUSION AND FUTURE RESEARCH 97

7.1 Summary . 97
7.2 Extensions and Future Research . 99

7.2.1 Extensions and Improvements to OCP Design 100
7.2.2 Future Research . 101

APPENDIX: OCP INTERFACE SIGNALS . 102

REFERENCES . 104

vi

LIST OF FIGURES

1.1 An SoC Architecture . 3

1.2 IP Cores with OCP Interfaces Using Hierarchical and Heterogeneous
Interconnect System . 7

2.1 IP Cores with Native OCP Interfaces . 10

2.2 IP Cores with Clocked Wrapper OCP Interfaces 11

2.3 A Simple System with OCP between IP Cores and On-Chip Bus 13

2.4 IP Cores with Native OCP Interfaces Implementation 21

2.5 Design Implementation Flow . 22

2.6 Design Testing Environment Using Verilog Test Bench 25

2.7 Pipelined CPU 32-Bit Address Format . 25

2.8 PrimeTime (PX) Power Analysis RTL VCD Flow 26

2.9 CoreCreator tool for Validating OCP Compliant IP Cores 28

3.1 Design Structure with Customized Back-ends, Front-ends and DI Module 30

3.2 Design Structure with Modular Components Across Design Path 31

3.3 Synchronization and Buffering Placement Across Design Path 32

3.4 Standard Network Interface Structure . 32

3.5 Asynchronous Dual Clocked Pointer FIFOs . 35

3.6 3-Port Synchronous Router Design . 36

3.7 Request Packet Format . 38

3.8 Response Packet Format . 39

3.9 Single Flit Data Format . 39

4.1 Clocked OCP Design Implementation with IP Cores and NoC 45

4.2 Single-Frequency Clocked Domain (SFCD) Implementation with Mod-
ular Components Across Design . 47

4.3 On-Chip Network Back-ends Interfacing NoC . 49

4.4 Transaction Phases between OCP Master and OCP Slave Entities 50

4.5 Multifrequency Clocked Domain (MFCD) Implementation Using Asyn-
chronous Clocked FIFOs . 52

4.6 DI Module with Asynchronous Clocked FIFOs 53

4.7 Design Implementation Flow with Technology Library Files 54

4.8 Design RTL Structure . 56

4.9 Design Synthesis Structure . 58

5.1 SOLV Components and Tool Flow . 60

5.2 OCP Checker Code Snippet . 61

6.1 Design Test Setup . 62

6.2 Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Average Power . 84

6.3 Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Energy per Transaction . 84

6.4 Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Latency . 85

6.5 Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Maximum Bandwidth . 85

6.6 Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Average Power . 86

6.7 Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Energy per Transaction 86

6.8 Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Latency . 87

6.9 Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Maximum Bandwidth . 87

6.10 NoC Performance: Number of Routers v/s Latency 92

6.11 NoC Performance: Number of Routers v/s Energy per Transaction . . . 92

6.12 NoC Performance in SFCD: Frequency v/s NSP Mode Average Power . 93

6.13 NoC Performance in SFCD: Frequency v/s SP Mode Average Power . . 93

6.14 NoC Performance in SFCD: Frequency v/s Idle Mode Average Power . . 94

6.15 NoC Performance in MFCD: Frequency v/s NSP Mode Average Power 94

6.16 NoC Performance in MFCD: Frequency v/s SP Mode Average Power . . 95

6.17 NoC Performance in MFCD: Frequency v/s Idle Mode Average Power . 95

A.1 OCP Dataflow Signals . 102

A.2 OCP Sideband and Test Signals . 103

viii

LIST OF TABLES

2.1 OCP Basic Dataflow Signals . 16

2.2 OCP Signal Groups . 20

3.1 OCP Proposed Subset . 42

6.1 Nonsplit Mode Test Bench . 64

6.2 Split Mode Test Bench . 65

6.3 SFCD: Individual and Total Area Reported from SoC Encounter in Case
of 1-router NoC . 70

6.4 SFCD: Reported Total Average Power from SoC Encounter in Case of
1-router NoC . 71

6.5 SFCD: Reported Top1 Module Average Power from Primetime in Case
of 1-router NoC . 72

6.6 SFCD: Reported Top2 Module Average Power from Primetime in Case
of 1-router NoC . 73

6.7 SFCD: Reported NoC Module Average Power from Primetime in Case
of 1-router NoC . 74

6.8 SFCD: Total Average Power and Energy per Transaction Computation
in Case of 1-router as NoC . 75

6.9 MFCD: Individual and Total Area Reported from SoC Encounter in
Case of 2-routers NoC . 76

6.10 MFCD: Reported Total Average Power from SoC Encounter in Case of
2-routers NoC . 77

6.11 MFCD: Reported Top1 Module Average Power from Primetime in Case
of 2-routers NoC . 78

6.12 MFCD: Reported Top2 Module Average Power from Primetime in Case
of 2-routers NoC . 79

6.13 MFCD: Reported NoC Module average Power from Primetime in Case
of 2-routers NoC . 80

6.14 MFCD: Total Average Power and Energy per Transaction Computation
in Case of 2-routers as NoC . 81

6.15 Performance Metrics Over a Range of Frequencies for Single-Frequency
Clocked Domain and Multifrequency Clocked Domain 82

6.16 Performance Metrics Over a Range of Frequencies for Single-Frequency
Clocked Domain and Multifrequency Clocked Domain 83

6.17 NoC Evaluation: Latency, Energy per Transaction for Varying Number
of Routers . 88

6.18 NoC Evaluation: NSP Mode Average Power for Varying Number of
Routers . 89

6.19 NoC Evaluation: SP Mode Average Power for Varying Number of Routers 90

6.20 NoC Evaluation: Idle Mode Average Power for Varying Number of Routers 91

x

ACKNOWLEDGEMENTS

I would like to convey my gratitude to all who made this thesis possible.

First and foremost, I want to thank my advisor Dr. Kenneth Stevens, whose

guidance and sound advice has enabled me to accomplish this research. Above all,

I appreciate his unflinching support, contributions of time and ideas in making my

MS study experience productive and stimulating. Over this period, I have imbibed a

few of his great qualities and will always look up to him as an excellent example of a

professor.

I gratefully acknowledge Dr. Al Davis and Dr. Erik Brunvand for their supervision

and valuable input during the initial stages of the research. I owe my deepest gratitude

to the University of Utah, which has contributed in all possible ways to my success.

I thank the Open Core Protocol International Partnership (OCP-IP) organization

and Sonics Corporation for providing OCP specifications, tools, and support. I would

like to thank my advisor for supporting my research financially on behalf of the

Semiconductor Research Corporation (SRC) and National Science Foundation (NSF).

I am indebted to thank especially my research group colleagues, Junbok You

and Daniel Gebhardt, in realization of design and timely guidance during research

accomplishment. I take this opportunity to thank my other research group colleagues,

Krishnaji, Vikas, Shomit, Eliyah, and Yang Xu. I extend my thanks to all my friends

in Salt Lake City and in India.

Lastly, and most importantly, I wish to thank my parents and entire extended

family for their love and encouragement. Of course above all, I thank whole heartedly

God for ubiquitous support in my life. For my parents who raised me, taught me,

and loved me for what I am, I dedicate this thesis to them. Thank you.

CHAPTER 1

INTRODUCTION

1.1 Motivation

Current technology trends, scaling, and with end users showing a marked pref-

erence for the smaller geometries of deep submicron processes forces a design style

where multiple independent circuit implementations are integrated together into a

single System-On-Chip (SoC). However, contemporary SoC designs have their own

share of issues and challenges. The major challenges faced by a design engineer

include the ever increasing complexity in modern SoC designs, reusability, time-

to-market, communication between Intellectual Property (IP) cores, integration of

different clocked domain IP cores, and global clock distributions on a chip. The

design of standard Network-on-Chip (NoC) interfaces to SoC is pivotal in addressing

design reusability, time-to-market, and integration of IP cores employing different

clock domains (synchronous, elastic, and asynchronous).

I became motivated to take up this prospective research from knowledge learned

through academic experience in Very Large Scale Integrated Circuit (VLSI) design,

verification, and testing domains. This research is mainly targeted to provide an

efficient solution to address SoC design challenges by building standard NoC interfaces

using an industry standard socket interface, Open Core Protocol (OCP). Also listed

below are a few motivating factors from an industrial perspective in the realization

and implementation of this project:

a. Levels of device integration lead us to SoC design style

SoC provides the platform for integration of different architectural cores such as

microprocessor chips, application specific integrated circuit (ASIC) chips, random

access memory (RAM) chips, and peripherals on a single die. The major advantage

of SoC design over custom design is its shorter time-to-market, but at the expense

2

of performance and area. SoC designs help enable IP reusability when they utilize

a standard communication interface. Employing a standard socket interface on a

SoC enables reuse of the good designs with minimal modification to IP cores [1].

This project targets the shorter time-to-market feature of SoCs to build standard

interfaces between IP cores at the expense of power, performance, and area.

b. NoC is the best method of communication on SoC designs

With the ever growing complexity in SoC designs and the need for better per-

formance, an efficient communication medium is needed. SoC designs can use

a NoC or on-chip bus as the on-chip communication medium between IP cores.

Network-on-chip is an efficient communication medium compared to bus because

of its advantages like the following [2]:

• Efficiency improvement in speed, bandwidth, area, and power consumption

• Supports concurrency - effective spatial reuse of resources

• Low latency

• Scalable bandwidth

• Modularity

c. OCP a standard socket interface to address IP core reusability

OCP is a standard core-centric protocol which addresses the IP cores reusability [3].

This not only allows independent IP core development without IP core interconnect

network but also allows IP core development in parallel with a system design,

reducing design time, design risk, and manufacturability costs.

d. Design implementation supports different IP core architectures and

enables research on NoC

Building standard NoC interfaces using OCP between IP cores and on-chip network

fabric not only supports different architectural designs but also gives a chance to

research different NoC architectures by employing different clocking strategies.

Commercially available IP cores with OCP are typically synchronous in nature,

but the IP cores with wrapper OCP interfaces enables us to have clocked, elastic,

or asynchronous interfaces which will support different IP core architectures across

multiple SoC designs.

3

1.2 Related Work

Over the years, relentless advances in semiconductor fabrication and continuous

increase in the complexity of modern SoC designs led to integration of more IP blocks

into a chip. Figure 1.1 shows a typical SoC architecture design [4]. Hundreds of IPs

are integrated into an SoC providing various functionalities including inter-IP core

communications, networking, multimedia, storage, etc.

An open and flexible standard interface protocol such as bus-centric or core-centric

protocol for IP cores and NoC is necessary to address design reusability, time-to-

market, efficient on-chip intercommunication, SoC integration and verification. Semi-

conductor IP core designers are striving to ensure their IP can be used in the widest

possible range of applications but integration of these IPs on SoC is an issue. SoC

integration of third party IPs with different interface standards requires an external

adapter or bridge to connect them to a standard protocol. Designing such adapters

or bridges is not a difficult task but verification is an issue due to standard translation

and compliance checks.

CPU DSP DMA Video Eng

UART

SRAM
DRAM

Controller
Flash

Controller

USB PCIe

CCD LCDDMA

Peripheral Bus Fabric

GPIO SPI Peripheral Peripheral

Generic Bus Fabric

High Performance Bus Fabric

Cross bar

Shared-link

Audio
Eng

Figure 1.1. An SoC Architecture

4

1.2.1 Bus-centric Protocols

Bus-centric protocols define technology independent standard bus protocol method-

ologies for easy integration of IPs within an SoC [5] [6]. Bus protocols are based upon

a printed circuit board style of interconnect structures that consist of hierarchical wire

bundles and are proving to be ineffective communication for complex SoC designs. All

the bus protocols strictly define an interblock data flow communication methodology.

Also bus protocols typically do not support sideband control (Reset, Control, Status,

Error, and Interrupt signals) and test signals (Scan, JTAG signals) which create a

loss of features or performance on interfacing with another bus/core-centric protocol.

The Advanced Microcontroller Bus Architecture (AMBA) was developed by ARM

Ltd. and is widely used as the on-chip communication bus standard in SoC designs

[7]. AMBA is one solution to interface IP cores with each other on an SoC and

also enables development of multiprocessor designs with large numbers of controllers

and peripherals. The AMBA bus provides design reusability by defining a common

backbone for SoC modules using AXI, AHB, APB, ASB, and ATB specifications,

each targeted to meeting different requirements.

CoreConnect is an IBM microprocessor bus architecture specification for inter-

connecting IP cores and custom logic on SoC designs [8]. CoreConnect has similar

bridging capabilities to that of AMBA bus architecture, allowing reuse of existing

SoC cores (processor, system, and peripheral cores). The CoreConnect architecture

provides three buses: a processor local bus (PLB) for connecting high performance

peripherals (low latency), an on-chip peripheral bus (OPB) to connect the slower

peripheral cores (reduces the traffic on PLB), and a device control register bus (DCR)

designed to transfer data between the CPUs general purpose registers, and the DCR

slave logic device control registers.

Wishbone is an open source interconnection bus architecture from Silicore Corpo-

ration intended to interface IP cores with each other on an SoC and provide reusability

by creating a common data exchange protocol between IP cores [9]. It is a simple one

bus compact architecture for all applications. Because of its simplicity and flexibility,

it is utilized in simple embedded controllers and high performance systems.

5

All three buses, AMBA, CoreConnect, and Wishbone, are fully synchronous in

nature using the rising edge of the clock to drive and sample all signals [10]. The

differences are in the supporting features of the specification depending on the choice

of system buses used by the designer in case of AMBA and CoreConnect. A designer

might face problems integrating different interfaces of the interconnects. Bridges or

adapters are required to build a complete system in case of interconnect incompat-

ibility. Wishbone connects all its IP cores to the same standard interface and a

system designer can always have the flexibility to choose two wishbone interfaces for

implementation in a microcontroller core, one for high-speed low-latency devices and

one for low-speed, low-performance devices.

Bus-centric protocols are targeted for single unique application, and the interface

circuitry is defined for that particular application. Any changes in the design appli-

cation requires redesign of the arbitration logic and interface circuitry for the new

application. Incompatibility between the chosen interconnect system and the bus-

centric native protocol requires multiple bus bridges for communication, and limits

the maximum utilization of IP capabilities [11]. Also, whenever there are differences

in data and address presentation sequences between an IP core’s native bus and target

bus, the IP core’s performance will likely suffer due to the bridge-on-a-bridge effect of

having to correlate the signaling between the two disparate bus architectures. Also,

one needs to compromise on the bridge gate count implementation which is likely

to be higher. Selecting a bus-centric protocol as an IP core’s native interface will

ultimately limit its reusability compared to core-centric protocol. A socket can fulfill

the reusability requirement virtually across any application, and the process can also

be automated.

1.2.2 Core-centric Protocols

The solution to maximize IP core’s reusability while still exploring the advan-

tages of proven industry standard interfaces (sockets) is to adopt a well-specified

core-centric protocol as an IP core’s native interface [1] [6]. Sockets are universally

accepted and are targeted to support virtually any application because of their design

reusability and verification features. Also, sockets provide complete interface specifi-

6

cation between IP cores and on-chip interconnect systems which enables the designers

to independently develop individual SoC cores, reducing overall SoCs development

time, effectively decreasing time-to-market.

Basically, the individual IP cores are designed and developed simultaneously by

decoupling them from the system in which they reside. The final SoC is developed in

parallel and the design time is reduced to that of the longest effort required in a single

element design or the SoC integration. System designers are also benefited by not

having to consider other diverse core protocols and delivery styles. Use of a standard

IP core interface eliminates having to adapt each core for every SoC integration, and

instead allows the system designer to focus on system level design issues. Also, since

the IP cores are decoupled from the on-chip interconnect and from each other, it is

easier to swap one core for another in meeting changing requirements.

For an IP core to be truly reusable, it must remain untouched as it moves from

one system to another system and its interface must match continuously differing

requirements of each systems interconnect. A standard IP core interface specification

must be scalable and configurable to adapt to the wide range of requirements. Also,

it must be able to capture the non-dataflow signals (such as reset, interrupts, error,

and flow control signals) along with the dataflow signals. Following are a couple of

core-centric protocols:

The Open Core Protocol (OCP) is an open standard, bus-independent protocol

provided by Open Core Protocol-International Partnership (OCP-IP). It meets all the

core centric requirements and is one of the protocols which unifies all the intercore

communications including sideband control and test signals [3]. OCP defines a high

performance, complete interface socket between IP cores facilitating design reuse,

and also reduces design time, design risk, and manufacturing costs for SoC designs.

By adopting OCP, IP cores can be developed independent of interconnect topology

and implementation. Figure 1.2 shows IP cores with OCP interfaces connected

with different interconnect topologies [4]. OCP supports very high-performance

data transfer models ranging from simple request-grants through burst pipelined and

tagging objects. OCP protocol compliance verification is one of the distinguishing

feature from other protocols. OCP-IP not only provides the specification and its

7

Interconnectipn IP

OCP
Master Core

OCP
Slave Core

OCP
Slave Core

OCP
Slave Core

OCP
Slave Core

Interconnection IP

Cross bar

Shared-link

Heterogeneous

OCP
Master Core

OCP
Master Core

OCP
Master Core

Figure 1.2. IP Cores with OCP Interfaces Using Hierarchical and Heterogeneous
Interconnect System

member-driven evolution, but also industrial grade tools and services that ensure its

members can rapidly confirm compliance and maximize their productivity.

IP cores using native OCP interfaces can easily communicate with any bus ar-

chitecture or on-chip network fabric through simple bridge structures. Even with

bus bridges, IP cores can utilize its maximum capabilities using OCP. If the chosen

interconnect system cannot interface directly to OCP, the IP developer can design

and develop bus bridges (wrapper interfaces) for common bus architectures that a

customer may choose.

The Virtual Component Interface (VCI) is another core-centric protocol provided

by Virtual Socket Interface alliance (VSIA) group [12]. VCI is similar to OCP in

capability and philosophy. But VCI supports only dataflow aspects of core com-

munications compared to OCP, which is a superset of VCI supporting configurable

sideband control signaling and test signals.

8

1.3 Objectives

This research will design and implement clocked OCP interfaces between IP cores

and on-chip network fabrics for single- and multifrequency (Globally Asynchronous

Locally Synchronous architectures (GALS)) domains including the following:

• Design and implementation of customized back-ends to IP cores and NoC.

• Design and implementation of front-ends (OCP Master and Slave entities).

• Design and implementation of a generic Domain Interface (DI) module.

• Customize and build asynchronous dual clocked First-in-First-out memory struc-

tures (FIFOs) for the DI module used in GALS architectures.

• Determine the best placement of buffering and synchronization across the design

path.

• Synthesize clocked designs with IBM’s 65nm process technology using Synopsys

Design Compiler (DC).

• Automatic Place and Route of clocked designs using Cadence SoC Encounter.

• Design validation and derivation of performance metrics for clocked designs in

nonsplit and split operation modes.

• Perform power analysis on different clocked designs using Synopsys PrimeTime

PX for deriving energy per transaction values.

• Build parameterized computational models for estimating the performance of

clocked design configurations.

• Performance evaluation of clocked designs and NoC.

• Performance comparison between single- and multifrequency clocked designs.

• Verification of OCP compliant IP-cores using the SOLV component.

1.4 Contributions

Following are the key contributions from this research:

i. Designs and implements industry standard clocked OCP interfaces for single-

frequency clocked domain and GALS architectures.

ii. A novel modular architecture is adopted that provides high design reusability,

meeting SoC shorter time-to-market requirements, and simplifying design valida-

tion.

9

iii. The implemented OCP interfaces enable future research:

• Deriving elastic and asynchronous OCP implementations.

• Evaluating NoC performance from end-to-end.

• Research and comparison of different architectural sequencing control meth-

ods for IP cores and NoC (clocked, elastic, and asynchronous).

1.5 Thesis Overview

The rest of this thesis is organized into five chapters which give a detailed de-

scription of the research. Chapter 2 presents prerequisite information on current

architectural design issues and challenges, and its solution with building of standard

NoC interfaces using OCP. A brief description follows on OCP, including its operation,

key features, and protocol signals.

Chapter 3 briefly describes the project design and its specifications. An overview

of the design structure is presented, including the modularization of components

across the design and network interface structure, synchronization and buffering, and

data packetization and depacketization mechanisms.

Chapter 4 explains the design implementation in single- and multifrequency clocked

domains. The design implementation includes a brief description about the steps

involved in the implementation of the two clocked domains and the functionality of

IP cores and NoC back-ends, OCP entities, and the DI module. Chapter 5 describes

the verification methodology used to determine OCP compliance of IP cores.

Chapter 6 explains the different testing strategies and performance metrics used

for comparison. The maximum target frequency in single-frequency and multifre-

quency clocked domains is determined. Other performance metrics such as latency,

energy per flit, area, and maximum bandwidth across NoC are also tabulated. Dif-

ferent design parameters are varied to determine the design maximum and minimum

limits on performance in case of design expansion, and worst and best scenarios.

Finally, Chapter 7 summarizes the research work, including the project scope,

application, and areas of future research. The Appendix includes detailed information

about desynchronization and elasticization of clocked NoC interfaces and the complete

set of OCP protocol signals.

CHAPTER 2

BACKGROUND

2.1 Existing Architectural Designs with OCP

The existing OCP interfaces for IP cores can be classified into two categories

depending on how OCP is implemented with respect to the IP core functionality and

communication interface. If the OCP interface is integrated as part of the IP core, we

refer to it as Native OCP interface; otherwise, we call it Wrapped OCP interface [3].

In case of native OCP interfaces, the OCP interfaces are integrated as part of the IP

core and are typically developed along with the new IP cores. Figure 2.1 illustrates

IP cores with native OCP interfaces. In case of wrapped OCP interfaces, a wrapper

(bridge) OCP interface is placed around the IP core’s native interface to communicate

to the outside world. The additional wrapper OCP interface basically maps the

signals and values of the existing IP core to OCP compatible signals and values.

Essentially, this wrapped interface is an exercise in protocol conversion between an

IP core’s existing protocol and OCP as it must implement flow control and at times

executes commands not part of the base IP core functionality. The conversion logic

can range from a few gates in complexity to a very complicated interface. However,

OCP
Master

System Initiator

Master IP

OCP
Slave

System Target

Slave IP

OCP
Slave

OCP
Master

Bus Protocol Bus Protocol

On-Chip
Bus/NW

Figure 2.1. IP Cores with Native OCP Interfaces

11

from the viewpoint of any IP core or an on-chip network fabric, which uses OCP to

communicate with the another IP core, the type of OCP interface (native or wrapped)

does not matter; it is all just using the OCP protocol.

2.2 Building Standard NoC Interfaces Using OCP

This research provides the solution for interfacing different architectural IP cores

on SoC by building standard NoC interfaces using OCP. Current architectural designs

which utilize OCP for interfacing with other IP cores are synchronous in nature and

typically OCP is integrated (native OCP) into the IP core. As OCP is a clocked

protocol, integration of OCP onto IP cores which employ clocking strategies like

elastic protocols and asynchronous handshaking have not been investigated. In order

to explore elastic and asynchronous clocking strategies, this project will implement

clocked wrapper OCP interfaces (OCP located outside the IP core). Figure 2.2

illustrates IP cores with clocked wrapper OCP interfaces. A significant portion of the

research will address the issue of simplifying the interfacing of different architectural

IP cores to OCP by the following:

a. Design and implement customized back-end interfaces to IP cores (such as pipelined

processor bus and synchronous memory) and on-chip network fabrics.

b. Investigate the possibility of a generic OCP wrapper interface protocol, called the

domain interface (DI).

OCP
Master

System Initiator

Master IP

OCP
Slave

System Target

Slave IP

OCP
Slave

OCP
Master

Bus Protocol Bus Protocol

On-Chip
Bus/NW

Figure 2.2. IP Cores with Clocked Wrapper OCP Interfaces

12

2.3 OCP Description

2.3.1 Introduction to OCP

The Open Core Protocol is an openly licensed, core-centric protocol standard,

which defines a high performance, synchronous, bus independent configurable inter-

face for communication between IP cores and NoC [3][1]. It is an efficient point-to-

point connection standard and because of its configurability, scalability, and gener-

ality, it has been widely accepted from low-power to high-performance applications.

It can be optimized to use only the necessary features required for communicat-

ing between any two components, which saves chip area. It dramatically improves

reusability of IP cores independent of the architecture and design of the systems,

which leads directly to a more predictable, productive SoC designs and also simplifies

the system verification and testing. OCP consists of an aggregation of signals that

aims to unify the communication among IP blocks, reducing the system design time

significantly. It is comprised of a continuum of communication protocols that share

a common definition for the whole system where it ensures dramatic time reduction

of functional verification for any future releases of the system.

2.3.2 OCP Operation and Its Key Features

OCP defines a point-to-point interface between two communicating entities such

as IP cores and bus interface modules (bus wrappers). One entity acts as the master of

the OCP instance, and the other as the slave. Only the master can present commands

and is the controlling entity [3]. The slave responds to commands presented to it,

either by accepting data from the master, or presenting requested data to the master.

For two entities to communicate in a peer-to-peer fashion, there needs to be two OCP

instances connecting them, one where the first entity is a master, and one where the

other entity is a slave.

The characteristics of the IP core determine whether the core needs master,

slave, or both sides of the OCP. The bus wrapper interface modules must act as the

complementary side of OCP for each connected entity. Depending on the direction

and type of the signal (like MCmd:Master command) one can classify whether the

module is a master or slave. Figure 2.3 shows a simple system containing an on-chip

13

Master

Slave

Bus Initiator / Target

Core CoreCore

MasterSlave

Master Slave Slave

Bus Target

Master

OCP

Bus
Wrapper
Interface

ResponseRequest

On-Chip Bus

System Initiator System TargetSystem Initiator / Target

Bus Initiator / Target

Core

MasterSlave

Master Slave

System Initiator / Target

Bus Initiator

Figure 2.3. A Simple System with OCP between IP Cores and On-Chip Bus

bus and four IP core entities: one that is a system target, one that is a system initiator,

and the other two that have both. Different OCP transactions are possible between

system initiator and system target with optional response. In one OCP transaction

type, the Master IP (system initiator) presents a request command without expecting

a response from Slave IP. Another type expects a response from the Slave IP in the

same path. A third case starts like the first, but the Slave IP issues a response using

its OCP master interface to send a message back to the initiating IP.

Each transfer across this system occurs as follows. A system initiator (as the OCP

master) presents command, control, and possibly data to its connected slave. The

interface module presents the request across the on-chip bus system. OCP does not

specify the embedded bus functionality. Instead, the interface designer converts the

OCP request into an embedded bus transfer. The receiving bus interface module (as

the OCP master) converts the embedded bus operation into a legal OCP command.

The system target (OCP slave) receives the command and takes the requested action.

Some of the OCP key features include the following [3]:

a. Point-to-Point Synchronous Interface:

To simplify timing analysis, physical design, and general comprehension, OCP is

composed of unidirectional signals driven with respect to, and sampled by, the

rising edge of the OCP clock.

14

b. Operational Commands:

There are two basic commands, Read and Write, and five command extensions.

Extensions include ReadExclusive, ReadLinked, WriteNonPost, WriteConditional,

and Broadcast.

c. Configurable Dataflow Signals (Address, Data, Control):

To increase transfer efficiencies, OCP supports a configurable data width to allow

multiple bytes to be transferred simultaneously. OCP supports word sizes of power-

of-two and non-power-of-two (byte addressable, word aligned) and also supports

transfers of less than a full word of data by providing byte enable information that

specifies which octets are to be transferred.

d. Configurable Sideband Signals (Interrupts and Errors):

Different types of control signaling are required to coordinate data transfers (for

instance, high-level flow control) or signal system events (such as interrupts). Many

devices also require the ability to notify the system of errors that may be unrelated

to address/data transfers. OCP refers to all such communication as sideband (or

out-of-band) signaling, since it is not directly related to the protocol state machines

of the dataflow portion of OCP.

e. Pipelining Transfer Support:

OCP allows pipelining of transfers to improve bandwidth and latency character-

istics also known as split transactions. To support this feature, the return of read

data and the provision of write data may be delayed after the presentation of the

associated request.

f. Burst Transfer Support:

To provide high transfer efficiency, burst support is essential for many IP cores.

A burst is a set of transfers that are linked together into a transaction having a

defined address sequence and number of transfers.

g. In-band Information:

Using in-band signals, OCP can pass core-specific information along with the

other information during transactions. In-band extensions exist for requests and

responses, as well as read and write data. A typical use of in-band extensions is

to pass cacheable information or data parity.

15

h. Tagging or Out-of-Order Completion Support:

To support out-of-order responses and to commit writes out-of-order, tagging is

used as long as the transactions target addresses are different. Without tags,

a slave must return responses in the order that the requests were issued by the

master. The tag links the response back to the original request.

i. Multithreading and Connections:

Out-of-order request and response delivery can also be enabled using multiple

threads. Concurrency is also supported at the expense of having an independent

flow control for each thread, eliminating ordering restrictions for transactions on

different threads. The notion of a thread is a local concept between a master and

a slave communicating over OCP. Thread information is passed from initiator to

target using connection identifiers. Connection information helps to identify the

initiator and determine priorities or access permissions at the target.

2.3.3 OCP Signals and Encoding

OCP interfaces are synchronous, employing a single clock signal. Thus, all its

signals are driven with respect to, and sampled by, the rising edge of the clock, except

reset [3] [11]. OCP interface signals are divided into three categories: data flow,

sideband (error, interrupt, flag, control, and status), and test signals (scan, JTAG).

With the exception of the clock, all OCP signals are unidirectional and point-to-point.

The rising edge of the OCP clock signal is used to sample other OCP signals to

advance the state of the interface. The Clk and EnableClk signals are required inputs

in both masters and slaves and they are driven by a third entity (neither the masters

nor the slaves). When the EnableClk signal is not present, the OCP clock is simply

the Clk signal.

2.3.3.1 Dataflow Signals

Dataflow signals consist of a set of signals, some of which are used for data

transfers, while others are configured to support any additional communication re-

quirements between the master and slave components. Dataflow signals can be

divided into the following categories:

16

a. Basic Signals:

These include the clock, address, read and write data, transfer type, and handshak-

ing/response signals between the master and the slave. Only the clock and transfer

type signals (MCmd) are mandatory for an OCP interface, the remaining signals

being optional. Table 2.1 lists the OCP basic signals. The widths of the address,

read data, and write data are configurable, and not limited to being multiples of

eight. The transfer type indicates the type of data transfer operation issued by a

thread running on a master, and can be any one of the following:

i. Idle: No operation is required to be performed.

ii. Read: Reads data from the addressed location in a slave.

iii. Write: Writes data to the addressed location in a slave.

iv. Broadcast: Writes data to the addressed location using MData field, which

may be mapped to more than one slave in a system-dependent way. Broadcast

clears the reservations on any conflicting addresses set by other threads.

Table 2.1. OCP Basic Dataflow Signals

Name Width Driver Function

Clk 1 varies Clock input

EnableClk 1 varies Enable OCP clock

MAddr configurable master Transfer address

MCmd 3 master Transfer command

MData configurable master Write data

MDataValid 1 master Write data valid

MRespAccept 1 master Master accepts response

SCmdAccept 1 slave Slave accepts transfer

SData configurable slave Read data

SDataAccept 1 slave Slave accepts write data

SResp 2 slave Transfer response

2

17

v. Exclusive Read: Reads from a location in a slave using SData field and locks

it, preventing other masters from writing to the location (exclusive access).

The location is unlocked after a write to it from the original master that caused

the lock to be set.

vi. Linked Read: Reads data from the addressed location in a slave using SData

field, and sets a reservation in a monitor for the corresponding thread, for the

addressed location. Read or write requests from other masters to the reserved

location are not blocked from proceeding, but may clear the reservation.

vii. Nonposted write: Writes data to the addressed location in a slave using

MData field, unlocking the location if it was locked by an exclusive read, and

clearing any reservations set by other threads.

viii. Conditional write: Only writes to the addressed location in a slave using

MData field, if a reservation is set for the corresponding thread. Also clears all

reservations on the location. If no reservation is present for the corresponding

thread, no write is performed, no reservations are cleared, and a FAIL response

is returned.

b. Simple Extensions:

These include signals to indicate the address region (e.g. register or memory),

byte enables for partial transfers, and core-specific configurable signals that send

additional information with the transfer request, read data, write data, and the

response from the slave. Configurable signals can transmit information about data

byte parity, error correction code values, FIFO full or empty status, and cacheable

storage attributes. Simple extension signals include the following:

• MAddrSpace: Specifies the address space and is an extension of MAddr

basic signal which is used to indicate the address region of transfer.

• MByteEn: Indicates which bytes of OCP word are part of the current

transfer.

• MDataByteEn: Indicates which bytes of OCP word are part of the current

write transfer.

• MDataInfo: Extra information is sent with the write data.

18

c. Burst Extensions:

These signals are used to support burst transfers which allows the grouping of

multiple transfers that have a defined address relationship. Bursts can either

include addressing information for each successive command (which simplifies

the requirements for address sequencing/burst count processing in the slave), or

include addressing information only once for the entire burst. Burst extension

signals include the following:

• MBurstLength: This field indicates the number of transfers for a row of

the burst and stays constant through the burst.

• MBurstPrecise: This field indicates whether the precise length of the burst

is known at the start of burst.

• MBurstSeq: This field indicates sequences of addresses for requests in burst

(Incrementing, Custom or user defined, Wrapped, Stream, Exclusive-OR and

Unknown).

• MBurstSingleReq: This burst has a single request with multiple data

transfers.

• MDataLast: This field indicates last write data in a burst.

d. Tag Extensions:

These signals are used to assign tags (or IDs) to OCP transfers to enable out-of-

order responses and to indicate which transfers should be processed in order. Tag

numbering begins at 0 and is sequential. The binary encoded TagID must carry a

value less than the tag’s parameter. Tag extension signals include the following:

• MTagID: This field indicates the request tag from the Master IP.

• MTagInOrder: This field indicates that the current request cannot be

reordered with respect to other requests when this field is asserted.

• STagID: This field indicates the response tag from the Slave IP.

• STagInOrder: This field indicates that the current response cannot be

reordered with respect to other requests when this field is asserted.

19

e. Thread Extensions:

These signals are used to assign IDs to threads in the master and slave, and for

a component to indicate which threads are busy and unable to accept any new

requests or responses. Thread numbering begins at 0 and is sequential. The

binary encoded ThreadID must carry a value less than the thread’s parameter.

Thread extension signals include the following:

• MConnID: This field indicates the connection identifier.

• MDataThreadID: This field indicates the write data thread identifier.

• MThreadBusy: This field indicates master thread busy.

• MThreadID: This field indicates request thread identifier.

• SThreadBusy: This field indicates slave thread busy.

• SThreadID: This field indicates response thread identifier.

2.3.3.2 Sideband Signals

Sideband signals are optional OCP signals that are not part of the dataflow phases,

and can change independent of the request/response flow (but are still synchronous to

the rising edge of the clock). These signals are used to transmit control information

such as interrupts, resets, errors, and other component specific information like core

specific flags. They are also used to exchange status and control information between

a component and the rest of the system using Control, ControlBusy, ControlWr,

Status, StatusBusy, and StatusRd signals. All sideband signals are optional except

for reset (active low). Either the MReset n or the SReset n signal must be present.

2.3.3.3 Test Signals

The OCP test signals are also a set of optional signals, and are responsible for

supporting scan, clock control, and IEEE 1149.1 (JTAG). The scan interface signals

include ScanCtrl, Scanin, and Scanout. Debug and test interface signals include TCK,

TDI, TDO, TMS, and TRST N.

20

2.3.4 OCP Signal Directions and Groups

Depending on the module instance acting as a master or slave, the direction of

request/response/datahandshake signals are defined and control signals are defined

depending on the module acting as a system or core. Interface types to each module

is defined depending on OCP entity and connected system. If a module acts as an

OCP master and also a system, it is designated as system master. Some of the OCP

signals are grouped together depending upon the active state of the signals at the

same time. Dataflow signals are classified into three groups: request, response, and

datahandshake signals. The handshake and response signals are optional and can be

configured depending on the IP core’s communication requirements. Table 2.2 lists

the OCP signal groups.

Table 2.2. OCP Signal Groups

Group Signal Condition

MAddr always

MAddrSpace always

MBurstLength always

MBurstPrecise always

MBurstSeq always

MBurstSingleReq always

MByteEn always

MCmd always

MConnID always

MData* datahandshake = 0

MTagID always

MTagInOrder always

MThreadID always

SData always

SDataInfo always

SResp always

SRespInfo always

STagID always

STagInOrder always

SThreadID always

MData* datahandshake = 1

MDataByteEn always

MDataTagID always

MDataThreadID always

MDataValid always

Request

Response

DataHandshake

2

21

2.4 Prior Relevant Research Work

As part of my thesis study, I implemented a portion of OCP in the advanced

VLSI course, which helped me learn about a subset of OCP, the importance of OCP

interfaces in SoC designs, and its functionality. For the class project, I considered two

IP cores (Master as CPU and Slave as Memory system) with native OCP interfaces.

The on-chip communication medium between the two IP cores was assumed to be a

simple buffering unit with some latency in the path. Using a subset of OCP signals

(dataflow signals), simple memory read and write transactions between the two IP

cores was implemented. The modules were developed using VHDL. Figure 2.4 shows

the block diagram used in this study.

2.5 Design Development, Implementation, and Testing

Building modern digital integrated circuits is a complex process and requires

powerful Electronics Design Automation (EDA) and Computer Aided Design (CAD)

tools in the design development and implementation [13]. Figure 2.5 illustrates the

steps required in this project implementation [14]. The implementation flow follows

the standard ASIC design steps which includes specification, front-end, and back-end

phases. The front-end phase is comprised of the development of schematics or register

transfer level (RTL) Verilog code, and functionality testing of synthesized netlist. This

project developments RTL Verilog code in the front-end phase. The back-end phase

is comprised of Automatic Place and Route (APR) of the physical design (synthesized

OCP
Master

Master IP Core

OCP
Slave

Network
Bus

OCP
Slave

Slave IP Core

MCmd

SCmdAccept

MAddr
MData
SResp

SData

OCP
Master

Clk

MCmd

SCmdAccept

MAddr

MData

SResp

SData

Figure 2.4. IP Cores with Native OCP Interfaces Implementation

22

Verilog Test
Bench

Product
Requirement

RTL
Development

Logic Synthesis
(Gate Level Netlist)

Physical
Implementation

(APR)

System Testing

Specifications

Logic Design

Physical Design

Functionality
Testing

Behavioral
Specification

Check

Check
Functional

Verification (sdf
back-annotation)

Functional
Verification (sdf
back-annotation)

Power
Analysis

Figure 2.5. Design Implementation Flow

,
\

I \

... -----------------------,

I
I' I

I
I
I
I
I
I
I
I
I

\ I , ,---------- -----------_ ..
... -------- ----------- , , \ , \

I \
I \

I'

t

r-(
'-

)

K) f \
\ ~"/ \

\ , , _------ -----------,---------- ----------- -, , \
I \

t--

\ , _-------- ---- --------,
-.J J "l

.)-.

23

structural Verilog netlist), and functionality verification. Finally, the routed design is

tested using a Verilog test bench where different performance metrics are determined.

2.5.1 RTL Development Using Verilog HDL

Verilog HDL is one of the most widely used hardware description languages (HDL)

in the development of modern ASICs. It is used to describe the design, verification,

and implementation of digital circuits [15]. HDLs differ from other programming

languages in describing signal propagation times and their dependencies (sensitivity).

RTL employs a constrained HDL format using gate level, transistor level, and behav-

ioral level descriptions, and provides an efficient way of synthesizing any given design.

Synthesis productivity advantages have propelled HDL technology into a central role

for digital design compared to schematic methodologies because of its features to

provide high speed, low power, and the ability to synthesize circuitry. HDL also

provides a simulation and debugging environment in validating a design’s intended

functionality. This project uses Modelsim [16] and NC-Verilog [17] simulators for

simulating RTL and synthesized netlists.

2.5.2 Logic Synthesis and Automatic Place and Route

Logic synthesis is the process of converting a RTL description of design into an

optimized gate-level representation (structural Verilog) using cells from a standard cell

library. The generated structural Verilog is expected to provide the same functionality

with extracted delays assigned to each cell from the technology process library. Logic

synthesis can generate a ddc file (binary database file for further processing), sdf file

(standard delay format file to back-annotate the simulations with extracted timings

from cells), sdc file (standard design constraint file for physical implementation of

the circuit), and pow file (reports the required power for the design). This project

uses IBM’s 65nm process technology library and Synopsys Design Compiler tool for

synthesizing the design.

Place and Route is the process of converting a structural Verilog description into a

physical circuit (layout with pins and metal routing) which involves floorplan synthesis

depending on the aspect ratio and cell utilization, power grid and clock tree synthesis,

24

placement of the standard cells, and routing the wiring connections between them.

During the placement of standard cells, an abstract view of the cells is used since

it has the physical information about the size and shape of the cells, the connection

points of the cells (pins), and routing abstractions in those cells. This project uses

Cadence SoC Encounter to automatic place and route the design. SoC Encounter

requires standard cell characterized file (liberty format file), cell abstract information

(.lef file), structural Verilog, and sdc files from Synopsys DC Compiler. Placing and

routing the design involves floor planning, power planning, placement of standard

cells, pre- and postclock tree synthesis, and final routing. The final routed design is

optimized and geometry and connectivity are verified. The Place and Route process

generates design exchange format (DEF) file (used to read layout back in layout

editor), structural Verilog (final placed and routed circuit), sdf file (standard delay

format file to back-annotate the simulations with extracted timings from cells and

interconnect), spef file (reports the extracted information on parasitics used in power

analysis) and pow report file (reports leakage power, internal power, and switching

power of the design).

2.5.3 Design Testing Environment

This project design uses an emulated pipelined RISC CPU as the Master IP core

[18], a synchronous memory block (ROM and RAM) as the Slave IP core, and a NoC

built from synchronous routers [19]. A Verilog test bench is used to drive the device

under test (DUT) inputs and monitors the outputs. Figure 2.6 illustrates the design

testing environment. The test bench generates the required traffic stimulus for the

project design testing in both single- and multifrequency clocked domains. In the

multifrequency clocked domain, the test bench generates three asynchronous clocks

for Master IP, Slave IP, and NoC, respectively.

The test bench is customized to generate pipelined CPU traffic compatible with

synchronous memory. Figure 2.7 shows the customized 32-bit CPU address format

used in this project implementation. The 32-bit logical address generated from Master

IP consists of routing information, physical address, transaction type, operation mode,

and burst data.

25

Verilog Test Bench
with initial block and

required traffic

Test Module

Top Instance

Verilog Netlist
module (DUT)

DUT inputs

DUT outputs

Figure 2.6. Design Testing Environment Using Verilog Test Bench

Routing

Information
16 - Bit Physical Address

(16 Bits)
Burst Info

(7 Bits)
R/W Mode Unused

1525 01622232431 26

 Burst Length BP
Burst

Sequence 16182022

Source Routing
Bits (6 Bits)

 Control Bits (18 Bits)

 Payload (48 Bits)

 R/W Mode MTagID Burst
Information

Addr (16

bits)
WData(32 bits)

 Control Bits (18 bits)

32 – Bit address from Master IP

Request Transaction Packet Format

6 01117

19

7910

DValidDByteEn

141516

 Payload (48bits)

Figure 2.7. Pipelined CPU 32-Bit Address Format

2.5.4 Design Metrics Computation

With technology advancement, power management is one of the major design

challenges for deep submicron technologies where timing, power, and signal integrity

are interrelated. Power analysis is a crucial aspect in a design flow since it can affect

packaging, cooling decisions, device battery life, and cheap reliability. PrimeTime PX

(PTPX) is an accurate power analysis tool that includes timing interdependencies for

power dissipation that can be used at various stages in the design flow [20]. It also

performs static timing analysis and signal integrity analysis.

PrimeTime computes the total power dissipated in a design from dynamic and

static power dissipation components. Dynamic power is used during switching of the

26

transistors and short circuit of power rails. Static power dissipation or leakage power

occurs when the devices are at steady state. PrimeTime power analysis can be done

in a vector-free flow (independent of switching activity) or RTL VCD flow (using

switching activity from simulations). In this project, a more accurate RTL VCD flow

methodology is chosen for power analysis. Figure 2.8 demonstrates the PrimeTime

Power analysis RTL VCD flow used in this project. RTL VCD flow requires the

following steps to be executed:

Create RTL VCD

Testbench
with VCD
dumpvars

RTL
Design

Modelsim
Simulator

RTL
VCD

Enable Power Setup

Read Design Data

1. Read Technology Lib
2. Read Design Netlist
3. Read Design

Constraints
4. Read Parasitics

Power Analysis

1. Convert vcd to saif and
annotate on nets &
registers

2. Propagate Activity to
nets/registers not
annotated from RTL
VCd

3. Calculate power using
Primetime timing data

Report Average
Power

pt_shell

set Power Analysis TRUE

set link_library
read_verilog /read_db
link
read_sdc
read_parasitics

read_vcd rtl.vcd -rtl_direct

update power

report power

Sample _RTLVCDSynopsis Primetime

Specify Activity
RTL VCD

Figure 2.8. PrimeTime (PX) Power Analysis RTL VCD Flow

27

a. Create a VCD file from Modelsim simulation of the final physically routed design.

b. Enable the power analysis setup and read in the technology library (tech.lib) file,

final routed structural Verilog file, design constraints (sdc) file, and parasitics file

(spef).

c. Read the VCD file into PrimeTime and specify the activity.

d. Convert the VCD file into SAIF (switching activity interchange format) file and

annotate on nets and registers.

e. Propagate activity to nets/registers not annotated from RTL VCD.

f. Calculate the power using PrimeTime timing data.

g. Report average power, timing constraints, and switching activity.

This project reports energy required per each transaction in nonsplit and split

modes of operation as one of the performance metrics. Energy per transaction is

derived from total average power and the total test time. Energy is the capacity to

do work over the time.

Total Energy ⇐ Average Power × Test time (2.1)

Energy/Transaction ⇐ (Total Energy)/No. of Transactions (2.2)

2.6 Validation of OCP Complaint IP cores

The OCP-IP organization provides the CoreCreator II tool for its members to

verify OCP compliant design implementations [21] [11]. Figure 2.9 shows the setup

of the OCP CoreCreator tool. The CoreCreator tool automates the tasks of building,

simulating, verifying, and packaging OCP compatible cores. It can be used with both

traditional Verilog and VHDL test bench environments to create directed tests for

OCP designs. The OCP-IP organization provides the Verification IP entities and

SOLV (Sonics OCP library for verification) for debugging tools. Debugging tools

include an OCP checker to ensure protocol compliance, a performance analyzer to

measure system performance, and a disassembler, which helps to view the behavior of

OCP traffic. This tool is used in validating this project design flow. One restriction

to this work is that the tools are limited to test and verify clocked interface designs.

28

Test Bench Examples

OCP
Slave

OCP
Master

OCP
Slave/
VIP S

OCP
Master /

VIP M

Simulator

Testbench

OCP
(System / Core)

SVA Checker

ocpdis

ocpperf

Monitor

svt_ocp_generate Core Creator II Components

Dataflow, Sideband and Test signals

Dataflow, Sideband and Test signals

Figure 2.9. CoreCreator tool for Validating OCP Compliant IP Cores

Once different design interfaces are built, we can test the clocked architecture

design implementation with the core creator tool for its performance to verify OCP

compliance. Using the CoreCreator tool, we can measure the master/slave core

metrics like issue rate (throughput), maximum number of operations outstanding

(pipelining support), and the effect of burst support on issue rate and unloaded

latency for each operation (only for slave core). Future work will translate the

OCP compliant clocked design into elastic and asynchronous implementations. If this

translation modifies the timing protocol, but remains faithful to the OCP protocol

behavior, then we assume these versions will retain their OCP compliance.

CHAPTER 3

DESIGN DESCRIPTION AND

SPECIFICATIONS

3.1 Design Description

OCP is one of the viable core-centric solutions to address contemporary SoC

design implementation requirements. Commercially existing native OCP interfaces

(integrated into IP Cores) are fully synchronous in nature which limits an IP core’s

capabilities to interface with other clocking control methodologies. In order to ex-

plore other clocking control methods, this research study designs and builds modular

clocked wrapper OCP interfaces (OCP located outside the IP core) for existing IP

cores. Figure 3.1 illustrates the project design structure.

This research develops a new approach to increase modularity, improve reliability,

and reduce design time to interface different IPs to the OCP socket. This consists

of splitting the design into common shared components and custom back-ends that

are specific to the IP core. The common components consist of OCP master and

slave components and a domain interface (DI) module. The DI module is used to

synchronize mutually asynchronous clocked domains and dataflow control. These will

be described in more detail in this chapter.

3.1.1 Design Structure

3.1.1.1 Modular Components Across Design

This project will build clocked NoC interfaces which enables multifrequency clocked

designs to utilize these interfaces for standard communication. Later, as an extension

to this research work, asynchronous and elastic NoC interfaces will be derived based on

clocked NoC interfaces. As part of this project implementation, on a high level, it will

design and implement clocked OCP interfaces between IP cores and on-chip network

30

Core
B.E

F.E F.E
Core
B.E

DI DIDI DI

NW
BE1

IP
Core

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

System Initiator System Target

B.E : Back-ends – Customized interfaces to IP Cores and NoC
F.E : Front-ends – OCP entities (Master and Slave)
D.I : Domain Interface Module

Figure 3.1. Design Structure with Customized Back-ends, Front-ends and DI
Module

fabric for single- and multifrequency clocked domains. Figure 3.1 illustrates the

communication between two IP cores over an on-chip network fabric using customized

back-end modules interfacing to the IP cores and NoC, common front-end (OCP

entities), and domain interface modules.

In providing efficient and modular NoC interfaces, this project will build cus-

tomized components which can be reused. In Figure 3.2, the dotted regions 1 and 2

represent the same design. The only difference is that the OCP master entity and

DI module is communicating with an IP core back-end interface in the first dotted

region, and in the second dotted region, it is communicating with a network fabric

back-end interface. This is the same for dotted region 2.

The key point to note here is that a single design for the front-end modules and

DI module will communicate with any back-end IP core or network fabric back-end

interfaces. This improves modularity and simplifies design validation. The design

and implementation includes the following:

a. Designing the customized back-ends to IP cores and network fabric.

b. Designing the OCP master and slave entities (front-end interfaces) and DI module.

c. Implementing the DI module with asynchronous FIFOs for GALS architectures.

d. Determining the proper placement of buffering and synchronizers across the design

path (IP core-network fabric-IP core) to improve the design performance.

31

Core
B.E

F.E F.E
Core
B.E

DI DIDI DI

NW
BE1

IP
Core

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

System Initiator System Target

B.E : Back-ends – Customized interfaces to IP Core and NoC
F.E : Front-ends – OCP entities (Master and Slave)
D.I : Domain Interface Module

1 12 2

Figure 3.2. Design Structure with Modular Components Across Design Path

Also depending on the IP core architectures, the interface between OCP master

and slave entities (front-end modules) can be varied based on design requirements.

The design structure in Figure 3.2 enables the study of different clocking methodolo-

gies. For example, mutually asynchronous clocked IP cores can be interfaced with

clocked on-chip network fabrics.

3.1.1.2 Synchronization and Buffering Placement

Communication between different architectural IP cores and on-chip network

fabric in a GALS SoC requires synchronizers and buffering to mitigate metastability

and uncertainty in timing [22]. Determining the proper placement of synchronizers

and buffering to support multifrequency clocked domains is one of the major tasks

in this study, since performance can be degraded or improved depending on the

placement across the design path. Asynchronous dual clocked pointer FIFOs are

employed for synchronization and dataflow control. Synchronization and buffering

schemes will not be employed across OCP (master and slave) entities [23]. OCP is

a point to point interface, and the data transfer between the two entities (master

and slave) should use the same clock since request-acknowledgments are done with

mutual consent. This also simplifies the validation of the OCP protocol. With this

assumption, Figure 3.3 illustrates the possible locations where synchronizers and

buffering can be employed for effective communication.

32

Core
B.E

F.E F.E
Core
B.E

DI DIDI DI

NW
BE1

IP
Core

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

System Initiator System Target

-- Possible locations for synchronizer and buffering placement

Figure 3.3. Synchronization and Buffering Placement Across Design Path

3.1.2 Network Interface Structure

Figure 3.4 shows the structural view of the network interface, consisting of front-

end and back-end submodules and a domain interface in between [24]. Typically,

the network front-end modules can be implemented using a standard point-to-point

protocol allowing IP core resusability across multiple SoC designs, and the back-end

interface to IP cores are implemented using existing protocols such as AMBA AXI,

IBM CoreConnect, and OpenCores Wishbone [10].

In this project, back-end modules implement customized logic for the IP core and

NoC to convert their native signals into the DI protocol. The front-end modules are

implemented using OCP. A generic DI will be designed which acts as a bridge between

back-end modules and OCP entities to provide buffering and flow control across the

design path.

IP
Core

IP
Core /
NoC

Back
End

Front
End

DI

Domain Interface

Figure 3.4. Standard Network Interface Structure

~'~

'----

33

3.1.2.1 Back-end and Front-end Interfaces

The back-end submodules are custom designs for each specific IP core and NoC

that interface them to the domain interface protocol, which in turn communicates

with the OCP entities (master or slave). All communication occurs using a compile

time configurable address, data, and control information format. Master IP core

back-ends provide the functionality to generate source routing information from the

IP core’s logical address, which are used for sending and reception of packets to the

correct destination over on-chip network fabric.

Network back-ends are customized to provide packetization and depacketization

functionalities. The Slave IP core end of the network back-end stores the received

source routing bits, tagging, and transaction information when a OCP protocol

requires a response from the slave back to the requested Master IP core. This is

used to compose the response network packet. The NoC front-end submodules are

implemented using OCP and can act as either an OCP master or slave entity. The

front-end modules are interfaced together to form the OCP point-to-point interface.

The OCP entities are modular in nature to provide reusability across the design.

3.1.2.2 Domain Interface

The domain interface module is designed basically to synchronize the transactions

across different clock regimes and control dataflow using buffering. Also, it pipelines

the incoming data from IP cores and maps the existing IP cores signals and values

to OCP compatible signals and values using registers (FIFOs). The same DI will be

reused across the path (IP core-NoC-IP core) and its buffering capacity is defined

by the IP core communication requirements and NoC bandwidth. The tradeoff of

employing an intermediate DI protocol is that it may add some latency as part of

the conversion between IP core signals to OCP compatible signals. This conversion

usually does not add significant latency but increases design modularity. In the case

of the multifrequency clocked domain, the DI module adds significant latency in

request and response paths because it becomes the point of synchronization between

clock domains. Synchronization also increases power dissipation, area, and reduces

maximum bandwidth due to the employment of FIFOs.

34

3.1.3 Synchronization and Buffering

Interfacing different architectural IP cores can introduce metastability and uncer-

tainty in timing during the transactions between two mutually asynchronous clock

domains [22]. Synchronization and buggering are employed to provide safe synchro-

nization between IP cores and the NoC. Buffering is not only used for supporting

multifrequency clocked domains but also increases the throughput and reduces the

overhead at peak times (traffic congestion). Determining the proper placement of

synchronizers and buffering is one of the research goals in this project implementation,

since performance can be degraded or improved depending on the placing across the

design path (IP core-NoC-IP core).

3.1.3.1 Asynchronous Clocked Pointer FIFOs

Asynchronous FIFOs are employed to safely pass data between mutually asyn-

chronous clocked domains. Data are written to a buffer (FIFO Memory) from one

clock domain and the data are read out in another clock domain, where the two

clock domains are asynchronous to each other [23] [25]. Figure 3.5 illustrates an

asynchronous pointer FIFO design [23]. This design consists of FIFO memory, gray

code pointers, two-flop synchronizer modules, and modules to generate stall signals

into two clock domains (write full and read empty signals). FIFO memory (buffer), is

accessed by both clock domains and the buffer can be instantiated using a synchronous

dual-port RAM or created using a 2-D register array. Gray code pointers are used to

generate write pointer, read pointer, and write full and read empty signals depending

on the access of FIFO Memory. The two-flop synchronizer modules are used to

synchronize write and read clock domains by synchronizing read pointer into the

write clock domain (using write full signal) and by synchronizing write pointer into

the read clock domain (using read empty signal).

Operation: The write pointer always points to the next word to be written on

the FIFO Memory. After the FIFO write operation, the write pointer is incremented

to the next location to be written. Similarly, the read pointer always points to the

current FIFO address to be read, and after the read operation, it is updated to

point to the next location. On reset, both the pointers are set to zero which asserts

35

Figure 3.5. Asynchronous Dual Clocked Pointer FIFOs

read empty signal to high, pointing the read pointer to invalid data (since the FIFO

Memory is empty and the empty flag is asserted). When the first data word is written

to the FIFO memory, the write pointer increments and points to next location and

de-asserts the empty flag. The read pointer, which is still pointing to the first valid

data location, reads out the data onto output port (RDATA). If the receiver clock is

fast and if it does not require two write clock cycles for synchronization and reading

out data, it can lead to both pointers pointing to same address, indicating that

the FIFO is empty. A FIFO empty condition happens in case of a reset operation

and when the read pointer catches up to the write pointer. A FIFO full condition

(write full signal is asserted) happens when both read and write pointers address to

the same location, but in this case, the write pointer has wrapped around (faster)

and caught up to the read pointer.

This design adds an extra bit to each pointer to distinguish between full and empty

conditions. When the write pointer reaches the maximum FIFO address, the write

pointer increments the unused most significant bit (MSB) while resetting the rest of

the bits to zero, indicating that the FIFO has been wrapped once. The same occurs

for the read pointer. The MSBs of two pointers will now determine if the FIFO is

either full or empty.

36

3.1.4 Network-on-Chip Using Synchronous Routers

In this research, a NoC is employed as the communication medium between IP

cores. A 3-port synchronous router designed by fellow research students is used as the

NoC. Figure 3.6 illustrates the 3-port clocked elastic router architecture [19]. Each

router consists of three switch and merge modules. Each switch and merge module

has the buffering capability using one set latches at the input and output ports. The

switch module guides the incoming data to one of the outgoing ports and the merge

module arbitrates between two input requests to an output port.

Routers used in this design employ simple source routing, single-flit packets, and

low latency paths [19] [26]. Each packet consists of a header containing the source

routing information and the data field. Packets are switched from the input port to

one of the output ports through a simple demultiplexer using the most-significant

routing bit. The address bits are rotated each time and the next routing bit (MSB)

controls the switching for the output packet. In this design, routers are configured at

support 6 source routing bits and 66 bits of data.

3.1.4.1 Data Packets Switching Technique

Employing on-chip networks on an SoC is motivated from its novel solutions to

support concurrent data transfers from the same resource, data restoration, and plat-

form (modular components) to build reusable IPs [27]. The choice of packet switching

Switch
A

Merge
A

M
erge
B

Sw
itch
B

Switch
C

Merge
C

Figure 3.6. 3-Port Synchronous Router Design

37

technique for the on-chip network fabric is important to gain better performance.

Different switching techniques are available such as store-and-forward, virtual-cut-

through, and wormhole [24]. Each switching technique has different performance

properties depending on the requirements and hardware resources.

Store-and-forward is used in this design to route packets from one router to the

next. Store-and-forward routing analyzes packets passing through and therefore does

content-aware packet routing. Normally, in this technique, big packets introduce

extra packet delay at every router stage and also require a significant amount of

buffer space to store multiple packets at the same time. This design employs single

flit packets which requires minimal buffering space and does not introduce significant

packet delay at each router.

3.1.4.2 Data Packetization and Depacketization

Packet preparation is one of the key stages of a network interface architecture since

the latency associated with it can significantly impact overall communication latency

[27] [24]. In this project, the network back-end modules act as wrapper logic used for

packetizing and depacketizing request and response data at the NoC boundaries. At

the network fabric sender end, it receives the contents from the DI module, prepares

the packets, and dispatches them onto the NoC. At the network fabric receiver end,

it receives the packets from the networking logic and presents the content to the DI

module.

Typically, packets transported on NoCs consist of a header, control information,

payload, and tail [24]. The header contains the source and destination address.

Control information contains transaction type, tagging, and burst data. The tail

contains error checking and correction code. In this design, packet format is cus-

tomized to contain a header, control information, and payload. The header consists

of source routing bits which will be used in traversing the request packets from source

to destination address and also will be used for back traversing the response packets

from destination to source address. At the NoC back-ends, data packetization involves

constructing the request/response packets containing the source routing bits, control

information, and payload from received signals from DI module. Depacketizing the

38

data at network back-ends involves conversion of received request/response packet

data into DI compatible signals. In this project design, 72-bit packets are used.

3.1.4.3 Request Packet Format

The request packet is a 72-bit packet comprised of source routing bits, control

information, and payload as shown in Figure 3.7. Source routing bits are used to guide

the request transaction packets to the correct destination across the on-chip network

fabric and later during the response phase, the same source routing information will

be used for traversing back to the source IP core. Control bits include information

about transaction type, mode of operation, request tag, burst data, and write data

byte enables. The payload consists of a 16-bit address and 32-bits of write transfer

data.

3.1.4.4 Response Packet Format

In modularizing the design, the response packet is constructed similar to a request

packet at the cost of not utilizing all the available bits. Figure 3.8 shows the response

packet format. Response packets also contain source routing bits, control bits, and

payload, but the difference is in the control bits and usage of the payload bits. Only

5 of the 18 control bits are used for the response type (2-bits) and response tag

information (3-bits). The payload is only partially used, sending 32-bits of read data.

The remainder of the bits are zero filled.

Source Routing
Bits (6 Bits)

 Control Bits (18 Bits)

 Payload (48 Bits)

 R/W Mode MTagID Burst
Information

Addr (16

bits)
WData(32 bits)

 Control Bits (18 bits)

6 01117 7910

DValidDByteEn

141516

 Payload (48bits)

Figure 3.7. Request Packet Format

39

Source Routing
Bits (6 Bits)

 Control Bits (18 Bits)

 Payload (48 Bits)

 Resp STagID

 RData(32 bits)

 Control Bits (18 bits)

2 017 34

 Payload (48bits)

Null (16 Bits)

5
Null (13 Bits)

47 16 15 0

Figure 3.8. Response Packet Format

3.1.4.5 Data Flit Implementation

A typical protocol layer architecture consists of the physical layer, link layer,

routing layer, transport layer, and protocol layer [28][27]. The physical layer level

consists of the wiring and the transmitter and receiver hardware. The transmission

of data is in the form of phits (physical data units). Each link layer is responsible

to send and receive data from the physical layer in the form of flits (flow control

units). The routing layer is responsible for generating the header message containing

source and destination addresses. The transport layer is optional and is not used in

point-to-point connections. The protocol layer is responsible for sending and receiving

packets on behalf of the device. In this project design, 72-bits of single data flits are

send and received across NoC. Figure 3.9 shows the single flit data format used in

this project implementation.

 SRB (6 Bits) Control Bits (18 Bits)

40 Bits (71-32)

 PayLoad (32 Bits)

32 Bits (31-0) : Write Transaction

 Null

32 Bits (31:0) : Read Transaction

SRB

(6 Bits)

Payload (48)

Control Bits
(18 Bits)

72 Bits

Request Transaction Flit

Response Transaction Packet

 PayLoad (16 Bits)

Addr (16) Data (32)

Figure 3.9. Single Flit Data Format

I I

40

3.2 Design Specifications and Supporting Features

3.2.1 Proposed OCP Subset

In this project, an OCP subset is defined based on the OCP 2.2 specification to

support different IP cores’ communication requirements. Most of the OCP signals

are configurable and can be extended depending on their requirements. Depending

on the defined OCP subset, the back-ends and DI modules are customized to handle

the transactions data. The OCP subset comprises basic dataflow signals, simple

extension signals, burst extension, and tag extension signals. The reset signal is also

supported in this implementation. The following subset of OCP is included in this

implementation:

a. Basic Signals: only MCmd and Clk signals are required; the rest are all optional

• Clk - Clock signal

• MCmd - Transfer command (IDLE, READ and WRITE)

• SCmdAccept - Slave accepts transfer

• MAddr - Transfer address

• MData - Write data

• SDataAccept - Slave accepts write data

• MDataValid - Write data valid

• MRespAccept - Master accepts response

• SResp - Transfer response

• SData - Read data

b. Simple Extensions:

• MByteEn - Byte Enables

• MDataByteEn - Write Data Byte Enables

c. Burst Extensions:

• MBurstLength - Burst length of the current transaction

• MBurstPrecise - Whether current burst is precise or not

• MBurstSeq - Address sequence of the current burst (User Defined, INCR,

WRAP)

41

d. Tag Extensions:

• MTagID - Request tag ID from Master IP.

• MTagInOrder - Current request cannot be reordered on high assertion of this

signal.

• STagID - Response tag ID from Slave IP.

• STagInOrder - Current response cannot be reordered on high assertion of this

signal.

e. Sideband Signals:

• Reset - Asynchronous reset signal.

The above defined OCP subset is implemented to support memory read, write,

and idle operations, including burst transactions with out-of-order responses for

single- and multifrequency clocked domains in both nonsplit and split modes. OCP

supports configurable widths for address, data, bursting, and tagging bits. Table 3.1

lists the OCP subset signals and their chosen widths depending on the IP core’s

communication requirements. This project implements a subset of the OCP protocol;

the complete OCP protocol signals are listed in the appendix.

3.2.2 Supporting Features

This project implementation supports the following features.

3.2.2.1 Modes of Operation

In the nonsplit mode (NSP) of operation, a request is initiated and waits for a

response back from the Slave IP before sending out another request. Pipelining of

request transactions from the same IP core or simultaneous requests from different

IPs are not possible in this mode of operation. In split mode (SP), pipelining of

request transactions from the same IP and simultaneous instantiation of requests is

possible. Due to the pipelining of requests in split mode, performance and throughput

are increased and the maximum NoC bandwidth can be utilized. Split mode reduces

overall latency, increases throughput, and lowers energy per transaction compared to

nonsplit mode.

42

Table 3.1. OCP Proposed Subset

Name Width Driver Function

Clk 1 varies Clock input

MCmd 3 master Transfer command

SCmdAccept 1 slave Slave accepts transfer

MAddr 32 master Transfer address

MData 32 master Write data

MDataValid 1 master Write data valid

SDataAccept 1 slave Slave accepts write data

SResp 2 slave Transfer response

SData 32 slave Read data

MRespAccept 1 master Master accepts response

MByteEn 4 master Byte Enables

MDataByteEn 4 master Write Data Byte Enables

MBurstLength 8 master Burst Length

MBurstPrecise 1 master
Determines Burst Transaction is

precise or not

MBurstSeq 3 master
Determines type of address

Sequence

MTagID 8 master Request Tag from Master IP

MTagIDInOrder 1 master InOrder request transaction

STagID 8 slave Response Tag from Slave IP

STagIDInOrder 1 slave InOrder response transaction

Basic Dataflow Signals

Simple Extensions

Burst Extnesions

Tag Extensions

2

43

3.2.2.2 Burst Transactions

A burst transaction is a set of transfers that are linked together, which have a

predefined address relation and number of transfers. Compared to single data phase

transactions, burst transactions improve data throughput since the address is trans-

ferred only during initial bus grant followed by chunks of data. Burst transactions are

supported not only to increase the throughput but also to reduce latency and data

activity factor across the network router links.

Different burst implementations are possible depending on the burst length (size

of the burst) and burst sequence (relation between the addresses). This project design

supports a maximum burst size of 8 (8* word size) i.e., 256-bits of data. This project

implementation supports three types of address sequences (user defined, incremental,

and wrapped types), and data can be transferred during each clock cycle.

3.2.2.3 Tagging or Out-of-Order Response

Basically, tags are used to support out-of-order response by directly linking the

Slave IP core response to the original request which triggered it. By supporting out-of-

order responses, in most cases, the use of tags can improve overall system performance

since responses are not halted due to dependencies on previous transactions. In this

project implementation, a tag size of 8 is employed.

CHAPTER 4

DESIGN IMPLEMENTATION

4.1 Clocked OCP Design Implementation

The project design implementation includes building of standard OCP interfaces

to IP cores and NoC in single- and multifrequency clocked domains. Figure 4.1 shows

a clocked OCP design implementation with a signal level description from Master

to Slave IP cores. Both designs include customized back-end interfaces to IP cores

and NoC, front-ends (OCP entities), and DI module. A standard ASIC design flow

is used in developing the designs from RTL code to physical placement and routing.

The developed modules are functionally tested at each phase of the implementation.

An emulated RISC pipelined CPU and synchronous memory (RAM/ROM) are em-

ployed as Master IP (system initiator) and Slave IP (system target), respectively, and

customized synchronous routers are used as NoC for testing the functionality. Data

transfer transactions include simple memory read, write, and idle operations (nonsplit

transactions) through pipelining requests (split transactions) with read /write bursts

to complex out-of-order operations (tagging).

The following steps are executed in building OCP interfaces between IP cores and

the NoC in both single- and multifrequency clocked domains.

a. Single-Frequency Clocked Domain Implementation (SFCD):

i. Customized back-end interfaces to IP-cores and NoC

ii. A generic DI module

iii. OCP Master and Slave entities (Front-ends)

iv. Integrating built modules with on-chip network fabric

b. Multifrequency Clocked Domain (MFCD) Implementation: This implementation

utilizes the developed back-ends and front-ends modules from single-frequency

45

M
a

s
te

r
IP

 C
o

re

B
a

c
k

-
E

n
d OCP

Master
OCP
Slave

CYC

STB

ADR

DATO

ACK

WE

DATI

Resp

WData

RData

STag_ID

D
I

MCmd

MAddr

MData

SCmdAccept

MDataValid

SDataAccept

SData

SResp

MTag_ID

MBurstPrecise

STagID
STAG_ID

MTAG_ID

SEL

RW

Addr

DByteEn

DValid

Resp

WData

RData

STag_ID

MTag_ID

RW

Addr

DByteEn

DValid

MBurstSeq

MBurstLength

MTagID

D
I

Resp

WData

RData

STag_ID

MTag_ID

Addr

DByteEn

DValid

Resp

WData

RData

STag_ID

MTag_ID

RW

Addr

DByteEn

DValid

N
o

C

B
a

c
k

-
E

n
d

OCP
Master

OCP
Slave

S
la

v
e

 I
P

C

o
re

Resp

WData

RData

STag_ID

D
I

MTag_ID

RW

Addr

DByteEn

DValid

Resp

WData

RData

STag_ID

MTag_ID

RW

Addr

DByteEn

DValid

D
I

Resp

WData

RData

STag_ID

MTag_ID

RW

Addr

DByteEn

DValid

Resp

WData

RData

STag_ID

MTag_ID

RW

Addr

DByteEn

DValid

S
la

v
e

B
a

c
k

-
E

n
d

CE

WE

DATI

SEL

OE

DATO

ADR

MByteEn

MCmd

MAddr

MData

SCmdAccept

MDataValid

SDataAccept

SData

SResp

MBurstPrecise

STagID

MBurstSeq

MBurstLength

MTagID

MByteEn

Stall Stall

RW

Stall Stall

Stall Stall StallStall

DValid

DValid

Stall_
Resp

Stall_
Req

DValid

DValid

Stall_
Resp

Stall_
Req

Data

Data

Data

Data

N
e

tw
o

r
k

B
a

c
k

-
E

n
d

N
e

tw
o

rk
O

n
-c

h
ip

N
e

tw
o

rk

o
n

-C
h

ip

(N

o
C

)

CLK

RST

CLK

RST

Figure 4.1. Clocked OCP Design Implementation with IP Cores and NoC

+ ~ ~ l ~
'--, '---1

f------.

~
~

~

~
~ - r------.

-

T l 1 L 1
'--" ~ '---1

~

~
~

+-

¢=
- -

46

clocked domain. The DI module design and implementation with FIFOs is pivotal

in this implementation.

i. Customize and build asynchronous dual clocked pointer FIFOs

ii. A generic DI module with asynchronous FIFOs

iii. Determining proper placement of buffering and synchronizing schemes at

• IP core and network fabric boundaries

• Interface between back-end modules and DI module

• Interface between front-end modules (OCP entities) and DI module

iv. Integrating built modules with on-chip network fabric

4.1.1 Single-Frequency Clocked Domain Implementation

Figure 4.2 illustrates a single-frequency clocked domain (SFCD) design with NoC

interfaces over a single IP Core-NoC-IP Core path. The following steps list the data

flow transaction steps across the design in a single-frequency clocked domain.

a. A global clock and asynchronous reset is employed to the IP cores, On-Chip

network fabric and NoC interfaces.

b. Communication between all modules is triggered on the positive edge of the clock

cycle.

c. On assertion of the asynchronous reset signal high, all the current transaction data

are cleared.

d. During request and response phases, transaction data are traversed and guided

from one module to the next module in a pipelined stage fashion as described

below.

• Master IP core required communication signals are mapped to the customized

master back-end signals.

• Master back-end transfers the customized signals onto DI stage and pipelined

at OCP master entity.

• OCP master entity maps the customized signals into OCP protocol compat-

ible signals and transfers them onto the OCP slave entity.

• The OCP slave entity remaps the OCP protocol signals into DI module signals

which are pipelined at the on-chip network fabric back-end.

47

Core
B.E

F.E F.E
Core
B.E

DI DIDI DI

NW
BE1

Master
IP Core

Slave
IP Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

System Initiator System Target

B.E : Back-ends – Customized interfaces to IP Core and NoC
F.E : Front-ends – OCP entities (Master and Slave)
D.I : Domain Interface Module

Single Frequency Domain

Figure 4.2. Single-Frequency Clocked Domain (SFCD) Implementation with Mod-
ular Components Across Design

• The network back-end interface packetizes the data in the required packet

structure format and presents it to the on-chip network fabric.

• Data flits are traversed across the routers using source routing information

and presented at the other network fabric back-end.

• The other network fabric back-end interface depacketizes the data and the

above process is followed until the data are mapped to required Slave IP

cores existing signals.

e. Stall signal generated from any successive module is traversed back to source IP

generating requests.

f. In nonsplit operation mode, the IP core master back-end module blocks the channel

until the reception of a response for the nonsplit transaction.

g. In split mode, simultaneous or pipelining of requests are possible and inclusion of

tagging supports out-of-order responses from Slave IP.

h. Burst read/write transactions are supported with passage of burst information

(burst length and address sequence) from Master IP to Slave IP.

48

4.1.1.1 IP Cores Back-end Modules

Figure 4.2 shows the customized back-end interfaces to IP cores (Master Back-end

and Slave Back-end). IP core back-ends are customized to interface standard point-

to-point protocols like OCP. The IP core back-end modules are primarily responsible

for mapping legacy IP core signals to a defined set of DI module signals and vice-versa.

Mapping of signals between back-ends and DI module include request, response,

tagging information, and stall signals.

The master back-end provides the functionality to determine data validity of

each initiated request by validating request transaction control signals from IP cores

and stall signals from the DI module. The master back-end is also responsible for

generating source routing bits from the received logical address using customized

memory mapped registers and inserting them as part of the address which traverses to

the NoC back-end. In this implementation, the master back-end is distinguished from

the slave back-end in the handling of operation modes (nonsplit and split) depending

on the received commands from a Master IP. In nonsplit mode, it does not allow

the IP core to initiate another transaction or pipeline any more requests before the

reception of response to previous nonsplit transaction.

A slave back-end handles the functionality to enable the control signals (Chip

Enable, Read/Write Enable) of a Slave IP core (Synchronous memory) for the current

transaction depending on the valid requests received from DI module. It is also

responsible for communicating burst, tagging information, and for synchronizing the

response data from Slave IP to DI module.

4.1.1.2 Domain Interface (DI) Module

The domain interface module serves as a bridge between IP cores/NoC back-ends

and front-ends (OCP entities) following standard network interface structure. The

DI module handles the request and response data transfer flow between back-ends

and front-ends. In this implementation, the need for asynchronous FIFOs to provide

synchronization and buffering is not required with a global clock employed to all

modules. The synthesized and physically routed DI module introduces combinational

logic delay on the output ports.

49

4.1.1.3 On-Chip Network Fabric Back-end Modules

Each network fabric back-end module is responsible for data packetization and de-

packetization functionalities with a single flit implementation methodology onto the

NoC using a store-and-forward packet switching technique. Figure 4.3 shows on-chip

network back-ends interfacing the NoC. Packetizing of the data includes assembling

source routing bits, control information, and payload into a single required transaction

format packet (flit). Depacketizing the data involves retrieving the required control

and data signals of the DI module. Each data flit containing 72-bits of information is

transmitted and received to/from the NoC with a DataValid (DValid) signal asserted

high during the transaction indicating valid data on the channel. For transactions

where a stall signal is asserted high or DataValid signal asserted low during dataflits

transmission/reception, the current dataflits are ignored as invalid data at the NoC

and network back-ends.

The Slave IP end of the network fabric back-end is customized to store the source

routing information in memory arrays for sending the response packets back to the

correct destination address. Initially, during the request transactions, the network

back-end stores the required routing, tag bits, transaction type, and burst information

bits in 2-dimensional register arrays. On reception of a response from a Slave IP, the

tag bits are compared with the stored information and the correct destination address

routing bits are retrieved. Once the destination routing bits are retrieved for the

current response transaction, the allocated memory is cleared for storing next request

Network Back-End 1 Network Back-End 2

N
o

C
 (

R
o

u
te

rs
)

Packetization

De -
Packetization

Dvalid_BE1 Dvalid_BE1

Dvalid_BE2Dvalid_BE2

Stall_RespStall_Resp

Stall_Req Stall_Req

OutFlit

OutFlit

InFlit

InFlit

Request Data

Response Data

Request Data

Response Data

Packetization

De -
Packetization

Figure 4.3. On-Chip Network Back-ends Interfacing NoC

50

transaction routing bits. In case of burst request transactions, the allocated memory

is cleared only after reception of the required number of burst responses from the

Slave IP. In this design, 2-dimensional memory arrays each with 8 words of capacity

are used to maintain the traffic.

4.1.1.4 OCP Master and Slave Entity Modules

OCP is a point-to-point synchronous interface with complimentary master and

slave entities communicating in a peer-to-peer fashion [11]. Each OCP entity can only

communicate with its complementary side of OCP. The OCP master and slave entities

are modularized for reusability across the design. Depending on the requirements

of a system, an IP module can have only OCP Master or OCP Slave or both for

communicating with the external world. Figure 4.4 illustrates the transaction phases

between OCP entities.

During the request phase, each transfer across the complementary entities starts

with a request initiated from the OCP master presenting a transfer request command

(MCmd), address, tag bits (MTagID), and other control information to the OCP

slave. Depending on the Slave IP or bus availability to accept the request, the

OCP slave entity acknowledges to the OCP master with a slave accept transfer

signal (SCmdAccept). If the slave is ready to accept the request, it asserts the

SCmdAccept signal high and the OCP master sends out the current transaction data

in the Datahandshake phase on the next cycle. The OCP slave, after receiving the

current transaction data, acknowledges the OCP master by asserting SDataAccept

OCP
Master

MCmd. MAddr, MBurstLength, MTagID

SCmdAccept

MData, MByteEn

MDataValid

SResp, STagID, SData

SDataAccept

OCP
Slave

MRespAccept

Request Phase

Response Phase

DataHandshake
Phase

Figure 4.4. Transaction Phases between OCP Master and OCP Slave Entities

51

signal high and maps the request data into the DI module compatible signals. If the

slave is busy, then the OCP slave de-asserts the SCmdAccept signal low which makes

the OCP master assert and maintain the stall signal high back to DI module high

until the OCP slave is ready to accept the next request. During the response phase,

the OCP slave presents the response data from the Slave IP/NoC for the requested

transaction with a response signal (SResp), response tag bits (STagID), and read

data (SData) signal. On reception of a response, the OCP master acknowledges

the OCP slave by asserting MRespAccept signal high. This process continues. The

datahandshake and response phases are optional between OCP entities.

4.1.2 Multifrequency Clocked Domain Implementation

Figure 4.5 illustrates the design of a multifrequency clocked domain (MFCD).

The back-ends and front-ends from the single-frequency clocked domain are reused

in a multifrequency clocked domain. In a multifrequency clocked domain, the IP

cores and NoC can be operated at different clock frequencies, resulting in mutually

asynchronous clock domains. In order to avoid metastability and uncertainty in

timing when interfacing two mutually asynchronous clock domains, synchronization

and buffering is implemented in the DI module. The DI module employs asynchronous

dual clocked pointer FIFOs in the request and response paths to provide synchroniza-

tion, buffering, and dataflow control. In this domain, the same dataflow transaction

steps as the single-frequency clocked domain are implemented, with the exception of

added synchronization and buffering in the DI module.

FIFO placement across the design is one of the critical steps in this project

implementation since performance can be degraded or improved depending on the

placement across the design path (IP core-NoC-IP core). Synchronization can be

employed in any of the DI modules while crossing from one clock domain to another

clock domain. Note that it is preferable to have the same clock domain at the IP

core back-ends and front-ends (OCP entities), since this reduces the overhead of

synchronizers and buffering. In Figure 4.5, the Master IP, Slave IP, and NoC are

in mutually asynchronous clock domains. In this scenario ,it is always advisable to

employ synchronization and buffering in the DI modules closer to on-chip network

52

Core
B.E

F.E F.E
Core
B.E

DI -1 DI - 4

DI module
with FIFOs

NW
BE1

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Slave

System Initiator System Target

Front-ends (OCP entities) operating on IP Cores clock frequency
NoC and network B.E are operating on NoC clock
D.I module with FIFOs has dual clocks (for writing into and reading out transactions simultaneously in the request and response path).

IP
Core

DI module
with FIFOs (DI-3)

OCP
Slave

OCP
Master

DI -2 DI -3

Figure 4.5. Multifrequency Clocked Domain (MFCD) Implementation Using Asyn-
chronous Clocked FIFOs

fabric back-ends. Employing asynchronous FIFOs only in the DI modules closer to

network fabric back-ends not only segregates the NoC from IP cores but also provides

an efficient way to reduce the overhead of synchronization and buffering on IP core

back-ends and front-ends.

4.1.2.1 DI Module with FIFOs

Figure 4.6 shows a DI module with integrated asynchronous FIFOs. In Figure 4.5,

DI modules DI-2 and DI-3 have integrated FIFOs. Module DI-2 has two mutually

asynchronous clock signals as inputs, the write clock (WCLK) and read clock (RCLK).

In the request path, the request transaction data from the OCP slave entity are

written into DI module (FIFO memory) using WCLK and the network fabric back-end

reads out the data from DI module (FIFO memory) using the read clock (RCLK).

Similarly, in the design, module DI-3 uses the write clock to write request transaction

data from the network fabric back-end and OCP master reads out request data from

DI module (FIFO memory) using read clock (RCLK). This process continues. In the

response path, FIFOs are employed using the same mechanism as the request path.

I I
~ ________________ , _______ 1 _________________________ J. ______ , • _________________ •

, " I I " '\

" \,' I I '/ \
I I I J I

I

I
I

I I I I
\ 1\ I I I \ I
', _________________ " , _______ L _________________________ J _______ ,I ', __________________ "

53

Back
End

Domain Interface

Front
End

Request Path

Response Path

Dual
Clocked

FIFOs

Dual
Clocked

FIFOs

CLK1

CLK1

CLK2

CLK2

Request Path

Response Path

rempty

rdata

wfull

wdata

wfull

wdatardata

rempty

WCLK RCLK

RCLK WCLK

Figure 4.6. DI Module with Asynchronous Clocked FIFOs

Whenever the two pointers (write and read) catch up with each other, or on reset,

an additional two clock cycles are required to synchronize signals between the clock

domains. In the case where the write pointer catches up with the read pointer, an

extra two write clock cycles are required to synchronize the read pointer value into

write clock domain to guarantee a vacant slot for writing into the FIFO memory.

Similarly, when the read pointer catches up with the write pointer, an extra two

read cycles are required to synchronize the write pointer into read clock domain to

guarantee valid data are read out from the FIFO memory. A synchronized write

pointer is used to generate rptr empty (read empty) signal and a synchronized read

pointer is used to generate wptr full (write full) signal.

Writing request transaction data into a FIFO is stalled or halted on the assertion

of the wptr full signal high (occurs when write pointer catches up with read pointer).

When the DI module stall signal goes high on assertion of wptr full signal high,

the OCP slave is not allowed to accept any more request transactions from its OCP

Master entity. A rptr empty signal is asserted high (occurs when read pointer catches

up with write pointer), when there are no more data to be read out. This design

implementation uses 8-words of memory for data storage in the request and response

path of DI module which are employing asynchronous FIFOs.

54

4.2 Design Implementation Flow

The standard ASIC design flow is used to build clocked interfaces in single- and

multifrequency clocked domains. Figure 4.7 illustrates the development flow and

required implementation files. In the implementation flow, each design phase is

functionally verified with integrated IP cores and NoC. During logic synthesis and

automatic place & route phases, the synthesized designs are tested with sdf back anno-

tation for meeting setup and hold time requirements. In this project implementation

flow, the Modelsim simulator is used for testing the design functionality.

Verilog
Modules

(RTL Code)

Design Compiler
(Logic Synthesis)

SoC Encounter
(APR)

Tech.db Constraint.tcl

Structural netlist, sdc file,
sdf file, ddc file

Tech.lef
Tech.lib(Structural netlist, sdc file)

design files, APR structural netlist, def file,
sdf file, spef file and power report

RTL Testing

Outputs

Functionality
Testing

(sdf back-annotation)

Functionality
Testing

(sdf back-annotation)

Outputs

Figure 4.7. Design Implementation Flow with Technology Library Files

55

4.2.1 RTL Source Codes Using Verilog HDL

In this project implementation, RTL codes are developed using Verilog HDL. The

project design is customized to construct modular components across the design. The

project implementation includes macros to define the widths of address, data, and

other control signals. The widths are configurable by modifying the defined macros

widths and corresponding changes are required in back-ends. Figure 4.8 illustrates

the RTL structure of this project design. Following are the Verilog modules coded in

this project implementation

a. Test Bench:

timescale.v : Timescale definition. Included in all files

defines.v : Macro module defines configurable signal widths.

Included in all files.

test.v : Test Bench

top.v : Design Top Layer

b. Single-Frequency Clocked Domain:

master_be.v : Customized back-end to Master IP core.

di.v : Domain Interface module (only with combinational logic).

di_ocpm.v : OCP Master entity interfacing with DI module.

ocps_di.v : OCP Slave entity interfacing with DI module.

nw_be1.v : Customized network back-end (from Master IP end) to NoC.

nw_be2.v : Customized network back-end (from Slave IP end) to NoC.

slave_be.v : Customized back-end to Slave IP core.

c. Multifrequency Clocked Domain:

The developed modules in SFCD are used in MFCD. In this implementation, the

DI module is constructed with asynchronous FIFOs to handle synchronization

and buffering. The FIFOs are developed by customizing the dual clocked pointer

FIFOs proposed in Simulation and Synthesis Techniques for Asynchronous FIFO

Design papers [23] [25]. The developed FIFOs are used in both the request and

response paths. Following are the Verilog modules.

56

TestBench

test.v
timescale.v
defines.v

top.v
top1.v master_be.v

di.v
di_ocpm.v
ocps_di.v

top2.v
slave_be.v
di.v
di_ocpm.v
ocps_di.v

noc.v nw_be1.v
nw_be2.v
router3_72b_HL_pself.v
sw_H_72b_pselfv.v
merge_L_72b_pself.v
ehb_L_72b_pself.v

memory.v rom.v

di.v (multi-frequency
domain)

fifo.v
fifomem.v
sync_r2w.v
sync_w2r.v
wptr_full.v
rptr_empty.v

Figure 4.8. Design RTL Structure

master_be.v : Customized Back-end to Master IP core.

di.v : Domain Interface module (with asynchronous clocked FIFOs).

di_ocpm.v : OCP Master entity interfacing with DI module.

ocps_di.v : OCP Slave entity interfacing with DI module.

nw_be1.v : Customized Network Back-end (from Master IP end) to NoC.

nw_be2.v : Customized Network Back-end (from Slave IP end) to NoC.

slave_be.v : Customized back-end to Slave IP core.

fifo.v : Top level FIFOs module.

-
r- -

E
r- -

~
r- -

-
-
-
-

- - -r--

f--
f--
f--
f--
'---

-+- -

57

fifomem.v : FIFO memory module (instantiated with 8 words of data)

sync_r2w.v : Module to synchronize read pointer into write clock domain.

sync_w2r.v : Module to synchronize write pointer into read clock domain.

wptr_full.v : Module to generate write pointer full signal.

rptr_empty.v : Module to generate read pointer empty signal.

d. Slave IP:

memory.v : ROM (8KB) and RAM (8KB) for testing verilog codes.

rom.v : Description created by a converter from S-format.

e. On-Chip Network Fabric or NoC:

router3_72b_HL_pself.v : 3-Port Router top-level module.

sw_H_72b_pselfv.v : Router Switch module.

merge_L_72b_pself.v : Router Merge module.

ehb_L_72b_pself.v : Elastic Half Buffer module.

4.2.2 Design Synthesis Using Synopsys Design Compiler

The design is segregated into three blocks corresponding to the IP cores and NoC

to explore their performance characteristics individually, as shown in Figure 4.9. The

Top1 and Top2 modules include customized back-ends to IP cores, OCP entities, and

DI module. The NoC module includes the routers and on-chip network fabric back-

ends. The project design is synthesized using Synopsys Design Compiler with Arm’s

Artisan static cell library using IBM’s 65nm process technology. The University of

Utah tcl scripts for logic synthesis and auto place & route are modified to accomplish

design synthesis. The generated structural Verilog netlists are integrated into one

unit by manually wiring and functionally tested with sdf back-annotation.

4.2.3 Design APR Using Cadence SoC Encounter

Cadence SoC encounter is used for automatic place and route of this project

design. The individual top level synthesized structural Verilog netlists (Top1, Top2,

and NoC) and with other corresponding required files, as shown in Figure 4.7, are

58

Core
B.E

F.E F.E
Core
B.E

DI DIDI

NW
BE1

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

System Initiator System Target

IP
Core

DI

Top1 NoC Top2

Top

Figure 4.9. Design Synthesis Structure

imported into SoC encounter for auto place and route. The physically routed modules

are integrated and functionally tested with sdf back-annotation. After achieving the

expected functionality on the final routed design with setup and hold time require-

ments, the performance metrics are captured.

CHAPTER 5

VALIDATION OF CLOCKED OCP

COMPLIANT INTERFACES

Increasing design complexity, cost, and probability of errors on an SoC has raised

the importance of verification to reduce design time and risk, ensuring rapid time-

to-market. Ideally, in a standard ASIC design flow, a certain degree of verification is

required at every stage to improve product quality. In industry, verification is more

often performed only at critical design implementation stages (RTL, logic synthesis,

and physical implementation).

In this research, the Sonics OCP Library for Verification (SOLV) package is used

to validate the clocked interface designs for OCP compliance [29]. The SOLV package

supports compliance for all the released OCP-IP Open Core Protocol specifications.

The SOLV package comprises three components: an OCP checker, a dissembler, and

a performance analyzer. Figure 5.1 shows the SOLV components and tool flow. Basi-

cally, the SOLV component provides a system Verilog assertion (SVA) based checker

which can be integrated into a Verilog testbench to validate the protocol compliance.

The checker captures OCP interface signals during simulation on each OCP clock

cycle and compares them to the OCP protocol requirements. An assertion-based

property verification mechanism is employed to check signals and report protocol

violations at the same clock cycle at which the assertion is failed.

The Sonics OCP checker dynamically validates OCP interfaces during simulation,

and generates OCP trace files for use by the postprocessing tools ocpdis (OCP

disassembler) and ocpperf (OCP performance analyzer). During simulation, the OCP

connection activity is logged into an OCP trace files, consisting of hexadecimal valued

tables. An OCP dissembler uses the OCP trace files to display OCP connection

60

OCP
Master

OCP
Slave

Sonics OCP Checker

OCP Dissembler
OCP Performance

Analyzer

Verilog HDL Testbench

<ocpName>.ocp

<ocpName>.ocpdis
<ocpName>.ocptrn

<ocpName>.ocpperf

SOLV Components

Figure 5.1. SOLV Components and Tool Flow

activity in a convenient report format. An OCP performance analyzer uses the OCP

trace files to measure the performance of OCP basic transfers and burst transactions.

5.1 OCP Checker Setup and Instantiation

Sonics provides system Verilog files for a limited set of simulators for the OCP

checker. Software is also provided for command line tools: the OCP dissembler and

performance analyzer. SOLV supports NC Verilog, VCS, and MTI simulators.

The Sonics OCP Checker can be instantiated using a Verilog module containing

two maps: one for instance and protocol parameters and another for ports. Each

OCP connection has a unique set of instance and protocol configuration parameters

which are enabled depending on the supporting OCP subset. Each connection also

has a unique set of wires that connects to the SVA checker, and depending on the

signals connected, the checker instance port map is defined. When an OCP signal

is not specified, the checker reserves a one-bit wide signal for it and uses the default

values. Figure 5.2 shows a code snippet for an OCP checker instance and protocol

parameter map, and a port map used in this design validation.

61

ocp2_sva_checker #(

//Instance Parameters

.version ("ocp2.2-1.9"),

.checkername ("coretb.ocp"),

.name ("checker_port"),

.trace_name ("master_ocp.ocp"),

.ocpcheck_enable (1),

.trace_enable (1),

.max_idle_enable (1),

//Protocol Parameters.

.cmd(1),

.addr (1),

.addr_wdth (32),

.read_enable (1),

.write_enable (1),

.datahandshake (1),

.burstlength (1),

.burstlength_wdth (3),

.burstprecise (1),

.burstseq (1),

.broadcast_enable (0),

.burstseq_dflt1_enable (1),

.burstseq_incr_enable (1),

.burstseq_wrap_enable (1),

.byteen (1),

.cmdaccept (1),

.data_wdth (32),

.mdata (1),

.resp (1),

.respaccept (1),

.sdata (1),

.dataaccept (1),

.tags (3),

.taginorder (1),

.mreset (1),

.sreset (1),

.threads (0),

..

..)

\\ Port Map

checker_port (

.Clk_i (Clk),

.MCmd_i (MCmd),

.MAddr_i (MAddr),

.MData_i (MData),

.MDataValid_i (MDataValid),

.MRespAccept_i (MRespAccept),

.SCmdAccept_i (SCmdAccept),

.SData_i (SData),

.SDataAccept_i (SDataAccept),

.SResp_i (SResp),

.MByteEn_i (MByteEn),

.MBurstLength_i (MBurstLength),

.MBurstPrecise_i (MBurstPrecise),

.MBurstSeq_i (1’b0),

.MTagID_i (MTagID),

.MTagInOrder_i (MTagInOrder),

.STagID_i (STagID),

.STagInOrder_i (STagInOrder),

.MReset_ni (RST),

.SReset_ni (RST),

..

..);

Figure 5.2. OCP Checker Code Snippet

CHAPTER 6

DESIGN TESTING AND RESULTS

6.1 Testing Environment

Figure 6.1 shows the test setup used for this design. The design uses an emulated

RISC pipelined CPU as Master IP core, a synchronous memory (RAM and ROM) as

Slave IP core, and customized 3-port synchronous routers as NoC [18] [19]. A Verilog

testbench generates the CPU emulation traffic to communicate with the Slave IP

core through the network fabric. The network fabric contains synchronous routers

connected back-to-back. Data packets are traversed across the routers and transferred

to the destination address by using the source routing information provided by the

processor emulator. The Memory module (Slave IP) contains 8KB each of RAM and

ROM customized to interact with the Master IP using OCP.

Core
B.E

F.E F.E
Core
B.E

DI DIDI DI

NW
BE1

IP
Core

IP
Core

NW
BE2

F.E F.E

N
O
C

OCP
Master

OCP
Master

OCP
Slave

OCP
Slave

Top1 NoC Top2

Top

Testbench

Emulated
CPU Memory

Testbench (Integrates IP Cores with Top Layer module)

Top Module (Integrates Back-ends, Front-ends and DI modules)

Built Components

Figure 6.1. Design Test Setup

63

A Verilog HDL test bench (test.v) is coded to manually integrate the synthesized

submodules (Top1, Top2, and NoC) containing back-ends, front ends, and DI modules

with the IP cores. The test bench creates the clock and generates other required

stimulus to the top layer module (top.v). Different testbenches are coded to test

single- and multifrequency clocked designs.

Nonsplit and split operating modes are tested with the same stimulus data, but

applied at different run times. In both modes, the same number of data tokens are

applied which includes simple memory transactions through burst transactions. In

nonsplit mode, as pipelining of requests is not possible, the traffic corresponds to

simple memory transactions. Split mode supports pipelining of requests, including

burst transactions. During nonsplit transactions, the Master IP reserves a request

channel, and cannot initiate on any more request transactions until it receives the

response for the previous initiated transaction. The nonsplit mode test bench uses

nonburst transactions and the split mode test bench uses burst transactions with a

burst size of four. This produces the worst and best case traffic scenarios. Both test

benches have an average 15% data activity factor per transaction for the 36 data

tokens. Tables 6.1 and 6.2 shows nonsplit mode and split mode test benches used in

this design, respectively.

The design uses a 16-bit address, 32-bit data paths, and other control informations

such as bursting, byte enables, and tagging. Each request transaction validity is

determined using cycle (CYC), strobe (STB), write enable (WE), address, and data

signals. Simultaneous responses are determined using acknowledge or response (ACK)

signal and tagging information (STagID). In this design implementation, incremental

(INCR), wrap, and user-defined address sequences are supported.

6.2 Performance Models and Results

6.2.1 Performance Metrics

Performance metrics are reported for single- and multifrequency clocked designs.

Metrics include target frequency of operation, latency, average power, energy per

transaction, area, and maximum bandwidth across the network. Simulations are

performed on the postlayout designs with delays extracted from SoC encounter based

64

Table 6.1. Nonsplit Mode Test Bench

Clock Cycles Data Validity
Transaction

Type
Address (Hex) Data (Hex)

Data Activity

Factor (%)

1 Yes Write 32'h1B48BF40 32'h0002AABC 22.5
Until Response is

received No Idle 32'h1B48BF40 32'h0002AABC 0

1 Yes Write 32'h1B48BF44 32'h0002AABD 2.5
Until Response is

received No Idle 32'h1B48BF44 32'h0002AABD 0

1 Yes Write 32'h1B48BF48 32'H0002AABE 5
Until Response is

received No Idle 32'h1B48BF48 32'h0002AABE 0

1 Yes Write 32'h1B48BF4C 32'h0002AABF 2.5
Until Response is

received No Idle 32'h1B48BF4C 32'h0002AABF 0

1 Yes Read 32'h1B4A001D 32'h0 21.25
Until Response is

received No Idle 32'h1B4A001D 32'h0 0

1 Yes Read 32'H1B4A0019 32'h0 16.25
Until Response is

received No Idle 32'H1B4A0019 32'h0 0

1 Yes Read 32'h1B4A0015 32'h0 18.75
Until Response is

received No Idle 32'h1B4A0015 32'h0 0

1 Yes Read 32'h1B4A0011 32'h0 7.5
Until Response is

received No Idle 32'h1B4A0011 32'h0 0

1 Yes Read 32'h1B4805D1 32'h0 15
Until Response is

received No Idle 32'h1B4805D1 32'h0 0

1 Yes Read 32'h1B4805D5 32'h0 17.5
Until Response is

received No Idle 32'h1B4805D5 32'h0 0

1 Yes Read 32'h1B4805D9 32'h0 16.25
Until Response is

received No Idle 32'h1B4805D9 32'h0 0

1 Yes Read 32'h1B4805DD 32'h0 20
Until Response is

received No Idle 32'h1B4805DD 32'h0 0

..

..

on the layout and parasitics of the design. Performance metrics are determined using a

Verilog simulation in the Modelsim simulator. The difference in performance between

nonsplit and split modes are calculated using different Verilog test benches.

Target frequency of operation is the maximum frequency at which the physically

routed design works with setup and hold time requirements. For both clocked designs,

the maximum operating frequencies corresponding to the IP cores and NoC are

reported. Latency is calculated as the amount of time required for each request

transaction to complete in nonsplit and split operating modes. It is computed from

65

Table 6.2. Split Mode Test Bench

Clock Cycles
Data

Validity

Transaction

Type
Address (Hex) Data (Hex) Burst Type

Data Activity

Factor (%)

1 Yes Write 32'h1B48BF40 32'h0002AABC 22.5

1 Yes Write 32'h1B48BF44 32'h0002AABD 2.5

1 Yes Write 32'h1B48BF48 32'H0002AABE 5

1 Yes Write 32'h1B48BF4C 32'h0002AABF 2.5

1 No Idle 32'h1A00BF4C 32'h0002AABF NA 0

1 Yes Read 32'h1B4A001D 32'h0 21.25

1 Yes Read 32'H1b4A0019 32'h0 16.25

1 Yes Read 32'h1B4A0015 32'h0 18.75

1 Yes Read 32'h1B4A0011 32'h0 7.5

1 No Idle 32'h1B4A0011 32'h0 NA 0

1 Yes Read 32'h1B4805D1 32'h0 15

1 Yes Read 32'h1B4805D5 32'h0 17.5

1 Yes Read 32'h1B4805D9 32'h0 16.25

1 Yes Read 32'h1B4805DD 32'h0 20

1 No Idle 32'h1B4805DD 32'h0 NA 0

1 Yes Write 32'h1B48BF60 32'h0002AABC 26.25

1 Yes Write 32'h1B48BF64 32'h0002AABD 2.5

1 Yes Write 32'h1B48BF68 32'H0002AABE 5

1 Yes Write 32'h1B48BF6C 32'h0002AABF 2.5

..

..

INCR

WRAP

INCR

INCR

.. ..

the number of clock cycles required per transaction. Area is reported from postlayout

design, by summing up the areas of submodules (Top1, Top2, and NoC). The maxi-

mum bandwidth across the network is calculated depending on the latency associated

in the operating modes and frequency of operation.

Power is measured using simulation switching activity of the physical design

including extracted parasitics. Power measured for the designs includes only the

NoC interface designs (it does not include IP cores power). The Modelsim simulator

generates a VCD file containing activity factors for all nodes and registers of the

design, and SoC Encounter calculates the extracted layout parasitics. The Synopsys

Primetime tool is used in this research to determine accurate power numbers with

the generated VCD file. Primetime reports total average power which includes the

66

net switching power, cells internal power, and cells leakage power. The average power

reported from SoC Encounter is also presented as part of the power metric calculation.

Energy is reported in addition to the average power since it is the best metric to

distinguish the efficiency in nonsplit and split operation modes. Energy per transac-

tion is computed from the reported total average power and number of transactions

in the simulation test time. The average power required to perform a nonsplit

transaction is less but the energy is much greater, because of the large differences

in run-times.

6.2.2 Performance Models

Parameterized computational models are developed to calculate performance for

single- and multifrequency clocked design configurations. The models can be used to

determine the performance metrics of latency, energy per transaction, and maximum

bandwidth for any given NoC configuration.

6.2.2.1 Model for Latency Cycles

Models are developed with reference to Figure 4.5. Latency for each transaction

in the design is computed depending on the required number of clock cycles in the

request and response path. For easier computation, the design is segregated into

three components: the Master IP interface block (MIB), network interface block

(NIB), and Slave IP interface block (SIB). The Master IP interface block comprises a

master back-end (B.E), domain interface modules (DI1 & DI2), and front-end OCP

entities (F.E). The network block comprise of network back-ends (1 & 2) and network

routers. The Slave IP block comprise slave back-end, domain interface modules (DI3

& DI4), and OCP entities. The latency model for the design is computed as follows:

TotalLatency ⇐ Latency (Request Path + Response Path + IP Cycles) (6.1)

where:

Latency in Request Path: MIB + NIB + SIB

Latency in Response Path: SIB + NIB + MIB

IP Cycles : Sum of IPs request and response cycles

67

Request Path Latency:

MIB : Master B.E + DI1 + OCP Master + OCP Slave + DI2 (Clk Domain 1)

NIB : Sync + Network B.E1 + NoC + Network B.E2 + DI3 (Clk Domain 2)

SIB : Sync + OCP Master + OCP Slave + DI4 + Slave B.E (Clk Domain 3)

Response Path Latency:

SIB : Slave B.E + DI4 + OCP Slave + OCP Master + DI3 (Clk Domain 3)

NIB : Sync + Network B.E2 + NoC + Network B.E1 + DI2 (Clk Domain 2)

MIB : Sync + OCP Slave + OCP Master + DI1 + Master B.E (Clk Domain 1)

Latency Cycles Across the Design Path:

The Master IP (CPU emulated test bench) generates traffic and latches data

into the customized back-end interface (1-clock cycle). The IP cores and NoC back-

ends introduce a 1-clock cycle delay in the request and response paths for latching

the signals and mapping them onto the DI module signals. In the single-frequency

clocked domain, the DI modules do not introduce any clock cycle delays because of

the simple combinational logic implementation used to map its signals onto OCP

compatible signals (0-clock cycle). In case of multifrequency clocked domain, the DI

modules 2 and 3 are designed using asynchronous dual clocked FIFOs to synchronize

asynchronous clock domains, as shown in Figure 4.5. Here the request and response

path DI2 and DI3 modules introduce synchronization overhead. Synchronization

requires 4-clock cycles of latency which includes 1-clock cycle in the source clock

domain for latching data into DI module, 2-cycles in the destination clock domain for

synchronization, and 1-clock cycle to send out the data.

In the request path, OCP entities introduce 3-clock cycles of latency which includes

1-clock cycle for the OCP Master to latch data from the DI module and 1-clock

cycle to initiate request command and 1-clock cycle to send request transaction data

onto the OCP Slave entity. In the response path, the OCP entities introduce only

2-clock cycles of latency, including 1-clock cycle for the OCP slave entity to latch

response data from the DI module, and 1-clock cycle to send out response data to

68

the OCP master entity. The NoC introduces variable clock cycle delays depending

on the number of routers. Each router introduces 1-clock cycle of delay in request

and response paths. The IP cycles includes a 1-clock cycle latency for the Master IP

(test bench) to accept the response data from its back-end. The customized memory

module is employed as the Slave IP in this design, which takes 2-clock cycles of latency

to accepting the request data from the back-end module and to send out response

data acknowledge on successful completion. The following latency equations are used

to derive latency cycles in nonsplit and split modes:

NSP mode cycles ⇐ (Latency from eqn. 6.1) ×No. of Transactions (6.2)

SP mode cycles ⇐ (Latency from eqn. 6.1) + No. of Transactions (6.3)

6.2.2.2 Model for Energy per Transaction

The energy per transaction in nonsplit and split modes can be determined from

total average power, test time, and number of transactions. The total energy can be

computed using the equation below:

Energy/Transaction ⇐ (Ave. Power × Test time) /No.ofTransactions(6.4)

Test time for NSP mode and SP mode can be derived as follows:

Test time (NSP mode) ≤ (Latency cycles from eqn 6.2 + Idle cycles) × Time period.

Test time (SP mode) ≤ (Latency cycles from eqn 6.3 + Idle cycles) × Time period.

6.2.2.3 Maximum Bandwidth

The maximum bandwidth (BW) is theoretically derived based on the throughput

of the requests. In split mode, a request transaction can be initiated on every clock

cycle. Thus, the maximum bandwidth across the network fabric is the maximum

operating clock frequency of that design. However, in nonsplit mode, the maximum

bandwidth is limited by the transaction response time. Therefore, the maximum

bandwidth for nonsplit mode is determined by the associated latency cycles. The

following equations define theoretical maximum bandwidths for nonsplit and split

operating modes.

69

For NSP Mode:

MaximumBW ⇐ (Max.Operatingfrequency)/(LatencycyclesfromEqn6.2) (6.5)

For SP Mode:

Maximum BW ⇐ Max.Operating frequency (6.6)

6.2.3 Simulation Results

6.2.3.1 Single-Frequency Clocked Domain

In this domain, the Verilog testbench generates a global clock for the IP cores,

NoC, and IP cores. This design employs 1-router NoC with the same test stimulus

applied in NSP and SP modes. Performance metrics are reported using the simulation

results and performance models as follows:

i. Design Maximum Frequency of Operation: 1.35 GHz

ii. Latency:

Time period : 0.74ns

Number of transactions in NSP mode : 36

Number of transactions in SP mode : 9 (Burst size = 4)

Equation 6.1 is used to calculate the number of cycles required for each transac-

tion for this design configuration. Equations 6.2 and 6.3 are used to determine

the latency cycles for NSP and SP modes, respectively.

Latency for each transaction (or) Number of cycles for each transaction :

Latency cycles in request path : MIB (4) + NIB (3) + SIB (4) = 11 cycles

Latency cycles in response path : SIB (3) + NIB (3) + MIB (3) = 9 cycles

Total latency cycles : 11 + 9 + 4 (Master IP (2) + Slave IP (2)) = 24 cycles

Latency cycles in NSP mode : (24 × 36) → 864 cycles

Latency cycles in SP mode : (24 + 36) → 60 cycles

Latency cycles/transaction in NSP mode : 864/36 → 24 cycles

Latency cycles/transaction in SP mode : 60/9 → 6.67 cycles

iii. Maximum Bandwidth: Equations 6.5 and 6.6 are used to calculate theoretical

maximum bandwidths for NSP and SP modes, respectively.

70

Maximum bandwidth (NSP mode): 1.35(GHz)/24 → 56.25 MFlits/sec

Maximum bandwidth (SP mode): 1.35 GFlits/sec

iv. Area: Table 6.3 presents the individual and total area of the automatic place

and routed design blocks.

v. Average Power and Energy per Transaction:

The total average power and energy/transaction are computed from individual

synthesized components (Top1, Top2, and NoC). Table 6.4 presents average

power reported from SoC Encounter. Tables 6.5, 6.6, and 6.7 presents average

power for Top1, Top2, and NoC blocks from Synopsis Primetime, respectively.

Total energy for NSP and SP modes are calculated using equation 6.4.

Test time (NSP/SP mode)← (Latency cycles in NSP/SP mode + Idle cycles) ×

Time period

Idle cycles in NSP mode → 28 cycles

Idle cycles in SP mode → 9 cycles

Test time in NSP mode: (864 + 28) x 0.74(ns) → 667.5 ns

Test time in SP mode: (60 + 9) x 0.74 (ns) → 51.1 ns

Modelsim Simulation Reported Test Times:

In NSP mode : 666.990 ns

In SP mode : 51.31 ns

Table 6.3. SFCD: Individual and Total Area Reported from SoC Encounter in Case
of 1-router NoC

Module
Total Area of Standard Cells

(um^2)

Total Area of the Chip

(um^2)

Top1 11616 16351.864

Top2 11431.2 16116.364

NoC 17398.8 23079.54

Total Area 40446 55547.768

71

Table 6.4. SFCD: Reported Total Average Power from SoC Encounter in Case of
1-router NoC

Module Total Power (mW) Percentage%

6.705 82.17

1.428 17.50

0.027 0.33

8.159

6.708 82.97

1.351 16.71

0.026 0.32

8.084

7.617 72.12

2.896 27.42

0.048 0.46

10.560

Top2

Total Internal Power

Total Switching Power

Total Leakage Power

Total Power

NoC

Total Internal Power

Total Switching Power

Total Leakage Power

Total Power

Power Group

Top1

Total Internal Power

Total Switching Power

Total Leakage Power

Total Power

Table 6.8 presents the computation involved in calculating total average power

and energy per transaction in nonsplit and split modes.

Total average power in NSP mode : 22.402 mW

Total average power in SP mode : 28.336 mW

Total energy in NSP mode : 14.942 nJ

Total energy in SP mode : 1.454 nJ

Energy per transaction in NSP mode: 0.415 nJ

Energy per transaction in SP mode: 0.162 nJ

6.2.3.2 Multifrequency Clocked Domain

In this domain, the Verilog testbench generates three asynchronous clocks for the

Master IP, Slave IP, and NoC, respectively. This design employs 2 NoC routers with

the same test stimulus applied in NSP and SP modes. Performance is reported using

the simulation results and performance models as follows:

72

Table 6.5. SFCD: Reported Top1 Module Average Power from Primetime in Case
of 1-router NoC

Module Mode Power group Total Power (mW) %

clock_network 6.900 95.56

register 0.154 1.54

combinational 0.210 2.91

Sequential 0.000 0.00

Net Switching Power 1.104 15.28

Cell Internal Power 6.090 84.34

Cell Leakage Power 0.003 0.37

Total Power 7.221

clock_network 6.840 81.03

register 0.732 8.67

combinational 0.870 10.30

Sequential 0.000 0.00

Net Switching Power 1.155 18.40

Cell Internal Power 6.861 81.28

Cell Leakage Power 0.003 0.32

Total Power 8.441

clock_network 5.518 99.32

register 0.001 0.25

combinational 0.002 0.42

Sequential 0.000 0.00

Net Switching Power 0.982 17.68

Cell Internal Power 4.547 81.84

Cell Leakage Power 0.003 0.47

Total Power 5.556

Top1

Nonsplit mode

Split mode

Idle mode

73

Table 6.6. SFCD: Reported Top2 Module Average Power from Primetime in Case
of 1-router NoC

Module Mode Power group Total Power (mW) %

clock_network 6.847 95.72

register 0.010 1.37

combinational 0.209 2.91

Sequential 0.000 0.00

Net Switching Power 1.077 15.05

Cell Internal Power 6.050 84.58

Cell Leakage Power 0.003 0.37

Total Power 7.153

clock_network 7.011 81.57

register 0.696 8.10

combinational 0.880 10.30

Sequential 0.000 0.00

Net Switching Power 1.507 17.53

Cell Internal Power 7.062 82.16

Cell Leakage Power 0.003 0.31

Total Power 8.595

clock_network 5.465 99.32

register 0.001 0.25

combinational 0.002 0.39

Sequential 0.000 0.00

Net Switching Power 0.958 17.42

Cell Internal Power 4.517 82.12

Cell Leakage Power 0.003 0.46

Total Power 5.500

Top2

Nonsplit mode

Split mode

Idle mode

74

Table 6.7. SFCD: Reported NoC Module Average Power from Primetime in Case
of 1-router NoC

Module Mode Power group Total Power (mW) %

clock_network 7.503 93.46

register 0.168 2.09

combinational 0.355 4.42

Sequential 0.000 0.02

Net Switching Power 1.623 20.22

Cell Internal Power 6.356 79.18

Cell Leakage Power 0.048 0.60

Total Power 8.028

clock_network 8.950 78.99

register 1.022 9.02

combinational 1.358 11.98

Sequential 0.000 0.01

Net Switching Power 2.917 25.75

Cell Internal Power 8.365 73.82

Cell Leakage Power 0.005 0.43

Total Power 11.300

clock_network 6.675 99.19

register 0.002 0.35

combinational 0.003 0.43

Sequential 0.000 0.02

Net Switching Power 1.368 20.33

Cell Internal Power 5.313 78.95

Cell Leakage Power 0.005 0.72

Total Power 6.729

NoC

Nonsplit mode

Split mode

Idle mode

75

Table 6.8. SFCD: Total Average Power and Energy per Transaction Computation
in Case of 1-router as NoC

Top1 NSP Power (mW) 7.221 Top1 SP Power (mW) 8.441

Top2 NSP Power (mW) 7.153 Top2 SP Power (mW) 8.595

NoC NSP Power (mW) 8.028 NoC SP Power (mW) 11.300

Total NSP Power (mW) 22.402 Total SP Power (mW) 28.336

Top1 NSP Energy (nJ) 4.816 Top1 SP Energy (nJ) 0.433

Top2 NSP Energy (nJ) 4.771 Top2 SP Energy (nJ) 0.441

NoC NSP Energy (nJ) 5.355 NoC SP Energy (nJ) 0.580

Total NSP Energy (nJ) 14.942 Total SP Energy (nJ) 1.454

0.415

0.162Total SP Energy per Transaction (nJ)

Total Average Power Computation from Individual Components

Total NSP Energy per Transaction (nJ)

Total Energy Computation from Individual Components

Total Energy per Transaction Computation

i. Design Maximum Frequency of Operation:

Master IP : 1 GHz

Slave IP : 0.925 GHz

NoC : 1.11 GHz

ii. Latency:

Time period : 1.08 ns

Number of transactions in NSP mode : 36

Number of transactions in SP mode : 9 (burst size = 4) Total number of latency

cycles: 42

Equation 6.1 is used to calculate the number of cycles required for each transac-

tion for this design configuration. Equations 6.2 and 6.3 are used to determine

the latency for NSP and SP modes, respectively.

Latency cycles in Req path : MIB (5) + NIB (8) + SIB (7) = 20 cycles

Latency cycles in Resp path : SIB (4) + NIB (8) + MIB (6) = 18 cycles

Total latency cycles : 20 + 18 + 4 = 42 cycles

76

Latency cycles/transaction in NSP mode : 1512/36 → 42 cycles

Latency cycles/transaction in SP mode : 78/9 → 8.67 cycles

iii. Maximum Bandwidth: Equations 6.5 and 6.6 are used to calculate theoretical

maximum bandwidths for NSP and SP modes, respectively.

Maximum bandwidth (NSP mode): 0.925(GHz)/42 → 22.02 MFlits/sec

Maximum bandwidth (SP mode): 0.925 GFlits/sec

iv. Area: Table 6.9 presents the individual and total area of the automatic place

and routed blocks.

v. Average Power and Energy per Transaction:

The total average power and energy/transaction are computed from individual

synthesized components (Top1, Top2, and NoC). The tabulated results corre-

spond to IPs operating at 0.925 GHz and the NoC at 1.11 GHz. Table 6.10

presents the average power reported for the design from SoC Encounter. Ta-

bles 6.11, 6.12, and 6.13 present the average power for Top1, Top2, and NoC

modules, respectively, using Primetime. Total energy for NSP and SP modes are

calculated using eqn 6.4.

Idle cycles in NSP mode → 2 cycles

Idle cycles in SP mode → 9 cycles

Test time in NSP mode: (1512 + 2) x 1.08(ns) → 1634.8 ns

Test time in SP mode: (78 + 9) x 1.08(ns) → 93.96 ns

Table 6.9. MFCD: Individual and Total Area Reported from SoC Encounter in Case
of 2-routers NoC

Module
Total Area of Standard Cells

(um^2)

Total Area of the Chip

(um^2)

Top1 44526.6 53409.928

Top2 44317.8 53176.552

NoC 24375 31049.92

Total Area 113219.4 137636.4

77

Table 6.10. MFCD: Reported Total Average Power from SoC Encounter in Case of
2-routers NoC

Module Total Power (mW) Percentage%

24.630 80.48

5.583 19.13

0.120 0.39

30.600

25.710 80.42

6.139 19.20

0.120 0.37

31.970

8.847 68.98

3.914 30.52

0.065 0.51

12.830

Total Power

Total Leakage Power

Total Switching Power

Total Internal Power

Top2

Total Leakage Power

Total Switching Power

Total Internal Power

Top1

Power Group

Total Power

Total Power

Total Leakage Power

Total Switching Power

Total Internal Power

NoC

Modelsim Simulation Reported Test Times:

In NSP mode : 1634.350 ns

In SP mode : 94.25 ns

Table 6.14 presents the computation involved in calculating total average power

and energy per transaction in nonsplit and split modes.

Total average power in NSP mode : 46.579 mW

Total average power in SP mode : 56.800 mW

Total energy in NSP mode : 76.126 nJ

Total energy in SP mode : 5.353 nJ

Energy per transaction in NSP mode: 2.114 nJ

Energy per transaction in SP mode: 0.595 nJ

78

Table 6.11. MFCD: Reported Top1 Module Average Power from Primetime in Case
of 2-routers NoC

Module Mode Power group Total Power (mW) %

clock_network 18.300 97.34

register 0.146 0.78

combinational 0.352 1.88

Sequential 0.000 0.00

Net Switching Power 2.850 15.18

Cell Internal Power 15.800 84.19

Cell Leakage Power 0.018 0.63

Total Power 18.800

clock_network 17.800 81.33

register 1.145 5.23

combinational 2.943 13.44

Sequential 0.000 0.00

Net Switching Power 4.431 20.23

Cell Internal Power 17.300 79.23

Cell Leakage Power 0.018 0.54

Total Power 21.900

clock_network 14.500 98.98

register 0.005 0.34

combinational 0.010 0.68

Sequential 0.000 0.00

Net Switching Power 2.705 18.42

Cell Internal Power 11.900 80.80

Cell Leakage Power 0.011 0.78

Total Power 14.700

Top1

Nonsplit mode

Split mode

Idle mode

79

Table 6.12. MFCD: Reported Top2 Module Average Power from Primetime in Case
of 2-routers NoC

Module Mode Power group Total Power (mW) %

clock_network 19.300 97.50

register 0.014 0.71

combinational 0.355 1.80

Sequential 0.000 0.00

Net Switching Power 2.898 14.67

Cell Internal Power 16.700 84.73

Cell Leakage Power 0.012 0.60

Total Power 19.800

clock_network 19.300 82.53

register 1.082 4.62

combinational 3.007 12.85

Sequential 0.000 0.00

Net Switching Power 4.445 18.99

Cell Internal Power 18.800 80.50

Cell Leakage Power 0.017 0.50

Total Power 23.400

clock_network 15.400 99.06

register 0.005 0.32

combinational 0.010 0.62

Sequential 0.000 0.00

Net Switching Power 2.759 17.70

Cell Internal Power 12.700 81.57

Cell Leakage Power 0.011 0.73

Total Power 15.600

Top2

Nonsplit mode

Split mode

Idle mode

80

Table 6.13. MFCD: Reported NoC Module average Power from Primetime in Case
of 2-routers NoC

Module Mode Power group Total Power (mW) %

clock_network 7.695 96.44

register 0.010 1.29

combinational 0.018 2.23

Sequential 0.000 0.04

Net Switching Power 1.943 24.35

Cell Internal Power 5.972 74.84

Cell Leakage Power 0.006 0.81

Total Power 7.979

clock_network 9.258 80.68

register 0.083 7.23

combinational 1.384 12.06

Sequential 0.000 0.03

Net Switching Power 3.372 29.39

Cell Internal Power 8.037 70.04

Cell Leakage Power 0.006 0.57

Total Power 11.500

clock_network 6.973 98.99

register 0.003 0.47

combinational 0.003 0.49

Sequential 0.000 0.04

Net Switching Power 1.803 25.60

Cell Internal Power 5.175 73.48

Cell Leakage Power 0.006 0.92

Total Power 7.043

NoC

Nonsplit mode

Split mode

Idle mode

81

Table 6.14. MFCD: Total Average Power and Energy per Transaction Computation
in Case of 2-routers as NoC

Top1 NSP Power (mW) 18.800 Top1 SP Power (mW) 21.900

Top2 NSP Power (mW) 19.800 Top2 SP Power (mW) 23.400

NoC NSP Power (mW) 7.979 NoC SP Power (mW) 11.500

Total NSP Power (mW) 46.579 Total SP Power (mW) 56.800

Top1 NSP Energy (nJ) 30.726 Top1 SP Energy (nJ) 2.064

Top2 NSP Energy (nJ) 32.360 Top2 SP Energy (nJ) 2.205

NoC NSP Energy (nJ) 13.040 NoC SP Energy (nJ) 1.084

Total NSP Energy (nJ) 76.126 Total SP Energy (nJ) 5.353

2.115

0.595Total SP Energy per Transaction (nJ)

Total Average Power Computation from Individual Components

Total NSP Energy per Transaction (nJ)

Total Energy Computation from Individual Components

Total Energy per Transaction Computation

6.2.4 Design Evaluation

The clocked designs are tested for performance differences between nonsplit and

split operating modes over a range of frequencies. At different operating frequen-

cies, the design performance metrics of total average power, energy per transaction,

latency, and maximum bandwidth are determined. Tables 6.15 and 6.16 show the

summarized performance over a range of frequencies for single- and multifrequency

domains. These designs employ a 2-router NoC and use the stimulus shown in

Tables 6.1 and 6.2 for NSP and SP modes, respectively.

6.2.4.1 Clocked Designs (SFCD and MFCD)

In SFCD, a global clock is generated to feed the IP cores and NoC. Its frequency is

varied from 100 MHz to 1.33 GHz. In MFCD, three asynchronous clocks are generated

to feed the Master IP, Slave IP, and NoC. Since multiple cases are possible to evaluate

design performance, the following test scenario is considered. The Slave IP and NoC

are operated at a fixed target frequency while the Master IP is varied from 100 MHz

to 1 GHz and the Slave IP and NoC are operated at their maximum frequencies of

82

Table 6.15. Performance Metrics Over a Range of Frequencies for Single-Frequency
Clocked Domain and Multifrequency Clocked Domain

Frequency (MHZ)
Average Power

in NSP Mode

(mW)

Average Power in

SP Mode (mW)

Energy/Txn in

NSP Mode (nJ)

Energy/Txn in

SP Mode (nJ)

100 1.9103 2.4469 0.516 0.196

200 3.652 4.384 0.494 0.175

300 5.3937 6.3211 0.486 0.180

400 7.232 9.167 0.489 0.183

500 9.0703 12.0129 0.487 0.184

600 10.858 14.199 0.488 0.189

700 12.6457 16.3851 0.488 0.185

800 14.278 17.365 0.483 0.174

900 15.9103 18.3449 0.485 0.170

1000 17.923 21.511 0.485 0.164

1100 19.9357 24.6771 0.486 0.175

1200 21.457 27.878 0.487 0.188

1300 22.9783 31.0789 0.487 0.187

1333 24.029 31.392 0.487 0.187

Frequency (MHZ)

Average Power

in NSP Mode

(mW)

Average Power in

SP Mode (mW)

Energy/Txn in

NSP Mode (nJ)

Energy/Txn in

SP Mode (nJ)

100 34.222 37.074 14.478 2.533

200 35.767 40.665 7.586 1.446

300 37.312 44.256 6.330 1.250

400 38.67 47 4.117 0.914

500 40.209 49.6 3.431 0.805

600 41.748 52.2 2.910 0.730

700 43.287 54.2 2.710 0.680

825 45.136 55.1 2.328 0.617

1000 47.599 57.5 2.051 0.569

Single-Frequency Clocked Domain

Multifrequency Clocked Domain

0.925 GHz and 1.11 GHz, respectively. The performance difference between NSP and

SP modes for SFCD is graphically presented in Figures 6.2, 6.3, 6.4, and 6.5 as

follows:

i. Frequency v/s Average Power

ii. Frequency v/s Energy per Transaction

iii. Frequency v/s Latency

iv. Frequency v/s Maximum Bandwidth

83

Table 6.16. Performance Metrics Over a Range of Frequencies for Single-Frequency
Clocked Domain and Multifrequency Clocked Domain

Frequency

(MHZ)

Time Period

(ns)

Number of

Cycles

Latency in

NSP Mode(us)

Latency in

SP Mode (us)

Max BW in

NSP mode

(MFlits/s)

Max BW in

Split mode

(MFlits/s)
100 10.00 26 0.260 0.069 3.85 100

200 5.00 26 0.130 0.034 7.69 200

300 3.33 26 0.087 0.023 11.54 300

400 2.50 26 0.065 0.017 15.38 400

500 2.00 26 0.052 0.014 19.23 500

600 1.67 26 0.043 0.011 23.08 600

700 1.40 26 0.036 0.010 26.92 700

800 1.25 26 0.033 0.009 30.77 800

900 1.10 26 0.029 0.008 34.62 900

1000 1.00 26 0.026 0.007 38.46 1000

1100 0.90 26 0.023 0.006 42.31 1100

1200 0.83 26 0.022 0.006 46.15 1200

1300 0.77 26 0.020 0.005 50.00 1300

1333 0.75 26 0.020 0.005 51.27 1333

Frequency

(MHZ)

Time Period

(ns)

Number of

Cycles

Latency in NSP

Mode (us)

Latency in SP

Mode (us)

Max BW in

NSP mode

(MFlits/s)

Max BW in

Split mode

(MFlits/s)

100 10.00 15 0.150 0.057 6.67 100

200 5.00 18 0.090 0.030 11.11 200

300 3.30 21 0.069 0.021 14.29 300

400 2.50 24 0.060 0.017 16.67 400

500 2.00 27 0.054 0.014 18.52 500

600 1.66 30 0.050 0.012 20.00 600

700 1.42 33 0.047 0.011 21.21 700

825 1.19 38 0.045 0.010 21.71 825

1000 1.00 42 0.042 0.009 23.81 1000

Single-Frequency Clocked Domain

Multifrequency Clocked Domain

The performance difference between NSP and SP modes for MFCD is graphically

presented in Figures 6.6, 6.7, 6.8, and 6.9 as follows:

i. Frequency v/s Average Power

ii. Frequency v/s Energy per Transaction

iii. Frequency v/s Latency

iv. Frequency v/s Maximum Bandwidth

84

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25
NSP Mode
SP Mode

Frequency (MHz)

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.2. Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Average Power

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

En
er

gy
 p

er
 T

ra
ns

ac
tio

n
(n

J)

NSP Mode
SP Mode

Frequency (MHz)

Figure 6.3. Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Energy per Transaction

85

Figure 6.4. Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Latency

100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

M
ax

im
um

 B
an

dw
id

th
 (M

Fl
its

/s
)

NSP Mode
SP Mode

Frequency (MHz)

Figure 6.5. Performance Comparison Between NSP and SP Operating Modes in
SFCD: Frequency v/s Maximum Bandwidth

86

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70
NSP Mode
SP Mode

Frequency (MHz)

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.6. Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Average Power

100 200 300 400 500 600 700 800 900 1000
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Frequency (MHz)

En
er

gy
 p

er
 T

ra
ns

ac
tio

n
(n

J)

NSP Mode
SP Mode

Figure 6.7. Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Energy per Transaction

r-

+ r r

87

Figure 6.8. Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Latency

0 100 200 300 400 500 650 700 800 900 1000
0

200

400

600

800

1000

1200

Frequency (MHz)

M
ax

im
um

 B
an

dw
id

th
 (M

Fl
its

/s
)

NSP Mode
SP Mode

Figure 6.9. Performance Comparison Between NSP and SP Operating Modes in
MFCD: Frequency v/s Maximum Bandwidth

88

6.2.4.2 Network-On-Chip

Network-on-chip performance is evaluated by determining the NoC latency, aver-

age power, and energy per transaction under a varying number of routers. The results

are obtained from clocked designs interfacing with 1-router and 2-router NoC cases,

then projected to n router cases. The projected data are summarized in Tables 6.17,

6.18, 6.19, and 6.20. The summarized results for n-router cases for SFCD and MFCD

are graphically represented in Figures 6.10, 6.11, 6.10, 6.12, 6.13, 6.14, 6.15, 6.16,

and 6.17 .

Table 6.17. NoC Evaluation: Latency, Energy per Transaction for Varying Number
of Routers

NoC

Configuration
Number of NoC

Routers

Latency/Txn in

NSP Mode (us)

Latency/Txn in SP

Mode (us)

Latency/Txn

NSP Mode (us)

Latency/Txn SP Mode

(us)

0 0.0165 0.005 0.038 0.008

1 0.018 0.005 0.04 0.008

2 0.0195 0.005 0.042 0.009

3 0.021 0.005 0.044 0.009

4 0.0225 0.006 0.046 0.009

5 0.024 0.006 0.048 0.009

6 0.0255 0.006 0.05 0.010

7 0.027 0.006 0.052 0.010

8 0.0285 0.006 0.054 0.010

9 0.03 0.006 0.056 0.010

10 0.0315 0.007 0.058 0.010

NoC

Configuration

Number of NoC

Routers

Energy /Txn in

NSP Mode (nJ)

Energy /Txn in SP

Mode (nJ)

Energy /Txn in

NSP Mode (nJ)

Energy /Txn in SP

Mode (nJ)

0 0.343 0.137 1.872 0.517

1 0.415 0.162 1.993 0.556

2 0.487 0.187 2.114 0.595

3 0.559 0.212 2.235 0.634

4 0.631 0.237 2.356 0.673

5 0.703 0.262 2.477 0.712

6 0.775 0.287 2.598 0.751

7 0.847 0.312 2.719 0.790

8 0.919 0.337 2.84 0.829

9 0.991 0.362 2.961 0.868

10 1.135 0.412 3.203 0.946

Single-Frequnecy Clocked Domain Multifrequency Clocked Domain

Single-Frequnecy Clocked Domain Multifrequency Clocked Domain

89

Table 6.18. NoC Evaluation: NSP Mode Average Power for Varying Number of
Routers

NoC Routers
Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 3.00 17.69 0.04 20.73 19.69

1 3.80 18.50 0.05 22.35 21.25

2 4.61 19.30 0.07 23.98 22.89

3 5.41 20.11 0.09 25.61 24.33

4 6.22 20.91 0.10 27.23 25.87

5 7.02 21.72 0.12 28.86 27.42

6 7.83 22.52 0.14 30.49 28.96

7 8.63 23.33 0.15 32.11 30.51

8 9.44 24.13 0.17 33.74 32.05

9 10.24 24.94 0.18 35.36 33.60

10 11.05 25.74 0.20 36.99 35.14

NoC Routers
Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 6.27 36.72 0.03 43.02 42.16

1 6.98 37.59 0.03 44.61 43.73

2 7.69 38.47 0.04 46.20 45.30

3 8.40 39.35 0.04 47.79 46.83

4 9.11 40.23 0.04 49.38 48.39

5 9.82 41.11 0.04 50.97 49.95

6 10.53 41.98 0.04 52.56 51.50

7 11.24 42.86 0.05 54.14 53.06

8 11.95 43.74 0.05 55.73 54.62

9 12.65 44.62 0.05 57.32 56.18

10 13.36 45.50 0.05 58.91 57.73

Single-Frequency Clocked Domain: NSP Mode

Multifrequency Clocked Domain: NSP Mode

6.2.5 Results Summary

The performance comparison between nonsplit and split modes are graphically

represented over a frequency range in both single- and multifrequency clocked do-

mains. With increase in frequency, the average power in nonsplit and split modes

linearly increases, since frequency is directly proportional to power dissipation. In

both clocked domains, the average power in split mode is higher compared to nonsplit

mode due to more switching activity over a smaller time period. In this design,

about 75-95% of the total power is dissipated in the clock network components, due

90

Table 6.19. NoC Evaluation: SP Mode Average Power for Varying Number of
Routers

NoC Routers
Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 3.85 20.63 0.01 24.49 20.02

1 5.58 22.29 0.01 27.88 22.80

2 7.31 23.95 0.01 31.27 25.52

3 9.04 25.61 0.01 34.66 28.34

4 10.77 27.27 0.01 38.05 31.12

5 12.51 28.92 0.01 41.44 33.89

6 14.24 30.58 0.02 44.84 36.66

7 15.97 32.24 0.02 48.23 39.44

8 17.70 33.90 0.02 51.62 42.21

9 19.43 35.56 0.02 55.01 44.98

10 21.16 37.22 0.02 58.40 47.76

NoC Routers
Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 10.13 41.77 0.03 51.93 42.58

1 11.19 42.95 0.03 54.18 44.11

2 12.25 44.14 0.04 56.43 46.36

3 13.31 45.32 0.05 58.68 48.11

4 14.37 46.50 0.05 60.93 49.96

5 15.43 47.69 0.06 63.18 51.81

6 16.49 48.87 0.07 65.43 53.65

7 17.55 50.05 0.07 67.68 55.50

8 18.61 51.24 0.08 69.93 57.34

9 19.68 52.42 0.09 72.18 59.19

10 20.74 53.60 0.09 74.43 61.03

Single-Frequency Clocked Domain: SP Mode

Multifrequency Clocked Domain: SP Mode

to continuous driving of flops and registers even during idle clock cycles. In the

case of multifrequency clocked domain, the total average power in both nonsplit and

split operating modes is significantly higher compared to single-frequency clocked

due to the addition of asynchronous clocked FIFOs in the DI modules. Also, in the

multifrequency domain the, average power magnitude difference between both modes

is significant compared to single-frequency clocked domain.

In the SFCD, the energy per transaction in split mode is less than nonsplit mode

due to the longer run times. Also, in nonsplit mode, 90% of the total power is

91

Table 6.20. NoC Evaluation: Idle Mode Average Power for Varying Number of
Routers

NoC Routers

Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 2.54 13.58 0.01 16.12 16.04

1 3.31 14.38 0.01 17.70 17.66

2 4.08 15.17 0.01 19.27 19.15

3 4.85 15.97 0.01 20.84 20.73

4 5.63 16.77 0.02 22.41 22.30

5 6.40 17.56 0.02 23.98 23.86

6 7.17 18.36 0.02 25.55 25.42

7 7.95 19.15 0.02 27.12 26.98

8 8.72 19.95 0.02 28.69 28.55

9 9.49 20.75 0.02 30.26 30.11

10 10.27 21.54 0.03 31.83 31.67

NoC Routers

Net Switching

Power (mW)

Cell Internal

Power (mW)

Cell Leakage

Power (mW)

Total Average

Power (mW)

Clock Network

Power (mW)

0 5.91 28.16 0.03 34.10 33.93

1 6.59 28.97 0.03 35.58 35.39

2 7.27 29.78 0.03 37.07 36.87

3 7.94 30.58 0.03 38.56 38.36

4 8.62 31.39 0.03 40.04 39.84

5 9.30 32.20 0.03 41.53 41.32

6 9.98 33.01 0.04 43.02 42.80

7 10.65 33.82 0.04 44.50 44.28

8 11.33 34.62 0.04 45.99 45.76

9 12.01 35.43 0.04 47.48 47.24

10 12.68 36.24 0.04 48.96 48.72

Single-Frequency Clocked Domain: Idle Mode

Multifrequency Clocked Domain: Idle Mode

dissipated driving flops during nonswitching activity (idle cycles). In the SFCD,

the energy required per transaction in nonsplit and split modes does not change

significantly over a frequency range. In the case of the MFCD tests, the Slave IP

and NoC are operated at fixed target frequencies and the Master IP is varied over a

frequency range. A decrease in energy required per flit is observed in nonsplit and

split modes due to significant decrease run times and average power.

In both clocked domains, as expected, the overall latency (delay) decreases with an

increase in frequency for nonsplit and split operating modes. Latency in the nonsplit

92

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

MFCD NSP Mode
SFCD NSP Mode
MFCD SP Mode
SFCD SP Mode

Number of Routers

La
te

nc
y

(u
s)

Figure 6.10. NoC Performance: Number of Routers v/s Latency

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

SFCD SP Mode
MFCD SP Mode
SFCD NSP Mode
MFCD NSP Mode

Number of Routers

En
er

gy
 p

er
 T

ra
ns

ac
tio

n
(n

J)

Figure 6.11. NoC Performance: Number of Routers v/s Energy per Transaction

... ...
V'

l
Y

• •
D

•

\I

*
7-v --\1- '1-- v--~·

* * * * *

-

V V V V
I

* * * do

I

93

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.12. NoC Performance in SFCD: Frequency v/s NSP Mode Average Power

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
(m

W
)

Figure 6.13. NoC Performance in SFCD: Frequency v/s SP Mode Average Power

~

v

... ...
"

L

r
I,

* * *
I, ~

-

* * * *
I *

....

I, I , I ,

94

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.14. NoC Performance in SFCD: Frequency v/s Idle Mode Average Power

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.15. NoC Performance in MFCD: Frequency v/s NSP Mode Average Power

... ...
r.! ..

+--v v

l

•

... ...
"

• ,
+--
v v

1

• •

, ,
v v

• • •

• • •

•

, , , , , • i
v _'L

F t==*==:*--·-=~·--~----------~ .~ ----__ -----o-----< __ ----.. ----.. * --~::.::::::*::::::::::~::::::: , · • f

95

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.16. NoC Performance in MFCD: Frequency v/s SP Mode Average Power

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60
Total Average Power
Clock Network Power
Cell Internal Power
Net Switching Power
Cell Leakage Power

Number of Routers

Av
er

ag
e

Po
w

er
 (m

W
)

Figure 6.17. NoC Performance in MFCD: Frequency v/s Idle Mode Average Power

.. ...
-" -...

r

r
'" - *

I

.. ...
'7

.. T

L
V- v

I

r *
II

*
I

T

v

*

* * * * * * *
...

I

I

T T ..
T T T

T T
V-

¥ - V ~

1
* * ... * * * * ...

1
I , I ,

96

mode has a huge overhead since it requires more clock cycles for each request/response

transaction completion compared to split mode. In the SFCD, a minimum number

of clock cycles are required for each transaction over a frequency range. In the case

of MFCD, with increase in Master IP clock frequency, the number of Master IP

clock cycles cycles required for the same number of data flits increases (time period

decreases) due to the interfacing of asynchronous clock domains.

The maximum bandwidth across the network increases with an increase in fre-

quency for nonsplit and split operating modes. Network bandwidth is defined as

the number of packets delivered per second. The maximum bandwidth in case of

nonsplit mode is dependent on the number of cycles required for each transaction

(target frequency/number of cycles) whereas in case of split mode, the network can

maximally deliver packets at the design target clock frequency. Therefore, the split

mode can always support higher bandwidths across the design compared to nonsplit

mode.

Finally, from the performance evaluation results, it can be concluded that split

operating mode with request/response pipelining support on each clock cycle is more

efficient compared to nonsplit mode over a frequency range. Also, the split operating

mode improves the overall system performance with the continuous data bursting

feature.

6.2.5.1 NoC Performance

From the results, it can be concluded that the latency and energy per transaction

when projected to n routers in case of split operating mode increases very marginally,

but in case of nonsplit operating mode, both metrics are increased significantly. The

total average power dissipation in both modes linearly increases with the number

of routers, and at the same time, the clock network power is increased significantly

(dominant component of the total power dissipated). Due to the employment of

FIFOs in multifrequency clocked domain, the energy and power are higher when

compared to single-frequency clocked domain.

CHAPTER 7

CONCLUSION AND FUTURE

RESEARCH

7.1 Summary

This research work presents an efficient solution to address SoC contemporary

design issues and shorter time-to-market requirements using an industry standard

socket. OCP, an industry standard interface protocol, is employed in this research to

build clocked NoC interfaces with a new design style. The built NoC interfaces enables

the integration of different clocked IP cores and also simplifies design validation and

the characterization of NoC power and performance. This research implementation

includes building clocked interfaces in single- and multifrequency domains supporting

different modes of operation, data bursting, and out of order response. The following

items provides a brief research summary:

i. Building Standard NoC Interfaces for IP Cores and Clocked On-chip

Network Fabric Using OCP

• Defining OCP subset and customized interface signals depending on an IP

core’s/NoC communication requirements.

• Design and implementation of customized back-end interfaces to an IP

core/NoC and front-end interfaces (OCP Master and Slave entities).

• Building a generic Domain Interface (DI) protocol and module for single-

and multifrequency clocked domains.

• Building asynchronous dual clocked FIFOs for the DI module to enable

synchronization and data flow control.

• Modularizing the interface components to improve reliability and reduce

design time to interface different IP cores to the OCP socket.

• Proper and efficient placement of buffering and synchronization schemes.

98

ii. Design Implementation

• RTL code development for clocked designs using Verilog HDL.

• Logic synthesis with IBM’s 65nm process technology using Synopsys DC.

• Automatic Place and Route of clocked designs using Cadence SoC En-

counter.

• UofU TCL scripts are modified to implement back-end steps of this design

physical implementation.

• Functionality testing is done at each stage of the design flow meeting the

proposed specifications. Synthesized and postlayout structural Verilog de-

signs are validated with sdf back-annotation.

• Design simulations in the Modelsim simulator are automated with TCL

scripts.

iii. Design Testing and Performance Evaluation

• Different Verilog HDL test benches are developed to verify the clocked

designs in nonsplit and split operating modes.

• The performance metrics: target frequency of operation, latency, area, max-

imum bandwidth across a network, average power, and energy per transac-

tion are determined in various design configurations.

• Designs are tested over a range of frequencies, and performance metrics are

summarized and graphically presented.

• NoC performance is determined by configuring a different number of syn-

chronous 3-port routers. The results obtained are projected to clocked

designs with n routers to determine NoC performance for latency, average

power, and energy per transaction.

iv. Validating OCP Compliant Clocked Architectures

The built clock designs have successfully met the proposed specifications. In the

single-frequency clocked design, the IP cores and NoC (using 2-routers) can operate at

a maximum frequency of 1.33 GHz. In the multifrequency clocked domain, the Master

IP can be operated at a frequency of 1 GHz, the NoC at 1.11 GHz, and the Slave IP

at 0.925 GHz. The multifrequency clocked domain could not achieve its maximum

frequency of operation because of the increased latency in the request/response paths

99

and synchronization overhead. However, at the expense of maximum operating

frequency limitation, the multifrequency clocked domain enables a real-time system

where different clocked IP cores can be integrated.

From the design performance evaluation, it can be concluded that split operating

mode is more efficient in latency and energy per transaction compared to nonsplit

operating mode at the expense of increased power dissipation. Designs implementing

the split operating mode improve overall system performance with increased maxi-

mum bandwidths across the network and pipelined data bursting support. In case

of nonsplit mode, it introduces huge latency overhead, and low bandwidth resources

across network compared to split operating mode.

Both clocked designs compromise on power dissipation due to the continuous

clock network power dissipation even during nonswitching activity phase. The clock

network power component dominates the total dissipated power compared to com-

binatorial, sequential, and register logic components. In nonsplit operating mode,

about 90-95% of the total dissipated power is contributed from the clock network

component, since it drives the flops and registers constantly even during the idle

clock cycles. In split operating mode with the increase in switching activity, the

combinatorial power component and register logic component increases marginally

compared to clock network power (75%), which overall dominates the total dissipated

power.

With the above conclusions, it would be a good direction in the future research

to develop power efficient industry standard NoC interfaces. The clock designs built

as part of this research can be used as the base models for deriving elastic and

asynchronous NoC interfaces.

7.2 Extensions and Future Research

The research has developed a base model with a new design approach paving way

to explore potential contemporary SoC design research areas. Major extensions and

research directions in this research area are as follows:

100

7.2.1 Extensions and Improvements to OCP Design

i. Expand OCP Subset and Design Specifications:

This project has implemented only the basic tagging and bursting data flow

features of OCP. The other features of OCP, such as sideband and test signals,

can be supported as extensions to this project. The complete list of OCP signals

are provided in the Appendix. Tagging and bursting sizes, as well as address and

data widths, can also be increased to support higher dataflow requirements.

ii. Designing Efficient Clocked FIFOs for Synchronization and Buffering

Schemes:

The multifrequency clocked design implementation employed customized asyn-

chronous dual clocked based pointer FIFOs for synchronization and buffering.

The FIFOs have served the basic functionality but at the expense of a substantial

latency overhead, area, and power dissipation. Improved asynchronous FIFOs

may be able to provide more performance and power efficient designs.

iii. Clock Gating to Reduce Clock Network Power:

The clocked designs loose 90% of the total power to the clock network component

due to the continuous driving of flops and registers during idle clock cycles. Power

saving techniques, such as clock gating, can be employed in the synchronous

circuits to save power. Clock gating adds extra logic to prune the clock tree

activity by disabling portions of the circuitry during idle transactions.

iv. Dynamic Packetization and Depacketization Techniques:

A fixed 72-bit packet comprising address, data, and control bits are supported in

the request and response path of this project implementation. Due to the fixed

packet size, significant power and area are expended, since the 72-bits allocated

to the response path are never fully used. Only 11-bits are used in the case of a

write transaction, and 33-bits for a read transaction. Designs which can employ

dynamic packetization techniques may provide power and area advantages.

v. Designing Efficient On-chip Network Back-ends:

The synchronous NoC can operate at a maximum frequency of 2.99 GHz, but the

complexity in the NoC back-ends limits that frequency. More efficient or pipelined

101

NoC back-end interfaces can enable the maximum target network frequency and

bandwidth.

vi. Support Dual Flit Format at the NoC Back-ends:

This project supports simple single flit packet and flit formats at the NoC back-

ends. Double pumped or dual flit formats can be supported at the NoC back-ends

to reduce overall latency and improve performance.

vii. Better Power Modeling of Network to Include Wire Energy:

In this design implementation, wire energy across the NoC was not considered.

Modeling wire delay and energy cost will give a more accurate evaluation of a

full design.

7.2.2 Future Research

i. The clocked designs built here serve as the starting point for research on different

architectural clocking strategies and SoC architectures. The NoC interfaces that

were developed can be used to explore research on different end-to-end NoC

architectures. In the future, other architectural designs can provide a platform to

determine the best clocking strategy depending on various performance metrics.

ii. Deriving Elastic and Asynchronous Designs from Clocked Designs:

Elastic and asynchronous designs can significantly boost power advantages over

clocked designs. Designs without clock networks can provide more power effi-

cient components. Desynchronization is a design methodology, which converts a

synchronous gate level circuit into a more robust asynchronous one [30] [31].

Synchronous elasticization is one approach to transform an ordinary clocked

design into a latency insensitive design or elastic design [32].

APPENDIX

OCP INTERFACE SIGNALS

Figures A.1 and A.2 list the complete OCP interface signals.

OCP
Master

OCP
Slave

Clk

EnalbleClk

MAddr

MAddrSpace

MAtomicLength

MBlockHeight

MBlockStride

MBurstLength

MBurstPrecise

MBurstSeq

MBurstSingleReq

MByteEn

MCmd

MConnID

MReqLast

MReqRowLast

MTagID

MTagInOrder

MReqInfo

MThreadID

SCmdAccept

SData

SResp

SDataInfo

SRespLast

SRespRowLast

STagInOrder

STagID

SRespInfo

SThreadID

MRespAccept

Request

Response

Dataflow

Figure A.1. OCP Dataflow Signals

103

OCP
Master

OCP
Slave

MDataByeEn

MDataInfo

MDataLast

MDataRowLast

MDataTagID

MDataThreadID

MDataValid

SDataAccept

Control

ControlBusy

ControlWr

StatusRd

StatusBusy

Scanin

ScanCtrl

Status

Scanout

ClkByp

Data
Handshake

Test

Dataflow

MData

MDataThreadBusy

SDataThreadBusy

SThreadBusy

MReset_n

MFlag

MError

SError

SFlag

SInterrupt

SReset_n

System Core

TestClk

TDI

TCK

TMS

TRSTN

TDO

Sideband

Figure A.2. OCP Sideband and Test Signals

REFERENCES

[1] OCP-IP, “The Importance of Sockets in SoC Design,” http://www.ocpip.org/
white papers.php.

[2] S. Parischa and N. Dutt, On-Chip Communication Architectures: System on
Chip Interconnect. Georgia: Morgan Kaufmann, 2008.

[3] Open Core Protocol Specification Ver 2.2, http://www.ocpip.org/, Open Core
Protocol - International Partnership (OCP-IP), 2008.

[4] C. Wang, C. Lai, S. Hwang, and Y. Lin, “On-Chip Interconnection Design and
SoC Integration with OCP,” in VLSI-DAT. OCP-IP, 2008.

[5] Design and R. Incorp., “Bus Protocols Limits the Design Reuse of IP,” http:
//www.design-reuse.com/articles/.

[6] OCP-IP, “Socket-Centric IP Core Interface Maximizes IP Applications,” http:
//www.ocpip.org/white papers.php.

[7] ARM, “AMBA Overview,” http://www.arm.com/, 2008.

[8] IBM, “CoreConnect Overview,” http://www.chips.ibm.com/products/
coreconnect/, 2006.

[9] S. Corp, “Wishbone System-on-chip (soc) Interconnection Architecture for
portable IP cores,” http://www.silicore.net/pdfiles/wishbone.pdf, 2002.

[10] R. Usselmann, “Open Cores SoC Bus Review,” http://www.opencores.org, Sil-
icore Corp, Jan. 2001.

[11] Technical Information on Open Core Protocol, http://www.ocpip.org/, Open
Core Protocol - International Partnership (OCP-IP).

[12] VSIA, “Virtual Component Interface Standard,” http://www.vsi.org/.

[13] E. Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools.
Addison-Wesley, Jan. 2009.

[14] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, 2nd ed. Pearson
Education, 2003.

[15] S. Palnitkar, Verilog HDL : A Guide to Digital Design and Synthesis. Upper
Saddle River, New Jersey: Prentice Hall, Jan. 1996.

[16] ModelSim SE Tutorial 6.6d, http://www.model.com/, Mentor Graphics, 2010.

105

[17] NC-Verilog Simulator Tutorial 5.1, http://www.cadfamily.com/, Cadence, 2003.

[18] OpenCores, “Open Cores,” http://http://opencores.org/projects/.

[19] J. You, D. Gebhardt, and K. S. Stevens, “Bandwidth Optimization in Asyn-
chronous NoCs by Customizing Link Wire Length,” in International Conference
on Computer Design, Amsterdam, Oct. 2010.

[20] Synopsys, “PrimeTime PX: Methodology for Power Analysis,” http://www.
synopsys.com, Aug. 2006.

[21] “CoreCreator II Tool: IP Cores OCP Compliance Validation Environment,”
http://www.ocpip.org, OCP-IP, Aug. 2010.

[22] R.Ginosar, “Fourteen ways to fool your synchronizer,” in 9th International
Symposium on Asynchronous Circuits and Systems. VLSI Systems Research
Center, Haifa, Israel, May 2003.

[23] C. E. Cummings and I. Sunburst Design, “Simulation and Synthesis Techniques
for Asynchronous FIFO Design,” in SNUG, San Jose, Jun. 2002.

[24] G. D. Micheli and L. Benini, Networks on Chips: Technology and Tools, 1st ed.,
ser. Systems on Silicon series. Elsevier Science, Jul. 2006.

[25] C. E. Cummings and P. Alfke, “Simulation and Synthesis Techniques for Asyn-
chronous FIFO Design with Asynchronous Pointer Comparisons,” in SNUG, San
Jose, Jun. 2002.

[26] J. You, Y. Xu, H. Han, and K. S. Stevens, “Performance Evaluation of Elastic
GALS Interfaces and Network Fabric,” in Elsevier Electronic Notes in Theoretical
Computer Science, vol. 200, no. 1, Feb. 2008, pp. 17–32.

[27] T. T. Ye, L. Benini, and G. D. Micheli, “Packetization and Routing Analysis of
On-Chip Multiprocessor Networks,” in Elsevier Science, Sep. 2003.

[28] W. J. Bainbridge, “Asynchronous System-on-Chip Interconnect,” Ph.D. disser-
tation, University of Manchester, Department of Computer Science, 2000.

[29] Sonics, “Sonics OCP Library for Verification 1.9,” http://www.sonicsinc.com/,
2008.

[30] N. Andrikos, L. Lavagnot, D. Pandinit, and C. P. Sotiriou, “A Fully-Automated
Desynchronization Flow for Synchronous Circuits,” in DAC 2007, Jun. 2007.

[31] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous Templates
for Integration into Clocked CAD Flows,” in 15th International Symposium on
Asynchronous Circuits and Systems, Washington, pp. 151–161.

[32] E. Kilada, S. Das, and K. Stevens, “Synchronous Elasticization: Considerations
for Correct Implementation and MiniMIPS Case Study,” in VLSI-SOC, Sep.
2010.

