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ABSTRACT

Data-driven analytics has been successfully utilized in many experience-oriented 

areas, such as education, business, and medicine. With the profusion of traffic-related 

data from Internet of Things and development of data mining techniques, data-driven 

analytics is becoming increasingly popular in the transportation industry. The objective of 

this research is to explore the application of data-driven analytics in transportation 

research to improve traffic management and operations. Three problems in the respective 

areas of transportation planning, traffic operation, and maintenance management have 

been addressed in this research: exploring the impact of dynamic ridesharing system in a 

multimodal network, quantifying nonrecurrent congestion impact on freeway corridors, 

and developing an infrastructure sampling method for efficient maintenance activities.  

First, the impact of dynamic ridesharing in a multimodal network is studied with 

agent-based modeling. The competing mechanism between dynamic ridesharing system 

and public transit is analyzed. The model simulates the interaction between travelers and 

the environment and emulates travelers’ decision making process with the presence of 

competing modes. The model is applicable to networks with varying demographics.  

Second, a systematic approach is proposed to quantify Incident-Induced Delay on 

freeway corridors. There are two particular highlights in the study of nonrecurrent 

congestion quantification: secondary incident identification and K-Nearest Neighbor 

pattern matching. The proposed methodology is easily transferable to any traffic 
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operation system that has access to sensor data at a corridor level. 

Lastly, a high-dimensional clustering-based stratified sampling method is 

developed for infrastructure sampling. The stratification process consists of two 

components: current condition estimation and high-dimensional cluster analysis. High-

dimensional cluster analysis employs Locality-Sensitive Hashing algorithm and spectral 

sampling. The proposed method is a potentially useful tool for agencies to effectively 

conduct infrastructure inspection and can be easily adopted for choosing samples 

containing multiple features. 

These three examples showcase the application of data-driven analytics in 

transportation research, which can potentially transform the traffic management mindset 

into a model of data-driven, sensing, and smart urban systems. The analytical approach 

presented will inform evidence-based and data-driven decision making in transportation 

policy and investment choices. 
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CHAPTER 1 

INTRODUCTION

Data-driven analytics, which has been utilized in many experience-oriented areas, 

such as education, business, and medicine, is becoming increasingly popular in the 

transportation industry. Over the years, many state Department of Transportation (DOTs) 

and regional transportation agencies have been looking into adopting data-driven 

analytics into their business processes, especially in traffic operation and transportation 

infrastructure investments. In July 2012, the Moving Ahead for Progress in the 21th 

Century Act (MAP-21) was signed to formally embrace performance-based planning and 

data-driven decision-making as a national policy. It encourages transportation agencies to 

conduct decision-making based on data-driven analytics in order to increase the 

accountability of federal highway programs (1).  

Another factor that triggered the blast of data-driven analytics is the intensive 

influx of transportation data resulting from technological advancement. Particularly, the 

profusion of data from Internet of Things (IoT) presents unprecedented opportunities for 

creating a cohesive and seamless integration of urban transportation and technology. 

Massive data collected from various mobile sources and advanced sensors provide 

transportation researchers endless possibilities for making interconnected knowledge 

discovery Together with the explosion of transportation data, data mining techniques, 

such as clustering analysis, machine learning, and dimensionality reduction, have been 
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improved and become accessible to transportation practitioners. 

With data mining techniques, researchers and engineers make decisions based on 

the data-driven analytics rather than intuition (2). Data-driven analytics is applicable to 

almost all areas of interest in transportation, especially in planning, operation, and 

maintenance, which traditionally rely heavily on the crew’s experience. It shows great 

potential to improve the program accountability and reliability in such areas. However, a 

challenge presents itself for data mining technique implementation. One critical issue lies 

in high quality data acquisition. Tufte (3) summarized several factors limiting the 

application of data-driven analytics that demand pressing attention, including the 

isolation across databases and data resources, and the lack of informative description 

about data collection and data manipulation. Since an efficient and accurate data-driven 

analytics depends heavily on reliable data, these factors undermine its adaptability to 

similar programs.  

Another challenge in the application of data-driven analytics is the complexity of 

the methodology itself. Compared with traditional methods used in decision-making, data 

mining techniques provide new insights to transportation problems at costs of 

sophisticated data processing and analytics. The philosophy of the data mining technique 

is to turn massive data into actionable information (3). The process is thus generally 

divided into five phases: 1. organizing for success, 2. building assessment literacy, 3. 

identifying data sources, 4. aligning data systems, and 5. altering instruction (4). Put into 

perspective of transportation, the application of data-driven analytics has two major 

issues. One is the analysis of massive data, namely performance measurement, including: 

1) extracting effective information from the data collected by devices or personnel, 2)
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developing quantitative performance metrics based on the derived information, and 3) 

validating the reliability and variability of the developed metrics. The other issue is action 

determination, including: 1) deciding actions that efficiently improve the current 

conditions, and 2) matching the actionable strategies with quantified performance. Data 

mining techniques vary with the type of decisions and the applied areas, yet performance 

measurement and action determination should always be addressed constantly. Figure 1 

illustrates the flowchart of implementing data-driven analytics in transportation. 

1.1 Problem Statement 

Data-driven analytics encompasses a series of data mining techniques to quantify 

the existing performance and solve respective transportation issues that are beyond the 

capability of traditional decision making methods. This study focuses on applying data-

driven analytics to solve several critical issues in transportation planning, operation, and 

infrastructure maintenance management. 

1.1.1 Dynamic Ridesharing 

Dynamic ridesharing has been considered as an emerging solution to traffic 

congestion due to the growing ubiquity of the Internet of Things. It refers to a 

transportation mode that facilitates the one-time match of drivers and passengers with 

similar travel itineraries. Compared with mass transit and taxi, dynamic ridesharing 

provides carpoolers considerable flexibility to make one-time, on-the-fly trip 

offers/requests, that can be just minutes before their desired departure times. Currently, 

dynamic ridesharing oftentimes gains popularity within the region with wide deployment 

of High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lanes, where 

dynamic ridesharing offerors can meet the requirements of HOV2+ or HOV3+ to utilize 
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such lanes. Under such circumstance, the program provides both parties a faster and more 

reliable travel experience. Besides travel cost and/or time-saving for individual travelers, 

dynamic ridesharing also has societal and environmental benefits. For example, by 

combining travelers in Single Occupancy Vehicles (SOVs), dynamic ridesharing system 

increases vehicle utilization and reduces the total number of automobiles on the road. 

Energy consumption, emission, traffic congestion, and parking infrastructure demand are 

reduced correspondingly (5).  

There are several critical factors that determine the success of dynamic 

ridesharing systems, including driver-passenger matching algorithm (resource allocation), 

incentives, business model, identity verification, competing travel modes, just to name a 

few. Dynamic ridesharing system has been proved successful in reducing traffic 

congestion and providing travelers more reliable travel time in an idealized network, with 

the presence of only SOV and HOV travelers. The effects of dynamics ridesharing with 

the presence of other competing modes are yet unknown. In an actual traffic network, 

people are exposed to various travel alternatives, e.g., public transit, SOV, HOV, etc. The 

co-existence of different options can influence people’s decision-making process, and 

correspondingly impact the market penetration of dynamic ridesharing. Rather than 

sharing a private vehicle with strangers and having safety concerns, some travelers may 

prefer taking public transit or paying tolls. 

1.1.2 Nonrecurrent Congestion 

The burgeoning development of Intelligent Transportation System (ITS) over the 

past decades inspires the smart and efficient management of current roadway networks. 

One concern of freeway performance management is congestion, which can be 
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attributable to recurring and nonrecurring causes. According to the 2012 Urban Mobility 

Report, urban congestion cost about $12.1 billion dollars and a total of 5.52 billion hours 

delay in 2011(6). Congestion has surely been growing over the past years. Transportation 

agencies are therefore actively seeking ways to better monitor the traffic, identify 

bottlenecks, and respond efficiently and effectively to incidents. From an operations 

perspective, using a set of meaningful performance measures to obtain comprehensive 

assessment of the roadway system is one of the most effective solutions for congestion 

management. It is also critical to decision making. The Moving Ahead for Progress in the 

21st Century Act (MAP-21) establishes a performance-based transportation program to 

guide the transportation capital investment and development. It thus enables the need to 

carry out a performance-based approach in evaluating the transportation system. Freeway 

networks play a very critical role in providing accessibility to a multitude of resources 

and serves as the backbone of a region’s economic vitality.  

There are seven potential sources that contribute to the travel unreliability on 

freeway network identified by the FHWA SHRP 2 program. They are traffic incidents, 

weather, work zones, demand fluctuations, special events, traffic control devices, and 

inadequate base capacity. As one of the most critical contributors to traffic congestion, 

incidents account for approximately 50-60% delay on U.S. highways (7). In order to 

mitigate the impacts of incidents, it would be crucial for the incident management 

program to develop strategies that can effectively estimate the incident impact range and 

respond appropriately. The Traffic Incident Management (TIM) is a planned and 

coordinated process to detect, respond to, and remove traffic incidents and restore 

capacity as safely and quickly as possible. Accurate estimation of Incident-Induced Delay 
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(IID) would assist with a better understanding of incident related congestion, and thus 

provide insights for effective TIM. Transportation agencies use information regarding 

IID for transportation planning purposes at different levels. Lately, the successful 

incorporation of reliability analysis into the planning and programming processes also 

demonstrates the importance of incident effects modeling (8). The estimation and 

prediction of IID can further be applied to traffic simulation calibration and validation. 

Accurate estimation of such delay can help identify appropriate decisions regarding 

incident response so that limited monetary and labor resources can be efficiently 

allocated. The IID is also essential for the development of active traffic management and 

integrated corridor management strategies. One critical step for the IID estimation is to 

determine the impact range of incidents in both spatial and temporal domains, which also 

makes it feasible to identify secondary incidents due to the congestion caused by a 

previous incident. According to FHWA, secondary incidents account for 20% of all 

incidents. They include not only crashes, but also engine stalls, overheating and running 

out of fuel scenarios where vehicles experience unexpected delay due to the primary 

incidents. Secondary incident is another criterion for evaluating the effectiveness of TIM. 

According to Karlaftis et al. (9), the likelihood of a secondary crash increases by 2.8% for 

every minute that the primary incident continues to be a hazard.  

A variety of incident management programs have been launched in recent years to 

monitor and respond to incidents in an effort to effectively minimize this negative impact 

(10–12). An accurate and efficient estimation of IID can help facilitate corridor reliability 

assessment. It can assist with bottleneck identification (e.g., roadway geometric design 

deficiencies). Benefits can also accrue when corresponding strategies are implemented to 
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enhance safety and smooth traffic, such as ramp metering, variable speed limit, etc.(13, 

14). IID can vary significantly in different settings, depending on ambient traffic, 

roadway configurations, incident severity, lane blockage, etc. 

1.1.3 Infrastructure Inspection Sampling 

Infrastructure management, often referred to as the decision-making process to 

allocate resources for infrastructure preservation (15), includes three major components: 

inspection, maintenance, and rehabilitation. Infrastructure management agencies assess 

the current conditions of infrastructures, e.g., road shoulder, signage, and pavement 

marking, via inspection. With the infrastructure inspection results, decisions with regard 

to which prescribed maintenance and rehabilitation activities are conducted and how the 

transportation investments are prioritized can be made. Inspection is thus critical as its 

result is directly tied to the planning of maintenance and rehabilitation activities. Any 

inaccuracy in inspection will impair the reliability of maintenance and rehabilitation 

decisions. Yet collecting condition information of infrastructures is very demanding in 

terms of labor and time, and oftentimes agencies inspect only a portion of the 

infrastructures, a.k.a. samples, rather than the entire infrastructure inventory to estimate 

the overall condition. As Mishalani and Gong (16) mentioned, there are four factors 

associated with the accuracy of inspection results: inspection frequency, inspection 

technologies and data processing methods, sample size, and correlation between 

observations. Three of the aforementioned factors (inspection frequency, sample size, and 

correlation between observations) are relevant to the selection of sampling method. 

Improperly selected sampling method can be a major source of error, while if chosen 

appropriately, it can be a useful tool for accurate condition estimation. Compared with 
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other options for improving inspection accuracy, e.g., adopting advanced inspection 

technologies, the usage of proper sampling methods improves the quality of inspection 

results with marginal investment.  

Besides the accuracy of inspection results and initial investment costs, another 

concern about infrastructure inspection is the recurrent inspection costs. The most 

common sampling method used by the DOTs is simple random sampling (SRS), which 

selects the samples based on a random draw. The method is unbiased and able to generate 

samples that represent all types of infrastructures simultaneously. However, it always 

requires a large sampling rate to justify the representativeness of samples. Another 

widely used sampling method is stratified random sampling, which divides the population 

into strata and selects a sample from each stratum. It applies relatively small sample rates, 

but the selected sample is only confined to a single type of infrastructures. In 

infrastructure management, DOTs usually use a highway segment as the sampling unit, 

where more than one type of infrastructures exist for inspection. It is thus time 

consuming and operationally inefficient for field personnel if the samples of different 

infrastructures are widely distributed across all segments. The ideal sampling method is 

to select the group of highway segments for inspection, in which the sampled 

infrastructures are representative to reflect their respective Level-of-Maintenance 

(LOMs) within the entire network. Such a sampling method, allowing conducting once-

for-all inspection instead of once-for-each-infrastructure-type, will significantly reduce 

the inspection costs.  

Different from quality control sampling or acceptance sampling where the 

previous condition of individual sample is unknown, infrastructure management agencies 
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have full access to the historical records of infrastructure conditions on the sampled 

segments, i.e., location, maintenance log, inspection results, and even latent risk 

estimation. It facilitates the design of an information-based sampling method that can 

extract useful historical information to select the most representative samples. Moreover, 

when the background information includes updated inspection results and maintenance 

records, effective sampling methods can always dynamically adjust the sample selection. 

1.2 Objectives and Scope 

The ultimate goal of this study is to explore the implementation of data-driven 

analytics in transportation research. The study also brings new insights to solving the 

long-existing issues and improving current methods in transportation planning, traffic 

operation, and transportation infrastructure maintenance. The specific objectives and 

scope of this study are as follows: 

1.2.1 Dynamic Ridesharing 

In the study of dynamic ridesharing, we are interested in two intriguing issues 

with dynamic ridesharing that have not been thoroughly addressed by the existing 

studies: 1. The competing mechanism between dynamic ridesharing and public transit; 2. 

people’s decision-making process under the presence of competing modes. To solve these 

two issues will help traffic planners, public transit authorities, and ridesharing service 

providers analyze the market, improve the market penetrations, and plan or deploy the 

dynamic ridesharing program.  

To address these issues, an agent-based model is designed to simulate dynamic 

ridesharing system in a multimodal network with the presence of HOV lanes and public 

transit. The model considers travelers’ mode choice preference and simulates their 
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decision-making process for mode selection. By adjusting parameters representing travel 

mode preferences, the model is applicable to any traffic networks with diverse 

socioeconomic attributes, e.g., a network with a large number of private vehicle 

ownership, a network with expensive parking costs, or a network with high public transit 

demand. The modeling framework developed in this study can be an effective tool for 

traffic operation agencies to assess the benefits of dynamic ridesharing across different 

cities and make corresponding marketing strategies. 

1.2.2 Nonrecurrent Congestion 

In previous studies, IID modeling has not been thoroughly conducted at the 

individual incident level that can provide an accurate and efficient estimation, owing to 

analysis methods that either had theoretically stringent assumptions or looked at only 

one-dimensional changes in traffic data. So the objective of this study is to dynamically 

identify IID at the individual incident level for performance assessment and modeling 

purposes. The algorithm should not only capture the dynamic evolution of an incident, 

but also disentangle the convoluted impact of nonrecurrent vs. recurrent congestions. 

To accomplish the objective, a spatiotemporal method to extract information from 

roadway sensors for IID estimation is presented. The algorithm can be trained by the data 

itself, leveraging the relationship between historical recurrent data and new information 

incurred by the dynamic evolution of an incident. This method is data-driven and 

spatiotemporal in nature to fully uncover the impact and causal mechanism of incident 

occurrence. IID quantification at individual incident level will enable further analysis on 

delay-based behavior modeling and inspire follow-up research exploring relationships 

between the incident itself and its associated features (e.g., severity, lane blockage, or 



11 

traffic conditions). 

1.2.3 Maintenance Infrastructure Sampling 

The study of maintenance infrastructure sampling is focused on selecting samples 

that can accurately reflect LOMs of all infrastructures throughout the network, so DOTs 

can save enormous resources and time for infrastructure inspection. The sampling method 

should be capable of choosing proper segments where the conditions of sampled 

infrastructures can represent the LOMs of the full inventory within the network. It should 

also allow transportation agencies (e.g., DOTs) to customize the parameters such as 

sample size, inspection frequency, and infrastructures of interest. 

High-dimensional clustering-based stratified sampling (HDCSS) method for 

infrastructure inspection is presented in this study. The proposed method integrates 

infrastructure deterioration prediction, high-dimensional cluster analysis, and Locality-

Sensitive Hashing. It can incorporate different features, such as infrastructure condition, 

geographic information, traffic condition, and geometric design, as the information based 

on which sample is selected. The sampling process is constantly updated with previous 

inspection results and maintenance records. 
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Figure 1 Flowchart of Implementing Data-driven Analytics 



CHAPTER 2 

DYNAMIC RIDESHARING

An agent-based approach to identify the effects of dynamic ridesharing system in 

a multimodal network is presented in this chapter. It incorporates the travelers’ decision-

making process and agent-based modeling of traffic assignment. The approach is 

implemented in an artificial network for further analysis of dynamic ridesharing demand. 

This chapter is organized as follows: The first section summarized previous studies on 

dynamic ridesharing. The agent-based approach is described in the second section. The 

third section presents an application of the approach to the Sioux Falls test network, 

followed by the modeling results in the fourth section. The fifth section concludes this 

study with direction for future research. 

2.1 Literature Review 

Most of the dynamic ridesharing studies focus on matching algorithm 

optimization and service design. Furuhata et al. (17) summarized a list of such challenges 

in building a successful dynamic ridesharing system, including traveler matching 

algorithms, pricing, and institutional design. Among the studies of dynamic ridesharing 

system design, the driver-passenger matching algorithm has been attracting the most 

attention (18–21). Agatz et al. (19) proposed an optimization-based matching algorithm 

aiming at minimizing the system-wide vehicle miles and individual traveler’s costs. They 

found that in a multicenter network, there are sustainable ridesharing populations even 
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with low market penetration of dynamic ridesharing. Aissat and Oulamara (22) proposed 

a flexible ridesharing strategy, allowing the driver and the passenger meeting at an 

intermediate location, to reduce both the driver’s detour and total travel costs. Nourinejad 

and Roorda (23) proposed different optimized matching algorithms based on the 

assumption that each vehicle carries multiple passengers. To maximize the short term 

revenue of dynamic ridesharing service agency, the commission rate can be as high as 

50% of the travel cost. Some researchers tested dynamic ridesharing systems based on 

nonprivate vehicles. For example, Hosni et al. (24) and Santos and Xavier (25, 26) both 

considered shared taxis in a dynamic ridesharing system. Fagnant and Kockelman (27) 

proposed a dynamic ridesharing system using autonomous vehicles.  

Another trending area in dynamic ridesharing studies is how to encourage 

travelers to utilize the systems. Deakin et al. (28) analyzed the potential dynamic 

ridesharing market based on the data collected from downtown and a university campus. 

They found that high parking charges and limited parking supply are the major boosts to 

dynamic ridesharing increase. Galland et al. (29) used traveler profiles and social media 

to initiate the agent communication model, and also included a negotiation process 

between agents. Stiglic et al. (30) explored how the flexibility of travelers changes the 

matching rate in ridesharing system. They found that any increased flexibility in desired 

departure time or maximum detour time will lead to a significant increment in matching 

rate. Shaheen et al. (31) analyzed the motivations of people using dynamic ridesharing 

with survey data. Based on their study, the top three motivations are convenience, time 

savings, and monetary savings. Mote and Whitestone (32) studied the influence of mass 

transportation policies and urban culture on dynamics ridesharing practice based on the 
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discussion of specific cases. Liu and Li (33) proposed a compensation scheme based on 

the congestion evolution over time, to maintain the ridesharing ridership.   

There is a very limited number of works accomplished on ridesharing in a 

multimodal network. Kramers (34) discussed integrating dynamic ridesharing system into 

a multimodal network conceptually. Chavis and Gayah (35) developed a mode choice 

model between fixed-route transit, ridesharing, and individual transit system based on a 

stated preference survey. In this study, we used an agent-based approach to explore the 

effects of dynamic ridesharing system in a multimodal network.  Agent-based modeling 

(ABM) is a classical tool to study driver’s behavior and the interaction between driver 

and traffic, which has been widely applied in dynamic ridesharing studies (23, 27, 29, 

36–39). Cho et al. (37) listed the steps of modeling ridesharing procedure with agents, 

including creating travel motive, communication and negotiation with other agents, 

execution of the agreed ridesharing plan, and providing feedback to the network. 

Bellemans et al. (40) applied an agent-based approach to simulate the traffic from city to 

large manufacturing plants. Sanchez et al. (39) addressed privacy concerns and trust 

issues between travelers in the dynamic ridesharing system by introducing a 

decentralized reputation management protocol in agent-based modeling 

2.2 Methodology 

An agent-based study has been conducted to model travelers’ decision-making 

process between driving alone, ridesharing, and mass transit in a multimodal network. 

The purpose of the study is to find out how travelers switch their commuting mode in a 

network where ridesharing, HOV lane, and mass transit co-exists, and understand the 

competing mechanisms between these traffic modes. Based on the modeling results, we 
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can make game-theoretic strategies in the operation of these modes in order to optimize 

the network performance and costs. The agent-based modeling framework of ridesharing 

follows the steps listed in (37), including creating travel motive, agent matching, 

execution of travel plan, and network update. In this section, we will provide a detailed 

description of each step. 

2.2.1 Creating Travel Motive 

To create travel motive, a multimodal network with travelers is initialized. The 

multimodal network is modeled as a directed graph with nodes, general purpose lane 

arcs, and HOV2+ lane arcs. Nodes in network serve multiple functions, including origin 

and destination, bus stop, and ridesharing pick-up and drop-off location. We considered 

travel demands in peak hours in this study, since it is the period during which the traffic 

network is most likely to be under severe congestion. The mass transit is represented by 

bus, the most flexible mass transit mode. Traveler agents can only board or alight when 

the bus agents are at nodes. Since the study focuses on the competing mechanism rather 

than the ridesharing matching algorithm, we only match travelers traveling from and to 

the exact same locations (nodes). For individual travelers, there is no mode change in the 

modeling, neither transfer between buses, nor switch between driving and bus. Traveler 

agents waiting for ridesharing are assumed to wait at nodes. All travelers’ trips start from 

their origin nodes once the trips are granted. Two types of path that vehicles drive along 

with: general purpose lane and HOV2+. To simplify the model, we assume that there are 

only three types of vehicles in the network: single-occupancy vehicle (SOV), HOV, and 

bus. HOVs and buses travel on HOV2+ lanes, and SOVs travel on general purpose lanes.  

There are two types of agents in the model, bus agent and traveler agent. The 
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modeling process is fulfilled by the interaction between agents. Each bus agent carries the 

features of bus route, bus location, and on-board traveler information, which is 

represented as: 

𝐵(𝑟𝑜𝑢𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟) 

To justify the cultural and economic difference between different city networks, 

traveler agent is classified into several categories. Each category has its identical 

decision-making and interaction rules. They are HOV traveler, SOV traveler, bus 

traveler, bus and ridesharing traveler, bus and SOV traveler, SOV and ridesharing 

traveler, and all-mode traveler. By adjusting the percentage of each agent category, the 

model can simulate the multimodal networks in different cities. Each traveler agent is 

represented as: 

𝑇(𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑑𝑒𝑝𝑎𝑟𝑡 𝑡𝑖𝑚𝑒) 

The traveler agent’s decision-making process is introduced as follows: 

HOV traveler: HOV travelers are the travelers who originally travel in groups, 

qualifying the requirements of HOV2+. These travelers depart immediately after the 

traveler agent is created. These travelers travel in HOV lanes.  

SOV traveler: SOV travelers are the travelers who only consider traveling in SOV 

due to concern of security, convenience, or other reasons. During peak hours, it is quite 

probable that they are driving under more severe congested traffic conditions. The same 

as HOV travelers, SOV travelers depart immediately, but travel in SOV lanes.  

Bus traveler: Bus travelers consider the bus as the only traffic mode. Since we do 

not consider transfer, this type of travelers only exists between nodes where a bus is 

available. Travelers who do not own any vehicle, do not want to drive, or are concerned 
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about entering a stranger’s vehicle fall into this category. Once the travel motive is 

triggered, a bus traveler agent will be sent to the waiting list for the next bus. Travelers in 

the waiting list will be boarding on the “first-come, first-serve” basis. Notice that due to 

the limited capacity of buses, some travelers may wait for the bus after the next one. 

The above three categories of traveler agents are basic agents in the model, with 

the simplest decision-making process without uncertainty, which only relies on the 

features of traveler him/herself. The decision-making process for the other four categories 

of agents will consider the uncertainty of the network. After imposing the network 

condition to the decision-making process, the four categories of traveler agents can be 

downgraded to basic agents.  

Bus and ridesharing traveler: Travelers who accept both taking bus and sharing a 

ride with strangers are identified as bus and ridesharing traveler. Casual carpooling 

passengers fall into this category. Travelers will wait in both bus waiting and ridesharing 

waiting lines and take the mode which arrives at the destination first. Several criteria 

must be met before the traveler agent is sent to the waiting lists: 1. A bus is available 

between the traveler’s origin and destination; 2. the number of people on board and 

waiting for the next bus is less than the bus capacity. Notice that the number of people on 

board and waiting for the next bus is always higher than the actual people on board when 

the bus arrives since passengers may get off the bus at previous stops. This criterion tends 

to encourage travelers who feel comfortable with both bus and ridesharing to utilize a 

ridesharing system. It reduces the number of people in the bus waiting list, so the 

travelers who only take the bus would have less probability of waiting for an 

unreasonably long time.  
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Travelers in the ridesharing waiting list heading to the same destination are 

matched as a new HOV traveler agent. To simplify the matching process, we did not 

identify the driver or passenger. Travelers who have waited for a long time are given the 

priority in the matching process.  

Bus and SOV traveler: Bus and SOV travelers are the travelers who are flexible 

between taking a bus and driving alone. Traveling by bus always has a more reliable 

travel time compared to driving in general purpose lanes, since buses use HOV lanes. 

However, bus trips are only available between certain matched origins and destinations, 

and have a fixed time schedule. In our model, a bus and SOV traveler is fully aware of 

the network traffic condition, bus waiting list, and passenger volume on board. Therefore, 

a bus and SOV traveler will estimate the arrival times by the two modes, and choose the 

one with the earlier arrival time. If the next bus is close to its capacity or has a later 

arrival time, the agent will be downgraded to an SOV traveler agent, and bus traveler 

agent, otherwise.  

SOV and ridesharing traveler: SOV and ridesharing travelers would like to give 

strangers rides if it can significantly reduce their travel time, or they will drive alone. 

These travelers will estimate the shortest travel time of driving SOV and HOV. There is a 

trade-off time between driving alone and traveling with a stranger. The travelers will not 

consider ridesharing unless the sum of HOV lane travel time and the trade-off time is still 

lower than general purpose lane travel time. In the case where using an HOV lane can 

significantly reduce the travel time, the travelers will join the ridesharing waiting list. But 

unlike bus and ridesharing travelers, SOV and ridesharing travelers have a maximum 

waiting time. Once they have waited for more than the threshold, an SOV and ridesharing 
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traveler agent switches to an SOV traveler agent and departs immediately. 

All-mode traveler: All-mode travelers are the most flexible travelers in the model, 

which accept modes of driving SOV, sharing rides, and taking buses. Once the travel 

motive of an all-mode traveler is triggered, the traveler will estimate the arrival time of 

all three modes. Since both bus and HOV travel on HOV lanes, ridesharing always 

outperforms the bus, which has a fixed schedule and route, in terms of arrival time. If the 

mode of driving SOV has the earliest arrival time (which is very unlikely) or at least not 

much more travel time than the other two modes, the all-mode traveler agent is 

downgraded to an SOV traveler agent.  If the model of ridesharing has a significantly 

early arrival time, the all-mode traveler will wait in the ridesharing waiting list. However, 

if the bus or the maximum waiting time comes before the traveler gets a match, the all-

mode traveler will change his/her mind on taking the bus or driving SOV, respectively. 

2.2.2 Agent Matching 

By conducting the decision-making process, all traveler agents find their best 

route and travel mode in terms of arrival time. Then they are released to the network and 

start to interact with other agents and the travel environment. Agent matching is 

accomplished by the interactions between agents, including the interaction between 

traveler agents, and the interaction between traveler and bus agent.  

The interactions between traveler agents mainly happen at nodes when traveler 

agents look for other traveler agents to share rides. The matching process is based on 

principle of first-come, first-serve. Traveler agents who have been waiting in the line for 

too long will take alternative modes, i.e., bus or SOV. The matching process is illustrated 

in Figure 2. There are 7 agents waiting in the line for ridesharing matching in the 
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example. Each agent contains the information of the destination and alternative mode. 

For example, Agent 1 heads to node 1 and its alternative travel mode is driving alone. In 

the waiting list, Agent 3 and 4 are both heading to node 3, and therefore, they would 

drive share the ride. The same process would happen to Agent 5 and 7 as well. The 

matched agents will depart for their destination immediately. Agent 1 has been waiting 

for too long but has still not yet found a matched traveler. So Agent 1 will drive to his/her 

destination (node 1) alone rather than spending time on waiting for a match. The 

alternative travel mode for Agent 2 is taking the bus. The bus comes when Agent 2 is 

waiting for a match, so Agent 2 would take the bus.  

The bus agents pick up traveler agents from the bus waiting line at each node on 

the bus route, and drop traveler agents at their destination nodes. The trip of the traveler 

is done after it is dropped by a bus agent.  

2.2.3 Travel Plan Execution 

The travel plan is executed by the interaction between agents and the 

environment. Buses and HOVs travel in HOV lanes, and SOVs travel in general purpose 

lanes. Due to the limited number of buses on the network, the impact of buses on the 

traffic network is negligible. Once a traveler agent is released into the network, the travel 

route is determined as the shortest path in terms of travel time based on the instantaneous 

traffic condition. The travel time between two neighboring nodes is calculated by BPR 

function: 

𝑡(𝑣௛) = 𝑡଴[1 + 𝐴 ቀ
𝑣௛

𝐶
ቁ

஻

] (1) 

where 𝑡  is the average travel time, 𝑣௛  is the traffic volume, 𝐶  is the road traffic 

capacity, 𝑡଴ is the free-flow travel time, and A and B are calibrated parameters. 
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When a traveler or bus agent passes a node and starts to travel on another link, the 

travel time for the coming link is recalculated based on the current traffic condition on 

the link. The travel time update procedure is illustrated in Figure 3. The traveler agent in 

Figure 3 travels along the route of node 1-2-3-4. The travel time of each link is estimated 

based on current traffic condition and used as the potential travel time for entering 

traveler agents. Notice that when the traveler agent enters the link 1-2, the travel time of 

link 1-2 is 3 minutes, and the travel time of link 2-3 is 4 minutes. But when the agent 

enters the link 2-3, the travel time of link 2-3 becomes 5 minutes. So the travel time for 

the agent on link 2-3 is 5 minutes.  

2.2.4 Network Update 

The network volume is constantly changed as new agents joining the links and 

exiting the traffic at nodes. The traffic volume on each link is calculated as: 

v = Σ௜
௡ 1

𝑡௜
(2) 

where 𝑛 is the number of agents traveling on the link, and 𝑡௜ is the travel time for agent 𝑖. 

2.3 Case Study 

We test the agent-based model in the classic Sioux Falls network, which consists 

of 24 nodes and 76 directed arcs. The spatial configuration of the network is illustrated in 

Figure 4.  The network  was originally proposed by (41), based on a simplified road 

network of Sioux Falls. The network is widely used in numerical experiments of 

simulating traffic congestion, public transit, and dynamic traffic assignment. In this 

study, we downgraded the link capacity and estimated the HOV lane capacity based on 

the original capacity of each link, shown in Table 1.  
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The travel demand during peak hour is around 336,000 veh/hour. The peak hour 

spans for 2 hours, including three 40-minute periods. Traffic demands during each period 

are 30%, 40%, and 30% of the total travel demand, respectively. The original percentage 

of travelers Pୌ୓୚ in HOV is assumed as 15% (42). The probability of travelers belonging 

to each traveler type is determined by the market penetrations of ridesharing Pୖ ୗ  and 

public transit P୔୘. The probability of a traveler belonging to each type is calculated as: 

HOV traveler:  Pୌ୓୚/2(1 − Pୌ୓୚) 

SOV traveler:  ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ ∗ (1 − P୔୘) ∗ (1 − Pୖ ୗ) 

Bus traveler:  ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ ∗ (1 − P୔୘) ∗ Pୖ ୗ/2 

Bus and ridesharing traveler: P୔୘ ∗ Pୖ ୗ ∗ ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ 

SOV and ridesharing traveler: ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ ∗ (1 − P୔୘)ଶ ∗ Pୖ ୗ 

Bus and SOV traveler: ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ ∗ P୔୘ ∗ (1 − Pୖ ୗ) 

All-mode traveler: ൫1 − Pୌ୓୚/2(1 − Pୌ୓୚)൯ ∗ (1 − P୔୘) ∗ Pୖ ୗ/2 

The public transit network from (43) has been slightly modified and used in this 

study. The itineraries of five bus routes are defined and shown in Table 2. The bus 

headways range between 10 to 20 minutes. Considering the high traffic demand in the 

modeling, we use a bus fleet with the capacity of 600 passenger/fleet to serve the function 

of public transit.  

2.4 Result Analysis 

As mentioned in the literature review, many studies focused on the efficiency of 

the matching algorithm. Stiglic et al. (30) found that many more shared trips can be 

matched if the waiting time constraint is slightly extended in the matching process. 
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Figure 5 shows the sensitivity analysis of trip matching constraints. The agent-based 

model has been applied to scenarios with high public transit market penetration (80%) 

and low public transit market penetration (5%), respectively. The market penetration of 

dynamic ridesharing is set at 40%. Different with Stiglic’s findings, the numbers of 

shared trips change very slightly as the maximum waiting time (constraint) changes. 

Especially when the market penetration of public transit is high, the number of shared 

trips slightly decreases as the maximum waiting time increases. That might be 

attributable to the setup of the Sioux Falls network. One important assumption in the 

network is that nodes serve as locations for trip departure and arrival, shared trip 

matching, and bus stops. Therefore, trips are matched in a very short period of time. The 

waiting list for trip matching reaches equilibrium within 1 minute, so increasing the 

maximum waiting time does not lead to more shared trips. When the market penetration 

of public transit is high, longer maximum waiting time increases the probability of 

travelers utilizing public transit, which causes a slight decrease in number of dynamic 

ridesharing trips. 

Vehicle-Hour-Traveled (VHT) is one of the important criteria to measure the 

performance and efficiency of a traffic network. With unchanged traffic demand, a 

network with less VHT usually means enhanced vehicle occupancy and less congestion. 

The impact of a ridesharing system on traffic network has been studied by many 

researchers. In this paper, we will discuss the VHT reduction induced by the ridesharing 

system. Figure 6 shows the network VHT with different ridesharing market penetrations 

when the bus market penetration 𝑃௉் = 5%. As shown in Figure 6, there is a significant 

drop in VHT when the ridesharing market penetration increases from 0 to 20%. As the 
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ridesharing market penetration increases, the total VHT of the network keeps decreasing. 

The plot of ridesharing market penetration with low public transit market penetration can 

also be the potential VHT reduction prediction after a new ridesharing system is first 

introduced to an existing multimodal network. The VHT with no ridesharing market 

penetration represents the traffic condition during peak hours before the ridesharing 

system is introduced. When the ridesharing system is first introduced, SOV travelers 

looking for reliable travel experience will start to utilize the system. These travelers are 

combined and drive on HOV lanes, which were with quite low occupancy previously. 

Since the total ridership decreases and many vehicles switch from the general purpose 

lanes to HOV lanes, the traffic congestion in general purpose lanes is largely relieved. 

With publicity and marketing strategies applied, the ridesharing system would attract 

more attention, and more travelers would consider utilizing the ridesharing system in 

terms of travel mode selection. So the network VHT keeps decreasing significantly until 

the market penetration of ridesharing is 40%. However, if the market penetration of 

ridesharing keeps increasing, the HOV lanes become saturated. The ridesharing benefits 

in terms of travel time become marginal. In such a case, even if the market penetration of 

ridesharing keeps increasing, the corresponding VHT reduction becomes mild.  

Figure 7 shows the VHT with different ridesharing market penetrations when the 

public transit market penetration is high (60%). Similar to Figure 6, the network total 

VHT decreases with high ridesharing market penetration compared with the multimodal 

network without ridesharing system. However, there is an obvious VHT increase when 

the market penetration of ridesharing system is low. In a network with high public transit 

market penetration, travelers using public transit can be classified into two types in terms 



26 

of private vehicle ownership. The travelers of the first type do not own any private 

vehicles, so public transit is the only available travel mode before the ridesharing system 

appears. The second type of travelers using public transit own private vehicles but do not 

use them for a daily commute due to the unreliable travel time, expensive parking costs, 

or other reasons. When the ridesharing system becomes available in the network, many 

second type travelers would utilize their private vehicles for their daily commute at 

affordable costs by providing rides to other people via the ridesharing system. Travelers 

of the first type also would like to use the ridesharing system due to the convenience and 

travel reliability of traveling in private vehicles. As a result, the application of a 

ridesharing system will encourage travelers to utilize private vehicles for the daily 

commute. In a short period after the ridesharing system is launched, the network will 

have more VHT and suffer more severe congestion than before. The travel experience for 

each individual traveler who uses the ridesharing system becomes more comfortable and 

convenient, but the travel time becomes longer. In such a case, it is questionable if the 

ridesharing system can attract more users.  

This is an identical Braess-like paradox that the network congestion actually 

increases by adding a congestion relief traffic mode to the network. Usually, in the 

studies of traffic operation, the most efficient method to avoid the Braess paradox is to 

remove the roads that most probably lead to the paradox. But in our case, if the 

ridesharing market penetration keeps increasing, the congestion brought on by the 

increased private vehicle ridership will be neutralized by the increased occupancy of 

HOV lanes. As shown in Figure 7, when the ridesharing market penetration is higher than 

20%, the network VHT starts to decrease. So the challenge in boosting a ridesharing 
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system in such a case is how to still attract users when the ridesharing system shows 

negative impacts to the network.  

Another traffic network performance measurement is the total travel cost. Travel 

time, fuel consumption, and even greenhouse gas emissions can all be converted to 

monetized values to assess the impact of dynamic ridesharing to the existing network. 

Evaluating the performance of dynamic ridesharing based on travel costs together with 

VHT might potentially reveal the travelers’ hidden motivation of using that service. 

Therefore, the proper computation of travel costs as a performance indicator would be an 

interesting potential research area. 

In a network with low market penetration of public transit, a ridesharing system 

can significantly reduce the network-wise VHT as well as providing a good travel 

experience. An individual traveler using the ridesharing system can obtain reliable travel 

time and convenient travel experience. The ridesharing system in such a network is self-

advertised and can easily attract users subject to traffic operation. It has no conflicts with 

the existing network infrastructure. However, in a network with high market penetration 

of public transit, the companies or agencies should consider more than marketing 

strategies. For example, they need to make sure that the government provides sufficient 

infrastructures to accommodate the extra congestion induced by the ridesharing system. 

To avoid that current users suffer too much extra travel time, the ridesharing system can 

provide incentives to travelers who would like to bring their private vehicles, or even 

only open to such travelers before the network VHT starts to decrease. 
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2.5 Summary 

           In the study of dynamic ridesharing, an agent-based approach is proposed to model 

the interaction between traffic and environment with the existence of dynamic 

ridesharing in a multimodal network. It integrates the decision-making process of 

travelers under uncertainty with agent-based modeling. Traveler mode choice is greatly 

influenced by the existence of dynamic ridesharing system. There are two major findings 

from this study: the first finding is that the matching rate of the dynamic ridesharing 

system is quite insensitive with the matching constraints when competing with public 

transit. Public transit attracts travelers who are waiting for the matched trip by providing 

a reliable alternative, which neutralizes the increased number of shared trips caused by 

loose matching constraints. Another finding is that the impact of dynamic ridesharing 

system on a multimodal network in terms of congestion relief varies significantly with 

the market penetration of public transit. When very few travelers utilize public transit, 

introducing the dynamic ridesharing system would lead a VHT reduction to the network, 

which means the less congested traffic condition. But when the network originally has 

high market penetration of public transit, introducing the dynamic ridesharing system 

would initially increase the network-wise congestion. As the market penetration of 

dynamic ridesharing keeps increasing, the network-wise congestion would decrease.  

Due to the very different impacts of dynamic ridesharing system on a multimodal 

network, different marketing strategies should be applied. Especially when public transit 

is a preferred travel mode for most travelers in the network, it is the dynamic ridesharing 

service provider’s and the government’s responsibility to make sure that the existing 

infrastructure is sufficient to accommodate the extra congestion induced by the  
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ridesharing system. Ridesharing service providers would like to deploy incentive 

strategies to accelerate the market penetration increasing and shorten the duration 

ofintroducing extra congestion. 

Due to the complexity of ridesharing matching algorithms, in this study, 

ridesharing match was based on the principle of first-come, first-serve, which can be 

greatly optimized. In future efforts, the approach will be applied to actual multimodal 

networks with different demographics in order to study the real impacts of the dynamic 

ridesharing system. In the modeling of such a complicated network with high travel 

demand, optimized matching algorithms will be applied. This will also be beneficial in 

making marketing and operational strategies for the ridesharing system. Another 

intriguing topic is to develop a performance measurement index for the multimodal 

network with dynamic ridesharing. In the case study, VHT has been used as 

the performance measurement of the network, which quantifies the summarized 

volume throughout the network during peak period. Since VHT cannot represent the 

uneven spatial and temporal distribution of traffic congestion, it is necessary to 

develop a new spatial and temporal varied performance measurement index. 
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Figure 2 Illustration of Traveler Matching for Ridesharing 

Figure 3 Illustration of Route Travel Time Recalculation 

Figure 4 Illustration of Sioux Falls Network 
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Figure 5 Number of Shared Trips with Different Maximum Waiting Time for Matching 

Figure 6 VHT with Different Ridesharing Market Penetrations When Bus Market 
Penetration is 5% 
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Figure 7 VHT with Different Ridesharing Market Penetrations When the Bus Market 
Penetration is 60% 

Table 1 Criteria for Estimating the Number of HOV Lanes 
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CHAPTER 3 

NONRECURRENT CONGESTION

This chapter demonstrates the implementation of big data analytics in quantifying 

IID at the individual level and the utilization of quantified IID in terms of traffic 

operation. The first section describes the previous studies on IID quantification. It is 

followed by a detailed explanation of the proposed methodology. The third section in this 

chapter describes a case study with the proposed methodology. The fourth and last 

section summarizes the results of the case study and conclusions drawn from the results. 

3.1 Literature Review 

IID is defined as the extra travel delay resulting from incidents on top of the 

recurrent congestion (44). Previous studies on IID were based on the mechanism of delay 

quantification. In terms of methodology, Deterministic Queueing Theory (DQT) and the 

Shockwave-based algorithm are most commonly adopted (45, 46). For DQT, delay is 

determined as the difference between the curve of the original traffic condition and the 

curve of the queuing process after incidents. The model is implemented with assumed 

capacity reduction and empirically determined incident duration functions (47). The 

results of DQT highly depend on assumed functions, impairing the robustness of the 

method.
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Shockwave-based algorithms are developed on the basis of macroscopic traffic 

flow theory, treating incidents as flow perturbations. Once an incident (perturbation) 

occurs, shockwaves are generated and spread backward in the traffic flow. Features of 

perturbation (i.e., the variation of incident-induced perturbation, clearance time, and 

maximum queue length) can be calculated (45). Similar to DQT, an analytical solution is 

not available unless simplified traffic conditions apply. Otherwise, a numerical solution is 

needed (48). Rakha and Zhang (49) found that the two aforementioned methods yield 

consistent results. However, at highway bottlenecks, DQT provides a more accurate 

estimation of incident delays. Besides the mechanism-based approach, the statistical 

method has been applied to study the general distribution of incident delay. Skabardonis 

et al. (50) estimated the average and probability distribution of delay using loop detector 

data and showed that nonrecurrent congestion accounts for only 13% to 30% of total 

delays, depending on the extent of recurrent congestion. A statistical method provides 

data-based estimation of IID but fails to link IID with location-specific and incident-

associated characteristics. These studies offer general insights for IID estimation. Yet 

neither mechanism-based methods nor statistical methods are capable of quantifying IID 

at the disaggregate level, where important features associated with individual incidents 

remain unknown.   

Early research on incidents’ impact at disaggregate level used the static method, 

assuming that the maximum impact area of incidents has a fixed boundary (9, 51). 

Karlaftis et al. (9) believed that the impact area of an incident to induce secondary 

incident is 1.5 km and 15 minutes. Moore et al. (51) defined the impact area as 2 miles/2 

hours. Due to the fact that the predefined boundary may not be suitable to all the 
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incidents, researchers turned to a dynamic method defining the dynamic influence area of 

incident on the basis of analytical/empirical approach with traffic data. Efforts to uncover 

the dynamic impact of incidents have led to a wide-scale use of spatiotemporal analysis 

(52–55). Spatiotemporal analysis can be used to determine the additional delay within the 

spatial and temporal extent under the impact of incidents. It focuses on the intrinsic 

variations of individual incidents, and thus avoids the bias induced by the assumed 

relationship between delay and surrounding conditions. There are two challenges in such 

analysis.  The first challenge is the incident’s impact range in spatiotemporal domain. 

Under ideal situations, the spatiotemporal extent is a contiguous region originating from 

the moment an incident occurs. Yet in reality, disturbances exist within the region due to 

traffic fluctuation. The second challenge is the identification of recurrent congestion. A 

method is needed to disentangle the compounded impact of nonrecurrent and recurrent 

congestions.  

Common practice is to choose an empirical threshold based on historical traffic 

conditions and use speed or travel time as delay indicators to distinguish the two types of 

congestion. Spatiotemporal region with indicator value below this threshold is considered 

experiencing only recurrent congestion. Chung (53) applied the spatiotemporal concept to 

freeway incident delay quantification. If speed falls below the threshold  s̅ − α σୱ (where 

s̅ is the average speed, σୱ is the standard deviation of speed, and α is the scaling factor), 

the spatiotemporal cell is considered congested. The single average speed 𝑠̅ is used as 

recurrent condition indicator, which does not consider the traffic variation under an 

incident-free scenario. Also note that α is determined empirically. Thus, any bias may 

result in an over- or under-estimation of the nonrecurrent congestion. Chung and Recker 
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(54) then improved upon this method using an optimization model to minimize the

probability of errors, including the speed threshold being falsely higher than the speed at 

uncongested cells or falsely lower than the speed at congested cells, such that the 

optimum value of α  can be calculated and applied to the spatiotemporal extent 

determination. Note that both empirical and optimization methods are built on the 

assumption that recurrent congestion can be estimated analytically bys̅ − ασୱ. Snelder et 

al. (55) expanded the spatiotemporal method from corridor to freeway network. They 

assumed that the boundary of spatiotemporal extent is a parallelogram with a slope of 70 

km/h (shockwave speed). To determine the recurrent congestion, they constructed a 

Vehicle Loss Hour (VLH) series with weighted VLH from weeks before and after an 

incident, and used the median as the referencing case. This empirical method is simple to 

implement but lacks validation. Anbaroglu et al. (52) applied the spatiotemporal 

clustering analysis to freeway network using links as unit. The threshold for recurrent 

congestion was also determined via optimization.  

Another stream of applications for spatiotemporal analysis is secondary incident 

identification (56–58). Secondary incidents are considered stochastic events induced by 

traffic congestion originating from the primary incident. The key focus has been 

determining the primary incident’s spatiotemporal impact boundary. According to Yang 

(57, 58), when incidents are identified as secondary, not only the subsequent incident 

itself but also all the spatiotemporal cells between the previous and subsequent incidents 

should be within the spatiotemporal extent. However, this would falsely exclude 

secondary incidents when the spreading of impacts is dominant in one direction (either 

spatial or temporal). Chung (56) applied extra criteria based on the shape of impact extent 
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in his optimization model, such as the uninterrupted progression of shockwave, upstream-

directional progression, and position of dot-shaded area.  

The spatiotemporal analysis also applies to other nonrecurrent factors besides 

incident, e.g., adverse weather (59), rubbernecking (55, 60), and work zone (53), just to 

name a few. 

An emerging popular approach for recurrent congestion estimation under 

incidents’ influence is the data mining method. Habtemichael and Cetin (61) applied 

clustering analysis to identify a similar traffic condition pattern for incidents, and then 

predicted the recurrent congestion based on that. Their results showed that travel time 

outperforms traffic volume as a pattern recognition indicator, and the K-Nearest 

Neighbor (KNN) method yields the best prediction results. Compared to empirical 

methods, the data mining approach adopts unsupervised learning techniques and can be 

customized to different datasets. Park and Haghani (62) used neural network models to 

predict the likelihood of secondary incidents. To better explain neural networks, a 

pedagogical rule extraction approach was developed and applied to extract 

comprehensible rules. 

Spatiotemporal analysis and data mining techniques offer greater insight into the 

convoluted causes of delay and unveil the true impact of nonrecurrent congestion to 

explore unsettling reasons for safety enhancement that have escaped notice. This study 

complements existing literature by combining analytical approach with data mining 

techniques to dynamically determine the spatiotemporal extent of individual incidents. 

The IID quantification methodology excludes the impact of secondary incidents for the 

first time and includes shockwave theory in spatiotemporal analysis. The information 
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construction process can be further used to uncover a variety of features that are 

associated with particular incidents for an optimal freeway management.  

3.2 Methodology 

IID quantification at individual incident level will enable further analysis on 

delay-based behavior modeling and inspire follow-up research on exploring relationships 

between the incident itself and associated features (e.g., severity, lane blockage, or traffic 

conditions). The proposed algorithm in this study starts by ruling out the influence of 

secondary incidents, as the subsequent events occurring in spatiotemporal domain can 

result in an overestimation of the primary incident impact. This is achieved by mapping 

cascading incidents onto the spatiotemporal extents of the potential primary incidents. 

The total delay induced by each individual incident is then dynamically calculated using 

a spatiotemporal clustering approach. Recurrent congestion can eventually be determined 

through heuristically searching in the historical database for pattern recognition. The 

methodology is data-driven in nature and the algorithm is easily transferable to any traffic 

operation system that has access to the sensor data at corridor level.  

The algorithm for IID estimation follows a three-component scheme: secondary 

incident identification, spatiotemporal extent determination (total delay), and recurrent 

congestion identification. The detailed explanation for each component is presented in 

this section:  

3.2.1 Secondary Incident Identification 

Due to the cascading effect of secondary incidents, delays can be elongated 

substantially. To separate the delay induced by primary and secondary incidents, a 

method considering the spatiotemporal effects of primary incidents is required. As 
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mentioned in Chung (2013), the secondary incident identification should be fulfilled by 

defining the primary incident impact area. Delay induced by an incident, defined as the 

excess Vehicle Hours Traveled (VHT) with a reference speed of 60 mph as an example, 

can be visualized in a spatiotemporal contour map as shown in Figure 1. In this figure, 

the spatiotemporal impact extent is established on the basis of three criteria: IID detection, 

shockwave front location, and contiguity of impact region. Any cascading incidents 

occurring within the spatiotemporal extent are identified as secondary incidents. Specific 

explanation of the criteria follows.  

3.2.1.1 IID Detection 

Let 𝐷ௌ௘௖_௧௢௧(𝑖, 𝑗) be the representative of total delay at location i with Time-of-

Day Day-of-Week (TOD DOW) j induced by an incident, 𝐷ௌ௘௖_௥௘௖(𝑖, 𝑗) be the 

representative of corresponding recurring delay, and 𝑑ௌ௘௖(𝑖, 𝑗, 𝑘) be the historical delay 

under incident-free scenario at the same location i with TOD DOW j, but at different 

week k. The incident-free scenario is defined as no incident occurring within 5 hours 

prior to the time stamp and within 10 miles upstream of the location. The recurring delay 

Dௌ௘௖_௥௘௖(i, j)  is estimated with 𝑑ௌ௘௖(𝑖, 𝑗, 𝑘ଵ) ,  𝑑ௌ௘௖(𝑖, 𝑗, 𝑘ଶ), … , 𝑑ௌ௘௖(𝑖, 𝑗, 𝑘௡) , where 

𝑘ଵ, 𝑘ଶ, … , 𝑘௡ are the weeks under incident-free scenario. The spatiotemporal extent based 

on the difference between total and recurrent delays, within which any new incident 

occurred, offers a sense of existence of secondary incidents. In case a secondary incident 

appears, its impact extent would be connected with one of the primary incidents, 

expanding upon the original spatiotemporal range. As a result, a secondary incident 

would never appear at the boundary of a spatiotemporal impact region. Using fixed 

percentiles of historical delay to represent the recurring congestion (e.g., 80th percentile), 
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a binary contour map to detect the existence of IID can be generated by subtracting 

𝐷ௌ௘௖_௥௘௖(𝑖, 𝑗) from  𝐷ௌ௘௖_௧௢௧(𝑖, 𝑗): 

𝐼ௌ௘௖(𝑖, 𝑗) = ൜
1, 𝑖𝑓 𝐷ௌ௘௖_௧௢௧(𝑖, 𝑗) − 𝐷ௌ௘௖_௥௘௖(𝑖, 𝑗) > 0

0, 𝑖𝑓 𝐷ௌ௘௖_௧௢௧(𝑖, 𝑗) − 𝐷ௌ௘௖_௥௘௖(𝑖, 𝑗) ≤ 0
(3) 

where 𝐼ௌ௘௖  is the indicator of IID existence. 𝐼ௌ௘௖(𝑖, 𝑗) = 1 suggests that there is IID at 

spatiotemporal location (𝑖, 𝑗), otherwise 𝐼ௌ௘௖ (𝑖, 𝑗) = 0. 

3.2.1.2 Shockwave Front 

Considering random factors that may influence the delay after an incident occurs 

(e.g., adverse weather, work zone), 𝐼ௌ௘௖(𝑖, 𝑗) = 1 does not necessarily mean that the delay 

is purely incident-induced. To rule out such possibilities, the shockwave front location 

method is used to filter out other nonrecurrent delays. As soon as an incident occurs, a 

shockwave is triggered. The shockwave is originated from the incident and spread 

spatially backward and temporally forward. Thus, an incident impact region should 

coincide with the spatiotemporal area behind the front of shockwave.  The spatiotemporal 

contour map can be broken down into two parts: 

𝑆ௌ௘௖(𝑖, 𝑗) = ൜
0, 𝑖𝑓 (𝑖, 𝑗) 𝑖𝑠 𝑎ℎ𝑒𝑎𝑑 𝑜𝑓 𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡

1, 𝑖𝑓 (𝑖, 𝑗) 𝑖𝑠 𝑜𝑛 𝑜𝑟 𝑏𝑒ℎ𝑖𝑛𝑑 𝑠ℎ𝑜𝑐𝑘𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡
(4) 

where 𝑆_𝑆𝑒𝑐  is the indicator for determining whether the location (𝑖, 𝑗) is behind the 

shockwave front. 

The shockwave effect is a complicated process and varies based on traffic volume, 

density, and even severity of incidents. The shockwave front location is defined with a 

dynamic threshold as developed in (63): the sensor station whose traffic density is greater 

than twice the density at the upstream station and the sensor station whose average speed 

is greater than twice the speed at the downstream station. Therefore, if a delay is detected 



41 

ahead of the shockwave front in the spatiotemporal context, it is not considered to be 

induced by the incident.  

3.2.1.3 Contiguity of Impact Region 

The propagation of congestion is unidirectional in both spatial and temporal 

domains. Thus, the IID at spatiotemporal location (𝑖, 𝑗) (if any) must be inherited from a 

prior location that is spatially forward or temporally backward. The contiguity of impact 

region suggests that if IID exists at (𝑖, 𝑗), it must also exist in either (𝑖 − 1, 𝑗) or (𝑖, 𝑗 − 1), 

or both. Mathematically, this can be expressed as: 

𝐶ௌ௘௖(𝑖, 𝑗) = 
൜

1                                                                              𝑖𝑓 𝑖 = 0 𝑎𝑛𝑑 𝑗 = 0

min{1, 𝐼ௌ௘௖(𝑖 − 1, 𝑗) ∗ 𝑆ௌ௘௖(𝑖 − 1, 𝑗) ∗ 𝐶ௌ௘௖(𝑖 − 1, 𝑗) + 𝐼ௌ௘௖(𝑖, 𝑗 − 1) ∗ 𝑆ௌ௘௖(𝑖, 𝑗 − 1) ∗ 𝐶ௌ௘௖(𝑖, 𝑗 − 1)} , 𝑒𝑙𝑠𝑒

(5) 

where 𝐶ௌ௘௖  is the indicator for contiguity. 𝐶ௌ௘௖ (𝑖, 𝑗) = 1  suggests the criterion of 

contiguity is met, otherwise  𝐶ௌ௘௖(𝑖, 𝑗) = 0. 

Based on the aforementioned criteria, every spatiotemporal cell within the impact 

range of an incident must satisfy: 

𝐼ௌ௘௖(𝑖, 𝑗) ∗ 𝑆ௌ௘௖(𝑖, 𝑗) ∗ 𝐶ௌ௘௖(𝑖, 𝑗) = 1 (6) 

Therefore, any incident that falls within the impact range of a prior incident would 

be considered secondary (1-zone in Figure 8(d)). Figure 8(a)-(c) demonstrates the results 

of applying the IID detection, shockwave front, and contiguity of impact region criteria to 

the spatiotemporal profile of delay after incident. Cells marked as 1 represent the 

spatiotemporal units that meet the criterion in each plot. Figure 8(d) is the conjunction 

plot based on the three criteria. Note that the spatiotemporal impact extent due to a 

cascading incident would be much greater than those of independent incidents. If a delay 

is calculated based on such overlapping effects, it would significantly overestimate IID, 
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especially for locations with high secondary incident frequency. With all the primary 

incidents and secondary incidents identified, attention is directed to total delay and 

recurrent delay quantification, which are spatiotemporal-sensitive. 

3.2.2 Total Delay of Independent Incident 

The total delay of an incident refers to the accumulated delay augmented within 

its spatiotemporal impact extent. Compared to secondary incident identification, total 

delay quantification is more sensitive to the spatiotemporal range. The same 

spatiotemporal clustering analysis applies here except the fixed percentile threshold for 

defining normal condition. Instead, a statistical model is utilized to provide a more 

reasonable threshold and can be trained with empirical data.   

To implement the threshold estimation, we randomly chose 1,000 TOD DOW and 

locations, and constructed histograms of the delay occurring during those periods. Two 

typical patterns of delay frequency emerge as shown in Figure 9. Nonparametric 

estimation determines that the incident-free delay follows Weibull distribution, whose 

probability density function is expressed as: 

𝑓(𝑥; 𝜆, 𝑘) = ൝
𝑘

𝜆
ቀ

𝑥

𝜆
ቁ

௞ିଵ

𝑒
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௫
ఒ

ቁ
ೖ

, 𝑥 ≥ 0

0, 𝑥 < 0

 (7) 

where k is the shape parameter. When k=1 or k=2, the distribution becomes Exponential 

Distribution or Rayleigh Distribution.  The Cumulative Distribution Functions (CDF) are: 

𝑘 = 1, 𝐹(𝑥; 𝜆) = 1 − 𝑒ିఒ௫ (𝑥 ≥ 0) (Exponential Distribution) 

𝑘 = 2, 𝐹(𝑥) = 1 − 𝑒
ି

ೣమ

మ഑మ  (𝑥 ≥ 0) (Rayleigh Distribution) (8) 

The parameters can be estimated as: 

𝜆መ =
𝑛

Σ୩ୀଵ
௡ 𝑑(𝑖, 𝑗, 𝑘)

(9)
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௡ 𝑥௜
ଶ 

Let d(i, j, k) refer to the historical delay under incident-free scenario at location i, 

TOD DOW j, and week k. With distribution parameters known, the Pth percentile of 

delay can be estimated as: 

𝐷෡௘௫௣(𝑖, 𝑗) =
ln ቀ

1
1 − 𝑃

ቁ

𝑛
Σ௞ୀଵ

௡ 𝑑(𝑖, 𝑗, 𝑘) (10) 

𝐷෡ோ௔௬(𝑖, 𝑗) =
ඨln (

1
1 − 𝑃

)

𝑛
Σ௞ୀଵ

௡ 𝑑(𝑖, 𝑗, 𝑘)௞
ଶ (11) 

where 𝐷෡ா௫௣ and 𝐷෡ோ௔௬ are the estimated threshold when delay follows Exponential and 

Rayleigh Distribution, respectively. The distribution of historical delay varies by TOD 

DOW, so instead of exploring the distributions for any TOD DOW, we used the 

minimum of 𝐷෡௘௫௣ and 𝐷෡ோ௔௬ as the threshold. 

Let 𝐷ூ௡௦(𝑖, 𝑗) be the representative of instantaneous delay at location 𝑖 and TOD 

DOW 𝑗  after an incident and 𝐷்௢௧  denote the total delay of an incident. The 

spatiotemporal extent of an incident’s impact is defined as: 

𝐼(𝑖, 𝑗) = ቊ
1, 𝑖𝑓 𝐷ூ௡௦(𝑖, 𝑗) − min൛𝐷෡௘௫௣(𝑖, 𝑗), 𝐷෡ோ௔௬(𝑖, 𝑗)ൟ > 0

0, 𝑖𝑓 𝐷ூ௡௦(𝑖, 𝑗) − min൛𝐷෡௘௫௣(𝑖, 𝑗), 𝐷෡ோ௔௬(𝑖, 𝑗)ൟ ≤ 0
(12) 

𝐷்௢௧ = Σ௜Σ௝𝐼(𝑖, 𝑗) ∗ 𝐷ூ௡௦(𝑖, 𝑗) (13) 

where 𝐼 is the congestion indicator,𝐼(𝑖, 𝑗) = 1 indicates that it is congested at location 

(𝑖, 𝑗), otherwise 𝐼(𝑖, 𝑗) = 0. 

It is important to reiterate that the congestion threshold estimation is performed in 

both Secondary Incident Identification and Total Delay Determination. Compared to the 
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fixed percentile method in secondary incident identification, applying a statistical 

distribution model can avoid bias due to limited sample size and outliers. Yet the 

selection of thresholds can be risky. A lower threshold may incorporate any possible 

delay into the total delay, but also significantly expand the spatiotemporal impact range, 

compromising the accuracy of the method. Though rarely observed, for extreme incident 

cases where the spatiotemporal extent is unreasonably long (e.g., more than 5 hours), a 

fixed spatiotemporal extent should apply.  

3.2.3 Recurrent Delay Determination by Pattern Recognition 

Generally, recurrent delay is defined as congestion caused by routine traffic 

operations in a typical setting. Yet traffic conditions vary on a daily basis even for 

recurrent congestion. Thus, when predicting the recurrent delay for an incident scenario, 

the “background congestion” requires special attention to trace from historical record. 

The “typical recurrent congestion” determined from statistical models in previous studies 

oftentimes is not applicable to every incident scenario. We remedy this through a pattern 

recognition process, where recurrent delay is considered as a function of location, TOD 

DOW, traffic condition, and other miscellaneous factors that can be expressed as:  

𝑑ோ௘௖∗ = 𝐹(𝑖, 𝑗, 𝑇, … ) (14) 

where 𝑑ோ௘௖∗ is the accumulated delay within the incident’s impact extent if there was no 

incident, 𝑖 is the location, 𝑗 is the TOD DOW, and 𝑇 is background traffic condition.  

Other variables are considered to have marginal effects and were thus ignored in 

the equation. When considering incident scenario, it is impossible to infer what the 

recurrent congestion would be if the incident did not occur, but recurrent delay can still 

be deduced through matching the traffic conditions from historical database. For any 
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historical traffic scenario 𝑇௛௜௦, if there exists |𝑇 − 𝑇௛௜௦| < 𝜖, where 𝜖 is a threshold for the 

difference of traffic condition. It is reasonable to assume that: 

|𝑑ோ௘௖∗ − 𝑑௛௜௦| < 𝜖′ (15) 

where 𝑑௛௜௦ is the recurrent delay of the matching historical scenario, and 𝜖′ is threshold 

for the difference of recurrent delay.  

The sensitivity analysis of thresholds 𝜖 and 𝜖′ will be investigated in future work. 

Previous research compared three pattern recognition techniques (DOW, cluster, KNN) 

with different weighting methods (61). Yet without knowing the relationship between 

delay, location, time, and traffic condition, any weighting attempt is susceptible to 

questioning due to lack of validation. In this study, we performed pattern recognition 

based on TOD-DOW. Quantifying the recurrent congestion becomes equivalent to 

identifying the best-matched historical traffic scenario at the same location and TOD-

DOW. The performance measure for pattern recognition is VHT, which can best describe 

speed and volume and is easy to obtain from traffic sensors. It is critical that the historical 

matching scenarios be incident-free. Therefore filtration should be applied to the database 

(no incident within a 5-hour span at the same location and TOD-DOW). Statistical 

performance indicator Root-Mean-Square-Error (RMSE) is used for choosing the 

matching scenario:  

𝑅𝑀𝑆𝐸 = ඨΣ௧ୀଵ
ଶ ൫𝑉௧

෡ − 𝑉௧൯
ଶ

𝑛
(16) 

where  𝑉௧
෡  is VHT for historical incident-free scenario, 𝑉௧ is VHT for traffic scenario prior 

to the incident, and 𝑛 is the number of observations.  

The pattern recognition process is conducted on traffic conditions within a 30-
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minute time frame prior to the incident. The number of observations is determined by 

both the interval selection and aggregation level of sensor data. The pattern recognition is 

essentially a heuristic search on historical database until the matching traffic scenario 

with the least RMSE is found. The recurrent delay within the incident’s impact extent can 

thus be estimated as the accumulated delay from the matching scenario at the same 

location 𝑖 and TOD DOW 𝑗 but a different week 𝐾, expressed as:  

𝐷ோா஼ = Σ௝ୀଵ
௃

Σ
௜ୀ௦೘,ೕ

௦೛
𝑑௛௜௦(𝑖, 𝑗, 𝐾) (17) 

Pattern recognition based on single VHT for the same TOD DOW at the same 

location may be subject to inaccuracy in providing a holistic view of traffic conditions. 

To compensate for this, we applied the KNN method in the pattern recognition process to 

determine the closest incident-free scenarios that can be used to describe recurrent 

congestion. KNN is a classification method that offers a nonparametric procedure for 

assigning a class label to the input pattern based on the K-closest neighbors of the vector 

(64). In this study, we used similarity (RMSE) of the K-closest neighbors (historical 

scenarios) as the means of classification. The delay at matching scenario is calculated as: 

𝑑௛௜௦(𝑖, 𝑗)௄ேே =
ଵ

௄
Σ௞ୀଵ

௄ 𝑑௛௜௦(𝑖, 𝑗, 𝑊௞)   (18)

where 𝑑௛௜௦(𝑖, 𝑗)௄ேே is the mean of KNN recurrent delay, and 𝑊௞ is the week when the 

KNN traffic scenario occurred. The robustness of VHT as measurement and value of K in 

KNN method are discussed in the next section. 

The entire algorithm, deconstructed into three major components as described 

above, is depicted in Figure 10. Note that the congestion threshold estimation used in 

both Secondary Incident Identification and Total Delay Determination might bear two 

types of errors for incident spatiotemporal extent determination. First, when the actual 
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recurrent delay is higher than the threshold, the incident spatiotemporal extent and the 

total delay would both be over-estimated. However, over-estimated spatiotemporal extent 

would also cause recurrent delay being over-estimated. The overall effect is canceled out 

when estimating IID. Second, when the actual recurrent delay is less than the threshold, 

the spatiotemporal extent is under-estimated. But in the region near the boundary of 

spatiotemporal extent, the impact of the incident is almost dismissed. Therefore, the delay 

in such a region is negligible.  

3.3 Case Study 

The proposed algorithm is applied onto the I-15 Northbound corridor between 

15600 S and 1000 N in the Salt Lake Metropolitan area. This 25-mile long segment 

includes a total of 62 loop detector stations. The 2013 traffic data from loop detectors 

were retrieved and aggregated at 5-minute intervals, including speed, volume, delay, 

occupancy, and VHT. Incident records in 2013 were also retrieved from incident 

databases maintained at the Utah Department of Transportation (UDOT) Traffic 

Operation Center (TOC). Traffic data have been automatically collected and archived 

every 30 seconds, hosted in the PeMS (Freeway Performance Measurement System) 

database by the UDOT. PeMS aggregates the loop detector data at 5-minute interval with 

imputation parameters calculated offline. Regression is applied during imputation based 

on data from good loops that are spatiotemporally adjacent to the bad ones. When 

regression is not possible, cluster median is used to fill in the missing samples. The 

postprocessed traffic data set used in this study has good completeness and consistency. 

The incident dataset offers details regarding incident ID, time, location (milepost), 

duration, and brief description. It also provides incident characteristics, such as incident 
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type (crash, debris, vehicle on fire, signal problem, etc.), severity (fatality and property 

damage), priority (lane blockage), and impact (incident clearance time estimated by 

emergency personnel). In 2013 there were 1,377 incidents that occurred in the selected 

segment. For the purpose of spatiotemporal analysis, traffic data up to 5 miles upstream 

from the starting point of the segment were also obtained. Delay is quantified as 

excessive VHT with a threshold of 60 mph.   

To identify potential secondary incidents, spatiotemporal analysis was performed 

as mentioned earlier. A spatiotemporal boundary of 5 hours and 10 miles was preselected 

to accommodate the largest possible impact region of an incident. According to Khattak 

et al. (65), the spatiotemporal boundary of secondary incident is usually within 2 hours 

and 2 miles. It is thus reasonable to assume that our spatiotemporal boundary is sufficient 

to capture all the associated incident impact. Note that the spatiotemporal boundary is set 

to ensure the computational efficiency of our algorithm. The resolution for 

spatiotemporal mapping was carefully chosen as 0.02 𝑚𝑖𝑙𝑒𝑠 × 1 𝑚𝑖𝑛𝑢𝑡𝑒, which satisfies 

the accuracy of data without significantly overloading on computation. Imprialou et al. 

(66) pointed out that it is not necessary to use uniform temporal intervals in

spatiotemporal mapping, yet a 1-minute interval was chosen in this study for simplicity. 

Traffic conditions between stations were estimated via interpolation of loop detector data. 

When conducting secondary incident identification, the 80th percentile of historical delay 

was used as the threshold to determine the prevailing congestion condition. This 

percentile was chosen based on random testing of delay distribution using the 2013 

dataset and the result from previous studies related to secondary incident identification on 

freeways (67). All the cascading incidents are mapped on the spatiotemporal extent, with 
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secondary incidents further identified. The congestion threshold for total delay 

quantification was determined as described in Equations (8) and (9). The total delay was 

accumulated within the generated spatiotemporal extent. Recurrent delay was further 

estimated through the pattern recognition process by choosing the best matching KNN 

traffic pattern 30 minutes prior to the incident. Results and discussion of this 

implementation follow. 

To validate the robustness of VHT as measurement index for traffic scenarios in 

pattern recognition, we compared the effectiveness of different measures, including VHT, 

speed, and volume, in predicting recurrent delay. To accomplish pattern recognition for 

each incident, we built a dataset of traffic pattern spans that are incident-free at the same 

TOD DOW as the incident scenarios for each incident. We randomly chose one span 

from database as the span whose traffic pattern was to be predicted. The rest of the spans 

were used as candidates for matching. A dataset with 800 incidents was used in this 

validation. Namely, 800 spans were chosen for prediction. VHT, speed, and volume were 

used as determination variables separately for different K-values (K < 10). The RMSEs 

of delays were calculated to measure the robustness of different indicators. Table 3 shows 

the sum of RMSEs with different K values for KNN. It shows that KNN is more reliable 

than single value since the sum of RMSEs decreases as K increases. At lower K-value, 

speed outperforms the other two measures. With higher K-value, VHT is slightly better 

than speed, and both outperform volume. Overall, using relatively high K-value KNN 

and VHT as the determination variable can best predict recurrent delay. Therefore, we 

used VHT as determination variable and KNN method with 𝐾 = 9  when processing 

pattern recognition. 
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Using the 2013 incident database (1,377 incidents in total) for the study corridor, 

a total of 109 primary incidents were identified with 270 secondary incidents. A total of 

778 incidents were independent incidents, and 220 incidents (16%) were censored by the 

spatiotemporal boundary. These 220 incidents’ spatiotemporal extents were beyond the 

5-hour 10-mile maximum boundary set forth by the algorithm.

On average, the primary and secondary incidents were 3.2 miles and 70 minutes 

apart. Note that multiple consecutive secondary incidents are all considered to be traced 

from the original primary incident thereby resulting in an elongated time span. Figure 11 

illustrates a secondary incident (23:40, MP 304, marked as 1) that occurred 3 miles 

upstream of the primary incident (23:19, MP 307, marked as P). Notice that another 

incident (23:32, MP 305, marked as 2) also appears in the vicinity. However, according 

to the spatiotemporal analysis, causality is not inferred.  

Figure 12 shows the heat map and profiles of primary and secondary incidents 

along the study corridor. The profiles exhibit very similar trends with few exceptions, and 

the distribution of secondary incident is upstream skewed due to the hysteresis nature. 

Lag between the two ranges from 1 to 4 miles, which is consistent with the average 

distance reported. A reverse pattern appears in the segment between MP 298 and 300, 

where denser secondary incidents are induced by fewer primary incidents. This is to be 

expected due to the presence of a freeway junction between I-15 and I-215 that triggers 

more intensive weaving with an AADT of 77,000 vehicle/day. This can be contrasted 

with another junction between I-15 and I-80 with an AADT of 54,000 vehicle/day, which 

had an aligned incident occurrence pattern. The average IID is 43 vehicle-hours. IID 

distribution is right-skewed, indicating a small portion of incidents with extremely high 
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IID. For freeway management purposes, IID should be jointly studied to trace the reason 

behind their occurrence and for effective incident mitigation strategies. To this end, hot 

spot analysis is utilized to observe incident frequency along the corridor. Note that 

incident occurrence is usually not an isolated event. For example, Ord and Getis (68) 

proposed  spatial statistics based on the weighted spatial autocorrelation between 

incidents. We applied a similar concept in the hot spot analysis: we considered not only 

the number of incidents at the spot but also the number of incidents associated to the spot. 

At each location, the occurrence of an incident is weighted by its independence. For 

example, an independent incident has the lowest weight since the occurrences of 

independent incidents are very random. A secondary incident has higher weight since it 

carries on the influence from primary incidents. A primary incident has the highest 

weight since it tends to induce more congestion and damage. Thus, each incident is 

weighted by the number of incidents it is associated with (including itself). For 

comparison purposes, the top 5 locations from each method were identified as hot spots. 

Figure 13 (a) and (b) show the hot spots identified by incident frequency with or without 

considering the weighting.  Interestingly, they yield quite similar results with hot spots 

identified at two freeway junctions and between MP 295 and 297. However, when 

illustrating the spatial profile of IID as shown in Figure 13 (c), hot spots are clustered 

between MP 285 and MP 287, which is distant from the freeway junctions. One-way 

ANOVA with Tukey HSD test is conducted to evaluate the difference between the IID 

distributions across the entire corridor. Table 4 shows the result of the ANOVA test. It 

shows that the difference between the IID distributions at each milepost is significant. 

Table 5 shows part of the Tukey HSD test result. By conducting Tukey HSD test, we find 
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that the difference between IID distributions at different MPs is insignificant, except for 

MP 285. 

Several factors might contribute to this phenomenon. First, the existence of a 

bottleneck might exacerbate the impact of the incident, which might be one of the 

contributing factors for the extremely high IID. MP 285 is at the onramp of I-15 from a 

major arterial (Timpanogos Highway) where severe congestion is observed frequently. 

Evidence from a closer scrutiny of the spot validates the assumption. Most of the 

incidents happened during peak periods, which greatly impeded the queue clearance. 

Another reason might be the way IID is calculated as it solely considers the delay 

induced by independent incidents for accurately identifying their spatiotemporal extent. 

This might downplay the delay effect of cascading incidents. Therefore, the two hotspots 

analyses methods in this study complement each other and can be jointly used for 

decision making on incident mitigation. Note that the segment between MP 295 and 297 

is identified as a hot spot in both methods. This may be due to the convoluted effects of 

multiple causes. This segment has an AADT as high as 100,000 vehicles/day and is 

located upstream of the spaghetti junction where triggered secondary incidents introduce 

great disturbances in traffic. Also the segment between MP 295 and 297 has the shortest 

distance between curvatures along the corridor. There are two curvatures that are less 

than 3 miles apart, which may cause instability in the traffic flow. This aligns with Zhang 

and Khattak’s (69) finding that short segments are prone to secondary incidents.  

Based on the analysis, we further conclude that locations with higher IID are 

prone to be bottlenecks that have severe recurrent congestion. When incidents occur at 

freeway junctions under heavy traffic volume, a significant increase in IID with induced 
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secondary incidents upstream may occur. Freeway management strategies might be 

especially ripe for assessment based on this result. For example, when an incident occurs 

at a bottleneck, speed harmonization, such as variable speed limit, can be implemented 

upstream to accelerate bottleneck clearance and create a uniform speed upstream.   

3.4 Summary 

A systematic approach to quantify IID is proposed. The algorithm presents a 

three-component scheme: secondary incident identification, spatiotemporal extent 

determination, and recurrent congestion identification. This method is data-driven and 

spatiotemporal in nature to fully uncover the impact and causal mechanism of incident 

occurrence. IID quantification at the individual incident level will enable further analysis 

on delay-based behavior modeling and inspire follow-up research exploring relationships 

between the incident itself and its associated features (e.g., severity, lane blockage, or 

traffic conditions). Spatiotemporal analysis offers greater insight on the convoluted 

causes of delay and unveil the true impact of nonrecurrent congestions to explore 

unsettling reasons for safety enhancement that have escaped notice. This study 

complements the existing literature by combining analytical approach with data mining 

techniques to dynamically determine the spatiotemporal extent of individual incidents. 

The IID quantification methodology excludes the impact of secondary incidents for the 

first time and includes shockwave theory in spatiotemporal analysis. The information 

construction process can be further used to uncover a variety of features that are 

associated with particular incidents for an optimal freeway management.  

This study contributes to the literature with two major highlights. The secondary 

incident identification, as a preprocessing for IID estimation, eliminates the mingled 
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influences of subsequent incidents. Previous IID modeling ignored this critical step and 

oftentimes results in an overestimation of the impact of individual incidents. Our 

proposed method uses KNN pattern recognition, which essentially is a heuristic search 

process to separate the delay solely induced by incidents from the recurrent congestion. 

The algorithm is implemented based on data collected on the I-15 freeway corridor in 

Salt Lake City, Utah. A total of 109 primary incidents was identified with 270 secondary 

incidents. On average, the primary and secondary incidents were 3.2 miles and 70 

minutes apart. The average IID of incidents was 43 vehicle-hours with the entire 

distribution right-skewed.  

Hot spots analysis was conducted based on algorithm output. Two methods are 

demonstrated in such analysis: incident frequency-based with/without spatial correlation 

and IID based. The two hotspots analytics in this study complement each other and can 

be jointly used for incident mitigation and to inform investment decisions. Freeway 

management strategies might be especially ripe for assessment based on this result. For 

example, when an incident occurs at a bottleneck, speed harmonization, such as variable 

speed limit, can be implemented at the upstream to accelerate bottleneck clearance and 

create a uniform speed. The proposed framework is data-driven in nature for performance 

assessment of nonrecurrent congestion. It is self-adaptive to any data set and can be used 

to further uncover the relationship between the incident and associated features.  

Based on this study, three intriguing topics emerge. First, as a follow-up research 

on the result, it is necessary to quantitatively model the identified features that are 

associated with IID. Second, it might be interesting to further explore the separate effect 

of primary and secondary incidents via simulation approach. Third, it is appealing to 
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further explore the disaggregated impact of the primary incidents on the induced 

secondary incidents, particularly through likelihood estimation. All topics will drive more 

efficient strategic planning and project prioritization. 
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(a) (b) 

(c) (d) 

Figure 8 Illustration of Secondary Incident Identification Process: Spatiotemporal Profile 
of (a) Function I.; (b) Function S; (c) Function C; and (d) Function I*S*C 

(a)  (b) 

Figure 9 Typical Patterns of Delay Distributions: (a) Exponential Distribution (b) 
Rayleigh Distribution. 
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Figure 10  Illustration of Proposed IID Quantification Framework 

Figure 11 Example of Secondary Incident Identification (P: Primary Incident, 1: 
Secondary Incident, 2: Independent Incident, Grey: Spatiotemporal Extent) 
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(a)  (b) 

(c) 

Figure 12 Heat Map (a) (b) and Profile of Primary and Secondary Incidents (c) Along the 
I-15 Corridor
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(a) (b) (c) 

Figure 13 Hot Spot Identification Analysis with (a) Incident Frequency Method Without 
Spatial-Correlation; (b) Incident Frequency Method with Spatial-Correlation; and (c) 

Average IID Method 

Table 3 Sum of RMSE of Delay with Volume, Speed, VHT as Determination Variable 
When  K = 1,2, … ,9

K 1 2 3 4 5 6 7 8 9 

Volume 413.1 242.8 228.4 217.6 196.0 161.5 146.5 132.0 123.4 
Speed 245.6 238.3 202.4 161.0 145.3 131.0 119.4 109.5 98.8 
VHT 378.9 287.0 222.5 165.8 136.2 119.3 112.8 102.3 97.4 
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Table 4 ANOVA Test Result of IID Distributions Between MPs 

Degree 
of 
Freedom 

Sum of 
Squares 

Mean 
Square 

F-Value P-Value Significantly 
Different, 
Yes/No 

Between Features 1 1445 1444.5 31.86 2.48e-08 Yes 

Within Features 625 29564 45.3 

Table 5 Tukey HSD Test Results (partial) 

Group 1 Group 2 Meandiff Lower Upper reject 

285 286 335.806 482.117 189.496 TRUE 

285 287 387.073 550.835 223.311 TRUE 

285 288 408.295 575.724 240.865 TRUE 

285 289 427.484 573.795 281.174 TRUE 

285 290 420.854 575.72 265.988 TRUE 

285 291 391.451 541.671 241.23 TRUE 

285 292 391.813 536.39 247.235 TRUE 

285 293 418.631 551.985 285.278 TRUE 



CHAPTER 4 

MAINTENANCE INFRASTRUCTURE SAMPLING

In this chapter, a high-dimensional clustering-based stratified sampling (HDCSS) 

method for infrastructure inspection is presented. The proposed method integrates 

infrastructure deterioration prediction, high-dimensional cluster analysis, and Locality-

Sensitive Hashing. This chapter is organized as follows: The first section summarizes 

previous studies on maintenance infrastructure sampling methods and high-dimensional 

clustering. The sampling method is described in the second section. The third section 

presents a numerical test of the sampling method with data collected on freeway network 

from Utah. The fourth section concludes this study with direction for future research.   

4.1 Literature Review 

Previous studies on infrastructure sampling and high-dimensional clustering will 

be discussed in the following section. The proposed method and its mechanism are 

explained later and followed by an application of highway segment sampling with 

infrastructure data collected by the UDOT. Results and implications are discussed at the 

end. In the stream of research on infrastructure management, inspection is usually jointly 

studied with maintenance, within the scope of optimal infrastructure management (70–

73). One of the most widely used infrastructure maintenance optimization algorithms is 

Latent Markov Decision Process (LMDP). In LMDP, infrastructure conditions are 
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represented with a set of discrete states, and the deterioration process is encoded as 

Markovian transition matrix with probabilities. It considers uncertainty introduced by 

infrastructure performance prediction and measurement (74). Output of the method is the 

optimal inspection and maintenance policies. LMDP aims to minimize total managing 

cost or maximize infrastructure performance over finite/infinite planning horizon. A lot 

of efforts have been made along the line to refine LMDP method since it was first 

proposed (16, 70, 75). Mishalani and Gong (70) extended LMDP model to a network-

level problem by including network-level constraints, such as allowed fraction of 

infrastructures in best or worst condition and yearly expenditures within a specified 

budget. Medina et al. (75) improved LMDP method with adaptive control formulations. 

Instead of using one Markov Decision Process (MDP) to represent the infrastructure 

performance and transition, their optimization model used finite mixtures of MDPs. Also 

in their method, infrastructure deterioration process was constantly updated with feed of 

new condition measurements. Guillaumot et al. (16, 71) incorporated uncertainties from 

sampling (i.e., sample size, spatial sampling) and inspection process, and used them as 

decision variables in LMDP models. Maintenance activity on each segment (repair, 

inspection, or do nothing) was optimized based on potential infrastructure conditions if 

such maintenance activities were conducted. Notice that all these aforementioned 

approaches discussed uncertainty from sampling in terms of sample size rather than 

sampling method. Stratified sampling is a classic sampling method in transportation 

maintenance management since it balances tradeoffs between inspection costs and 

sampling accuracy (76–78). Steinbach et al. (78) proposed a stratified sampling method 

for road maintenance evaluation. The stratification criteria include geographical location, 
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weather variation, urban and rural setting, and traffic volume. Garza et al. (76) evaluated 

the effectiveness of a stratified random sampling method for transportation infrastructure. 

They pointed out that by employing stratified sampling techniques rather than the SRS 

method, agencies can reduce sample size or greatly improve precision. Bellman (77) 

proposed a sampling protocol which stratifies the population with functional 

classification, AADT range, and infrastructure category. In most previous studies, 

segments were stratified with features of road segments rather than the features of the 

infrastructures. In such cases, stratification may produce large bias if the infrastructures 

are unevenly distributed across segments.  

In our proposed method, stratification is implemented via high-dimensional 

cluster analysis. Since each highway segment often contains multiple infrastructures, we 

consider a segment as a high-dimensional vector and each type of infrastructure as one 

dimension of that vector. By applying high-dimensional cluster analysis, we divide all 

segments into several clusters based on their infrastructures’ conditions. The challenge in 

dealing with high-dimensional data lies in the Curse of Dimensionality. The concept is 

originally defined by (79), referring to the difficulty of optimizing a multivariable 

function within the multidimensional context. In cluster analysis, as dimensionality 

increases, the number of data points within each dimension becomes increasingly 

“sparse” (80). As illustrated in Figure 14, a dataset with 10 points is randomly distributed 

from 0 to 1 in one-dimensional space. The points are in close vicinity of each other. 

There are four points within the range [0, 0.5]. But when the dataset is expanded to two 

dimensions, if we still use 0.5 as the discretization unit in each dimension, there are then 

only 3 points in the range of [0, 0.5] in each dimension. When we further expand the 
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dataset to three dimensions, there are only 2 points within the same unit. So for high-

dimensional data, distance may no longer be effective to distinguish points and most 

cluster techniques applicable to low-dimension data (e.g. centroid-based clustering, 

density-based clustering) are rendered meaningless.  

During the past decades, much effort has been devoted to avoiding the Curse of 

Dimensionality. One approach to high-dimensional clustering is to develop new 

measurements for distance or similarity across clusters, including grid (81), sum of 

similarities along dimensions (82), and approximate similarity (83). Charikar (83) also 

suggested a practical similarity measurement called Locality-Sensitive Hashing (LSH). 

LSH is a widely-used algorithm to search similarity between high-dimensional data for 

fast indexing and database searching. LSH maps high-dimensional data points to a low-

dimensional space by applying hash functions. As mentioned in (84), a hash function 

family  𝐻 = {ℎଵ, ℎଶ, ℎଷ, … , ℎ௜ , … }  is called (𝑑ଵ, 𝑑ଶ, 𝑝ଵ, 𝑝ଶ) sensitive for any two high-

dimensional vectors 𝑞 and 𝑣: 

 if D(𝑞, 𝑣) ≤ dଵ, then 𝑃ு[h୧(𝑞) = h୧(𝑣)] ≥ pଵ

 if D(𝑞, 𝑣) > dଶ, then 𝑃ு[ℎ௜(𝑞) = ℎ௜(𝑣)] ≤ 𝑝ଶ

where 𝑑ଵ and 𝑑ଶ are the critical distances to determine if 𝑞 and 𝑣 are similar,  𝑝ଵ and 𝑝ଶ 

are the critical probabilities, and D is the distance measurement in the low-dimensional 

space. If the distance between the mapped values is less than dଵ, then the probability that 

𝑞 and 𝑣 are similar is greater than pଵ. On the contrary, if the distance between mapped 

values is greater than dଶ , then the probability that q and v are similar is less than pଶ . 

Based on such a definition, researchers proposed different function schemes and 

validated their reliability in capturing the underlying similarity, including inner product 

(85), learned Mahalanobis distance (86), and normalized kernel function (87).  
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4.2 Methodology 

The stratification in the proposed sampling method, as illustrated in Figure 15, 

consists of two major components: current condition estimation and high-dimensional 

cluster analysis. Current condition estimation “predicts” the infrastructure condition (e.g., 

in the form of LOM) based on historical records. This is to ensure that for the next round 

of inspection, sampling is conducted based on previous inspection results and 

deterioration rate of the infrastructure. High-dimensional cluster analysis then divides 

segments into clusters and selects representative segments as samples.  Segments within 

each cluster share similar pattern with regard to infrastructure conditions. Thus by 

selecting segments across clusters, we select representative samples across all patterns. 

The sample size is a fixed percentage of segments in the network, constrained by labor or 

budget limits. Segments within each cluster are chosen randomly. Once the sampled 

segments are inspected, maintenance and rehabilitation (M&R) activities can be further 

conducted accordingly on those segments whose performance is below a certain 

threshold. The M&R records and inspection results will be applied to the next round of 

sampling process for inspection. 

4.2.1 Current Condition Estimation 

As the sampling unit for maintenance activities, segment possesses multiple 

features:  infrastructure facilities (shoulder work, litter, weed, sweeping, etc.), geometric 

characteristics (number of lanes, segment length, etc.), and traffic information (AADT, 

peak hour volume, etc.), just to name a few. Each segment can therefore be described as a 

high-dimensional vector: 

𝑆௡ = {𝑎௦௛௢௨௟ௗ௘௥ ௪௢௥௞ , 𝑎௟௜௧௧௘௥ ௣௜௖௞௨௣, 𝑎௪௘௘ௗ, … ; 𝑔௟௘௡௚ , 𝑔௟௔௡௘_௡௨௠, … ; 𝑡஺஺஽் , 𝑡௉௘௔௞_௏௢௟, … } 
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where 𝑆௡  refers to the segment n, 1 ≤ 𝑛 ≤ 𝑁 , 𝑁  is the number of segments in the 

network, and 𝑎, 𝑔, and 𝑡 refer to the features associated with infrastructure, geometric, 

and traffic, separately. In this paper, we will only consider infrastructure type and 

condition as segment features as they are the focus for sample selection.   

The current condition estimation starts with translating the deterioration process 

of infrastructure on the segments into a deterioration matrix. The infrastructure conditions 

are described using 15 letter scores from A+ to F. A+ represents the best condition and F 

the worst. In previous studies, infrastructure deterioration has been considered as a linear 

(88) or nonlinear (89) process. We assume that infrastructure deterioration is a linear

process, yet the rate may vary across different types of infrastructures or different 

segments. For example, on Segment 1, the time during which segment’s shoulder 

condition deteriorates from A to A is the same as the time from A to B+. Yet in the 

meantime, the condition of littering might deteriorate from A to C. And on Segment 2, 

while the shoulder deteriorates from A to A on Segment 1, the shoulder condition might 

deteriorate from A to B+. 

The deterioration matrix is constructed based on the paired consecutive inspection 

records without any intervention (e.g., M&R) in between. In this study, we filtered out all 

the consecutive inspection records whose latter result was better than the former one. Yet 

exceptions might occur when the asset might still deteriorate to a worse condition even 

after repair or maintenance, in which case this method might underestimate deterioration 

rates of the infrastructures.  

To simplify calculations, the 15 letter grades of infrastructures from A+ of F are 

converted to numerical scores of 15 to 1.  The deterioration process thus can be 
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considered as the score is decreasing as time goes by. The deterioration rate of a segment 

is calculated as the score difference divided by time duration between two inspections.  

The historical records in our study span years during which segments may be 

inspected multiple times. Therefore, some segments might have more than one pair of 

consecutive records, producing different historical deterioration rates. In such cases, 

average of historical deterioration rates is employed as the deteriorate rate of the segment. 

For segments without such prior records, deterioration rate is replaced with the network 

averaged value. For example, if no consecutive record for shoulder work is available on 

one segment, the deterioration rate of that segment is replaced with average shoulder 

work deterioration rate of all segments. Deterioration matrix is constructed as: 

𝐷 = ൦

𝑑௦௘௚ଵ_ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞ , 𝑑௦௘௚ଵ_௅௜௧௧௘௥௉௜௖௞௨௣,

𝑑௦௘௚ଶ_ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞ , 𝑑௦௘௚ଶ_௅௜௧௧௘௥௉௜௖௞௨௣,
… …

  
𝑑௦௘௚ଵ_ூ௖௘ௌ௡௢௪ , …

𝑑௦௘௚ଶ_ூ௖௘ௌ௡௢௪ , …
… …

 

𝑑௦௘௚ே_ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞ , 𝑑௦௘௚ே_௅௜௧௥௘௥௉௜௖௞௨௣, 𝑑௦௘௚ே_ூ௖௘ௌ௡௢௪ ,    … 

൪ 
(19) 

D can always be updated with the latest inspection results and maintenance activities. 

With the deterioration matrix constructed, we can estimate current conditions of 

infrastructures on each segment. Previous condition of infrastructure network is 

expressed as: 

𝑀௉௥௘௩௜௢௨௦ = (𝑆ଵ, 𝑆ଶ, … , 𝑆ே)் (20) 

where 𝑀  represents the previous network infrastructure inspection conditions, 𝑆 

represents the infrastructure conditions within  the segment, with:  

𝑆௜ = (𝑠௜_ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞ , 𝑠௜_௅௜௧௧௘௥௉௜௖௞௨௣, 𝑠௜_ூ௖௘ௌ௡௢௪, … ) (21) 

The current conditions of infrastructure are estimated by considering previous 

conditions and inspection frequency, which is expressed as: 

𝑀஼௨௥௥௘௡௧ = 𝑀௉௥௘௩௜௢௨௦ + 𝑡𝐷 (22) 
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where 𝑀஼௨௥௥௘௡௧ is the estimated current network infrastructure conditions, and 𝑡 is time 

duration between previous and current inspections.  

4.2.2 High-dimensional Cluster Analysis 

The key of high-dimensional cluster analysis is to jointly analyze all the 

infrastructure conditions on a segment rather than examining them individually. With the 

current infrastructure conditions estimated, LSH is implemented to define the similarity 

between segments. All segments are then divided into clusters based on the similarity 

matrix via spectral clustering. A fixed percentage of the segments can then be randomly 

chosen from each cluster.  

The input to high-dimensional cluster analysis is the estimated current 

infrastructure conditions, including:  

𝑀௖௨௥௥௘௡௧ = (𝑆ଵ
∗, 𝑆ଶ

∗, … , 𝑆ே
∗ )் (23) 

S୧
∗ = {𝑠௜_ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞

∗ , 𝑠௜_ ௅௜௧௧௘௥௉௜௖௞௨௣
∗ , 𝑠௜_ூ௖௘ௌ௡௢௪

∗ , … } (24) 

where 𝑆௜
∗ represents the estimated current infrastructure conditions on Segment 𝑖. 

The first step in LSH is to define hash functions. In this study, we use inner product 

hash functions proposed by Kulis and Grauman (85). Hash function transforms a k-

dimensional segment into a binary string. For example, in Figure 16, each segment is 

transformed into 8digit binary strings. To determine the first digit of a binary string, we 

pick a k-dimensional vector 𝒓 = (𝑟ଵ, 𝑟ଶ, 𝑟ଷ, … , 𝑟௞). Each dimension ( 𝑟ଵ , 𝑟ଶ ,…) in vector 𝒓 

is randomly generated following Gaussian distribution. Then we calculate the inner 

product between the segment and 𝑟 as: 

ℎ = 𝒓 ⋅ 𝑆∗ = 𝑟ଵ𝑠ௌ௛௢௨௟ௗ௘௥ௐ௢௥௞
∗ + 𝑟ଶ𝑠௅௜௧௧௘௥௉௜௖௞௨௣

∗ + 𝑟ଷ𝑠ூ௖௘ௌ௡௢௪
∗ + ⋯ (25)



69 

where ℎ is the inner product. When ℎ is greater than or equal to 0, the first digit of the 

binary string is 1, and 0 otherwise. By repeating the process eight times, an 8-digit binary 

string is constructed. The binary strings are the hash keys of a hash function family. The 

same process applies to all segments, with each segment assigned a hash key. Note that 

some segments may have the same hash keys.  

Since the hash keys are binary strings, we use Hamming distance as the difference 

measurement to compare them (90). For two strings with equal length, Hamming distance 

is defined as the number of digits at which the corresponding symbols are different. As 

illustrated in Figure 17, Hamming distance between the two strings is 1.   

When the difference between two segments’ hash keys is less than a certain 

threshold, it is referred to as “collision” between the two segments and they are 

considered similar. As illustrated in  Figure 16, the hash key of Segment 1 is 01100111, 

and the hash key of Segment N is 11100111. Hamming distance between the two hash 

keys is 1. If the threshold to define collision is set at 2, the difference between 

Segment 1 and N’s hash keys fulfills the requirement and thus the two segments are 

deemed similar.  

Until this step, the LSH algorithm is fully implemented. Yet the algorithm can only 

determine whether two segments are similar or not rather than quantifying such similarity. 

Considering that hash function utilizes randomly generated vectors, using different vectors 

would lead to different hash keys. In Figure 16’s example, Segment 1 and Segment 𝑁 are 

considered similar. But if we generate another eight vectors, there is a probability that 

Segment 1 and Segment 𝑁  are no longer similar. To remedy this, we perform LSH 

algorithm  multiple  times  (i.e., 300 runs),  and  define  similarity  as  the probability that two 
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segments are similar across all the runs. For example, if Segment 1 and Segment 𝑁 are 

identified as similar for 240 times out of 300 times, the similarity between them is 

240/300 = 0.8. With the similarity between each pair of segments in the network 

quantified, a matrix of similarity 𝕊 = [Sim୧୨]is constructed, where Sim୧୨ represents the 

similarity between segments 𝑖 and 𝑗. 

Then we apply spectral clustering, which is one of the most popular clustering 

algorithms due to its simplicity and efficiency (91). It originates from partitioning 

clustering, which gives weights to links between data points and divides clusters by 

removing the least weighted links between clusters. Spectral clustering combines 

partitioning clustering with graph Laplacian matrices. The calculation is based on the 

spectrum of similarity matrix. The detailed computation is available in the Appendix.  

4.3 Case Study 

We implemented the proposed method on highway infrastructure inspection 

record provided by the Utah Maintenance Management Quality Assurance (MMQA) 

Program. Previously, MMQA performed full inventory inspections for infrastructure 

maintenance. The maintenance personnel recorded total numbers of infrastructures to be 

maintained and deficient infrastructures on each segment. Then inspection records were 

entered into the MMQA+ software to calculate the LOM (letter grade). One motivation to 

develop an infrastructure sampling method is to reduce costs of infrastructure inspection 

by estimating the overall network LOM on a sample basis. For the state of Utah, the 

entire highway network is divided into 489 segments. Inspection was performed 

semiannually from September 2014 to March 2016, with several segments inspected 

multiple times within one inspection period. The inspection record achieves overall 
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infrastructure condition, as well as segment id, infrastructure type, inspection date, and 

deficiency locations. With more than 7,000 records in the database, 14 types of 

infrastructures are used in our study, including Shoulder Work (SW), Curb & Gutter 

(CG), Litter Pickup (LP), Weed Control (WC), Grade & Clean Ditches (GCD), Maintain 

Inlets (MI), Erosion Repair (ER), Pavement Markings (PM), Repair & Replace Signs 

(RRS), Repair & Replace Delineation (RRD), Guardrail Maintenance (GM), Sweeping 

(SP), Vegetation Control (VC), and Fence Maintenance (FM).  Table 6 shows the average 

deterioration rate for each infrastructure. Note that the table only shows the aggregated 

(averaged) deterioration rates of all infrastructures. For example, the average 

deterioration rate of CG is 0.0996. It means that the conditions of CG deteriorate by 1 

level (from A+ to A, or from A to A) in approximately10 months on average. Yet on 

individual segments, the rate can be different. For example, the deterioration rate of CG 

on some segments can be 0.2, indicating that it takes 5 months for CG to deteriorate from 

A+ to A.   

In high-dimensional cluster analysis, we use a 14-digit binary string as the hash 

key. The “collision” threshold is set at 2, indicating that when the Hamming distance 

between the hash keys of the two segments is less than 2, those two segments are similar. 

To avoid too many or few segments in each cluster, all segments were divided into 10 

clusters. For comparison purposes, SRS is also conducted. In the following section, both 

methods have been performed 50 times for sensitivity analysis.  

The purpose of infrastructure inspection is to assess infrastructure conditions and 

report LOMs of overall highway network for investment decisions. Ideally, 

infrastructures’ grade (LOM) distribution, measured from samples, can reflect both 
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overall condition and condition variation. To assess the effectiveness of our sampling 

method, the difference between condition estimated from samples and full inventory is 

computed with RMSE. For any infrastructure, the letter grade distribution is expressed as 

(𝑋஺ା, 𝑋஺, 𝑋஺ି, … , 𝑋ிି), where 𝑋௜ is the actual percentage of grade i in the full inventory 

(all segments). The grade distribution estimated from the sample is expressed as 

(𝑥஺ା, 𝑥஺, 𝑥஺ି, … , 𝑥ிି), where 𝑥௜  is the estimated percentage of grade i among all the 

sampled segments. The RMSE between estimated (from sample) and ground-truth grade 

distributions is then calculated as: 

RMSE = ඨ
Σ(𝑥௜ − 𝑋௜)

ଶ

15
(26) 

RMSE reflects the error induced during the sampling process. As the value 

increases, the estimated condition deviates from the ground truth. To compare the 

performance of our proposed sampling method and the SRS method, we conducted 

experiments of estimation accuracy between the two methods with the full inventory data 

collected by UDOT. We chose the most recent inspection records of each segment as the 

infrastructure conditions to be sampled and inspected, and the second most recent 

inspection records as the historical record based on which to estimate the current 

infrastructure conditions. To validate the robustness of the sampling method, particularly, 

its sensitivity to different data dimensionalities, a series of sensitivity tests were 

performed. Using the same highway network, sampling was conducted with 6, 8, 10 and 

14 different types of infrastructures, separately. The types of infrastructures were 

randomly selected when the number of types was less than 14. Figure 18 shows the 

average RMSEs when sampling is conducted based on sample rates ranging from 5% to 
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30% of the entire segment inventory. The sampling rate for the proposed sampling 

method refers to the percentage of samples chosen from each stratum. Since the number 

of samples in each stratum is rounded to the nearest integer, the number of samples is 

always less than the same rate of the entire population. For example, when the sample 

rate is 10%, there are about 49 segments chosen as samples from the network with 489 

segments. But in reality, the total number of segments chosen is less than 49. To make 

sure that the sampling methods are compared based on the same sample rate, the sample 

size of SRS method is the same as the number of segments chosen by the stratified 

sampling method. It is noted that for low-dimensional (less than 10 types of 

infrastructures) data, the average RMSEs show no significant difference when 

dimensionality changes. But when the dataset becomes high-dimensional (more than 10 

types of infrastructures), the average RMSEs start to demonstrate improvements. It 

further validates the effectiveness and suitability of our proposed sampling method for 

high-dimensional clustering analysis. The LSH algorithm is designed for data from high-

dimensional space where the Euclidean distance is no longer valid as a similarity 

measurement. As dimensionality increases, the proposed method tends to provide a more 

accurate LOM estimation of the overall infrastructure condition. 

Figure 19(a) shows sensitivity analysis of sample size. Note that the RMSE is 

averaged out both across grades and across infrastructures. As shown in Figure 19, there 

is a tradeoff between accuracy and sampling rate. Both average RMSE and standard 

deviations of RMSE decrease as the sampling rate increases. We observe a clear cutoff 

point at around 20% sampling rate, where the RMSE drops significantly as the sampling 

rate increases to 20%. After that, the trend becomes mild. The HDCSS method constantly 
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outperforms SRS by providing lower average RMSE. Figure 19(b-d) show the RMSE 

distributions with sample size of 6%, 8%, and 10%. When the sample size is less than 

10%, there is a distinct difference between the performances of two sampling methods.  

One highlight of the proposed method is that the selected sample segments can 

accurately reflect the LOMs of all the infrastructures throughout the network. Figure 20 

provides a detailed look on the sampling accuracy for each asset using SRS and our 

proposed method, where RMSE (mean and standard deviation) is shown for all 14 assets 

with a 20% sampling rate.  

As seen in Figure 20, the RMSEs are similar between two methods but vary 

significantly across infrastructures. For most types of infrastructures, SRS has higher 

RMSE than the proposed method, indicating the superiority of our proposed method. 

However, also note that for certain infrastructures (WC, RRD, SP, and VC), SRS yields 

lower RMSE. To further explore the reasons, we compared the LOM distributions 

between each type of these infrastructures.  

Figure 21(a) shows the ground truth grade distributions of WC, RRD, SP, and 

VC. For these infrastructures, more than 80% of segments are of A+ grade. Under such 

circumstances, since the difference between individual samples is insignificant, it is 

highly likely that choosing different samples would not influence the result much. An 

extreme case in such a situation is that if all the segments are of grade A+, then samples 

selected by any method would yield the same result. For infrastructures with such skewed 

grade distribution, both methods would estimate the overall conditions with low errors. 

Yet one unique aspect of high-dimensional cluster analysis is that when one dimension in 

the high-dimensional vectors lacks variation, clustering relies more on other dimensions, 
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and the importance (weight) of that dimension thus diminishes. Correspondingly, the 

overall condition of that infrastructure (with little variation) is less represented by the 

sample selected by HDCSS than randomly picked. That explains the underlying reason 

for the low RMSEs for the four types of infrastructures and the outperformance of SRS 

for them.  

The relation between the LOM distribution and RMSE is reflected in the ranking 

of RMSE values of these four infrastructures. As shown in Figure 21(a), the four 

infrastructures, ranked by the percentage of grade A+ for each type in descending order, 

are SP, VC, WC, and RRD. This sequence is exactly the same as the RMSE ranking 

using both methods. 

Another interesting phenomenon observed from Figure 20 is that the average 

RMSEs of two infrastructures, FM and RRD yield same result with our proposed method. 

However, the values are quite different with SRS. In Figure 20(a), it is shown that for 

FM, almost 80% segments are either of grade A+ or grade F. Thus, the entire grade 

distribution is quite dispersed due to the occurrence of two dominant grades. In such case, 

the HDCSS method selects samples from both dominant grades yet such a scenario is not 

guaranteed with SRS. As the distribution shifted to a single peak instead of two (see 

Figure 8(b) for the comparison), the RMSE of SRS increases from around 1.5% to 1.9%. 

As shown in Figure 8 (b), with the other grades remaining at a very low percentage, two 

dominant grades have significantly higher percentages and those two percentages are 

comparable.  

In infrastructure inspection sampling, one prominent concern is to reduce the 

sample rate without too much compromise in accuracy, since the sampling rate is directly 
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tied to costs and budget allocation. According to (92), lead states assume that the 

infrastructure conditions follow normal distributions, so the sampling rate can be 

estimated with given confidence interval and accuracy. For example, North Carolina 

DOT performs sampling based on 90 to 95% confidence interval and 6% accuracy. 

Virginia DOT requires the confidence interval of sampling be at 95% with an accuracy of 

4%.  However, there is a lack of evidence to justify the assumption.  For comparison 

purposes, we define an “accuracy rate” for each method, representing the probability of a 

sample being considered as accurate within certain error threshold. The sampling result is 

considered “accurate” if and only if the errors between the estimated conditions of all 

assets and ground truth are within an acceptable range. The error is still quantified via 

RMSE.  

Figure 22 shows the sensitivity analysis of accuracy rate when different sample 

sizes apply. It is noted that under the same error threshold, when the sampling rate is less 

than 20%, our proposed method always yields a higher accuracy rate than SRS. For an 

accuracy rate of 90% with an error threshold of 0.06, the required sampling rate is around 

8% for our method as opposed to 10% for SRS. To achieve an accuracy rate of 95% with 

an error threshold of 0.4, by using the HDCSS method, the sample size can be reduced 

from 20% to 16%. Such a decreased sample size can bring a significant reduction in 

inspection costs for infrastructure management, especially for large scale highway 

network.  

To further explore the sample rate reduction quantitatively, we performed a one-

way ANOVA test to analyze the difference of errors between the two sampling methods 

with different sample rates. The results of ANOVA tests show how the sample size 
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changes with different sampling methods when there is no significant difference between 

the sampling results. Table 7 shows the result of the ANOVA test between errors of 

samples selected by HDCSS method with sample rate of 16% and SRS method with a 

sample rate of 18%.  

The results of ANOVA conclude that there is no significant difference between 

the errors of estimated infrastructure conditions by using the proposed method with 

sample rate of 16% and SRS with sample rate of 18%. That is to say, for any ongoing 

sampling scheme using the SRS method with 18% of the population as the sample rate, 

our method can effectively reduce the sampling rate to 16%. Similar sample rate 

reduction results have been observed under other precision requirements, as shown in 

Table 8. It is observed that when the sample rate of SRS is below 15%, our proposed 

method can reduce the sample rate by 1%. When the sample rate SRS is above 15%, it 

can reduce the sample rate by 2%. And most notably, when the sampling method is 

applied to large highway networks, these reductions in sample rates can significantly 

reduce the inspection costs.  

4.3 Summary 

A HDCSS method is proposed. The sampling segments selected by this method 

can accurately represent the overall conditions of the full infrastructure inventory. Our 

proposed method generally outperforms SRS method, which is widely used by DOTs. 

The method consists of two components: current condition estimation and high-

dimensional cluster analysis. The current condition estimation aims at providing 

predicated infrastructure condition for cluster analysis based on historical inspection 

records. In high-dimensional cluster analysis, segments with multiple types of 
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infrastructures are considered as high-dimensional vectors. By applying the Locality-

Sensitive Hashing algorithm and spectral clustering, the similarity of the segments is 

measured and the segments are assigned to clusters. Using the inspection records from 

the State of Utah, our proposed method outperforms SRS for most types of 

infrastructures, especially under the circumstances where LOM varies greatly within 

infrastructures. For the infrastructures when most of the segments are of similar 

conditions, both the information-based sampling method and SRS yield low errors. The 

method can effectively reduce the sample rate without compromise in accuracy compared 

with the SRS method, leading to significant decrease in inspection costs, especially for 

large scale networks.  

By using the proposed sampling method, DOTs can save resources and time for 

infrastructure inspection, due to the fact that inspection is carried out on the segment 

basis and the similarity identification introduced through the LSH algorithm. The method 

can be further applied in any high-dimensional sampling process of selecting corridor 

segments, intersections, or traffic infrastructures where multiple types of features, e.g., 

traffic conditions, geometric design, infrastructures, need to be considered. Based on this 

study, two intriguing topics emerge. First, as an important component of the method, 

deterioration matrix construction can significantly influence the accuracy of the sampling 

method. It is necessary to apply a more rigorous data analysis tool to enhance the 

estimation of the deterioration process. Second, it might be interesting to involve other 

more efficient high-dimensional cluster analysis methods in the sampling process which 

can potentially improve the accuracy of the sampling results.  
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(a) (b) (c) 

Figure 14 Illustration of Sparsely Distributed Data Points due to Curse of Dimensionality 

Figure 15 Illustration of Stratification in the Proposed Method 

Figure 16 Illustration of LSH Process 
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Figure 17 Illustration of Hamming Distance 

Figure 18 Sensitivity Analysis of Dimensionality (Types of Infrastructures) with 
Different Sample Sizes 
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(a) (b) 

(c) (d) 

Figure 19 Sensitivity Analysis of Sample Sizes Between SRS and HDCSS Methods 

Figure 20 Comparison of RMSE (Mean and Standard Deviation) Between SRS Method 
and HDCSS Method 
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(a) 

(b) 

Figure 21 Grade Distribution Comparison Between Infrastructures: (a) WC, PM, RRD, 
SP, and VC; (b) FM and RRD 
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Figure 22 Sensitivity Analysis of Accuracy Rates Under Different Error Thresholds and 
with Different Sample Sizes 

Table 6 Average Deterioration Rates of Infrastructures (per Month)

Infras SW CG LP WC GCD MI ER 
Det_rate 0.0756 0.0996 0.0821 0.0151 0.0394 0.0698 0.0813 

Infras PM RRS RRD GM SP VC FM 
Det_rate 0.0181 0.0988 0.0244 0.0752 0.0022 0.0207 0.0825 

Table 7 Results of ANOVA for Errors of Samples Selected by HDCSS (16%) and SRS 
(18%) Methods 

Degree of 
Freedom 

Sum of 
Squares 

Mean 
Square 

FValue PValue Significantly 
Different, 
Yes/No 

Between 
Features 

1 0.0000033 3.314e06 1.28 0.259 No 

Within 
Features 

398 0.0010306 2.589e06 
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 Table 8 Results of ANOVA Tests 

HDCSS Sample Rate (%) SRS Sample Rate (%) PValue 
8 9 0.51 

10 11 0.73 
11 12 0.806 
12 13 0.814 
16 18 0.119 
18 20 0.259 
19 21 0.298 



CHAPTER 5 

 CONCLUSION AND RECOMMENDATION 

This chapter presents the summary of the research findings for each of the three 

studies addressed in this research, and describes the major research contributions and 

limitations for big data analytics in dynamic ridesharing, nonrecurrent congestion, and 

maintenance infrastructure sampling.   

5.1 Dynamic Ridesharing 

Dynamic ridesharing has been considered as a promising tool to mitigate traffic 

congestion in freeway network. But its effects on congestion relief are unknown when 

competing with other travel alternatives. This study on agent-based modeling of a dynamic 

ridesharing system investigates the impacts of dynamic ridesharing on multimodal network 

and the competing mechanism between a dynamic ridesharing system and public transit. 

The model considers traveler decision making process under the presence of the competing 

modes. It is important for the traffic planner to better analyze the market, improve the 

market penetration, and plan or deploy the dynamic ridesharing program. Travelers are 

classified into seven categories based on their travel mode preference. The number of each 

type of travelers are estimated with the travel mode parameters. These parameters include 

the percentage of group travelers and the market penetrations of dynamic ridesharing and 

public transit. By adjusting the parameters of travel mode preference, the model is 

applicable to any traffic network with diverse socioeconomic attributes. The modeling 
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results are used in assessing the benefits and identifying the challenges of implementing 

dynamic ridesharing across different cities. Dynamic ridesharing service providers can also 

utilize such information to make corresponding marketing strategies.   

The competing mechanism between dynamic ridesharing and public transit, as one 

objective in this study, has been summarized from the modeling results. When the public 

transit has low market penetration, namely, very few travelers utilize the public transit, 

there are very limited effects of public transit on the network. By adding the dynamic 

ridesharing system in the multimodal network, the occupancy on HOV lanes significantly 

increases, so the network-wise congestion keeps decreasing as the market penetration of 

dynamic ridesharing increases. However, when there are high public transit demands on 

the network, initially dynamic ridesharing system turns many public transit users to private 

vehicle users and encourages more ridership of private vehicles. Despite the fact that the 

congestion decreases eventually as the market penetration of dynamic ridesharing is high 

enough, it increases the congestion initially. The existence of public transit also influences 

the matching rate of ridesharing system. The dynamic ridesharing systems on the freeway 

network without public transit are usually quite sensitive to trip matching constraints, so 

any flexibility in the matching constraints would increase the number of matched trips. For 

the dynamic ridesharing system in a multimodal network competing with public transit, a 

loose matching constraint (longer waiting time) only brings a quite limited number of extra 

matched trips. Marketing strategies can be made based on such information by government 

or commercial dynamic ridesharing service providers.   

The limitations of the dynamic ridesharing study lie in the assumptions designed to 

simplify the modeling process. One assumption in the model is that ridesharing travelers 
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only search for other travelers who depart from the same origin node and to the same 

destination node. However, in reality, a shared trip can be granted as long as the passenger’s 

destination is on the path which the driver drives along. This assumption excludes the 

paired travelers who depart for different modes, but also can share rides. To simplify the 

decision making process, the agent-based model does not distinguish the shared ride 

offerors and offerees, assuming that all the travelers waiting for a shared ride are able to 

provide a private vehicle. This may overestimate the matching rate for dynamic ridesharing 

by granting a shared ride to two travelers who traveled in the public transit mode only 

before. Neither of them would provide private vehicles. Another assumption is that all the 

travelers traveling on the network have full knowledge of the current traffic condition in 

the network, the queuing status at each bus stop, and number of travelers aboard. 

Theoretically, such information can be collected by an integrated ITS system, e.g., the 

current traffic condition can be obtained from the live traffic monitoring system, the 

queuing status at a bus stop can be estimated from the video captured by the surveillance 

camera in bus stations, and the number of travelers aboard can be counted by automated 

passenger counter (APC) devices. But it is unfeasible to require that this information be 

available throughout the entire city.   

Future work in the study of dynamic ridesharing includes applying the proposed 

agentbased approach to actual networks with different demographics, and measuring the 

network performance with a spatial and temporal-varied index. In the case study, different 

types of traffic demands on the same network have been modeled by adjusting the market 

penetration and group traveler parameters. It is desired to conduct modeling with actual 

travel demand in a real traffic network. The market penetration and group traveler 
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parameters can be obtained from survey data. The modeling results based on real data can 

help government and dynamic ridesharing service providers make proper decisions in terms 

of institutional design and marketing strategy.  

Since the distribution of traffic congestion is very uneven spatially and temporally, the 

performance of the multimodal network should be measured with spatial and temporal-

varied index.  

5.2 Nonrecurrent Congestion 

Nonrecurrent congestion, especially incident-induced delay, is a pronounced 

contributor for traffic unreliability. There was very limited work that has been 

accomplished on estimation the IID on the individual incident level. This study of 

quantifying nonrecurrent congestion has developed a methodology to quantify the delay 

induced by individual incidents, which is the major contribution of the study. The 

methodology combines spatiotemporal analysis and pattern recognition to carry out an 

information construction process, which dynamically uncovers a variety of features 

associated with any specific incident.  The spatiotemporal analysis offers great insights on 

the convoluted causes of delay and unveils the true impacts of nonrecurrent congestion. 

The pattern recognition process identified the recurrent congestion in a hypothetical 

scenario where the incident never happened.   

Another contribution of the study of nonrecurrent congestion is secondary incident 

identification. The methodology proposed in this study integrates multiple criteria to 

identify secondary incidents in a spatiotemporal extent, including instantaneous delay, 

contiguity, and shockwave front location. The frequency of secondary incidents reflects the 

vulnerability of incidents happening under severe congestion, which can serve as a 
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performance measurement of freeway corridors. Hot spot analysis was conducted based on 

the output of methodology, the frequency of incidents/secondary incidents/primary 

incidents, and the IID statistics at each freeway spot. The results of hot spot analysis are 

used for incident mitigation and investment decision-making. For example, when an 

incident occurs at a bottleneck, the traffic operator can apply speed harmonization to 

accelerate bottleneck clearance and create a uniform speed.   

The major limitation of the study of nonrecurrent congestion quantification is the 

limited number of historical records under incident-free scenario used in pattern 

recognition. In the proposed methodology, the recurrent congestion during the incident is 

estimated KNN method with the congestion under incident-free scenarios with the most 

similar previous traffic conditions. Due to the uniqueness of traffic conditions, the incident-

free scenarios to be searched must be at the same location, TOD, and DOW with the 

incident. Considering that the traffic conditions may change significantly over the years, 

the methodology was implemented by data from 2013. The number of available incident-

free scenarios for each incident is between 30 and 40. The incident with the least incident-

free scenarios had only 25 incident-free scenarios to select the most similar ones. The 

limited number of records may lead to low accuracy in estimating the recurrent congestion. 

Another limitation that impairs the reliability of the methodology is the lack of 

validation. This is also a major limitation for all the previous studies of nonrecurrent 

congestion quantification. The most challenging problem in the quantification of IID is to 

estimate the recurrent congestion under the hypothetical scenario if the incident never 

happened. Since the recurrent congestion is fluctuating over time, the exact value of 

recurrent congestion is unknown. Therefore, it is impossible to validate the output of the 



90  

methodology implementation with ground truth.   

Future work of nonrecurrent congestion quantification includes two topics: 

identifying the features associated with IID, and separating the effects of secondary 

incidents from the effects of primary incidents.   

5.3 Maintenance Infrastructure Sampling  

The objective in the study of maintenance infrastructure sampling is to develop 

asampling method to choose proper segments where the conditions of sampled 

infrastructures can represent the LOMs of the full inventory within the network. To 

accomplish this objective, a highdimensional clustering-based stratified sampling method 

is proposed. The HDCSS method is based on a stratified method, but utilizes high-

dimensional cluster analysis to define the similarity between segments. It integrates 

infrastructure deterioration prediction, localitysensitive hashing, and spectral clustering.  

The information required by highdimensional clustering is constructed with infrastructure 

deterioration prediction, which assumes the current condition of a segment is predictable 

with the historical conditions of the same segment. LSH is used to quantify the similarity 

between segments with multiple features (types of infrastructures). After the similarities 

between segments are defined, the segments in the network are classified into several strata 

with spectral clustering.   

The HDCSS method has been tested with infrastructure inspection records collected 

from the freeway network throughout the State of Utah. Generally HDCSS outperforms 

SRS by yielding lower errors, especially under the circumstance where LOM varies greatly 

within infrastructures. Another advantage of applying HDCSS is that it effectively reduces 

the sample size without compromise in accuracy compared with SRS, leading to significant 
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saving in inspection costs for large scale network inspection. For example, when the sample 

size with SRS is less than 15%, using HDCSS can reduce the sample size by 1%. When 

the sample size with SRS is more than 15%, it reduces the sample size by 2%.   

One limitation of the HDCSS method lies in the process of infrastructure 

deterioration prediction. To simplify the sampling process, it is assumed that the 

deterioration of the  

infrastructures on a segment is a linear process, which obviously underestimated the 

variation of the deterioration. The deterioration prediction process provides essential 

information for the high-dimensional clustering. An accurate estimation of the 

infrastructures’ current conditions is a prerequisite for accurate sampling results. The 

infrastructure deterioration prediction may be a major source of error in the sampling 

method.   

Another limitation of the study lies in clustering analysis. In HDCSS, the similarity 

between segments is quantified by the LSH method, which is quite different from the 

Euclidean distance. It is difficult to define the physical meaning of the similarity between 

the segments with features of infrastructures. So the proper number of clusters is unknown. 

In the case study, the number of clusters was determined empirically when clusters have 

similar numbers of items. Sensitivity analysis can provide some insights into the relation 

between sampling accuracy and the number of clusters, but it is questionable if it is 

applicable to other datasets.    

Future work of maintenance infrastructure sampling includes improving the 

deterioration prediction and applying other high-dimensional cluster analysis. 

Deterioration matrix construction can significantly influence the accuracy of the sampling 
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method. It is necessary to apply a more rigorous data analysis tool to enhance the estimation 

of deterioration process. Testing other high-dimensional clustering methods can potentially 

improve the accuracy of the sampling results.  

5.4 Summary 

The major objective of this research was to explore the application of data-driven 

analytics in solving transportation problems which were not solvable with traditional 

methods. This dissertation developed new methodologies revolutionizing the solutions to 

problems in transportation planning, traffic operation, and infrastructure maintenance. In 

the study of  simulating dynamic ridesharing competing with public transit in a multimodal 

network, market penetration parameters are incorporated into the model. By adjusting those 

parameters in the customized model, transportation agencies can make decisions regarding 

adopting the dynamic ridesharing system or revising policies to accommodate the service. 

Meanwhile, dynamic ridesharing service providers can adjust their marketing strategies to 

increase the exposure of the service and attract potential users. In the study of nonrecurrent 

congestion quantification, data-driven analytics is applied to estimate the delay induced by 

an individual incident. Quantifying IID at the individual level provides alternative methods 

for hot spot identification on a freeway corridor. Different from incident frequency, which 

is another commonly used measurement for hot spot identification, IID at individual level 

provides traffic operators a new perception to identify the ill-designed freeway segments 

or locations based on congestion. By applying IID for hot spot identification, vulnerability 

to congestion caused by nonrecurrent reasons has been considered as an index for 

measuring the reliability of freeway performance. The sampling method proposed for 

infrastructure inspection enables maintenance personnel to incorporate historical IM&R 
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records into the selection of inspection samples, which can better represent the LOMs of 

full infrastructure inventory. Compared with the current inspection sampling method, the 

proposed data-driven method requires small sample size and reduces inspection costs.  

From the three examples in this dissertation, it is concluded that data-driven 

analytics has great potential in revolutionizing transportation problem solving. With data 

of good quality collected from heterogeneous sources and when novel data mining 

techniques becoming available, more existing transportation problems will be solved by 

integrating such data-driven analytics into practice. However, so far there are still several 

issues in applying datadriven analytics in transportation engineering. The first issue is 

associated with the validation of analysis results. For example, in the study of quantifying 

IID, the only data that might be available to validate the IID result is video recording, yet 

it is almost unrealistic to capture the IID for each and every incident from video recording, 

let alone for an entire freeway corridor. Another issue is the data quality. All applications 

of data-driven analytics proposed in this dissertation are established based on data of good 

quality. Without accurate data, the results can be significantly compromised. Therefore, 

future efforts on the application of data-driven analytics can be focused on result validation 

and data quality control.  



APPENDIX 

SPECTRAL CLUSTERING ALGORITHM 
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