
FLUORENDER, AN INTERACTIVE TOOL FOR

CONFOCAL MICROSCOPY DATA

VISUALIZATION AND ANALYSIS

by

Yong Wan

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2013

Copyright © Yong Wan 2013

All Rights Reserved

The U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Yong Wan

has been approved by the following supervisory committee members:

Charles Hansen Chair 4/29/2013
Date Approved

Christopher Johnson Member 4/29/2013
Date Approved

Gabrielle Kardon Member 4/29/2013
Date Approved

Valerio Pascucci Member 4/29/2013
Date Approved

Ross Whitaker Member 4/29/2013
Date Approved

and by Alan Davis Chair of

the Department of _____________________School of Computing

and by Donna M. White, Interim Dean of The Graduate School.

ABSTRACT

Confocal microscopy has become a popular imaging technique in biology

research in recent years. It is often used to study three-dimensional (3D) structures

of biological samples. Confocal data are commonly multichannel, with each

channel resulting from a different fluorescent staining. This technique also results

in finely detailed structures in 3D, such as neuron fibers. Despite the plethora of

volume rendering techniques that have been available for many years, there is a

demand from biologists for a flexible tool that allows interactive visualization

and analysis of multichannel confocal data. Together with biologists, we have

designed and developed FluoRender. It incorporates volume rendering techniques

such as a two-dimensional (2D) transfer function and multichannel intermixing.

Rendering results can be enhanced through tone-mappings and overlays. To

facilitate analyses of confocal data, FluoRender provides interactive operations for

extracting complex structures. Furthermore, we developed the Synthetic Brainbow

technique, which takes advantage of the asynchronous behavior in Graphics

Processing Unit (GPU) framebuffer loops and generates random colorizations for

different structures in single-channel confocal data. The results from our Synthetic

Brainbows, when applied to a sequence of developing cells, can then be used

for tracking the movements of these cells. Finally, we present an application of

FluoRender in the workflow of constructing anatomical atlases.

For Chi-Bin.

CONTENTS

A BSTRA CT... iii

LIST OF FIG U R E S.. vii

ACRONYM S... ix

ACKNOWLEDGMENTS... x

CHAPTERS

1...... INTRODUCTION... 1
1.1 Motivation.. 1
1.2 Customized Volume Visualization for

Confocal Microscopy D ata... 2
1.3 Volume Visualization Enhancements in

2D Image Space... 4
1.4 Interactive Extraction of Biological Structures

from Confocal Microscopy D a ta .. 5
1.5 Synthetic Brainbows.. 7
1.6 Making Anatomical Atlases... 8
1.7 Thesis Statement... 9
1.8 Thesis Contributions .. 9
1.9 Outline.. 10

2. BACKGROUND... 11
2.1 Laser Scanning Confocal Microscopy ... 11
2.2 Interactive Visualization of Volumetric Data 13
2.3 Visualization Enhancement in 2D Image Space 16
2.4 Volume Segmentation Techniques .. 18
2.5 Synthetic Brainbows .. 21
2.6 Anatomical Atlases .. 24

3. A VISUALIZATION PIPELINE FOR CONFOCAL MICROSCOPY
D A T A ... 27
3.1 Confocal Data Formats as Inputs .. 27
3.2 Intuitive and Efficient Transfer Function

Manipulations ... 31
3.3 Multiple Render Modes for Multichannel D ata 36
3.4 Embedding Polygon Data for Region Definition............................... 39

3.5 2D Tone Mapping..42
3.6 MIP Enhancement with 2D Color Mapping

and Overlays...48
3.7 The FluoRender Visualization Pipeline...52

4. SEGMENTATION AND ANALYSIS OF CONFOCAL MICROSCOPY
D A T A ... 56
4.1 Introduction to Morphological Diffusion.. 56

4.1.1 Diffusion Equation and Anisotropic D iffusion........................ ... 56
4.1.2 Morphological Operators and Morphological Gradients 58
4.1.3 Morphological Diffusion.. ... 59

4.2 User Interactions for Interactive Volume
Segmentation ... 61

4.3 Integration of Interactive Segmentation with
Visualization Functions ... 69

5. CELL TRACKING USING SYNTHETIC BRAINBOW S...................... 73
5.1 Randomness in a GPU Framebuffer Feedback

Loop ... 73
5.2 Synthetic Brainbows.. 77

5.2.1 ID Shuffling.. 77
5.2.2 Monte-Carlo Sampling .. 81
5.2.3 Results and User Survey .. 85

5.3 Tracking Cells ... 93
5.3.1 Synthetic Brainbows for Cells ... 94
5.3.2 ID Matching .. 97

6. CONSTRUCTING ANATOMICAL ATLASES,
A CASE STUDY ... 101
6.1 Data Acquisition ... 101
6.2 Segmentation ... 103
6.3 Modeling .. 106
6.4 Texturing .. 111
6.5 Results .. 115

7. CONCLUSIONS AND FUTURE W O RK ... 118

APPENDIX: PUBLICATIONS.. 120

REFERENCES.. 122

vi

LIST OF FIGURES

2.1 Principle components of a confocal microscope................................... 12

2.2 User interface of Amira.. 19

3.1 Speed comparisons of FluoRender and other packages...................... 30
3.2 Volume transfer function of FluoRender... 33

3.3 Results of the transfer function .. 34

3.4 User interface of FluoRender... 35
3.5 Comparison of transfer function precision.. 36

3.6 FluoRender render m o d es... 37

3.7 Depth peeling in FluoRender... 41

3.8 Results of depth peeling with volume data.. 42

3.9 Comparisons of 2D image space gamma and its counterpart in the
volume transfer function ... 43

3.10 Mapping for luminance adjustment 46

3.11 Scale-space equalization 47

3.12 Results of scale-space equalization 49

3.13 Comparison between DVR and M IP 50
3.14 Shading layer 52

3.15 Comparison of DVR, MIDA and MIP 53

3.16 Visualization pipeline of FluoRender 54

4.1 Conserving and nonconserving energy transmissions 57

4.2 Volume paint selection process .. 62

4.3 Stop function used in volume painting... 63
4.4 Selection brush ... 65

4.5 Eraser ... 66

4.6 Diffusion b ru sh ... 67

4.7 Using a digital tablet .. 68
4.8 Segmenting bones ... 70
4.9 Weight map for segmentation .. 71

5.1 Comparison of synchronous and asynchronous cellular automata. . 75

5.2 Comparison of asynchronous updates for different graphics cards . 77

5.3 Comparison of ID arrangements.. 79
5.4 ID shuffling in 1 D ... 80

5.5 Colorization of a confocal scan of a Drosophila b r a in 83

5.6 Example of two idealized cells.. 84

5.7 Synthesized Brainbow of a Drosophila b ra in .. 86
5.8 Synthesized Brainbow of a zebrafish eye .. 87

5.9 Synthesized Brainbow of a second Drosophila bra in 88

5.10 Synthesized Brainbow of a Drosophila b ra in .. 89

5.11 Synthesized Brainbow of a zebrafish eye .. 90

5.12 Synthesized Brainbow of a second Drosophila bra in 91

5.13 Results from a survey.. 92

5.14 Synthetic brainbows on a time sequence... 97

5.15 Conversion from cells to a bipartite g ra p h .. 99

5.16 Results of cell tracking.. 100

6.1 Visualization of an embryonic mouse lim b.. 103
6.2 Segmentation of muscles ... 105

6.3 Building prototype models for muscles... 109

6.4 Modeling a muscle using shrink-wrap... 110

6.5 Unwrapping UVs of a muscle model... 113

6.6 Application of a generic muscle texture ... 114
6.7 Texture transcription using Mudbox ... 115

6.8 Results of limb atlases .. 116

viii

ACRONYMS

Two Dimensional (2D)

Three Dimensional (3D)

Analog-Digital Converter (ADC)

Computed Tomography (CT)

Days Postfertilization (DPF)

Direct Volume Rendering (DVR)

OpenGL Shading Language (GLSL)

Graphics Processing Unit (GPU)

High Dynamic Range Image (HDRI)

High-Resolution Electron Microscopy (HREM)

Laser Scanning Confocal Microscopy (LSCM)

Maximum Intensity Difference Accumulation (MIDA)

Maximum Intensity Projection (MIP)

Magnetic Resonance Imaging (MRI)

Open Graphics Library (OpenGL)

Optical Projection Tomography (OPT)

Personal Computer (PC)

Revolutions Per Minute (RPM)

Serial Advanced Technology Attachment (SATA)

Tagged Image File Format (TIFF)

ACKNOWLEDGMENTS

The FluoRender project started in 2008 after meetings with Charles (Chuck)

Hansen, Chi-Bin Chien, and Hideo Otsuna. Although I wrote most of the code of

FluoRender, it was the team that made this tool available to many users around

the world. Hideo and I used to work around the clock, adjusting the user interface,

searching for bugs in the code, and tweaking rendering results. Hideo provided

most of the datasets for testing and publications, including, but not limited to:

the Drosophila visual neurons in Figure 2.2,4.4,4.5, and 4.6; the head of zebrafish

embryo dataset in Figure 3.3,3.4,3.6,3.9,3.11,3.12,3.14, and 4.7; the tectal neurons

of zebrafish embryo in Figure 3.5; the zebrafish eye dataset in Figure 3.8 and 3.13;

the mushroom body of Drosophila in Figure 3.15; the Drosophila brain dataset in

Figure 5.5, 5.7, and 5.10; and the Drosophila eye dataset in Figure 5.9 and 5.12.

Hideo collaborated with Kristen Kwan on zebrafish eye development. Some

time-sequence datasets from their experiments are found in Figure 5.8, 5.11,5.14,

and 5.16. It would not be possible for FluoRender to reach its many users without

these beautifully imaged confocal scans. Chuck and Chi-Bin's work ensured the

funding of the FluoRender project for the past five years. They also provided

essential guidance on the development of FluoRender. I shall remember that it

was Chi-Bin who gave FluoRender its name. I feel the duty to make FluoRender

useful and available to biologists in memory of Chi-Bin.

I later collaborated with Gabrielle Kardon and her group on the anatomical

atlas project. Kelsey Lewis generated the confocal scans for the award-winning

images as seen in Figure 6.1 and 6.8. Kelsey originally contacted me for the

possibility of using FluoRender to present their data, but the results might have

turned out to be more fruitful than both of us had expected. I am grateful that I

could use my skill and knowledge about digital modeling in scientific research.

Although I have been keeping an interest in digital arts for many years, it was in

the University of Utah that I could put it to good use, first as a teaching assistant

in the classes of Mark van Langeveld and Robert Kessler, next in the illustrations

made for the FluoRender project, and then in the work of the anatomical atlas

project. However, the mouse limb atlases would not be possible without all

the processing, segmenting, and identifying work done by Kelsey and Mary

Colasanto.

I wish to thank other members of my graduate committee. Chris Johnson is

the director of the Scientific Computing and Imaging (SCI) Institute, which is

the big home that makes all the wonderful work possible. Valerio Pascucci is a

renowned scholar whose work I had heard of before he joined SCI. Ross Whitaker

taught me about image processing in the first year of my study. Claudio Silva

used to be in my committee and he introduced me to scientific visualization.

I feel fortunate to have received help from the research group lead by Chuck.

Aaron Knoll advised me on choosing classes when I first came to Utah. Jianrong

Shu helped identify Chuck as my advisor. Josh Stratton and Mathias Schott helped

read my manuscripts when I started the research. Carson Brownlee provided

me help so that I could finally put everything together in this dissertation. It is

always a pleasure to meet other members/former members of our small group:

Mark Kim, Siddarth Shankar, Liang Zhou, Guoning Chen, and Pascal Grosset.

SCI Institute provides us a comfortable and convenient environment, not just

because of the Warnock Engineering Building, but more importantly, because of

its wonderful support team members. Chems Touati spent a great amount of

time on videos for paper submissions. Deb Zemek, Brenda Peterson, Ed Cask,

Magali Coburn, and Tony Portillo are people that I often ask for help. Corinne

Garcia, Erik Jorgensen, and Nathan Galli are experts on advertising SCI's research

projects, including FluoRender. Certainly, there are not enough words to thank

Karen Feinauer and Ann Carlstorm, who help all graduate students of the School

of Computing to sort out their administrative headaches.

Finally, all my work was possible because of the funding of the following grants

xi

and foundations: NIH R01-EY12873, Dana Foundation, NSF: CNS-0615194, CNS-

0551724, CCF-0541113, IIS-0513212, OCI-0906379, DOE VACET SciDAC, KAUST

GPR KUS-C1-016-04, NIH-1R01GM098151-01, NIH R01HD053728 NICHD.

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation
There has been a tremendous explosion in the popularity of confocal mi­

croscopy [19] in recent years, due to its ability to scan specimens that have a

thickness of hundreds of microns, produce finely-detailed volumetric images,

and generate time sequence images of living cells and tissues. In biological

research, laser scanning confocal microscopy (LSCM) is an essential tool to study

structures of and structural differences between biological samples. Data acquired

from confocal microscopy are abundant with finely-detailed structures resulting

from fluorescent staining. In order to faithfully reconstruct the 3D structural

relationships and enhance the fine details from confocal volumes, specialized

visualization tools are demanded by biologists. Furthermore, analysis of confocal

data, which focuses on identification and comparison of geometric and topological

properties of structures, requires extraction and modeling of those structures

under study. There have been a plethora of techniques for volume visualization

and segmentation, as well as several academic and commercial packages, but

there is always the demand for an interactive tool that integrates carefully selected

functionalities and suits general workflows in biological studies with confocal

data.

FluoRender is an interactive tool for confocal microscopy data visualization

and analysis. It is the result of collaborations between computer scientists

and biologists. It is designed and engineered to meet the requirements of

biologists. Built upon a slice-based volume rendering kernel, it is capable

of reading multiple channels of confocal volumes with a variety of formats,

2

rendering and mixing channels with different modes, applying 2D image space

enhancements, playing back time-sequence confocal data, extracting structures

by painting on the volume-rendered results, and visualizing polygon models

from those extracted structures along with volumetric data. Despite a tool of

many integrated functionalities, FluoRender is striving to provide usability and

intuitiveness to its users. As of the time of writing, FluoRender has been available

for free download for four years and seen many applications in biological research.

Here, I uncover and present the design, modules, and applications of FluoRen-

der. This chapter continues with the introduction of the three main components of

FluoRender: volume visualization, 2D image space enhancements, and interactive

extraction of structures. It then introduces Synthetic Brainbows, which is a

random colorization technique aiming at identifying structures and tracking cells

automatically. The importance and use of anatomical atlases in biological research

are then discussed, which lead to our work on the practical workflow of making

anatomical atlases from confocal scans.

1.2 Customized Volume Visualization for
Confocal Microscopy Data

Most biologists' tools for qualitative analysis of confocal microscopy data are

rudimentary, such as looking at image slices or maximal intensity projections.

There are several academic and commercial visualization packages available, but

these have various significant feature limitations when applied to multichannel

confocal data. There is a real demand from biologists for a flexible visualization

tool that allows interactive visualization of multichannel confocal data, with

rapid fine-tuning of parameters to reveal the three-dimensional relationships of

structures of interest.

Confocal microscopy data have their own characteristics, which differ from

other biomedical data, such as computed tomography (CT) or magnetic resonance

imaging (MRI), which must be taken into consideration as we design such a tool

for confocal microscopy visualization.

• Multichannel data. Labeling with different fluorescent proteins and fluores­

3

cent dyes yields multichannel data, with each channel representing a different

cell or tissue type. Usually the data in different channels are spatially interwoven,

with data from one channel having the highest interest, such as the channel

containing labeled neuron fibers.

• Subtle boundaries. Clearly visualized boundaries of brain regions are often

essential for analysis, as when analyzing connectivity of neuron fibers between

regions [76, 89]. However, biologically meaningful boundaries may be only subtly

presented in the confocal data, and may be present in only one channel of the

multichannel data. Thus, boundary segmentation must often be done manually.

• Finely detailed structures. Biomedical techniques such as antibody staining

and gene transfer allow delivery of fluorescent dyes to specific cell or tissue types,

which can result in very finely detailed structures, such as neuronal fibers or

synapses.

• Visual occluders and noise. Structures irrelevant to the analysis may also

be labeled through the fluorescent staining process, resulting in visual occluders

that obscure the structures to be visualized. Fine detailed structures can also

be obscured by noisy data, due to statistical noise or electronic noise from the

scanning device [29].

Working together with biologists, we added several enhancements to a slice-

based volume renderer and designed a tool for confocal visualization. This tool

later became FluoRender. The improvements of this tool on visualizing confocal

volumes include the following.

• Interactive settings of volume rendering properties to maximize rendering

quality. For better rendering quality and depth perception, we added shading and

depth cueing to volume rendering. For detail enhancement and noise suppression,

a 2D transfer function can be set through intuitive parameters. All the volume

rendering parameters take effect interactively.

• Multimodes for multichannel data visualization. Multichannel datasets can

be combined in a single render view with different render modes, with each mode

showing a different aspect of the data.

4

• Embedding polygon data into volume data for region definition. Biological

boundaries are usually manually extracted as polygon data with segmentation

tools. These polygon data can be rendered together with volume data, which is a

clear and efficient way to show the regions of interest. We use depth peeling to

achieve correct ordering when semitransparent polygon models are embedded in

volumetric data.

1.3 Volume Visualization Enhancements in
2D Image Space

Since its initial release, we continued the development of FluoRender with an

emphasis on detail enhancement. The user group of FluoRender has expanded

beyond our collaborating biologists. They brought new challenges and problems

that we have overlooked in our initial work. One problem that we started looking

at were the features presented in 2D image processing packages but commonly

missing from volumetric visualization tools. We noticed that most biologists

working with microscopy data were actually experts on image processing packages

such as Photoshop [3], which were used for a variety of tasks, including combining

images, adjusting brightness and contrast, adding annotations, etc. They also

have been using tools such as Photoshop with volumetric data visualization

results, including those from Maximum Intensity Projection (MIP) [108] and

Direct Volume Rendering (DVR) [26, 59]. The familiarity with results from MIP

rather than DVR usually makes biologists regard MIP advantageous at rendering

sharp details, and this is more common with biologists working with confocal

microscopy data, which have an abundance of detail. We have convinced many

that DVR can bring out details even better with properly adjusted volume transfer

function settings, and will also correctly render the spatial relationship of confocal

data. However, users of FluoRender still relied on image processing packages and

attempted to enhance details from their retouching work. The retouching work

with tools such as Photoshop is usually fraught with frustrations, because the

commonly used image formats for data exchange between the visualization tools

and image processing packages lack the precision needed for further adjustment,

5

and these packages are designed for photography rather than confocal data

visualization.

We started dealing with the above problems by proposing a series of 2D

image space methods for volume visualization enhancement. These techniques

were easily integrated with our existing confocal visualization tool. For easier

brightness/contrast adjustments and detail enhancement, we used 2D tone-

mapping operators, including gamma, luminance, and scale-space equalization.

We improved 2D composting for multiple channels by the introduction of groups.

To enhance surface details and depth perception, we used 2D compositing to

combine a shading and/or a shadow layer with MIP rendering. Similar to our

work on volume transfer function, we customized these settings for easy use.

These 2D image space methods work in accordance with those volume rendering

techniques in 3D data space. They together form the visualization pipeline of

FluoRender, which has proved to be useful not only for 3D multichannel confocal

scan but also 4D time sequences.

1.4 Interactive Extraction of Biological Structures
from Confocal Microscopy Data

In biological research, data analysis focuses on extraction and comparison

of geometric and topological properties of structures from confocal microscopy

data. FluoRender could generate clear visualizations and facilitate qualitative

analysis of confocal microscopy data, but quantitative analysis requires extracting

important features. For example, a user may want to extract just one of two

adjacent neurons and analyze its structure. In such case, segmentation requires

the user's guidance in order to correctly separate the desired structure from

the background. There exist many interactive segmentation tools that allow

users to select seeds (or draw boundaries) within one slice of volumetric data.

Either the selected seeds grow (or the boundaries evolve) in 2D and then user

repeats the operation for all slices, or the seeds grow (or the boundaries evolve)

three-dimensionally. Interactive segmentation with interactions on 2D slices may

be sufficient for structures with relatively simple shapes, such as most internal

6

organs or a single fiber. However, for most neural structures from confocal

microscopy, the high complexity of their shapes and intricacy between structures

make even identifying desired structures from 2D slices difficult. 2D-slice-based

interactions of most volume segmentation tools become ineffective: it is difficult

to choose proper seeds or draw boundaries on slices; even if seeds are chosen and

their growth in 3D is automatic, it is difficult for unguided 3D growth to avoid

over- or under-segmentation, especially at detailed and complex structures such

as axon terminals; there is no interactive method to quickly identify and correct

the segmented results at problematic regions. With well-designed visualization

tools, biologists are able to observe the complex neural structures and inspect

them from different view directions. Segmentation interactions that are designed

based on volume visualization tools and let users select from what they see are

apparently the most intuitive. In practice, confocal laser scanning can generate

datasets with high throughput, and biologists often conduct experiments and

scan multiple mutant samples in batches. Thus, a segmentation algorithm for

structure extraction from confocal data also needs to make good use of the

parallel computing power of contemporary personal computer (PC) hardware

and generate a stable segmented result with real-time speed.

To help analysis on confocal microscopy data, we added interactive seg­

mentation functions into FluoRender. It uses morphological diffusion for

region-growing, which can generate stable results for confocal data in real-time; its

interaction scheme explores the visualization capabilities of our existing confocal

visualization pipeline, and lets users paint directly on volume rendering results

and select desired structures. A close integration of visualization and segmentation

techniques within one tool allows biologist users to extract structures of interests

from their visualization workflow. On the other hand, segmentation further

improves visualization results by removing occluding structures or emphasizing

important structures.

7

1.5 Synthetic Brainbows
Brainbow [63] is a genetic engineering technique that randomly colorizes

cells. Biological samples processed with this technique and imaged with confocal

microscopy have distinctive colors for individual cells. It is useful for disam­

biguating visual clutter in confocal data, identifying complex cellular structures,

and for cell tracking. However, the application of the Brainbow technique on

a certain species of animals requires complex transgenic manipulations. In

practice, most confocal microscopy scans use different antibody staining with

typically at most three distinct cellular structures. These structures are often

packed and obscure each other in rendered images, making analysis difficult. The

problem is commonly addressed through segmentation. Accurate segmentation

of confocal microscopy data, which are typically full of fine details, depends

greatly on users' prior knowledge of the data. Such knowledge does not only

come from experience, but also is more and more importantly from visualizations

of the data. Visualizing confocal microscopy data requires techniques that on

the one hand are interactive and preserve the fine details on the other. Inspired

by the Brainbow technique, we explored techniques that randomly colorize

single-channel confocal microscopy data. The outcome of our random colorization

technique assumes similar appearance of Brainbows. Adjacent complex structures

can then be clearly visualized by color variations. Our Synthetic Brainbow

technique leverages a process known as GPU framebuffer feedback loops, which

is a random process in the massive parallel computing environment of GPUs.

In addition, we incorporated ID shuffling and Monte-Carlo sampling into the

technique. The random colorization in our synthesized Brainbow images respects

structural information and preserves fine details. The results were presented

to domain experts with positive feedback. A user survey demonstrated that

our Synthetic Brainbow technique improved visualization of volume data with

complex structures for biologists.

8

1.6 Making Anatomical Atlases
Anatomical atlases of humans and other species are important scientifically for

understanding normal anatomy, the development and function of these structures,

and for determining the etiology of congenital abnormalities. Unfortunately,

for biologists, it is difficult to generate such atlases, especially ones with the

informative content and aesthetic quality that characterize human atlases. Building

such atlases requires the knowledge of the species under study and experience with

an art form that can faithfully record and present this knowledge, both of which

require extensive training in fields considerably different from one another. With

the latest innovations in data acquisition and computing techniques, atlas building

has changed dramatically. It is now possible to create atlases from 3D images of

biological specimens, allowing for high-quality, faithful representations. Labeling

of structures using fluorescently-tagged antibodies, confocal three-dimensional

scanning of these labeled structures, volume rendering, segmentation, and surface

reconstruction techniques all promise solutions to the problem of building atlases.

However, biological researchers still ask the question, "Is there a set of tools we

can use or a practical workflow we can follow so that we can easily build models

from our biological data?" The question is heard mostly by computer scientists

and answered by a vast number of algorithms, tools, and program codes. Most of

these computer scientists are able to tackle one aspect of the problem or provide

solutions to some special cases. Nevertheless, the general question of how to build

anatomical atlases remains unanswered. For a satisfactory answer, biologists

need a practical workflow that can be easily adapted for different applications.

Second, reliable tools must be readily available that can fit into the workflow.

Lastly, examples using the workflow and tools to build anatomical atlases would

demonstrate the utility of these resources for biological research.

We designed a generalized workflow to generate anatomical atlases from

confocal microscopy scans. The workflow is adapted from a CG artist's workflow

of building 3D models for animated films and video games. Having been

developed, tested, and employed for industrial use for decades, the artist's

9

workflow with certain adaptations is the most suitable for making high-quality

anatomical atlases, especially under strict budgetary and time limits. FluoRender

is used in this workflow along with artists' tools, such as Maya [5] and Mudbox [6].

We demonstrate how FluoRender is used in practice for biological research with

this detailed case study.

1.7 Thesis Statement
Confocal microscopy data visualization and analysis are real and important

applications in biology research, which require the integration of both existing

and novel techniques in volume rendering, image processing, user interaction,

and digital arts.

1.8 Thesis Contributions
The main contributions of this work are the following.

• Detailed descriptions of a close collaboration between computer scientists

and biologists as well as a tool developed through the collaboration. Many of

the techniques presented in this work may seem unconventional to experts in

visualization, such as the render modes for multiple channel rendering. This is

because our biologist collaborators gave us prompt comments and suggestions

during the whole process of development. On the other hand, we also learned

new techniques from biologists. For example, the Synthetic Brainbow technique

is inspired by the Brainbow technique, which is a genetic engineering technique

that randomly colorizes cells. With the increase of interdisciplinary collaborations,

we believe there will be more examples like ours in the future.

• Practical methods that solve real-world problems in scientific visualizations.

Since FluoRender has always been a publicly-released tool for biologist users,

effective and intuitive solutions are always demanded. This is the reason that we

integrated a full set of 2D image space method into our system for visualization

enhancement. Even though we are dealing with datasets with ever-increasing

dimensions, simple methods at lower dimensions shall never be overlooked, as

they may be solutions to complex problems.

10

• Improvements to user interactions with volumetric data. For transfer function

manipulations, widgets previously used in 2D histograms are replaced with

parametrized settings that are specially designed for confocal data. Segmentation

of 3D structures can be carried out directly in the rendered results. These

techniques simplify operations so that more data can be processed with shorter

time.

• Integration of artists' tools into the workflow of making and visualizing

anatomical atlases from confocal scans. Although many artists' tools did not

originate from scientific research, their data processing power and especially

usability may exceed tools used in science. Incorporating artists' tools into

scientific visualization workflow also makes it possible for artists to participate in

scientific research. The combined creativity of science and art may lead us to new

findings.

1.9 Outline
In Chapter 2, background knowledge of confocal microscopy and related

work in volume visualization and analysis are discussed. Chapter 3 details the

visualization pipeline of FluoRender, which is an integration of volume rendering

techniques and 2D image space enhancements. Chapter 4 presents the interactive

volume segmentation methods in FluoRender, which uses a paint brush analogy

and allows user-guided extraction of structures. Chapter 5 is one step forward

towards the automation of the methods discussed in Chapter 4. We developed a

technique that simulates the random colorization in the well-known Brainbow

technique. The random colorization is used to disambiguate complex structures

in confocal data, especially the cells. Chapter 6 is a real-world application

of FluoRender in biological research, where FluoRender plays a key role in a

workflow of making anatomical atlases from confocal microscopy data. Finally,

conclusions and future work are given in Chapter 7.

CHAPTER 2

BACKGROUND

2.1 Laser Scanning Confocal Microscopy
Laser scanning confocal microscopy has become an invaluable tool for a wide

range of investigations in the biological and medical sciences for imaging thin

optical sections in living and fixed specimens. The basic concept of confocal

microscopy was developed by Marvin Minsky in the mid-1950s [19]. The concept

was continually perfected in the 1970s and 1980s, which led to the first commercial

product in 1987 [19]. Coupled to the rapidly advancing computer processing

speeds, enhanced displays, and large-volume storage technology emerging in

the late 1990s, laser scanning confocal microscopy finally gained tremendous

popularity in the last decade in many applications.

A modern confocal microscope is a completely integrated electronic system

consisting of an optical microscope, several laser systems, electronic detectors,

and a computer. The principal components of its optical system are the objective

lens system, a dichromatic mirror, and two pinhole apertures (Figure 2.1). The

two pinhole apertures are positioned at the conjugate points to the focus point of

the objective lens. The pinhole aperture at the laser source diffracts the laser beam,

which is then focused on a point within the specimen. The specimen, usually

fluorescently stained, emits fluorescent light of a different wavelength from the

excitation laser. The fluorescence emission from the focus point is refocused by the

objective lens at the second pinhole aperture. A significant amount of fluorescence

emission that occurs at out-of-focus points is not confocal with the second pinhole

aperture and is cut off from being detected by the electronic detector. Therefore,

only a small point, usually at submicrometer level, of the specimen is imaged at

12

Figure 2.1. Principle components of the optical system of a laser scanning confocal
microscope. The excitation light (green) and emitted light (red) have different
wavelengths. The emitted light rays are cut off by the detector pinhole aperture
so that only a single point in the specimen is scanned a time.

13

a time. This imaging process repeats within the focus plane (lateral XY axes) or

deep into the specimen (Z axis) and a three-dimensional image is scanned.

A confocal microscope is commonly equipped with several laser sources and

lasers of different wavelengths can be used to excite the fluorescently-stained

specimen. Different antibodies that bind only to particular structures (for example,

neurons, muscles, and tendons) are used to deliver fluorescent tags. A confocal

microscope excites the fluorescent tags with lasers, and different detectors collect

the emitted light from the tags. So for example, one detector will collect the image

of tendons in green, another will collect muscles in red, and another will collect

neurons in blue.

Compared to conventional widefield fluorescent microscopy, the primary

advantage of laser scanning confocal microscopy is the ability to capture three­

dimensional structures with fine details, without physically sectioning the

specimen. This noninvasive optical sectioning technique enables the examination

of both fixed and living specimens, resulting in volumetric data and time-sequence

data.

2.2 Interactive Visualization of Volumetric Data
Volume rendering is a set of techniques for visualizing volumetric data

typically generated by CT and MRI scanners, or from computer simulations. Since

previous research has largely solved the rendering problems of volumetric data,

recent research of volume visualization has shifted its focus on the following:

firstly, methods that facilitate accurate interpretation and extraction of meaningful

information from complex, abstract, and multidimensional data in different

applications; secondly, interactive techniques scalable for extremely large datasets,

including multichannel, multimodal, and time-sequence data; thirdly, interaction

and integration among volume visualization, other forms of visualization and

analysis, for example, polygon mesh generation and rendering, unstructured data

visualization, statistical and topological analysis, etc.

Confocal microscopy data visualization is an application topic in volume

14

visualization, which involves research of more or less all three points above.

As in the introduction chapter, multiple channels of confocal data naturally

pose a question of how different channels are combined and rendered. Cai and

Sakas [15] proposed three levels of data intermixing and rendering pipelines in

direct multivolume rendering, which include image level intensity intermixing,

accumulation level opacity intermixing, and illumination model level parameter

intermixing. In the context of radiotherapy treatment planning, they applied their

methods to three volumes, including CT volume, dose volume, and segmentation

volume. Then they compared the features of different data intermixing methods.

Rossler et al. [85] described a flexible framework for GPU-based multivolume

rendering, which provided a correct overlaying of an arbitrary number of volumes

and allows the visual outputs for each volume to be controlled independently. They

also presented a visualization tool specific for the rendering of functional brain

images, which was built on top of their frame work. Their tool included different

GPU-based volume rendering techniques, on the one hand for the interactive visual

exploration of the data, and on the other hand for the generation of high-quality

visual representation. Grimm [36] presented a full-blown high-quality raycasting

system, which can efficiently process and visualize multiple large medical volume

datasets. The core acceleration technique of his system was a refined caching

scheme for gradient estimation in conjunction with a hybrid skipping and removal

of transparent regions to reduce the amount of data to be processed. In addition,

the system distinguished regions where multiple volumes intersect, and efficiently

rendered regions containing only one volumetric object, and those need costly

multivolume processing.

The fine details, noise, and visual occluders in confocal microscopy data

require visualization techniques that can visualize important structures without

explicit segmentation. Volume classification has been an active area of research.

Kindlmann et al. [50] proposed the histogram volume, which captures the relation­

ship between volumetric quantities in a position-independent, computationally

efficient fashion. Then they presented semi-automatic methods of generating

15

transfer functions for direct volume rendering. Kniss et al. [53] presented

multidimensional transfer functions for interactive volume rendering. Their

work demonstrated an important class of three-dimensional transfer functions for

scalar data. It described the application of multidimensional transfer functions

to multivariate data. They also presented a set of direct manipulation widgets

that made specifying such transfer functions intuitive and convenient. Correa et

al. [21, 23] proposed visibility-driven and size-based transfer function designing

techniques for volume exploration. They incorporated visibility histogram

and size information into a multidimensional transfer function design. Their

semi-automated method for transfer function generation progressively explored

the transfer function space towards the goal of maximizing visibility of important

structures. To ease the difficulties for end-users to use multidimensional transfer

functions, methods have been proposed to accelerate the transfer function design

process. Rezk-Salama et al. [82] introduced an additional level of abstraction

for parametric models of transfer functions. They proposed a framework that

allowed visualization experts to design high-level transfer function models that

can intuitively be used by nonexpert users. The resulted user interface provided

semantic information for specialized visualization problems. Tzeng et al. [100]

proposed an approach to the volume classification problem that couples machine

learning and a painting metaphor to allow more sophisticated classification in

an intuitive manner. Their intelligent system approach enables users to perform

classification in a much higher dimensional space without explicitly specifying

the mapping for every dimension used.

Embedding polygon data into volumetric data is one technique to visualize

subtle boundaries and the content within each boundary. Everitt [28] described

an algorithm for interactively rendering order-independent transparent polygon

objects with graphics hardware. The algorithm is also known as depth peeling. The

depth peeling algorithm is widely used for correctly blending transparent polygon

meshes. Kreeger and Kaufman [55] presented an algorithm that embeds opaque

and/or translucent polygons within volumetric data, by rendering thin slabs of the

16

translucent polygons between volume slices using slice-order volume rendering.

They demonstrated their algorithm with examples of medical applications and

flight simulators. Nagy and Klein [70] presented the concept of volumetric

depth-peeling, and they separated the volume data into interior and exterior

based on a fixed iso-value. Weiskopf et al. [111] proposed clipping methods

that are capable of using complex geometries for volume clipping, which enable

selecting and exploring subregions of one volumetric dataset.

There are some commercially available software packages for confocal data.

Amira [106] can render volume datasets from confocal microscopes, and visualize

them together with polygon data, which are generated by its segmentation tool

automatically or manually. Imaris [10] incorporates multiple volume rendering

algorithms for visualizing microscopy data interactively, and it can also generate

polygon data for rendering or volume editing. Volocity [79] can load multichannel

confocal data, and it provides both interactive and noninteractive volume

renderers for visualizing them. For specific problems and data, users often

feel problems with these tools: many do not provide adequate parameter settings

for fine-tuning volume rendering results; some are not interactive when adjusting

parameters; and it is always laborious to analyze repetitive experiments.

2.3 Visualization Enhancement in 2D Image Space
2D image space methods are processing methods applied after the volumetric

data are projected and rendered into the 2D image space, such as 2D filtering, tone

mapping, and compositing. In the application domain of volume visualization,

most 2D image space methods can be carried out more efficiently than their

3D counterparts. Most importantly, 2D image space methods can be used

to enhance volume visualization quality when applied together with volume

rendering methods. Most research of volume visualization enhancement focuses

on algorithms in 3D data space. For example, Ebert and Rheingans [27] introduced

a volume illustration approach, which is a combination of the familiarity of a

physics-based illumination model with the ability to enhance important features

17

using nonphotorealistic rendering techniques. They included properties such

as volume sample location and value, gradient value, view direction, and light

information into the volume illustration procedure. The features that could be

enhanced include boundaries, silhouettes, depth and orientation cues, distance

color bleeding, halos, and tone shading. Kuhn et al. [56] designed an image-

recoloring technique and applied it to volume rendering for highlighting important

visual details. To improve visualization experiences for individuals with color

vision deficiency, Machado et al. [66] proposed a physiologically-based model

for recoloring visualization results, including volume-rendered scientific data.

For illustrative visualization, Wang et al. [110] presented a framework to aid

users to select colors for volume rendering, in which case color mixing effects

usually limit the choice of colors. While there are several commercial and

academic visualization packages that biologists have been using for confocal

microscopy data, such as Amira [106], Imaris [10], and Volocity [79], 2D image

space methods for detail enhancement are generally absent from these tools. In

fact, choosing and designing proper 2D image space methods and parameters,

integration of 2D and 3D methods, as well as their applications are interesting

research topics for volume visualization in general. In [13], Bruckner et al.

presented a framework for compositing of 3D renderings, and use the framework

for interactively creating illustrative renderings of medical data. Tikhonova et

al. [98] [99] proposed visualization by proxy, which is a framework for visualizing

volume data that enables interactive exploration using proxy images. For fast

prototyping and method/parameter searching, computer scientists often use

comprehensive visualization and image processing libraries, such as VTK [52]

and ITK [51]. Experimental applications with customized visualization pipelines

are generated. However, this is often regarded as impractical by biologist users,

since they usually demand a reliable tool with seamlessly integrated functions

that are only relevant to their specific application scenario.

18

2.4 Volume Segmentation Techniques
In biomedical research, useful segmentation methods for volumetric data

are generally categorized into two kinds: full manual and semi-automatic.

The concept of fully automatic segmentation does exist; however, either the

implementations are limited to ideal and simple structures, or they require

complex parameter adjustment, or a vast amount of manually segmented results

are used for training. They fail in the presence of noisy data, such as confocal

scans. Thus, robust fully automatic segmentation methods do not exist in practice,

especially in cases where complex and intricate structures are extracted according

to users' research needs.

In biology research, fully manual segmentation is still the most-used method.

Though actual tools vary, they all allow selecting structures from each slice

of volumetric data. For example, Amira [106] is often used for extracting

structures from confocal data. For complex structures, such as neurons in confocal

microscopy data, it requires great familiarity with the data and the capability of

inferring 3D shapes from slices. For the confocal dataset shown in Figure 2.2, it took

one neurobiologist one week to manually select one neuron, since it was difficult

to separate the details of the two neurons in proximity. However, such intense

work would not guarantee a satisfactory result: some fine fibers of low scalar

intensities might be missing. Even when the missing parts could be visualized

with a volume rendering tool, it was still difficult to go back and track the problems

within the slices. To improve the efficiency of manual segmentations, biologists

have tried different methods. For example, VolumeViewer from Sowell et al. [96]

allows users to draw contours on oblique slicing planes, which helps surface

construction for simple shapes but is still not effective for complex structures.

Using the volume intersection technique from Martin and Aggarwal [68] or Space

Carving from Kutulakos and Seitz [57], Tay et al. [97] drew masks from two

orthographic MIP renderings and projected them into 3D to carve a neuron out

from their confocal data. However, the extracted neuron in their research had a

very simple shape.

19

Figure 2.2. The user interface for segmentation in Amira. In the volume rendering
view, we can observe that two neurons are in proximity and have complex details.
However, it is difficult to tell them apart or infer their shapes from any of the
slice views. Unfortunately, users have to select structures from the slice views
rather than the volume rendering view, where they can actually see the data more
clearly. Many interactive volume segmentation tools in neurobiology use similar
interactions, which are difficult to use for complex shapes.

For extracting complex 3D structures, semi-automatic methods, which com­

bine specific segmentation algorithms with user guidance, seem to be more

advantageous than manual segmentation. However, choosing an appropriate

combination of algorithm and user interaction for a specific segmentation problem,

such as neural structure extraction from confocal data, remains an active research

topic. Though the variety of segmentation algorithms is myriad, many of them for

extracting irregular shapes consist of two major calculations, i.e., noise removal

and boundary detection. Most filters designed for 2D image segmentation can be

easily applied for volumetric data. Filters commonly seen include all varieties

of low-pass filters, bilateral filters, and rank filters (including median filter, as

well as dilation and erosion from mathematical morphology) [33]. Boundaries

20

within the processed results are very commonly extracted by calculations on

their scalar values, gradient magnitudes, and sometimes curvatures. Prominent

segmentation algorithms that see many practical applications in biology research

include watershed [104], level set [75], and anisotropic diffusion [80]. The latest

technological advances in graphics hardware allow interactive application of

many previously proposed algorithms to volumetric data. Sherbondy et al. [93]

implemented anisotropic diffusion on programmable graphics hardware and

applied the framework to medical volume data. Viola et al. [105] implemented

nonlinear filtering on graphics hardware and applied it to segmenting medical

volumes. Lefohn et al. [58] implemented the level-set algorithm on graphics

hardware and demonstrated an interactive volume visualization/segmentation

system. Jeong et al. [44] applied the level-set method to EM datasets, and

they demonstrated an interactive volume visualization/segmentation system.

Hossain and Moller [41] presented an anisotropic diffusion model for 3D scalar

data, and used the directional second derivative to define boundaries. Saad et

al. [88] developed an interactive analysis and visualization tool for probabilistic

segmentation results in medical imaging. They demonstrated a novel uncertainty-

based segmentation editing technique, and incorporated shape and appearance

knowledge learned from expert-segmented images [87] to identify suspicious

regions and correct the misclassification results. Kniss and Wang [54] presented a

segmentation method for image and volume data, which is based on manifold

distance metrics. They explored a range of feature spaces and allowed interactive,

user-guided segmentation.

Most segmentation research has focused on improving accuracy and ro­

bustness, but little has been done from the perspective of user interactions,

especially in real-world applications. Sketch-based interaction methods, which

let users directly paint on volume rendering results and select desired structures,

have demonstrated the potential towards more intuitive semi-automatic volume

segmentation schemes. Yuan et al. [113] presented a method for cutting out

3D volumetric structures based on simple strokes that are drawn directly on

21

volume rendered images. They used a graph-cuts algorithm and could achieve

near-interactive speed for CT and MRI data. Chen et al. [18] enabled sketch-based

seed planting for interactive region growing in their volume manipulation tool.

Owada et al. [78] proposed several sketching user interface tools for region

selection in volume data. Their tools are implemented as part of the Volume

Catcher system [77]. Burger et al. [14] proposed direct volume editing, a method

for interactive volume editing on GPUs. They used 3D spherical brushes for

intuitive coloring of particular structures in volumetric scalar fields. Abeysinghe

and Ju [1] used 2D sketches to constrain skeletonization of intensity volumes.

They tested their interactive tool on a range of biomedical data. To further facilitate

selection and improve quality, Akers [4] incorporated a tablet screen into his

segmentation system for neural pathways. Unfortunately, these methods were

not used in any practical workflow to demonstrate their usability. Tools with

interactive and intuitive volume segmentation were not available to end-users

such as biologists. They would like a tool that could combine the effort-saving

convenience of automatic segmentation algorithms and versatile user-guidance

of manual segmentation.

2.5 Synthetic Brainbows
Randomness is an inherent character accompanying all natural processes.

Researchers in biology have taken advantages of randomness. We are particularly

interested in one recent technique in life science: Brainbow. In [63], Livet et

al. described a series of strategies to randomly express fluorescent proteins

in individual cells of mouse nervous system. They exploited the advantages

of the widely used Cre/lox recombination system [11], which is able to turn

on or off the expression of one or several different fluorescent proteins in a

gene sequence. For different cells that are genetically modified to work with

this technique, different combinations of the fluorescent proteins can occur.

This is because the Cre/lox recombination system randomly chooses the gene

expressions for recombination. The end result is that different cells, despite

22

the same type, are fluorescently stained with different colors. This technique

is useful to visualize and distinguish detailed structures in the nervous system,

where cells are packed and can be touching. However, the application of the

Brainbow technique on a certain species of animals is limited because of complex

transgenic manipulations. Disambiguation of cellular structures in single-channel

datasets are commonly addressed by segmentation techniques (e.g., Cohen et

al. [20]), which usually change the appearance of the original data and may be

undesired for visualization purposes. Inspired by Brainbow, we would like to

use computational techniques to randomly colorize confocal microscopy data

processed with common antibody staining. By generating Brainbow-like results

where different structures are distinctively colored, our proposed technique is an

improvement to the visualization of single-channel confocal microscopy data.

Our Synthetic Brainbow technique leverages a process known as GPU

framebuffer feedback loops. This process reads and writes the same framebuffer

by multiple rendering or computing threads on GPU. If the output value of one

pixel is dependent of its neighbors' values, it essentially creates race conditions

among different threads. Without locking or synchronizing of the threads, the

results become nondeterministic. Experienced graphics program developers

avoid the nondeterministic behavior of GPU framebuffer feedback loops by

framebuffer Ping-Pong, which is a technique using two framebuffers for reading

and writing, thus synchronizing different threads. In fact, setting up a framebuffer

feedback loop by binding the same framebuffer to a shader's (or computing

kernel's) input and output is not considered an error by graphics hardware

specifications. Developers are simply warned against doing so because the results

are "undefined" [91]. However, considering that a framebuffer feedback loop

is computationally more efficient by saving half the memory and using fewer

context switches, we do believe it deserves a closer examination. In our research,

we find that the nondeterministic behavior of given graphics hardware induced

by asynchronism can be statistically tested and determined.

Applications of GPU framebuffer feedback loops are rare in previous work, due

23

to the fact that deterministic results are generally desired in computations with

GPUs, such as filtering in image processing and equation solving in simulations.

However, its theoretical development has long preceded the appearance of

GPUs. An iterative computational model of GPUs is equivalent to a cellular

automaton. The framebuffer can be thought as a grid of the cellular automaton

with its pixels as the cells. The shader or computing kernel provides the rules for

updating the states of the cells. The study of cellular automata dates back to the

early history of computer science, including work of Ulam and Neumann [107].

Different types of cellular automata have been extensively studied through

the later development of computer technology. Cellular automata have been

proposed as computational models for simulations in physics [67] [86], material

science [9] [94], and biology [42] [72]. They have also been extensively used in

image segmentation algorithms [103] [47] [48] [49] [31] [62]. However, most

research focused on synchronous cellular automata, where the state of every cell

is updated together. Using framebuffer Ping-Pong in an iterative computational

model is an example of a synchronous cellular automaton. In contrast, a

framebuffer feedback loop should update individual cells independently, and

the new state of a cell affects the calculation of states in neighboring cells,

thus an asynchronous cellular automaton. Asynchronous cellular automata are

generally less studied due to their nondeterministic behaviors. A lot of effort

has been spent in recent research on asynchronous cellular automata to find

efficient ways of computing deterministically without global synchronization.

The research is mostly based on chaotic relaxation (Chazen and Miranker [17]),

which described necessary and sufficient conditions for an asynchronous and

chaotic process to converge. Baudet [8] presented a class of asynchronous iterative

methods for solving a system of equations. Adachi et al. [2] presented an

asynchronously updating cellular automaton that conducts computation without

relying on a simulated global synchronization mechanism. Galilee et al. [30]

proposed a joint algorithm-architecture for computing watershed segmentation.

Their algorithm is programmed as a set of concurrent communicating iterative

24

programs that are efficiently mapped onto an asynchronous parallel architecture.

Venkatasubramanian and Vuduc [102] described GPU implementations of Jacobi's

iterative method for the 2D Poisson equation. Their implementations include a

"wild" asynchronous example, which removed synchronization between iterations.

They have shown that the "wild" asynchronous implementation on GPU has

1.2-2.5x speedups against best synchronous implementation, thanks to highly

efficient memory bandwidth utilization. For GPU implementations of connected

component labeling, Oliveira and Lotufo [73] discussed an ID merging method

using asynchronous automata and presented an improved algorithm that included

local and global merging stages. They also reported their method achieved 5-10x

speedup in relation to Stephano-Bulgarelli's [25] serial algorithm. We regard the

previously presented connected component labeling methods as primitive forms

of more sophisticated colorization. Different from previous research, we leverage

the randomness and use a computational stochastic process to simulate the results

from a biological stochastic process: Brainbow.

2.6 Anatomical Atlases
An anatomical atlas provides a detailed map for medical and biological studies.

The continuous efforts for making atlases of human anatomy date back to the

work of many renowned anatomists: Vesalius, Leonardo da Vinci, William Hunter,

and Henry Gray, whose creations are not only esteemed for their scientific value,

but also appreciated aesthetically as masterpieces of art. Truly an arena where

science meets art, anatomical atlases evolved as technologies advance in both

fields: painting, printing, photography, microscopy, tomography, and certainly

computer graphics. Whenever a novel technology emerges, our knowledge of

anatomy is enriched with both exciting scientific findings and the increasingly

detailed information presented in an atlas. Historically, an anatomical atlas has

been a book of illustrations and text that systematically explains the anatomy of

particular biological species. Naturally, the anatomy of humans has been the most

studied. The most influential printed human anatomy atlases available today are

25

Gray's [34], Netter's [71], and Thieme's [32]. Interestingly, the production and

appearance of printed atlases has changed with the development of technology.

Henry Vandyke Carter, the illustrator of Henry Gray's anatomy book, drafted his

illustrations in reverse on boxwood, which was then engraved for printing [83].

Frank Netter enjoyed the convenience brought by photography and modern

printing. He chose a painting technique, gouache, which could better render the

highlights and shadows to give his illustrations a more three-dimensional look.

The illustrations of Thieme's Atlas of Anatomy were mostly hand drawn with

Adobe Photoshop by Markus Voll and Karl Wesker. Though largely following

the styles established by their predecessors, the use of digital media gives their

illustrations finer details, smoother tonal gradations, and better transparency

effects. All of these contribute to the clear representations of particular anatomical

features. Printed atlases of other biological species are relatively scarce, and those

in existence are usually decades old. For example, Greene's Anatomy of the

Rat [35] was published in 1935 and is still used today as the definitive text for

identification of anatomical structures in all rodents. In particular, Greene's atlas

is used as the anatomy text for the laboratory mouse, one of the most important

model organisms in biology and medicine. Anatomical atlases are crucial to

understanding normal anatomy and identifying congenital abnormalities. For

educational purposes, physical models are also sometimes built and used in

addition to anatomy books. Physical models provide a unique three-dimensional

model of anatomy. However, they are difficult to make, store, and maintain.

Hardly can physical models achieve the level of detail required by scientific

research, and thus they are rarely used in biological or medical research.

Computer graphics not only revolutionized the film industry, but also trans­

formed anatomical atlases. Computer-generated atlases allow for a 3D, manip-

ulable visualization of anatomy. Several 3D atlases have been generated for

human anatomy, including Visible Body (www.visiblebody.com), Cyber-Anatomy

(www.cyber-anatomy.com), and Zygote's anatomical model library (www.zygote

.com). Since 3D models are commonly built by referencing 2D illustrations

http://www.visiblebody.com
http://www.cyber-anatomy.com
http://www.zygote

26

of anatomy books, building 3D atlases is expensive and requires specialized

personnel with experience in both digital modeling and anatomy. For biologists

to build 3D anatomical models, it is most practical to use 3D scanned biological

samples. Due to noise and limited resolution, anatomical atlases [40] that directly

use volume renderings of scanned 3D volumetric data usually cannot achieve the

clarity of polygon-based atlases, composed of objects modeled by representing

their surfaces with polygons. There are several publications of polygon-based

anatomical atlases for biological research (e.g., Ju [46] and DeLaurier [24]).

However, easy-to-follow workflows and examples are unavailable for biologists

to learn to make such atlases.

CHAPTER 3

A VISUALIZATION PIPELINE FOR

CONFOCAL MICROSCOPY DATA

3.1 Confocal Data Formats as Inputs
Though different confocal microscope manufactures support different raw

formats, confocal microscope users commonly use TIFF as both destination and

exchange formats for storage, visualization, processing, and publication. TIFF

files can be easily handled by standard image input/output libraries within most

programming environments. However, these special features introduced by

confocal microscopy datasets require us to have our own support for confocal

microscopy file formats.

• Input precision. Depending on the model of the photodetector and Analog-

Digital Converter (ADC) used with the microscope, the bit-depth of each confocal

channel varies from 8-bit to 16-bit. TIFF is designed to work with an arbitrary

number of bit-depth, but 8-bit and 16-bit are the most commonly seen. In fact,

for 16-bit format, there are usually 12 or 14 significant bits. Rendering results

will be considerably dark if we simply duplicate such data into graphics memory.

To preserve input data precision, the actual bit-depth of an input dataset is first

acquired by parsing the dataset and searching for the maximum intensity value.

When the actual bit-depth of a dataset is 8-bit, data blocks from the original file

are copied into graphics memory as 8-bit 3D textures; when the actual bit-depth

is over 8-bit, data blocks are copied into graphics memory as 16-bit 3D textures.

The actual bit-depth is used as a modulation factor to generate correct rendered

brightness.

• Volumetric data. For confocal images, there are two competing methods

28

when using TIFF for volumetric data storage: a sequence of 2D image sections

and a single file with multiple pages. Multipage TIFF files are easier to manage,

since each file contains a single dataset. However, they may not be universally

supported as 2D TIFF sections are. For example, Adobe Photoshop, which is

commonly used by biologists, does not have native support for multipage TIFFs.

To support both methods, the format importer in FluoRender will first decide

which of these two methods is used. Then for a 2D section sequence, files in the

same folder with similar names are enumerated, matched, and ordered to form the

correct data sequence. On the other hand, reading a multipage TIFF file is rather

straightforward. For large datasets, bricking is used. These datasets are usually the

scans of a moving stage, where a specimen is scanned at different regions and these

regions are later mosaiced to form a large dataset. The brick size is determined

according to graphics cards' capabilities. As of the time of writing (ca 2012),

both major gaming and professional graphics device manufactures, i.e., AMD

and nVIDIA, provide mainstream products with 2GB-6GB of graphics memory.

However, there is a discrepancy in their support of 3D textures: the maximum

size supported by nVIDIA is 2048 pixels; most AMD's graphic cards support

8192 pixels at maximum and sometimes 16384 pixels for certain professional

products. For most confocal data in practice, both are sufficient and no bricking is

actually needed. In addition to pixel size of a confocal volume, another important

parameter retrieved from TIFF metadata is the physical resolution, usually in

micrometers, which describes the physical size of a voxel in X, Y, and Z directions.

Notice that a confocal dataset is anisotropic in most cases. The resolution is crucial

for a correct proportion when the dataset is rendered.

• Multichannel data. TIFF is also designed to support an arbitrary number of

channels. However, saving multiple confocal channels using standard RGB color

channels is the most common, since there are usually limited number of laser

wavelengths and fluorescent tags. Sometimes, laser wavelength information is

available in TIFF metadata. Such information is retrieved and used for assigning

colors to different confocal channels automatically. When this information is not

29

available, we assign red, green, and blue to the first read channels by default.

• Time-sequence data. A time-sequence dataset is generated from continuous

imaging of a living specimen. Despite the possibility of storing a complete time

sequence with a single TIFF file, each time timepoint is usually stored separately.

Confocal time sequences are sometimes referred as 4D or 5D data, because they are

volumetric (3D), time-varying (the fourth dimension), and multichannel (the fifth

dimension). Rendering time-sequence in a timely manner is most important for

users, since many biological phenomena, such as mitosis, can be visually detected

if an image sequences is played smoothly. We try to minimize the playback

latency with three means. First, we reduce reading and processing time for each

timepoint. Only necessary operations are performed when reading one timepoint,

such as retrieving data information and data block copying, since most data

processing and enhancement are deferred to later in our visualization pipeline.

Second, information for each timepoint is prefetched and cached, so that it is

always immediately available when data for any timepoint are requested. Third,

the actual data for each timepoint are read from disk when they are requested

during first-time playback, and then they are cached in system main memory.

Although this design choice makes the speed of first-time playback dependent

on disk speed, which can be slow for low-end systems, the advantage is that

visualization of a time-sequence data is instantly available only after the first

timepoint is loaded. The speed of the second and later playbacks can still catch up.

We tested and compared the visualization speeds of FluoRender and two other

tools commonly used for time-sequence confocal data visualization, i.e., Volocity

and Imaris. The test results are shown in Figure 3.1. The test was comprised of

four subtests. Dataset loading tested the time of loading a 3.43GB dataset, which

contains 210 timepoints of a 12-hour continuous imaging. Since FluoRender

gathers data information of all timepoints and only reads the actual data block

of the first timepoint at initial loading, the latency is negligible. Total operation

time is the duration between the application launch to when the first timepoint is

visualized. It seems that both Volocity and Imaris preprocess the dataset, which

30

Figure 3.1. Speed comparisons. We tested all speeds on the same PC with Intel
Core i7 3.2GHz, 12GB memory, single 7200 RPM SATA disk, nVIDIA GTX280 and
Microsoft Windows XP 64bit. The dataset is a two-channel 4D confocal dataset
with 210 frames, which occupies 3.43GB on disk. Volocity is 64bit at version 5.1.0.
Imaris is 64bit at version 6.3.0. FluoRender is 64bit at version 2.9.0

31

causes considerable delay before any result can be visualized. The difference

between 4D playback and 4D export is that 4D export saves the result, typically

to a 2D image sequence. We calculated the speed by dividing the total number

of timepoint (210) with playback time. FluoRender caches data using available

system memory during first-time playback, and the speed is considerably faster

for later playback when data size is smaller than the system memory. Volocity

and Imaris both require loading the entire dataset into system memory before

playback, which makes them impossible to use when the size of a time sequence

is larger than system memory. This seems to be no problem for FluoRender, as

we learned from our neurobiologist users that FluoRender worked stably with a

50GB time sequence dataset on a common PC desktop.

In addition to the TIFF format, we also support two confocal manufacturers'

raw formats, i.e., OIB and OIF from Olympus, and LSM from Zeiss. All

formats have native support for volumetric, multichannel and time-sequence

data. Since these formats are either wrappers around standard TIFF (OIB

format uses Microsoft's structured storage to save standard 2D TIFF files), or

modified TIFF (LSM format extends the TIFF specifications to support features

such as larger-than-4-GB data), it becomes straightforward to support these

customized formats by modifying our existing TIFF reader. Thus, the same

reading/caching strategy as for standard TIFF-based confocal data is used for the

manufacture-specific formats. However, the most significant difference is how

confocal information (data size, resolution, laser wavelengths, etc.) is stored. So

we designed our readers according to manufacturers' format specifications, which

can be obtained from the above manufacturers upon request.

3.2 Intuitive and Efficient Transfer Function
Manipulations

In FluoRender, 2D transfer functions [53] are used for setting rendering

properties of volume data, as their boundary extracting capability can render fine

structures from confocal data. We found, however, that biologist users prefer

intuitiveness and efficiency to complicated transfer function widgets and settings.

32

With this in mind, we chose a family of the 2D transfer functions that best suits

confocal data structure extraction, while the parameters for fine-tuning the shapes

of the transfer function are chosen and named for better operability. The shape of

the 2D transfer function, as well as the parameters, are illustrated in Figure 3.2.

• Boundary extraction. It controls the cut-off value of gradient magnitude.

Setting a higher value can isolate better-defined boundaries in the volume data.

Figure 3.3(c) shows that spreading of nuclei is seen in a combined rendering

with other channels. By increasing the boundary extraction value, only the

voxels defining nucleus boundaries are rendered. Combined with transparency

adjustment, both the underlying channels and the spreading of nuclei are seen,

which is not possible by adjusting transparency solely (Figure 3.3(b)).

• Saturation point. It offsets the intensity turnpoint in the 2D transfer function.

Low intensity signals are enhanced when its value is lowered. Figure 3.3(e) and

(f) show that the continuity of neuron fibers is recovered after adjusting this

parameter.

• Low and high thresholds. They set the low and high cut-off values of scalar

intensity. These values are useful for noise suppression. Figure 3.3(g) and (h)

show an example before and after the threshold values are adjusted; noisy data

are eliminated after adjusting the low threshold value.

• Gamma. It is a nonlinear falloff control of low intensity signals. It controls

how values off the intensity peak are attenuated by adjusting the exponent of

the intensity values. Gamma is adjusted to get a better contrast of the output

renderings.

For a multichannel volume dataset, transfer function for each channel can

be adjusted independently. FluoRender lets users interact with a limited set of

parameters, with each parameter adjusted by either linked slider or numerical

entry. The corresponding parameter settings in the user interface are listed in

Figure 3.4. By avoiding complicated widgets or the jargon of transfer function

settings, the provided interface is more intuitive for biologists to use and can

quickly obtain the desired visualization results. In addition, default settings

33

Figure 3.2. An illustation of the 2D volume transfer function in FluoRender. The
colored arrows indicate the possible adjustments for the parameters, which are:
gamma, saturation point, boundary extraction, low threshold, and high threshold.

coming with FluoRender installation packages are determined by our collaborating

neurobiologists through their general workflows. All the transfer function

parameters have default values, and they are automatically applied to loaded

data. Users can also generate their own default settings after they become familiar

with the settings.

It is a common practice that the volume transfer function is rasterized as a

texture, and updated every time the parameters change. Two problems may

occur if the texture transfer function is used. First, there is quantization error,

especially when the transfer function is nonlinear, since texture lookup only uses

linear interpolation. Second, it is impractical to build a texture transfer function

for 16-bit data due to texture size limitations. Since our 2D transfer function

has only five customized parameters for confocal visualization, we pass the

parameters into the shader computing the volume rendering result, and evaluate

34

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3. Results when our 2D transfer function is adjusted for a zebrafish
head dataset. (a) The channel of nuclei (cyan) obstructs other channels. (b)
Increasing the transparency may be helpful, but it makes the rendering obscure,
and underlying channels are still partially occluded. (c) Increasing the boundary
extraction value can better show the spreading of the cells and underlying channels.
(d) The motor neurons (green) projecting to the eye muscles appear artifactually
disconnected, indicated by a yellow arrowhead. (e) Adjusting the saturation
point reveals that motor neuron fibers are in fact connected. (f) Shading helps
better define the shape. (g) Low scalar intensity noise is present in the eye muscle
channel (red channel in others). (h) Increasing the low threshold suppresses the
noise. (i) A map of the regions analyzed.

35

Figure 3.4. FluoRender user interface. A - Toolbar; B - List of loaded datasets; C -
Tone-mapping adjustment; D - Tree layout of current active datasets; E - Movie
export settings; F - Render viewport; G - Clipping plane controls; H - Volume data
property settings.

the volume transfer function on the fly. The real-time evaluation of the transfer

function ensures the rendering quality of the low-intensity signals in confocal data.

Figure 3.5 compares the resulting difference between prequantized and real-time

evaluation of the transfer function. While many other tools either do not have the

flexibility of changing volume transfer function, or provide too many parameters

and widgets that make evaluation on the fly impossible, FluoRender lets its users

quickly adjust the volume transfer function for finely-detailed visualizations.

The volume rendering results of FluoRender always output to 32-bit floating­

point framebuffers, and then all the 2D image space methods discussed sub­

sequently are calculated with 32-bit precision. This is essential to our tool for

high-precision adjustments.

36

(a) (b)

Figure 3.5. Results from prequantized (a) and on the fly (b) evaluation of the
transfer function. The two results are generated with the same transfer function
settings. The prequantized transfer function clips many details in the low intensity
regions, which are preserved with on the fly evaluation of the transfer function.
The dataset shows tectal neurons of a 5-day-postfertilization (5dpf) zebrafish.

3.3 Multiple Render Modes for Multichannel Data
For multichannel confocal microscopy data, qualitative analysis usually

requires visualizing the spatial relationship between data from different channels.

When combined together, however, data from different channels often interfere

with each other, and details of interest from one channel can be occluded.

We provide three render modes suggested by our collaborating biologists for

multichannel volume data. The three render modes are: Depth mode, Composite

mode, and Layered mode. Figure 3.6 compares the results of same three-channel

dataset with different modes.

• Depth mode. When implemented with a slice-based volume renderer,

multichannel volume data are blended first for each polygon slice and then the

slices are blended together. This is the correct way to show the spatial relationships

between channels, and most visualization tools that support multichannel datasets

use this mode. However, sometimes fine structures from one channel are covered

by voxels from other channels with lower depth values. Lowering the transparency

37

(C) (d)

Figure 3.6. A confocal dataset of a 5dpf (days postfertilization) zebrafish embryo
has three channels: eye muscles (red), neurons (green), and nuclei (blue). (a) The
channels are combined with 3D compositing. The muscle and neuron channels
are barely seen. Yellow arrowheads indicate the boundary of the brain, which is
on the right side of the eye when visualized as in the figure. (b) The channels are
composited with 2D addition. Highlight details are over-saturated, due to the
additive compositing. (c) The channels are composited with 2D layering. Details
of the muscle and neuron channels are visualized, but the spatial order of the two
is incorrect. (d) The muscle channel and the neuron channel are grouped and
combined with 3D compositing, which renders their spatial relationship correctly;
the nuclei channel is in a separate group. The two groups are composited with 2D
layering. The nuclei channel is a context layer, showing the boundary between
the brain and the eye.

38

of the obstructing data can reveal the deeper structures, but usually the details of

the obstructing data are lost (Figure 3.6(a)).

• Composite mode. Each channel of a multichannel volume data is first

rendered into a texture, and the textures are composed into the final rendering

with color component addition. As shown in Figure 3.6(b), information from

all channels can be seen at the same time, as long as distinguishable colors are

used. As it is not necessary to increase the transparency of the occluding channels,

the renderings of all channels are bright and full of details. As most datasets in

confocal research have three channels or less, it is most effective to set colors as

pure red, green, and blue. Shading effect calculation is clamped to single color

components if data channels are set to pure red, green, and blue. Therefore, the

original data channel information can still be extracted from the exported images

of this mode, by separating the color channels. This is important for further

processing and publishing.

• Layered mode. Similar to layers in 2D painting software, the volume data

are layered on top of one another. Each channel of a multichannel volume data is

first rendered into a 2D texture, and then the 2D textures are rendered in the order

specified by users. In this mode, the top layer data cover the lower ones. This

does not respect the relative depth relationships within the data, especially during

user interaction. Visualization experts did not expect this mode to be effective.

Surprisingly, biologists often prefer this mode since it can better show fine inner

structures, such as neuron fibers, when placed in the top layer (Figure 3.6(c)).

Compositing all channels with a single render mode may not be sufficient,

especially when there are many confocal channels, including derived data from

segmentation and analysis. Users want to group certain channels and combine

specific channel groups differently with 2D or 3D compositing. Our collaborating

biologists resorted to 2D image processing packages for group compositing, since

early versions of FluoRender were not capable of rendering groups with different

render modes. In Figure 3.6, (a), (b), and (c) are the three basic render modes. The

dilemma for the user is which to choose in order to visualize the correct spatial

39

relationship between the neuron and muscle channels, but leave the nuclei channel

as the context. We extended the idea of render modes by simply organizing data

channels into groups. A group contains an arbitrary number of channels and has

an independent render mode for combining its channels. Different groups are

again combined with a render mode. Figure 3.6(d) shows the result that biologists

were pleased with: both the muscle and neuron channels are visualized, with the

correct spatial relationship, and they have a clear context.

Groups also facilitate the parameter adjustment of the confocal channels. A

user can group certain confocal channels, and set the parameters of the channels

within the group to synchronize. Changes to the parameters of one channel are

then automatically propagated to other channels of the group.

Biologists may also find features they need in each mode. Joint views of

different render modes can allow even improved data comprehension. We

provide an interface to allow biologists to switch between the render modes

quickly, and multiple viewports can be set for different render modes, which can

be operated separately, or synchronized to the same viewing direction. Multiviews

are indispensable when comparing different datasets in the qualitative analysis

workflow. Datasets from replicate samples or from mutants and wildtypes are

visualized and compared in different views. Like the transfer function settings,

users can set the views quickly and accurately, or let FluoRender remember the

default settings for later comparison.

3.4 Embedding Polygon Data for Region Definition
Incorporation of biologically meaningful boundaries can greatly aid interpre­

tation of confocal data. Unfortunately, boundaries often cannot be reconstructed

simply by setting transfer functions. Polygon data become important means

for region definition, because they can be generated from user-defined regions

inside volumetric data. We first segment a given confocal data. Then, the

segmented regions are converted to polygon data using the marching-cubes

algorithm [64]. The polygon data can be further smoothed for better illustrative

40

purposes. For details about segmentation and polygon data processing, see

Chapter 4 and Chapter 6. For some applications such as crude region definition or

volume culling, simple polygon geometries can be generated on the fly, including

cubes, spheres, and cylinders. These geometries cane be manually translated,

rotated, and scaled to match specific structures in the confocal data. This is less

time-consuming than manual segmentation, but is still sufficient for many cases

in qualitative analysis where precision is not a major concern.

The difficulty of using polygon data with volume rendering arises when we

want to render them with adjustable transparency. This is because we want to

observe the volumetric data inside of the regions defined by the polygon data.

In general, correct rendering order in space is expected when semitransparent

objects are rendered. We use the depth peeling [28] algorithm, because it is a

robust solution to the ordering problem when multiple transparent objects as well

as volume data are rendered. Our implementation improves the original depth

peeling algorithm by cutting volume data spatially and rendering both polygonal

and volumetric pieces in sequential order. The algorithm is graphically presented

in Figure 3.7.

In theory, the number of depth peeling layers can be determined automatically

by querying the results from each peeling iteration. However, we provide a

user interface to let users adjust the number layers for depth peeling. This is

because the number of peeling layers has a great impact on performance. In many

applications of qualitative analysis, one peeling layer can achieve a satisfactory

result while maintaining high interactivity. With a higher peeling layer setting,

better accuracy can be achieved, allowing better understanding of how the volume

data and the polygon-defined regions are spatially related. For most complex

geometries resulting from confocal data segmentation, we found four layers

enough for sufficient accuracy. Figure 3.8 compares the difference between the

depth peeling settings. The examples show how the positions of neurons relative

to the eye and central brain can be better perceived.

41

Figure 3.7. The depth peeling algorithm used in FluoRender. (a) When there are
n depth peeling layers, volume data are separated by these layers and rendered
with a correct order. (b) When there is only one depth peeling layer, the rendering
is much simplified but usually still generates acceptable results.

42

Figure 3.8. Depth peeling results. (a) Ventral view of the volume data showing
retinal ganglion cells connecting between the eye and the brain. (b) Polygon data
added, separating volume data into eye (magenta) and brain (cyan); depth peeling
layers set to one. (c) Same data, depth peeling layers set to four. Arrowheads
point to two branches of visual neuron fibers. With more depth peeling layers, it
is clear that the lower branch is located deeper behind the eye region, which is
not apparent in either (a) or (b). (Dataset: Zebrafish head)

3.5 2D Tone Mapping
2D tone-mapping operators can be found in many image processing packages

but are absent from confocal visualization tools and most volume visualization

tools in general. When only the volume transfer function is adjusted, biologist

users sometimes found it difficult to achieve both satisfactory brightness and

details for volume rendering outputs. This can be explained with the volume

rendering integral. Consider the commonly used emission-absorption model,

where the resulting intensity is calculated as [69]:

1(D) f Dq(s)e
Jso

rD
- Is K(t)dtds (3.1)

In Equation 3.1, q is the emission term, and k is the absorption term. As shown

in the two attached plots of Figure 3.9(a) and (b), when we apply a monotonic

adjustment (for example, gamma correction, which preserves the order of its

input intensity values so that they are globally darkened or brightened) f (q, p)

with a parameter p on q (or k) , the output intensity (1(D)) is generally not changing

43

(c) (d)

Figure 3.9. The volume transfer function nonlinear falloff and the 2D image
space gamma adjustment work well together. The confocal dataset shows three
channels of a 5dpf zebrafish embryo: eye muscles (red), neurons (green), and
nuclei (blue). (a) The initial rendering without any adjustment. (b) The result
when the transfer function gamma is increased. The rendering does not become
brighter as many users may expect. The attached plots show the change of one
ray profile after the transfer function gamma is increased. (c) The result when the
gamma as 2D adjustment is increased. The result is brightened, but noise becomes
prominent in the regions indicated by yellow arrowheads. (d) The satisfactory
result achieved by decreasing transfer function gamma and increasing gamma as
2D adjustment. Neuron fibers are visualized clearly with less noise.

44

monotonically with p, due to the complexity of q (or k) along the integration

path (ray profile). The adjustment is usually embedded within volume transfer

functions, and this nonmonotonic relationship between parameter and result

makes it difficult for users to adjust for desired brightness. Here we apply tone

mapping with monotonic adjustments on volume rendering outputs, which is

intuitive to use for adjusting brightness.

The general definition of tone mapping is the mapping of one set of colors to

another, but the term is mostly used with high dynamic range images (HDRI)

(Reinhard et al. [81]), where the meaning narrows to compression of the high

dynamic range of light information to a lower dynamic range. Since confocal

data are acquired up to 16 bits per channel at present and strictly speaking are

not HDR, we use the term tone mapping in this chapter in respect of the general

definition. However, the objectives of HDR tone mapping still apply to confocal

data visualization, i.e., rendering all possible tone ranges at the same time and

preserving the details with local contrast in order to obtain a natural look. We

implemented the following three tone-mapping operators, and made certain

customizations specifically for confocal data.

Gamma correction is the most-used nonlinear operator in image processing.

We follow convention and calculate the output color Cout with Equation 3.2:

Cout = c g f^ (3.2)

The nonlinear adjustment of the low intensity falloff in our 2D transfer function

is essentially the same gamma correction embedded within the transfer function.

However, its actual influence on brightness is quite different from applying it in

2D: increasing the transfer function gamma enhances details for low intensity

voxels (Figure 3.9(b)), which usually makes the rendering result less bright, and

vice versa. The transfer function gamma is a parameter biologist users frequently

use to either enhance or suppress low intensity signals in confocal data. However,

the brightness of the results cannot be adjusted the same as one would expect

45

from gamma correction (Figure 3.9(c)). By adding gamma correction in 2D as an

independent parameter of the transfer function gamma, biologists can adjust both

details and brightness easily. For example, in Figure 3.9(d), the volume transfer

function gamma is decreased to suppress noise signals, and the gamma as a 2D

adjustment is increased to reveal the fine details of the neuron fibers.

Luminance is usually called exposure in photo-editing tools. It is a scalar

multiplier on the input color, which is used to brighten/darken the overall

rendering and expand/compress the contrast linearly. In order for the user to

adjust the luminance intuitively, we customize its parameter L by mapping it to

the actual factor with a piecewise function f (L).

Cout — Cin •f (L)

— / L L s 1 (33)
J \ 2~l otherwise

Figure 3.10 shows f (L) in both linear and logarithmic scale plots. The function

is pieced together from a linear function and a nonlinear curve, and is C1

smooth. The user-adjustable parameter L has range [0,2). It darkens the result

by compressing the dynamic range within [0,1), and brightens the result by

expanding the dynamic range within (1,2). In the logarithmic scale plot, the

curve is antisymmetric at the center point (1,1), so in addition to a monotonic

adjustment, our luminance operator gives an intuitive feel that the output is

equally brightened or darkened when L is increased or decreased.

Scale-space equalization is a local tone-mapping operator that equalizes the

uneven brightness and enhancing the fine details of confocal microscopy data.

Using levels-of-detail with the scale space for tone mapping can be found in the

work of Jobson et al. [45]. Instead of using logarithmic mappings for dynamic

range compression, which is widely used in HDRI processing, we divide the

input color (Cin) by the scale space color (Q), which is an average calculated by

low-pass filtering. Thus, the input color is equalized at a series of detail levels,

hence the name scale-space equalization. The output color of this operator is

46

10----------- 1----------- 1----------- T-------- 100----------- T----------- 1----------- 1-----------
f(L) f(L)

10
J -

1

0.1
I '

— '------- L--——~ ~ --l------------- 1----------- 1--------- 0.01 L' i i i
0.5 1.5 0.5 1.5

Figure 3.10. The mapping of the user-adjustable parameter L and the scaling
factor f(L), in linear scale (left) and logarithmic scale (right) plots.

calculated by a weighted sum of the equalized colors and then blended with the

input color, as in Equation 3.4:

Cout = (1 - 0 • Cin + t • CEq
N

CEq = ^ Vi • Ci (3.4)

C _ Cin
Ci _ —

Ci

In Equation 3.4, Vi is a set of weighting factors, which are empirically

determined by experimenting with typical confocal datasets. A plot of the

Vi we use in FluoRender is shown in Figure 3.11. The only parameter exposed to

the end-user is the blending factor t, which linearly blends the equalized color

with the input color. This linear blending, which is missing even in most HDRI

processing software, ensures a monotonic change to brightness as previously.

Figure 3.11 illustrates the equalizing process. It also shows the results when the

blending factor changes. The originally dark rendering of the confocal dataset is

brightened, yet the fine details are still clearly visualized. For noisy confocal data,

increasing the blending factor also enhances high frequency noise. Thus, noise

removal through pre- or postprocessing is usually desired.

47

t = 0.0 t = 0.3 t = 0.6

Figure 3.11. The scale-space equalization process. The example dataset has three
channels of stained muscles, neurons, and nuclei of the zebrafish head.

48

The importance of scale-space equalization for confocal visualization is

normalizing brightness - along the Z-axis for 3D channels and through time for

4D sequences. Figure 3.12 compares the results before and after 2D tone mappings

applied to a two-channel confocal dataset. The dataset is the nuclei (magenta

channel in Figure 3.12(a)) and neurons (green channel in Figure 3.12(a)) of a 5dpf

zebrafish head. Biologist users want to study the shape and spatial relationship of

the neurons in the region between zebrafish eye and brain. Figure 3.12(a) (dorsal

view) and (b) (lateral view) show the volume rendering result with no 2D tone

mapping applied and volume transfer function set to a linear ramp. They also

represent the results from most other confocal visualization tools when the dataset

is loaded. Though the general shapes of its major structures can be visualized,

such as the eyes, the brain, and the tectum, many details, especially those in

the neuron channel, are either occluded or not clearly seen. The lateral view

of Figure 3.12(b) shows a common problem for confocal data: the brightness is

decreasing along the Z-axis (from dorsal to ventral for this dataset). This is the

direction in which the laser beam travels; due to scattering and tissue occlusion,

signals become weaker as the scanning goes deeper along this direction. Since the

brightness decrease is sample dependent, a simple calibration of the microscope

cannot correct it. Figure 3.12(c) and (d) show the results from the same view

directions, however rendered with FluoRender's default transfer function settings

and 2D tone mappings applied. The scale-space equalization operator brightens

the signals deeper along the Z-axis. In Figure 3.12(c), the brightness is even, yet

the details of the neural structures are enhanced as well.

3.6 MIP Enhancement with 2D Color Mapping
and Overlays

A confocal channel is a scalar volumetric dataset, whose values represent the

fluorescent intensities, which in turn measure amounts of biological expression.

Biologists often want to assess the amount of gene/protein expression with better

quantification than just rendering intensities. Furthermore, since high-intensity

values represent strong biological expression, it is important to visualize them over

49

ill
Vi■$3' ' ?>

P P

.-v. r ^ W *. > - *r ■

Figure 3.12. Results of scale-space equalization. (a) Dorsal view of a zebrafish
head dataset rendered without any enhancement. (b) Lateral view of a zebrafish
head dataset rendered without any enhancement. (c) Dorsal view of a zebrafish
head dataset rendered with enhancements applied. (d) Lateral view of a zebrafish
head dataset rendered with enhancements applied.

50

low intensity signals. Color mapping is an effective and intuitive method, but not

without problems for normal volume renderings. Figure 3.13(a) shows a confocal

channel rendered with a rainbow colormap as the transfer function. Biologist

users often feel that it does not fit into their research purposes well, because the

colors in the result do not clearly correspond to those in the colormap and voxels

with high scalar intensities, which represent strong biological expression and are

important to the research, are mostly occluded.

The 2D color mapped maximum intensity projection solves both problems

stated above. Figure 3.13(b) shows the result of a 2D color mapped MIP with

the same colormap as in Figure 3.13(a). Since MIP does not use normal volume

compositing, the colors of its result represent the exact intensity values of the

voxels, and high intensity voxels are always visualized. In fact, MIP is the only

method recognized by biologists for inspecting fluorescent staining intensities.

However, the way that MIP renders volume data can cause two problems

for users. First, the orientation of a volume dataset under examination becomes

obscure, which may confuse users especially when they rotate the data. Biologists

usually prefer orthographic over perspective projection in order to better compare

(a) (b)

Figure 3.13. Using a colormap as the volume transfer function and 2D color
mapping of the MIP. All results have the same colormap, as shown on the right.
(a) The colormap is used as the volume transfer function. (b) The colormap is
applied to the MIP rendering output. The dataset shows a 5 dpf zebrafish eye.

51

structure sizes. It worsens the problem of orientation perception when MIP is

used. Second, details of surface structures are lost, because unlike most other

volumetric data, the structural details of confocal data are always comprised of less

intensive signals surrounding high-intensity ones, since the signals are generated

by fluorescence emission. Adding global lighting effects, such as shadows, can

help orient viewers to the renderings of volume data, thus solving the first problem.

The second problem can be solved by incorporating local lighting effects, such

as Phong shading. There are methods such as two-level volume rendering [38]

and MIDA (Maximum Intensity Difference Accumulation) [12] that combine the

advantages of MIP and shading effects from direct volume rendering. However,

the results of above techniques are both somewhere between MIP and DVR. One

important feature of MIP that biologists appreciate, especially when a colormap

is used, cannot be ensured, i.e., colors of final result represent the exact intensity

values of the voxels. Furthermore, how global lighting effects, such as shadows,

can be applied with above techniques is not clear. Fortunately, one structure

in confocal data is always comprised of low intensity details surrounding high

intensity cores. This simplification of structures enables us to render MIP and

lighting effects separately, and then combine them with 2D compositing. The

MIP pass is color-mapped for examining the biological expression amount of

structure cores; the shading and shadow passes render surface details and enhance

orientation perception. The 2D compositing is completed by modulating the color

brightness of the MIP rendering with the brightness of the effect passes.

Figure 3.14 illustrates the 2D compositing and its result of a confocal dataset

rendered with a shading layer. In addition, a shadow layer can be rendered and

composited similarly. Biologists can use the 2D color-mapped MIP with overlays

for inspecting the amount of biological expression, because the result has a correct

color correspondence with the colormap used. The renderings of shading and

shadow passes are grayscale images, and only the color brightness of the 2D

color-mapped MIP is modulated; therefore, the color hue stays the same, which is

the actual variable used in the colormap. Figure 3.15 compares 2D compositing

52

Brightness Modulation (x)

Figure 3.14. A shading pass is composited with the result of a 2D color-mapped
MIP pass. The result has the advantages of both MIP and DVR. The dataset has
three confocal channels, including stained muscles, neurons, and nuclei.

with DVR and MIDA [12], which uses a modified volume compositing scheme.

Since other methods use compositions in 3D, the voxel colors are blended and

cannot match the colors used in the colormap. However, for complex structures

such as a network of blood vessels, this method has its limitation: shading/shadow

and MIP cannot always be rendered consistently, since users have to adjust the

volume transfer function for shading and shadow layers. In practice, this mode is

used when important features are best represented by MIP and biologist users

want to add enhancements for surface details and orientation perception.

3.7 The FluoRender Visualization Pipeline
We use OpenGL and GLSL for the implementations of the techniques discussed

previously, including on the fly evaluation of the volume transfer function, tone-

mapping operator evaluations, shading and shadow calculations, compositing,

and color mapping. While most of the implementations should be straightforward,

there are some details worth mentioning. The three tone-mapping operators can

concatenate and be evaluated at once - we first generate the scale space, apply

53

(a) (b) (c)

Figure 3.15. A comparison of DVR (a), MIDA (b), and shading overlay on MIP (c).
They all use the same colormap shown on the right. The dataset is the mushroom
body (MB) of an adult Drosophila, stained with nsyb::GFP. This fluorescent protein
specifically binds to presynaptic regions of neurons. Thus, higher signal intensity
indicates higher density of synapses of the mushroom body. By using MIP with
2D overlays, we can clearly see the head of a/a' lobe has higher presynaptic
density than its neck, which can be similarly observed for ^/ '̂ lobe.

gamma and luminance adjustment to all the levels, and then calculate equalization.

For fast processing speed, we use the built-in mipmap generating function of

OpenGL to approximate the scale space. For shadow overlay calculation, we use

a 2D image space method similar to that of depth buffer unsharp masking [65].

Unlike other confocal visualization tools, such as Imaris and Volocity, which use

ray tracing to precalculate shadows and are not real-time, we use 2D filtering on

the depth buffer. The rendering speed is real-time, which helps when multichannel

and time-sequence datasets are visualized. The 2D image space methods are easily

modularized, and each module can work independently of another. However,

building an integrated visualization system that neurobiologists can easily use,

especially when the amount of datasets visualized is large, still requires meticulous

design of its user interactions. We developed the user interactions through close

cooperation with frequent FluoRender users and experts in confocal microscopy.

Figure 3.4 shows a screen capture of FluoRender's main user interface.

Figure 3.16 is an illustration of the FluoRender visualization pipeline. The

leftmost blocks represent data inputs. Multiple confocal channels can be loaded

Volume
Renderers'Data:

Group 1 ,
Composite

Filters

[Single Volume

I Data:
Group 2
Depth Mode

Channel 2:

Channel 3:
shadow enable Shading

SharpeningChannel 1:
, Depth Map
[ShadowsChannel 2:

Channel 3:

DVR
Multi Volume

Channel 1:
shading enabled

Channel 2:
shading enabled

colormap enabled
Channel 3:
shadow enabled MIP

RendererData:
4D
Sequence

Transfer 4
Function
Engine <

2D
Colormap

Figure 3.16. The visualization pipeline of FluoRender.

55

and visualized at the same time. They are grouped by users for easy organization

and adjustment. Time-sequence datasets can be loaded as well. The confocal

channels are first processed by different types of volume renderers, which generate

internal renderings by direct volume rendering or maximum intensity projection.

Channels in depth mode are combined and rendered with a separate volume

renderer. Effect layers such as shading and shadow are also generated within

this process. According to settings of each channel, a rendering result then goes

through the modules of 2D image space enhancements, including filtering, color

mapping, overlay compositing, and tone mapping. The enhanced results are

combined according to their group/view settings, such as layered or composite

modes. The final result is output to the viewport of the FluoRender main user

interface. For time-sequence data, they are processed with the same pipeline. A

timepoint of a sequence is read and fed into the pipeline each time according to

an event-driven mechanism.

CHAPTER 4

SEGMENTATION AND ANALYSIS OF

CONFOCAL MICROSCOPY DATA

4.1 Introduction to Morphological Diffusion
For interactive speed of confocal volume segmentation, we propose morpho­

logical diffusion on a mask volume for selecting desired structures. Morphological

diffusion can be derived as one type of anisotropic diffusion under the assumption

that energy can be nonconserving during transmission. Its derivation uses the

results from both anisotropic diffusion and mathematical morphology.

4.1.1 Diffusion Equation and Anisotropic Diffusion

The diffusion equation describes energy or mass distribution in a physical

process exhibiting diffusive behavior. For example, the distribution of heat (u) in

a given isotropic region over time (t) is described by the heat equation:

du(x t) = cv2u(x, t) = v • (cvu(x, t)) (4.1)
dt

In Equation 4.1, c is a constant factor describing how fast temperature can

change within the region. We want to establish a relationship between heat

diffusion and morphological dilation. First, we look at the conditions for a heat

diffusion process to reach its equilibrium state. Equation 4.1 simply tells us that

the change of temperature equals the divergence of the temperature gradient field,

modulated by a factor c . We can then classify the conditions for the equilibrium

state into two cases:

• Zero gradient. Temperatures are the same everywhere in the region.

57

• Solenoidal (divergence-free) gradient. The temperature gradient is nonzero,

but satisfies the divergence theorem for an incompressible field, i.e., for any closed

surface within the region, the total heat transfer (net heat flux) through the surface

must be zero.

The nonzero gradient field can be sustained because of the law of conservation

of energy. Consider the simple 1D case in Figure 4.1, where the temperature is

linearly increasing over the horizontal axis. For any given point, it gives heat out

to its left neighbor with lower temperature and simultaneously receives heat of

the same amount from its right neighbor. In this 1D case, the loss and gain of heat

reach a balance when the temperature field is linear. As we are going to see later,

if we lift the restriction of energy conservation, the condition for equilibrium may

not hold, and we need to rewrite the heat equation under new propositions.

The generalized diffusion equation is anisotropic. Specifically, we are interested

in the anisotropic diffusion equation proposed by Perona and Malik [80], which

has been extensively studied in image processing.

Figure 4.1. Conserving and nonconserving energy transmissions. (a) The initial
state has a linear gradient. We are interested in the energy change of the center
piece. (b) Energy is transferred from high to low (gradient direction), as indicated
by the arrows. (c) Result of typical conserving transmission. The center piece
receives and gives the same amount of energy, which maintains a solenoidal
gradient field. (d) Result of dilation-like transmission, which is not energy
conserving. The center piece gains energy and a solenoidal gradient field cannot
be sustained.

58

= v . (g(x, f)VM(x, t)) (4.2)

In Equation 4.2, the constant c in the heat equation is replaced by a function

g(), which is commonly calculated in order to stop diffusion at high gradient

magnitude of u.

4.1.2 Morphological Operators and Morphological Gradients

In mathematical morphology, erosion and dilation are the fundamental

morphological operators. The erosion of an image I by a structuring element B is:

e(x) = min(I(x + b)|b e B) (4.3)

And the dilation of an image I by a structuring element B is:

5(x) = max(I(x + b)|b e B) (4.4)

For a flat structuring element B, they are equivalent to filtering the image with

minimum and maximum filters (rank filters of rank 1 and N, where N is the total

number of pixels in B), respectively.

In differential morphology, erosion and dilation are used to define morpho­

logical gradients, including Beucher gradient, internal, and external gradients,

etc. Detailed discussions can be found in [84] and [95]. In this chapter, we

are interested in the external gradient with a flat structuring element, since for

confocal data, we always want to extract structures with high scalar values and

the region-growing process of high scalar values resembles dilation. Thus, the

morphological gradient used here is:

| vI(x)| = 5(x) - I(x) (4.5)

Please note that for a multivariable function I, Equation 4.5 is essentially a

discretization scheme for calculating the gradient magnitude of I at position x.

59

4.1.3 Morphological Diffusion

If we consider the morphological dilation defined in Equation 4.4 as energy

transmission, it is interesting to notice that energy is not conserved. In Figure 4.1,

we show that within a neighborhood of a given position, the local maximum can

give out energy without losing its own. Thus, for a closed surface within the

whole region, the net energy flux can be non-negative. In other words, under the

above assumption of nonconserving energy transmission, the solenoidal gradient

condition (Section 3.1) for the equilibrium of heat diffusion no longer holds.

Therefore, the heat diffusion can only reach its equilibrium when the energy field

has zero gradients.

Based on the above reasoning, we can rewrite the heat equation (Equation 4.1)

to its form under the dilation-like energy transmission:

t) = c|vu(x, t)| (4.6)

Equation 4.6 can be simply derived from Fourier's law of heat conduction [16],

which states that heat flux is proportional to negative temperature gradient.

However, we feel our derivation can better reveal the relationship between heat

diffusion and morphological dilation. To solve this equation, we use forward

Euler through time and the morphological gradient in Equation 4.5. Notice that

the time step At can be specified with c for simplicity when the discretization of

time is uniform. Then, the discretization of Equation 4.6 becomes:

u;+1 (x) = ui(x) + c(bi(x) - ut(x))
(4.7)

= cbi(x) + (1 - c)ui(x)

When c = 1, the trivial solution of Equation 4.6 becomes the successive dilation

of the initial heat field, which is exactly what we expected.

Thus, we have established the relationship between morphological dilation and

heat diffusion from the perspective of energy transmission. We name Equation 4.7

morphological diffusion, which can be seen as one type of heat diffusion process

60

under nonconserving energy transmission. Though a similar term has been used

in the work of Segall and Acton [92], we use morphological operators for the actual

diffusion process rather than calculating the stopping function of anisotropic

diffusion. Our purpose of using the result for interactive volume segmentation

rather than simulating physical processes legitimizes the lifting of the requirement

for conservation. We are interested in the anisotropic version of Equation 4.7,

which is obtained simply by replacing the constant c with a stopping function

g(x):

Ui+1 (x) = Ui(x) + g(x)(bi(x) - Ui(x))
(4.8)

= g (x)5i(x) + (1 - g (x))ui(x)

In Equation 4.8, when the stopping function g(x) is in [0,1], the iterative

results are bounded and monotonically increasing, which lead to a stable

solution. By using morphological dilation (i.e., maximum filtering), morphological

diffusion has several advantages when applied to confocal data and implemented

with graphics hardware. Morphological dilation's kernel is composed of only

comparisons and has the least computational overhead. The diffusion process

only evaluates at nonlocal maxima, which are forced to reach their stable states

with fewer iterations. Last but not least, in an iterative process of morphological

diffusion evaluation, since local scalar values are increasing monotonically, the

converging result is stable when neighboring voxels are updated simultaneously

by multiple threads. This means this algorithm is very suitable to be implemented

on massive parallel graphics hardware. No extra memory and context switch

are necessary for the process known as frame buffer object ping-pong, which

is commonly used in evaluation of standard anisotropic diffusion on graphics

hardware. In Chapter 5, we further discuss frame buffer feedback loops, which is

considered efficient for evaluating converging iterative processes. When coupled

with our user interactions, morphological diffusion is able to extract desired

structures from typical confocal data with interactive speed on common PCs.

61

4.2 User Interactions for Interactive Volume
Segmentation

Paint selection [74], [61] with brush strokes is considered one of the most

useful methods for 2D digital content authoring and editing. Incorporated

with segmentation techniques, such as level set and anisotropic diffusion, it

becomes more powerful yet still intuitive to use. For most volumetric data, this

method becomes difficult to use directly on the renderings, due to occlusion

and the complexity of determining the depth of the selection strokes. Therefore,

many volume segmentation tools' user interactions are limited to 2D slices.

Taking advantage that the confocal channels usually have sparsely distributed

structures, direct paint selection on the render viewport is actually very feasible,

though selection mistakes caused by occlusion cannot be completely avoided.

Using the result from Section 4.1, we developed interaction techniques that let

users progressively select structures from confocal data. These techniques share

similarities with the sketch-based volume selection methods described in previous

literature [113], [18], [78], [1]. However, the algorithm presented in Section 3

allows us to use paint strokes with varying sizes so that users can progressively

select structures and edit the selections.

Figure 4.2 illustrates the basic process of extracting a neural structure from

confocal volume with our method. First, a scalar mask volume is generated. Then,

the user defines seed regions by painting on the render viewport. The pixels

of the defined region are then projected into 3D as a set of cones (cylinders if

the viewport is orthographic) from the camera's viewpoint. Voxels within the

union of these cones are thresholded to generate seeds in the mask volume, where

seeds have the maximum scalar value, and other voxels have zero value. Then

a wider region, which delimits the extent of subsequent diffusion, is defined by

painting again on the viewport. The second region is projected into the volume

similarly. Then, in the mask volume, the selected seeds propagate by iteratively

evaluating Equation 4.8. Structures connected to those registered by the seeds

are then selected in the mask volume. The resulting mask volume is not binary,

62

---------— - - - ----— cA ------- -— — - Sft

W w W........
w

(a) (b) (c) (d)

Figure 4.2. Volume paint selection of neural structures from a confocal volume. (a)
The visualization of certain neural structures (top) and the camera setup (bottom).
(b) A user paints on the viewport. The stroke (green) is projected back into the
volume to define the seed generation region. (c) The user paints on the viewport
to define the diffusion region. The stroke (red) is projected similarly and the seeds
generated in B grow to either the structural boundaries or the boundary defined
by the red stroke. (d) The intended neural structure is extracted.

though the structural boundaries can be more definitive by adjusting the stopping

function, which is subsequently discussed. After each stroke, the mask volume is

instantly applied to the original volume, and the selected structures are visualized

with a different color against the original data. The user can repeat this process

for complex structures, since the calculation only modifies the mask volume and

leaves the original data intact.

We use gradient magnitude (|vV|) as well as scalar value (V) of the original

volume to calculate the stopping function in Equation 4.8, since, for confocal

data, important structures are stained by fluorescent dyes, and they should have

high scalar values. The stopping function (Equation 4.9) is the product of two

parts. gi() is calculated as the Gaussian of | vV|, which stops the growth at high

gradient magnitude values; g2() is calculated as the Gaussian of V, which stops

the growth at low scalar intensities. The combined effect of the two parts is that

the growth stops at regions of both high gradient magnitude values and low

intensities, which are considered edges or boundaries for confocal data.

63

g(V) = gi(V) • g2(V)
' 1 |W| < t1

g i(V) = \ - qwyi)2
otherwise

g2(V)

k2 (4.9)
(V-t2)2

k2 V < t2
otherwise

The graphs of the two parts of the stopping function are in Figure 4.3. ti and

t2 translate the falloffs of g1 () and g2(), and the falloff steepness is controlled by

and k2. The combined effect of g1 () and g2() is that the seed growing stops at high

gradient magnitude values and low intensities, which are considered borders for

structures in confocal data.

By limiting the seed growth region with brush strokes, users have the flexibility

of selecting the desired structure from the most convenient angle of view.

Furthermore, it also limits the region for diffusion calculations and ensures

real-time interactions. For less complex structures, seed generation and growth

region definition can be combined into one brush stroke; for over-segmented or

mistakenly selected structures, an eraser can subtract the unwanted parts. We

1

0.8

0.6

0.4

0.2

0

r \ [i i 1 I I I s \-----------1--------------

\ — 91 — 92 /

- \ ' 0.8 -

- \ - 0.6
-

- \ - 0.4

- \ . 0.2 - I -

tl y t 2
i ---- i 0 — i— i

0.2 0.4 0.6 0.8

G radient M agn itude

0.2 0.4 0.6

Scalar Value

0.8

Figure 4.3. The two parts of the stopping function. g1 () is for stopping the growth
at high gradient magnitude values and g2() is for stopping at low scalar intensities.
The final stopping function is the product of g1 () and g2().

64

designed three brush types for both simplicity and flexibility. Biologists can use

these brushes to extract different structures from confocal data.

Selection brush combines the definition of seed and diffusion regions in one

operation. As shown in Figure 4.4, it has two concentric circles in the brush stamp

shape. Strokes created by the inside circle are used for seed generation, and

those created by the outside circle are for diffusion region definition. Usually, the

diameter of the inside circle is set slightly smaller than the root of a structure. The

diameter of the outside circle is determined by how the substructures branch out

from the root structure. By combining the two operations, it makes interaction

easier. For example, to extract an axon and its terminal branches, the inside circle

is set roughly to the size of the axon, and the outside circle is set to that can

enclose the terminals. Morphological diffusion is calculated on finishing each

stroke, which appends newly selected structures to existing selections. Since

users can easily rotate the view while painting, it is helpful to use this tool and

select multiple structures or different parts of one complex structure from the

most convenient observing directions. Figure 4.4 demonstrates using the selection

brush to extract a visual projection neuron of a Drosophila brain.

Eraser behaves similarly to the selection brush, except that it first uses

morphological diffusion to select structures, and then subtracts the selection

from previous results. The eraser is an intuitive solution to issues caused by

occluding structures: mistakenly selected structures because of obstruction in

2D renderings can usually be erased from a different angle of view. Figure 4.5

demonstrates such a situation where one neuron obstructs another in the rendering

result. The eraser is used to remove the mistakenly selected structures.

Diffusion brush only defines the diffusion region. It generates no new seeds

and only diffuses existing selections within the region defined by its strokes. Thus,

it has to be used after the selection brush. With the combination of the selection

brush and the diffusion brush, occluded or occluding neural structures can be

extracted easily, even without changing viewing angles. Figure 4.6 shows the

same example as in Figure 4.5. First, the selection brush is used to extract only the

65

Figure 4.4. Selection brush. The dataset contains neurons of a Drosophila adult
brain. The original dataset has a neuron that a user wants to extract, which is
visual projection neuron LC14 [76]. First, a stroke is painted with the selection
brush. Then a second stroke is painted, which covers the remaining part of the
neuron. Finally the neuron is extracted.

nonobstructing part of the neuron. Then, the remaining of the neuron is appended

to the selection by painting with the diffusion brush. Since the obstructing part is

not connected to the neuron behind, and the diffusion brush does not generate

new seeds in that region, the neuron behind is not selected.

As seen in the above examples, our interactive segmentation scheme allows

inaccurate user inputs within fairly good tolerance. However, using a mouse to

conduct painting work is not only imprecise but also causes fatigue. We support

66

Figure 4.5. Eraser. The dataset contains neurons of a Drosophila adult brain. The
yellow dotted region indicates the structure that a user wants to extract (visual
projection neuron LT1 [76]). From the observing direction, the structure obstructs
another neuron behind (visual projection neuron VS [76]). First, a stroke is painted
with the selection brush. Then, LT1 is extracted, but VS is partially selected. Then,
the view is rotated around the lateral axis. The second yellow dotted region
indicates extra structures to be removed. Another stroke is painted with the eraser.
The extra structures are then removed. The view is rotated back. Finally, we have
a visualization of the extracted neuron (LT1).

67

Figure 4.6. Diffusion brush. The dataset contains neurons of a Drosophila adult
brain. The original dataset is the same as in Figure 4.5. First, a stroke is painted
with the selection brush on the nonobstructing part of LT1 and part of LT1 is
selected. Then, the diffusion brush is used to select the remaining of LT1. LT1 is
selected without selecting the obstructed neuron (visual projection neuron VS).
Then, the view is rotated around the lateral axis, to confirm the result. Finally, we
have a visualization of neuron LT1 after extraction.

68

the latest digital tablets in our tool for dexterity enhancement. The active tablet

area is automatically mapped to the render viewport. Thus, all the available area

on the tablet is used in order to maximize the precision, and the user can better

estimate the location of the strokes even when the stylus is hovering above the

active area of the tablet. Furthermore, stylus pressure is utilized to control the

brush size. Though the pressure sensitive brushes are a feature that can be turned

off by users, our collaborating neurobiologists like the flexibility of changing the

brush sizes on the fly. It helps to extract neural structures of varying sizes more

precisely (Figure 4.7).

Figure 4.7. A digital tablet and its usage. The dataset contains neurons
of a zebrafish head. The original dataset contains stained tectum lobes and
photoreceptors of eyes. Since the tectum lobes and the photoreceptors actually
connect, we want to better control the brush size for diffusion at the regions of
connection, when only the tectum lobes are to be extracted. First, two strokes
are painted with the selection brush. The stroke size changes as user varies the
pressure applied to the tablet's stylus. The tectum lobes are then selected. Finally,
the tectum lobes are extracted and visualized.

69

4.3 Integration of Interactive Segmentation with
Visualization Functions

In FluoRender, the previously discussed interactive segmentation techniques

are not simply placed on top of its existing visualization pipeline. Instead,

they take advantage of the features within the visualization pipeline and give

users more intuitive operations. On one hand, a clear visualization improves

segmentation accuracy. On the other hand, segmented results are used to enhance

visualization. In an integrated workflow of FluoRender, the interactions between

visualization and segmentation include the following techniques.

• Volume transfer function. This is only obvious in an interactive environment.

When users adjust parameters of the volume transfer function for a clear

visualization, sometimes it may only work for a simple structure or one part of

an entire dataset. Segmentation can take the values emphasized or suppressed

by the transfer function instead of the original values. Structures emphasized by

current transfer function settings are more easily extracted. Then, for a different

structure or different part of the same dataset, a different transfer function can

be set before segmentation. The results should satisfy users' intentions better

and segmentation functions seem to be more intuitive and versatile for users.

Figure 4.8 shows an example of an extreme case, which requires us to extract both

bones and muscles from a confocal dataset. The muscles, tendons, and nerves of

this specimen were stained; bones could be visualized as black regions. While it

is relatively easy to extract the muscles, correct segmentation of bones becomes

difficult, as their boundaries could not even be clearly visualized without transfer

function manipulations. Here, we first inverted the scalar values of the dataset,

and then decreased the gamma in the volume transfer function. Not only were

the bones rendered with brighter intensities, their boundaries were also easily

enhanced with 2D image space methods. After some simple adjustments, these

structures were easily identified and extracted using FluoRender.

• Tone-mapping operators. In Section 3.5, Chapter 3, we discussed tone-

mapping operators in FluoRender. Their effects on volume rendering results can

70

(a) (b)

(c) (d)

Figure 4.8. Segmenting the ulna from the muscle channel of a confocal scan of a
mouse embryo. (a) Bones are black regions in the origin channel. (b) The scalar
intensities of this channel are inverted. (c) We segment the ulna by painting. (d)
the segmented result.

be applied to segmentation results as well. When users change the tone-mapping

settings in FluoRender, we first generate a weight map, which contains the

brightness difference by dividing the original rendering from the tone-mapped

result. The weight map is then projected along with painted strokes. When

the seeds are generated or the morphological diffusion is evaluated, the volume

transfer function adjusted voxel values are again modulated by the weights on

the weight map. Therefore, structures with intensity voxels are enhanced and

can be extracted more easily without changing the settings for morphological

diffusion. Figure 4.9 is an illustration of this process.

• Clipping planes. FluoRender has a specially designed clipping system to

71

Figure 4.9. A weight map is the brightness difference between original rendering
and tone-mapped result. It is projected into the volume along with paint strokes.
Both seed generation and diffusion are then influenced by the weight map.

work along with its interactive segmentation. Firstly, it uses six axis-aligned

clipping planes, whose positions along the axes can be adjusted individually.

An arbitrary block of volume data can be extracted using these clipping planes.

Then, segmentation is only calculated within this isolated region. Secondly, the

six-plane system allows quickly setting two opposite clipping planes to include

just one section of the original volume data. This is equivalent to the commonly

used slice-based segmentation, when rotation of the dataset is then locked to only

orthogonal views. Thirdly, FluoRender allows users to rotate the clipping planes.

It becomes a better integrated implementation of the oblique slicing plane from

Sowell et al. [96], since the oblique image plane is embedded into the functions of

clipping planes. Finally, the clipping plane system allows aligning with current

72

viewing plane. Using view direction to rotate clipping planes has the advantage

that users do not need to interact with less intuitive widgets for rotations. They

can simply change the current viewing direction and then tell the clipping planes

to align with the best view.

• Multichannel calculations. There are often correlated structures in different

channels from one confocal scan. For example, cell membranes confine nuclei

into clearly separate regions. Such spatial relationships not only help visual

identification and distinction structures, but can also be incorporated into

segmentation calculations. We define four calculations between two correlated

confocal channels to utilize their spatial relationship when possible.

o Addition. It adds corresponding voxel scalar values of two channels. The

result has enhanced common structures. Or it is simply used to combine two

channels.

o Subtraction. It subtracts corresponding voxel scalar value of one channel

from another. It is used to remove structures common to two channels that

are unwanted in one channel. In the cell membrane and nucleus example, the

membrane channel is subtracted from the nucleus channel for better definition of

each nucleus.

o Division. It divides corresponding voxel scalar value of one channel by

another. It is often used to compare the difference between two channels.

o Boolean A N D . For scalar data, this operation is actually calculating the

minimum of two corresponding voxels. It is used to extract common structures

from two confocal channels. These structures are usually stained by multiple

fluorescent tags and termed colocalization in biology. It is referred as Boolean

AND because of the similar effect to that of binary data.

In the user interface of FluoRender, these operations are placed together with

segmentation settings. Users can perform them before segmenting confocal

channels or after for comparison.

CHAPTER 5

CELL TRACKING USING SYNTHETIC

BRAINBOWS

Interactive techniques presented in Chapter 4 were designed to work best

with 3D branching structures such as neuron cells and nerve bundles. Most cells

in biology research have simpler shapes but occur more frequently. Furthermore,

continuous confocal imaging of living cells becomes available. Biologists often

want to find the trajectories of a group of cells through time. Our techniques

designed for extracting neural structures need to be adapted and improved

for cell identification and tracking. We developed a technique, Synthetic

Brainbows, assigning random IDs to complex structures in confocal data. Its

results resemble those from the true Brainbow technique. We first tested and

determined randomness in GPU framebuffer feedback loops. Then, we applied

GPU framebuffer feedback loops to single-channel confocal data to generate

labeled volumes. Finally, the method was applied to time sequences of confocal

data to track moving cells.

5.1 Randomness in a GPU Framebuffer Feedback
Loop

As discussed in Section 2.5, we expect randomness in asynchronous operations

in the massive parallel copmuting environment of GPUs. In order to leverage

the randomness, we would like to first examine the behavior of GPU framebuffer

feedback loops. To avoid unnecessary complexity, we restrict the investigation

to integer textures and turn off texture filtering. Then, the behavior of GPU

framebuffer feedback loops can be studied with cellular automaton models. This

is inspired by Hawick et al. [39] and Oliveira and Lotufo [73], whose work used

74

cellular automaton models for connected component labeling. Specifically, we

are interested in a cellular automaton described by Algorithm 5.1.

Algorithm 5.1 Basic ID merging
For each cell

A unique ID is assigned as the initial state;
For each iteration

For each cell
The cell's state is replaced by the maximum
ID within its neighborhood;

We use a 1D example to demonstrate the reason that we chose this particular

cellular automaton for examination of the random behavior of GPU framebuffer

feedback loops. In Figure 5.1, a 1D cellular automaton has eight cells. At its

initial state, each cell is assigned an integer ID, which is in ascending order. We

examine three different methods of updating the cells. First, the cells are updated

synchronously, which means we need an extra buffer to save the intermediate

results. In this case, the order of how the cells are updated makes no difference

to the results. It requires seven iterations to converge to all the same ID. Then,

we update the cells asynchronously, i.e., reading and writing IDs without using

an extra buffer. Since the order of how the cells are updated can be random and

influence the result, we examine two extreme cases among all the combinations

of update orders. The second method updates the cells asynchronously in order

from left to right. The result looks exactly the same as when the cells are updated

synchronously. Lastly, we update the cells asynchronously, but in reverse order.

It only requires one iteration for the maximum ID to propagate.

We are able to make several observations from this example. First, if we

color-map the IDs, we can see a fixed stripe pattern "marching" through the grid

when the IDs are ordered and the updates are synchronous. Second, when the

updates are not synchronous, the "marching" pattern is the same as synchronous

updates only if the update order is the same as the ID order, and is disturbed

75

Synchronous Asynchronous - Ordered Asynchronous - Reverse Ordered

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 8 8

1 2 3 4 5 8 8 8

1 2 3 4 8 8 8 8

1 2 3 8 8 8 8 8

1 2 8 8 8 8 8 8

1 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8

1 2 3 A 5 6 7 8

1 2 3 A 5 6 7 8

1 2 3 A 5 6 7 8

1 2 3 A 5 6 7 8

1 2. 3 A 5 6 7 8

1 2 3 A 5 6
l i

7 8

1 2 3 A 5i
-H —

7 8

1 2- 3 J- 8

2 3 4
V

5
V

6 7 8 8

1 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8

2 3 3 4 5 6 7 8

2 3 4 4 5 6 7 8

2 3 4 5 5 6 7 8

2 3 4 5 6 6 7 8

2 3 4 5 6 7 7 8

2 3 4 5 6 7 8 8

2 3 4 5 6 7 8 8

Figure 5.1. Comparison of synchronous and asynchronous updates of a 1D cellular
automaton. The illustration shows only the first iteration in detailed steps. In the
synchronous case, the original buffer is in red and the extra buffer for intermediate
results is in green. Values are updated according to the maxima within the moving
window (in blue), indicated by the yellow arrows. In the asynchronous cases,
there is no extra buffer, so updates are immediate. The updated values in each
step when the window moves are in dark red. We can repeat the iteration for the
first two cases until all cells are updated to the maximum ID. Their results look
exactly the same. The last case has already converged after the first iteration.

otherwise. We are able to detect such disorderliness by comparing the result from

the asynchronous update to that of the synchronous update. Third, asynchronous

update can potentially accelerate ID propagation.

The above example only shows the extreme or ideal cases. In reality, it would

probably fall somewhere between the ideal cases. Suppose that the behavior

of GPU framebuffer feedback loops is purely asynchronous and the chances of

ordered and reverse ordered asynchronous updates are equal; we shall not see

the regular patterns of "marching" IDs in the synchronous case, because they are

so disturbed and become chaotic.

We extend the above idea and use it to detect the occurrence of asynchronous

updates in GPU framebuffer feedback loops, which we assume to be the sole cause

76

of randomness in the process. For a given graphics card and a framebuffer texture

of given size, we first assign IDs in ascending order. In 2D, this can be row-first

or column-first, which does not influence the result. We run Algorithm 5.1

once in a framebuffer feedback loop and compare the outcome with that from a

synchronous update. In the asynchronous result, we count the number of pixels

that have different IDs than in the synchronous result. These pixels have different

IDs because the orders of asynchronous updates are against the ID order. To

count asynchronous updates of the reverse directions, we then do the same but

with reverse ordered IDs. Both experiments are repeated for ten times. We then

calculate the average percentages of asynchronous updates for both ordered and

reverse ordered IDs. The two average values are added to estimate the total

occurrence of asynchronous updates. We experimented with four graphics cards

and each with eight different texture sizes. The results are illustrated in Figure 5.2.

The tested graphics cards should be representative for current (ca 2012)

main-stream models from the two major GPU manufacturers: AMD and nVidia.

The tested results reveal important characteristics of framebuffer feedback loops.

Firstly, contrary to our initial speculation, framebuffer feedback loops are not

entirely asynchronous. This is due to texture caching. Framebuffer feedback loop

exhibits similar behavior to framebuffer Ping-Pong for small texture sizes (no

asynchronous updates), as texture cache and graphics memory are working as two

buffers for reading and writing. Secondly, occurrence of asynchronous updates

increases as texture size increases. However, even for asynchronous updates,

GPU threads tend to access memory with ascending order. This can be seen from

the much higher occurrence rate of asynchronous updates when the IDs are in

reverse order. Thirdly, GPUs from different manufacturers (AMD vs. nVidia)

exhibit different occurrence rates of asynchronous updates. However, GPUs from

the same manufacturer have similar results, even if they are in different series (for

example, GeForce 400 series vs. 600 series). In conclusion, for specific graphics

hardware, the behavior of framebuffer feedback loop is nondeterministic but

predictable within a certain range, which is the result of a hybrid of synchronous

77

Figure 5.2. Test results of occurrence of asynchronous updates for four graphics
cards: nVidia GeForce GTX 460, GTX 680, AMD FirePro M8900, and Radeon HD
7970. The horizontal axes of all plots are texture sizes tested. The vertical axes are
the occurrence of asynchronous updates in percentage.

and asynchronous updates. It is worth mentioning that the authors did the tests

within their available resources. The behavior of framebuffer feedback loop may

vary greatly for older or future hardware, or integrated GPUs. We continue our

discussion in the following sections with regard to the tested graphics hardware.

Framebuffer feedback loops are always used in the subsequent discussions on

Synthetic Brainbows.

5.2 Synthetic Brainbows
5.2.1 ID Shuffling

In fact, Algorithm 5.1 was discussed in the work of Hawick et al. [39] and that

of Oliveira and Lotufo [73] as a local merging step in their GPU implementations

78

of connected component labeling. If we introduce a binary mask into an iterative

process, assigning and propagating IDs only within the masked regions, it

converges to the labeled connected components of the mask. With framebuffer

feedback loops, the result still converges and is deterministic, since cell values are

monotonically increasing and upper bounded within each connected component.

This also can be considered as a simple case of chaotic relaxation [17]. However,

if we focus on the process itself rather than its convergence, we should be able

to observe one problem when IDs are ordered as initial states. For example,

a spiral is used as the binary mask in Figure 5.3. If we consider the spiral as

a complex structure, the visualization task here is to decompose the structure

into simpler shapes so that each component as well as the spatial relationships

among components can be more easily studied. Connected component labeling,

which considers the complex structure as one component, does not fulfill the

requirement. A simple solution is to stop the iterative process of local ID merging

at fixed iterations. This generates stochastic patterns due to asynchronous updates.

But also, because the tested graphics cards largely exhibit synchronous behavior,

as discussed in Section 5.1, local ID merging generates many small subregions

(Figure 5.3 (a) and (b)). The high frequency patterns in these unmerged regions

can be visually distractive. To compensate for this and generate fewer subregions

after certain iterations, we propose ID shuffling. ID shuffling does not randomly

change the order of IDs. Instead, IDs are meant to be evenly distributed. This is

formally defined as maximizing the grid distance between any ordered pair of

adjacent IDs. Intuitively, it can be understood as the process of placing IDs, from

large to small, onto an empty grid. Wherever an ID is placed on the grid, the next

smaller ID is placed so that the pair can be as far apart as possible. The result is

that local merging is centered at local maxima and small subregions are quickly

merged into larger regions (Figure 5.3(c)).

For easy implementation, we first consider an ID shuffling algorithm for grids

of size 2n. The shuffled IDs are easily generated from their grid coordinates,

as the IDs are spatially placed according to a binary (or quad- for 2D, or oct-

79

(a) (b) (c)
Subregions: 355 Subregions: 560 Subregions: 12

Figure 5.3. A 512x512 binary image of a spiral is used as a mask for Algorithm 5.1.
After 512 iterations, different ID orderings exhibit different patterns when IDs are
color-mapped. (a) IDs are in ascending order. (b) IDs are in descending order. (c)
IDs are shuffled with Algorithm 5.3. The numbers of remaining subregions are
shown below the images. Yellow arrowheads point to regions where high amount
of unmerged subregions are present, due to the largely synchronous behavior
of the graphics card. With shuffled IDs, the algorithm is able to generate fewer
subregions with the same number of iterations. The tests are done on an AMD
Radeon HD 7970 graphics card, which exhibits the least asynchronous behavior
in Figure 5.2. There are fewer remaining subregions when a more asynchronous
graphics card is used, e.g., nVidia cards. However, the difference between ordered
and shuffled ID orderings is still quite large.

for 3D, etc.) encoding tree. We first introduce the shuffling algorithm for a 1D

grid (Algorithm 5.2), which is illustrated in Figure 5.4. In the algorithm, the

function reverse_bit() reverses the order of the binary code of the input integer.

The subtraction step at the end is only for indices starting from 0. We want to

exclude 0 from valid IDs, since it is used as a mask value. It is equivalent to

increasing the reversed index value by 1.

Shuffling algorithms for higher dimensional grids are extensions of Algo­

rithm 5.2. In Algorithm 5.3, the function interleave_bit() combines the bits of its

multiple inputs in an interleaving fashion. For example, in a 3D grid, we have

calculated I 'x, I'y, and I'z for one cell. The first bit of the function's output I' is the

first bit of I 'x, and then the second bit of I' is the first bit of iy, and then the first bit

of IZ, and so on.

80

Grid Indices 0 1 2 3 4 5 i6 1
Binary Codes

Bit Reverse

Subtraction

000 001 01

000 100 01

8-(p 8-4 8-

io oh

10 11

2 8-

1 1

0 0

6 8
/

■
o

o 0 101 11

1 101 01

8-5 8-1
z \!z \ .

0 1

1 1

5 8

11

11

-7

IDs 8 4 C 2 7 3 5 1
0 0 0 2 0 0 0 1

8

0

Figure 5.4. ID shuffling for an 8-cell 1D grid. The binary code of each cell index is
reversed and then subtracted from the total cell number. The IDs are placed in
the order of visiting the binary tree shown below, with depth-first traversal. In
the tree, larger IDs are on nodes of higher levels.

Algorithm 5.2 ID shuffling for a 1D grid
Define N = the number of cells of the grid and
N = 2n, (n e Z);
For each cell

I = the cell's grid index;
I' = reverse_bit(I);
ID = N - 1';

For a grid of an arbitrary size, it is considered as a subregion of a larger grid

of size 2n. Then, IDs of any grid can be calculated using Algorithm 5.3. Our

81

Algorithm 5.3 ID shuffling for a high-dimensional grid
Define {Ni} = the number of cells in each dimension
and Ni = 2m, (m e Z);
Define N = n (Ni);
For each cell

{Ii} = the cell's grid index in each dimension;
{l'} = {reverse _bit(Ii)};
I' = interleave_bit({I'});
ID = N - I' ; i

algorithm is not the unique way to shuffle IDs. Equivalent algorithms can be

derived, for example, by swapping nodes on the same level of the binary tree

in Figure 5.4. However, our algorithm is suitable for parallel evaluation, as

each cell's ID is uniquely defined by its indices. For repetitive evaluations of

different grids, IDs can be precalculated and reused. Furthermore, in addition to

asynchronous computing models, ID shuffling is potentially an improvement to

existing connected component labeling algorithms, since it accelerates the local

merging step. However, for visualization purposes, our ID merging algorithm

with shuffling can only be applied on binary data. The decomposition of complex

structures still seems to be arbitrary. In order to apply it on grayscale data and

for the colorization to follow structural information, finer control over the local

merging process is necessary, which is discussed next.

5.2.2 Monte-Carlo Sampling

Our goal here is to apply ID merging on a single channel of confocal microscopy

data, and generate Brainbow-like images. We want the colorization process to

be applied directly as we do not want to rely on presegmented results. Since we

want to have unique IDs for individual regions, one difficulty of applying the

colorization described in Section 5.2.1 to grayscale data is that IDs cannot be simply

scaled according to scalar intensities. However, we can control the merging speed

of IDs based on scalar intensities. This is achieved through temporal Monte-Carlo

82

Algorithm 5.4 Colorization of a grayscale volume
Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 5.3;
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N

The cell's ID is replaced by the maximum ID
within its neighborhood;

sampling. The algorithm for colorizing a grayscale volume is listed.

In Algorithm 5.4, M is a scalar value calculated from the original scalar volume.

It measures the features that we use to control the merging speed. For example,

the stopping function in a standard anisotropic diffusion [80] can be used as the

measure of homogeneity. We can use this measure if we want the merging to

be faster in homogeneous regions and slower at edges (less homogeneous). The

value N can be seen as a pseudo-random number generated from a 4D (3D plus

time or iteration) noise function [37]. If the value of M is higher, there is also a

higher chance that the ID is merged, and vice versa.

We first experimented with a common measure of edges, which is defined by

the gradient magnitude of the intensity value S:

|v(S)|2
M = e (5.1)

Figure 5.5 shows the result of applying Algorithm 5.4 on a confocal scan

(512x512x85x8bit) of a Drosophila brain. The nervous system of the Drosophila

brain has complex structures, where important structures can easily be obscured.

We ran 200 iterations of ID merging and examined the patterns generated from

Algorithm 5.4. Notice that the ordered ID sequence was repeatedly mapped to a

palette of bright colors that resemble fluorescent markers. Because of ID shuffling

(Algorithm 5.3), the colors were spatially shuffled too. The colored volume was

then modulated by the original scalar intensities. The number of iterations was

83

(a) (b)

Figure 5.5. Colorization of a confocal scan of a Drosophila brain
(512x512x85x8bit). (a) The volume rendering of the original dataset. (b) The
volume rendering of the colorized dataset. Dotted outlines indicate large and
homogeneous structures. It took 200 iterations to generate the result. Generating
the result took around 1 second on an AMD Radeon HD 7970.

chosen to generate the desired color variations. Comparing the colorized volume

(Figure 5.5 (b)) with the original volume (Figure 5.5 (b)), we can observe that large

and homogeneous structures are emphasized, which are indicated by the dotted

outlines in Figure 5.5 (b). Small structures are also distinctively colored. This

is helpful when one structure is obstructing another. Their spatial relationship

becomes clear, as they are colored differently. An apparent drawback of using only

gradient magnitude as the measure for edges is that faintly connected structures,

such as the fibers in the lower right region of Figure 5.5, are colored differently

even for the same branch. To generate the result in Figure 5.5, o in Equation 5.1

was set to 0.5. If we further increase its value, more structures are merged and

colored the same, which reduces the resolving capability. This is illustrated in

Figure 5.6 by an example of two idealized touching biological cells, where we

have to increase the o value in order to merge the surrounding IDs. For just

two cells, we can easily stop the merging process when the two groups of IDs

84

(a) (b) (c) (d)

Figure 5.6. An illustrated example of two idealized touching biological cells.
(a) The original data. Cells have high intensity and low gradient magnitude
at their centers and low intensity but high gradient magnitude at borders. (b)
Algorithm 5.4 is used with the measure in Equation 5.1. When the o value in
Equation 5.1 is low, the centers of the cells are colored differently. However, they
are surrounded by a cloud of various colors (IDs), which obscures the content
inside. (c) When we increase the o value, the two cells are fused together. (d)
When we introduce a size constraint, the two cells can be colored as desired.

join at the boundary, similar to Figure 5.6 (d). This becomes impractical for a

large amount of cells or complex structures, since the iteration number is a global

parameter and cannot be tuned for all structures of different sizes.

A great advantage of using the ID merging process is that the size of each

individual structure having the same ID can be retrieved by counting the number

of cells with the same ID. The size of each structure is then used to control

the merging process. The problem of two touching cells can be solved using a

two-pass method. In the first pass, a low o value is used and the result looks

like Figure 5.6 (b). Then, we count the size of each structure having the same ID,

similar to calculating component sizes in connected component analysis. In the

second pass, we use a high o value and set a constraint on component size, which

is described in Algorithm 5.5.

If the size constraint is set to lower than the size of the smaller cell, the

surrounding IDs in Figure 5.6 (b) are merged into the two cells. The IDs from

the two cells, however, cannot be merged into one another, because of the size

constraint. The result should look like Figure 5.6 (d). Notice that although the size

85

Algorithm 5.5 Synthetic Brainbow (colorization of a grayscale volume with size
constraint)
Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 5.3;
Define B a Boolean volume whose voxels represent
if they are in a component with size over a threshold;
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N and !B

The cell's ID is replaced by the maximum ID
within its neighborhood;

constraint is a global parameter, it is used to safely merge IDs in noisy regions.

So, it is usually set at a relatively small value. Larger structures are merged by

adjusting the measure of features and iteration numbers.

5.2.3 Results and User Survey

Using the above method, we generated Synthetic Brainbows for three single­

channel confocal scans. We were able to adjust the number of iterations, the a value

in Equation 5.1, and the size constraint during the ID merging process. For each

scan, we performed several experiments with different parameter combinations

until reaching a satisfactory result. The results are listed in Figures 5.7,5.8, and 5.9.

These results are from an AMD Radeon HD 7970 graphics card.

For most cases, e.g. Figure 5.7 and 5.8, our Synthetic Brainbow technique

does not alter information from original datasets. It enhances visualization by

randomly applying colors to different structures. We chose bright colors that

resemble fluorescent markers used in biology research, so that structures are not

accidentally emphasized/de-emphasized because of color variance. For highly

noisy datasets, e.g., Figure 5.9, we suppressed noise with MIP. We believe such

colorization can help visualizing complex structures in biology research. Since

the colorization process takes relatively short time, it can be integrated into a

86

(a) (b) (c)

Figure 5.7. Synthesized Brainbow of the same confocal scan of a Drosophila
brain (512x512x85x8bit) in Figure 5.5. (a) The volume rendering of the original
dataset. (b) Rendering of the colorized result generated with size constraint. (c)
A close-up of the fibers. Individual fibers are connected and different fibers are
colored differently. In the first pass of ID merging, iteration number is set to 200,
and a is set to 0.5. In the second pass of ID merging, iteration number is set to 200,
a to 1.0, and size constraint is set to 100 voxels. The colorization process took 2.81
seconds on an AMD Radeon HD 7970.

biologist's visualization workflow. Another prospective use is when a group of

biologists are looking at scans, instead of pointing on the datasets and referring

structures as "this" or "that", specific color names can be used. However, this can

only be validated when the Synthetic Brainbows are used in practice.

To address the concern that results from the Synthetic Brainbows may vary

from one graphics card to another, we also generated Synthetic Brainbow images

with other graphics cards tested in Section 5.1. The results are in Figure 5.10, 5.11,

and 5.12. Because occurrence of asynchronous updates is about 5% at the highest

for 512x512 textures, only limited variation can be observed from these results.

However, since a comprehensive test of all graphics card models is impossible at

current stage, consistent results can only be guaranteed on the tested models.

Since biologists are the potential users of our technique, we created an online

survey and sent its link to biologists that are experts in confocal microscopy.

The participants should be familiar with the Brainbow technique, but they may

not necessarily be working with the technique. There were two parts in the

survey. In each question of the first part, an image was shown and participants

87

. Y/L4J H Z'*, l T| hfr. ■ r H T ^

(a) (b)

Figure 5.8. Synthesized Brainbow of a confocal scan of an eye of a zebrafish
embryo (512x512x33x8bit). (a) The volume rendering of the original dataset. (b)
The volume rendering of the colorized result. In the original scan, many structures
are fused together, which are better discriminated in the colorized result. The
colorization took two passes. In the first pass, iteration number is set to 50, and a
is set to 0.35. In the second pass, iteration number is set to 300, a to 1.0, and size
constraint is set to 250. The colorization process took 1.34 seconds on an AMD
Radeon HD 7970.

were asked how likely the image was generated by the Brainbow technique.

There were eight images: four generated with our technique, two true Brainbow

images, and two images generated by first anisotropic diffusion [80] and then

thresholding plus connected component labeling. The images were shown in

random order. In the second part, we revealed the images that were generated

by our technique and showed their original renderings as in Figure 5.7, 5.8,

and 5.9. We asked the participants how likely they would use this technique

for visualization enhancement in their research. We received answers from 16

participants, some of which also left comments. The answers to the first part are

plotted in Figure 5.13. Most participants agreed that our technique was able to

generate results similar to Brainbow. Furthermore, 70% of the participants showed

great interest in using our technique. From the survey results and participants'

88

(a)

Figure 5.9. Synthesized Brainbow of a confocal scan of a Drosophila brain
(512x512x115x8bit). (a) The volume rendering of the original dataset. This is
a highly noisy dataset. (b) The volume rendering of the colorized result. The
colored volume is rendered with maximum intensity projection (MIP) [109] plus
a shading overlay (Section 3.6, Chapter 3), in order to see the colored structures
clearly. (c) A close-up of the cells. The colorization took two passes. In the first
pass, iteration number is set to 200, and o is set to 0.35. In the second pass, iteration
number is set to 10, o to 1.0, and size constraint is set to 50. This 10-iteration
process is then repeated five times in the second pass. This is because the dataset
is highly noisy and we need to look at the result and decide if more iterations are
necessary. The colorization process took 1.98 seconds on an AMD Radeon HD
7970, excluding the time for manual parameter adjustment.

feedback, we learned that visualizations altering the appearance of the original

data would be commonly rejected. Researchers often want fine details and

sometimes even noise to be preserved. Interestingly, some of the biologists were

able to tell that data had been altered because of their over-smoothed and thus

unnatural look. This is the main reason why the thresholded and labeled results

had low scores. The data in Figure 5.8 had been preprocessed with a median filter.

We believe this led to its lower score (25%, the second in Figure 5.13). Thanks to

the ID merging process, our method is able to preserve fine details of the original

data, which is important to biologists for a visualization technique.

ID merging with asynchronous cellular automata had been used in connected

component analysis, which we regard as the primitive form of more sophisticated

colorization. Our quest for computationally generating Brainbow-like images

from single-channel confocal microscopy data started with examinations of

(b) (c)

89

(a) (b)

(c) (d)

Figure 5.10. Synthesized Brainbow of the same confocal scan of a Drosophila
brain (512x512x85x8bit) in Figure 5.5, using different graphics cards. (a) Result
from nVidia GeForce Gt X 460. (b) Result from nVidia GeForce GTX 680. (c) Result
from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.

90

(a) (b)

(c) (d)

Figure 5.11. Synthesized Brainbow of the same confocal scan of an eye of a
zebrafish embryo (512x512x33x8bit) in Figure 5.8, using different graphics cards.
(a) Result from nVidia GeForce Gt X 460. (b) Result from nVidia GeForce GTX
680. (c) Result from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.

91

(a) (b)

(c) (d)

Figure 5.12. Synthesized Brainbow of the same confocal scan of a Drosophila
brain (512x512x115x8bit) in Figure 5.9, using different graphics cards. (a) Result
from nVidia GeForce GTX 460. (b) Result from nVidia GeForce GTX 680. (c) Result
from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.

92

Figure 5.13. Results from the first part of our survey. The collective answers
to the likelihood of each image being generated with the Brainbow technique
are plotted in one bar plot. The length of a bar represents the frequency of each
choice being selected (5 - most likely, 1 - most unlikely). Here, the images are
grouped according to techniques used. In the survey, they were shown to the
participants in random order. Above the plots are the combined percentages of
the participants who answered 5 or 4. The answers to most of our images are
similar to those of the true Brainbows.

GPU framebuffer feedback loops. We initially thought it would be purely

nondeterministic because of asynchronous memory access in parallel. However,

when we tested its behavior with a cellular automaton, we found the behavior of

GPU framebuffer feedback loop, despite being nondeterministic, is less random

than we thought. In order to use the patterns generated in the iterative process

of GPU framebuffer feedback loops to synthesize Brainbow-like results, we

introduced ID shuffling and Monte-Carlo sampling into the ID merging process.

Our technique is able to enhance visualizations of data with complex structures,

such as the biological datasets demonstrated in this chapter. Our technique has

advantages over traditional segmentation plus labeling methods because of its

speed, and also because it preserves fine details of original data. Both make it a

visualization technique appealing to domain experts, as we learned from a user

survey. Currently, a drawback of our technique is the lack of an intuitive user

interface, which limits its users to the authors and their close collaborators. We

would like to address this issue in future work.

93

There are apparent similarities between our technique and many segmentation

methods for cellular or fibrous structures in biological data. Algorithm 5.5 can

be considered as a general framework for segmentation, instead of a specific

segmentation method. Firstly, it combines component labeling and feature

detection into one process. It is also related to fuzzy connected component

analysis [101]. An important benefit of such combination is that size information

is readily available and used as a constraint. The size calculated from component

labeling is a more accurate descriptor than the previously proposed size-based

transfer function [22]. Our size descriptor works better with fibrous and branching

structures, since they may have big size but be considered small by a local size

descriptor. Secondly, the quality of segmentation can be refined by using more

specific feature measures. For example, a measure of tubeness [90] can be added

for fibers, and a measure using similarity between smoothed gradient vectors [60]

can be added for cells. Thirdly, Algorithm 5.5 can be used with or without GPU

framebuffer feedback loops. The purpose of this chapter is to find a random

colorization technique that can be used with GPU framebuffer feedback loops,

which saves memory and utilizes memory bandwidth more efficiently. We paid

more attention to the stochastic patterns generated in the process and did not

discuss convergence in great detail. However, when appropriate constraints are

applied, the process can still converge to a segmentation of the input.

5.3 Tracking Cells
Biologists often want to find out the trajectories of cell movements in time

sequences acquired by confocal microscopy. Individual cells have to be dis­

tinguished not only within one time frame, but also through multiple frames.

Tracking individual cells automatically becomes problematic, as cells in proximity

are often densely packed and have similar shapes. An automatic tracker can be

very easily confused and generate unreliable results. By leveraging the parallel

processing power of GPUs, we propose a cell tracking method using our Synthetic

Brainbow technique (Section 5.2). In general, it is easier for an automatic tracker

94

to identify cells through time, if each individual cell has been identified within

each time frame. A bipartite matching algorithm [112] can be used to calculate

the best match for the already identified cells between two consecutive time

frames. Application of the Synthetic Brainbows to cell tracking is relatively

straightforward: we first generate synthesized Brainbows for each time frame,

where cells have unique IDs; then, we calculate the maximum bipartite matching

between consecutive time frames, where matched IDs are unified into the same

ID.

5.3.1 Synthetic Brainbows for Cells

Decreasing brightness and signal-to-noise ratio through time are challenges

for cell tracking with confocal microscopy time sequences. To obtain consistent

results through time frames, we improved the measure in Equation 5.1 specifically

for cells in confocal microscopy data. Similar to multidimensional transfer

functions [53], our measure is composed of four submeasures. The combination

of these submeasures aims for a better definition of cell boundaries during ID

propagation.

• Scalar value. The measure is calculated similarly as in Equation 4.9.

m1 (V) =
(V-t1)2

e 1 V < t1 (5.2)
1 otherwise

In Equation 5.2, A4 and t1 are two user adjustable parameters for the shape of

the Gaussian falloff. In confocal microscopy data, the center of a cell has high

scalar values, which decrease towards the boundary. Therefore, ID propagation is

faster at the center of a cell than its boundaries.

• Scalar variance. We calculate the absolute deviation var(V) of the scalar

values within a neighborhood. Then, the measure is calculated from the absolute

deviation.

95

1 " _
« r (V) = - V |V - V|

- i=1 (5.3)
var(V)2

m2(V) = e k2

In Equation 5.3, V is the average of the scalar values within the neighborhood

and k2 is a user adjustable parameter. In confocal microscopy data, the center of a

cell usually has less scalar value variation than its boundary, which can become

quite noisy (high scalar value variation) between two cells. The neighborhood

stencil is usually anisotropic. We use a voxelized ellipsoid that has 5 x 5 voxels on

the XY plane and 3 voxels along the Z axis. This is because most confocal data

are anisotropic and we want neighboring voxels along the Z axis to have less

influence. The result is that ID propagation is faster at smooth regions than noisy

regions.

• Gradient magnitude. The measure is calculated similarly as in Equation 4.9.

It is calculated as the Gaussian of the gradient magnitude, which is commonly

used to measure boundaries.

In Equation 5.4, k3 and t3 are two user adjustable parameters. This is the

common measure for boundaries used in Section 5.2.2.

• Gradient direction variance. We first calculate the normalized average

gradient vector within a neighborhood. Then, we calculate the averaged dot

product between each normalized gradient vector and the normalized average

gradient vector. Each dot product is weighted by the magnitude of each gradient

vector, so that gradient vectors with less magnitude have less influence on the

result. The result is used to calculate the fourth measure of gradient direction

variance.

1 |W| < t3
m3(V) = < _ (ivVi-t3)2

e k3 otherwise
(5.4)

96

1 m i
v V = normalize(— ^ v Vi)

n i=1
1 - ___

gvar(V) = - ^ |v Vi|dof(v V, -ormalize(vVi)) (5.5)
n i=1

gvar(V)2
m4(V) = e k4

In Equation 5.5, v V is the normalized average gradient vector; gvar(V) is

the gradient direction variance; k.4 is a user adjustable parameter. This measure

helps ID propagation stop at regions between cells, since gradient vector changes

direction at these regions, thus high gradient direction variance. Notice that

gradient direction also changes at the center of a cell in theory. This is why we

want to weight the dot product with the gradient magnitude, as the center usually

has low gradient magnitude, which is used to decrease the center voxels' influence

on the gradient direction variance. The same neighborhood as in the calculation

of the scalar variance measure is used here, to lessen the influence of neighboring

voxels along the Z axis.

As mentioned in the beginning of Section 5.3.1, the method looks similar to

multidimensional transfer functions, which would be four-dimensional in this

case. However, finding proper parameters for above equations does not seem

to be as difficult as in a four-dimensional transfer function. This is because the

influences of the measures are on the ID propagation speed, instead of directly on

rendering properties (color and transparency) of the voxels as in multidimensional

transfer functions. Using the Synthetic Brainbow technique, the final colors of the

voxels are generated through an iterative process by accumulating the influences

of the above measures. The final results become less sensitive to parameter

changes. More importantly, results from different time frames in a time sequence

confocal data become less sensitive to parameter changes. Thus, it is possible to

use the same set of parameters for above measures through all the time frames.

This becomes important for time sequences with many frames. We are able to

97

determine the parameters according to just one or two and apply them to all

frames, instead of adjusting for each frame.

Figure 5.14 shows the results of applying the Synthetic Brainbow technique

with above measures. For all time frames of the confocal sequence, the same

parameters were used in two passes. In the first pass, the settings were: t1 = 1.0,

k1 = 0.01, k2 = 0.07, t3 = 0.0, k3 = 0.04, k4 = 0.07, iterations = 50, size constraint

ignored; in the second pass, the settings were: t1 = 1.0, k1 = 0.1, k2 = 0.7, t3 = 0.0,

k3 = 0.4, k4 = 0.7, iterations = 15, size constraint set to 30.

5.3.2 ID Matching

It is easy to observe that sometimes, the same cell does not have the same

color in different time frames in Figure 5.14. We need to match IDs in different

time frames. This is accomplished using a standard algorithm in graph theory:

weighted maximum bipartite matching [112]. Here, we consider each individual

ID as a node on a graph. If two IDs from two consecutive time frames have

overlapped voxels (voxels occupy the same space coordinates, but in different

time), an edge is connected between them. The edge is weighted by the number

™ r * T i T ■ ' » IT •» %.7 V \.Kt BL__ 2

(a) (b) (c)

Figure 5.14. Results of applying the Synthetic Brainbow technique on a time
sequence confocal data. Three consecutive time frames are shown here ((a), (b),
and (c)). Two passes of ID propagation are used. In the first pass, the settings
were: t1 = 1.0, k1 = 0.01, k2 = 0.07, t3 = 0.0, k3 = 0.04, k4 = 0.07, iterations = 50, size
constraint ignored; in the second pass, the settings were: t1 = 1.0, k1 = 0.1, k2 = 0.7,
t3 = 0.0, k3 = 0.4, k4 = 0.7, iterations = 15, size constraint set to 30.

98

of overlapping voxels. The graph is bipartite because an overlap (an edge) can

only occur between IDs belonging to different time frames. Figure 5.15 illustrates

the construction of such a graph.

The weighted maximum bipartite matching algorithm can be found in literature

on graph theory [112]. A detailed discussion is out of the scope of our work. The

algorithm is listed in Algorithm 5.6.

Algorithm 5.6 Weighted maximum bipartite matching.
Start with a bipartite graph with no matched edges established;
Repeat

For all unmatched nodes on one side of the bipartite graph
Breadth-first search and find an augmenting path with the maximum
weight;

If found the augmenting path and its weight > 0
Flip the edges;

Else
Stop. The current matching is the result.

In Algorithm 5.6, a path on the bipartite graph can have both matched and

unmatched edges. A path that has alternating matched and unmatched edges is

called an alternating path. An alternating path whose total weight of unmatched

edges is greater than that of matched edges is called an augmenting path. The

weight of an augmenting path is calculated by subtracting the total weight of

matched edges from that of unmatched edges. Flipping an alternating path

means marking matched edges as unmatched and unmatched as matched. This

algorithm is applied to a bipartite graph generated from two consecutive time

frames that have been processed with the Synthetic Brainbow technique. Then,

the entire time sequence is processed with this method. Figure 5.16 shows the

results after ID matching for the confocal dataset in Figure 5.14.

Synthetic Brainbows provide us a simple and easy-to-implement method to

track cells in time sequence confocal microscopy data. By adopting the maximum

matching algorithm, a global optimal match can be guaranteed between two

99

Figure 5.15. Conversion from cells with IDs to a bipartite graph. The green cells
and red cells are from two consecutive time frames. They are super-imposed in
the upper part of the figure. Each cell has an unique ID in each frame, but the same
cell may not have the same ID from two frames. We can then create a graph in the
lower part according to their overlapping. Each edge in the graph represents an
overlap and is weighted according to the overlapped area (not shown). The red
edges are the matched edges after applying the weighted maximum matching.

100

(a) (b) (c)

Figure 5.16. Results of ID matching of three consecutive time frames in a confocal
data sequence. (a), (b), and (c) are the three consecutive time frames from the time
sequence data.

consecutive frames. Therefore, the quality of cell tracking really depends on the

ID propagation process in Synthetic Brainbows. Although further improvements

are possible to the measures in our method, we believe incorporating human

interactions into the workflow is necessary for the most accurate result, as seen in

our interactive segmentation techniques in Chapter 4. For massive time-dependent

data, a more important task than tracking individual cells correctly is to visualize

the general movement of different functional regions formed by these cells. In

biology research, it is termed a fate map, which is a description of the origins

of organs through different developmental stages. Since Synthetic Brainbows

provide the movement of each cell, a time-dependent vector field can be then

generated from our results. We believe that common vector field visualization

techniques can be applied for studying fate maps.

CHAPTER 6

CONSTRUCTING ANATOMICAL ATLASES,

A CASE STUDY

We worked with biologists and artists and developed a workflow for making

anatomical atlases from confocal microscopy data. This workflow starts with

acquiring confocal scans of mouse limbs, which are visualized using FluoRender's

rendering pipeline (Chapter 3). Then, structures such as muscles, tendons,

bones, and nerves are extracted using FluoRender's interactive segmentation

functions (Chapter 4). The modeling process of the workflow first converts

segmented volume data into coarse polygon models, and then these polygon

models are processed with shrink-wrap simulations, which generate smooth and

well-structured models. It is also fairly easy to unwrap the texture coordinates of

these simulated models. Then, a digital painting package is used to transcribe

textures from confocal scans to the polygon models. Finally, we use FluoRender

for the presentation of the finished atlases, which are limbs of 14.5-day mouse

embryos. This chapter is a detailed case study of how FluoRender can be used

together with other software packages in practice.

6.1 Data Acquisition
The biologists working on the mouse limb atlas project are researching the

cellular and molecular mechanisms governing the patterning and assembly

of the musculoskeletal system during development. Understanding how the

musculoskeletal system is assembled is a fundamental question in developmental

biology. In addition, congenital defects in limb and musculoskeletal development

are relatively common in humans, and understanding the etiology of these defects

is of interest to the medical community. To study development of the limb

102

musculoskeletal system, the biologists have chosen to examine the development

of the limb of mice. Mice are the primary model organism used to study limb

musculoskeletal development. Not only are mouse and human development

similar, but many genetic tools (the ability to create "knock-out" mice) and

molecular reagents are also available in mice. To facilitate study of mouse

limb development, the biologists wanted to create a 3D atlas of the developing

mouse limb in which bones, tendons, muscles, and nerves were clearly displayed.

Although an atlas of mouse limbs had previously been published by DeLaurier et

al. [24], this atlas displayed a limited number of tissues (just muscles and bones)

and details of muscle morphology (the orientation of the muscle fibers) were

lacking.

Our workflow for constructing a limb atlas begins with obtaining digital images

of the musculoskeletal system of mouse limbs. In a single mouse limb, tendons,

muscles, and nerves were each labeled with a different fluorescently-tagged

antibody. Limbs with fluorescently tagged tendons, muscles, and nerves were

then imaged via confocal laser scanning microscopy. For each limb, a stack of

in-register optical thin sections showing tendons in green, muscles in red, and

nerves in blue were obtained. Bones were recognized as distinct black regions in

the green and red channels. Figure 6.1 shows an acquired dataset of a mouse hind

limb, which is visualized by volume rendering via FluoRender. Here, the three

channels of muscles, tendons, and nerves are rendered in depth mode (Section 3.3,

Chapter 3). The volume transfer function has been adjusted for each channel to

remove noise and emphasize important structural information. The renderings

are processed with tone mapping (Section 3.5, Chapter 3) and a shadow overlay

(Section 3.6, Chapter 3) is used.

It should be noted that although this particular atlas was developed from

data obtained via CLSM, our workflow and tools can also be applied to images

obtained from other 3D imaging techniques, such as X-ray computed tomography

(CT), magnetic resonance imaging (MRI), optical projection tomography (OPT),

and high-resolution electron microscopy (HREM).

103

(b)

Figure 6.1. A volume-rendered visualization of the confocal data acquired for
our atlas building project. This is the hind limb of a 14.5-day embryonic mouse.
Muscles are shown in red, tendons in green, and nerves in blue. (a) When viewed
in the XY plane, the visualization contains rich details of the structures. (b) When
XZ plane is viewed, the visualization becomes coarse due to the increased Z
increment.

6.2 Segmentation
For the mouse limb atlas, individual tendons, muscles, nerves, and bones need

to be identified and segmented. The accuracy of segmenting these structures

defines the quality of the final atlas. The real difficulty lies in the fact that the

anatomy of mouse embryos is not entirely clear to researchers. We could use

anatomies of adult rats and mouse as references, but there are always limitations

and discrepancies, especially when each individual muscle needs to be identified

and segmented. In FluoRender, we segment different types of structures with

slightly different strategies. However, we always first try to segment them through

104

painting (Section 4.2, Chapter 4) on their visualized results whenever the structures

are clear. Then, we restrict both the visualization and segmentation with clipping

planes. Structures deep inside can usually be processed with this manner. For

unclear and densely packed structures, we further restrict the clipping planes to a

single slice, and use all the enhancements available (Section 3.6, Chapter 3). This

is equivalent to segmenting slice-by-slice. However, FluoRender provides this

special design of clipping planes that allows users to quickly go back and forth

between view-dependent and slice-based segmentation (Section 4.3, Chapter 4).

• Muscles. They are the most important part of our limb atlas. They are also

difficult to extract because they are densely packed and have obscure boundaries.

Fine fibers imaged within each muscle further complicate the scenario. As in

a common segmentation workflow in FluoRender, we first adjust the transfer

function of a muscle channel. We usually decrease its gamma to enhance contrast,

and cut off low-intensity noise by increasing threshold. Since large specimens like

mouse limbs often have lower antibody penetration, thus lower signal intensity, we

also decrease the saturation point to brighten the results. Tone-mapping operators

are always used to further enhance the results. Depending on different regions of

the visualization, for example, deep regions usually have lower signal intensities

than surface regions. Parameters for transfer function and tone mapping are

also adjusted during segmentation. Muscles in the foot area and major surface

limb muscles are easily distinguished and then paint-selected, very possibly from

various view directions. Selected muscles are progressively removed from the

muscle channel through FluoRender's channel calculations (Section4.3, Chapter 4).

Then, deep muscles are exposed and more easily identified, which are selected

and extracted next. This process resembles the actual dissection of an embryo

under microscope (Figure 6.2). The segmented muscles are put together and

compared with the original muscle channel. They are then correctly named

according to their relative locations. Some difficult muscles are inspected and

compared slice-by-slice. It is common that some muscles cannot be identified, in

which case we can use other channels from the same scan to facilitate identification.

105

(e) (f)

Figure 6 .2 . Segmentation of muscles from a mouse limb dataset. (a) The
original muscle channel is visualized in FluoRender. (b) We paint directly on
the visualization and select one muscle. (c) The selected muscle is extracted. (d)
The selected muscle is removed from the original data, which makes selecting
other muscles easier. (e) A second muscle is selected. (f) A group of muscles are
segmented similarly.

For example, tendons of digitorum muscles are long and easily distinguishable;

therefore, muscles connecting with these tendons are indisputably digitorum

muscles.

• Tendons. Tendons attach muscles to bones. Most tendons in an embryo are

blurry transitional area between bones and muscles. It is not practical to segment

these tendons because of their indefinite shapes in confocal scans. We only extract

long and distinguishable tendons such as tendons of digitorum muscles. In the

106

modeling section (Section 6.3), we will discuss how to model certain tendons

without segmentation.

• Bones. Bones are not fluorescently stained in our experiments, and are black

regions in the muscle and tendon channels. We segment them by inverting the

intensity values of the muscle channel (or a combined channel from muscles and

tendons, depending on the clarity of a specific scan) as in Figure 4.8. Thus, bones

can be identified and extracted.

• Nerves. Similar in their shape to single neurons, nerves have extremely

complex and branching structures in 3D. They can only be extracted by painting

with FluoRender's selection brushes (Section 4.2, Chapter 4). For complex

networks of nerves, such as the brachial plexus, different major branches are

extracted separately. We use the selection brush to first select the starting point

for a major nerve branch. Then, we use the diffusion brush to grow the selection

of each major branch.

6.3 Modeling
The marching-cubes algorithm [64] is used to generate polygon models from

the segmented structures. These automatically generated polygon models have

very low qualities. Improvement of quality is possible through a variety of

automatic algorithms. However, for the best visual quality, we developed a

semi-automatic modeling workflow. This is due to following reasons. First, it

is difficult for most automatic algorithms to generate a quad mesh, which is

considered the basis for good structuring of a model. Second, the efficiency of

polygon placement is low. The polygon contours often do not follow meaningful

structures of the segmented volume. Instead, they usually congregate at noisy

regions and form distractive patterns. Third, automatic algorithms often generate

high polygon density, which makes further manual adjustment difficult, if not

impossible. Fourth, there is no algorithm that can handle complicated shapes and

generate high-quality models, such as those we see in the nervous system. Lastly,

there is no guarantee to generate the same mesh topology for similar structures.

107

The same topology makes comparison between similar structures simple. For

example, we can make a morphing animation very easily between to models if

they have the same mesh topology.

We use Autodesk Maya [5] for making high-quality polygon models from

marching-cubes results. Specifically, we use Maya's Nucleus simulation engine [7]

to shrink-wrap a prototype model with a rubbery material onto the marching-cubes

result. This method is semi-automatic, since the modeling and placement of the

prototype model is manual, and shrink-wrapped models may also be manually

adjusted for better shapes. In addition, branching structures, especially nerves,

are not easily modeled by shrink-wrap. Manual modeling is needed for those

structures.

Nonbranching structures including muscles and bones are modeled in the

following workflow.

• Import. Marching-cubes generated polygon models are exported as individ­

ual OBJ files. These files can be easily imported into Maya. If FluoRender is used

for both generating OBJ files and visualizing final models, unit and scale should

match between final models and original confocal channels. If other formats or

software are used, adjustment to unit and scale may be necessary for correct final

presentations, especially when original confocal datasets are anisotropic.

• Build prototype models. A prototype model is a low detailed polygon

model that completely encloses the marching-cubes generated model. Several

qualities of the prototype model ensure successful shrink-wrap simulations, which

then need little to no manual adjustments. First, there has to be sufficient space

between a prototype model and an imported model. When the prototype model

is shrunk onto the imported model, collision detection is calculated. Contact or

intersection between them will generate strong collision force, which may drag the

prototype model completely inside or make the simulation unstable. Second, the

prototype model has to be composed of only quads. Quads can generate evenly

distributed forces in physics-based simulations. The finished models are also

easily subdivided to make high quality models. Most importantly, only a quad

108

mesh can have continuous contours that can be manipulated to follow important

biological features, such as muscle fibers and ridges on bones. Third, the prototype

model has to follow the shape of the imported model as close as possible and

use as few vertices as possible. This usually requires the work of an experienced

artist or trained modeler. However, similarities among different structures make

it possible for sharing prototype models. For example, most muscles of limbs

have a spindle shape. A spindle-shaped prototype muscle is prebuilt for all such

muscles. Similarly, long bones of limbs can also share a tubular-shaped prototype

model. Figure 6.3 demonstrates building prototype models for several typical

shaped muscles. For irregular shaped structures, prototype models are built

similarly, but they require more time for shape adjustments.

• Shrink-wrap. We create an nMesh passive collider from the imported model

and an nCloth node from the prototype model. We set these parameters in the

nCloth node's attribute editor: stretch resistance, bend resistance, rest length

scale. All other dynamic properties are set to 0. We turn off gravity influence

for the nCloth node. Then, we select the vertices of the prototype model and

create a "point to surface" constraint onto the imported model. We set the type of

this constraint to "'rubber bands"' and decrease the rest length of the constraint

to a small value. The result of this setup is a mass-spring system, in which the

edges of the prototype model will shrink and the vertices are dragged away

from the normal directions of the imported model. We run this simulation and

normally the result converges within seconds. To fixate the simulated model, we

have to delete the construction history nodes and simulation nodes in Maya. An

example of using shrink-wrap to model the extensor digitorum muscle is shown

in Figure 6.4.

• Fine-tune. We then fine-tune models from shrink-wrap using Maya's

standard polygon modeling tools. The amount of work in this step depends

on the quality requirement of the final result. To generate fine detailed models,

the result from shrink-wrap is converted to a subdivision model. Details can be

added and manipulated at different detail levels of the subdivision model.

109

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3. Building prototype models for different kinds of muscles. (a) The
extensor digitorum longus muscle is selected in FluoRender. (b) The muscle is
extracted. (c) In FluoRender, the muscle is converted to a polygon mesh with
the marching-cubes algorithm. (d) In Maya, the polygon mesh generated in
FluoRender is imported. A prototype model is built according to the imported
model. This muscle has a very common shape for limb muscles, i.e., a spindle
shape. (e) Two heads of the biceps femoris muscle are selected. (f) The two heads
are extracted. (g) The two heads are converted to polygon models. (h) Prototype
models are built according to these imported models.

110

(C)

Figure 6.4. Modeling a muscle using shrink-wrap. (a) A marching-cubes-gener-
ated model is imported and a prototype model is built surround it. A passive
collider is created from the marching-cubes-generated model. An nCloth object
is created from the prototype model. Magenta connections represent the "point
to surface" constraint between the two models. (b) We start the simulation. The
prototype model is shrunk to the marching-cubes-generated model. (c) The final
model is generated by smoothing the shrink-wrap simulation result. Notice that
this setup lets polygon contours of the prototype model follow biological features,
i.e., the muscle fiber directions.

111

As discussed in Section 6.2, some short tendons have obscure shapes, which

are not segmented. They have to be modeled differently. We first finish the

modeling of all the muscles, and then identify those muscles with tendons that

are not segmented. Each muscle without segmented tendons is converted to an

nMesh passive collider. Next, we build a cap-shaped model and then shrink-wrap

it on one end of the muscle. The shrink-wrap process for these tendons is the

same as that for the muscles. These tendon models are placed in the atlas to give

visual presentations of the connections between muscles and bones. They can be

further adjusted according to volume visualizations in FluoRneder.

Long and branching tendons may be modeled by shrink-wrap, considering

they can be separated into several tubular-shaped parts. Nerves, however, are

difficult to be modeled by shrink-wrap. Hence, we start from roots of nerves

and extrude one face of a polygon cube. The extrusion is manually controlled to

follow the branches of nerves. Since nerves usually do not present higher-level of

complexity on each branch, the extrusion operation is adequate for completing all

nerve models.

6.4 Texturing
Polygon models alone have good shape representations of the structures,

but lack the details defining certain anatomical features, such as the muscle

fibers. Commonly seen in the illustrated anatomy books, these features are not

easily modeled with the methods discussed above. Sculpting, texture painting,

or a combination of the two are used for adding realism to models in a CG

artist's workflow. We choose texture painting for the anatomical details, mainly

the muscle fibers, since textured polygon models are easily supported for final

presentations.

Before textures can be applied, texture coordinates of the polygon model

need to be created and mapped into a unit square of the texture space. This

process is often referred as UV unwrapping. We perform this process to the

prototype models only, since they have only a few vertices/UVs to manipulate

112

and their texture coordinates can be automatically interpolated when we smooth

the models. Figure 6.5 is an example of unwrapping UVs of a typical muscle

model. To unwrap UVs, we first use Maya's automatic UV projection (Figure 6.5

(a)). It generates separate UV pieces (Figure 6.5 (b)). We then use UV stitching to

stitch these pieces together. The stitched UVs usually have entangled and highly

distorted polygon faces (Figure 6.5 (c)). We then use Maya's automatic UV layout

tool to obtain an improved layout (Figure 6.5 (d)). This layout usually has an

adequate quality for further texture applications. However, depending on the

methods that textures are applied, we may further edit this layout to give it a

more regular structure (Figure 6.5 (e)).

• Shared textures. Models derived from the same prototype model can share

one generic texture with no problem. Models from different prototypes but

representing similar biological structures can share textures too. For example,

muscle fibers are the main feature we want to add to muscle models. When

building the muscle prototype models, a desired quality is that the contours of the

quad mesh follow biological features (the muscle fibers). When we unwrap UVs

for such particular prototype models, we know those contours represent muscle

fiber directions. Thus, we lay out the UVs in a structure that the contours are

aligned with one axis of the texture space. When a generic texture with vertical

stripes is applied to a model with its UVs unwrapped this way, the stripes follow

the contours and therefore the muscle fiber directions (Figure 6 .6). When all

prototype models of similar structures are laid out with this method, one generic

texture with muscle fibers can be shared. This method is used to quickly make

believable textures for visualizations of an atlas. One disadvantage of this method

is that seams are usually visible, although using a well-designed repeating pattern

and placing UVs carefully can reduce the artifacts. Another problem is that the

two ends of these muscle models usually have highly distorted texture mappings,

due to converging contours.

• Transcribed textures. Shared texture does not always meet the requirement

of high precision and quality atlases. In addition, a generic texture can be highly

113

(b) (c)

(d) (e)

Figure 6.5. Unwrapping UVs of a muscle model. (a) Automatic UV projection is
used to generate UVs. (b) In the texture coordinate space, the model is broken
into several pieces. (c) Two pieces of the model's UVs are stitched together. (d)
All UVs are stitched and laid out with Maya's automatic UV layout. (e) UVs are
adjusted to be aligned with UV axes. This step is used so that generic muscle fiber
texture can be shared among many models.

114

(a) (b)

Figure 6.6 . When UVs of a regularly-structured model are aligned with the texture
space axes, a generic texture can be shared among models with similar structures.
(a) The texture space, showing UVs of a muscle model and a texture with vertical
stripes. (b) The textured model. The stripes of the texture are aligned with the
model's contours, thus representing the directions of muscle fibers.

distorted on irregularly-shaped models. In order to get accurate presentations of

some biological features such as the muscle fibers, we use a three-step procedure to

transcribe muscle fibers from confocal visualization to polygon models (Figure 6.7).

First, in FluoRender, we generate a volume rendering of a muscle. Next, we

import this volume rendering into Photoshop [3]. This volume rendering is used

as a reference layer. We paint on a semitransparent layer on top of the reference

layer, and generate an image of illustrative fiber patterns, which should exactly

follow the underlying muscle fiber directions. Finally, the illustrative pattern is

imported into Autodesk Mudbox [6] along with the muscle model. The model is

adjusted to the same view direction as in FluoRender. The illustrative pattern is

used as a stencil. Mudbox's projection brush is used to project the stencil image

onto the polygon model, similar to how paint brush works in FluoRender. This is

too a user-guided process, so that we can progressively paint the stencil pattern on

the model. In the meanwhile, both the stencil and the model can be manipulated

so that areas initially at glancing angles can also be covered when the view is

rotated. This is another place in our workflow where intensive manual work is

115

(d) (e) (f)

Figure 6.7. Texture transcription using Mudbox. (a) We load the rendering of the
gluteus maximus muscle into Photoshop. (b) We generate patterns according to
the volume-rendered result. (c) The image serves as a stencil. (d) We load the
polygon model of the muscle into Mudbox. (e) After loading the stencil, we use
Mudbox's projection brush to paint the stencil onto the model. (f) The stencil
image is transcribed onto the model.

required, perhaps by an expert or well-trained user. The best illustrative quality

can be achieved through this method. However, each model generated with this

method has its individual texture, which increases the size of final atlases.

6.5 Results
We export finished atlases as individual model files in OBJ format, which

can then be easily converted to many other polygon model formats if needed.

The individual model files can be assembled and organized with a variety

of model viewers. For interactively viewing the mouse limb atlas, we chose

FluoRender, which is used to generate the final renderings in Figure 6 .8 . Because

of its support of rendering semitransparent polygon models with depth peeling

116

Figure 6.8 . Limb atlases of 14.5-day mouse embryos. (a) The medial side of the
forelimb. (b) The lateral side of the forelimb. (c) The lateral side of the hindlimb.
(d) The medial side of the hindlimb.

117

(Section 3.4, Chapter 3), users can easily adjust the transparency and focus of

structures while maintaining an informative context. As a volume rendering tool,

FluoRender also enables us to simultaneously view the original volume data with

the polygon-based atlas.

Figure 6.8 shows two limb atlases that we have built using the above workflow.

A forelimb atlas (Figure 6.8 (a) and (b)) and a hindlimb atlas (Figure 6.8 (c) and (d))

of 14.5-day mouse embryos were built. These models along with FluoRender will

be freely available to biologists researching limb muscles. Each muscle, tendon,

bone, and nerve of these models has been annotated. Users are able to directly

click on the models and obtain the information about the structures.

Segmentation with FluoRender and shrink-wrap modeling with Maya allow

us to generate quality polygon models quickly from confocal scans. It not only

enables us to build atlases of standard anatomy, but also makes comparisons

between mutants and atlases easy. Mutants are genetically modified biological

samples showing certain anomalies. Biologists want to compare and visualize the

differences between mutants and standard anatomies. A similar workflow for

making the limb atlas can then be used to generate polygon models of mutant

mouse limb samples. There are several advantages of using this workflow for

mutant model building and comparison. Firstly, researchers can create polygon

models in an interactive and controllable manner. They can make adjustments

to these models according to their interpretations of original data, which can

usually yield high quality models. Secondly, models are already available from

the standard atlases. Less adjustment to these models is necessary for the mutant

models. Textures associated with the standard atlases can be reusable. Lastly and

most importantly, this workflow ensures that models of mutants and standard

atlases share the identical topology. We can then compare these models either

visually by generating morphing animations or analytically by designing shape

descriptors.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

FluoRender has been a freely available visualization and analysis tool for

public download. We are happy to see it has been used in biological research

in many laboratories across the world. Its visualization results can be found

in several influential biology journals and image competitions. For biologists

and medical researchers, visualization and analysis of volumetric data are in

their developing stages. The progress FluoRender has made is due to a close

collaboration between computer scientists and biologists. The success of such

a development model requires us to find a common ground for the interests,

knowledge, techniques, and requirements of collaborators. Still, there are more

techniques in computer graphics and visualization that might be useful but

have not been implemented; there are even more requirements from biologist

users that could not be realized. Currently, FluoRender is a generalized tool for

confocal data visualization and analysis. As we learned from our collaborating

biologists, customized functions for many specialized biology research questions

are demanded in practice. For example, after neural structures are extracted,

their connections need to be mapped, and their length, width, and branches

measured. Such measurements are usually different from structure to structure, or

sample to sample. Customized functions and user interface building on top of a

generalized tool can streamline researchers' workflow and shorten the time spent

on visualization and analysis, which can be quite useful for repetitive experiments.

However, integration of customized functions into a generalized tool does not

seem to be a straightforward task. Also, there are very few successful examples

that we can follow. For example, ImageJ [43] provides a scripting language

119

and lets customized modules call its existing functions. ImageJ became very

popular among biologists because it can be customized and there exist many

downloadable modules. Unfortunately, the lack of a strong volume visualization

support in ImageJ makes streamlining workflows difficult. Furthermore, complex

computations using scripts can be quite slow for volumetric data. A more

appropriate approach should be developing customized systems based on strong

visualization and intuitive analysis core functions. FluoRender is our first step

towards this objective. However, re-engineering may be necessary in the future, if

customized functions for specialized biology experiments are to be added easily.

The extension and customization of FluoRender can happen at different levels.

Firstly, FluoRender provides settings for different sets of functions, such as volume

rendering properties, 2D image space adjustment settings, and paint selection

controls. Users may feel confused by looking at all the settings, or they may need

different settings for different workflows. User can benefit from a "mode dial"

system similar to that of a consumer-level digital camera: turning to a mode resets

the settings and rearranges the user interface for a specific workflow. Secondly,

extended functions should use existing user interactions as much as possible.

For example, brushes are used for segmentation and proved to be intuitive.

Many analyses can use this operation as well, such as finding the co-localization

(co-localized structures stained by different fluorescent dyes) of multiple confocal

channels. Finally, we learned that developing a tool for a biology research is just

one part of designing a complete workflow. Similar to our existing functions and

workflows presented here, we have to work with our collaborators to determine

the proper workflow. Then, we customize or develop functions and make them

into one tool that reflects this workflow.

APPENDIX

PUBLICATIONS

• "An Interactive Visualization Tool for Multi-channel Confocal Microscopy

Data in Neurobiology Reseach",

Yong Wan, Hideo Otsuna, Chi-Bin Chien and Charles Hansen,

IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6,2009,

pp. 1489-1496.

• "Fast Volumetric Data Exploration with Importance-Based Accumulated

Transparency Modulation",

Yong Wan and Charles Hansen,

In Proceedings of IEEE/EG International Symposium on Volume Graphics 2010,

pp. 61-68.

• "FluoRender: An Application of 2D Image Space Methods for 3D and 4D

Confocal Microscopy Data Visualization in Neurobiology Research",

Yong Wan, Hideo Otsuna, Chi-Bin Chien and Charles Hansen,

In Proceedings of IEEE Pacific Visualization Symposium (PacificVis), 2012, pp.

201-208.

• "A Practical Workflow for Making Anatomical Atlases in Biological Re­

search",

Yong Wan, A. Kelsey Lewis, Mary Colasanto, Mark van Langeveld, Gabrielle

Kardon and Charles Hansen,

IEEE Computer Graphics and Applications, vol. 32, no. 5,2012, pp. 70-80.

121

• "Interactive Extraction of Neural Structures with User-Guided Morphologi­

cal Diffusion",

Yong Wan, Hideo Otsuna, Chi-Bin Chien and Charles Hansen,

In Proceedings of IEEE Symposium on Biological Data Visualization (BioVis),

2012, pp. 1-8 .

• "Synthetic Brainbows",

Yong Wan, Hideo Otsuna and Charles Hansen,

Computer Graphics Forum, vol. 32, no. 3,2013.

REFERENCES

[1] A b e y s in g h e , S., a n d Ju, T. Interactive skeletonization of intensity volumes.
The Visual Computer 2 5 ,5 (2009), 627-635.

[2] A d a c h i , S., a n d L e e , J. Computation by asynchronously updating cellular
automata. Journal of Statistical Physics 1 1 4 ,1-2 (2004), 261-289.

[3] A d o b e . Adobe Photoshop, Mar. 2013. http://www.photoshop.com/
products/photoshop.

[4] A k e r s , D. Cinch: a cooperatively designed marking interface for 3d pathway
selection. In Proceedings of the 19th annual A C M symposium on User interface
software and technology (2006), 33-42.

[5] A u t o d e s k . Autodesk Maya, Mar. 2013. http://usa.autodesk.com/maya/.

[6] A u t o d e s k . Autodesk M udbox, Mar. 2013. http://www.autodesk.com/
mudbox.

[7] A u t o d e s k . Nucleus in Autodesk Maya, Mar. 2013. http://images.autodesk.
com/adsk/files/autodeskmaya_nucleus_whitepaper.pdf.

[8] B a u d e t , G. M. Asynchronous iterative methods for multiprocessors. Journal
of the A C M 2 5 ,2 (1978), 226-244.

[9] B i a f o r e , M. Cellular automata for nanometer-scale computation. Physica
D: Nonlinear Phenomena 7 0 ,4 (Feb. 1994), 415-433.

[10] B it p l a n e AG. Imaris, 2011. http://www.bitplane.com/go/products/
imaris.

[11] B r a n d a , C. S., a n d D y m e c k i , S. M. Talking about a revolution: The impact
of site-specific recombinases on genetic analyses in mice. Developmental Cell
6, 1 (2004), 7-28.

[12] B r u c k n e r , S., a n d G r Ol l e r , M. E. Instant volume visualization using
maximum intensity difference accumulation. Computer Graphics Forum 28, 3
(2009), 775-782.

[13] B r u c k n e r , S., R a u t e k , P., V io l a , I., R o b e r t s , M., S o u sa , M. C., a n d G r O l l e r ,
M. E. Hybrid visibility compositing and masking for illustrative rendering.
Computers and Graphics 3 4 ,4 (2010), 361-369.

http://www.photoshop.com/
http://usa.autodesk.com/maya/
http://www.autodesk.com/
http://images.autodesk
http://www.bitplane.com/go/products/

123

[14] Bur g e r , K., K r u g e r , J., a n d W e s t e r m a n n , R. Direct volume editing. IEEE
Transactions on Visualization and Computer Graphics 14, 6 (2008), 1388-1395.

[15] C a i , W., a n d S a k a s , G. Data intermixing and multi-volume rendering.
Computer Graphics Forum 1 8 , 3 (1999), 359-368.

[16] C a n n o n , J. R. The One-Dimensional Heat Equation, first ed. Addison-Wesley
and Cambridge University Press, 1984.

[17] C h a z a n , D., a n d M ir a n k e r , W. Chaotic relaxation. Linear Algebra and its
Applications 2, 2 (1969), 199-222.

[18] C h e n , H.-L. J., Sa m a v a t i, F. F., a n d S o u s a , M. C. Gpu-based point radiation
for interactive volume sculpting and segmentation. The Visual Computer 24,
7 (2008), 689-698.

[19] C l a x t o n , N. S., F e l l e r s , T. J., a n d D a v id s o n , M. W. Laser Scanning
Confocal Microscopy, 2008. http://www.olympusconfocal.com/theory/
confocalintro.htm l.

[20] C o h e n , A., R o y s a m , B., a n d T u r n e r , J. Automated tracing and volume
measurements of neurons from 3-d confocal fluorescence microscopy data.
Journal of Microscopy 1 7 3 ,2 (1994), 103-114.

[21] C o r r e a , C., a n d M a , K.-L. Size-based transfer functions: A new volume
exploration technique. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1380-1387.

[22] C o r r e a , C., a n d M a , K.-L. Size-based transfer functions: A new volume
exploration technique. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1380-1387.

[23] C o r r e a , C., a n d M a , K.-L. Visibility-driven transfer functions. In
PACIFICVIS '09: Proceedings of the 2009 IEEE Pacific Visualization Symposium
(Washington, DC, USA, 2009), IEEE Computer Society, 177-184.

[24] D e L a u r ie r , A., B u r t o n , N., B e n n e t t , M., B a l d o c k , R., D a v id so n , D., M o h u n ,
T. J . , , a n d L o g a n , M. P. The mouse limb anatomy atlas: An interactive 3d
tool for studying embryonic limb patterning. BMC Developmental Biology 8,
83 (2008).

[25] d i S t e f a n o , L., a n d B u l g a r e l l i , A. A simple and efficient connected
components labeling algorithm. In the 10th International Conference on Image
Analysis and Processing (1999), 322.

[26] DREbiN, R. A., C a r p e n t e r , L., a n d H a n r a h a n , P. Volume rendering. In
SIGGRAPH '88: Proceedings of the 15th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1988), ACM, 65-74.

http://www.olympusconfocal.com/theory/

124

[27] E b e r t , D., a n d R h e in g a n s , P. Volume illustration: non-photorealistic
rendering of volume models. In Proceedings of the conference on Visualization
'00 (2000), 195-202.

[28] E v e r it t , C. Interactive Order-Independent Transparency. White paper, Nvidia,
1999.

[29] F e l l e r s , T. J., V ogt, K. M., a n d D a v id s o n , M. W. CCD Signal-To-Noise Ratio,
2008. http://www.microscopyu.com/tutorials/java/digitalimaging/
signaltonoise/index.htm l.

[30] G a l i l Ee , B., M a m a l e t , F., R e n a u d i n , M., a n d C o u l o n , P.-Y. Parallel
asynchronous watershed algorithm-architecture. IEEE Transactions on
Parallel and Distributed Systems 18 , 1 (2007), 44-56.

[31] G a o , Y., Y a n g , J., X u , X., a n d S h i , F. Efficient cellular automaton
segmentation supervised by pyramid on medical volumetric data and
real time implementation with graphics processing unit. Expert Systems
with Applications 38, 6 (2011), 6866-6871.

[32] G ilr o y , A. M., M a c P h e r s o n , B. R., a n d R o ss , L. M. Atlas of Anatomy, 1st ed.
Thieme Medical Publishers, 2009.

[33] G o n z a l e z , R. C., a n d W o o d s , R. E. Digital Image Processing, third ed.
Prentice Hall, 2008.

[34] G ray, H., a n d C a r t e r , H. V. Anatomy: Descriptive and Surgical. J.W. Parker,
1858.

[35] G r e e n e , E. C. Anatomy of the Rat, reprint 1968 ed. Hafner Publishing
Company, Inc., 1968.

[36] G r im m , S. Real-Time Mono- and Multi-Volume Rendering of Large Medical
Datasets on Standard PC Hardware. PhD thesis, Vienna University of
Technology, Gaullachergasse 33/35,1160 Vienna, Austria, February 2005.

[37] G u s t a v s o n , S. Simplex noise demystified, Mar. 2005. h ttp :/ / w eb staff.itn .
liu.se/~stegu/simplexnoise/simplexnoise.pdf.

[38] H a u s e r , H., M r o z , L., B is c h i , G. I., a n d G r Ol l e r , M. E. Two-level volume
rendering. IEEE Transactions on Visualization and Computer Graphics 7, 3
(2001), 242-252.

[39] H a w ic k , K., L e is t , A., a n d P l a y n e , D. Parallel graph component labelling
with gpus and cuda. Parallel Computing 36 ,12 (2010), 655-678.

[40] HOh n e , K. H., B o m a n s , M., R ie m e r , M., S c h u b e r t , R., T ie d e , U., a n d
L ie r s e , W. A volume-based anatomical atlas. IEEE Computer Graphics and
Applications 12 (1992), 72-78.

http://www.microscopyu.com/tutorials/java/digitalimaging/
http://webstaff.itn

125

[41] H o s s s a in , Z., a n d MOl l e r , T. Edge aware anisotropic diffusion for 3d scalar
data. IEEE Transactions on Visualization and Computer Graphics 1 6 , 6 (2010),
1376-1385.

[42] H u b e r m a n , B. A., a n d G l a n c e , N. S. Evolutionary games and computer
simulations. PNAS 90 ,16 (1993), 7716-7718.

[43] Im a g e J. ImageJ, Image Processing and Analysis in Java, Mar. 2013. http :
//rsb.info.nih.gov/ij/index.htm l.

[44] J e o n g , W.-K., B e y e r , J., H a d w ig e r , M., V a z q u e z , A., P f is t e r , H., a n d
W h it a k e r , R. T. Scalable and interactive segmentation and visualization
of neural processes in em datasets. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1505-1514.

[45] J o b so n , D., R a h m a n , Z., a n d W o o d e l l , G. A multiscale retinex for bridging
the gap between color images and the human observation of scenes. IEEE
Transactions on Image Processing 6, 7 (1997), 965 -976.

[46] Ju, T. Building a 3D Atlas of the Mouse Brain. PhD thesis, Rice Univ., 2005.

[47] K a u f f m a n n , C., a n d P ic h e , N. Cellular automaton for ultra-fast watershed
transform on gpu. In 19th International Conference on Pattern Recognition
(2008), 1-4.

[48] K a u f f m a n n , C., a n d P ic h E, N. Seeded nd medical image segmentation
by cellular automaton on gpu. International Journal of Computer Assisted
Radiology and Surgery 5 ,3 (2010), 251-262.

[49] K im , E., S h e n , T., a n d H u a n g , X. A parallel cellular automata with label
priors for interactive brain tumor segmentation. In IEEE 23rd International
Symposium on Computer-Based Medical Systems (CBM S) (2010), 232-237.

[50] K i n d l m a n n , G., a n d D u r k in , J. W. Semi-automatic generation of transfer
functions for direct volume rendering. In V V S '98: Proceedings of the 1998
IEEE symposium on Volume visualization (New York, NY, USA, 1998), ACM,
79-86.

[51] Kitware Inc. Insight Toolkit, 2011. http://www.itk.org/.

[52] Kitware Inc. Visualization Toolkit, 2011. http://www.vtk.org/.

[53] K n is s , J., K in d l m a n n , G., a n d H a n s e n , C. Multidimensional transfer
functions for interactive volume rendering. IEEE Transactions on Visualization
and Computer Graphics 8, 3 (2002), 270-285.

[54] K n is s , J., a n d W a n g , G. Supervised manifold distance segmentation. IEEE
Transactions on Visualization and Computer Graphics 17,11 (2011), 1637-1649.

[55] K r e e g e r , K., a n d K a u f m a n , A. Mixing translucent polygons with volumes.
In Proceedings of IEEE Visualization 1999 (1999), 191-198.

http://www.itk.org/
http://www.vtk.org/

126

[56] K u h n , G., O l i v e i r a , M., a n d F e r n a n d e s , L. An efficient naturalness-
preserving image-recoloring method for dichromats. IEEE Transactions on
Visualization and Computer Graphics 14, 6 (2008), 1747-1754.

[57] K u t u l a k o s , K., a n d S e it z , S. A theory of shape by space carving. In Computer
Vision, 1999 . The Proceedings of the Seventh IEEE International Conference on
(1999), vol. 1, 307-314.

[58] L e f o h n , A. E., K n is s , J. M., H a n s e n , C. D., a n d W h it a k e r , R. T. Interactive
deformation and visualization of level set surfaces using graphics hardware.
In Proceedings of the 14th IEEE Visualization 2003 (VIS'03) (2003), 75-82.

[59] L ev o y , M. S. Display of surfaces from volume data. PhD thesis, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1989.

[60] L i , G., L iu , T., Ta r o k h , A., N ie , J., Guo, L., M a r a , A., H o l l e y , S., a n d W o n g ,
S. T. 3d cell nuclei segmentation based on gradient flow tracking. BMC Cell
Biology 8 , 40 (2007).

[61] Liu, J., S u n , J., a n d Sh u m , H.-Y. Paint selection. A CM Transactions on Graphics
28 , 3 (2009), 69:1-69:7.

[62] Liu, Y., C h e n g , H. D., H u a n g , J., Z h a n g , Y., a n d Ta n g , X. An effective
approach of lesion segmentation within the breast ultrasound image based
on the cellular automata principle. Journal of Digital Imaging 25, 5 (2012),
580-590.

[63] L iv e t , J., W e i s s m a n , T. A., K a n g , H., D r a f t , R. W., Lu, J., B e n n i s , R. A.,
S a n e s , J. R .,, a n d L ic h t m a n , J. W. Transgenic strategies for combinatorial
expression of fluorescent proteins in the nervous system. Nature 450 (Nov.
2007), 56-62.

[64] L o r e n s e n , W. E., a n d C l i n e , H. E. Marching cubes: A high resolution 3d
surface construction algorithm. SIGGRAPH Computer Graphics 21 ,4 (1987).

[65] L u f t , T., C o l d it z , C., a n d D e u s s e n , O. Image enhancement by unsharp
masking the depth buffer. A C M Transactions on Graphics 25 , 3 (2006),
1206-1213.

[66] M a c h a d o , G. M., O l iv e ir a , M. M., a n d F e r n a n d e s , L. A. F. A physiologically-
based model for simulation of color vision deficiency. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1291-1298.

[67] M a r g o l u s , N. Physics-like models of computation. Physica D : Nonlinear
Phenomena 1 0 ,1-2 (Jan. 1984), 81-95.

[68] M a r t in , W. N., a n d A g g a r w a l , J. K. Volumetric descriptions of objects from
multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence
5 , 2 (1983), 150-158.

127

[69] Max, N. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics 1 ,2 (1995), 99-108.

[70] N agy, Z., a n d K l e i n , R. Depth-peeling for texture-based volume rendering.
Proceedings of the 11th Pacific Conference on Computer Graphics and Applications
(2003), 429-433.

[71] N e t t e r , F. H. Atlas of Human Anatomy, 5th ed. Elsevier, 2011.

[72] N o w a k , M., a n d M ay, R. Evolutionary games and spatial chaos. Nature 359
(1992), 826-829.

[73] O l i v e i r a , V. M. A., a n d L o t u f o , R. A. A study on connected components
labeling algorithms using gpus. In SIBG RAPI2010 (2010).

[74] O l s e n , Jr ., D. R., a n d H a r r is , M. K. Edge-respecting brushes. In Proceedings
of the 21st annual A C M symposium on User interface software and technology
(2008), 171-180.

[75] O s h e r , S., a n d S e t h ia n , J. A. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. Journal of
Computational Physics 7 9 ,1 (1988), 12-49.

[76] O t s u n a , H., a n d It o , K. Systematic analysis of the visual projection
neurons of drosophila melanogaster. i. lobula-specific pathways. Journal of
Comparative Neurology 497, 6 (2006), 928-958.

[77] O w a d a , S., N i e l s e n , F., a n d Ig a r a s h i , T. Volume catcher. In Proceedings of
the 2005 symposium on Interactive 3D graphics and games (2005), 111-116.

[78] O w a d a , S., N i e l s e n , F., Ig a r a s h i , T., H a r a g u c h i , R., a n d N a k a z a w a , K.
Projection plane processing for sketch-based volume segmentation. In
Proceedings of the 5th IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (may 2008), 117-120.

[79] P e r k i n E l m e r In c . Volocity 3D Image Analysis Software, 2011.
http://www.perkinelmer.com/pages/S2S/cellularimaging/products/
volocity.xhtm l.

[80] P e r o n a , P., a n d M a l ik , J. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 7
(1990), 629-639.

[81] R e in h a r d , E., W a r d , G., Pa t t a n a ik , S., a n d DEbEVEC, P. High Dynamic Range
Imaging: Acuisition, Display and Image-Based Lighting, first ed. Elsevier Inc.,
2006.

[82] R ez k Sa l a m a , C., K e l l e r , M., a n d K o h l m a n n , P. High-level user interfaces
for transfer function design with semantics. IEEE Transactions on Visualization
and Computer Graphics 1 2 ,5 (2006), 1021-1028.

http://www.perkinelmer.com/pages/S2S/cellularimaging/products/

128

[83] R ic h a r d s o n , R. The making of Mr. Gray's Anatomy, 1st ed. Oxford Univ. Press,
2008.

[84] R iv est , J.-F., S o il l e , P., a n d B e u c h e r , S. Morphological gradients. Journal of
Electronic Imaging 2 , 4 (1993), 326-341.

[85] R o s s l e r , F., TEjADA, E., F a n g m e ie r , T., E r t l , T., a n d K n a u f f , M. Gpu-based
multi-volume rendering for the visualization of functional brain images. In
Proceedings ofSimVis 2006 (2006), 305-318.

[86] R o t h m a n , D. H., a n d K e l l e r , J. M. Immiscible cellular-automaton fluids.
Journal of Statistical Physics 5 2 ,3-4 (1988), 1119-1127.

[87] S a a d , A., H a m a r n e h , G., a n d MO l l e r , T. Exploration and visualization of
segmentation uncertainty using shape and appearance prior information.
IEEE Transactions on Visualization and Computer Graphics 1 6 , 6 (2010), 1366
-1375.

[88] S a a d , A., MO l l e r , T., a n d H a m a r n e h , G. Probexplorer: Uncertainty-
guided exploration and editing of probabilistic medical image segmentation.
Computer Graphics Forum 2 9 ,3 (2010), 1113-1122.

[89] S a t o , T., H a m a o k a , T., A iz a w a , H., H o s o y a , T., a n d O k a m o t o , H. Genetic
single-cell mosaic analysis implicates ephrinb2 reverse signaling in pro­
jections from the posterior tectum to the hindbrain in zebrafish. Journal of
Neuroscience 27 , 20 (2007), 5271-5279.

[90] S a t o , Y., NAKAjiMA, S., S h ir a g a , N., A t s u m i , H., Y o s h id a , S., K o l l e r , T.,
G e r ig , G., a n d K i k in is , R. Three-dimensional multi-scale line filter for
segmentation and visualization of curvilinear structures in medical images.
Medical Image Analysis 2 , 2 (1998), 143-168.

[91] S e g a l , M., a n d A k eley , K. The OpenGL Graphics System: A Specification, Nov.
2012 . http://www.opengl.org/registry/.

[92] S e g a l l , C., a n d A c t o n , S. Morphological anisotropic diffusion. In
Proceedings of International Conference on Image Processing 1997 (Oct 1997),
vol. 3,348-351.

[93] S h er b o n d y , A., H o u s t o n , M., a n d N a p e l , S. Fast volume segmentation with
simultaneous visualization using programmable graphics hardware. In
Proceedings of the 14th IEEE Visualization 2003 (VIS'03) (2003), 171-176.

[94] S m it h , M. A., B a r -Y a m , Y., R a b in , Y., M a r g o l u s , N., T o f f o l i , T., a n d B e n n e t t ,
C. H. Cellular automaton simulation of polymers. In M R S Fall M eeting
(1991), vol. 248,483-488.

[95] S o il l e , P. Morphological Image Analysis: Principles and Applications, second ed.
Springer-Verlag, 2002 .

http://www.opengl.org/registry/

129

[9 6] S o w e l l , R ., L iu , L . , J u , T ., G r im m , C ., A b r a h a m , C ., G o k h r o o , G ., a n d L o w ,
D . V o lu m e v ie w e r : a n in te r a c tiv e to o l fo r f ittin g s u rf a c e s to v o lu m e d a ta . In
Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces and
Modeling (2 0 0 9) , 1 4 1 - 1 4 8 .

[9 7] Tay, T. L . , R o n n e b e r g e r , O ., R y u , S ., N it s c h k e , R ., a n d D r i e v e r , W . C o m ­
p r e h e n s iv e c a t e c h o l a m in e r g ic p r o je c to m e a n a ly s i s r e v e a ls s in g l e -n e u r o n
i n t e g r a t i o n o f z e b r a f is h a s c e n d in g a n d d e s c e n d in g d o p a m in e r g ic s y s te m s .
Nature Communications 2 (2 0 1 1) , 1 7 1 .

[9 8] T ik h o n o v a , A . , C o r r e a , C ., a n d M a , K .-L . E x p lo r a b le im a g e s fo r v is u a liz in g
v o l u m e d a ta . In IEEE Pacific Visualization Symposium (PacificVis) (2 0 1 0) ,
1 7 7 - 1 8 4 .

[9 9] T ik h o n o v a , A., C o r r e a , C., a n d M a , K.-L. Visualization by proxy: A novel
framework for deferred interaction with volume data. IEEE Transactions on
Visualization and Computer Graphics 16, 6 (2 0 1 0) , 1 5 5 1 - 1 5 5 9 .

[1 0 0] T z e n g , F .-Y ., L u m , E . B ., a n d M a , K .-L . A n in te l l ig e n t s y s t e m a p p r o a c h
t o h ig h e r - d i m e n s io n a l c la s s i f ic a tio n o f v o l u m e d a ta . IEEE Transactions on
Visualization and Computer Graphics 1 1 ,3 (2 0 0 5) , 2 7 3 - 2 8 4 .

[1 0 1] U d u p a , J . K ., a n d S a m a r a s e k e r a , S . F u z z y c o n n e c t e d n e s s a n d o b je c t
d e f in it io n : T h e o r y , a lg o r i t h m s , a n d a p p l i c a t i o n s in im a g e s e g m e n ta t io n .
Graphical Models and Image Processing 5 8 ,3 (1 9 9 6) , 2 4 6 - 2 6 1 .

[1 0 2] V e n k a t a s u b r a m a n ia n , S ., a n d V u d u c , R . W . T u n e d a n d w il d l y a s y n ­
c h r o n o u s s te n cil k e rn e ls fo r h y b r id c p u /g p u s y s te m s . In the 23rd International
Conference on Supercomputing (2 0 0 9) , 2 4 4 - 2 5 5 .

[1 0 3] V e z h n e v e t s , V ., a n d K o n o u c h in e , V. " g r o w c u t " - i n t e r a c t i v e m u lti - la b e l
n -d im a g e s e g m e n ta tio n b y c e llu la r a u to m a ta . In Graphicon (2 0 0 5) , 1 5 0 - 1 5 6 .

[1 0 4] V i n c e n t , L . , a n d S o i l l e , P. W a t e r s h e d s in d ig i ta l s p a c e s : a n e ff ic ie n t
a l g o r i t h m b a s e d o n i m m e r s io n s im u la t io n s . IEEE Transactions on Pattern
Analysis and Machine Intelligence 13, 6 (1 9 9 1) , 5 8 3 - 5 9 8 .

[1 0 5] V io l a , I ., K a n it s a r , A . , a n d G r Ol l e r , M . E . H a r d w a r e - b a s e d n o n lin e a r fil­
te r in g a n d s e g m e n ta tio n u s in g h ig h -le v e l s h a d in g la n g u a g e s . In Proceedings
ofthe 14th IEEE Visualization 2003 (VIS'03) (2 0 0 3) , 3 0 9 - 3 1 6 .

[1 0 6] V isa g e I m a g in g . Amira, 2 0 1 1 . h t t p : / / w w w .a m i r a v i s .c o m .

[1 0 7] v o n N e u m a n n , J. Theory of self-reproducing automata. University of Illinois
P r e s s , 1 9 6 6 .

[1 0 8] W a l l i s , J . , M i l l e r , T ., L e r n e r , C ., a n d K l e e r u p , E . T h r e e -d im e n s io n a l
d is p la y in n u c le a r m e d ic in e . IEEE Trans. Medical Imaging 8 , 4 (1 9 8 9) ,
2 9 7 - 3 0 3 .

http://www.amiravis.com

130

[109] W a l l i s , J., M i l l e r , T., L e r n e r , C., a n d K l e e r u p , E. Three-dimensional
display in nuclear medicine. IEEE Transactions on Medical Imaging 8, 4 (1989),
297-230.

[110] W a n g , L., G ie s e n , J., M c D o n n e l l , K., Z o l l ik e r , P., a n d M u e l l e r , K. Color
design for illustrative visualization. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (2008), 1739-1754.

[111] W e is k o p f , D., E n g e l , K., a n d E r t l , T. Interactive clipping techniques for
texture-based volume visualization and volume shading. IEEE Transactions
on Visualization and Computer Graphics 9 , 3 (2003), 298-312.

[112] W est , D. B. Introduction to Graph Theory, 2nd ed. Prentice Hall, 1999.

[113] Y u a n , X., Z h a n g , N., N g u y e n , M. X., a n d C h e n , B. Volume cutout. The
Visual Computer 21, 8 (2005), 745-754.

