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Abstract

This paper presents an automated procedure for the tech­
nology mapping of timed circuits to practical gate li­
braries. Timed circuits are a class of asynchronous cir­
cuits that incorporate explicit timing information in the 
specification which is used throughout the design pro­
cess to optimize the implementation. Our procedure be­
gins with a timed specification and a delay-annotated 
gate library description which must include 2-input AND 
gates, OR gates, and C-elements, but optionally can in­
clude higher-fanin gates, AND-OR-INVERT blocks, and 
generalized C-elements. Our procedure first generates a 
technology-independent timed circuit netlist composed of 
possibly high-fanin AND gates, OR gates, and 2-input C- 
elements. The procedure then investigates simultaneous 
decompositions of all high-fanin gates by adding state 
variables to the the specification and performing resyn­
thesis. Although multiple decompositions are explored, 
timing information is utilized to significantly reduce their 
number. Once all gates are sufficiently decomposed, the 
netlist can be mapped to the given gate library, taking 
advantage of any compact complex gates available. The 
decomposition and resynthesis steps have been fully au­
tomated within the synthesis tool ATACS and we present 
results for several examples.

1 Introduction

In recent years, there has been a resurgence of interest 
in the design of asynchronous circuits due to their ability 
to eliminate clock skew problems, achieve average case
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performance, adapt to processing and environmental vari­
ations, provide component modularity, and lower system 
power requirements. Traditional academic asynchronous 
design methodologies use unbounded delay assumptions, 
resulting in circuits that are verifiably correct, but sacrifice 
timing for simplicity, leading to unnecessarily conserva­
tive designs. In industry, however, timing is critical to 
reduce both chip area and circuit delay. Due to the lack 
of formal methods to handle timing information correctly, 
circuits with timing constraints usually require extensive 
simulation to establish confidence in the design. Timed 
circuits bridge this gap by incorporating explicit timing 
information into the specification and utilizing it through­
out the design procedure to optimize the implementation. 
Timed circuits can be significantly smaller and faster than 
those produced using traditional methods, and they are 
more reliable than those produced using ad hoc methods
[1], The specification of timing constraints also facili­
tates a natural interaction between synchronous and asyn­
chronous circuits.

Our previous work introduced automatic procedures 
for the synthesis and verification of gate-level timed cir­
cuits [2, 3, 1] and demonstrated that timed designs can 
be significantly smaller and faster than designs gener­
ated using other asynchronous design methodologies. The 
timed designs, however, are synthesized without consid­
ering explicitly the available gate library. In particular, 
these designs may require gates with a large number of 
inputs which is not practical for existing technologies. In 
CMOS, for example, gates with more than four transis­
tors in series are typically considered to be too slow, and 
they must be decomposed. While in a synchronous de­
sign high-fanin gates can be decomposed in an arbitrary 
manner, in an asynchronous design decomposition must 
be done in such a way as to not introduce hazards. A haz­
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ard is an unwanted signal transition or glitch which while 
filtered out by the clock signal in a synchronous design 
can potentially lead to a circuit malfunction in an asyn­
chronous design. This paper addresses the problem of 
finding hazard-free mappings of timed circuits to limited- 
fanin gate libraries.

It has been shown for fundamental mode asynchronous 
circuits that synchronous technology mapping techniques 
can be applied with small modifications to account for 
hazards [4], The fundamental-mode assumption states 
that inputs are allowed to change only after the circuit 
has settled. This assumption limits the concurrency that 
can be specified, and when timing analysis shows that this 
assumption does not hold in practice, delay elements must 
be added to the feedback path to guarantee that the timing 
constraints are satisfied, degrading the performance.

Technology mapping of speed-independent circuits has 
also been addressed [5, 6 , 7]. The techniques employed 
use heuristics to investigate various decompositions, and 
when necessary add additional connections called ac­
knowledgment wire forks to restore correctness to the de­
composed implementation. These forks increase both the 
fanin and fanout of the gates in the implementation de­
grading the performance. These techniques also do not 
take timing into account and would produce unnecessar­
ily conservative and possibly incorrect timed circuit im­
plementations.

To our knowledge, the only procedure for technol­
ogy mapping of asynchronous circuits that takes timing 
into account is the one within Berkeley’s SIS [8]. This 
procedure derives a complex-gate implementation under 
the speed-independent model, and then uses synchronous 
technology mapping to map the design to a given gate li­
brary. The resulting implementation is then analyzed with 
the timing information from the library, and if hazards are 
detected, delay elements are added to remove them. We 
have shown that the implementations that are produced 
can be inefficient in terms of circuit area and delay due to 
the cost of these delay elements and the fact that timing 
information is neglected until late in the design process
[7, 1].

In this paper, we describe an automatic procedure to 
map timed circuits to practical gate libraries without need­
ing to add any delay elements. Beginning with a specifi­
cation and a gate library description, our design procedure 
synthesizes an unlimited fanin gate-level timed circuit im­
plementation. An automatic procedure is employed to in­
vestigate possible decompositions of any gates larger than 
those found in the gate library. Timing information is uti­
lized to significantly reduce the size of the search space. 
From this reduced search space, each decomposition is 
employed to guide the resynthesis of a hazard-free timed

circuit which is mapped to the given gate library. The 
procedure has been automated within the synthesis tool 
ATACS, and it has been used to map several examples.

2 Specifications and gate libraries

Our design procedure for timed circuits begins with a 
specification in the form of an orbital net and a description 
of the gate library. This section describes orbital nets and 
the types of possible gate libraries.

2.1 Orbital net specifications

An orbital net is essentially a labeled safe Petri net ex­
tended with timing [9] which can be easily derived from a 
high-level language [1], An orbital net is modeled by the 
tuple (A, P, T, F, M0, R, L) where A  is the set of atomic 
actions, P  is the set of places, T  is the set of transitions, 
F  C (P  x T) U (T  x P ) is the set of edges, Mo C P  
is the initial marking, R  is an assignment of timing re­
quirements to places, and L is a function which labels 
transitions with actions. A marking is a subset of the 
places. For a place p £ P , the preset of p  is the set of 
transitions connected to p (i.e., { t £ T  | (t ,p ) £ F}),  
and the postset of p is the set of transitions to which p 
is connected (i.e., { t £ T  \ (p, t) £ F}).  For a transition 
t £ T, the presets and postsets are similarly defined (i.e., 
{p G P  | (p, t)  £ F}  and {p  £ P  | (t , p ) £ F}).

Timing in an orbital net is associated with a place as 
a timing requirement consisting of a lower bound, an up­
per bound, and a type (denoted (/, u)type). There are two 
types of timing requirements: behavior (b) and constraint 
(c). Behavior timing requirements are used to specify 
guaranteed timing behavior. Constraint timing require­
ments, on the other hand, are used to specify desired tim­
ing behavior, and they do not affect the actual timing 
behavior. If the timing requirement on a place is omitted, 
it is assumed to be (0, oo)c. A part of the orbital net 
for the target-send burst-mode (tsbrn) portion of the SCSI 
data transfer controller from [10] is shown in Figure 1(a).

2.2 Gate libraries

The general structure of our implementations is in the 
from of a standard C-implementation as depicted in Fig­
ure 2(a). In this structure, the upper sum-of-products rep­
resents the logic for the set, the lower sum-of-products 
represents the logic for the reset, and the result is merged 
with a C-element. When available in the gate library, this 
structure can be implemented directly in CMOS as a sin­
gle compact generalized C-element with weak-feedback
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Figure 1: (a) Part of the orbital net from the tsbm example, 
(b) a standard C-implementation, and (c) a generalized C- 
implementation of the signal DReq0.

Figure 2: (a) The standard C-implementation structure, 
(b) a weak-feedback, and (c) a fully-static generalized C- 
implementation.

as shown in Figure 2(b) or as a fully-static general­
ized C-element as shown in Figure 2(c) [11]. When 
these complex gates are not available, the standard C- 
implemenlation structure is constructed using combina­
tional gates and a C-element. If the library includes 
AND-OR-INVERT blocks, the sum-of-products may be 
mapped to them, otherwise discrete AND gates and OR 
gates must be used. We require that the given gate li­
brary contain at least 2-input AND gates, OR gates, and 
C-elements with arbitrary inverted inputs. The presence 
of AND-OR-INVERT blocks and generalized C-elements 
is optional.

It is important to note that in our timed circuit syn­
thesis procedure, delays for transitions on output signals 
must be specified before the gates generating them are 
produced. While we believe the lower bound of the de­
lay should be 0 as optimizations may reduce a gate to 
simply a wire, it is important to have a good estimate of 
the upper bound to produce efficient timed circuits. The 
solution that we propose is use an automatic analysis of 
the given library to derive the upper bound of the de­
lay from the largest gate structure of the form shown in 
Figure 2(a) that can be built from the limited-fanin gates 
found in the library. Using this technique to estimate de­
lays, however, means that when a network of gates for 
an output signal includes a high-fanin gate which must be 
decomposed to multiple levels of logic, the delay associ­
ated with transitions on this output signal may be larger 
than originally estimated. This increase in delay must be 
reflected in the specification, and it may change the result­
ing implementation. Since decomposition techniques for

speed-independent designs do not take this into consider­
ation, they may produce incorrect circuits when naively 
applied to timed circuits.

3 Synthesis

Given a specification in the form of an orbital net, the 
goal of the synthesis procedure is to produce a hazard- 
free gate-level timed circuit implementation. The synthe­
sis procedure uses partial order timing, a timing analysis 
algorithm based on geometric regions and partial orders, 
to find the reachable state space for the given orbital net. 
By utilizing a timing analysis procedure in the derivation 
of the state space, the resulting state graph can be sig­
nificantly reduced in size. For the tsbm example, there 
are 5832 states when timing is ignored, but there are only 
316 states when timing is taken into account. This smaller 
state graph results in a significantly smaller circuit imple­
mentation. From this reduced state graph, an automatic 
procedure is employed to derive a hazard-free gate-level 
timed circuit implementation using unlimited fanin gates. 
This section briefly describes our synthesis procedure. For 
a more complete description, please see [1],

3.1 State graphs

A state graph (SG) is modeled by the tuple {I , 0,<P, T)  
where I  is the set of input signals, O is the set of output 
signals, <P is the set of states, and r c $ x  4> is the set of 
edges. For each untimed state s, there is a corresponding
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labeling function s : I U O —»• {0, R,  1, F]  which returns 
the value of each signal and whether it is enabled, i.e.,

s(u) =

0 if u is stable low in s
R  if u is enabled to rise in s
1 if u is stable high in s
F  if u is enabled to fall in s.

3.2 Excitation regions and quiescent states

In order to obtain our implementation, the SG is decom­
posed for each output signal into a collection of excitation 
regions. An excitation region for the output signal u is 
a maximally connected set of states in which the signal 
is enabled to change to a given value (i.e., s(u) = R 
or s(u) = F). If the signal is rising in the region (i.e., 
s(u) = R), it is called a set region, and the kih set region 
for a signal u is denoted ER(u | , k). Similarly, if the 
signal is falling in the region (i.e., s(u) = F), it is called 
a reset region, and it is denoted ER(u [, k). Typically, 
different excitation regions correspond to different output 
signal transitions in a high-level specification.

For each signal u, there are two sets of stable, or qui­
escent states. There is the set of states where the signal 
u is stable high denoted QS(u j) (i.e., QS(u |)  = {s G 
<J> | s(u) — 1}), and the set where it is stable low denoted 
QS(u j) (i.e., QS(u | )  = {s £ 0  | s(u)  =  0}).

3.3 Correct covers

We assume each excitation region will be implemented 
with a single AND gate, or cube, corresponding to a 
cover of the excitation region. The cover of a set re­
gion C(u 1, k ) (or a reset region C(u [, k)) is a set of 
states for which the corresponding cube in the implemen­
tation evaluates to one. In order for a cover to lead to 
a hazard-free implementation, it must satisfy certain cor­
rectness constraints [7, 1]. These constraints guarantee 
that any gate in the implementation only changes when 
it is actively driving the output signal to change. This 
ensures that the transition of the gate is acknowledged.

First, a correct cover needs to satisfy a covering con­
straint which says that the reachable states in the cover 
must include the entire excitation region but must not in­
clude any states outside the union of the excitation region 
and associated quiescent states, i.e.,

ER(u*, k) C [C(«*, k) D $\ C [ER(u*, k ) U £>(«*)]

where “ *”  indicates either for set regions or “ J,”  for 
reset regions.

Second, the covers of each excitation region must also 
satisfy an entrance constraint to ensure hazard-freedom.

This constraint says that the cover must only be entered 
through excitation region slates, i.e.,

[(«, s') E r  A s £  C(u*, k) A s' 6  C(u*, &)] =>

s' £ ER(u*, k)

To optimize the implementation, a single AND gate 
can be allowed to implement multiple regions. First, the 
procedure finds AND gate covers for each excitation re­
gion using modified correctness constraints. The covering 
constraint is modified to allow the cover to include states 
from other excitation regions, i.e.,

ER(u*, k) C [C(u*, k) fl 0] C [ J  ER(u*, I) U Q(u*)
I i

The entrance constraint is similarly modified to allow the 
cover to be entered from any corresponding excitation 
region state, i.e.,

[(s, s') £ T  A s ^  C(u*, fc) A s' £ C(u*, k)] =>

s' £ \J,ER(u*,l)

An additional constraint is also now necessary to guar­
antee that an AND gate either covers all of an excitation 
region or none of it, i.e.,

ER(u*, /) ^  C(w+, k) => ER(u*, I) fl C(u*, k) =  0

Second, after the covers are found for each excitation 
region, a disjoint set of these covers must be selected to 
cover all regions. It is possible that no such set exists. In 
this case, the amount of gate sharing must be limited. A 
more general framework for the sharing of gates across 
signal networks is described in [12].

3.4 Trigger and context signals
Each cube in the implementation is composed of a set of 
literals where a literal is either an external signal or its 
complement. The signal corresponding to each literal is 
classified as either a trigger signal or a context signal. 
For a given excitation region, a trigger signal is a signal 
whose firing can cause the circuit to enter the excitation 
region while any non-trigger signal which is stable in the 
excitation region can potentially be a context signal.

Our procedure to find an optimal correct cover for a 
given excitation region begins with a cube consisting only 
of the trigger signals. If this cover contains no conflicts, 
i.e., states that violate the correctness constraints, we are 
done. This, however, is often not the case, and context 
signals must be added to the cube to remove any con­
flicting states. For each conflict detected, the procedure
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determines the choices of context signals which would 
exclude the conflicting state. Finding the smallest set of 
context signals to resolve all conflicts is a covering prob­
lem. Due to the implication in the entrance constraint, 
inclusion of certain context signals may introduce addi­
tional conflicts which must be resolved. Therefore, the 
covering problem is binate. If a conflict is detected for 
which there is no context signal to resolve it, or a trig­
ger signal is not stable, it is necessary to either constrain 
concurrency [13], add state variables [12], or use a more 
general algorithm [7].

The standard C-implementation of DReq0 is shown in 
Figure 1(b). There is one set and one reset region for 
DReq0. The set region has trigger signals DSendi and 
-iDAcki which can be read directly from the orbital net in 
Figure 1(a). The reset region has a single trigger signal 
Ready0. Six context signals must be added to the cube to 
implement the set region, ->DSend0, ^ Ready 0, ->DRel0, 
~^Req0, ->Done0, and -'EmptyB. The reset region can be 
implemented using just the single trigger signal. Note 
that when a standard C-implementation is mapped to a 
generalized C-element and only needs a single cube for 
the set and a single cube for the reset, it can be redrawn 
as shown in Figure 1(c). In this diagram, a “+” on a wire 
indicates that the signal is used in the set cube only, a 

indicates that it is used in the reset cube only, and no 
annotation indicates that it is used in both.

4 Technology mapping

Given an orbital net, an unlimited fanin gate-level timed 
circuit implementation, and a gate library, the goal of tech­
nology mapping is to implement the circuit using only 
limited fanin gates found in the given library optimized 
to some cost function such as area or delay. The technol­
ogy mapping procedure first decomposes each gate in the 
initial implementation with a fanin higher than that found 
in the gate library. Next, the partitioning step trivially 
identifies each signal network as a cone of logic. Finally, 
the matching and covering step is used to bind portions 
of each signal network to gates found in the library to 
produce an efficient implementation. It was shown in [6] 
that for speed-independent circuits the decomposition of 
high-fanin OR gates from the standard C-implementation 
structure can be done safely in any arbitrary manner, and 
that the synchronous matching/covering techniques can be 
used with minor modifications. These results can be eas­
ily extended to our class of timed circuits. However, For 
the AND gates, or cubes, care must be taken when decom­
posing them so as not to introduce hazards. Therefore, it 
is the decomposition of these cubes which the remainder 
of this section addresses.

Our procedure to decompose each high-fanin AND 
gate searches for a decomposition that uses the minimum 
number of logic levels. This is accomplished by adding 
new signals to the original specification which can be used 
to decompose each high-fanin gate without changing the 
concurrency originally specified. Each decomposition re­
sults in a modified specification which is then resynthe­
sized to obtain a new timed circuit implementation that 
is guaranteed to be hazard-free. This decomposition pro­
cedure first attempts to decompose the circuit using one 
new signal for each high-fanin gate. If no such decom­
position can be found that successfully decomposes all 
gates to ones found in the given library, then the speci­
fication which results in the implementation that requires 
the smallest fanin gates is taken as the new starting point. 
Using this new specification, an additional signal is added 
to decompose each remaining high-fanin gate. This pro­
cedure terminates either when all high-fanin gates have 
been successful decomposed into multi-level logic im­
plementations, or when the minimum fanin of the best 
implementation and the number of gates needing to be 
decomposed is no longer decreasing. In the remainder of 
this section, we explain our decomposition procedure in 
more detail.

4.1 Searching the decomposition space

A decomposition of a cube is a partition of the set of 
trigger and context signals into two subsets: an extracted 
set and a reduced set. The signals in the extracted set are 
used as trigger signals for a transition on a new signal 
that is added to decompose the high-fanin gate. For a 
particular cube composed of n signals, there are 2” — 1 
different decompositions. For example, the 8-input AND 
gate in Figure 1(b) which must be decomposed has 255 
different decompositions.

Fortunately, we do not need to examine all of them 
as many decompositions which never lead to a successful 
decomposition can be safely eliminated from considera­
tion. When two signal transitions are ordered, if the signal 
with the later transition is extracted as a trigger signal for 
the new signal transition, the signal with the earlier tran­
sition need not also be extracted. The earlier transition, if 
extracted, would not be a trigger signal for the new transi­
tion as two trigger signals are never ordered. If the signal 
with the earlier transition is needed in the implementation 
of the new signal transition, it will be as a context signal.

We use the above intuition in two ways. First, since 
all trigger signal transitions occur later than any context 
signal transition, any decomposition with an extracted set 
that contains both trigger and context signals from the 
original gate is eliminated. Second, a timing analysis al­
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gorithm such as the one described for deterministic spec­
ifications in [2] or for more general specifications in [14] 
is used to determine the order of context signal transi­
tions. Any decomposition composed of two context sig­
nals that have ordered transitions is eliminated. By taking 
advantage of ordering information, the number of possible 
decompositions for the 8-input AND gate from the tsbm 
example is reduced to only 23.

4.2 Decomposition through resynthesis

For each signal which needs to be decomposed, our pro­
cedure selects a decomposition from the set of potential 
decompositions that remains after applying the criterion 
described in the previous subsection. The original speci­
fication is then modified to incorporate a new signal for 
each signal being decomposed. For simplicity, we explain 
here the case in which the orbital net does not contain 
conditional behavior, or choice. We describe an example 
with choice later.

The procedure first adds a rising transition for each new 
signal to the orbital net with behavior places in its preset 
from the appropriate transitions on the signals in the ex­
tracted set. The timing requirements on these places have 
a lower bound of 0 with an upper bound derived as men­
tioned earlier from the maximum delay for a limited-fanin 
standard C-implementation. If the extracted set is com­
posed of trigger signals, the original connections (places 
and transitions) between the corresponding transitions on 
these trigger signals and the rising (falling) transition on 
the signal being decomposed are replaced by a single be­
havior place which is added to the postset of the new 
rising transition. If the extracted set is composed of con­
text signals, a constraint place with timing requirement 
(0,oo)c is added to the postset of the new rising transi­
tion and the preset of the original rising (falling) signal 
transition. When the falling (rising) transition of a signal 
also needs to be decomposed, it is done with the falling 
transition of the new signal using the same procedure just 
described. Otherwise, the falling transition of the new 
signal is placed between all the trigger signals for the 
original falling (rising) transition and the original falling 
(rising) transition itself.

This new specification is then resynthesized using the 
automatic procedure from [1] to produce a new hazard- 
free timed circuit implementation. If the new implemen­
tation does not have any high-fanin gates, the decomposi­
tion is successful. Otherwise, the procedure must repeat 
using a different decomposition for each remaining high- 
fanin gate.

Returning to the tsbm example, we apply our tech­
nology mapping procedure to the specification and im-

Figure 3: (a) Part of the orbital net for a decomposition 
using a trigger signal, and (b) corresponding generalized 
C-implementation.

plementation shown in Figure 1 with a gate library that 
contains 4-input AND gates, OR gates, C-elements, and 
generalized C-elements. One decomposition for the 8- 
input AND gate from the example has an extracted set 
that contains only the trigger signal DSendi. The portion 
of the new orbital net corresponding to this decomposi­
tion is as shown in Figure 3(a). This new specification 
results in the generalized C-implementation shown in Fig­
ure 3(b). Unfortunately, this decomposition results in an 
implementation that requires a 7-input gate. Another pos­
sible decomposition is the one with an extracted set that 
contains just the context signal -<DSend0 which results in 
the portion of the orbital net shown in Figure 4(a). Note 
that the place between the new signal transition x \ j and 
the transition on the signal being decomposed DReq0 |  
is now a constraint place. This decomposition produces 
an implementation which requires only one 2-input gate 
(note the generalized C-element for x\ only requires at 
most two transistors in series) and one 3-input gate shown 
in Figure 4(b).

Various cost functions can be used to evaluate differ­
ent successful decompositions in terms of circuit area and 
delay. Because the number of different decompositions is 
usually small, it may be computationally feasible for the 
decomposition procedure to analyze each decomposition,
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Figure 4: (a) Part of the orbital net for a decomposition 
using a context signal, and (b) corresponding generalized 
C-implementation.

and select the one with the lowest cost that decomposes 
all high-fanin gates to gates found in the library. As a 
heuristic to speedup the process, our procedure exits after 
a decomposition is found that decomposes each high-fanin 
gate to the limited fanin gates in the given library. Al­
though a better decomposition may exist, due to a good 
ordering heuristic employed, the first successful decom­
position found is typically close to the optimal in terms 
of area and delay.

4.3 Multi-level decompositions

If the procedure is not successful at decomposing all high- 
fanin gates by adding only one additional signal, the de­
composition procedure is iterated to produce multiple lev­
els of logic. After the first pass, if all gates have not been 
successfully decomposed, the procedure selects the de­
composition for each gate which required the minimum 
gate size and uses its corresponding specification and im­
plementation as input to a new iteration of the procedure. 
This step is repeated until an implementation is returned 
that either uses only gates in the library or has a minimum 
gate size that is no longer decreasing. In the second case,

Figure 5: (a) Part of the orbital net for a multi-level 
decomposition, and (b) corresponding generalized C- 
element implementation of DReqa with a maximum fanin 
of two.

our procedure is unable to generate an implementation 
using the given specification and gate library. To handle 
this situation, either the requirements in the specification 
must be relaxed or carefully designed atomic gates may 
need to be added to the gate library.

For the tsbm example, if we reduce the library size 
to include only 2-input gates, it can no longer be de­
composed with one new signal. The best decomposition 
that we find is the one shown in Figure 4(b) which uses 
only one 3-input gate which must be further decomposed. 
The orbital net shown in Figure 4(a) is now taken as the 
initial specification and the circuit shown in Figure 4(b) 
is the initial implementation. For this new iteration, the 
procedure adds an additional signal *2 to decompose the
3-input gate. A portion of the orbital net for a decom­
position that extracts the trigger signal DSendi is shown 
in Figure 5(a). Synthesis applied to this net results in a 
generalized C-implementation shown in Figure 5(b) using
3 2-input gates. Note that x 1 is a context signal in the 
implementation shown in Figure 4(b), and for that reason, 
it can move to the gate implementing X2-
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4.4 Example

We present another example, an optimized version of the 
port selector (SELopt) originally described in [1], to illus­
trate the application of our decomposition procedure to a 
circuit with conditional behavior, or choice. Part of the 
original orbital net for the SELopt example is shown in 
Figure 6(a), and the original gate-level timed circuit im­
plementation is shown in Figure 7(a). If we restrict our 
library to gates with a maximum fanin of 3, there is a 
4-input AND gate that is shared to implement sela and 
data0 which must be decomposed. A new signal is added 
for each of these signals, but we concentrate on the signal 
x\ which is added to decompose sel0. Part of the orbital 
net after a decomposition of sel0 is shown in Figure 6(b). 
This decomposition has an extracted set which consists 
of the context signals -ioutl 0 and ~>out20. The procedure 
detects that the corresponding transitions on these context 
signals occur on disjoint paths, so these transitions share 
a single place that is added to the preset of x \  f .  Since 
there are two falling transitions on the signal se l0, the pro­
cedure adds two falling transitions on the new signal x i . 
Applying synthesis to this new specification produces the 
decomposed implementation shown in Figure 7(b). If we 
further restrict the library to only contain 2-input gates, 
there are three gates which must be decomposed. The 
resulting implementation is shown in Figure 7(c).

4.5 Results

The decomposition procedure described in this paper has 
been automated within the CAD tool ATACS, and it has 
been used to map several examples as reported in Table 1. 
First, a timed version of the target-send burst-mode (tsbm) 
cycle of a SCSI data transfer controller [10] is synthesized 
using gate libraries with a maximum fanin of 4, 3, and 2. 
The next three rows are implementations of the optimized 
port selector (SELopt) [1] also using libraries with a fanin 
of 4, 3, and 2. The last example is an asynchronous 
memory management unit [15],

The gate library used for each example contains gates 
with a maximum fanin size as specified in parentheses 
next to the name of the example. The next two columns 
give the number of gates in the standard C-implementation 
as well as the number of gates that are larger than the 
maximum fanin and must be decomposed. The area and 
latency for the decomposed standard C-implementation 
are given in the next two columns followed by the area 
and latency after the implementation is mapped to a li­
brary which contains generalized C-elements. Area is re ­
po rted  as the  im p lem en ta tio n ’s transis to r count. L atency  
is the longest delay through a block of logic generating 
an output transition driving a fanout of 4, and it is re-

- xfer, T

-selli T sel2l-T -

<0, 18)b (0, 18)b

- outl0T out20T -

<0, 18)b (0, 18)b

- xj'L xii-

(0, 18)b <0, 18)b

~selQi sel04 -

- outl0l out201_

Figure 6: (a) Part of the orbital net for the SELopt exam­
ple, and (b) part of the orbital net after a decomposition 
of the signal sel0.

ported normalized to the delay of a single inverter (about 
300ps for O.’tijirn CMOS process at nominal conditions). 
Finally, the number of iterations necessary to decompose 
the high-fanin gates is shown.

5 Conclusions

We have proposed an efficient procedure for the technol­
ogy mapping of timed circuits to practical gate libraries. 
Our procedure begins by synthesizing an unlimited fanin 
gate-level timed circuit implementation from an orbital net 
specification. Next, various decompositions are applied 
using resynthesis to decompose all high-fanin gates. Tech­
niques are described that make use of timing analysis to 
significantly reduce the number of decompositions which 
need to be analyzed. After decomposition, the resulting 
limited-fanin timed circuit implementation is mapped to 
the given gate library. The resulting implementations are 
both area efficient and deliver high performance as timing 
is u tilized  th roughout the  d esign  procedure to optimize the 
implementation and hazard-freedom is achieved without 
the addition of delay elements.
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Table 1: Experimental results.

Example
# of 
Gates

# of 
Gates to 

Decompose

AND
Area

(xtors)

/OR/C
Latency

(inv)

gCL
Area

(xtors)

ibrary
Latency

(inv)
Iter

(num)
tsbm (4) 15 1 122 8.1 70 4.9 1
tsbm (3) 15 1 122 8.1 70 4.9 1
tsbm (2) 15 3 154 7.2 87 5.7 25
SELopt (4) 11 0 66 5.3 45 3.8 0
SELopt (3) 11 2 70 5.3 53 3.8 1
SELopt (2) 11 4 108 8.5 67 4.2 3
MMU (4) 27 4 186 5.8 132 5.2 14

R e fe r e n c e s

Figure 7: The gate-level timed circuit implementation of 
the SELopt example (a) before decomposition; (b) after 
decomposition to 3-input gates; and (c) after decomposi­
tion to 2-input gates.
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