
T e c h n o l o g y M a p p i n g o f T i m e d C i r c u i t s *

Chris J. Myers
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Peter A. Beerel
EE-Systems Department
University of Southern California
Los Angeles, CA 90089-2562

Teresa H.-Y. Meng
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

This paper presents an automated procedure for the tech­
nology mapping of timed circuits to practical gate li­
braries. Timed circuits are a class of asynchronous cir­
cuits that incorporate explicit timing information in the
specification which is used throughout the design pro­
cess to optimize the implementation. Our procedure be­
gins with a timed specification and a delay-annotated
gate library description which must include 2-input AND
gates, OR gates, and C-elements, but optionally can in­
clude higher-fanin gates, AND-OR-INVERT blocks, and
generalized C-elements. Our procedure first generates a
technology-independent timed circuit netlist composed of
possibly high-fanin AND gates, OR gates, and 2-input C-
elements. The procedure then investigates simultaneous
decompositions of all high-fanin gates by adding state
variables to the the specification and performing resyn­
thesis. Although multiple decompositions are explored,
timing information is utilized to significantly reduce their
number. Once all gates are sufficiently decomposed, the
netlist can be mapped to the given gate library, taking
advantage of any compact complex gates available. The
decomposition and resynthesis steps have been fully au­
tomated within the synthesis tool ATACS and we present
results for several examples.

1 Introduction

In recent years, there has been a resurgence of interest
in the design of asynchronous circuits due to their ability
to eliminate clock skew problems, achieve average case

‘This research is supported by an NSF Fellowship and a research
grant by ARPA.

performance, adapt to processing and environmental vari­
ations, provide component modularity, and lower system
power requirements. Traditional academic asynchronous
design methodologies use unbounded delay assumptions,
resulting in circuits that are verifiably correct, but sacrifice
timing for simplicity, leading to unnecessarily conserva­
tive designs. In industry, however, timing is critical to
reduce both chip area and circuit delay. Due to the lack
of formal methods to handle timing information correctly,
circuits with timing constraints usually require extensive
simulation to establish confidence in the design. Timed
circuits bridge this gap by incorporating explicit timing
information into the specification and utilizing it through­
out the design procedure to optimize the implementation.
Timed circuits can be significantly smaller and faster than
those produced using traditional methods, and they are
more reliable than those produced using ad hoc methods
[1], The specification of timing constraints also facili­
tates a natural interaction between synchronous and asyn­
chronous circuits.

Our previous work introduced automatic procedures
for the synthesis and verification of gate-level timed cir­
cuits [2, 3, 1] and demonstrated that timed designs can
be significantly smaller and faster than designs gener­
ated using other asynchronous design methodologies. The
timed designs, however, are synthesized without consid­
ering explicitly the available gate library. In particular,
these designs may require gates with a large number of
inputs which is not practical for existing technologies. In
CMOS, for example, gates with more than four transis­
tors in series are typically considered to be too slow, and
they must be decomposed. While in a synchronous de­
sign high-fanin gates can be decomposed in an arbitrary
manner, in an asynchronous design decomposition must
be done in such a way as to not introduce hazards. A haz­

0-8186-7098-3/95 $04.00 © 1995 IE E E
138

ard is an unwanted signal transition or glitch which while
filtered out by the clock signal in a synchronous design
can potentially lead to a circuit malfunction in an asyn­
chronous design. This paper addresses the problem of
finding hazard-free mappings of timed circuits to limited-
fanin gate libraries.

It has been shown for fundamental mode asynchronous
circuits that synchronous technology mapping techniques
can be applied with small modifications to account for
hazards [4], The fundamental-mode assumption states
that inputs are allowed to change only after the circuit
has settled. This assumption limits the concurrency that
can be specified, and when timing analysis shows that this
assumption does not hold in practice, delay elements must
be added to the feedback path to guarantee that the timing
constraints are satisfied, degrading the performance.

Technology mapping of speed-independent circuits has
also been addressed [5, 6 , 7]. The techniques employed
use heuristics to investigate various decompositions, and
when necessary add additional connections called ac­
knowledgment wire forks to restore correctness to the de­
composed implementation. These forks increase both the
fanin and fanout of the gates in the implementation de­
grading the performance. These techniques also do not
take timing into account and would produce unnecessar­
ily conservative and possibly incorrect timed circuit im­
plementations.

To our knowledge, the only procedure for technol­
ogy mapping of asynchronous circuits that takes timing
into account is the one within Berkeley’s SIS [8]. This
procedure derives a complex-gate implementation under
the speed-independent model, and then uses synchronous
technology mapping to map the design to a given gate li­
brary. The resulting implementation is then analyzed with
the timing information from the library, and if hazards are
detected, delay elements are added to remove them. We
have shown that the implementations that are produced
can be inefficient in terms of circuit area and delay due to
the cost of these delay elements and the fact that timing
information is neglected until late in the design process
[7, 1].

In this paper, we describe an automatic procedure to
map timed circuits to practical gate libraries without need­
ing to add any delay elements. Beginning with a specifi­
cation and a gate library description, our design procedure
synthesizes an unlimited fanin gate-level timed circuit im­
plementation. An automatic procedure is employed to in­
vestigate possible decompositions of any gates larger than
those found in the gate library. Timing information is uti­
lized to significantly reduce the size of the search space.
From this reduced search space, each decomposition is
employed to guide the resynthesis of a hazard-free timed

circuit which is mapped to the given gate library. The
procedure has been automated within the synthesis tool
ATACS, and it has been used to map several examples.

2 Specifications and gate libraries

Our design procedure for timed circuits begins with a
specification in the form of an orbital net and a description
of the gate library. This section describes orbital nets and
the types of possible gate libraries.

2.1 Orbital net specifications

An orbital net is essentially a labeled safe Petri net ex­
tended with timing [9] which can be easily derived from a
high-level language [1], An orbital net is modeled by the
tuple (A, P, T, F, M0, R, L) where A is the set of atomic
actions, P is the set of places, T is the set of transitions,
F C (P x T) U (T x P) is the set of edges, Mo C P
is the initial marking, R is an assignment of timing re­
quirements to places, and L is a function which labels
transitions with actions. A marking is a subset of the
places. For a place p £ P , the preset of p is the set of
transitions connected to p (i.e., { t £ T | (t ,p) £ F}),
and the postset of p is the set of transitions to which p
is connected (i.e., { t £ T \ (p, t) £ F}). For a transition
t £ T, the presets and postsets are similarly defined (i.e.,
{p G P | (p, t) £ F} and {p £ P | (t , p) £ F}).

Timing in an orbital net is associated with a place as
a timing requirement consisting of a lower bound, an up­
per bound, and a type (denoted (/, u)type). There are two
types of timing requirements: behavior (b) and constraint
(c). Behavior timing requirements are used to specify
guaranteed timing behavior. Constraint timing require­
ments, on the other hand, are used to specify desired tim­
ing behavior, and they do not affect the actual timing
behavior. If the timing requirement on a place is omitted,
it is assumed to be (0, oo)c. A part of the orbital net
for the target-send burst-mode (tsbrn) portion of the SCSI
data transfer controller from [10] is shown in Figure 1(a).

2.2 Gate libraries

The general structure of our implementations is in the
from of a standard C-implementation as depicted in Fig­
ure 2(a). In this structure, the upper sum-of-products rep­
resents the logic for the set, the lower sum-of-products
represents the logic for the reset, and the result is merged
with a C-element. When available in the gate library, this
structure can be implemented directly in CMOS as a sin­
gle compact generalized C-element with weak-feedback

139

Figure 1: (a) Part of the orbital net from the tsbm example,
(b) a standard C-implementation, and (c) a generalized C-
implementation of the signal DReq0.

Figure 2: (a) The standard C-implementation structure,
(b) a weak-feedback, and (c) a fully-static generalized C-
implementation.

as shown in Figure 2(b) or as a fully-static general­
ized C-element as shown in Figure 2(c) [11]. When
these complex gates are not available, the standard C-
implemenlation structure is constructed using combina­
tional gates and a C-element. If the library includes
AND-OR-INVERT blocks, the sum-of-products may be
mapped to them, otherwise discrete AND gates and OR
gates must be used. We require that the given gate li­
brary contain at least 2-input AND gates, OR gates, and
C-elements with arbitrary inverted inputs. The presence
of AND-OR-INVERT blocks and generalized C-elements
is optional.

It is important to note that in our timed circuit syn­
thesis procedure, delays for transitions on output signals
must be specified before the gates generating them are
produced. While we believe the lower bound of the de­
lay should be 0 as optimizations may reduce a gate to
simply a wire, it is important to have a good estimate of
the upper bound to produce efficient timed circuits. The
solution that we propose is use an automatic analysis of
the given library to derive the upper bound of the de­
lay from the largest gate structure of the form shown in
Figure 2(a) that can be built from the limited-fanin gates
found in the library. Using this technique to estimate de­
lays, however, means that when a network of gates for
an output signal includes a high-fanin gate which must be
decomposed to multiple levels of logic, the delay associ­
ated with transitions on this output signal may be larger
than originally estimated. This increase in delay must be
reflected in the specification, and it may change the result­
ing implementation. Since decomposition techniques for

speed-independent designs do not take this into consider­
ation, they may produce incorrect circuits when naively
applied to timed circuits.

3 Synthesis

Given a specification in the form of an orbital net, the
goal of the synthesis procedure is to produce a hazard-
free gate-level timed circuit implementation. The synthe­
sis procedure uses partial order timing, a timing analysis
algorithm based on geometric regions and partial orders,
to find the reachable state space for the given orbital net.
By utilizing a timing analysis procedure in the derivation
of the state space, the resulting state graph can be sig­
nificantly reduced in size. For the tsbm example, there
are 5832 states when timing is ignored, but there are only
316 states when timing is taken into account. This smaller
state graph results in a significantly smaller circuit imple­
mentation. From this reduced state graph, an automatic
procedure is employed to derive a hazard-free gate-level
timed circuit implementation using unlimited fanin gates.
This section briefly describes our synthesis procedure. For
a more complete description, please see [1],

3.1 State graphs

A state graph (SG) is modeled by the tuple {I , 0,<P, T)
where I is the set of input signals, O is the set of output
signals, <P is the set of states, and r c $ x 4> is the set of
edges. For each untimed state s, there is a corresponding

140

labeling function s : I U O —»• {0, R, 1, F] which returns
the value of each signal and whether it is enabled, i.e.,

s(u) =

0 if u is stable low in s
R if u is enabled to rise in s
1 if u is stable high in s
F if u is enabled to fall in s.

3.2 Excitation regions and quiescent states

In order to obtain our implementation, the SG is decom­
posed for each output signal into a collection of excitation
regions. An excitation region for the output signal u is
a maximally connected set of states in which the signal
is enabled to change to a given value (i.e., s(u) = R
or s(u) = F). If the signal is rising in the region (i.e.,
s(u) = R), it is called a set region, and the kih set region
for a signal u is denoted ER(u | , k). Similarly, if the
signal is falling in the region (i.e., s(u) = F), it is called
a reset region, and it is denoted ER(u [, k). Typically,
different excitation regions correspond to different output
signal transitions in a high-level specification.

For each signal u, there are two sets of stable, or qui­
escent states. There is the set of states where the signal
u is stable high denoted QS(u j) (i.e., QS(u |) = {s G
<J> | s(u) — 1}), and the set where it is stable low denoted
QS(u j) (i.e., QS(u |) = {s £ 0 | s(u) = 0}).

3.3 Correct covers

We assume each excitation region will be implemented
with a single AND gate, or cube, corresponding to a
cover of the excitation region. The cover of a set re­
gion C(u 1, k) (or a reset region C(u [, k)) is a set of
states for which the corresponding cube in the implemen­
tation evaluates to one. In order for a cover to lead to
a hazard-free implementation, it must satisfy certain cor­
rectness constraints [7, 1]. These constraints guarantee
that any gate in the implementation only changes when
it is actively driving the output signal to change. This
ensures that the transition of the gate is acknowledged.

First, a correct cover needs to satisfy a covering con­
straint which says that the reachable states in the cover
must include the entire excitation region but must not in­
clude any states outside the union of the excitation region
and associated quiescent states, i.e.,

ER(u*, k) C [C(«*, k) D $\ C [ER(u*, k) U £>(«*)]

where “ *” indicates either for set regions or “ J,” for
reset regions.

Second, the covers of each excitation region must also
satisfy an entrance constraint to ensure hazard-freedom.

This constraint says that the cover must only be entered
through excitation region slates, i.e.,

[(«, s') E r A s £ C(u*, k) A s' 6 C(u*, &)] =>

s' £ ER(u*, k)

To optimize the implementation, a single AND gate
can be allowed to implement multiple regions. First, the
procedure finds AND gate covers for each excitation re­
gion using modified correctness constraints. The covering
constraint is modified to allow the cover to include states
from other excitation regions, i.e.,

ER(u*, k) C [C(u*, k) fl 0] C [J ER(u*, I) U Q(u*)
I i

The entrance constraint is similarly modified to allow the
cover to be entered from any corresponding excitation
region state, i.e.,

[(s, s') £ T A s ^ C(u*, fc) A s' £ C(u*, k)] =>

s' £ \J,ER(u*,l)

An additional constraint is also now necessary to guar­
antee that an AND gate either covers all of an excitation
region or none of it, i.e.,

ER(u*, /) ^ C(w+, k) => ER(u*, I) fl C(u*, k) = 0

Second, after the covers are found for each excitation
region, a disjoint set of these covers must be selected to
cover all regions. It is possible that no such set exists. In
this case, the amount of gate sharing must be limited. A
more general framework for the sharing of gates across
signal networks is described in [12].

3.4 Trigger and context signals
Each cube in the implementation is composed of a set of
literals where a literal is either an external signal or its
complement. The signal corresponding to each literal is
classified as either a trigger signal or a context signal.
For a given excitation region, a trigger signal is a signal
whose firing can cause the circuit to enter the excitation
region while any non-trigger signal which is stable in the
excitation region can potentially be a context signal.

Our procedure to find an optimal correct cover for a
given excitation region begins with a cube consisting only
of the trigger signals. If this cover contains no conflicts,
i.e., states that violate the correctness constraints, we are
done. This, however, is often not the case, and context
signals must be added to the cube to remove any con­
flicting states. For each conflict detected, the procedure

141

determines the choices of context signals which would
exclude the conflicting state. Finding the smallest set of
context signals to resolve all conflicts is a covering prob­
lem. Due to the implication in the entrance constraint,
inclusion of certain context signals may introduce addi­
tional conflicts which must be resolved. Therefore, the
covering problem is binate. If a conflict is detected for
which there is no context signal to resolve it, or a trig­
ger signal is not stable, it is necessary to either constrain
concurrency [13], add state variables [12], or use a more
general algorithm [7].

The standard C-implementation of DReq0 is shown in
Figure 1(b). There is one set and one reset region for
DReq0. The set region has trigger signals DSendi and
-iDAcki which can be read directly from the orbital net in
Figure 1(a). The reset region has a single trigger signal
Ready0. Six context signals must be added to the cube to
implement the set region, ->DSend0, ^ Ready 0, ->DRel0,
~^Req0, ->Done0, and -'EmptyB. The reset region can be
implemented using just the single trigger signal. Note
that when a standard C-implementation is mapped to a
generalized C-element and only needs a single cube for
the set and a single cube for the reset, it can be redrawn
as shown in Figure 1(c). In this diagram, a “+” on a wire
indicates that the signal is used in the set cube only, a

indicates that it is used in the reset cube only, and no
annotation indicates that it is used in both.

4 Technology mapping

Given an orbital net, an unlimited fanin gate-level timed
circuit implementation, and a gate library, the goal of tech­
nology mapping is to implement the circuit using only
limited fanin gates found in the given library optimized
to some cost function such as area or delay. The technol­
ogy mapping procedure first decomposes each gate in the
initial implementation with a fanin higher than that found
in the gate library. Next, the partitioning step trivially
identifies each signal network as a cone of logic. Finally,
the matching and covering step is used to bind portions
of each signal network to gates found in the library to
produce an efficient implementation. It was shown in [6]
that for speed-independent circuits the decomposition of
high-fanin OR gates from the standard C-implementation
structure can be done safely in any arbitrary manner, and
that the synchronous matching/covering techniques can be
used with minor modifications. These results can be eas­
ily extended to our class of timed circuits. However, For
the AND gates, or cubes, care must be taken when decom­
posing them so as not to introduce hazards. Therefore, it
is the decomposition of these cubes which the remainder
of this section addresses.

Our procedure to decompose each high-fanin AND
gate searches for a decomposition that uses the minimum
number of logic levels. This is accomplished by adding
new signals to the original specification which can be used
to decompose each high-fanin gate without changing the
concurrency originally specified. Each decomposition re­
sults in a modified specification which is then resynthe­
sized to obtain a new timed circuit implementation that
is guaranteed to be hazard-free. This decomposition pro­
cedure first attempts to decompose the circuit using one
new signal for each high-fanin gate. If no such decom­
position can be found that successfully decomposes all
gates to ones found in the given library, then the speci­
fication which results in the implementation that requires
the smallest fanin gates is taken as the new starting point.
Using this new specification, an additional signal is added
to decompose each remaining high-fanin gate. This pro­
cedure terminates either when all high-fanin gates have
been successful decomposed into multi-level logic im­
plementations, or when the minimum fanin of the best
implementation and the number of gates needing to be
decomposed is no longer decreasing. In the remainder of
this section, we explain our decomposition procedure in
more detail.

4.1 Searching the decomposition space

A decomposition of a cube is a partition of the set of
trigger and context signals into two subsets: an extracted
set and a reduced set. The signals in the extracted set are
used as trigger signals for a transition on a new signal
that is added to decompose the high-fanin gate. For a
particular cube composed of n signals, there are 2” — 1
different decompositions. For example, the 8-input AND
gate in Figure 1(b) which must be decomposed has 255
different decompositions.

Fortunately, we do not need to examine all of them
as many decompositions which never lead to a successful
decomposition can be safely eliminated from considera­
tion. When two signal transitions are ordered, if the signal
with the later transition is extracted as a trigger signal for
the new signal transition, the signal with the earlier tran­
sition need not also be extracted. The earlier transition, if
extracted, would not be a trigger signal for the new transi­
tion as two trigger signals are never ordered. If the signal
with the earlier transition is needed in the implementation
of the new signal transition, it will be as a context signal.

We use the above intuition in two ways. First, since
all trigger signal transitions occur later than any context
signal transition, any decomposition with an extracted set
that contains both trigger and context signals from the
original gate is eliminated. Second, a timing analysis al­

142

gorithm such as the one described for deterministic spec­
ifications in [2] or for more general specifications in [14]
is used to determine the order of context signal transi­
tions. Any decomposition composed of two context sig­
nals that have ordered transitions is eliminated. By taking
advantage of ordering information, the number of possible
decompositions for the 8-input AND gate from the tsbm
example is reduced to only 23.

4.2 Decomposition through resynthesis

For each signal which needs to be decomposed, our pro­
cedure selects a decomposition from the set of potential
decompositions that remains after applying the criterion
described in the previous subsection. The original speci­
fication is then modified to incorporate a new signal for
each signal being decomposed. For simplicity, we explain
here the case in which the orbital net does not contain
conditional behavior, or choice. We describe an example
with choice later.

The procedure first adds a rising transition for each new
signal to the orbital net with behavior places in its preset
from the appropriate transitions on the signals in the ex­
tracted set. The timing requirements on these places have
a lower bound of 0 with an upper bound derived as men­
tioned earlier from the maximum delay for a limited-fanin
standard C-implementation. If the extracted set is com­
posed of trigger signals, the original connections (places
and transitions) between the corresponding transitions on
these trigger signals and the rising (falling) transition on
the signal being decomposed are replaced by a single be­
havior place which is added to the postset of the new
rising transition. If the extracted set is composed of con­
text signals, a constraint place with timing requirement
(0,oo)c is added to the postset of the new rising transi­
tion and the preset of the original rising (falling) signal
transition. When the falling (rising) transition of a signal
also needs to be decomposed, it is done with the falling
transition of the new signal using the same procedure just
described. Otherwise, the falling transition of the new
signal is placed between all the trigger signals for the
original falling (rising) transition and the original falling
(rising) transition itself.

This new specification is then resynthesized using the
automatic procedure from [1] to produce a new hazard-
free timed circuit implementation. If the new implemen­
tation does not have any high-fanin gates, the decomposi­
tion is successful. Otherwise, the procedure must repeat
using a different decomposition for each remaining high-
fanin gate.

Returning to the tsbm example, we apply our tech­
nology mapping procedure to the specification and im-

Figure 3: (a) Part of the orbital net for a decomposition
using a trigger signal, and (b) corresponding generalized
C-implementation.

plementation shown in Figure 1 with a gate library that
contains 4-input AND gates, OR gates, C-elements, and
generalized C-elements. One decomposition for the 8-
input AND gate from the example has an extracted set
that contains only the trigger signal DSendi. The portion
of the new orbital net corresponding to this decomposi­
tion is as shown in Figure 3(a). This new specification
results in the generalized C-implementation shown in Fig­
ure 3(b). Unfortunately, this decomposition results in an
implementation that requires a 7-input gate. Another pos­
sible decomposition is the one with an extracted set that
contains just the context signal -<DSend0 which results in
the portion of the orbital net shown in Figure 4(a). Note
that the place between the new signal transition x \ j and
the transition on the signal being decomposed DReq0 |
is now a constraint place. This decomposition produces
an implementation which requires only one 2-input gate
(note the generalized C-element for x\ only requires at
most two transistors in series) and one 3-input gate shown
in Figure 4(b).

Various cost functions can be used to evaluate differ­
ent successful decompositions in terms of circuit area and
delay. Because the number of different decompositions is
usually small, it may be computationally feasible for the
decomposition procedure to analyze each decomposition,

143

Figure 4: (a) Part of the orbital net for a decomposition
using a context signal, and (b) corresponding generalized
C-implementation.

and select the one with the lowest cost that decomposes
all high-fanin gates to gates found in the library. As a
heuristic to speedup the process, our procedure exits after
a decomposition is found that decomposes each high-fanin
gate to the limited fanin gates in the given library. Al­
though a better decomposition may exist, due to a good
ordering heuristic employed, the first successful decom­
position found is typically close to the optimal in terms
of area and delay.

4.3 Multi-level decompositions

If the procedure is not successful at decomposing all high-
fanin gates by adding only one additional signal, the de­
composition procedure is iterated to produce multiple lev­
els of logic. After the first pass, if all gates have not been
successfully decomposed, the procedure selects the de­
composition for each gate which required the minimum
gate size and uses its corresponding specification and im­
plementation as input to a new iteration of the procedure.
This step is repeated until an implementation is returned
that either uses only gates in the library or has a minimum
gate size that is no longer decreasing. In the second case,

Figure 5: (a) Part of the orbital net for a multi-level
decomposition, and (b) corresponding generalized C-
element implementation of DReqa with a maximum fanin
of two.

our procedure is unable to generate an implementation
using the given specification and gate library. To handle
this situation, either the requirements in the specification
must be relaxed or carefully designed atomic gates may
need to be added to the gate library.

For the tsbm example, if we reduce the library size
to include only 2-input gates, it can no longer be de­
composed with one new signal. The best decomposition
that we find is the one shown in Figure 4(b) which uses
only one 3-input gate which must be further decomposed.
The orbital net shown in Figure 4(a) is now taken as the
initial specification and the circuit shown in Figure 4(b)
is the initial implementation. For this new iteration, the
procedure adds an additional signal *2 to decompose the
3-input gate. A portion of the orbital net for a decom­
position that extracts the trigger signal DSendi is shown
in Figure 5(a). Synthesis applied to this net results in a
generalized C-implementation shown in Figure 5(b) using
3 2-input gates. Note that x 1 is a context signal in the
implementation shown in Figure 4(b), and for that reason,
it can move to the gate implementing X2-

144

4.4 Example

We present another example, an optimized version of the
port selector (SELopt) originally described in [1], to illus­
trate the application of our decomposition procedure to a
circuit with conditional behavior, or choice. Part of the
original orbital net for the SELopt example is shown in
Figure 6(a), and the original gate-level timed circuit im­
plementation is shown in Figure 7(a). If we restrict our
library to gates with a maximum fanin of 3, there is a
4-input AND gate that is shared to implement sela and
data0 which must be decomposed. A new signal is added
for each of these signals, but we concentrate on the signal
x\ which is added to decompose sel0. Part of the orbital
net after a decomposition of sel0 is shown in Figure 6(b).
This decomposition has an extracted set which consists
of the context signals -ioutl 0 and ~>out20. The procedure
detects that the corresponding transitions on these context
signals occur on disjoint paths, so these transitions share
a single place that is added to the preset of x \ f . Since
there are two falling transitions on the signal se l0, the pro­
cedure adds two falling transitions on the new signal x i .
Applying synthesis to this new specification produces the
decomposed implementation shown in Figure 7(b). If we
further restrict the library to only contain 2-input gates,
there are three gates which must be decomposed. The
resulting implementation is shown in Figure 7(c).

4.5 Results

The decomposition procedure described in this paper has
been automated within the CAD tool ATACS, and it has
been used to map several examples as reported in Table 1.
First, a timed version of the target-send burst-mode (tsbm)
cycle of a SCSI data transfer controller [10] is synthesized
using gate libraries with a maximum fanin of 4, 3, and 2.
The next three rows are implementations of the optimized
port selector (SELopt) [1] also using libraries with a fanin
of 4, 3, and 2. The last example is an asynchronous
memory management unit [15],

The gate library used for each example contains gates
with a maximum fanin size as specified in parentheses
next to the name of the example. The next two columns
give the number of gates in the standard C-implementation
as well as the number of gates that are larger than the
maximum fanin and must be decomposed. The area and
latency for the decomposed standard C-implementation
are given in the next two columns followed by the area
and latency after the implementation is mapped to a li­
brary which contains generalized C-elements. Area is re ­
po rted as the im p lem en ta tio n ’s transis to r count. L atency
is the longest delay through a block of logic generating
an output transition driving a fanout of 4, and it is re-

- xfer, T

-selli T sel2l-T -

<0, 18)b (0, 18)b

- outl0T out20T -

<0, 18)b (0, 18)b

- xj'L xii-

(0, 18)b <0, 18)b

~selQi sel04 -

- outl0l out201_

Figure 6: (a) Part of the orbital net for the SELopt exam­
ple, and (b) part of the orbital net after a decomposition
of the signal sel0.

ported normalized to the delay of a single inverter (about
300ps for O.’tijirn CMOS process at nominal conditions).
Finally, the number of iterations necessary to decompose
the high-fanin gates is shown.

5 Conclusions

We have proposed an efficient procedure for the technol­
ogy mapping of timed circuits to practical gate libraries.
Our procedure begins by synthesizing an unlimited fanin
gate-level timed circuit implementation from an orbital net
specification. Next, various decompositions are applied
using resynthesis to decompose all high-fanin gates. Tech­
niques are described that make use of timing analysis to
significantly reduce the number of decompositions which
need to be analyzed. After decomposition, the resulting
limited-fanin timed circuit implementation is mapped to
the given gate library. The resulting implementations are
both area efficient and deliver high performance as timing
is u tilized th roughout the d esign procedure to optimize the
implementation and hazard-freedom is achieved without
the addition of delay elements.

145

Table 1: Experimental results.

Example
of
Gates

of
Gates to

Decompose

AND
Area

(xtors)

/OR/C
Latency

(inv)

gCL
Area

(xtors)

ibrary
Latency

(inv)
Iter

(num)
tsbm (4) 15 1 122 8.1 70 4.9 1
tsbm (3) 15 1 122 8.1 70 4.9 1
tsbm (2) 15 3 154 7.2 87 5.7 25
SELopt (4) 11 0 66 5.3 45 3.8 0
SELopt (3) 11 2 70 5.3 53 3.8 1
SELopt (2) 11 4 108 8.5 67 4.2 3
MMU (4) 27 4 186 5.8 132 5.2 14

R e fe r e n c e s

Figure 7: The gate-level timed circuit implementation of
the SELopt example (a) before decomposition; (b) after
decomposition to 3-input gates; and (c) after decomposi­
tion to 2-input gates.

Acknowledgments

We would like to thank Dr. Polly Siegel of Hewlett
Packard and Professor Luciano Lavagno of Politecnico
University, Torino, Italy for their advice and comments
on earlier versions of this manuscript. We are also espe­
cially grateful to Professor Steve Burns of the University
of Washington and Professor Alain Martin of Caltech for
many stimulating discussions about timed circuits.

[1] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Au­
tomatic synthesis of gate-level timed circuits with
choice. In 16th Conference on Advanced Research
in VLSI, pages 42-58. IEEE Computer Society Press,
1995.

[2] C. J. Myers and T. H.-Y. Meng. Synthesis of timed
asynchronous circuits. IEEE Transactions on VLSI
Systems, 1(2): 106—119, June 1993.

[3] T. G. Rokicki and C. J. Myers. Automatic veri-
ficaton of timed circuits. In International Confer­
ence on Computer-Aided Verification, pages 468­
480. Springer-Verlag, 1994.

[4] P. Siegel, G. DeMicheli, and D. Dill. Automatic
technology mapping for generalized fundamental­
mode asynchronous designs. In Proceedings of
the 30th ACM/IEEE Design Automation Conference,
1993.

[5] P. A. Beerel and T. H.-Y. Meng. Logic trans­
formations and observability don’t cares in speed-
independent circuits, 1993. In collection of papers
of the ACM International Workshop on Timing Is­
sues in the Specification of and Synthesis o f Digital
Systems.

[6] P. Siegel. Automatic Technology Mapping for Asyn­
chronous Designs. PhD thesis, Stanford University,
February 1995.

[7] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Auto­
matic synthesis of gate-level speed-independent cir­
cuits, November 1994. Submitted for publication in
IEEE Transactions on Computer-Aided Design.

[8] L. Lavagno, K. Keutzer, and A. Sangiovanni-
Vincentelli. Synthesis of hazard-free asynchronous
circuits with bounded wire delays. IEEE Transac­
tions on Computer-Aided Design, 14(1):61—86, Jan­
uary 1995.

[9] T. G. Rokicki. Representing and Modeling Circuits.
PhD thesis, Stanford University, 1993.

146

[10] K. Y. Yun and D. L. Dill. Unifying syn­
chronous/asynchronous state machine synthesis. In
Proceedings IEEE 1993 ICCAD Digest of Papers.
IEEE Computer Society Press, 1993.

[11] A. J. Martin. Programming in VLSI: from com­
municating processes to delay-insensitive VLSI cir­
cuits. In C.A.R. Hoare, editor, UT Year of Pro­
gramming Institute on Concurrent Programming.
Addison-Wesley, 1990.

[12] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbek-
bergen, and A. Yakovlev. Basic gate implementation
of speed-independent circuits. In Proc. ACM/IEEE
Design Automation Conference, 1994.

[13] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messer-
shmitt. Automatic synthesis of asynchronous circuits
from high-level specifications. IEEE Transactions on
Computer-Aided Design, 8(11):1185—1205, Novem­
ber 1989.

[14] H. Hulgaard and S.M. Burns. Bounded delay timing
analysis of a class of CSP programs with choice.
In International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 2-11,
1994.

[15] C. J. Myers and A. J. Martin. The design of an
asynchronous memory management. Technical Re­
port CS-TR-93-30, California Institute of Technol­
ogy, 1993.

147

