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ABSTRACT

Confocal microscopy has become a popular imaging technique in biology 

research in recent years. It is often used to study three-dimensional (3D) structures 

of biological samples. Confocal data are commonly multichannel, with each 

channel resulting from a different fluorescent staining. This technique also results 

in finely detailed structures in 3D, such as neuron fibers. Despite the plethora of 

volume rendering techniques that have been available for many years, there is a 

demand from biologists for a flexible tool that allows interactive visualization 

and analysis of multichannel confocal data. Together with biologists, we have 

designed and developed FluoRender. It incorporates volume rendering techniques 

such as a two-dimensional (2D) transfer function and multichannel intermixing. 

Rendering results can be enhanced through tone-mappings and overlays. To 

facilitate analyses of confocal data, FluoRender provides interactive operations for 

extracting complex structures. Furthermore, we developed the Synthetic Brainbow 

technique, which takes advantage of the asynchronous behavior in Graphics 

Processing Unit (GPU) framebuffer loops and generates random colorizations for 

different structures in single-channel confocal data. The results from our Synthetic 

Brainbows, when applied to a sequence of developing cells, can then be used 

for tracking the movements of these cells. Finally, we present an application of 

FluoRender in the workflow of constructing anatomical atlases.



For Chi-Bin.
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CHAPTER 1

INTRODUCTION 

1.1 Motivation
There has been a tremendous explosion in the popularity of confocal mi­

croscopy [19] in recent years, due to its ability to scan specimens that have a 

thickness of hundreds of microns, produce finely-detailed volumetric images, 

and generate time sequence images of living cells and tissues. In biological 

research, laser scanning confocal microscopy (LSCM) is an essential tool to study 

structures of and structural differences between biological samples. Data acquired 

from confocal microscopy are abundant with finely-detailed structures resulting 

from fluorescent staining. In order to faithfully reconstruct the 3D structural 

relationships and enhance the fine details from confocal volumes, specialized 

visualization tools are demanded by biologists. Furthermore, analysis of confocal 

data, which focuses on identification and comparison of geometric and topological 

properties of structures, requires extraction and modeling of those structures 

under study. There have been a plethora of techniques for volume visualization 

and segmentation, as well as several academic and commercial packages, but 

there is always the demand for an interactive tool that integrates carefully selected 

functionalities and suits general workflows in biological studies with confocal 

data.

FluoRender is an interactive tool for confocal microscopy data visualization 

and analysis. It is the result of collaborations between computer scientists 

and biologists. It is designed and engineered to meet the requirements of 

biologists. Built upon a slice-based volume rendering kernel, it is capable 

of reading multiple channels of confocal volumes with a variety of formats,
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rendering and mixing channels with different modes, applying 2D image space 

enhancements, playing back time-sequence confocal data, extracting structures 

by painting on the volume-rendered results, and visualizing polygon models 

from those extracted structures along with volumetric data. Despite a tool of 

many integrated functionalities, FluoRender is striving to provide usability and 

intuitiveness to its users. As of the time of writing, FluoRender has been available 

for free download for four years and seen many applications in biological research.

Here, I uncover and present the design, modules, and applications of FluoRen- 

der. This chapter continues with the introduction of the three main components of 

FluoRender: volume visualization, 2D image space enhancements, and interactive 

extraction of structures. It then introduces Synthetic Brainbows, which is a 

random colorization technique aiming at identifying structures and tracking cells 

automatically. The importance and use of anatomical atlases in biological research 

are then discussed, which lead to our work on the practical workflow of making 

anatomical atlases from confocal scans.

1.2 Customized Volume Visualization for 
Confocal Microscopy Data

Most biologists' tools for qualitative analysis of confocal microscopy data are 

rudimentary, such as looking at image slices or maximal intensity projections. 

There are several academic and commercial visualization packages available, but 

these have various significant feature limitations when applied to multichannel 

confocal data. There is a real demand from biologists for a flexible visualization 

tool that allows interactive visualization of multichannel confocal data, with 

rapid fine-tuning of parameters to reveal the three-dimensional relationships of 

structures of interest.

Confocal microscopy data have their own characteristics, which differ from 

other biomedical data, such as computed tomography (CT) or magnetic resonance 

imaging (MRI), which must be taken into consideration as we design such a tool 

for confocal microscopy visualization.

• Multichannel data. Labeling with different fluorescent proteins and fluores­
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cent dyes yields multichannel data, with each channel representing a different 

cell or tissue type. Usually the data in different channels are spatially interwoven, 

with data from one channel having the highest interest, such as the channel 

containing labeled neuron fibers.

• Subtle boundaries. Clearly visualized boundaries of brain regions are often 

essential for analysis, as when analyzing connectivity of neuron fibers between 

regions [76, 89]. However, biologically meaningful boundaries may be only subtly 

presented in the confocal data, and may be present in only one channel of the 

multichannel data. Thus, boundary segmentation must often be done manually.

• Finely detailed structures. Biomedical techniques such as antibody staining 

and gene transfer allow delivery of fluorescent dyes to specific cell or tissue types, 

which can result in very finely detailed structures, such as neuronal fibers or 

synapses.

• Visual occluders and noise. Structures irrelevant to the analysis may also 

be labeled through the fluorescent staining process, resulting in visual occluders 

that obscure the structures to be visualized. Fine detailed structures can also 

be obscured by noisy data, due to statistical noise or electronic noise from the 

scanning device [29].

Working together with biologists, we added several enhancements to a slice- 

based volume renderer and designed a tool for confocal visualization. This tool 

later became FluoRender. The improvements of this tool on visualizing confocal 

volumes include the following.

• Interactive settings of volume rendering properties to maximize rendering 

quality. For better rendering quality and depth perception, we added shading and 

depth cueing to volume rendering. For detail enhancement and noise suppression, 

a 2D transfer function can be set through intuitive parameters. All the volume 

rendering parameters take effect interactively.

• Multimodes for multichannel data visualization. Multichannel datasets can 

be combined in a single render view with different render modes, with each mode 

showing a different aspect of the data.
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• Embedding polygon data into volume data for region definition. Biological 

boundaries are usually manually extracted as polygon data with segmentation 

tools. These polygon data can be rendered together with volume data, which is a 

clear and efficient way to show the regions of interest. We use depth peeling to 

achieve correct ordering when semitransparent polygon models are embedded in 

volumetric data.

1.3 Volume Visualization Enhancements in 
2D Image Space

Since its initial release, we continued the development of FluoRender with an 

emphasis on detail enhancement. The user group of FluoRender has expanded 

beyond our collaborating biologists. They brought new challenges and problems 

that we have overlooked in our initial work. One problem that we started looking 

at were the features presented in 2D image processing packages but commonly 

missing from volumetric visualization tools. We noticed that most biologists 

working with microscopy data were actually experts on image processing packages 

such as Photoshop [3], which were used for a variety of tasks, including combining 

images, adjusting brightness and contrast, adding annotations, etc. They also 

have been using tools such as Photoshop with volumetric data visualization 

results, including those from Maximum Intensity Projection (MIP) [108] and 

Direct Volume Rendering (DVR) [26, 59]. The familiarity with results from MIP 

rather than DVR usually makes biologists regard MIP advantageous at rendering 

sharp details, and this is more common with biologists working with confocal 

microscopy data, which have an abundance of detail. We have convinced many 

that DVR can bring out details even better with properly adjusted volume transfer 

function settings, and will also correctly render the spatial relationship of confocal 

data. However, users of FluoRender still relied on image processing packages and 

attempted to enhance details from their retouching work. The retouching work 

with tools such as Photoshop is usually fraught with frustrations, because the 

commonly used image formats for data exchange between the visualization tools 

and image processing packages lack the precision needed for further adjustment,
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and these packages are designed for photography rather than confocal data 

visualization.

We started dealing with the above problems by proposing a series of 2D 

image space methods for volume visualization enhancement. These techniques 

were easily integrated with our existing confocal visualization tool. For easier 

brightness/contrast adjustments and detail enhancement, we used 2D tone- 

mapping operators, including gamma, luminance, and scale-space equalization. 

We improved 2D composting for multiple channels by the introduction of groups. 

To enhance surface details and depth perception, we used 2D compositing to 

combine a shading and/or a shadow layer with MIP rendering. Similar to our 

work on volume transfer function, we customized these settings for easy use. 

These 2D image space methods work in accordance with those volume rendering 

techniques in 3D data space. They together form the visualization pipeline of 

FluoRender, which has proved to be useful not only for 3D multichannel confocal 

scan but also 4D time sequences.

1.4 Interactive Extraction of Biological Structures 
from Confocal Microscopy Data

In biological research, data analysis focuses on extraction and comparison 

of geometric and topological properties of structures from confocal microscopy 

data. FluoRender could generate clear visualizations and facilitate qualitative 

analysis of confocal microscopy data, but quantitative analysis requires extracting 

important features. For example, a user may want to extract just one of two 

adjacent neurons and analyze its structure. In such case, segmentation requires 

the user's guidance in order to correctly separate the desired structure from 

the background. There exist many interactive segmentation tools that allow 

users to select seeds (or draw boundaries) within one slice of volumetric data. 

Either the selected seeds grow (or the boundaries evolve) in 2D and then user 

repeats the operation for all slices, or the seeds grow (or the boundaries evolve) 

three-dimensionally. Interactive segmentation with interactions on 2D slices may 

be sufficient for structures with relatively simple shapes, such as most internal
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organs or a single fiber. However, for most neural structures from confocal 

microscopy, the high complexity of their shapes and intricacy between structures 

make even identifying desired structures from 2D slices difficult. 2D-slice-based 

interactions of most volume segmentation tools become ineffective: it is difficult 

to choose proper seeds or draw boundaries on slices; even if seeds are chosen and 

their growth in 3D is automatic, it is difficult for unguided 3D growth to avoid 

over- or under-segmentation, especially at detailed and complex structures such 

as axon terminals; there is no interactive method to quickly identify and correct 

the segmented results at problematic regions. With well-designed visualization 

tools, biologists are able to observe the complex neural structures and inspect 

them from different view directions. Segmentation interactions that are designed 

based on volume visualization tools and let users select from what they see are 

apparently the most intuitive. In practice, confocal laser scanning can generate 

datasets with high throughput, and biologists often conduct experiments and 

scan multiple mutant samples in batches. Thus, a segmentation algorithm for 

structure extraction from confocal data also needs to make good use of the 

parallel computing power of contemporary personal computer (PC) hardware 

and generate a stable segmented result with real-time speed.

To help analysis on confocal microscopy data, we added interactive seg­

mentation functions into FluoRender. It uses morphological diffusion for 

region-growing, which can generate stable results for confocal data in real-time; its 

interaction scheme explores the visualization capabilities of our existing confocal 

visualization pipeline, and lets users paint directly on volume rendering results 

and select desired structures. A close integration of visualization and segmentation 

techniques within one tool allows biologist users to extract structures of interests 

from their visualization workflow. On the other hand, segmentation further 

improves visualization results by removing occluding structures or emphasizing 

important structures.
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1.5 Synthetic Brainbows
Brainbow [63] is a genetic engineering technique that randomly colorizes 

cells. Biological samples processed with this technique and imaged with confocal 

microscopy have distinctive colors for individual cells. It is useful for disam­

biguating visual clutter in confocal data, identifying complex cellular structures, 

and for cell tracking. However, the application of the Brainbow technique on 

a certain species of animals requires complex transgenic manipulations. In 

practice, most confocal microscopy scans use different antibody staining with 

typically at most three distinct cellular structures. These structures are often 

packed and obscure each other in rendered images, making analysis difficult. The 

problem is commonly addressed through segmentation. Accurate segmentation 

of confocal microscopy data, which are typically full of fine details, depends 

greatly on users' prior knowledge of the data. Such knowledge does not only 

come from experience, but also is more and more importantly from visualizations 

of the data. Visualizing confocal microscopy data requires techniques that on 

the one hand are interactive and preserve the fine details on the other. Inspired 

by the Brainbow technique, we explored techniques that randomly colorize 

single-channel confocal microscopy data. The outcome of our random colorization 

technique assumes similar appearance of Brainbows. Adjacent complex structures 

can then be clearly visualized by color variations. Our Synthetic Brainbow 

technique leverages a process known as GPU framebuffer feedback loops, which 

is a random process in the massive parallel computing environment of GPUs. 

In addition, we incorporated ID shuffling and Monte-Carlo sampling into the 

technique. The random colorization in our synthesized Brainbow images respects 

structural information and preserves fine details. The results were presented 

to domain experts with positive feedback. A user survey demonstrated that 

our Synthetic Brainbow technique improved visualization of volume data with 

complex structures for biologists.
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1.6 Making Anatomical Atlases
Anatomical atlases of humans and other species are important scientifically for 

understanding normal anatomy, the development and function of these structures, 

and for determining the etiology of congenital abnormalities. Unfortunately, 

for biologists, it is difficult to generate such atlases, especially ones with the 

informative content and aesthetic quality that characterize human atlases. Building 

such atlases requires the knowledge of the species under study and experience with 

an art form that can faithfully record and present this knowledge, both of which 

require extensive training in fields considerably different from one another. With 

the latest innovations in data acquisition and computing techniques, atlas building 

has changed dramatically. It is now possible to create atlases from 3D images of 

biological specimens, allowing for high-quality, faithful representations. Labeling 

of structures using fluorescently-tagged antibodies, confocal three-dimensional 

scanning of these labeled structures, volume rendering, segmentation, and surface 

reconstruction techniques all promise solutions to the problem of building atlases. 

However, biological researchers still ask the question, "Is there a set of tools we 

can use or a practical workflow we can follow so that we can easily build models 

from our biological data?" The question is heard mostly by computer scientists 

and answered by a vast number of algorithms, tools, and program codes. Most of 

these computer scientists are able to tackle one aspect of the problem or provide 

solutions to some special cases. Nevertheless, the general question of how to build 

anatomical atlases remains unanswered. For a satisfactory answer, biologists 

need a practical workflow that can be easily adapted for different applications. 

Second, reliable tools must be readily available that can fit into the workflow. 

Lastly, examples using the workflow and tools to build anatomical atlases would 

demonstrate the utility of these resources for biological research.

We designed a generalized workflow to generate anatomical atlases from 

confocal microscopy scans. The workflow is adapted from a CG artist's workflow 

of building 3D models for animated films and video games. Having been 

developed, tested, and employed for industrial use for decades, the artist's
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workflow with certain adaptations is the most suitable for making high-quality 

anatomical atlases, especially under strict budgetary and time limits. FluoRender 

is used in this workflow along with artists' tools, such as Maya [5] and Mudbox [6]. 

We demonstrate how FluoRender is used in practice for biological research with 

this detailed case study.

1.7 Thesis Statement
Confocal microscopy data visualization and analysis are real and important 

applications in biology research, which require the integration of both existing 

and novel techniques in volume rendering, image processing, user interaction, 

and digital arts.

1.8 Thesis Contributions
The main contributions of this work are the following.

• Detailed descriptions of a close collaboration between computer scientists 

and biologists as well as a tool developed through the collaboration. Many of 

the techniques presented in this work may seem unconventional to experts in 

visualization, such as the render modes for multiple channel rendering. This is 

because our biologist collaborators gave us prompt comments and suggestions 

during the whole process of development. On the other hand, we also learned 

new techniques from biologists. For example, the Synthetic Brainbow technique 

is inspired by the Brainbow technique, which is a genetic engineering technique 

that randomly colorizes cells. With the increase of interdisciplinary collaborations, 

we believe there will be more examples like ours in the future.

• Practical methods that solve real-world problems in scientific visualizations. 

Since FluoRender has always been a publicly-released tool for biologist users, 

effective and intuitive solutions are always demanded. This is the reason that we 

integrated a full set of 2D image space method into our system for visualization 

enhancement. Even though we are dealing with datasets with ever-increasing 

dimensions, simple methods at lower dimensions shall never be overlooked, as 

they may be solutions to complex problems.
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• Improvements to user interactions with volumetric data. For transfer function 

manipulations, widgets previously used in 2D histograms are replaced with 

parametrized settings that are specially designed for confocal data. Segmentation 

of 3D structures can be carried out directly in the rendered results. These 

techniques simplify operations so that more data can be processed with shorter 

time.

• Integration of artists' tools into the workflow of making and visualizing 

anatomical atlases from confocal scans. Although many artists' tools did not 

originate from scientific research, their data processing power and especially 

usability may exceed tools used in science. Incorporating artists' tools into 

scientific visualization workflow also makes it possible for artists to participate in 

scientific research. The combined creativity of science and art may lead us to new 

findings.

1.9 Outline
In Chapter 2, background knowledge of confocal microscopy and related 

work in volume visualization and analysis are discussed. Chapter 3 details the 

visualization pipeline of FluoRender, which is an integration of volume rendering 

techniques and 2D image space enhancements. Chapter 4 presents the interactive 

volume segmentation methods in FluoRender, which uses a paint brush analogy 

and allows user-guided extraction of structures. Chapter 5 is one step forward 

towards the automation of the methods discussed in Chapter 4. We developed a 

technique that simulates the random colorization in the well-known Brainbow 

technique. The random colorization is used to disambiguate complex structures 

in confocal data, especially the cells. Chapter 6 is a real-world application 

of FluoRender in biological research, where FluoRender plays a key role in a 

workflow of making anatomical atlases from confocal microscopy data. Finally, 

conclusions and future work are given in Chapter 7.



CHAPTER 2

BACKGROUND 

2.1 Laser Scanning Confocal Microscopy
Laser scanning confocal microscopy has become an invaluable tool for a wide 

range of investigations in the biological and medical sciences for imaging thin 

optical sections in living and fixed specimens. The basic concept of confocal 

microscopy was developed by Marvin Minsky in the mid-1950s [19]. The concept 

was continually perfected in the 1970s and 1980s, which led to the first commercial 

product in 1987 [19]. Coupled to the rapidly advancing computer processing 

speeds, enhanced displays, and large-volume storage technology emerging in 

the late 1990s, laser scanning confocal microscopy finally gained tremendous 

popularity in the last decade in many applications.

A modern confocal microscope is a completely integrated electronic system 

consisting of an optical microscope, several laser systems, electronic detectors, 

and a computer. The principal components of its optical system are the objective 

lens system, a dichromatic mirror, and two pinhole apertures (Figure 2.1). The 

two pinhole apertures are positioned at the conjugate points to the focus point of 

the objective lens. The pinhole aperture at the laser source diffracts the laser beam, 

which is then focused on a point within the specimen. The specimen, usually 

fluorescently stained, emits fluorescent light of a different wavelength from the 

excitation laser. The fluorescence emission from the focus point is refocused by the 

objective lens at the second pinhole aperture. A significant amount of fluorescence 

emission that occurs at out-of-focus points is not confocal with the second pinhole 

aperture and is cut off from being detected by the electronic detector. Therefore, 

only a small point, usually at submicrometer level, of the specimen is imaged at



12

Figure 2.1. Principle components of the optical system of a laser scanning confocal 
microscope. The excitation light (green) and emitted light (red) have different 
wavelengths. The emitted light rays are cut off by the detector pinhole aperture 
so that only a single point in the specimen is scanned a time.
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a time. This imaging process repeats within the focus plane (lateral XY axes) or 

deep into the specimen (Z axis) and a three-dimensional image is scanned.

A confocal microscope is commonly equipped with several laser sources and 

lasers of different wavelengths can be used to excite the fluorescently-stained 

specimen. Different antibodies that bind only to particular structures (for example, 

neurons, muscles, and tendons) are used to deliver fluorescent tags. A confocal 

microscope excites the fluorescent tags with lasers, and different detectors collect 

the emitted light from the tags. So for example, one detector will collect the image 

of tendons in green, another will collect muscles in red, and another will collect 

neurons in blue.

Compared to conventional widefield fluorescent microscopy, the primary 

advantage of laser scanning confocal microscopy is the ability to capture three­

dimensional structures with fine details, without physically sectioning the 

specimen. This noninvasive optical sectioning technique enables the examination 

of both fixed and living specimens, resulting in volumetric data and time-sequence 

data.

2.2 Interactive Visualization of Volumetric Data
Volume rendering is a set of techniques for visualizing volumetric data 

typically generated by CT and MRI scanners, or from computer simulations. Since 

previous research has largely solved the rendering problems of volumetric data, 

recent research of volume visualization has shifted its focus on the following: 

firstly, methods that facilitate accurate interpretation and extraction of meaningful 

information from complex, abstract, and multidimensional data in different 

applications; secondly, interactive techniques scalable for extremely large datasets, 

including multichannel, multimodal, and time-sequence data; thirdly, interaction 

and integration among volume visualization, other forms of visualization and 

analysis, for example, polygon mesh generation and rendering, unstructured data 

visualization, statistical and topological analysis, etc.

Confocal microscopy data visualization is an application topic in volume



14

visualization, which involves research of more or less all three points above. 

As in the introduction chapter, multiple channels of confocal data naturally 

pose a question of how different channels are combined and rendered. Cai and 

Sakas [15] proposed three levels of data intermixing and rendering pipelines in 

direct multivolume rendering, which include image level intensity intermixing, 

accumulation level opacity intermixing, and illumination model level parameter 

intermixing. In the context of radiotherapy treatment planning, they applied their 

methods to three volumes, including CT volume, dose volume, and segmentation 

volume. Then they compared the features of different data intermixing methods. 

Rossler et al. [85] described a flexible framework for GPU-based multivolume 

rendering, which provided a correct overlaying of an arbitrary number of volumes 

and allows the visual outputs for each volume to be controlled independently. They 

also presented a visualization tool specific for the rendering of functional brain 

images, which was built on top of their frame work. Their tool included different 

GPU-based volume rendering techniques, on the one hand for the interactive visual 

exploration of the data, and on the other hand for the generation of high-quality 

visual representation. Grimm [36] presented a full-blown high-quality raycasting 

system, which can efficiently process and visualize multiple large medical volume 

datasets. The core acceleration technique of his system was a refined caching 

scheme for gradient estimation in conjunction with a hybrid skipping and removal 

of transparent regions to reduce the amount of data to be processed. In addition, 

the system distinguished regions where multiple volumes intersect, and efficiently 

rendered regions containing only one volumetric object, and those need costly 

multivolume processing.

The fine details, noise, and visual occluders in confocal microscopy data 

require visualization techniques that can visualize important structures without 

explicit segmentation. Volume classification has been an active area of research. 

Kindlmann et al. [50] proposed the histogram volume, which captures the relation­

ship between volumetric quantities in a position-independent, computationally 

efficient fashion. Then they presented semi-automatic methods of generating
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transfer functions for direct volume rendering. Kniss et al. [53] presented 

multidimensional transfer functions for interactive volume rendering. Their 

work demonstrated an important class of three-dimensional transfer functions for 

scalar data. It described the application of multidimensional transfer functions 

to multivariate data. They also presented a set of direct manipulation widgets 

that made specifying such transfer functions intuitive and convenient. Correa et 

al. [21, 23] proposed visibility-driven and size-based transfer function designing 

techniques for volume exploration. They incorporated visibility histogram 

and size information into a multidimensional transfer function design. Their 

semi-automated method for transfer function generation progressively explored 

the transfer function space towards the goal of maximizing visibility of important 

structures. To ease the difficulties for end-users to use multidimensional transfer 

functions, methods have been proposed to accelerate the transfer function design 

process. Rezk-Salama et al. [82] introduced an additional level of abstraction 

for parametric models of transfer functions. They proposed a framework that 

allowed visualization experts to design high-level transfer function models that 

can intuitively be used by nonexpert users. The resulted user interface provided 

semantic information for specialized visualization problems. Tzeng et al. [100] 

proposed an approach to the volume classification problem that couples machine 

learning and a painting metaphor to allow more sophisticated classification in 

an intuitive manner. Their intelligent system approach enables users to perform 

classification in a much higher dimensional space without explicitly specifying 

the mapping for every dimension used.

Embedding polygon data into volumetric data is one technique to visualize 

subtle boundaries and the content within each boundary. Everitt [28] described 

an algorithm for interactively rendering order-independent transparent polygon 

objects with graphics hardware. The algorithm is also known as depth peeling. The 

depth peeling algorithm is widely used for correctly blending transparent polygon 

meshes. Kreeger and Kaufman [55] presented an algorithm that embeds opaque 

and/or translucent polygons within volumetric data, by rendering thin slabs of the
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translucent polygons between volume slices using slice-order volume rendering. 

They demonstrated their algorithm with examples of medical applications and 

flight simulators. Nagy and Klein [70] presented the concept of volumetric 

depth-peeling, and they separated the volume data into interior and exterior 

based on a fixed iso-value. Weiskopf et al. [111] proposed clipping methods 

that are capable of using complex geometries for volume clipping, which enable 

selecting and exploring subregions of one volumetric dataset.

There are some commercially available software packages for confocal data. 

Amira [106] can render volume datasets from confocal microscopes, and visualize 

them together with polygon data, which are generated by its segmentation tool 

automatically or manually. Imaris [10] incorporates multiple volume rendering 

algorithms for visualizing microscopy data interactively, and it can also generate 

polygon data for rendering or volume editing. Volocity [79] can load multichannel 

confocal data, and it provides both interactive and noninteractive volume 

renderers for visualizing them. For specific problems and data, users often 

feel problems with these tools: many do not provide adequate parameter settings 

for fine-tuning volume rendering results; some are not interactive when adjusting 

parameters; and it is always laborious to analyze repetitive experiments.

2.3 Visualization Enhancement in 2D Image Space
2D image space methods are processing methods applied after the volumetric 

data are projected and rendered into the 2D image space, such as 2D filtering, tone 

mapping, and compositing. In the application domain of volume visualization, 

most 2D image space methods can be carried out more efficiently than their 

3D counterparts. Most importantly, 2D image space methods can be used 

to enhance volume visualization quality when applied together with volume 

rendering methods. Most research of volume visualization enhancement focuses 

on algorithms in 3D data space. For example, Ebert and Rheingans [27] introduced 

a volume illustration approach, which is a combination of the familiarity of a 

physics-based illumination model with the ability to enhance important features
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using nonphotorealistic rendering techniques. They included properties such 

as volume sample location and value, gradient value, view direction, and light 

information into the volume illustration procedure. The features that could be 

enhanced include boundaries, silhouettes, depth and orientation cues, distance 

color bleeding, halos, and tone shading. Kuhn et al. [56] designed an image- 

recoloring technique and applied it to volume rendering for highlighting important 

visual details. To improve visualization experiences for individuals with color 

vision deficiency, Machado et al. [66] proposed a physiologically-based model 

for recoloring visualization results, including volume-rendered scientific data. 

For illustrative visualization, Wang et al. [110] presented a framework to aid 

users to select colors for volume rendering, in which case color mixing effects 

usually limit the choice of colors. While there are several commercial and 

academic visualization packages that biologists have been using for confocal 

microscopy data, such as Amira [106], Imaris [10], and Volocity [79], 2D image 

space methods for detail enhancement are generally absent from these tools. In 

fact, choosing and designing proper 2D image space methods and parameters, 

integration of 2D and 3D methods, as well as their applications are interesting 

research topics for volume visualization in general. In [13], Bruckner et al. 

presented a framework for compositing of 3D renderings, and use the framework 

for interactively creating illustrative renderings of medical data. Tikhonova et 

al. [98] [99] proposed visualization by proxy, which is a framework for visualizing 

volume data that enables interactive exploration using proxy images. For fast 

prototyping and method/parameter searching, computer scientists often use 

comprehensive visualization and image processing libraries, such as VTK [52] 

and ITK [51]. Experimental applications with customized visualization pipelines 

are generated. However, this is often regarded as impractical by biologist users, 

since they usually demand a reliable tool with seamlessly integrated functions 

that are only relevant to their specific application scenario.



18

2.4 Volume Segmentation Techniques
In biomedical research, useful segmentation methods for volumetric data 

are generally categorized into two kinds: full manual and semi-automatic. 

The concept of fully automatic segmentation does exist; however, either the 

implementations are limited to ideal and simple structures, or they require 

complex parameter adjustment, or a vast amount of manually segmented results 

are used for training. They fail in the presence of noisy data, such as confocal 

scans. Thus, robust fully automatic segmentation methods do not exist in practice, 

especially in cases where complex and intricate structures are extracted according 

to users' research needs.

In biology research, fully manual segmentation is still the most-used method. 

Though actual tools vary, they all allow selecting structures from each slice 

of volumetric data. For example, Amira [106] is often used for extracting 

structures from confocal data. For complex structures, such as neurons in confocal 

microscopy data, it requires great familiarity with the data and the capability of 

inferring 3D shapes from slices. For the confocal dataset shown in Figure 2.2, it took 

one neurobiologist one week to manually select one neuron, since it was difficult 

to separate the details of the two neurons in proximity. However, such intense 

work would not guarantee a satisfactory result: some fine fibers of low scalar 

intensities might be missing. Even when the missing parts could be visualized 

with a volume rendering tool, it was still difficult to go back and track the problems 

within the slices. To improve the efficiency of manual segmentations, biologists 

have tried different methods. For example, VolumeViewer from Sowell et al. [96] 

allows users to draw contours on oblique slicing planes, which helps surface 

construction for simple shapes but is still not effective for complex structures. 

Using the volume intersection technique from Martin and Aggarwal [68] or Space 

Carving from Kutulakos and Seitz [57], Tay et al. [97] drew masks from two 

orthographic MIP renderings and projected them into 3D to carve a neuron out 

from their confocal data. However, the extracted neuron in their research had a 

very simple shape.
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Figure 2.2. The user interface for segmentation in Amira. In the volume rendering 
view, we can observe that two neurons are in proximity and have complex details. 
However, it is difficult to tell them apart or infer their shapes from any of the 
slice views. Unfortunately, users have to select structures from the slice views 
rather than the volume rendering view, where they can actually see the data more 
clearly. Many interactive volume segmentation tools in neurobiology use similar 
interactions, which are difficult to use for complex shapes.

For extracting complex 3D structures, semi-automatic methods, which com­

bine specific segmentation algorithms with user guidance, seem to be more 

advantageous than manual segmentation. However, choosing an appropriate 

combination of algorithm and user interaction for a specific segmentation problem, 

such as neural structure extraction from confocal data, remains an active research 

topic. Though the variety of segmentation algorithms is myriad, many of them for 

extracting irregular shapes consist of two major calculations, i.e., noise removal 

and boundary detection. Most filters designed for 2D image segmentation can be 

easily applied for volumetric data. Filters commonly seen include all varieties 

of low-pass filters, bilateral filters, and rank filters (including median filter, as 

well as dilation and erosion from mathematical morphology) [33]. Boundaries
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within the processed results are very commonly extracted by calculations on 

their scalar values, gradient magnitudes, and sometimes curvatures. Prominent 

segmentation algorithms that see many practical applications in biology research 

include watershed [104], level set [75], and anisotropic diffusion [80]. The latest 

technological advances in graphics hardware allow interactive application of 

many previously proposed algorithms to volumetric data. Sherbondy et al. [93] 

implemented anisotropic diffusion on programmable graphics hardware and 

applied the framework to medical volume data. Viola et al. [105] implemented 

nonlinear filtering on graphics hardware and applied it to segmenting medical 

volumes. Lefohn et al. [58] implemented the level-set algorithm on graphics 

hardware and demonstrated an interactive volume visualization/segmentation 

system. Jeong et al. [44] applied the level-set method to EM datasets, and 

they demonstrated an interactive volume visualization/segmentation system. 

Hossain and Moller [41] presented an anisotropic diffusion model for 3D scalar 

data, and used the directional second derivative to define boundaries. Saad et 

al. [88] developed an interactive analysis and visualization tool for probabilistic 

segmentation results in medical imaging. They demonstrated a novel uncertainty- 

based segmentation editing technique, and incorporated shape and appearance 

knowledge learned from expert-segmented images [87] to identify suspicious 

regions and correct the misclassification results. Kniss and Wang [54] presented a 

segmentation method for image and volume data, which is based on manifold 

distance metrics. They explored a range of feature spaces and allowed interactive, 

user-guided segmentation.

Most segmentation research has focused on improving accuracy and ro­

bustness, but little has been done from the perspective of user interactions, 

especially in real-world applications. Sketch-based interaction methods, which 

let users directly paint on volume rendering results and select desired structures, 

have demonstrated the potential towards more intuitive semi-automatic volume 

segmentation schemes. Yuan et al. [113] presented a method for cutting out 

3D volumetric structures based on simple strokes that are drawn directly on
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volume rendered images. They used a graph-cuts algorithm and could achieve 

near-interactive speed for CT and MRI data. Chen et al. [18] enabled sketch-based 

seed planting for interactive region growing in their volume manipulation tool. 

Owada et al. [78] proposed several sketching user interface tools for region 

selection in volume data. Their tools are implemented as part of the Volume 

Catcher system [77]. Burger et al. [14] proposed direct volume editing, a method 

for interactive volume editing on GPUs. They used 3D spherical brushes for 

intuitive coloring of particular structures in volumetric scalar fields. Abeysinghe 

and Ju [1] used 2D sketches to constrain skeletonization of intensity volumes. 

They tested their interactive tool on a range of biomedical data. To further facilitate 

selection and improve quality, Akers [4] incorporated a tablet screen into his 

segmentation system for neural pathways. Unfortunately, these methods were 

not used in any practical workflow to demonstrate their usability. Tools with 

interactive and intuitive volume segmentation were not available to end-users 

such as biologists. They would like a tool that could combine the effort-saving 

convenience of automatic segmentation algorithms and versatile user-guidance 

of manual segmentation.

2.5 Synthetic Brainbows
Randomness is an inherent character accompanying all natural processes. 

Researchers in biology have taken advantages of randomness. We are particularly 

interested in one recent technique in life science: Brainbow. In [63], Livet et 

al. described a series of strategies to randomly express fluorescent proteins 

in individual cells of mouse nervous system. They exploited the advantages 

of the widely used Cre/lox recombination system [11], which is able to turn 

on or off the expression of one or several different fluorescent proteins in a 

gene sequence. For different cells that are genetically modified to work with 

this technique, different combinations of the fluorescent proteins can occur. 

This is because the Cre/lox recombination system randomly chooses the gene 

expressions for recombination. The end result is that different cells, despite
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the same type, are fluorescently stained with different colors. This technique 

is useful to visualize and distinguish detailed structures in the nervous system, 

where cells are packed and can be touching. However, the application of the 

Brainbow technique on a certain species of animals is limited because of complex 

transgenic manipulations. Disambiguation of cellular structures in single-channel 

datasets are commonly addressed by segmentation techniques (e.g., Cohen et 

al. [20]), which usually change the appearance of the original data and may be 

undesired for visualization purposes. Inspired by Brainbow, we would like to 

use computational techniques to randomly colorize confocal microscopy data 

processed with common antibody staining. By generating Brainbow-like results 

where different structures are distinctively colored, our proposed technique is an 

improvement to the visualization of single-channel confocal microscopy data.

Our Synthetic Brainbow technique leverages a process known as GPU 

framebuffer feedback loops. This process reads and writes the same framebuffer 

by multiple rendering or computing threads on GPU. If the output value of one 

pixel is dependent of its neighbors' values, it essentially creates race conditions 

among different threads. Without locking or synchronizing of the threads, the 

results become nondeterministic. Experienced graphics program developers 

avoid the nondeterministic behavior of GPU framebuffer feedback loops by 

framebuffer Ping-Pong, which is a technique using two framebuffers for reading 

and writing, thus synchronizing different threads. In fact, setting up a framebuffer 

feedback loop by binding the same framebuffer to a shader's (or computing 

kernel's) input and output is not considered an error by graphics hardware 

specifications. Developers are simply warned against doing so because the results 

are "undefined" [91]. However, considering that a framebuffer feedback loop 

is computationally more efficient by saving half the memory and using fewer 

context switches, we do believe it deserves a closer examination. In our research, 

we find that the nondeterministic behavior of given graphics hardware induced 

by asynchronism can be statistically tested and determined.

Applications of GPU framebuffer feedback loops are rare in previous work, due
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to the fact that deterministic results are generally desired in computations with 

GPUs, such as filtering in image processing and equation solving in simulations. 

However, its theoretical development has long preceded the appearance of 

GPUs. An iterative computational model of GPUs is equivalent to a cellular 

automaton. The framebuffer can be thought as a grid of the cellular automaton 

with its pixels as the cells. The shader or computing kernel provides the rules for 

updating the states of the cells. The study of cellular automata dates back to the 

early history of computer science, including work of Ulam and Neumann [107]. 

Different types of cellular automata have been extensively studied through 

the later development of computer technology. Cellular automata have been 

proposed as computational models for simulations in physics [67] [86], material 

science [9] [94], and biology [42] [72]. They have also been extensively used in 

image segmentation algorithms [103] [47] [48] [49] [31] [62]. However, most 

research focused on synchronous cellular automata, where the state of every cell 

is updated together. Using framebuffer Ping-Pong in an iterative computational 

model is an example of a synchronous cellular automaton. In contrast, a 

framebuffer feedback loop should update individual cells independently, and 

the new state of a cell affects the calculation of states in neighboring cells, 

thus an asynchronous cellular automaton. Asynchronous cellular automata are 

generally less studied due to their nondeterministic behaviors. A lot of effort 

has been spent in recent research on asynchronous cellular automata to find 

efficient ways of computing deterministically without global synchronization. 

The research is mostly based on chaotic relaxation (Chazen and Miranker [17]), 

which described necessary and sufficient conditions for an asynchronous and 

chaotic process to converge. Baudet [8] presented a class of asynchronous iterative 

methods for solving a system of equations. Adachi et al. [2] presented an 

asynchronously updating cellular automaton that conducts computation without 

relying on a simulated global synchronization mechanism. Galilee et al. [30] 

proposed a joint algorithm-architecture for computing watershed segmentation. 

Their algorithm is programmed as a set of concurrent communicating iterative
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programs that are efficiently mapped onto an asynchronous parallel architecture. 

Venkatasubramanian and Vuduc [102] described GPU implementations of Jacobi's 

iterative method for the 2D Poisson equation. Their implementations include a 

"wild" asynchronous example, which removed synchronization between iterations. 

They have shown that the "wild" asynchronous implementation on GPU has 

1.2-2.5x speedups against best synchronous implementation, thanks to highly 

efficient memory bandwidth utilization. For GPU implementations of connected 

component labeling, Oliveira and Lotufo [73] discussed an ID merging method 

using asynchronous automata and presented an improved algorithm that included 

local and global merging stages. They also reported their method achieved 5-10x 

speedup in relation to Stephano-Bulgarelli's [25] serial algorithm. We regard the 

previously presented connected component labeling methods as primitive forms 

of more sophisticated colorization. Different from previous research, we leverage 

the randomness and use a computational stochastic process to simulate the results 

from a biological stochastic process: Brainbow.

2.6 Anatomical Atlases
An anatomical atlas provides a detailed map for medical and biological studies. 

The continuous efforts for making atlases of human anatomy date back to the 

work of many renowned anatomists: Vesalius, Leonardo da Vinci, William Hunter, 

and Henry Gray, whose creations are not only esteemed for their scientific value, 

but also appreciated aesthetically as masterpieces of art. Truly an arena where 

science meets art, anatomical atlases evolved as technologies advance in both 

fields: painting, printing, photography, microscopy, tomography, and certainly 

computer graphics. Whenever a novel technology emerges, our knowledge of 

anatomy is enriched with both exciting scientific findings and the increasingly 

detailed information presented in an atlas. Historically, an anatomical atlas has 

been a book of illustrations and text that systematically explains the anatomy of 

particular biological species. Naturally, the anatomy of humans has been the most 

studied. The most influential printed human anatomy atlases available today are
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Gray's [34], Netter's [71], and Thieme's [32]. Interestingly, the production and 

appearance of printed atlases has changed with the development of technology. 

Henry Vandyke Carter, the illustrator of Henry Gray's anatomy book, drafted his 

illustrations in reverse on boxwood, which was then engraved for printing [83]. 

Frank Netter enjoyed the convenience brought by photography and modern 

printing. He chose a painting technique, gouache, which could better render the 

highlights and shadows to give his illustrations a more three-dimensional look. 

The illustrations of Thieme's Atlas of Anatomy were mostly hand drawn with 

Adobe Photoshop by Markus Voll and Karl Wesker. Though largely following 

the styles established by their predecessors, the use of digital media gives their 

illustrations finer details, smoother tonal gradations, and better transparency 

effects. All of these contribute to the clear representations of particular anatomical 

features. Printed atlases of other biological species are relatively scarce, and those 

in existence are usually decades old. For example, Greene's Anatomy of the 

Rat [35] was published in 1935 and is still used today as the definitive text for 

identification of anatomical structures in all rodents. In particular, Greene's atlas 

is used as the anatomy text for the laboratory mouse, one of the most important 

model organisms in biology and medicine. Anatomical atlases are crucial to 

understanding normal anatomy and identifying congenital abnormalities. For 

educational purposes, physical models are also sometimes built and used in 

addition to anatomy books. Physical models provide a unique three-dimensional 

model of anatomy. However, they are difficult to make, store, and maintain. 

Hardly can physical models achieve the level of detail required by scientific 

research, and thus they are rarely used in biological or medical research.

Computer graphics not only revolutionized the film industry, but also trans­

formed anatomical atlases. Computer-generated atlases allow for a 3D, manip- 

ulable visualization of anatomy. Several 3D atlases have been generated for 

human anatomy, including Visible Body (www.visiblebody.com), Cyber-Anatomy 

(www.cyber-anatomy.com), and Zygote's anatomical model library (www.zygote 

.com). Since 3D models are commonly built by referencing 2D illustrations

http://www.visiblebody.com
http://www.cyber-anatomy.com
http://www.zygote
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of anatomy books, building 3D atlases is expensive and requires specialized 

personnel with experience in both digital modeling and anatomy. For biologists 

to build 3D anatomical models, it is most practical to use 3D scanned biological 

samples. Due to noise and limited resolution, anatomical atlases [40] that directly 

use volume renderings of scanned 3D volumetric data usually cannot achieve the 

clarity of polygon-based atlases, composed of objects modeled by representing 

their surfaces with polygons. There are several publications of polygon-based 

anatomical atlases for biological research (e.g., Ju [46] and DeLaurier [24]). 

However, easy-to-follow workflows and examples are unavailable for biologists 

to learn to make such atlases.



CHAPTER 3

A VISUALIZATION PIPELINE FOR 

CONFOCAL MICROSCOPY DATA 

3.1 Confocal Data Formats as Inputs
Though different confocal microscope manufactures support different raw 

formats, confocal microscope users commonly use TIFF as both destination and 

exchange formats for storage, visualization, processing, and publication. TIFF 

files can be easily handled by standard image input/output libraries within most 

programming environments. However, these special features introduced by 

confocal microscopy datasets require us to have our own support for confocal 

microscopy file formats.

• Input precision. Depending on the model of the photodetector and Analog- 

Digital Converter (ADC) used with the microscope, the bit-depth of each confocal 

channel varies from 8-bit to 16-bit. TIFF is designed to work with an arbitrary 

number of bit-depth, but 8-bit and 16-bit are the most commonly seen. In fact, 

for 16-bit format, there are usually 12 or 14 significant bits. Rendering results 

will be considerably dark if we simply duplicate such data into graphics memory. 

To preserve input data precision, the actual bit-depth of an input dataset is first 

acquired by parsing the dataset and searching for the maximum intensity value. 

When the actual bit-depth of a dataset is 8-bit, data blocks from the original file 

are copied into graphics memory as 8-bit 3D textures; when the actual bit-depth 

is over 8-bit, data blocks are copied into graphics memory as 16-bit 3D textures. 

The actual bit-depth is used as a modulation factor to generate correct rendered 

brightness.

• Volumetric data. For confocal images, there are two competing methods
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when using TIFF for volumetric data storage: a sequence of 2D image sections 

and a single file with multiple pages. Multipage TIFF files are easier to manage, 

since each file contains a single dataset. However, they may not be universally 

supported as 2D TIFF sections are. For example, Adobe Photoshop, which is 

commonly used by biologists, does not have native support for multipage TIFFs. 

To support both methods, the format importer in FluoRender will first decide 

which of these two methods is used. Then for a 2D section sequence, files in the 

same folder with similar names are enumerated, matched, and ordered to form the 

correct data sequence. On the other hand, reading a multipage TIFF file is rather 

straightforward. For large datasets, bricking is used. These datasets are usually the 

scans of a moving stage, where a specimen is scanned at different regions and these 

regions are later mosaiced to form a large dataset. The brick size is determined 

according to graphics cards' capabilities. As of the time of writing (ca 2012), 

both major gaming and professional graphics device manufactures, i.e., AMD 

and nVIDIA, provide mainstream products with 2GB-6GB of graphics memory. 

However, there is a discrepancy in their support of 3D textures: the maximum 

size supported by nVIDIA is 2048 pixels; most AMD's graphic cards support 

8192 pixels at maximum and sometimes 16384 pixels for certain professional 

products. For most confocal data in practice, both are sufficient and no bricking is 

actually needed. In addition to pixel size of a confocal volume, another important 

parameter retrieved from TIFF metadata is the physical resolution, usually in 

micrometers, which describes the physical size of a voxel in X, Y, and Z directions. 

Notice that a confocal dataset is anisotropic in most cases. The resolution is crucial 

for a correct proportion when the dataset is rendered.

• Multichannel data. TIFF is also designed to support an arbitrary number of 

channels. However, saving multiple confocal channels using standard RGB color 

channels is the most common, since there are usually limited number of laser 

wavelengths and fluorescent tags. Sometimes, laser wavelength information is 

available in TIFF metadata. Such information is retrieved and used for assigning 

colors to different confocal channels automatically. When this information is not
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available, we assign red, green, and blue to the first read channels by default.

• Time-sequence data. A time-sequence dataset is generated from continuous 

imaging of a living specimen. Despite the possibility of storing a complete time 

sequence with a single TIFF file, each time timepoint is usually stored separately. 

Confocal time sequences are sometimes referred as 4D or 5D data, because they are 

volumetric (3D), time-varying (the fourth dimension), and multichannel (the fifth 

dimension). Rendering time-sequence in a timely manner is most important for 

users, since many biological phenomena, such as mitosis, can be visually detected 

if an image sequences is played smoothly. We try to minimize the playback 

latency with three means. First, we reduce reading and processing time for each 

timepoint. Only necessary operations are performed when reading one timepoint, 

such as retrieving data information and data block copying, since most data 

processing and enhancement are deferred to later in our visualization pipeline. 

Second, information for each timepoint is prefetched and cached, so that it is 

always immediately available when data for any timepoint are requested. Third, 

the actual data for each timepoint are read from disk when they are requested 

during first-time playback, and then they are cached in system main memory. 

Although this design choice makes the speed of first-time playback dependent 

on disk speed, which can be slow for low-end systems, the advantage is that 

visualization of a time-sequence data is instantly available only after the first 

timepoint is loaded. The speed of the second and later playbacks can still catch up. 

We tested and compared the visualization speeds of FluoRender and two other 

tools commonly used for time-sequence confocal data visualization, i.e., Volocity 

and Imaris. The test results are shown in Figure 3.1. The test was comprised of 

four subtests. Dataset loading tested the time of loading a 3.43GB dataset, which 

contains 210 timepoints of a 12-hour continuous imaging. Since FluoRender 

gathers data information of all timepoints and only reads the actual data block 

of the first timepoint at initial loading, the latency is negligible. Total operation 

time is the duration between the application launch to when the first timepoint is 

visualized. It seems that both Volocity and Imaris preprocess the dataset, which
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Figure 3.1. Speed comparisons. We tested all speeds on the same PC with Intel 
Core i7 3.2GHz, 12GB memory, single 7200 RPM SATA disk, nVIDIA GTX280 and 
Microsoft Windows XP 64bit. The dataset is a two-channel 4D confocal dataset 
with 210 frames, which occupies 3.43GB on disk. Volocity is 64bit at version 5.1.0. 
Imaris is 64bit at version 6.3.0. FluoRender is 64bit at version 2.9.0
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causes considerable delay before any result can be visualized. The difference 

between 4D playback and 4D export is that 4D export saves the result, typically 

to a 2D image sequence. We calculated the speed by dividing the total number 

of timepoint (210) with playback time. FluoRender caches data using available 

system memory during first-time playback, and the speed is considerably faster 

for later playback when data size is smaller than the system memory. Volocity 

and Imaris both require loading the entire dataset into system memory before 

playback, which makes them impossible to use when the size of a time sequence 

is larger than system memory. This seems to be no problem for FluoRender, as 

we learned from our neurobiologist users that FluoRender worked stably with a 

50GB time sequence dataset on a common PC desktop.

In addition to the TIFF format, we also support two confocal manufacturers' 

raw formats, i.e., OIB and OIF from Olympus, and LSM from Zeiss. All 

formats have native support for volumetric, multichannel and time-sequence 

data. Since these formats are either wrappers around standard TIFF (OIB 

format uses Microsoft's structured storage to save standard 2D TIFF files), or 

modified TIFF (LSM format extends the TIFF specifications to support features 

such as larger-than-4-GB data), it becomes straightforward to support these 

customized formats by modifying our existing TIFF reader. Thus, the same 

reading/caching strategy as for standard TIFF-based confocal data is used for the 

manufacture-specific formats. However, the most significant difference is how 

confocal information (data size, resolution, laser wavelengths, etc.) is stored. So 

we designed our readers according to manufacturers' format specifications, which 

can be obtained from the above manufacturers upon request.

3.2 Intuitive and Efficient Transfer Function 
Manipulations

In FluoRender, 2D transfer functions [53] are used for setting rendering 

properties of volume data, as their boundary extracting capability can render fine 

structures from confocal data. We found, however, that biologist users prefer 

intuitiveness and efficiency to complicated transfer function widgets and settings.
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With this in mind, we chose a family of the 2D transfer functions that best suits 

confocal data structure extraction, while the parameters for fine-tuning the shapes 

of the transfer function are chosen and named for better operability. The shape of 

the 2D transfer function, as well as the parameters, are illustrated in Figure 3.2.

• Boundary extraction. It controls the cut-off value of gradient magnitude. 

Setting a higher value can isolate better-defined boundaries in the volume data. 

Figure 3.3(c) shows that spreading of nuclei is seen in a combined rendering 

with other channels. By increasing the boundary extraction value, only the 

voxels defining nucleus boundaries are rendered. Combined with transparency 

adjustment, both the underlying channels and the spreading of nuclei are seen, 

which is not possible by adjusting transparency solely (Figure 3.3(b)).

• Saturation point. It offsets the intensity turnpoint in the 2D transfer function. 

Low intensity signals are enhanced when its value is lowered. Figure 3.3(e) and 

(f) show that the continuity of neuron fibers is recovered after adjusting this 

parameter.

• Low and high thresholds. They set the low and high cut-off values of scalar 

intensity. These values are useful for noise suppression. Figure 3.3(g) and (h) 

show an example before and after the threshold values are adjusted; noisy data 

are eliminated after adjusting the low threshold value.

• Gamma. It is a nonlinear falloff control of low intensity signals. It controls 

how values off the intensity peak are attenuated by adjusting the exponent of 

the intensity values. Gamma is adjusted to get a better contrast of the output 

renderings.

For a multichannel volume dataset, transfer function for each channel can 

be adjusted independently. FluoRender lets users interact with a limited set of 

parameters, with each parameter adjusted by either linked slider or numerical 

entry. The corresponding parameter settings in the user interface are listed in 

Figure 3.4. By avoiding complicated widgets or the jargon of transfer function 

settings, the provided interface is more intuitive for biologists to use and can 

quickly obtain the desired visualization results. In addition, default settings
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Figure 3.2. An illustation of the 2D volume transfer function in FluoRender. The 
colored arrows indicate the possible adjustments for the parameters, which are: 
gamma, saturation point, boundary extraction, low threshold, and high threshold.

coming with FluoRender installation packages are determined by our collaborating 

neurobiologists through their general workflows. All the transfer function 

parameters have default values, and they are automatically applied to loaded 

data. Users can also generate their own default settings after they become familiar 

with the settings.

It is a common practice that the volume transfer function is rasterized as a 

texture, and updated every time the parameters change. Two problems may 

occur if the texture transfer function is used. First, there is quantization error, 

especially when the transfer function is nonlinear, since texture lookup only uses 

linear interpolation. Second, it is impractical to build a texture transfer function 

for 16-bit data due to texture size limitations. Since our 2D transfer function 

has only five customized parameters for confocal visualization, we pass the 

parameters into the shader computing the volume rendering result, and evaluate
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3. Results when our 2D transfer function is adjusted for a zebrafish 
head dataset. (a) The channel of nuclei (cyan) obstructs other channels. (b) 
Increasing the transparency may be helpful, but it makes the rendering obscure, 
and underlying channels are still partially occluded. (c) Increasing the boundary 
extraction value can better show the spreading of the cells and underlying channels. 
(d) The motor neurons (green) projecting to the eye muscles appear artifactually 
disconnected, indicated by a yellow arrowhead. (e) Adjusting the saturation 
point reveals that motor neuron fibers are in fact connected. (f) Shading helps 
better define the shape. (g) Low scalar intensity noise is present in the eye muscle 
channel (red channel in others). (h) Increasing the low threshold suppresses the 
noise. (i) A map of the regions analyzed.
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Figure 3.4. FluoRender user interface. A - Toolbar; B - List of loaded datasets; C - 
Tone-mapping adjustment; D - Tree layout of current active datasets; E - Movie 
export settings; F - Render viewport; G - Clipping plane controls; H - Volume data 
property settings.

the volume transfer function on the fly. The real-time evaluation of the transfer 

function ensures the rendering quality of the low-intensity signals in confocal data. 

Figure 3.5 compares the resulting difference between prequantized and real-time 

evaluation of the transfer function. While many other tools either do not have the 

flexibility of changing volume transfer function, or provide too many parameters 

and widgets that make evaluation on the fly impossible, FluoRender lets its users 

quickly adjust the volume transfer function for finely-detailed visualizations.

The volume rendering results of FluoRender always output to 32-bit floating­

point framebuffers, and then all the 2D image space methods discussed sub­

sequently are calculated with 32-bit precision. This is essential to our tool for 

high-precision adjustments.
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(a) (b)

Figure 3.5. Results from prequantized (a) and on the fly (b) evaluation of the 
transfer function. The two results are generated with the same transfer function 
settings. The prequantized transfer function clips many details in the low intensity 
regions, which are preserved with on the fly evaluation of the transfer function. 
The dataset shows tectal neurons of a 5-day-postfertilization (5dpf) zebrafish.

3.3 Multiple Render Modes for Multichannel Data
For multichannel confocal microscopy data, qualitative analysis usually 

requires visualizing the spatial relationship between data from different channels. 

When combined together, however, data from different channels often interfere 

with each other, and details of interest from one channel can be occluded. 

We provide three render modes suggested by our collaborating biologists for 

multichannel volume data. The three render modes are: Depth mode, Composite 

mode, and Layered mode. Figure 3.6 compares the results of same three-channel 

dataset with different modes.

• Depth mode. When implemented with a slice-based volume renderer, 

multichannel volume data are blended first for each polygon slice and then the 

slices are blended together. This is the correct way to show the spatial relationships 

between channels, and most visualization tools that support multichannel datasets 

use this mode. However, sometimes fine structures from one channel are covered 

by voxels from other channels with lower depth values. Lowering the transparency
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(C) (d)

Figure 3.6. A confocal dataset of a 5dpf (days postfertilization) zebrafish embryo 
has three channels: eye muscles (red), neurons (green), and nuclei (blue). (a) The 
channels are combined with 3D compositing. The muscle and neuron channels 
are barely seen. Yellow arrowheads indicate the boundary of the brain, which is 
on the right side of the eye when visualized as in the figure. (b) The channels are 
composited with 2D addition. Highlight details are over-saturated, due to the 
additive compositing. (c) The channels are composited with 2D layering. Details 
of the muscle and neuron channels are visualized, but the spatial order of the two 
is incorrect. (d) The muscle channel and the neuron channel are grouped and 
combined with 3D compositing, which renders their spatial relationship correctly; 
the nuclei channel is in a separate group. The two groups are composited with 2D 
layering. The nuclei channel is a context layer, showing the boundary between 
the brain and the eye.
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of the obstructing data can reveal the deeper structures, but usually the details of 

the obstructing data are lost (Figure 3.6(a)).

• Composite mode. Each channel of a multichannel volume data is first 

rendered into a texture, and the textures are composed into the final rendering 

with color component addition. As shown in Figure 3.6(b), information from 

all channels can be seen at the same time, as long as distinguishable colors are 

used. As it is not necessary to increase the transparency of the occluding channels, 

the renderings of all channels are bright and full of details. As most datasets in 

confocal research have three channels or less, it is most effective to set colors as 

pure red, green, and blue. Shading effect calculation is clamped to single color 

components if data channels are set to pure red, green, and blue. Therefore, the 

original data channel information can still be extracted from the exported images 

of this mode, by separating the color channels. This is important for further 

processing and publishing.

• Layered mode. Similar to layers in 2D painting software, the volume data 

are layered on top of one another. Each channel of a multichannel volume data is 

first rendered into a 2D texture, and then the 2D textures are rendered in the order 

specified by users. In this mode, the top layer data cover the lower ones. This 

does not respect the relative depth relationships within the data, especially during 

user interaction. Visualization experts did not expect this mode to be effective. 

Surprisingly, biologists often prefer this mode since it can better show fine inner 

structures, such as neuron fibers, when placed in the top layer (Figure 3.6(c)).

Compositing all channels with a single render mode may not be sufficient, 

especially when there are many confocal channels, including derived data from 

segmentation and analysis. Users want to group certain channels and combine 

specific channel groups differently with 2D or 3D compositing. Our collaborating 

biologists resorted to 2D image processing packages for group compositing, since 

early versions of FluoRender were not capable of rendering groups with different 

render modes. In Figure 3.6, (a), (b), and (c) are the three basic render modes. The 

dilemma for the user is which to choose in order to visualize the correct spatial
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relationship between the neuron and muscle channels, but leave the nuclei channel 

as the context. We extended the idea of render modes by simply organizing data 

channels into groups. A group contains an arbitrary number of channels and has 

an independent render mode for combining its channels. Different groups are 

again combined with a render mode. Figure 3.6(d) shows the result that biologists 

were pleased with: both the muscle and neuron channels are visualized, with the 

correct spatial relationship, and they have a clear context.

Groups also facilitate the parameter adjustment of the confocal channels. A 

user can group certain confocal channels, and set the parameters of the channels 

within the group to synchronize. Changes to the parameters of one channel are 

then automatically propagated to other channels of the group.

Biologists may also find features they need in each mode. Joint views of 

different render modes can allow even improved data comprehension. We 

provide an interface to allow biologists to switch between the render modes 

quickly, and multiple viewports can be set for different render modes, which can 

be operated separately, or synchronized to the same viewing direction. Multiviews 

are indispensable when comparing different datasets in the qualitative analysis 

workflow. Datasets from replicate samples or from mutants and wildtypes are 

visualized and compared in different views. Like the transfer function settings, 

users can set the views quickly and accurately, or let FluoRender remember the 

default settings for later comparison.

3.4 Embedding Polygon Data for Region Definition
Incorporation of biologically meaningful boundaries can greatly aid interpre­

tation of confocal data. Unfortunately, boundaries often cannot be reconstructed 

simply by setting transfer functions. Polygon data become important means 

for region definition, because they can be generated from user-defined regions 

inside volumetric data. We first segment a given confocal data. Then, the 

segmented regions are converted to polygon data using the marching-cubes 

algorithm [64]. The polygon data can be further smoothed for better illustrative
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purposes. For details about segmentation and polygon data processing, see 

Chapter 4 and Chapter 6. For some applications such as crude region definition or 

volume culling, simple polygon geometries can be generated on the fly, including 

cubes, spheres, and cylinders. These geometries cane be manually translated, 

rotated, and scaled to match specific structures in the confocal data. This is less 

time-consuming than manual segmentation, but is still sufficient for many cases 

in qualitative analysis where precision is not a major concern.

The difficulty of using polygon data with volume rendering arises when we 

want to render them with adjustable transparency. This is because we want to 

observe the volumetric data inside of the regions defined by the polygon data. 

In general, correct rendering order in space is expected when semitransparent 

objects are rendered. We use the depth peeling [28] algorithm, because it is a 

robust solution to the ordering problem when multiple transparent objects as well 

as volume data are rendered. Our implementation improves the original depth 

peeling algorithm by cutting volume data spatially and rendering both polygonal 

and volumetric pieces in sequential order. The algorithm is graphically presented 

in Figure 3.7.

In theory, the number of depth peeling layers can be determined automatically 

by querying the results from each peeling iteration. However, we provide a 

user interface to let users adjust the number layers for depth peeling. This is 

because the number of peeling layers has a great impact on performance. In many 

applications of qualitative analysis, one peeling layer can achieve a satisfactory 

result while maintaining high interactivity. With a higher peeling layer setting, 

better accuracy can be achieved, allowing better understanding of how the volume 

data and the polygon-defined regions are spatially related. For most complex 

geometries resulting from confocal data segmentation, we found four layers 

enough for sufficient accuracy. Figure 3.8 compares the difference between the 

depth peeling settings. The examples show how the positions of neurons relative 

to the eye and central brain can be better perceived.
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Figure 3.7. The depth peeling algorithm used in FluoRender. (a) When there are 
n depth peeling layers, volume data are separated by these layers and rendered 
with a correct order. (b) When there is only one depth peeling layer, the rendering 
is much simplified but usually still generates acceptable results.
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Figure 3.8. Depth peeling results. (a) Ventral view of the volume data showing 
retinal ganglion cells connecting between the eye and the brain. (b) Polygon data 
added, separating volume data into eye (magenta) and brain (cyan); depth peeling 
layers set to one. (c) Same data, depth peeling layers set to four. Arrowheads 
point to two branches of visual neuron fibers. With more depth peeling layers, it 
is clear that the lower branch is located deeper behind the eye region, which is 
not apparent in either (a) or (b). (Dataset: Zebrafish head)

3.5 2D Tone Mapping
2D tone-mapping operators can be found in many image processing packages 

but are absent from confocal visualization tools and most volume visualization 

tools in general. When only the volume transfer function is adjusted, biologist 

users sometimes found it difficult to achieve both satisfactory brightness and 

details for volume rendering outputs. This can be explained with the volume 

rendering integral. Consider the commonly used emission-absorption model, 

where the resulting intensity is calculated as [69]:

1(D) f Dq(s)e
Jso

rD
-  Is K(t)dtds (3.1)

In Equation 3.1, q is the emission term, and k  is the absorption term. As shown 

in the two attached plots of Figure 3.9(a) and (b), when we apply a monotonic 

adjustment (for example, gamma correction, which preserves the order of its 

input intensity values so that they are globally darkened or brightened) f  (q, p) 

with a parameter p on q (or k ) ,  the output intensity (1(D)) is generally not changing
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(c) (d)

Figure 3.9. The volume transfer function nonlinear falloff and the 2D image 
space gamma adjustment work well together. The confocal dataset shows three 
channels of a 5dpf zebrafish embryo: eye muscles (red), neurons (green), and 
nuclei (blue). (a) The initial rendering without any adjustment. (b) The result 
when the transfer function gamma is increased. The rendering does not become 
brighter as many users may expect. The attached plots show the change of one 
ray profile after the transfer function gamma is increased. (c) The result when the 
gamma as 2D adjustment is increased. The result is brightened, but noise becomes 
prominent in the regions indicated by yellow arrowheads. (d) The satisfactory 
result achieved by decreasing transfer function gamma and increasing gamma as 
2D adjustment. Neuron fibers are visualized clearly with less noise.
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monotonically with p, due to the complexity of q (or k )  along the integration 

path (ray profile). The adjustment is usually embedded within volume transfer 

functions, and this nonmonotonic relationship between parameter and result 

makes it difficult for users to adjust for desired brightness. Here we apply tone 

mapping with monotonic adjustments on volume rendering outputs, which is 

intuitive to use for adjusting brightness.

The general definition of tone mapping is the mapping of one set of colors to 

another, but the term is mostly used with high dynamic range images (HDRI) 

(Reinhard et al. [81]), where the meaning narrows to compression of the high 

dynamic range of light information to a lower dynamic range. Since confocal 

data are acquired up to 16 bits per channel at present and strictly speaking are 

not HDR, we use the term tone mapping in this chapter in respect of the general 

definition. However, the objectives of HDR tone mapping still apply to confocal 

data visualization, i.e., rendering all possible tone ranges at the same time and 

preserving the details with local contrast in order to obtain a natural look. We 

implemented the following three tone-mapping operators, and made certain 

customizations specifically for confocal data.

Gamma correction is the most-used nonlinear operator in image processing. 

We follow convention and calculate the output color Cout with Equation 3.2:

Cout = c g f^  (3.2)

The nonlinear adjustment of the low intensity falloff in our 2D transfer function 

is essentially the same gamma correction embedded within the transfer function. 

However, its actual influence on brightness is quite different from applying it in 

2D: increasing the transfer function gamma enhances details for low intensity 

voxels (Figure 3.9(b)), which usually makes the rendering result less bright, and 

vice versa. The transfer function gamma is a parameter biologist users frequently 

use to either enhance or suppress low intensity signals in confocal data. However, 

the brightness of the results cannot be adjusted the same as one would expect
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from gamma correction (Figure 3.9(c)). By adding gamma correction in 2D as an 

independent parameter of the transfer function gamma, biologists can adjust both 

details and brightness easily. For example, in Figure 3.9(d), the volume transfer 

function gamma is decreased to suppress noise signals, and the gamma as a 2D 

adjustment is increased to reveal the fine details of the neuron fibers.

Luminance is usually called exposure in photo-editing tools. It is a scalar 

multiplier on the input color, which is used to brighten/darken the overall 

rendering and expand/compress the contrast linearly. In order for the user to 

adjust the luminance intuitively, we customize its parameter L by mapping it to 

the actual factor with a piecewise function f  (L).

Cout — Cin •f  (L)

— / L L s  1 (33)
J \ 2~l otherwise

Figure 3.10 shows f  (L) in both linear and logarithmic scale plots. The function 

is pieced together from a linear function and a nonlinear curve, and is C1 

smooth. The user-adjustable parameter L has range [0,2). It darkens the result 

by compressing the dynamic range within [0,1), and brightens the result by 

expanding the dynamic range within (1,2). In the logarithmic scale plot, the 

curve is antisymmetric at the center point (1,1), so in addition to a monotonic 

adjustment, our luminance operator gives an intuitive feel that the output is 

equally brightened or darkened when L is increased or decreased.

Scale-space equalization is a local tone-mapping operator that equalizes the 

uneven brightness and enhancing the fine details of confocal microscopy data. 

Using levels-of-detail with the scale space for tone mapping can be found in the 

work of Jobson et al. [45]. Instead of using logarithmic mappings for dynamic 

range compression, which is widely used in HDRI processing, we divide the 

input color (Cin) by the scale space color (Q), which is an average calculated by 

low-pass filtering. Thus, the input color is equalized at a series of detail levels, 

hence the name scale-space equalization. The output color of this operator is
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Figure 3.10. The mapping of the user-adjustable parameter L and the scaling 
factor f(L), in linear scale (left) and logarithmic scale (right) plots.

calculated by a weighted sum of the equalized colors and then blended with the 

input color, as in Equation 3.4:

Cout = (1 -  0  • Cin + t • CEq
N

CEq = ^  Vi • Ci (3.4)

C _ Cin 
Ci _ — 

Ci

In Equation 3.4, Vi is a set of weighting factors, which are empirically 

determined by experimenting with typical confocal datasets. A plot of the 

Vi we use in FluoRender is shown in Figure 3.11. The only parameter exposed to 

the end-user is the blending factor t, which linearly blends the equalized color 

with the input color. This linear blending, which is missing even in most HDRI 

processing software, ensures a monotonic change to brightness as previously. 

Figure 3.11 illustrates the equalizing process. It also shows the results when the 

blending factor changes. The originally dark rendering of the confocal dataset is 

brightened, yet the fine details are still clearly visualized. For noisy confocal data, 

increasing the blending factor also enhances high frequency noise. Thus, noise 

removal through pre- or postprocessing is usually desired.
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t = 0.0 t = 0.3 t = 0.6

Figure 3.11. The scale-space equalization process. The example dataset has three 
channels of stained muscles, neurons, and nuclei of the zebrafish head.
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The importance of scale-space equalization for confocal visualization is 

normalizing brightness -  along the Z-axis for 3D channels and through time for 

4D sequences. Figure 3.12 compares the results before and after 2D tone mappings 

applied to a two-channel confocal dataset. The dataset is the nuclei (magenta 

channel in Figure 3.12(a)) and neurons (green channel in Figure 3.12(a)) of a 5dpf 

zebrafish head. Biologist users want to study the shape and spatial relationship of 

the neurons in the region between zebrafish eye and brain. Figure 3.12(a) (dorsal 

view) and (b) (lateral view) show the volume rendering result with no 2D tone 

mapping applied and volume transfer function set to a linear ramp. They also 

represent the results from most other confocal visualization tools when the dataset 

is loaded. Though the general shapes of its major structures can be visualized, 

such as the eyes, the brain, and the tectum, many details, especially those in 

the neuron channel, are either occluded or not clearly seen. The lateral view 

of Figure 3.12(b) shows a common problem for confocal data: the brightness is 

decreasing along the Z-axis (from dorsal to ventral for this dataset). This is the 

direction in which the laser beam travels; due to scattering and tissue occlusion, 

signals become weaker as the scanning goes deeper along this direction. Since the 

brightness decrease is sample dependent, a simple calibration of the microscope 

cannot correct it. Figure 3.12(c) and (d) show the results from the same view 

directions, however rendered with FluoRender's default transfer function settings 

and 2D tone mappings applied. The scale-space equalization operator brightens 

the signals deeper along the Z-axis. In Figure 3.12(c), the brightness is even, yet 

the details of the neural structures are enhanced as well.

3.6 MIP Enhancement with 2D Color Mapping 
and Overlays

A confocal channel is a scalar volumetric dataset, whose values represent the 

fluorescent intensities, which in turn measure amounts of biological expression. 

Biologists often want to assess the amount of gene/protein expression with better 

quantification than just rendering intensities. Furthermore, since high-intensity 

values represent strong biological expression, it is important to visualize them over
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Figure 3.12. Results of scale-space equalization. (a) Dorsal view of a zebrafish 
head dataset rendered without any enhancement. (b) Lateral view of a zebrafish 
head dataset rendered without any enhancement. (c) Dorsal view of a zebrafish 
head dataset rendered with enhancements applied. (d) Lateral view of a zebrafish 
head dataset rendered with enhancements applied.
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low intensity signals. Color mapping is an effective and intuitive method, but not 

without problems for normal volume renderings. Figure 3.13(a) shows a confocal 

channel rendered with a rainbow colormap as the transfer function. Biologist 

users often feel that it does not fit into their research purposes well, because the 

colors in the result do not clearly correspond to those in the colormap and voxels 

with high scalar intensities, which represent strong biological expression and are 

important to the research, are mostly occluded.

The 2D color mapped maximum intensity projection solves both problems 

stated above. Figure 3.13(b) shows the result of a 2D color mapped MIP with 

the same colormap as in Figure 3.13(a). Since MIP does not use normal volume 

compositing, the colors of its result represent the exact intensity values of the 

voxels, and high intensity voxels are always visualized. In fact, MIP is the only 

method recognized by biologists for inspecting fluorescent staining intensities.

However, the way that MIP renders volume data can cause two problems 

for users. First, the orientation of a volume dataset under examination becomes 

obscure, which may confuse users especially when they rotate the data. Biologists 

usually prefer orthographic over perspective projection in order to better compare

(a) (b)

Figure 3.13. Using a colormap as the volume transfer function and 2D color 
mapping of the MIP. All results have the same colormap, as shown on the right. 
(a) The colormap is used as the volume transfer function. (b) The colormap is 
applied to the MIP rendering output. The dataset shows a 5 dpf zebrafish eye.
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structure sizes. It worsens the problem of orientation perception when MIP is 

used. Second, details of surface structures are lost, because unlike most other 

volumetric data, the structural details of confocal data are always comprised of less 

intensive signals surrounding high-intensity ones, since the signals are generated 

by fluorescence emission. Adding global lighting effects, such as shadows, can 

help orient viewers to the renderings of volume data, thus solving the first problem. 

The second problem can be solved by incorporating local lighting effects, such 

as Phong shading. There are methods such as two-level volume rendering [38] 

and MIDA (Maximum Intensity Difference Accumulation) [12] that combine the 

advantages of MIP and shading effects from direct volume rendering. However, 

the results of above techniques are both somewhere between MIP and DVR. One 

important feature of MIP that biologists appreciate, especially when a colormap 

is used, cannot be ensured, i.e., colors of final result represent the exact intensity 

values of the voxels. Furthermore, how global lighting effects, such as shadows, 

can be applied with above techniques is not clear. Fortunately, one structure 

in confocal data is always comprised of low intensity details surrounding high 

intensity cores. This simplification of structures enables us to render MIP and 

lighting effects separately, and then combine them with 2D compositing. The 

MIP pass is color-mapped for examining the biological expression amount of 

structure cores; the shading and shadow passes render surface details and enhance 

orientation perception. The 2D compositing is completed by modulating the color 

brightness of the MIP rendering with the brightness of the effect passes.

Figure 3.14 illustrates the 2D compositing and its result of a confocal dataset 

rendered with a shading layer. In addition, a shadow layer can be rendered and 

composited similarly. Biologists can use the 2D color-mapped MIP with overlays 

for inspecting the amount of biological expression, because the result has a correct 

color correspondence with the colormap used. The renderings of shading and 

shadow passes are grayscale images, and only the color brightness of the 2D 

color-mapped MIP is modulated; therefore, the color hue stays the same, which is 

the actual variable used in the colormap. Figure 3.15 compares 2D compositing
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Brightness Modulation (x)

Figure 3.14. A shading pass is composited with the result of a 2D color-mapped 
MIP pass. The result has the advantages of both MIP and DVR. The dataset has 
three confocal channels, including stained muscles, neurons, and nuclei.

with DVR and MIDA [12], which uses a modified volume compositing scheme. 

Since other methods use compositions in 3D, the voxel colors are blended and 

cannot match the colors used in the colormap. However, for complex structures 

such as a network of blood vessels, this method has its limitation: shading/shadow 

and MIP cannot always be rendered consistently, since users have to adjust the 

volume transfer function for shading and shadow layers. In practice, this mode is 

used when important features are best represented by MIP and biologist users 

want to add enhancements for surface details and orientation perception.

3.7 The FluoRender Visualization Pipeline
We use OpenGL and GLSL for the implementations of the techniques discussed 

previously, including on the fly evaluation of the volume transfer function, tone- 

mapping operator evaluations, shading and shadow calculations, compositing, 

and color mapping. While most of the implementations should be straightforward, 

there are some details worth mentioning. The three tone-mapping operators can 

concatenate and be evaluated at once - we first generate the scale space, apply
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(a) (b) (c)

Figure 3.15. A comparison of DVR (a), MIDA (b), and shading overlay on MIP (c). 
They all use the same colormap shown on the right. The dataset is the mushroom 
body (MB) of an adult Drosophila, stained with nsyb::GFP. This fluorescent protein 
specifically binds to presynaptic regions of neurons. Thus, higher signal intensity 
indicates higher density of synapses of the mushroom body. By using MIP with 
2D overlays, we can clearly see the head of a/a' lobe has higher presynaptic 
density than its neck, which can be similarly observed for ^/ '̂ lobe.

gamma and luminance adjustment to all the levels, and then calculate equalization. 

For fast processing speed, we use the built-in mipmap generating function of 

OpenGL to approximate the scale space. For shadow overlay calculation, we use 

a 2D image space method similar to that of depth buffer unsharp masking [65]. 

Unlike other confocal visualization tools, such as Imaris and Volocity, which use 

ray tracing to precalculate shadows and are not real-time, we use 2D filtering on 

the depth buffer. The rendering speed is real-time, which helps when multichannel 

and time-sequence datasets are visualized. The 2D image space methods are easily 

modularized, and each module can work independently of another. However, 

building an integrated visualization system that neurobiologists can easily use, 

especially when the amount of datasets visualized is large, still requires meticulous 

design of its user interactions. We developed the user interactions through close 

cooperation with frequent FluoRender users and experts in confocal microscopy. 

Figure 3.4 shows a screen capture of FluoRender's main user interface.

Figure 3.16 is an illustration of the FluoRender visualization pipeline. The 

leftmost blocks represent data inputs. Multiple confocal channels can be loaded
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and visualized at the same time. They are grouped by users for easy organization 

and adjustment. Time-sequence datasets can be loaded as well. The confocal 

channels are first processed by different types of volume renderers, which generate 

internal renderings by direct volume rendering or maximum intensity projection. 

Channels in depth mode are combined and rendered with a separate volume 

renderer. Effect layers such as shading and shadow are also generated within 

this process. According to settings of each channel, a rendering result then goes 

through the modules of 2D image space enhancements, including filtering, color 

mapping, overlay compositing, and tone mapping. The enhanced results are 

combined according to their group/view settings, such as layered or composite 

modes. The final result is output to the viewport of the FluoRender main user 

interface. For time-sequence data, they are processed with the same pipeline. A 

timepoint of a sequence is read and fed into the pipeline each time according to 

an event-driven mechanism.



CHAPTER 4

SEGMENTATION AND ANALYSIS OF 

CONFOCAL MICROSCOPY DATA 

4.1 Introduction to Morphological Diffusion
For interactive speed of confocal volume segmentation, we propose morpho­

logical diffusion on a mask volume for selecting desired structures. Morphological 

diffusion can be derived as one type of anisotropic diffusion under the assumption 

that energy can be nonconserving during transmission. Its derivation uses the 

results from both anisotropic diffusion and mathematical morphology.

4.1.1 Diffusion Equation and Anisotropic Diffusion

The diffusion equation describes energy or mass distribution in a physical 

process exhibiting diffusive behavior. For example, the distribution of heat (u) in 

a given isotropic region over time (t) is described by the heat equation:

du(x t) = cv2u(x, t) = v • (cvu(x, t)) (4.1)
dt

In Equation 4.1, c is a constant factor describing how fast temperature can 

change within the region. We want to establish a relationship between heat 

diffusion and morphological dilation. First, we look at the conditions for a heat 

diffusion process to reach its equilibrium state. Equation 4.1 simply tells us that 

the change of temperature equals the divergence of the temperature gradient field, 

modulated by a factor c . We can then classify the conditions for the equilibrium 

state into two cases:

• Zero gradient. Temperatures are the same everywhere in the region.
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• Solenoidal (divergence-free) gradient. The temperature gradient is nonzero, 

but satisfies the divergence theorem for an incompressible field, i.e., for any closed 

surface within the region, the total heat transfer (net heat flux) through the surface 

must be zero.

The nonzero gradient field can be sustained because of the law of conservation 

of energy. Consider the simple 1D case in Figure 4.1, where the temperature is 

linearly increasing over the horizontal axis. For any given point, it gives heat out 

to its left neighbor with lower temperature and simultaneously receives heat of 

the same amount from its right neighbor. In this 1D case, the loss and gain of heat 

reach a balance when the temperature field is linear. As we are going to see later, 

if we lift the restriction of energy conservation, the condition for equilibrium may 

not hold, and we need to rewrite the heat equation under new propositions.

The generalized diffusion equation is anisotropic. Specifically, we are interested 

in the anisotropic diffusion equation proposed by Perona and Malik [80], which 

has been extensively studied in image processing.

Figure 4.1. Conserving and nonconserving energy transmissions. (a) The initial 
state has a linear gradient. We are interested in the energy change of the center 
piece. (b) Energy is transferred from high to low (gradient direction), as indicated 
by the arrows. (c) Result of typical conserving transmission. The center piece 
receives and gives the same amount of energy, which maintains a solenoidal 
gradient field. (d) Result of dilation-like transmission, which is not energy 
conserving. The center piece gains energy and a solenoidal gradient field cannot 
be sustained.
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= v . (g(x, f)VM(x, t)) (4.2)

In Equation 4.2, the constant c in the heat equation is replaced by a function 

g(), which is commonly calculated in order to stop diffusion at high gradient 

magnitude of u.

4.1.2 Morphological Operators and Morphological Gradients

In mathematical morphology, erosion and dilation are the fundamental 

morphological operators. The erosion of an image I by a structuring element B is:

e(x) = min(I(x + b)|b e B) (4.3)

And the dilation of an image I by a structuring element B is:

5(x) = max(I(x + b)|b e B) (4.4)

For a flat structuring element B, they are equivalent to filtering the image with 

minimum and maximum filters (rank filters of rank 1 and N, where N  is the total 

number of pixels in B), respectively.

In differential morphology, erosion and dilation are used to define morpho­

logical gradients, including Beucher gradient, internal, and external gradients, 

etc. Detailed discussions can be found in [84] and [95]. In this chapter, we 

are interested in the external gradient with a flat structuring element, since for 

confocal data, we always want to extract structures with high scalar values and 

the region-growing process of high scalar values resembles dilation. Thus, the 

morphological gradient used here is:

| vI(x)| = 5(x) -  I(x) (4.5)

Please note that for a multivariable function I, Equation 4.5 is essentially a 

discretization scheme for calculating the gradient magnitude of I at position x.
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4.1.3 Morphological Diffusion

If we consider the morphological dilation defined in Equation 4.4 as energy 

transmission, it is interesting to notice that energy is not conserved. In Figure 4.1, 

we show that within a neighborhood of a given position, the local maximum can 

give out energy without losing its own. Thus, for a closed surface within the 

whole region, the net energy flux can be non-negative. In other words, under the 

above assumption of nonconserving energy transmission, the solenoidal gradient 

condition (Section 3.1) for the equilibrium of heat diffusion no longer holds. 

Therefore, the heat diffusion can only reach its equilibrium when the energy field 

has zero gradients.

Based on the above reasoning, we can rewrite the heat equation (Equation 4.1) 

to its form under the dilation-like energy transmission:

t) = c|vu(x, t)| (4.6)

Equation 4.6 can be simply derived from Fourier's law of heat conduction [16], 

which states that heat flux is proportional to negative temperature gradient. 

However, we feel our derivation can better reveal the relationship between heat 

diffusion and morphological dilation. To solve this equation, we use forward 

Euler through time and the morphological gradient in Equation 4.5. Notice that 

the time step At can be specified with c for simplicity when the discretization of 

time is uniform. Then, the discretization of Equation 4.6 becomes:

u;+1 (x) = ui(x) + c(bi(x) -  ut(x))
(4.7)

= cbi(x) + (1 -  c)ui(x)

When c = 1, the trivial solution of Equation 4.6 becomes the successive dilation 

of the initial heat field, which is exactly what we expected.

Thus, we have established the relationship between morphological dilation and 

heat diffusion from the perspective of energy transmission. We name Equation 4.7 

morphological diffusion, which can be seen as one type of heat diffusion process
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under nonconserving energy transmission. Though a similar term has been used 

in the work of Segall and Acton [92], we use morphological operators for the actual 

diffusion process rather than calculating the stopping function of anisotropic 

diffusion. Our purpose of using the result for interactive volume segmentation 

rather than simulating physical processes legitimizes the lifting of the requirement 

for conservation. We are interested in the anisotropic version of Equation 4.7, 

which is obtained simply by replacing the constant c with a stopping function 

g(x):

Ui+1 (x) = Ui(x) + g(x)(bi(x) -  Ui(x))
(4.8)

= g (x)5i(x) + (1 -  g (x))ui(x)

In Equation 4.8, when the stopping function g(x) is in [0,1], the iterative 

results are bounded and monotonically increasing, which lead to a stable 

solution. By using morphological dilation (i.e., maximum filtering), morphological 

diffusion has several advantages when applied to confocal data and implemented 

with graphics hardware. Morphological dilation's kernel is composed of only 

comparisons and has the least computational overhead. The diffusion process 

only evaluates at nonlocal maxima, which are forced to reach their stable states 

with fewer iterations. Last but not least, in an iterative process of morphological 

diffusion evaluation, since local scalar values are increasing monotonically, the 

converging result is stable when neighboring voxels are updated simultaneously 

by multiple threads. This means this algorithm is very suitable to be implemented 

on massive parallel graphics hardware. No extra memory and context switch 

are necessary for the process known as frame buffer object ping-pong, which 

is commonly used in evaluation of standard anisotropic diffusion on graphics 

hardware. In Chapter 5, we further discuss frame buffer feedback loops, which is 

considered efficient for evaluating converging iterative processes. When coupled 

with our user interactions, morphological diffusion is able to extract desired 

structures from typical confocal data with interactive speed on common PCs.
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4.2 User Interactions for Interactive Volume 
Segmentation

Paint selection [74], [61] with brush strokes is considered one of the most 

useful methods for 2D digital content authoring and editing. Incorporated 

with segmentation techniques, such as level set and anisotropic diffusion, it 

becomes more powerful yet still intuitive to use. For most volumetric data, this 

method becomes difficult to use directly on the renderings, due to occlusion 

and the complexity of determining the depth of the selection strokes. Therefore, 

many volume segmentation tools' user interactions are limited to 2D slices. 

Taking advantage that the confocal channels usually have sparsely distributed 

structures, direct paint selection on the render viewport is actually very feasible, 

though selection mistakes caused by occlusion cannot be completely avoided. 

Using the result from Section 4.1, we developed interaction techniques that let 

users progressively select structures from confocal data. These techniques share 

similarities with the sketch-based volume selection methods described in previous 

literature [113], [18], [78], [1]. However, the algorithm presented in Section 3 

allows us to use paint strokes with varying sizes so that users can progressively 

select structures and edit the selections.

Figure 4.2 illustrates the basic process of extracting a neural structure from 

confocal volume with our method. First, a scalar mask volume is generated. Then, 

the user defines seed regions by painting on the render viewport. The pixels 

of the defined region are then projected into 3D as a set of cones (cylinders if 

the viewport is orthographic) from the camera's viewpoint. Voxels within the 

union of these cones are thresholded to generate seeds in the mask volume, where 

seeds have the maximum scalar value, and other voxels have zero value. Then 

a wider region, which delimits the extent of subsequent diffusion, is defined by 

painting again on the viewport. The second region is projected into the volume 

similarly. Then, in the mask volume, the selected seeds propagate by iteratively 

evaluating Equation 4.8. Structures connected to those registered by the seeds 

are then selected in the mask volume. The resulting mask volume is not binary,
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Figure 4.2. Volume paint selection of neural structures from a confocal volume. (a) 
The visualization of certain neural structures (top) and the camera setup (bottom). 
(b) A user paints on the viewport. The stroke (green) is projected back into the 
volume to define the seed generation region. (c) The user paints on the viewport 
to define the diffusion region. The stroke (red) is projected similarly and the seeds 
generated in B grow to either the structural boundaries or the boundary defined 
by the red stroke. (d) The intended neural structure is extracted.

though the structural boundaries can be more definitive by adjusting the stopping 

function, which is subsequently discussed. After each stroke, the mask volume is 

instantly applied to the original volume, and the selected structures are visualized 

with a different color against the original data. The user can repeat this process 

for complex structures, since the calculation only modifies the mask volume and 

leaves the original data intact.

We use gradient magnitude (|vV|) as well as scalar value (V) of the original 

volume to calculate the stopping function in Equation 4.8, since, for confocal 

data, important structures are stained by fluorescent dyes, and they should have 

high scalar values. The stopping function (Equation 4.9) is the product of two 

parts. gi() is calculated as the Gaussian of | vV|, which stops the growth at high 

gradient magnitude values; g2() is calculated as the Gaussian of V, which stops 

the growth at low scalar intensities. The combined effect of the two parts is that 

the growth stops at regions of both high gradient magnitude values and low 

intensities, which are considered edges or boundaries for confocal data.
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g(V) = gi(V) • g2(V)
' 1 |W| < t1

g i(V )  = \ - qwyi)2
otherwise

g2(V)

k2 (4.9)
(V-t2)2

k2 V < t2
otherwise

The graphs of the two parts of the stopping function are in Figure 4.3. ti and 

t2 translate the falloffs of g1 () and g2(), and the falloff steepness is controlled by 

and k2. The combined effect of g1 () and g2() is that the seed growing stops at high 

gradient magnitude values and low intensities, which are considered borders for 

structures in confocal data.

By limiting the seed growth region with brush strokes, users have the flexibility 

of selecting the desired structure from the most convenient angle of view. 

Furthermore, it also limits the region for diffusion calculations and ensures 

real-time interactions. For less complex structures, seed generation and growth 

region definition can be combined into one brush stroke; for over-segmented or 

mistakenly selected structures, an eraser can subtract the unwanted parts. We
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Figure 4.3. The two parts of the stopping function. g1 () is for stopping the growth 
at high gradient magnitude values and g2() is for stopping at low scalar intensities. 
The final stopping function is the product of g1 () and g2().
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designed three brush types for both simplicity and flexibility. Biologists can use 

these brushes to extract different structures from confocal data.

Selection brush combines the definition of seed and diffusion regions in one 

operation. As shown in Figure 4.4, it has two concentric circles in the brush stamp 

shape. Strokes created by the inside circle are used for seed generation, and 

those created by the outside circle are for diffusion region definition. Usually, the 

diameter of the inside circle is set slightly smaller than the root of a structure. The 

diameter of the outside circle is determined by how the substructures branch out 

from the root structure. By combining the two operations, it makes interaction 

easier. For example, to extract an axon and its terminal branches, the inside circle 

is set roughly to the size of the axon, and the outside circle is set to that can 

enclose the terminals. Morphological diffusion is calculated on finishing each 

stroke, which appends newly selected structures to existing selections. Since 

users can easily rotate the view while painting, it is helpful to use this tool and 

select multiple structures or different parts of one complex structure from the 

most convenient observing directions. Figure 4.4 demonstrates using the selection 

brush to extract a visual projection neuron of a Drosophila brain.

Eraser behaves similarly to the selection brush, except that it first uses 

morphological diffusion to select structures, and then subtracts the selection 

from previous results. The eraser is an intuitive solution to issues caused by 

occluding structures: mistakenly selected structures because of obstruction in 

2D renderings can usually be erased from a different angle of view. Figure 4.5 

demonstrates such a situation where one neuron obstructs another in the rendering 

result. The eraser is used to remove the mistakenly selected structures.

Diffusion brush only defines the diffusion region. It generates no new seeds 

and only diffuses existing selections within the region defined by its strokes. Thus, 

it has to be used after the selection brush. With the combination of the selection 

brush and the diffusion brush, occluded or occluding neural structures can be 

extracted easily, even without changing viewing angles. Figure 4.6 shows the 

same example as in Figure 4.5. First, the selection brush is used to extract only the
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Figure 4.4. Selection brush. The dataset contains neurons of a Drosophila adult 
brain. The original dataset has a neuron that a user wants to extract, which is 
visual projection neuron LC14 [76]. First, a stroke is painted with the selection 
brush. Then a second stroke is painted, which covers the remaining part of the 
neuron. Finally the neuron is extracted.

nonobstructing part of the neuron. Then, the remaining of the neuron is appended 

to the selection by painting with the diffusion brush. Since the obstructing part is 

not connected to the neuron behind, and the diffusion brush does not generate 

new seeds in that region, the neuron behind is not selected.

As seen in the above examples, our interactive segmentation scheme allows 

inaccurate user inputs within fairly good tolerance. However, using a mouse to 

conduct painting work is not only imprecise but also causes fatigue. We support
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Figure 4.5. Eraser. The dataset contains neurons of a Drosophila adult brain. The 
yellow dotted region indicates the structure that a user wants to extract (visual 
projection neuron LT1 [76]). From the observing direction, the structure obstructs 
another neuron behind (visual projection neuron VS [76]). First, a stroke is painted 
with the selection brush. Then, LT1 is extracted, but VS is partially selected. Then, 
the view is rotated around the lateral axis. The second yellow dotted region 
indicates extra structures to be removed. Another stroke is painted with the eraser. 
The extra structures are then removed. The view is rotated back. Finally, we have 
a visualization of the extracted neuron (LT1).
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Figure 4.6. Diffusion brush. The dataset contains neurons of a Drosophila adult 
brain. The original dataset is the same as in Figure 4.5. First, a stroke is painted 
with the selection brush on the nonobstructing part of LT1 and part of LT1 is 
selected. Then, the diffusion brush is used to select the remaining of LT1. LT1 is 
selected without selecting the obstructed neuron (visual projection neuron VS). 
Then, the view is rotated around the lateral axis, to confirm the result. Finally, we 
have a visualization of neuron LT1 after extraction.
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the latest digital tablets in our tool for dexterity enhancement. The active tablet 

area is automatically mapped to the render viewport. Thus, all the available area 

on the tablet is used in order to maximize the precision, and the user can better 

estimate the location of the strokes even when the stylus is hovering above the 

active area of the tablet. Furthermore, stylus pressure is utilized to control the 

brush size. Though the pressure sensitive brushes are a feature that can be turned 

off by users, our collaborating neurobiologists like the flexibility of changing the 

brush sizes on the fly. It helps to extract neural structures of varying sizes more 

precisely (Figure 4.7).

Figure 4.7. A digital tablet and its usage. The dataset contains neurons 
of a zebrafish head. The original dataset contains stained tectum lobes and 
photoreceptors of eyes. Since the tectum lobes and the photoreceptors actually 
connect, we want to better control the brush size for diffusion at the regions of 
connection, when only the tectum lobes are to be extracted. First, two strokes 
are painted with the selection brush. The stroke size changes as user varies the 
pressure applied to the tablet's stylus. The tectum lobes are then selected. Finally, 
the tectum lobes are extracted and visualized.
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4.3 Integration of Interactive Segmentation with 
Visualization Functions

In FluoRender, the previously discussed interactive segmentation techniques 

are not simply placed on top of its existing visualization pipeline. Instead, 

they take advantage of the features within the visualization pipeline and give 

users more intuitive operations. On one hand, a clear visualization improves 

segmentation accuracy. On the other hand, segmented results are used to enhance 

visualization. In an integrated workflow of FluoRender, the interactions between 

visualization and segmentation include the following techniques.

• Volume transfer function. This is only obvious in an interactive environment. 

When users adjust parameters of the volume transfer function for a clear 

visualization, sometimes it may only work for a simple structure or one part of 

an entire dataset. Segmentation can take the values emphasized or suppressed 

by the transfer function instead of the original values. Structures emphasized by 

current transfer function settings are more easily extracted. Then, for a different 

structure or different part of the same dataset, a different transfer function can 

be set before segmentation. The results should satisfy users' intentions better 

and segmentation functions seem to be more intuitive and versatile for users. 

Figure 4.8 shows an example of an extreme case, which requires us to extract both 

bones and muscles from a confocal dataset. The muscles, tendons, and nerves of 

this specimen were stained; bones could be visualized as black regions. While it 

is relatively easy to extract the muscles, correct segmentation of bones becomes 

difficult, as their boundaries could not even be clearly visualized without transfer 

function manipulations. Here, we first inverted the scalar values of the dataset, 

and then decreased the gamma in the volume transfer function. Not only were 

the bones rendered with brighter intensities, their boundaries were also easily 

enhanced with 2D image space methods. After some simple adjustments, these 

structures were easily identified and extracted using FluoRender.

• Tone-mapping operators. In Section 3.5, Chapter 3, we discussed tone- 

mapping operators in FluoRender. Their effects on volume rendering results can
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(a) (b)

(c) (d)

Figure 4.8. Segmenting the ulna from the muscle channel of a confocal scan of a 
mouse embryo. (a) Bones are black regions in the origin channel. (b) The scalar 
intensities of this channel are inverted. (c) We segment the ulna by painting. (d) 
the segmented result.

be applied to segmentation results as well. When users change the tone-mapping 

settings in FluoRender, we first generate a weight map, which contains the 

brightness difference by dividing the original rendering from the tone-mapped 

result. The weight map is then projected along with painted strokes. When 

the seeds are generated or the morphological diffusion is evaluated, the volume 

transfer function adjusted voxel values are again modulated by the weights on 

the weight map. Therefore, structures with intensity voxels are enhanced and 

can be extracted more easily without changing the settings for morphological 

diffusion. Figure 4.9 is an illustration of this process.

• Clipping planes. FluoRender has a specially designed clipping system to
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Figure 4.9. A weight map is the brightness difference between original rendering 
and tone-mapped result. It is projected into the volume along with paint strokes. 
Both seed generation and diffusion are then influenced by the weight map.

work along with its interactive segmentation. Firstly, it uses six axis-aligned 

clipping planes, whose positions along the axes can be adjusted individually. 

An arbitrary block of volume data can be extracted using these clipping planes. 

Then, segmentation is only calculated within this isolated region. Secondly, the 

six-plane system allows quickly setting two opposite clipping planes to include 

just one section of the original volume data. This is equivalent to the commonly 

used slice-based segmentation, when rotation of the dataset is then locked to only 

orthogonal views. Thirdly, FluoRender allows users to rotate the clipping planes. 

It becomes a better integrated implementation of the oblique slicing plane from 

Sowell et al. [96], since the oblique image plane is embedded into the functions of 

clipping planes. Finally, the clipping plane system allows aligning with current
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viewing plane. Using view direction to rotate clipping planes has the advantage 

that users do not need to interact with less intuitive widgets for rotations. They 

can simply change the current viewing direction and then tell the clipping planes 

to align with the best view.

• Multichannel calculations. There are often correlated structures in different 

channels from one confocal scan. For example, cell membranes confine nuclei 

into clearly separate regions. Such spatial relationships not only help visual 

identification and distinction structures, but can also be incorporated into 

segmentation calculations. We define four calculations between two correlated 

confocal channels to utilize their spatial relationship when possible.

o Addition. It adds corresponding voxel scalar values of two channels. The 

result has enhanced common structures. Or it is simply used to combine two 

channels.

o Subtraction. It subtracts corresponding voxel scalar value of one channel 

from another. It is used to remove structures common to two channels that 

are unwanted in one channel. In the cell membrane and nucleus example, the 

membrane channel is subtracted from the nucleus channel for better definition of 

each nucleus.

o Division. It divides corresponding voxel scalar value of one channel by 

another. It is often used to compare the difference between two channels.

o Boolean A N D . For scalar data, this operation is actually calculating the 

minimum of two corresponding voxels. It is used to extract common structures 

from two confocal channels. These structures are usually stained by multiple 

fluorescent tags and termed colocalization in biology. It is referred as Boolean 

AND because of the similar effect to that of binary data.

In the user interface of FluoRender, these operations are placed together with 

segmentation settings. Users can perform them before segmenting confocal 

channels or after for comparison.



CHAPTER 5

CELL TRACKING USING SYNTHETIC 

BRAINBOWS

Interactive techniques presented in Chapter 4 were designed to work best 

with 3D branching structures such as neuron cells and nerve bundles. Most cells 

in biology research have simpler shapes but occur more frequently. Furthermore, 

continuous confocal imaging of living cells becomes available. Biologists often 

want to find the trajectories of a group of cells through time. Our techniques 

designed for extracting neural structures need to be adapted and improved 

for cell identification and tracking. We developed a technique, Synthetic 

Brainbows, assigning random IDs to complex structures in confocal data. Its 

results resemble those from the true Brainbow technique. We first tested and 

determined randomness in GPU framebuffer feedback loops. Then, we applied 

GPU framebuffer feedback loops to single-channel confocal data to generate 

labeled volumes. Finally, the method was applied to time sequences of confocal 

data to track moving cells.

5.1 Randomness in a GPU Framebuffer Feedback 
Loop

As discussed in Section 2.5, we expect randomness in asynchronous operations 

in the massive parallel copmuting environment of GPUs. In order to leverage 

the randomness, we would like to first examine the behavior of GPU framebuffer 

feedback loops. To avoid unnecessary complexity, we restrict the investigation 

to integer textures and turn off texture filtering. Then, the behavior of GPU 

framebuffer feedback loops can be studied with cellular automaton models. This 

is inspired by Hawick et al. [39] and Oliveira and Lotufo [73], whose work used
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cellular automaton models for connected component labeling. Specifically, we 

are interested in a cellular automaton described by Algorithm 5.1.

Algorithm 5.1 Basic ID merging
For each cell

A unique ID is assigned as the initial state;
For each iteration 

For each cell
The cell's state is replaced by the maximum 
ID within its neighborhood;

We use a 1D example to demonstrate the reason that we chose this particular 

cellular automaton for examination of the random behavior of GPU framebuffer 

feedback loops. In Figure 5.1, a 1D cellular automaton has eight cells. At its 

initial state, each cell is assigned an integer ID, which is in ascending order. We 

examine three different methods of updating the cells. First, the cells are updated 

synchronously, which means we need an extra buffer to save the intermediate 

results. In this case, the order of how the cells are updated makes no difference 

to the results. It requires seven iterations to converge to all the same ID. Then, 

we update the cells asynchronously, i.e., reading and writing IDs without using 

an extra buffer. Since the order of how the cells are updated can be random and 

influence the result, we examine two extreme cases among all the combinations 

of update orders. The second method updates the cells asynchronously in order 

from left to right. The result looks exactly the same as when the cells are updated 

synchronously. Lastly, we update the cells asynchronously, but in reverse order. 

It only requires one iteration for the maximum ID to propagate.

We are able to make several observations from this example. First, if we 

color-map the IDs, we can see a fixed stripe pattern "marching" through the grid 

when the IDs are ordered and the updates are synchronous. Second, when the 

updates are not synchronous, the "marching" pattern is the same as synchronous 

updates only if the update order is the same as the ID order, and is disturbed
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Figure 5.1. Comparison of synchronous and asynchronous updates of a 1D cellular 
automaton. The illustration shows only the first iteration in detailed steps. In the 
synchronous case, the original buffer is in red and the extra buffer for intermediate 
results is in green. Values are updated according to the maxima within the moving 
window (in blue), indicated by the yellow arrows. In the asynchronous cases, 
there is no extra buffer, so updates are immediate. The updated values in each 
step when the window moves are in dark red. We can repeat the iteration for the 
first two cases until all cells are updated to the maximum ID. Their results look 
exactly the same. The last case has already converged after the first iteration.

otherwise. We are able to detect such disorderliness by comparing the result from 

the asynchronous update to that of the synchronous update. Third, asynchronous 

update can potentially accelerate ID propagation.

The above example only shows the extreme or ideal cases. In reality, it would 

probably fall somewhere between the ideal cases. Suppose that the behavior 

of GPU framebuffer feedback loops is purely asynchronous and the chances of 

ordered and reverse ordered asynchronous updates are equal; we shall not see 

the regular patterns of "marching" IDs in the synchronous case, because they are 

so disturbed and become chaotic.

We extend the above idea and use it to detect the occurrence of asynchronous 

updates in GPU framebuffer feedback loops, which we assume to be the sole cause
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of randomness in the process. For a given graphics card and a framebuffer texture 

of given size, we first assign IDs in ascending order. In 2D, this can be row-first 

or column-first, which does not influence the result. We run Algorithm 5.1 

once in a framebuffer feedback loop and compare the outcome with that from a 

synchronous update. In the asynchronous result, we count the number of pixels 

that have different IDs than in the synchronous result. These pixels have different 

IDs because the orders of asynchronous updates are against the ID order. To 

count asynchronous updates of the reverse directions, we then do the same but 

with reverse ordered IDs. Both experiments are repeated for ten times. We then 

calculate the average percentages of asynchronous updates for both ordered and 

reverse ordered IDs. The two average values are added to estimate the total 

occurrence of asynchronous updates. We experimented with four graphics cards 

and each with eight different texture sizes. The results are illustrated in Figure 5.2.

The tested graphics cards should be representative for current (ca 2012) 

main-stream models from the two major GPU manufacturers: AMD and nVidia. 

The tested results reveal important characteristics of framebuffer feedback loops. 

Firstly, contrary to our initial speculation, framebuffer feedback loops are not 

entirely asynchronous. This is due to texture caching. Framebuffer feedback loop 

exhibits similar behavior to framebuffer Ping-Pong for small texture sizes (no 

asynchronous updates), as texture cache and graphics memory are working as two 

buffers for reading and writing. Secondly, occurrence of asynchronous updates 

increases as texture size increases. However, even for asynchronous updates, 

GPU threads tend to access memory with ascending order. This can be seen from 

the much higher occurrence rate of asynchronous updates when the IDs are in 

reverse order. Thirdly, GPUs from different manufacturers (AMD vs. nVidia) 

exhibit different occurrence rates of asynchronous updates. However, GPUs from 

the same manufacturer have similar results, even if they are in different series (for 

example, GeForce 400 series vs. 600 series). In conclusion, for specific graphics 

hardware, the behavior of framebuffer feedback loop is nondeterministic but 

predictable within a certain range, which is the result of a hybrid of synchronous
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Figure 5.2. Test results of occurrence of asynchronous updates for four graphics 
cards: nVidia GeForce GTX 460, GTX 680, AMD FirePro M8900, and Radeon HD 
7970. The horizontal axes of all plots are texture sizes tested. The vertical axes are 
the occurrence of asynchronous updates in percentage.

and asynchronous updates. It is worth mentioning that the authors did the tests 

within their available resources. The behavior of framebuffer feedback loop may 

vary greatly for older or future hardware, or integrated GPUs. We continue our 

discussion in the following sections with regard to the tested graphics hardware. 

Framebuffer feedback loops are always used in the subsequent discussions on 

Synthetic Brainbows.

5.2 Synthetic Brainbows
5.2.1 ID Shuffling

In fact, Algorithm 5.1 was discussed in the work of Hawick et al. [39] and that 

of Oliveira and Lotufo [73] as a local merging step in their GPU implementations
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of connected component labeling. If we introduce a binary mask into an iterative 

process, assigning and propagating IDs only within the masked regions, it 

converges to the labeled connected components of the mask. With framebuffer 

feedback loops, the result still converges and is deterministic, since cell values are 

monotonically increasing and upper bounded within each connected component. 

This also can be considered as a simple case of chaotic relaxation [17]. However, 

if we focus on the process itself rather than its convergence, we should be able 

to observe one problem when IDs are ordered as initial states. For example, 

a spiral is used as the binary mask in Figure 5.3. If we consider the spiral as 

a complex structure, the visualization task here is to decompose the structure 

into simpler shapes so that each component as well as the spatial relationships 

among components can be more easily studied. Connected component labeling, 

which considers the complex structure as one component, does not fulfill the 

requirement. A simple solution is to stop the iterative process of local ID merging 

at fixed iterations. This generates stochastic patterns due to asynchronous updates. 

But also, because the tested graphics cards largely exhibit synchronous behavior, 

as discussed in Section 5.1, local ID merging generates many small subregions 

(Figure 5.3 (a) and (b)). The high frequency patterns in these unmerged regions 

can be visually distractive. To compensate for this and generate fewer subregions 

after certain iterations, we propose ID shuffling. ID shuffling does not randomly 

change the order of IDs. Instead, IDs are meant to be evenly distributed. This is 

formally defined as maximizing the grid distance between any ordered pair of 

adjacent IDs. Intuitively, it can be understood as the process of placing IDs, from 

large to small, onto an empty grid. Wherever an ID is placed on the grid, the next 

smaller ID is placed so that the pair can be as far apart as possible. The result is 

that local merging is centered at local maxima and small subregions are quickly 

merged into larger regions (Figure 5.3(c)).

For easy implementation, we first consider an ID shuffling algorithm for grids 

of size 2n. The shuffled IDs are easily generated from their grid coordinates, 

as the IDs are spatially placed according to a binary (or quad- for 2D, or oct-
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(a) (b) (c)
Subregions: 355 Subregions: 560 Subregions: 12

Figure 5.3. A 512x512 binary image of a spiral is used as a mask for Algorithm 5.1. 
After 512 iterations, different ID orderings exhibit different patterns when IDs are 
color-mapped. (a) IDs are in ascending order. (b) IDs are in descending order. (c) 
IDs are shuffled with Algorithm 5.3. The numbers of remaining subregions are 
shown below the images. Yellow arrowheads point to regions where high amount 
of unmerged subregions are present, due to the largely synchronous behavior 
of the graphics card. With shuffled IDs, the algorithm is able to generate fewer 
subregions with the same number of iterations. The tests are done on an AMD 
Radeon HD 7970 graphics card, which exhibits the least asynchronous behavior 
in Figure 5.2. There are fewer remaining subregions when a more asynchronous 
graphics card is used, e.g., nVidia cards. However, the difference between ordered 
and shuffled ID orderings is still quite large.

for 3D, etc.) encoding tree. We first introduce the shuffling algorithm for a 1D 

grid (Algorithm 5.2), which is illustrated in Figure 5.4. In the algorithm, the 

function reverse_bit() reverses the order of the binary code of the input integer. 

The subtraction step at the end is only for indices starting from 0. We want to 

exclude 0 from valid IDs, since it is used as a mask value. It is equivalent to 

increasing the reversed index value by 1.

Shuffling algorithms for higher dimensional grids are extensions of Algo­

rithm 5.2. In Algorithm 5.3, the function interleave_bit() combines the bits of its 

multiple inputs in an interleaving fashion. For example, in a 3D grid, we have 

calculated I 'x, I'y, and I'z for one cell. The first bit of the function's output I' is the 

first bit of I 'x, and then the second bit of I' is the first bit of iy, and then the first bit 

of IZ, and so on.
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Figure 5.4. ID shuffling for an 8-cell 1D grid. The binary code of each cell index is 
reversed and then subtracted from the total cell number. The IDs are placed in 
the order of visiting the binary tree shown below, with depth-first traversal. In 
the tree, larger IDs are on nodes of higher levels.

Algorithm 5.2 ID shuffling for a 1D grid
Define N = the number of cells of the grid and 
N = 2n, (n e  Z);
For each cell

I = the cell's grid index;
I' = reverse_bit(I);
ID = N - 1';

For a grid of an arbitrary size, it is considered as a subregion of a larger grid 

of size 2n. Then, IDs of any grid can be calculated using Algorithm 5.3. Our
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Algorithm 5.3 ID shuffling for a high-dimensional grid
Define {Ni} = the number of cells in each dimension 
and Ni = 2m, (m e Z);
Define N = n  (Ni);
For each cell

{Ii} = the cell's grid index in each dimension;
{l'} = {reverse _bit(Ii)};
I' = interleave_bit({I'});
ID = N - I' ; i

algorithm is not the unique way to shuffle IDs. Equivalent algorithms can be 

derived, for example, by swapping nodes on the same level of the binary tree 

in Figure 5.4. However, our algorithm is suitable for parallel evaluation, as 

each cell's ID is uniquely defined by its indices. For repetitive evaluations of 

different grids, IDs can be precalculated and reused. Furthermore, in addition to 

asynchronous computing models, ID shuffling is potentially an improvement to 

existing connected component labeling algorithms, since it accelerates the local 

merging step. However, for visualization purposes, our ID merging algorithm 

with shuffling can only be applied on binary data. The decomposition of complex 

structures still seems to be arbitrary. In order to apply it on grayscale data and 

for the colorization to follow structural information, finer control over the local 

merging process is necessary, which is discussed next.

5.2.2 Monte-Carlo Sampling

Our goal here is to apply ID merging on a single channel of confocal microscopy 

data, and generate Brainbow-like images. We want the colorization process to 

be applied directly as we do not want to rely on presegmented results. Since we 

want to have unique IDs for individual regions, one difficulty of applying the 

colorization described in Section 5.2.1 to grayscale data is that IDs cannot be simply 

scaled according to scalar intensities. However, we can control the merging speed 

of IDs based on scalar intensities. This is achieved through temporal Monte-Carlo
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Algorithm 5.4 Colorization of a grayscale volume 
Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 5.3; 
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N

The cell's ID is replaced by the maximum ID 
within its neighborhood;

sampling. The algorithm for colorizing a grayscale volume is listed.

In Algorithm 5.4, M is a scalar value calculated from the original scalar volume. 

It measures the features that we use to control the merging speed. For example, 

the stopping function in a standard anisotropic diffusion [80] can be used as the 

measure of homogeneity. We can use this measure if we want the merging to 

be faster in homogeneous regions and slower at edges (less homogeneous). The 

value N can be seen as a pseudo-random number generated from a 4D (3D plus 

time or iteration) noise function [37]. If the value of M is higher, there is also a 

higher chance that the ID is merged, and vice versa.

We first experimented with a common measure of edges, which is defined by 

the gradient magnitude of the intensity value S:

|v(S)|2
M  = e (5.1)

Figure 5.5 shows the result of applying Algorithm 5.4 on a confocal scan 

(512x512x85x8bit) of a Drosophila brain. The nervous system of the Drosophila 

brain has complex structures, where important structures can easily be obscured. 

We ran 200 iterations of ID merging and examined the patterns generated from 

Algorithm 5.4. Notice that the ordered ID sequence was repeatedly mapped to a 

palette of bright colors that resemble fluorescent markers. Because of ID shuffling 

(Algorithm 5.3), the colors were spatially shuffled too. The colored volume was 

then modulated by the original scalar intensities. The number of iterations was
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(a) (b)

Figure 5.5. Colorization of a confocal scan of a Drosophila brain 
(512x512x85x8bit). (a) The volume rendering of the original dataset. (b) The 
volume rendering of the colorized dataset. Dotted outlines indicate large and 
homogeneous structures. It took 200 iterations to generate the result. Generating 
the result took around 1 second on an AMD Radeon HD 7970.

chosen to generate the desired color variations. Comparing the colorized volume 

(Figure 5.5 (b)) with the original volume (Figure 5.5 (b)), we can observe that large 

and homogeneous structures are emphasized, which are indicated by the dotted 

outlines in Figure 5.5 (b). Small structures are also distinctively colored. This 

is helpful when one structure is obstructing another. Their spatial relationship 

becomes clear, as they are colored differently. An apparent drawback of using only 

gradient magnitude as the measure for edges is that faintly connected structures, 

such as the fibers in the lower right region of Figure 5.5, are colored differently 

even for the same branch. To generate the result in Figure 5.5, o in Equation 5.1 

was set to 0.5. If we further increase its value, more structures are merged and 

colored the same, which reduces the resolving capability. This is illustrated in 

Figure 5.6 by an example of two idealized touching biological cells, where we 

have to increase the o value in order to merge the surrounding IDs. For just 

two cells, we can easily stop the merging process when the two groups of IDs
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(a) (b) (c) (d)

Figure 5.6. An illustrated example of two idealized touching biological cells. 
(a) The original data. Cells have high intensity and low gradient magnitude 
at their centers and low intensity but high gradient magnitude at borders. (b) 
Algorithm 5.4 is used with the measure in Equation 5.1. When the o value in 
Equation 5.1 is low, the centers of the cells are colored differently. However, they 
are surrounded by a cloud of various colors (IDs), which obscures the content 
inside. (c) When we increase the o value, the two cells are fused together. (d) 
When we introduce a size constraint, the two cells can be colored as desired.

join at the boundary, similar to Figure 5.6 (d). This becomes impractical for a 

large amount of cells or complex structures, since the iteration number is a global 

parameter and cannot be tuned for all structures of different sizes.

A great advantage of using the ID merging process is that the size of each 

individual structure having the same ID can be retrieved by counting the number 

of cells with the same ID. The size of each structure is then used to control 

the merging process. The problem of two touching cells can be solved using a 

two-pass method. In the first pass, a low o value is used and the result looks 

like Figure 5.6 (b). Then, we count the size of each structure having the same ID, 

similar to calculating component sizes in connected component analysis. In the 

second pass, we use a high o value and set a constraint on component size, which 

is described in Algorithm 5.5.

If the size constraint is set to lower than the size of the smaller cell, the 

surrounding IDs in Figure 5.6 (b) are merged into the two cells. The IDs from 

the two cells, however, cannot be merged into one another, because of the size 

constraint. The result should look like Figure 5.6 (d). Notice that although the size
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Algorithm 5.5 Synthetic Brainbow (colorization of a grayscale volume with size 
constraint)
Define S the scalar volume of original data;
Define ID the ID volume generated by Algorithm 5.3;
Define B a Boolean volume whose voxels represent 
if they are in a component with size over a threshold;
For each cell in ID

M = the measure of features in S;
N = a sample from a 4D noise function;
If M > N and !B

The cell's ID is replaced by the maximum ID 
within its neighborhood;

constraint is a global parameter, it is used to safely merge IDs in noisy regions. 

So, it is usually set at a relatively small value. Larger structures are merged by 

adjusting the measure of features and iteration numbers.

5.2.3 Results and User Survey

Using the above method, we generated Synthetic Brainbows for three single­

channel confocal scans. We were able to adjust the number of iterations, the a value 

in Equation 5.1, and the size constraint during the ID merging process. For each 

scan, we performed several experiments with different parameter combinations 

until reaching a satisfactory result. The results are listed in Figures 5.7,5.8, and 5.9. 

These results are from an AMD Radeon HD 7970 graphics card.

For most cases, e.g. Figure 5.7 and 5.8, our Synthetic Brainbow technique 

does not alter information from original datasets. It enhances visualization by 

randomly applying colors to different structures. We chose bright colors that 

resemble fluorescent markers used in biology research, so that structures are not 

accidentally emphasized/de-emphasized because of color variance. For highly 

noisy datasets, e.g., Figure 5.9, we suppressed noise with MIP. We believe such 

colorization can help visualizing complex structures in biology research. Since 

the colorization process takes relatively short time, it can be integrated into a
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(a) (b) (c)

Figure 5.7. Synthesized Brainbow of the same confocal scan of a Drosophila 
brain (512x512x85x8bit) in Figure 5.5. (a) The volume rendering of the original 
dataset. (b) Rendering of the colorized result generated with size constraint. (c) 
A close-up of the fibers. Individual fibers are connected and different fibers are 
colored differently. In the first pass of ID merging, iteration number is set to 200, 
and a is set to 0.5. In the second pass of ID merging, iteration number is set to 200, 
a to 1.0, and size constraint is set to 100 voxels. The colorization process took 2.81 
seconds on an AMD Radeon HD 7970.

biologist's visualization workflow. Another prospective use is when a group of 

biologists are looking at scans, instead of pointing on the datasets and referring 

structures as "this" or "that", specific color names can be used. However, this can 

only be validated when the Synthetic Brainbows are used in practice.

To address the concern that results from the Synthetic Brainbows may vary 

from one graphics card to another, we also generated Synthetic Brainbow images 

with other graphics cards tested in Section 5.1. The results are in Figure 5.10, 5.11, 

and 5.12. Because occurrence of asynchronous updates is about 5% at the highest 

for 512x512 textures, only limited variation can be observed from these results. 

However, since a comprehensive test of all graphics card models is impossible at 

current stage, consistent results can only be guaranteed on the tested models.

Since biologists are the potential users of our technique, we created an online 

survey and sent its link to biologists that are experts in confocal microscopy. 

The participants should be familiar with the Brainbow technique, but they may 

not necessarily be working with the technique. There were two parts in the 

survey. In each question of the first part, an image was shown and participants
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Figure 5.8. Synthesized Brainbow of a confocal scan of an eye of a zebrafish 
embryo (512x512x33x8bit). (a) The volume rendering of the original dataset. (b) 
The volume rendering of the colorized result. In the original scan, many structures 
are fused together, which are better discriminated in the colorized result. The 
colorization took two passes. In the first pass, iteration number is set to 50, and a 
is set to 0.35. In the second pass, iteration number is set to 300, a to 1.0, and size 
constraint is set to 250. The colorization process took 1.34 seconds on an AMD 
Radeon HD 7970.

were asked how likely the image was generated by the Brainbow technique. 

There were eight images: four generated with our technique, two true Brainbow 

images, and two images generated by first anisotropic diffusion [80] and then 

thresholding plus connected component labeling. The images were shown in 

random order. In the second part, we revealed the images that were generated 

by our technique and showed their original renderings as in Figure 5.7, 5.8, 

and 5.9. We asked the participants how likely they would use this technique 

for visualization enhancement in their research. We received answers from 16 

participants, some of which also left comments. The answers to the first part are 

plotted in Figure 5.13. Most participants agreed that our technique was able to 

generate results similar to Brainbow. Furthermore, 70% of the participants showed 

great interest in using our technique. From the survey results and participants'
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(a)

Figure 5.9. Synthesized Brainbow of a confocal scan of a Drosophila brain 
(512x512x115x8bit). (a) The volume rendering of the original dataset. This is 
a highly noisy dataset. (b) The volume rendering of the colorized result. The 
colored volume is rendered with maximum intensity projection (MIP) [109] plus 
a shading overlay (Section 3.6, Chapter 3), in order to see the colored structures 
clearly. (c) A close-up of the cells. The colorization took two passes. In the first 
pass, iteration number is set to 200, and o is set to 0.35. In the second pass, iteration 
number is set to 10, o to 1.0, and size constraint is set to 50. This 10-iteration 
process is then repeated five times in the second pass. This is because the dataset 
is highly noisy and we need to look at the result and decide if more iterations are 
necessary. The colorization process took 1.98 seconds on an AMD Radeon HD 
7970, excluding the time for manual parameter adjustment.

feedback, we learned that visualizations altering the appearance of the original 

data would be commonly rejected. Researchers often want fine details and 

sometimes even noise to be preserved. Interestingly, some of the biologists were 

able to tell that data had been altered because of their over-smoothed and thus 

unnatural look. This is the main reason why the thresholded and labeled results 

had low scores. The data in Figure 5.8 had been preprocessed with a median filter. 

We believe this led to its lower score (25%, the second in Figure 5.13). Thanks to 

the ID merging process, our method is able to preserve fine details of the original 

data, which is important to biologists for a visualization technique.

ID merging with asynchronous cellular automata had been used in connected 

component analysis, which we regard as the primitive form of more sophisticated 

colorization. Our quest for computationally generating Brainbow-like images 

from single-channel confocal microscopy data started with examinations of

(b) (c)
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(a) (b)

(c) (d)

Figure 5.10. Synthesized Brainbow of the same confocal scan of a Drosophila 
brain (512x512x85x8bit) in Figure 5.5, using different graphics cards. (a) Result 
from nVidia GeForce Gt X 460. (b) Result from nVidia GeForce GTX 680. (c) Result 
from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.
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(a) (b)

(c) (d)

Figure 5.11. Synthesized Brainbow of the same confocal scan of an eye of a 
zebrafish embryo (512x512x33x8bit) in Figure 5.8, using different graphics cards. 
(a) Result from nVidia GeForce Gt X 460. (b) Result from nVidia GeForce GTX 
680. (c) Result from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.
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(a) (b)

(c) (d)

Figure 5.12. Synthesized Brainbow of the same confocal scan of a Drosophila 
brain (512x512x115x8bit) in Figure 5.9, using different graphics cards. (a) Result 
from nVidia GeForce GTX 460. (b) Result from nVidia GeForce GTX 680. (c) Result 
from AMD FirePro M8900. (d) Result from AMD Radeon HD7970.
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Figure 5.13. Results from the first part of our survey. The collective answers 
to the likelihood of each image being generated with the Brainbow technique 
are plotted in one bar plot. The length of a bar represents the frequency of each 
choice being selected (5 - most likely, 1 - most unlikely). Here, the images are 
grouped according to techniques used. In the survey, they were shown to the 
participants in random order. Above the plots are the combined percentages of 
the participants who answered 5 or 4. The answers to most of our images are 
similar to those of the true Brainbows.

GPU framebuffer feedback loops. We initially thought it would be purely 

nondeterministic because of asynchronous memory access in parallel. However, 

when we tested its behavior with a cellular automaton, we found the behavior of 

GPU framebuffer feedback loop, despite being nondeterministic, is less random 

than we thought. In order to use the patterns generated in the iterative process 

of GPU framebuffer feedback loops to synthesize Brainbow-like results, we 

introduced ID shuffling and Monte-Carlo sampling into the ID merging process. 

Our technique is able to enhance visualizations of data with complex structures, 

such as the biological datasets demonstrated in this chapter. Our technique has 

advantages over traditional segmentation plus labeling methods because of its 

speed, and also because it preserves fine details of original data. Both make it a 

visualization technique appealing to domain experts, as we learned from a user 

survey. Currently, a drawback of our technique is the lack of an intuitive user 

interface, which limits its users to the authors and their close collaborators. We 

would like to address this issue in future work.
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There are apparent similarities between our technique and many segmentation 

methods for cellular or fibrous structures in biological data. Algorithm 5.5 can 

be considered as a general framework for segmentation, instead of a specific 

segmentation method. Firstly, it combines component labeling and feature 

detection into one process. It is also related to fuzzy connected component 

analysis [101]. An important benefit of such combination is that size information 

is readily available and used as a constraint. The size calculated from component 

labeling is a more accurate descriptor than the previously proposed size-based 

transfer function [22]. Our size descriptor works better with fibrous and branching 

structures, since they may have big size but be considered small by a local size 

descriptor. Secondly, the quality of segmentation can be refined by using more 

specific feature measures. For example, a measure of tubeness [90] can be added 

for fibers, and a measure using similarity between smoothed gradient vectors [60] 

can be added for cells. Thirdly, Algorithm 5.5 can be used with or without GPU 

framebuffer feedback loops. The purpose of this chapter is to find a random 

colorization technique that can be used with GPU framebuffer feedback loops, 

which saves memory and utilizes memory bandwidth more efficiently. We paid 

more attention to the stochastic patterns generated in the process and did not 

discuss convergence in great detail. However, when appropriate constraints are 

applied, the process can still converge to a segmentation of the input.

5.3 Tracking Cells
Biologists often want to find out the trajectories of cell movements in time 

sequences acquired by confocal microscopy. Individual cells have to be dis­

tinguished not only within one time frame, but also through multiple frames. 

Tracking individual cells automatically becomes problematic, as cells in proximity 

are often densely packed and have similar shapes. An automatic tracker can be 

very easily confused and generate unreliable results. By leveraging the parallel 

processing power of GPUs, we propose a cell tracking method using our Synthetic 

Brainbow technique (Section 5.2). In general, it is easier for an automatic tracker
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to identify cells through time, if each individual cell has been identified within 

each time frame. A bipartite matching algorithm [112] can be used to calculate 

the best match for the already identified cells between two consecutive time 

frames. Application of the Synthetic Brainbows to cell tracking is relatively 

straightforward: we first generate synthesized Brainbows for each time frame, 

where cells have unique IDs; then, we calculate the maximum bipartite matching 

between consecutive time frames, where matched IDs are unified into the same 

ID.

5.3.1 Synthetic Brainbows for Cells

Decreasing brightness and signal-to-noise ratio through time are challenges 

for cell tracking with confocal microscopy time sequences. To obtain consistent 

results through time frames, we improved the measure in Equation 5.1 specifically 

for cells in confocal microscopy data. Similar to multidimensional transfer 

functions [53], our measure is composed of four submeasures. The combination 

of these submeasures aims for a better definition of cell boundaries during ID 

propagation.

• Scalar value. The measure is calculated similarly as in Equation 4.9.

m1 (V) =
(V-t1)2

e 1 V  < t1 (5.2)
1 otherwise

In Equation 5.2, A4 and t1 are two user adjustable parameters for the shape of 

the Gaussian falloff. In confocal microscopy data, the center of a cell has high 

scalar values, which decrease towards the boundary. Therefore, ID propagation is 

faster at the center of a cell than its boundaries.

• Scalar variance. We calculate the absolute deviation var(V) of the scalar 

values within a neighborhood. Then, the measure is calculated from the absolute 

deviation.
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1 " _
« r ( V) = - V  |V -  V|

- i=1 (5.3)
var(V)2

m2(V) = e k2

In Equation 5.3, V is the average of the scalar values within the neighborhood 

and k2 is a user adjustable parameter. In confocal microscopy data, the center of a 

cell usually has less scalar value variation than its boundary, which can become 

quite noisy (high scalar value variation) between two cells. The neighborhood 

stencil is usually anisotropic. We use a voxelized ellipsoid that has 5 x 5 voxels on 

the XY plane and 3 voxels along the Z axis. This is because most confocal data 

are anisotropic and we want neighboring voxels along the Z axis to have less 

influence. The result is that ID propagation is faster at smooth regions than noisy 

regions.

• Gradient magnitude. The measure is calculated similarly as in Equation 4.9. 

It is calculated as the Gaussian of the gradient magnitude, which is commonly 

used to measure boundaries.

In Equation 5.4, k3 and t3 are two user adjustable parameters. This is the 

common measure for boundaries used in Section 5.2.2.

• Gradient direction variance. We first calculate the normalized average 

gradient vector within a neighborhood. Then, we calculate the averaged dot 

product between each normalized gradient vector and the normalized average 

gradient vector. Each dot product is weighted by the magnitude of each gradient 

vector, so that gradient vectors with less magnitude have less influence on the 

result. The result is used to calculate the fourth measure of gradient direction 

variance.

1 |W| < t3
m3(V) = < _ (ivVi-t3)2

e k3 otherwise
(5.4)
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1 m i
v V  = normalize( — ^  v Vi) 

n i=1
1 - ___

gvar(V) = -  ^  |v Vi|dof(v V, -ormalize(vVi)) (5.5)
n i=1

gvar(V)2
m4(V) = e k4

In Equation 5.5, v V  is the normalized average gradient vector; gvar(V) is 

the gradient direction variance; k.4 is a user adjustable parameter. This measure 

helps ID propagation stop at regions between cells, since gradient vector changes 

direction at these regions, thus high gradient direction variance. Notice that 

gradient direction also changes at the center of a cell in theory. This is why we 

want to weight the dot product with the gradient magnitude, as the center usually 

has low gradient magnitude, which is used to decrease the center voxels' influence 

on the gradient direction variance. The same neighborhood as in the calculation 

of the scalar variance measure is used here, to lessen the influence of neighboring 

voxels along the Z axis.

As mentioned in the beginning of Section 5.3.1, the method looks similar to 

multidimensional transfer functions, which would be four-dimensional in this 

case. However, finding proper parameters for above equations does not seem 

to be as difficult as in a four-dimensional transfer function. This is because the 

influences of the measures are on the ID propagation speed, instead of directly on 

rendering properties (color and transparency) of the voxels as in multidimensional 

transfer functions. Using the Synthetic Brainbow technique, the final colors of the 

voxels are generated through an iterative process by accumulating the influences 

of the above measures. The final results become less sensitive to parameter 

changes. More importantly, results from different time frames in a time sequence 

confocal data become less sensitive to parameter changes. Thus, it is possible to 

use the same set of parameters for above measures through all the time frames. 

This becomes important for time sequences with many frames. We are able to
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determine the parameters according to just one or two and apply them to all 

frames, instead of adjusting for each frame.

Figure 5.14 shows the results of applying the Synthetic Brainbow technique 

with above measures. For all time frames of the confocal sequence, the same 

parameters were used in two passes. In the first pass, the settings were: t1 = 1.0, 

k1 = 0.01, k2 = 0.07, t3 = 0.0, k3 = 0.04, k4 = 0.07, iterations = 50, size constraint 

ignored; in the second pass, the settings were: t1 = 1.0, k1 = 0.1, k2 = 0.7, t3 = 0.0, 

k3 = 0.4, k4 = 0.7, iterations = 15, size constraint set to 30.

5.3.2 ID Matching

It is easy to observe that sometimes, the same cell does not have the same 

color in different time frames in Figure 5.14. We need to match IDs in different 

time frames. This is accomplished using a standard algorithm in graph theory: 

weighted maximum bipartite matching [112]. Here, we consider each individual 

ID as a node on a graph. If two IDs from two consecutive time frames have 

overlapped voxels (voxels occupy the same space coordinates, but in different 

time), an edge is connected between them. The edge is weighted by the number

™  r * T i T  ■ ' » IT •» %.7 V  \.Kt BL__ 2

(a) (b) (c)

Figure 5.14. Results of applying the Synthetic Brainbow technique on a time 
sequence confocal data. Three consecutive time frames are shown here ((a), (b), 
and (c)). Two passes of ID propagation are used. In the first pass, the settings 
were: t1 = 1.0, k1 = 0.01, k2 = 0.07, t3 = 0.0, k3 = 0.04, k4 = 0.07, iterations = 50, size 
constraint ignored; in the second pass, the settings were: t1 = 1.0, k1 = 0.1, k2 = 0.7, 
t3 = 0.0, k3 = 0.4, k4 = 0.7, iterations = 15, size constraint set to 30.
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of overlapping voxels. The graph is bipartite because an overlap (an edge) can 

only occur between IDs belonging to different time frames. Figure 5.15 illustrates 

the construction of such a graph.

The weighted maximum bipartite matching algorithm can be found in literature 

on graph theory [112]. A detailed discussion is out of the scope of our work. The 

algorithm is listed in Algorithm 5.6.

Algorithm 5.6 Weighted maximum bipartite matching.
Start with a bipartite graph with no matched edges established;
Repeat

For all unmatched nodes on one side of the bipartite graph
Breadth-first search and find an augmenting path with the maximum 
weight;

If found the augmenting path and its weight > 0 
Flip the edges;

Else
Stop. The current matching is the result.

In Algorithm 5.6, a path on the bipartite graph can have both matched and 

unmatched edges. A path that has alternating matched and unmatched edges is 

called an alternating path. An alternating path whose total weight of unmatched 

edges is greater than that of matched edges is called an augmenting path. The 

weight of an augmenting path is calculated by subtracting the total weight of 

matched edges from that of unmatched edges. Flipping an alternating path 

means marking matched edges as unmatched and unmatched as matched. This 

algorithm is applied to a bipartite graph generated from two consecutive time 

frames that have been processed with the Synthetic Brainbow technique. Then, 

the entire time sequence is processed with this method. Figure 5.16 shows the 

results after ID matching for the confocal dataset in Figure 5.14.

Synthetic Brainbows provide us a simple and easy-to-implement method to 

track cells in time sequence confocal microscopy data. By adopting the maximum 

matching algorithm, a global optimal match can be guaranteed between two
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Figure 5.15. Conversion from cells with IDs to a bipartite graph. The green cells 
and red cells are from two consecutive time frames. They are super-imposed in 
the upper part of the figure. Each cell has an unique ID in each frame, but the same 
cell may not have the same ID from two frames. We can then create a graph in the 
lower part according to their overlapping. Each edge in the graph represents an 
overlap and is weighted according to the overlapped area (not shown). The red 
edges are the matched edges after applying the weighted maximum matching.
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(a) (b) (c)

Figure 5.16. Results of ID matching of three consecutive time frames in a confocal 
data sequence. (a), (b), and (c) are the three consecutive time frames from the time 
sequence data.

consecutive frames. Therefore, the quality of cell tracking really depends on the 

ID propagation process in Synthetic Brainbows. Although further improvements 

are possible to the measures in our method, we believe incorporating human 

interactions into the workflow is necessary for the most accurate result, as seen in 

our interactive segmentation techniques in Chapter 4. For massive time-dependent 

data, a more important task than tracking individual cells correctly is to visualize 

the general movement of different functional regions formed by these cells. In 

biology research, it is termed a fate map, which is a description of the origins 

of organs through different developmental stages. Since Synthetic Brainbows 

provide the movement of each cell, a time-dependent vector field can be then 

generated from our results. We believe that common vector field visualization 

techniques can be applied for studying fate maps.



CHAPTER 6

CONSTRUCTING ANATOMICAL ATLASES, 

A CASE STUDY

We worked with biologists and artists and developed a workflow for making 

anatomical atlases from confocal microscopy data. This workflow starts with 

acquiring confocal scans of mouse limbs, which are visualized using FluoRender's 

rendering pipeline (Chapter 3). Then, structures such as muscles, tendons, 

bones, and nerves are extracted using FluoRender's interactive segmentation 

functions (Chapter 4). The modeling process of the workflow first converts 

segmented volume data into coarse polygon models, and then these polygon 

models are processed with shrink-wrap simulations, which generate smooth and 

well-structured models. It is also fairly easy to unwrap the texture coordinates of 

these simulated models. Then, a digital painting package is used to transcribe 

textures from confocal scans to the polygon models. Finally, we use FluoRender 

for the presentation of the finished atlases, which are limbs of 14.5-day mouse 

embryos. This chapter is a detailed case study of how FluoRender can be used 

together with other software packages in practice.

6.1 Data Acquisition
The biologists working on the mouse limb atlas project are researching the 

cellular and molecular mechanisms governing the patterning and assembly 

of the musculoskeletal system during development. Understanding how the 

musculoskeletal system is assembled is a fundamental question in developmental 

biology. In addition, congenital defects in limb and musculoskeletal development 

are relatively common in humans, and understanding the etiology of these defects 

is of interest to the medical community. To study development of the limb
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musculoskeletal system, the biologists have chosen to examine the development 

of the limb of mice. Mice are the primary model organism used to study limb 

musculoskeletal development. Not only are mouse and human development 

similar, but many genetic tools (the ability to create "knock-out" mice) and 

molecular reagents are also available in mice. To facilitate study of mouse 

limb development, the biologists wanted to create a 3D atlas of the developing 

mouse limb in which bones, tendons, muscles, and nerves were clearly displayed. 

Although an atlas of mouse limbs had previously been published by DeLaurier et 

al. [24], this atlas displayed a limited number of tissues (just muscles and bones) 

and details of muscle morphology (the orientation of the muscle fibers) were 

lacking.

Our workflow for constructing a limb atlas begins with obtaining digital images 

of the musculoskeletal system of mouse limbs. In a single mouse limb, tendons, 

muscles, and nerves were each labeled with a different fluorescently-tagged 

antibody. Limbs with fluorescently tagged tendons, muscles, and nerves were 

then imaged via confocal laser scanning microscopy. For each limb, a stack of 

in-register optical thin sections showing tendons in green, muscles in red, and 

nerves in blue were obtained. Bones were recognized as distinct black regions in 

the green and red channels. Figure 6.1 shows an acquired dataset of a mouse hind 

limb, which is visualized by volume rendering via FluoRender. Here, the three 

channels of muscles, tendons, and nerves are rendered in depth mode (Section 3.3, 

Chapter 3). The volume transfer function has been adjusted for each channel to 

remove noise and emphasize important structural information. The renderings 

are processed with tone mapping (Section 3.5, Chapter 3) and a shadow overlay 

(Section 3.6, Chapter 3) is used.

It should be noted that although this particular atlas was developed from 

data obtained via CLSM, our workflow and tools can also be applied to images 

obtained from other 3D imaging techniques, such as X-ray computed tomography 

(CT), magnetic resonance imaging (MRI), optical projection tomography (OPT), 

and high-resolution electron microscopy (HREM).
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(b)

Figure 6.1. A volume-rendered visualization of the confocal data acquired for 
our atlas building project. This is the hind limb of a 14.5-day embryonic mouse. 
Muscles are shown in red, tendons in green, and nerves in blue. (a) When viewed 
in the XY plane, the visualization contains rich details of the structures. (b) When 
XZ plane is viewed, the visualization becomes coarse due to the increased Z 
increment.

6.2 Segmentation
For the mouse limb atlas, individual tendons, muscles, nerves, and bones need 

to be identified and segmented. The accuracy of segmenting these structures 

defines the quality of the final atlas. The real difficulty lies in the fact that the 

anatomy of mouse embryos is not entirely clear to researchers. We could use 

anatomies of adult rats and mouse as references, but there are always limitations 

and discrepancies, especially when each individual muscle needs to be identified 

and segmented. In FluoRender, we segment different types of structures with 

slightly different strategies. However, we always first try to segment them through
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painting (Section 4.2, Chapter 4) on their visualized results whenever the structures 

are clear. Then, we restrict both the visualization and segmentation with clipping 

planes. Structures deep inside can usually be processed with this manner. For 

unclear and densely packed structures, we further restrict the clipping planes to a 

single slice, and use all the enhancements available (Section 3.6, Chapter 3). This 

is equivalent to segmenting slice-by-slice. However, FluoRender provides this 

special design of clipping planes that allows users to quickly go back and forth 

between view-dependent and slice-based segmentation (Section 4.3, Chapter 4).

• Muscles. They are the most important part of our limb atlas. They are also 

difficult to extract because they are densely packed and have obscure boundaries. 

Fine fibers imaged within each muscle further complicate the scenario. As in 

a common segmentation workflow in FluoRender, we first adjust the transfer 

function of a muscle channel. We usually decrease its gamma to enhance contrast, 

and cut off low-intensity noise by increasing threshold. Since large specimens like 

mouse limbs often have lower antibody penetration, thus lower signal intensity, we 

also decrease the saturation point to brighten the results. Tone-mapping operators 

are always used to further enhance the results. Depending on different regions of 

the visualization, for example, deep regions usually have lower signal intensities 

than surface regions. Parameters for transfer function and tone mapping are 

also adjusted during segmentation. Muscles in the foot area and major surface 

limb muscles are easily distinguished and then paint-selected, very possibly from 

various view directions. Selected muscles are progressively removed from the 

muscle channel through FluoRender's channel calculations (Section4.3, Chapter 4). 

Then, deep muscles are exposed and more easily identified, which are selected 

and extracted next. This process resembles the actual dissection of an embryo 

under microscope (Figure 6.2). The segmented muscles are put together and 

compared with the original muscle channel. They are then correctly named 

according to their relative locations. Some difficult muscles are inspected and 

compared slice-by-slice. It is common that some muscles cannot be identified, in 

which case we can use other channels from the same scan to facilitate identification.
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(e) (f)

Figure 6 .2 . Segmentation of muscles from a mouse limb dataset. (a) The 
original muscle channel is visualized in FluoRender. (b) We paint directly on 
the visualization and select one muscle. (c) The selected muscle is extracted. (d) 
The selected muscle is removed from the original data, which makes selecting 
other muscles easier. (e) A second muscle is selected. (f) A group of muscles are 
segmented similarly.

For example, tendons of digitorum muscles are long and easily distinguishable; 

therefore, muscles connecting with these tendons are indisputably digitorum 

muscles.

• Tendons. Tendons attach muscles to bones. Most tendons in an embryo are 

blurry transitional area between bones and muscles. It is not practical to segment 

these tendons because of their indefinite shapes in confocal scans. We only extract 

long and distinguishable tendons such as tendons of digitorum muscles. In the
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modeling section (Section 6.3), we will discuss how to model certain tendons 

without segmentation.

• Bones. Bones are not fluorescently stained in our experiments, and are black 

regions in the muscle and tendon channels. We segment them by inverting the 

intensity values of the muscle channel (or a combined channel from muscles and 

tendons, depending on the clarity of a specific scan) as in Figure 4.8. Thus, bones 

can be identified and extracted.

• Nerves. Similar in their shape to single neurons, nerves have extremely 

complex and branching structures in 3D. They can only be extracted by painting 

with FluoRender's selection brushes (Section 4.2, Chapter 4). For complex 

networks of nerves, such as the brachial plexus, different major branches are 

extracted separately. We use the selection brush to first select the starting point 

for a major nerve branch. Then, we use the diffusion brush to grow the selection 

of each major branch.

6.3 Modeling
The marching-cubes algorithm [64] is used to generate polygon models from 

the segmented structures. These automatically generated polygon models have 

very low qualities. Improvement of quality is possible through a variety of 

automatic algorithms. However, for the best visual quality, we developed a 

semi-automatic modeling workflow. This is due to following reasons. First, it 

is difficult for most automatic algorithms to generate a quad mesh, which is 

considered the basis for good structuring of a model. Second, the efficiency of 

polygon placement is low. The polygon contours often do not follow meaningful 

structures of the segmented volume. Instead, they usually congregate at noisy 

regions and form distractive patterns. Third, automatic algorithms often generate 

high polygon density, which makes further manual adjustment difficult, if not 

impossible. Fourth, there is no algorithm that can handle complicated shapes and 

generate high-quality models, such as those we see in the nervous system. Lastly, 

there is no guarantee to generate the same mesh topology for similar structures.
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The same topology makes comparison between similar structures simple. For 

example, we can make a morphing animation very easily between to models if 

they have the same mesh topology.

We use Autodesk Maya [5] for making high-quality polygon models from 

marching-cubes results. Specifically, we use Maya's Nucleus simulation engine [7] 

to shrink-wrap a prototype model with a rubbery material onto the marching-cubes 

result. This method is semi-automatic, since the modeling and placement of the 

prototype model is manual, and shrink-wrapped models may also be manually 

adjusted for better shapes. In addition, branching structures, especially nerves, 

are not easily modeled by shrink-wrap. Manual modeling is needed for those 

structures.

Nonbranching structures including muscles and bones are modeled in the 

following workflow.

• Import. Marching-cubes generated polygon models are exported as individ­

ual OBJ files. These files can be easily imported into Maya. If FluoRender is used 

for both generating OBJ files and visualizing final models, unit and scale should 

match between final models and original confocal channels. If other formats or 

software are used, adjustment to unit and scale may be necessary for correct final 

presentations, especially when original confocal datasets are anisotropic.

• Build prototype models. A prototype model is a low detailed polygon 

model that completely encloses the marching-cubes generated model. Several 

qualities of the prototype model ensure successful shrink-wrap simulations, which 

then need little to no manual adjustments. First, there has to be sufficient space 

between a prototype model and an imported model. When the prototype model 

is shrunk onto the imported model, collision detection is calculated. Contact or 

intersection between them will generate strong collision force, which may drag the 

prototype model completely inside or make the simulation unstable. Second, the 

prototype model has to be composed of only quads. Quads can generate evenly 

distributed forces in physics-based simulations. The finished models are also 

easily subdivided to make high quality models. Most importantly, only a quad
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mesh can have continuous contours that can be manipulated to follow important 

biological features, such as muscle fibers and ridges on bones. Third, the prototype 

model has to follow the shape of the imported model as close as possible and 

use as few vertices as possible. This usually requires the work of an experienced 

artist or trained modeler. However, similarities among different structures make 

it possible for sharing prototype models. For example, most muscles of limbs 

have a spindle shape. A spindle-shaped prototype muscle is prebuilt for all such 

muscles. Similarly, long bones of limbs can also share a tubular-shaped prototype 

model. Figure 6.3 demonstrates building prototype models for several typical 

shaped muscles. For irregular shaped structures, prototype models are built 

similarly, but they require more time for shape adjustments.

• Shrink-wrap. We create an nMesh passive collider from the imported model 

and an nCloth node from the prototype model. We set these parameters in the 

nCloth node's attribute editor: stretch resistance, bend resistance, rest length 

scale. All other dynamic properties are set to 0. We turn off gravity influence 

for the nCloth node. Then, we select the vertices of the prototype model and 

create a "point to surface" constraint onto the imported model. We set the type of 

this constraint to "'rubber bands"' and decrease the rest length of the constraint 

to a small value. The result of this setup is a mass-spring system, in which the 

edges of the prototype model will shrink and the vertices are dragged away 

from the normal directions of the imported model. We run this simulation and 

normally the result converges within seconds. To fixate the simulated model, we 

have to delete the construction history nodes and simulation nodes in Maya. An 

example of using shrink-wrap to model the extensor digitorum muscle is shown 

in Figure 6.4.

• Fine-tune. We then fine-tune models from shrink-wrap using Maya's 

standard polygon modeling tools. The amount of work in this step depends 

on the quality requirement of the final result. To generate fine detailed models, 

the result from shrink-wrap is converted to a subdivision model. Details can be 

added and manipulated at different detail levels of the subdivision model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3. Building prototype models for different kinds of muscles. (a) The 
extensor digitorum longus muscle is selected in FluoRender. (b) The muscle is 
extracted. (c) In FluoRender, the muscle is converted to a polygon mesh with 
the marching-cubes algorithm. (d) In Maya, the polygon mesh generated in 
FluoRender is imported. A prototype model is built according to the imported 
model. This muscle has a very common shape for limb muscles, i.e., a spindle 
shape. (e) Two heads of the biceps femoris muscle are selected. (f) The two heads 
are extracted. (g) The two heads are converted to polygon models. (h) Prototype 
models are built according to these imported models.
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(C)

Figure 6.4. Modeling a muscle using shrink-wrap. (a) A marching-cubes-gener- 
ated model is imported and a prototype model is built surround it. A passive 
collider is created from the marching-cubes-generated model. An nCloth object 
is created from the prototype model. Magenta connections represent the "point 
to surface" constraint between the two models. (b) We start the simulation. The 
prototype model is shrunk to the marching-cubes-generated model. (c) The final 
model is generated by smoothing the shrink-wrap simulation result. Notice that 
this setup lets polygon contours of the prototype model follow biological features, 
i.e., the muscle fiber directions.
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As discussed in Section 6.2, some short tendons have obscure shapes, which 

are not segmented. They have to be modeled differently. We first finish the 

modeling of all the muscles, and then identify those muscles with tendons that 

are not segmented. Each muscle without segmented tendons is converted to an 

nMesh passive collider. Next, we build a cap-shaped model and then shrink-wrap 

it on one end of the muscle. The shrink-wrap process for these tendons is the 

same as that for the muscles. These tendon models are placed in the atlas to give 

visual presentations of the connections between muscles and bones. They can be 

further adjusted according to volume visualizations in FluoRneder.

Long and branching tendons may be modeled by shrink-wrap, considering 

they can be separated into several tubular-shaped parts. Nerves, however, are 

difficult to be modeled by shrink-wrap. Hence, we start from roots of nerves 

and extrude one face of a polygon cube. The extrusion is manually controlled to 

follow the branches of nerves. Since nerves usually do not present higher-level of 

complexity on each branch, the extrusion operation is adequate for completing all 

nerve models.

6.4 Texturing
Polygon models alone have good shape representations of the structures, 

but lack the details defining certain anatomical features, such as the muscle 

fibers. Commonly seen in the illustrated anatomy books, these features are not 

easily modeled with the methods discussed above. Sculpting, texture painting, 

or a combination of the two are used for adding realism to models in a CG 

artist's workflow. We choose texture painting for the anatomical details, mainly 

the muscle fibers, since textured polygon models are easily supported for final 

presentations.

Before textures can be applied, texture coordinates of the polygon model 

need to be created and mapped into a unit square of the texture space. This 

process is often referred as UV unwrapping. We perform this process to the 

prototype models only, since they have only a few vertices/UVs to manipulate
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and their texture coordinates can be automatically interpolated when we smooth 

the models. Figure 6.5 is an example of unwrapping UVs of a typical muscle 

model. To unwrap UVs, we first use Maya's automatic UV projection (Figure 6.5

(a)). It generates separate UV pieces (Figure 6.5 (b)). We then use UV stitching to 

stitch these pieces together. The stitched UVs usually have entangled and highly 

distorted polygon faces (Figure 6.5 (c)). We then use Maya's automatic UV layout 

tool to obtain an improved layout (Figure 6.5 (d)). This layout usually has an 

adequate quality for further texture applications. However, depending on the 

methods that textures are applied, we may further edit this layout to give it a 

more regular structure (Figure 6.5 (e)).

• Shared textures. Models derived from the same prototype model can share 

one generic texture with no problem. Models from different prototypes but 

representing similar biological structures can share textures too. For example, 

muscle fibers are the main feature we want to add to muscle models. When 

building the muscle prototype models, a desired quality is that the contours of the 

quad mesh follow biological features (the muscle fibers). When we unwrap UVs 

for such particular prototype models, we know those contours represent muscle 

fiber directions. Thus, we lay out the UVs in a structure that the contours are 

aligned with one axis of the texture space. When a generic texture with vertical 

stripes is applied to a model with its UVs unwrapped this way, the stripes follow 

the contours and therefore the muscle fiber directions (Figure 6 .6). When all 

prototype models of similar structures are laid out with this method, one generic 

texture with muscle fibers can be shared. This method is used to quickly make 

believable textures for visualizations of an atlas. One disadvantage of this method 

is that seams are usually visible, although using a well-designed repeating pattern 

and placing UVs carefully can reduce the artifacts. Another problem is that the 

two ends of these muscle models usually have highly distorted texture mappings, 

due to converging contours.

• Transcribed textures. Shared texture does not always meet the requirement 

of high precision and quality atlases. In addition, a generic texture can be highly
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(b) (c)

(d) (e)

Figure 6.5. Unwrapping UVs of a muscle model. (a) Automatic UV projection is 
used to generate UVs. (b) In the texture coordinate space, the model is broken 
into several pieces. (c) Two pieces of the model's UVs are stitched together. (d) 
All UVs are stitched and laid out with Maya's automatic UV layout. (e) UVs are 
adjusted to be aligned with UV axes. This step is used so that generic muscle fiber 
texture can be shared among many models.
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(a) (b)

Figure 6.6 . When UVs of a regularly-structured model are aligned with the texture 
space axes, a generic texture can be shared among models with similar structures. 
(a) The texture space, showing UVs of a muscle model and a texture with vertical 
stripes. (b) The textured model. The stripes of the texture are aligned with the 
model's contours, thus representing the directions of muscle fibers.

distorted on irregularly-shaped models. In order to get accurate presentations of 

some biological features such as the muscle fibers, we use a three-step procedure to 

transcribe muscle fibers from confocal visualization to polygon models (Figure 6.7). 

First, in FluoRender, we generate a volume rendering of a muscle. Next, we 

import this volume rendering into Photoshop [3]. This volume rendering is used 

as a reference layer. We paint on a semitransparent layer on top of the reference 

layer, and generate an image of illustrative fiber patterns, which should exactly 

follow the underlying muscle fiber directions. Finally, the illustrative pattern is 

imported into Autodesk Mudbox [6] along with the muscle model. The model is 

adjusted to the same view direction as in FluoRender. The illustrative pattern is 

used as a stencil. Mudbox's projection brush is used to project the stencil image 

onto the polygon model, similar to how paint brush works in FluoRender. This is 

too a user-guided process, so that we can progressively paint the stencil pattern on 

the model. In the meanwhile, both the stencil and the model can be manipulated 

so that areas initially at glancing angles can also be covered when the view is 

rotated. This is another place in our workflow where intensive manual work is
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(d) (e) (f)

Figure 6.7. Texture transcription using Mudbox. (a) We load the rendering of the 
gluteus maximus muscle into Photoshop. (b) We generate patterns according to 
the volume-rendered result. (c) The image serves as a stencil. (d) We load the 
polygon model of the muscle into Mudbox. (e) After loading the stencil, we use 
Mudbox's projection brush to paint the stencil onto the model. (f) The stencil 
image is transcribed onto the model.

required, perhaps by an expert or well-trained user. The best illustrative quality 

can be achieved through this method. However, each model generated with this 

method has its individual texture, which increases the size of final atlases.

6.5 Results
We export finished atlases as individual model files in OBJ format, which 

can then be easily converted to many other polygon model formats if needed. 

The individual model files can be assembled and organized with a variety 

of model viewers. For interactively viewing the mouse limb atlas, we chose 

FluoRender, which is used to generate the final renderings in Figure 6 .8 . Because 

of its support of rendering semitransparent polygon models with depth peeling
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Figure 6.8 . Limb atlases of 14.5-day mouse embryos. (a) The medial side of the 
forelimb. (b) The lateral side of the forelimb. (c) The lateral side of the hindlimb. 
(d) The medial side of the hindlimb.



117

(Section 3.4, Chapter 3), users can easily adjust the transparency and focus of 

structures while maintaining an informative context. As a volume rendering tool, 

FluoRender also enables us to simultaneously view the original volume data with 

the polygon-based atlas.

Figure 6.8 shows two limb atlases that we have built using the above workflow. 

A forelimb atlas (Figure 6.8 (a) and (b)) and a hindlimb atlas (Figure 6.8 (c) and (d)) 

of 14.5-day mouse embryos were built. These models along with FluoRender will 

be freely available to biologists researching limb muscles. Each muscle, tendon, 

bone, and nerve of these models has been annotated. Users are able to directly 

click on the models and obtain the information about the structures.

Segmentation with FluoRender and shrink-wrap modeling with Maya allow 

us to generate quality polygon models quickly from confocal scans. It not only 

enables us to build atlases of standard anatomy, but also makes comparisons 

between mutants and atlases easy. Mutants are genetically modified biological 

samples showing certain anomalies. Biologists want to compare and visualize the 

differences between mutants and standard anatomies. A similar workflow for 

making the limb atlas can then be used to generate polygon models of mutant 

mouse limb samples. There are several advantages of using this workflow for 

mutant model building and comparison. Firstly, researchers can create polygon 

models in an interactive and controllable manner. They can make adjustments 

to these models according to their interpretations of original data, which can 

usually yield high quality models. Secondly, models are already available from 

the standard atlases. Less adjustment to these models is necessary for the mutant 

models. Textures associated with the standard atlases can be reusable. Lastly and 

most importantly, this workflow ensures that models of mutants and standard 

atlases share the identical topology. We can then compare these models either 

visually by generating morphing animations or analytically by designing shape 

descriptors.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

FluoRender has been a freely available visualization and analysis tool for 

public download. We are happy to see it has been used in biological research 

in many laboratories across the world. Its visualization results can be found 

in several influential biology journals and image competitions. For biologists 

and medical researchers, visualization and analysis of volumetric data are in 

their developing stages. The progress FluoRender has made is due to a close 

collaboration between computer scientists and biologists. The success of such 

a development model requires us to find a common ground for the interests, 

knowledge, techniques, and requirements of collaborators. Still, there are more 

techniques in computer graphics and visualization that might be useful but 

have not been implemented; there are even more requirements from biologist 

users that could not be realized. Currently, FluoRender is a generalized tool for 

confocal data visualization and analysis. As we learned from our collaborating 

biologists, customized functions for many specialized biology research questions 

are demanded in practice. For example, after neural structures are extracted, 

their connections need to be mapped, and their length, width, and branches 

measured. Such measurements are usually different from structure to structure, or 

sample to sample. Customized functions and user interface building on top of a 

generalized tool can streamline researchers' workflow and shorten the time spent 

on visualization and analysis, which can be quite useful for repetitive experiments. 

However, integration of customized functions into a generalized tool does not 

seem to be a straightforward task. Also, there are very few successful examples 

that we can follow. For example, ImageJ [43] provides a scripting language
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and lets customized modules call its existing functions. ImageJ became very 

popular among biologists because it can be customized and there exist many 

downloadable modules. Unfortunately, the lack of a strong volume visualization 

support in ImageJ makes streamlining workflows difficult. Furthermore, complex 

computations using scripts can be quite slow for volumetric data. A more 

appropriate approach should be developing customized systems based on strong 

visualization and intuitive analysis core functions. FluoRender is our first step 

towards this objective. However, re-engineering may be necessary in the future, if 

customized functions for specialized biology experiments are to be added easily.

The extension and customization of FluoRender can happen at different levels. 

Firstly, FluoRender provides settings for different sets of functions, such as volume 

rendering properties, 2D image space adjustment settings, and paint selection 

controls. Users may feel confused by looking at all the settings, or they may need 

different settings for different workflows. User can benefit from a "mode dial" 

system similar to that of a consumer-level digital camera: turning to a mode resets 

the settings and rearranges the user interface for a specific workflow. Secondly, 

extended functions should use existing user interactions as much as possible. 

For example, brushes are used for segmentation and proved to be intuitive. 

Many analyses can use this operation as well, such as finding the co-localization 

(co-localized structures stained by different fluorescent dyes) of multiple confocal 

channels. Finally, we learned that developing a tool for a biology research is just 

one part of designing a complete workflow. Similar to our existing functions and 

workflows presented here, we have to work with our collaborators to determine 

the proper workflow. Then, we customize or develop functions and make them 

into one tool that reflects this workflow.
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