
INTROSPECTIVE PUSHDOWN ANALYSIS AND

NEBO

by

Christopher Earl

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2014

Copyright c© Christopher Earl 2014

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l !!!
STATEMENT OF DISSERTATION APPROVAL !!!

!

The dissertation of Christopher Earl

has been approved by the following supervisory committee members:

Matthew Might , Chair 11/4/2013
Date Approved

Martin Berzins , Member 11/1/2013
Date Approved

Matthew Flatt , Member 11/1/2013
Date Approved

Mary Hall , Member 11/1/2013
Date Approved

James C. Sutherland , Member 11/4/2013
Date Approved

and by Alan Davis , Chair/Dean of

the Department of School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

In the static analysis of functional programs, control-flow analysis (k-CFA) is a classic

method of approximating program behavior as a finite state automata. CFA2 and ab-

stract garbage collection are two recent, yet orthogonal improvements, on k-CFA. CFA2

approximates program behavior as a pushdown system, using summarization for the stack.

CFA2 can accurately approximate arbitrarily-deep recursive function calls, whereas k-CFA

cannot. Abstract garbage collection removes unreachable values from the store/heap. If

unreachable values are not removed from a static analysis, they can become reachable

again, which pollutes the final analysis and makes it less precise. Unfortunately, as these

two techniques were originally formulated, they are incompatible. CFA2’s summarization

technique for managing the stack obscures the stack such that abstract garbage collection

is unable to examine the stack for reachable values.

This dissertation presents introspective pushdown control-flow analysis, which manages

the stack explicitly through stack changes (pushes and pops). Because this analysis is able

to examine the stack by how it has changed, abstract garbage collection is able to examine

the stack for reachable values. Thus, introspective pushdown control-flow analysis merges

successfully the benefits of CFA2 and abstract garbage collection to create a more precise

static analysis.

Additionally, the high-performance computing community has viewed functional pro-

gramming techniques and tools as lacking the efficiency necessary for their applications.

Nebo is a declarative domain-specific language embedded in C++ for discretizing partial

differential equations for transport phenomena. For efficient execution, Nebo exploits a

version of expression templates, based on the C++ template system, which is a type-less,

completely-pure, Turing-complete functional language with burdensome syntax. Nebo’s

declarative syntax supports functional tools, such as point-wise lifting of complex expres-

sions and functional composition of stencil operators. Nebo’s primary abstraction is math-

ematical assignment, which separates what a calculation does from how that calculation is

executed. Currently Nebo supports single-core execution, multicore (thread-based) parallel

execution, and GPU execution. With single-core execution, Nebo performs on par with

the loops and code that it replaces in Wasatch, a pre-existing high-performance simulation

project. With multicore (thread-based) execution, Nebo can linearly scale (with roughly

90% efficiency) up to 6 processors, compared to its single-core execution. Moreover, Nebo’s

GPU execution can be up to 37x faster than its single-core execution. Finally, Wasatch (the

pre-existing high-performance simulation project which uses Nebo) can scale up to 262K

cores.

iv

For Emily, with love.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . x

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Skirting undecidability . 1
1.2 Dissertation . 1
1.3 Introspective pushdown analysis . 2

1.3.1 Accessing the whole stack versus just the top . 3
1.3.2 Overview . 5

1.4 Nebo: A domain-specific language for numerically solving PDEs in high-
performance simulations . 6

1.4.1 Other domain-specific languages solving PDEs 7
1.4.2 Uintah . 7
1.4.3 Wasatch . 8
1.4.4 Use of Nebo in Wasatch . 9
1.4.5 Overview . 10

1.5 Contributions . 10

2. PUSHDOWN CONTROL-FLOW ANALYSIS . 12

2.1 Introduction . 12
2.2 Setting: A-Normal Form λ-calculus . 12

2.2.1 Semantics . 13
2.2.1.1 Transition relation . 14

2.3 An infinite-state abstract interpretation . 15
2.3.1 Program injection . 15
2.3.2 Atomic expression evaluation . 16
2.3.3 Reachable configurations . 17
2.3.4 Transition relation . 17
2.3.5 Allocation: Polyvariance and context-sensitivity 18

2.3.5.1 Monovariance: Pushdown 0CFA . 18
2.3.5.2 Context-sensitive: Pushdown 1CFA . 18
2.3.5.3 Polymorphic splitting: Pushdown poly/CFA 19
2.3.5.4 Pushdown k-CFA . 19

2.3.6 Partial orders . 19
2.3.7 Soundness . 21

2.4 From the abstracted CESK machine to a PDA . 21

2.4.1 Problem: Doubly exponential complexity . 23
2.5 Summary . 23

3. COMPUTABLE AND TRACTABLE PUSHDOWN CONTROL-FLOW
ANALYSIS . 24

3.1 Introduction . 24
3.2 Dyck state graph . 25
3.3 Compacting a rooted pushdown system into a Dyck state graph 27

3.3.1 Complexity: Polynomial and exponential . 28
3.4 An efficient algorithm: Work-lists and ε-closure

graphs . 29
3.4.1 ε-closure graphs . 29
3.4.2 Integrating a work-list . 30
3.4.3 A new fixed-point iteration-space . 30
3.4.4 The ε-closure graph work-list algorithm . 30

3.4.4.1 Sprouting . 34
3.4.4.2 Considering the consequences of a new push edge 35
3.4.4.3 Considering the consequences of a new pop edge 36
3.4.4.4 Considering the consequences of a new ε-edge 37

3.4.5 Termination and correctness . 39
3.4.6 Complexity: Still exponential, but more efficient 39

3.5 Polynomial-time complexity from widening . 40
3.5.1 Step 1: Refactor the concrete semantics . 40
3.5.2 Step 2: Refactor the abstract semantics . 41
3.5.3 Step 3: Single-thread the abstract store . 41
3.5.4 Step 4: Dyck state control-flow graphs . 42

3.5.4.1 A preliminary analysis of complexity . 42
3.5.5 Step 5: Reintroduce ε-closure graphs . 43

3.6 Summary . 45

4. ABSTRACT GARBAGE COLLECTION AND INTROSPECTIVE PUSH-
DOWN CONTROL-FLOW ANALYSIS . 46

4.1 Introduction . 46
4.2 Introspection for abstract garbage collection . 46

4.2.1 Garbage collection in monotonic introspective pushdown
systems . 48

4.3 Problem: Reachability for introspective pushdown systems is uncomputable . 48
4.3.1 Garbage collection in monotonic introspective pushdown systems 49

4.4 Computing reachability for monotonic introspective pushdown systems 50
4.4.1 Compiling to Dyck state graphs . 50
4.4.2 Computing a round of F . 51
4.4.3 Correctness . 54
4.4.4 Simplifying garbage collection in introspective pushdown

systems . 54
4.5 An algorithm for introspective pushdown analysis with garbage collection . . 55
4.6 Summary . 56

vii

5. PERFORMANCE AND APPLICATIONS OF INTROSPECTIVE PUSH-
DOWN ANALYSIS . 57

5.1 Introduction . 57
5.2 Experimental evaluation . 57

5.2.1 Plain k-CFA vs. pushdown k-CFA . 58
5.2.1.1 Comparing precision . 58
5.2.1.2 Comparing speed . 60

5.2.2 Analyzing real-life programs with garbage-collecting
pushdown CFA . 62

5.3 Applications . 62
5.3.1 Escape analysis . 64
5.3.2 Interprocedural dependence analysis . 64

5.4 Summary . 64

6. SYNTAX AND SEMANTICS OF NEBO . 66

6.1 Introduction . 66
6.2 Basic Nebo Expressions . 67
6.3 Assignment . 69
6.4 Reductions . 70
6.5 Conditional expressions . 71
6.6 Stencil operations . 74
6.7 Summary . 77

7. IMPLEMENTATION OF NEBO . 78

7.1 Introduction . 78
7.2 Template metaprogramming . 79
7.3 Field type system and stencils . 81
7.4 Backends . 84

7.4.1 Single-core implementation . 85
7.4.2 Multicore implementation . 87
7.4.3 Many-core (GPU) implementation . 88
7.4.4 Reduction implementation . 89

7.5 Summary . 90

8. CASE STUDIES OF THE USE AND PERFORMANCE OF NEBO . . 91

8.1 Introduction . 91
8.2 Simple heat equation . 92
8.3 Scalar right-hand side term . 95
8.4 A detailed conditional expression . 98
8.5 A complex use of Nebo . 99
8.6 Comparing Wasatch to Arches and ICE . 101
8.7 Weakly scaling Wasatch on Titan . 102
8.8 Summary . 103

9. RELATED WORK . 104

9.1 Introduction . 104
9.2 Control-flow analysis . 104

9.2.1 Context-free analysis of higher-order programs 105
9.2.2 Calculation approach to abstract interpretation 105

viii

9.2.3 CFL-reachability and pushdown-reachability techniques 105
9.2.4 Model-checking higher-order recursion schemes 106

9.3 Parallel processing languages for large-scale
parallel computation . 106

9.3.1 Models of parallelism . 107
9.3.1.1 Shared memory . 107
9.3.1.2 Nonshared memory . 108
9.3.1.3 PGAS . 110

9.3.1.3.1 Early PGAS languages. 110
9.3.1.3.2 Modern PGAS languages. 111

9.3.1.4 Other models . 113
9.3.1.4.3 Coordination languages. 115
9.3.1.4.4 Graph-based languages. 115
9.3.1.4.5 Logic and functional parallel languages. 115
9.3.1.4.6 GPU languages. 116
9.3.1.4.7 Domain-specific languages. 116

9.3.2 Language design approaches . 117
9.3.2.1 Novel language approach . 118
9.3.2.2 Language extension . 118
9.3.2.3 Language as library . 119
9.3.2.4 Domain-specific languages . 119

9.3.3 Failure to gain traction . 120
9.4 Summary . 121

10. CONCLUSIONS AND FUTURE WORK . 123

10.1 Introspective pushdown analysis . 123
10.2 Nebo . 124

APPENDIX: PUSHDOWN PRELIMINARIES . 126

REFERENCES . 132

ix

LIST OF FIGURES

1.1 Double factorial example . 3

1.2 Four analyses of the program in Figure 1.1 . 4

2.1 The concrete configuration-space . 14

2.2 The abstract configuration-space and a Haskell transliteration. 16

2.3 Function to convert a program into a pushdown automata 22

3.1 Fixed point of the function F ′(M) . 31

3.2 A Haskell implementation of pushdown control-state reachability 33

3.3 An iteration function for PDCFA with a single-threaded store 44

4.1 Haskell conversion from Dyck state graphs to NFAs . 52

5.1 Runtime performance of various analyses . 61

6.1 Grammar for Nebo Expressions . 68

8.1 Code to evaluate equation (8.1) . 95

8.2 Nebo code to evaluate equation (8.1) . 95

8.3 Original code for Scalar right-hand side term . 96

8.4 Initial version of Nebo code for Scalar right-hand side term 97

8.5 Current version of Nebo code for Scalar right-hand side term 98

8.6 A complex use of Nebo conditionals . 99

8.7 A complex use of Nebo . 100

8.8 Weak scaling of the Taylor-Green vortex on Titan . 102

LIST OF TABLES

5.1 Analysis benchmark results for toy programs . 59

5.2 Analysis benchmark results for real-life programs . 63

8.1 Increases in performance from better use of Nebo . 93

8.2 Nebo speedup on real uses in Wasatch on problem size 643 93

8.3 Nebo speedup on real uses in Wasatch on problem size 1283 93

8.4 Taylor-Green vortex test results comparing Wasatch with Arches and ICE . . . 101

ACKNOWLEDGEMENTS

As all things in life, this dissertation does not represent my work alone, but is the result

of many influences and people. First, I wish to thank my parents for the values they instilled

in me, especially the importance of education, as well as for all their help and guidance.

Next, my graditude goes to my grandparents, who showed me that hard work can be its own

reward regardless of what the work is. Life can be a lonely place, especially for a graduate

student 1700 miles from home. My wife, Emily, certainly has made my life less lonely, in

addition to all the support she gives me through her words and deeds.

Throughout my life my friends have supported my ambitions and have helped me

question my assumptions about my place in the world, through our discussions on life,

the universe, and everything. A special thanks to Adrian Young, Mary Snyder, Kshiti

Vaghela, Josh Woolum, Katie Palmer, Phoebe Kalinowski, and Petey Aldous.

My education has come from many influential teachers. To name just a few: Deborah

Groat was the first to introduce me to Latin and the first poetry that awed me. Through

her classes and teaching, I learned how rewarding learning can be. Patricia Biehl showed me

a larger world and encouraged me to aim higher than I ever would have dared. Rich Holton

revealed the beauty of mathematics to me. Donald Lateiner gave me a deeper appreciation

of the classics and years of guidance at Ohio Wesleyan. Sean McCulloch and Alan Zaring

taught me most of the computer science I know. Additionally, Sean became a friend as

well as a teacher, and ended up treating me like an academic equal before I deserved it.

Through Alan, I learned the satisfaction of a well-written formal proof.

Next I wish to thank my committee for their time and patience. Mary Hall and

Martin Berzins have pushed me to improve my work and myself. Even before I met him,

Matthew Flatt showed me the simplicity and beauty of functional programming through

the educational tools he has developed. His classes further deepened my appreciation of

functional programming. Through my discussions with James Sutherland, I learned many

of the practical aspects of software development. Finally, I wish to thank my advisor,

Matthew Might, who allowed me the freedom to make my own mistakes and the support

to correct them.

CHAPTER 1

INTRODUCTION

1.1 Skirting undecidability

The halting problem is a fundamental limit to program optimization. It is impossible to

determine whether or not an arbitrary Turing-complete program halts. If it were possible

to solve the halting problem, program optimization would be more powerful. While this

is little more than wishful thinking, we can skirt the halting problem in two different

ways: We can approximate program behavior, and we can consider programs that are not

Turing-complete.

It is possible to approximate whether or not an arbitrary Turing-complete program

halts. Rather than forcing an analysis to answer either “yes” or “no” but allowing it

to answer “maybe” avoids the halting problem. When approximating, an analysis can

describe some program behavior, which provides the basis for many program optimizations.

This dissertation formulates the pushdown control-flow analysis of (CFA2) by Vardoulakis

and Shivers [135] in direct-style and combines it with abstract garbage collection [98].

Furthermore, this dissertation empirically validates these analyses against both toy and

real-life benchmarks.

Alternatively, it is possible to determine program behavior of programs already proven to

halt. Nebo is a domain-specific language for numerically solving PDEs in high-performance

simulations. By the definition of its semantics, a Nebo program always halts. Thus,

standard optimization techniques can easily apply to all Nebo programs. However, this

restriction greatly limits the problems that Nebo programs can solve. Fortunately, Nebo

has been embedded in C++, which allows Nebo to solve small parts of much larger programs.

This dissertation defines Nebo’s syntax, semantics, and implementation. Finally, this

dissertation discusses real-life usage of Nebo and its performance.

1.2 Dissertation

Introspective pushdown control-flow analysis with abstract garbage collection is feasi-

ble and useful for higher-order languages, and Nebo is an expressive, portable, efficient,

2

and scalable domain-specific language embedded in C++ for numerically solving partial

differential equations.

1.3 Introspective pushdown analysis

The development of a context-free1 approach to control-flow analysis (CFA2) by Var-

doulakis and Shivers provoked a shift in the static analysis of higher-order programs [135].

Prior to CFA2, a precise analysis of recursive behavior had been a challenge—even though

flow analyses have an important role to play in optimization for functional languages,

such as flow-driven inlining [97], interprocedural constant propagation [121] and type-check

elimination [140].

While it had been possible to statically analyze recursion soundly, CFA2 made it possible

to analyze recursion precisely by matching calls and returns without approximation. In its

pursuit of recursion, clever engineering steered CFA2 just shy of undecidability. Its payoff

is significant reductions in analysis time as a result of corresponding increases in precision.

For a visual measure of the impact, consider the program in Figure 1.1. In this program,

id is the identity function, f is a recursive factorial function, and g is the sum of squares

of numbers from 1 to its given argument, n. The result of this program is the sum of f

applied to 3 and g applied to 4. Additionally, id is called on f and g, which does not change

the result of the program but does change its control-flow. Figure 1.2 renders the abstract

transition graph (a model of all possible traces through the program) for the toy program

in Figure 1.1. For this example, pushdown analysis eliminates spurious return-flow from

the use of recursion. However, recursion is just one problem of many for flow analysis. For

instance, pushdown analysis still gets tripped up by the spurious cross-flow problem; at

calls to (id f) and (id g) in the previous example, it thinks (id g) could be f or g.

Powerful techniques such as abstract garbage collection [98] were developed to solve the

cross-flow problem.2 In fact, abstract garbage collection, by itself, also delivers significant

improvements to analytic speed and precision. (See Figure 1.2 again for a visualization of

that impact.)

It is natural to ask: can abstract garbage collection and pushdown analysis work to-

gether? Can their strengths be multiplied? At first, the answer appears to be a disheartening

“No.”

1As in context-free language, not context-sensitivity.

2The cross-flow problem arises because monotonicity prevents revoking a judgment like “procedure f

flows to x,” or “procedure g flows to x,” once it has been made.

3

(define (id x) x)

(define (f n)

(cond [(<= n 1) 1]

[else (* n (f (- n 1)))]))

(define (g n)

(cond [(<= n 1) 1]

[else (+ (* n n) (g (- n 1)))]))

(print (+ ((id f) 3) ((id g) 4)))

Figure 1.1. Double factorial example. This program is a small example to illuminate the
strengths and weaknesses of both pushdown analysis and abstract garbage collection.

1.3.1 Accessing the whole stack versus just the top

Abstract garbage collection seems to require more than pushdown analysis can decidably

provide: access to the full stack. Abstract garbage collection, like its name implies, discards

unreachable values from an abstract store during the analysis. Like concrete garbage

collection, abstract garbage collection also begins its sweep with a root set, and like concrete

garbage collection, it must traverse the abstract stack to compute that root set. However,

pushdown systems are restricted to viewing the top of the stack (or a bounded depth)—a

condition violated by this traversal.

Fortunately, abstract garbage collection does not need to arbitrarily modify the stack.

In fact, it does not even need to know the order of the frames; it only needs the set of frames

on the stack. This dissertation defines a richer class of machine—introspective pushdown

systems—that provide read-only access to the stack. Control-state reachability for the

straightforward formulation of these systems ends up being uncomputable (but barely). By

introducing a relatively weak monotonicity constraint on transitions, introspective push-

down systems have just enough restrictions to compute reachable control states, yet few

enough to enable abstract garbage collection.

It is therefore possible to fuse the full benefits of abstract garbage collection with

pushdown analysis. The dramatic reduction in abstract transition graph size from the

top to the bottom in Figure 1.2 (and echoed by later benchmarks) conveys the impact of

this fusion.

There are four secondary motivations for the static analysis in this dissertation: (1)

bringing context-sensitivity to pushdown analysis; (2) exposing the context-freedom of

4

5

489 110

10

352

368

298

438

485

606

159

440

638

528

497

500

413

289

75

65

174

251

115

436

542
21

498 305

363

177

323

142

417

484

85

105181

118

471

491
623 291

340

408

68

482

300

549

416

599

427

415

330

454

510

448

72

283

418

432

529

111

609

650

87

255

230

539

351

459

186 163

267

122

564

504

472

56

603

88

26

428

423

464

156 633

253

232 15

356

179

592

399

273

392 145

58

412
204

294

295

258

621

573

27

43

370

467

172

55

139

286

194

629

74

541

208

25

254

48

40

474

64

9

649

276

95 39

249

240

496

584

274

384

383
77

146

281

112

512 559

557

92

369 414

138

234

543

278

316

430

506

594

456

83

513

589

104 262

372

598

619 488

50

596

405

320

98

35

109

522

315588

271

509

170

33 376

580

530

307 532

221

100

457 335

394

540

150

28

133

79

350

480

569

410 555

302

439

515
402

259

534

17

81

476 466

12 333 125

225

419 23

154

8

196

525 157

337

309 153

135

590

365

113

561

446

176

581

16

89 426

210

630

451

444

386

13

344

398

54

453

407

76

460

84

263

136

567

80
445 44

473

198

642

239

31

469

188

483

293

67

492

243

160

385

166

576

134

244

217

390

62

357

63

206

420

610

463

167

199

130

508

306

635

292

620

563

526

103

441

458 252

301

568

314

325

209

601

625

324

646

20

334

637

347

583

173

403 618

317

24

175 631

371

189

443

216

241

147

213

218

148

575

479

571

587

536

477

161

553

358

193

425

36

132
2

636195

628

182

223 319

570

22

331

535

282 158 220

32

364

236

343

257

341

106

180

151

643

256

184

144

353

37

475

648

516 359

411

465

137 214

275
551

612

389

634

231

595

442

523

141

222

395

593

116

229

577

52

361

602

219 277

86

164

242

49 490

73 129

268

332

565

378

578

131

582 328 197

632

552

387

579 297

380

211

354

124

126

502
191 82

59

120

264

269

360
287

520

19

270

183

152

501

514

97

202

207 391

336 493

143
4

107

279

117 201

546

227

641

121

162

299

645

462

51

91

192

30

149

586

310

499

3
226

355

409

547

247 171

450

422

128

560

615 447

470

200

327

400

627

42

228

397

94

101

434 190
34

290

626

93

521

311

78

519 266

169

393

455 527

250

304

401

550

61

71

248

622 102

600

468

373

265

375

272

313

537 348

235

29

524

381

90

404

435

494

545 303

11

345

168

280

46

6

461 639

487

424

339

308

114

329

346

362

203

205

486

18

284

245

437 342 288

233

7 605

155

41

238

349

585

99

604

538 617 544

66 591

548

431 224

165 367

108 246

614

433

1

478

388

312

187

260

396

607

644 322 70

406

374

53

96

45 47

562

507

237

318

185

558 140

296

481

533

127

38

321

503

647

574

366

69 379 597

624

377

382

554

518 119

531

495

505

429

608

452 123

556

60

511

640

611

178

14

212

572

261

215

613

517 421

326

57

616

566

338

449

285

(a) without pushdown analysis or abstract GC: 653 states

138 44

127

24

34

64

15

16 123

48

110

58

125 53 103

87 107

9

12

122

6

13

36

28

10

93

129 25

31 89

130

18 20 66

33

30

14

95 139 49

3

51 132

52

91

108 11 99

86

39

40
75

113

17

135

21
111

50 84

57 124

85

60

45 121 1

77

59
112

105 4

8

120 128 73

90

136
68

27

134

101

92 88 6576 47
26

133 115

126

46 35

81

2269

43 80

119

98

116

61 79

109

104

78

67

29

137
83

117

41

38

74

7

100

106

55
82

32

114

96

63

19

97

70 94

23

2

72

56

42

11862

131

5
37

71

102

54

(b) with pushdown only: 139 states

54 76
4

78

85

82

32

29 66 42

63 83

17

53 58 45

60 62

31

16

23

59

65

34

9 51

33

4677

92

19 102

41 103 47

91

38

1 70

3 84

104

50

36

10

26

35 27

96

5
28

8 15 64

80

71

14

88

55

74

43

105 87 61

22

86

25 56 39

44 24

48 81 79

57

7

67 37

98 13

97

72

89

69

101

6

52 73

21

40

100

75

2
68

12 18 11

20

90 30

94

49 99 93

95

(c) with GC only: 105 states

28 76

59

32

13

27

61

21

45

49

4

44 46 6

1 71

70 65 185 7 36

67

60
25

43

19 15

50

3 34

73

14

20 52

38 41
30

68

54 51 3542 22

2 11 23

72 66

26

24
31 64

39

69

33

48

56 75

40 77

53

12

29

58

10
17

8 47

63

9
55

74

37 62

57 16

(d) with pushdown analysis and abstract GC: 77 states

Figure 1.2. Four analyses of the program in Figure 1.1. The four different analysis
are (a) without pushdown analysis or abstract garbage collection; (b) with only abstract
garbage collection; (c) with only pushdown analysis; (d) with both pushdown analysis and
abstract garbage collection. With only pushdown or abstract GC, the abstract transition
graph shrinks by an order of magnitude, but in different ways. The pushdown-only analysis
is confused by variables that are bound to several different higher-order functions, but for
short durations. The abstract-GC-only is confused by the nontail-recursive loop structure.
With both techniques enabled, the graph shrinks by nearly half yet again and fully recovers
the control structure of the original program.

5

the analysis; (3) enabling pushdown analysis without continuation-passing style; and (4)

unambiguously defining an algorithm for computing pushdown analysis, introspectively or

otherwise.

In CFA2, monovariant (0CFA-like) context-sensitivity is etched directly into the abstract

semantics, which are in turn, phrased in terms of an explicit (imperative) summarization

algorithm for a partitioned continuation-passing style. The development here exposes the

classical parameters (exposed as allocation functions in a semantics) that allow one to tune

the context-sensitivity and polyvariance.

In addition, the context-freedom of CFA2 is buried implicitly inside an imperative

summarization algorithm. No pushdown system or context-free grammar is explicitly

identified. Thus, a necessary precursor to our work was to make the pushdown system

in CFA2 explicit, and to make the control-state reachability algorithm purely functional.

A third motivation was to show that a transformation to continuation-passing style is

unnecessary for pushdown analysis. In fact, pushdown analysis is arguably more natural

over direct-style programs. By abstracting all machine components except for the program

stack, it converts naturally and readily into a pushdown system.

Finally, to bring much-needed clarity to the algorithmic formulation of pushdown analy-

sis, parts of a reference implementation in Haskell are included throughout the formulation.

The code is as close in form to the mathematics as possible, so that where concessions are

made to the implementation, they are obvious.

1.3.2 Overview

Appendix A defines the terminology and notation used in this dissertation for intro-

spective pushdown analysis. Chapter 2 begins with with a concrete CESK-machine-style

semantics for A-Normal Form λ-calculus. Next, an infinite-state abstract interpretation is

constructed by bounding the C(ontrol), E(nvironment) and S(tore) portions of the machine.

Uncharacteristically, the stack component—the K(ontinuation)—is left unbounded.

A shift in perspective reveals that this abstract interpretation is a pushdown system.

The abstract interpretation is encoded as a pushdown automaton explicitly, and control

state reachability becomes a decidable language intersection problem.

Chapter 3 extracts a rooted pushdown system from the pushdown automaton. For

completeness, this chapter fully develops pushdown analysis for higher-order programs,

including an efficient algorithm for computing reachable control states. This chapter finishes

with characterizing complexity and demonstrating the approximations necessary to get to

a polynomial-time algorithm.

6

Chapter 4 introduces abstract garbage collection and demonstrates that abstract garbage

collection violates the pushdown model with its traversals of the stack. Towards a proof of

the decidability of control-state reachability, this chapter formulates introspective pushdown

systems, and recasts abstract garbage collection within this framework. This chapter shows

that control-state reachability is decidable for introspective pushdown systems as well when

introspective pushdown systems are subjected to a straightforward monotonicity constraint.

Finishing the static analysis portion of this dissertation, Chapter 5 discusses an imple-

mentation and empirical evaluation that shows strong synergies between pushdown analysis

and abstract garbage collection, including significant reductions in the size of the abstract

state transition graph.

Finally, Section 9.2 discusses work related to introspective pushdown analysis.

1.4 Nebo: A domain-specific language for numerically
solving PDEs in high-performance simulations

High-performance computing applications are by definition very sensitive and adverse to

inefficient code. To avoid inefficiencies, most high-performance computing code is written

at a very low level. However, with the rise of new architectures, such as multicore CPUs,

many-core CPUs, and GPUs, all of this code must be rewritten for each new architecture

the project is to use. Rewriting all this code is an labor-intensive and error-prone process.

To create code portable between multiple architectures, this dissertation describes Nebo,

an efficient domain-specific language (DSL) embedded in C++. In the parlance of Nebo’s

target domain (computational fluid dynamics), Nebo provides an abstraction layer for

numerically solving partial differential equations for transport phenomena. In terms more

familiar to computer scientists, Nebo is a declarative DSL for numeric computation over

arrays of any dimensionality.

Nebo has some unusual design constraints. From the start, Nebo was built for use within

the existing high-performance simulation projects, Uintah [23, 108, 22] and Wasatch [103],

which together currently scale to 262K cores. Sections 1.4.2 and 1.4.3 discuss Uintah and

Wasatch, respectively, in detail. Understandably the team that built Uintah and Wasatch

did not want to rewrite the entire codebase in Nebo. Thus, Nebo has to allow incremental

adoption: Wherever Nebo lacks needed functionality, application domain experts need to

be able to write working code in C++. Generally, when new Nebo functionality becomes

available, domain experts end up rewriting code using Nebo that is more flexible and easier

to maintain than the original. The domain experts prefer using Nebo over handwriting

C++ code because Nebo separates what computation should be performed from how that

7

computation should be done. With the separation of “what” from “how,” Nebo is able to

support single-thread, multithread, and GPU implementations of the same computation by

changing compile-time and runtime options. Furthermore, Nebo’s single-core implementa-

tion needs to run on par with C++ code hand-written by domain experts. To accomplish

this efficiency, Nebo produces code that the compiler can easily optimize.

Nebo has a restrictive declarative syntax so that the computation can be represented as

an abstract syntax tree (AST) in the C++ template system. Moreover, Nebo’s restricted

semantics limits what can be computed within Nebo. For example, all Nebo code will

terminate: Nebo calculations only read data from any memory location a fixed number

of times, usually once. Nebo calculations only read a finite amount of immutable data.

Finally, Nebo calculations write results to a finite amount of mutable data, which cannot

be read from within the same Nebo call. From the AST representing the Nebo calculation,

Nebo can generate efficient code for a variety of backend implementations.

1.4.1 Other domain-specific languages solving PDEs

Nebo is not the first domain-specific language in this domain. POOMA [114], Blitz++

[137], Liszt [43], and OptiMesh [128] are domain-specific languages that also numerically

solve partial differential equations. POOMA and Blitz++ use algebraic abstractions, like

Nebo, for their syntax. Liszt and OptiMesh use geometric abstractions for their syntax.

Like Nebo, POOMA, Liszt, and OptiMesh support multiple backends. Liszt and OptiMesh

both support thread-based and GPU-based parallelism. POOMA supports message-passing

and thread-based parallelism on CPUs only.

Nebo can be considered an indirect successor to POOMA, since the two share many

design principles and goals. POOMA is also embedded in C++ and uses similar abstrac-

tions. POOMA has a higher level of abstraction, and therefore has more potential for

optimization. POOMA also supports more functionality than Nebo ever plans to support.

Unfortunately for POOMA, most of its development happened over a decade ago and as

such shows its age. With the increase in the number of processors in supercomputers in the

last decade, POOMA has not been shown to scale to the extent Nebo has. Moreover, Nebo

supports GPUs, and POOMA does not. Sections 9.3.1.4.7 and 9.3.2.4 specifically discuss

domain-specific languages similar to Nebo in more detail.

1.4.2 Uintah

Uintah [23, 108] is a software framework for running full-physics simulations on large-

scale clusters. Full-physics means that Uintah supports simulations of both fluid dynamics

8

and rigid body dynamics. Additionally, Uintah supports simulations of strong interactions

between fluids and solids, such as temperature and velocity interactions as well as chemical

and physical transformations. Since Uintah is a framework, each of its software compo-

nents implements the interactions and the numeric calculations underlying the simulations.

Uintah’s components primarily focus on fluid dynamics simulations, and particularly on

numerically solving partial differential equations.

Uintah’s main goal is to handle parallelism at a high level so that its components can

focus on the numeric calculations underlying the simulations. To this end, Uintah exploits

both of the major types of parallelism, task and data parallelism. For data parallelism,

Uintah decomposes the physical simulation domain into patches. Uintah sets up the MPI

process for each patch and handles all communication between patches. Additionally,

Uintah provides support for automated load balancing of patches across processors. For

task parallelism, Uintah supports a task graph. Each component specifies various tasks

as well as the dependencies between tasks. Uintah handles scheduling these tasks and

decides when, where, and how to run tasks in parallel. Furthermore, Uintah handles any

communication that occurs between tasks. Thus, components of Uintah focus on what

happens within a Uintah task on a single patch, rather than the interactions between tasks

or patches.

Uintah provides support for other administrative duties for running simulations on

large-scale clusters. Uintah supports adaptive mesh refinement, through which Uintah can

increase or decrease resolution of individual patches based upon runtime flags. Uintah can

handle memory management and data storage (file input and output). For components

that support GPU execution, Uintah can manage data transfer and kernel scheduling.

All of the support Uintah provides to its components is centered around tasks that

every simulation project must handle. Moreover, most of Uintah’s features deal with global

resource management. Thus, component developers can focus their efforts on implementing

models and numeric calculation, independent of resource concerns.

1.4.3 Wasatch

Wasatch [103] is a component of Uintah. Similar to Uintah, Wasatch decomposes the

simulation model and numeric calculations into a task graph. Unlike Uintah, Wasatch’s

task graph is inferred at runtime. Each Wasatch task declares which values it computes

and upon which values it depends. At runtime, Wasatch recursively constructs the task

graph by adding tasks that compute needed dependencies.

9

Each Wasatch task calculates one or more terms from a partial differential equation.

Wasatch strives to provide a collection of expression tasks that implement partial differential

equations for a variety of models and numeric calculations. Thus end users can quickly and

easily design and run simulations of a variety of models. By allowing tasks to be selected at

runtime, Wasatch allows end users to specify the models and equations for their simulations

at runtime.

Wasatch implements its own scheduler for its task graph. Because Wasatch is a com-

ponent of Uintah, Wasatch can and does use Uintah tasks. While Uintah tasks are im-

plemented by MPI processes and threads, Wasatch tasks are implemented using threads.

Wasatch focuses on a more local level of parallelism than Uintah does.

1.4.4 Use of Nebo in Wasatch

Nebo assignments and reductions are used within individual Wasatch tasks to speed up

development and improve performance. Nebo’s syntax is designed to avoid implementation

details for two reasons. First, Wasatch developers can focus on their core competencies: The

physical and chemical models and methods of simulation. Using Nebo, Wasatch developers

implement numeric calculations at a higher level of abstraction, making the code easer

to write, read, and maintain. Second, Nebo’s abstraction creates portable code: The same

Nebo code can be run on multiple architectures. Wasatch tasks written entirely in Nebo can

be executed by a single thread, multiple threads or on a GPU. For these tasks, the Wasatch

scheduler can decide on each iteration through the task graph how each task will be executed.

Other components of Uintah that support GPU execution must maintain separate codebases

for CPU and GPU execution. Maintaining different codebases for the same functionality

on different architectures greatly slows down new development and regular maintenance.

While Nebo does provide flexibility and performance, Nebo’s scope is very limited.

Each Nebo assignment is compiled ignorant of the code surrounding it. Thus, for any

given assignment, Nebo cannot tell which backend is best to use. Nebo leaves the duties

of scheduling, load balancing, resource management and memory management to Wasatch

and Uintah. However, Nebo does give Wasatch and Uintah more options for these duties.

Half of the source files in Wasatch that relate to field calculations use Nebo in some

form. It should be noted that I do not have privileges to change Wasatch code directly,

and as such I have not written any of the code in Wasatch. Many of the files that do

not currently use Nebo cannot because many of these files contain calculations that Nebo

cannot yet handle. This measure does not reveal the extent that Nebo is used. In files where

Nebo is used, Nebo is often the primary means of performing field calculations. Wasatch

10

developers view Nebo as their workhorse for field calculations. For example, when stencil

expressions were added to Nebo, several Wasatch developers rewrote working code to use

the new feature solely for the sake of simple code and improved performance.

1.4.5 Overview

Chapter 6 contains Nebo’s syntax and semantics. Chapter 7 discusses the technical

details of Nebo’s implementation. Chapter 8 contains case studies of realistic uses of Nebo,

most of which are taken directly from Wasatch. This chapter also contains performance

results from these uses of Nebo for all of Nebo’s backends. Finally, Section 9.3 discusses

the history of parallel processing languages and domain-specific languages similar to Nebo.

1.5 Contributions

This dissertation makes the following contributions:

1. The static analysis presented here makes the context-free aspect of CFA2 explicit:

The pushdown system is clearly defined and explicitly identified. A classical CESK

machine is systematically abstracted until a pushdown system emerges. Also the

orthogonal frame-local-bindings aspect of CFA2 are removed, so as to rely solely on

the pushdown nature of the analysis.

2. The main static analysis contribution is demonstrating the decidability of fusing ab-

stract garbage collection with pushdown flow analysis of higher-order programs. Proof

comes in the form of a fixed-point solution for computing the reachable control-states

of an introspective pushdown system and an embedding of abstract garbage collection

as an introspective pushdown system.

3. The claims of improved precision are empirically validated on a suite of benchmarks.

These empirical results show synergies between pushdown analysis and abstract garbage

collection that makes the whole greater that the sum of its parts.

4. Nebo, a portable, efficient, and scalable language for numerically solving partial differ-

ential equations is defined and implemented for single-core, multicore (thread-based),

and many-core (GPU-based) architectures.

5. To prove Nebo’s portability and efficiency, case studies of real users’ Nebo code are

presented. In particular, these case studies show that the same Nebo code can perform

well on multiple architectures.

11

6. To prove Nebo’s efficiency (compared to other software approaches) and scalability,

the Taylor-Green vortex, as implemented in Wasatch, using Nebo, is presented as

a benchmark. Single-core performance of Wasatch’s Taylor-Green vortex compares

favorably against performance of implementations in Arches and ICE, which are

other components of Wasatch targeting somewhat different domains. For scalabil-

ity, single-core performance of Wasatch’s Taylor-Green vortex is weakly scaled to

262K processors, on the supercomputer Titan, using Uintah’s MPI framework for

communication between processors.

CHAPTER 2

PUSHDOWN CONTROL-FLOW ANALYSIS

2.1 Introduction

Before defining an analysis, we must have a program from a language to analyze.

The analysis presented in this dissertation uses A-Normal Form λ-calculus as its input

language. Section 2.2 defines the syntax, semantics, and transition relation of A-Normal

Form λ-calculus. The analysis of this dissertation works directly on A-Normal Form, unlike

CFA2 [135]. CFA2 targets Partitioned Continuation-Passing Style λ-calculus, which explic-

itly denotes continuations as distinct from lambda terms. Partitioned Continuation-Passing

Style λ-calculus is generally translated from a direct-style language, such as A-Normal Form

λ-calculus. By targeting A-Normal Form λ-calculus, the analysis of this dissertation does

not require a translation step.

Section 2.3 defines the basic abstractions and abstract CESK machine that form the

basis of the analysis in this dissertation. In particular, Section 2.3 defines the abstract

configuration-space, program injection (initiation), atomic expression evaluation, reachable

configurations, transition relation, and possible allocation functions as well as providing a

soundness theorem of the abstract CESK machine. Unfortunately, the size of this abstract

CESK machine is unbounded, which means this analysis as presented in this section is not

guaranteed to terminate.

Section 2.4 recasts the abstract CESK machine of the previous section as a pushdown

automaton (PDA). Pushdown automata can represent an infinite number of configurations

(control states with stacks) as a finite number of control states and transitions. By generat-

ing the bounded PDA representation of the unbounded abstract CESK machine of the last

section, the analysis is now guaranteed to terminate. This section also includes a theorem

about the decidability of control states and a brief discussion about the size (complexity)

of the control-state-space of the PDA representation.

2.2 Setting: A-Normal Form λ-calculus

Since the goal of pushdown control-flow analysis is the analysis of higher-order languages,

I operate on the λ-calculus. To simplify presentation of the concrete and abstract semantics,

13

I have chosen A-Normal Form λ-calculus. (This is a strictly cosmetic choice: Pushdown

control-flow analysis can be replayed mutatis mutandis in the standard direct-style setting

as well.) ANF enforces an order of evaluation and it requires that all arguments to a function

be atomic:

e ∈ Exp ::= (let ((v call)) e) [non-tail call]

| call [tail call]

| æ [return]

f,æ ∈ Atom ::= v | lam [atomic expressions]

lam ∈ Lam ::= (λ (v) e) [lambda terms]

call ∈ Call ::= (f æ) [applications]

v ∈ Var is a set of identifiers [variables].

This grammar can be transliterated into Haskell:

data Exp = Ret AExp

| App Call

| Let1 Var Call Exp

data AExp = Ref Var

| Lam Lambda

data Lambda = Var :=> Exp

data Call = AExp :@ AExp

type Var = String

Additionally, I use the standard instances of type classes like Ord and Eq.

I use the CESK machine of Felleisen and Friedman [47] to specify a small-step semantics

for ANF. The CESK machine has an explicit stack, and under a structural abstraction, the

stack component of this machine directly becomes the stack component of a pushdown

system. See Figure 2.1 for the definition of concrete configurations (Conf) for this machine.

2.2.1 Semantics

The definition of the semantics has five components:

1. I : Exp→ Conf injects an expression into a configuration:

c0 = I(e) = (e, [], [], 〈〉).

14

c ∈ Conf = Exp× Env × Store ×Kont [configurations]

ρ ∈ Env = Var ⇀ Addr [environments]

σ ∈ Store = Addr → Clo [stores]

clo ∈ Clo = Lam× Env [closures]

κ ∈ Kont = Frame∗ [continuations]

φ ∈ Frame = Var × Exp× Env [stack frames]

a ∈ Addr is an infinite set of addresses [addresses].

Figure 2.1. The concrete configuration-space.

2. A : Atom× Env × Store ⇀ Clo evaluates atomic expressions:

A(lam, ρ, σ) = (lam, ρ) [closure creation]

A(v, ρ, σ) = σ(ρ(v)) [variable look-up].

3. (⇒) ⊆ Conf × Conf transitions between configurations. (Defined below.)

4. E : Exp→ P (Conf) computes the set of reachable machine configurations for a given

program:

E(e) = {c : I(e)⇒∗ c} .

5. alloc : Var × Conf → Addr chooses fresh store addresses for newly bound variables.

The address-allocation function is an opaque parameter in these semantics, so that

the forthcoming abstract semantics may also parameterize allocation. This parame-

terization provides the knob to tune the polyvariance and context-sensitivity of the

resulting analysis. For the sake of defining the concrete semantics, letting addresses be

natural numbers suffices, and then the allocator can choose the lowest unused address:

Addr = N

alloc(v, (e, ρ, σ, κ)) = 1 + max(dom(σ)).

2.2.1.1 Transition relation

The definition of the transition c ⇒ c′ has three rules. The first rule handles tail calls

by evaluating the function into a closure, evaluating the argument into a value and then

moving to the body of the closure’s λ-term:

15

c︷ ︸︸ ︷
([[(f æ)]], ρ, σ, κ)⇒

c′︷ ︸︸ ︷
(e, ρ′′, σ′, κ) , where

([[(λ (v) e)]], ρ′) = A(f, ρ, σ)

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)].

Nontail calls push a frame onto the stack and evaluate the call:

c︷ ︸︸ ︷
([[(let ((v call)) e)]], ρ, σ, κ)⇒

c′︷ ︸︸ ︷
(call , ρ, σ, (v, e, ρ) : κ) .

Function return pops a stack frame:

c︷ ︸︸ ︷
(æ, ρ, σ, (v, e, ρ′) : κ)⇒

c′︷ ︸︸ ︷
(e, ρ′′, σ′, κ) , where

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)].

2.3 An infinite-state abstract interpretation

The first step toward a static analysis is an abstract interpretation into an infinite state-

space. A pushdown analysis abstracts away less than a traditional control-flow analysis.

Specifically, the stack height is left unbounded.

Figure 2.2 details the abstract configuration-space. To synthesize it, I force addresses

to be a finite set, but crucially, I leave the stack untouched. When I compact the set of

addresses into a finite set, the machine may run out of addresses to allocate, and when it

does, the pigeon-hole principle will force multiple closures to reside at the same address. As

a result, there is no choice but to force the range of the store to become a power set in the

abstract configuration-space. The abstract transition relation has components analogous to

those from the concrete semantics.

2.3.1 Program injection

The abstract injection function Î : Exp → Ĉonf pairs an expression with an empty

environment, an empty store and an empty stack to create the initial abstract configuration:

ĉ0 = Î(e) = (e, [], [], 〈〉).

16

ĉ ∈ Ĉonf = Exp× Ênv × Ŝtore × K̂ont [configurations]

ρ̂ ∈ Ênv = Var ⇀ Âddr [environments]

σ̂ ∈ Ŝtore = Âddr → P
(

Ĉlo
)

[stores]

ĉlo ∈ Ĉlo = Lam× Ênv [closures]

κ̂ ∈ K̂ont = F̂rame
∗

[continuations]

φ̂ ∈ F̂rame = Var × Exp× Ênv [stack frames]

â ∈ Âddr is a finite set of addresses [addresses].

-- Abstract state-space:

type AConf = (Exp, AEnv, AStore, AKont)

type AEnv = Var :-> AAddr

type AStore = AAddr :-> AD

type AD = (AVal)

data AVal = AClo (Lambda, AEnv)

type AKont = [AFrame]

type AFrame = (Var, Exp, AEnv)

data AAddr = ABind Var AContext

type AContext = [Call]

Figure 2.2. The abstract configuration-space and a Haskell transliteration. In the Haskell
code, the abstract addresses are defined, such that they are able to support k-CFA-style
polyvariance.

2.3.2 Atomic expression evaluation

The abstract atomic expression evaluator, Â : Atom × Ênv × Ŝtore → P(Ĉlo), returns

the value of an atomic expression in the context of an environment and a store; it returns

a set of abstract closures:

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} [closure creation]

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) [variable look-up].

The corresponding implementation in Haskell of the mathematical version:

aeval :: (AExp,AEnv,AStore) -> AD

aeval (Ref v, ρ, σ) = σ!!(ρ!v)

aeval (Lam l, ρ, σ) = set $ AClo (l, ρ)

17

2.3.3 Reachable configurations

The abstract program evaluator Ê : Exp → P(Ĉonf) returns all of the configurations

reachable from the initial configuration:

Ê(e) =
{
ĉ : Î(e) ;∗ ĉ

}
.

Because there are an infinite number of abstract configurations, a näıve implementation of

this function may not terminate. Pushdown analysis provides a way of precisely computing

this set and both finitely and compactly representing the result.

2.3.4 Transition relation

The abstract transition relation (;) ⊆ Ĉonf × Ĉonf has three rules, one of which

has become nondeterministic. In Haskell, the abstract transition relation is encoded as a

function that returns lists of states:

astep :: AConf -> [AConf]

A tail call may fork because there could be multiple abstract closures that it is invoking:

ĉ︷ ︸︸ ︷
([[(f æ)]], ρ̂, σ̂, κ̂) ;

ĉ′︷ ︸︸ ︷
(e, ρ̂′′, σ̂′, κ̂) , where

([[(λ (v) e)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

â = âlloc(v, ĉ)

ρ̂′′ = ρ̂′[v 7→ â]

σ̂′ = σ̂ t [â 7→ Â(æ, ρ̂, σ̂)].

In Haskell:

astep (App (f :@ ae), ρ, σ, κ) = [(e, ρ’’, σ’, κ) |

AClo(v :=> e, ρ’) <- Set.toList $ aeval(f, ρ, σ),

let a = aalloc(v, App (f :@ ae)),

let ρ’’ = ρ’ // [v ==> a],

let σ’ = σ [a ==> aeval(ae, ρ, σ)]]

Partial orders are defined in Section 2.3.6, but updating a store becomes:

(σ̂ t σ̂′)(â) = σ̂(â) ∪ σ̂′(â).

A nontail call pushes a frame onto the stack and evaluates the call:

ĉ︷ ︸︸ ︷
([[(let ((v call)) e)]], ρ̂, σ̂, κ̂) ;

ĉ′︷ ︸︸ ︷
(call , ρ̂, σ̂, (v, e, ρ̂) : κ̂) .

In Haskell:

18

astep (Let1 v call e, ρ, σ, κ) =

[(App call, ρ, σ, (v, e, ρ) : κ)]

A function return pops a stack frame:

ĉ︷ ︸︸ ︷
(æ, ρ̂, σ̂, (v, e, ρ̂′) : κ̂) ;

ĉ′︷ ︸︸ ︷
(e, ρ̂′′, σ̂′, κ̂) , where

â = âlloc(v, ĉ)

ρ̂′′ = ρ̂′[v 7→ â]

σ̂′ = σ̂ t [â 7→ Â(æ, ρ̂, σ̂)].

In Haskell:

astep (Ret ae, ρ, σ, (v, e, ρ’) : κ) = [(e, ρ’’, σ’, κ)]

where a = aalloc(v, Ret ae)

ρ’’ = ρ’ // [v ==> a]

σ’ = σ [a ==> aeval(ae, ρ, σ)]

2.3.5 Allocation: Polyvariance and context-sensitivity

In the abstract semantics, the abstract allocation function âlloc : Var × Ĉonf → Âddr

determines the polyvariance of the analysis. In a control-flow analysis, polyvariance literally

refers to the number of abstract addresses (variants) there are for each variable. An

advantage of this framework over CFA2 is that varying this abstract allocation function

instantiates pushdown versions of classical flow analyses. All of the following allocation

approaches can be used with the abstract semantics. The abstract allocation function is a

parameter to the analysis.

2.3.5.1 Monovariance: Pushdown 0CFA

Pushdown 0CFA uses variables themselves for abstract addresses:

Âddr = Var

alloc(v, ĉ) = v.

2.3.5.2 Context-sensitive: Pushdown 1CFA

Pushdown 1CFA pairs the variable with the current expression to get an abstract

address:

Âddr = Var × Exp

alloc(v, (e, ρ̂, σ̂, κ̂)) = (v, e).

19

2.3.5.3 Polymorphic splitting: Pushdown poly/CFA

Assuming the program compiled is from a programming language with let-bound poly-

morphism and the let-bound functions were marked, polymorphic splitting can be used:

Âddr = Var + Var × Exp

alloc(v, ([[(f æ)]], ρ̂, σ̂, κ̂)) =

{
(v, [[(f æ)]]) f is let-bound

v otherwise.

2.3.5.4 Pushdown k-CFA

For pushdown k-CFA, we need to look beyond the current state and at the last k states.

By concatenating the expressions in the last k states together, and pairing this sequence

with a variable we get pushdown k-CFA:

Âddr = Var × Expk

âlloc(v, 〈(e1, ρ̂1, σ̂1, κ̂1), . . .〉) = (v, 〈e1, . . . , ek〉).

2.3.6 Partial orders

Each set X̂ inside the abstract configuration-space uses the natural partial order, (vX̂
) ⊆ X̂ × X̂. Abstract addresses and syntactic sets have flat partial orders. For the other

sets, the partial order lifts:

• point-wise over environments:

ρ̂ v ρ̂′ iff ρ̂(v) = ρ̂′(v) for all v ∈ dom(ρ̂);

• component-wise over closures:

(lam, ρ̂) v (lam, ρ̂′) iff ρ̂ v ρ̂′;

• point-wise over stores:

σ̂ v σ̂′ iff σ̂(â) v σ̂′(â) for all â ∈ dom(σ̂);

• component-wise over frames:

(v, e, ρ̂) v (v, e, ρ̂′) iff ρ̂ v ρ̂′;

• element-wise over continuations:

〈φ̂1, . . . , φ̂n〉 v 〈φ̂′1, . . . , φ̂′n〉 iff φ̂i v φ̂′i; and

20

• component-wise across configurations:

(e, ρ̂, σ̂, κ̂) v (e, ρ̂′, σ̂′, κ̂′) iff ρ̂ v ρ̂′ and σ̂ v σ̂′ and κ̂ v κ̂′.

In Haskell, I define a typeclass for lattices:

class Lattice a where

bot :: a

top :: a

(v) :: a -> a -> Bool

(t) :: a -> a -> a

(u) :: a -> a -> a

Instances can be lifted to sets and maps:

instance (Ord s, Eq s) => Lattice (P s) where

bot = Set.empty

top = error "no representation of universal set"

x t y = x ‘Set.union‘ y

x u y = x ‘Set.intersection‘ y

x v y = x ‘Set.isSubsetOf‘ y

instance (Ord k, Lattice v) => Lattice (k :-> v) where

bot = Map.empty

top = error "no representation of top map"

f v g = Map.isSubmapOfBy (v) f g

f t g = Map.unionWith (t) f g

f u g = Map.intersectionWith (u) f g

(t) :: (Ord k, Lattice v) => (k :-> v) -> [(k,v)] -> (k :-> v)

f t [(k,v)] = Map.insertWith (t) k v f

(!!) :: (Ord k, Lattice v) => (k :-> v) -> k -> v

f !! k = Map.findWithDefault bot k f

21

2.3.7 Soundness

To prove soundness, an abstraction map α connects the concrete and abstract configuration-

spaces:

α(e, ρ, σ, κ) = (e, α(ρ), α(σ), α(κ))

α(ρ) = λv.α(ρ(v))

α(σ) = λâ.
⊔

α(a)=â

{α(σ(a))}

α〈φ1, . . . , φn〉 = 〈α(φ1), . . . , α(φn)〉

α(v, e, ρ) = (v, e, α(ρ))

α(a) is determined by the allocation functions.

It is then easy to prove that the abstract transition relation simulates the concrete transition

relation:

Theorem 1 If α(c) v ĉ and c ⇒ c′, then there exists ĉ′ ∈ Ĉonf such that α(c′) v

ĉ′ and ĉ; ĉ′.

Proof. The proof follows by case analysis on the expression in the configuration. It is a

straightforward adaptation of similar proofs, such as that of Might [93] for k-CFA.

2.4 From the abstracted CESK machine to a PDA

The previous section constructed an infinite-state abstract interpretation of the CESK

machine. The infinite-state nature of the abstraction makes it difficult to see how to answer

static analysis questions. Consider, for instance, a control flow-question:

At the call site (f æ), may a closure over lam be called?

If the abstracted CESK machine were a finite-state machine, an algorithm could answer this

question by enumerating all reachable configurations and looking for an abstract configu-

ration ([[(f æ)]], ρ̂, σ̂, κ̂) in which (lam, ρ̂′) ∈ Â(f, ρ̂, σ̂). However, because the abstracted

CESK machine may contain an infinite number of reachable configurations, an algorithm

cannot enumerate them.

Fortunately, the abstracted CESK can be recast as a special kind of infinite-state system:

A pushdown automaton (PDA). Pushdown automata occupy a sweet spot in the theory of

computation: They have an infinite configuration-space, yet many useful properties (e.g.,

word membership, nonemptiness, control-state reachability) and remain decidable. Once

22

the abstracted CESK machine becomes a PDA, we can answer the control-flow question

by checking whether a specific regular language, when intersected with the language of the

PDA, turns into the empty language.

The recasting as a PDA is a shift in perspective. A configuration has an expression,

an environment and a store. A stack character is a frame. I make the alphabet the set

of control states, so that the language accepted by the PDA will be sequences of control-

states visited by the abstracted CESK machine. Thus, every transition will consume the

control-state to which it transitioned as an input character. Figure 2.3 defines the program-

to-PDA conversion function P̂DA : Exp→ PDA. (Note the implicit use of the isomorphism

Q× K̂ont ∼= Ĉonf .)

At this point, we can answer questions about whether a specified control state is

reachable by formulating a question about the intersection of a regular language with a

context-free language described by the PDA. That is, if we want to know whether the control

state (e′, ρ̂, σ̂) is reachable in a program e, we can reduce the problem to determining:

Σ∗ ·
{

(e′, ρ̂, σ̂)
}
· Σ∗ ∩ L(P̂DA(e)) 6= ∅,

where L1 · L2 is the concatenation of formal languages L1 and L2.

Theorem 2 Control-state reachability is decidable.

P̂DA(e) = (Q,Σ,Γ, δ, q0, F, 〈〉), where

Q = Exp× Ênv × Ŝtore

Σ = Q

Γ = F̂rame

(q, ε, q′, q′) ∈ δ iff (q, κ̂) ; (q′, κ̂) for all κ̂

(q, φ̂−, q
′, q′) ∈ δ iff (q, φ̂ : κ̂) ; (q′, κ̂) for all κ̂

(q, φ̂′+, q
′, q′) ∈ δ iff (q, κ̂) ; (q′, φ̂′ : κ̂) for all κ̂

(q0, 〈〉) = Î(e)

F = Q.

Figure 2.3. Function to convert a program into a pushdown automata.

P̂DA : Exp→ PDA.

23

Proof. The intersection of a regular language and a context-free language is context-free.

The emptiness of a context-free language is decidable.

Now, consider how to use control-state reachability to answer the control-flow question

from earlier. There are a finite number of possible control states in which the λ-term lam

may flow to the function f in call site (f æ); let us call the this set of states Ŝ:

Ŝ =
{

([[(f æ)]], ρ̂, σ̂) : (lam, ρ̂′) ∈ Â(f, ρ̂, σ̂) for some ρ̂′
}

.

What we want to know is whether any state in the set Ŝ is reachable in the PDA. In effect

what we are asking is whether there exists a control state q ∈ Ŝ such that:

Σ∗ · {q} · Σ∗ ∩ L(P̂DA(e)) 6= ∅.

If this is true, then lam may flow to f ; if false, then it does not.

2.4.1 Problem: Doubly exponential complexity

The nonemptiness-of-intersection approach establishes decidability of pushdown control-

flow analysis. Two exponential complexity barriers make this technique impractical.

First, there are an exponential number of both environments (|Âddr ||Var|) and stores

(2|Ĉlo|×|Âddr |) to consider for the set Ŝ. On top of that, computing the intersection of a

regular language with a context-free language will require enumeration of the (exponential)

control-state-space of the PDA. As a result, this approach is doubly exponential. The goal

of the next chapter is to lower the complexity of pushdown control-flow analysis.

2.5 Summary

This chapter defines the basics necessary for a static analysis that approximates program

behavior as a pushdown automaton. Additionally, this chapter overcomes the first challenge

of a pushdown static analysis: Bounding the search-space. By shifting one’s perspective

from searching the configuration-space (control-states with stacks) to searching just the

control-state-space, one goes from exploring a potentially infinite set to exploring a provably

finite set. This shift does not harm precision because the PDA framework implicitly manages

the stack. Unfortunately, while the analysis will terminate and provides desirable and

decidable properties, the exponential complexity of the analysis in the form presented in

this chapter is intractable. Fortunately, the next chapter solves this issue by limiting the

search-space of the analysis only to reachable control states. Furthermore, the next chapter

reduces the complexity through widening, which can negatively impact precision but reduce

the complexity of the analysis to polynomial-time.

CHAPTER 3

COMPUTABLE AND TRACTABLE

PUSHDOWN CONTROL-FLOW

ANALYSIS

3.1 Introduction

At the end of the last chapter, we saw that control-flow analysis reduces to the reach-

ability of certain control states within a pushdown system. The last chapter also deter-

mined reachability by converting the abstracted CESK machine into a PDA, and using

emptiness-testing on a language derived from that PDA. Unfortunately, this approach is

deeply exponential.

Since control-flow analysis reduced to the reachability of control-states in the PDA, one

could skip the language problems and go directly to reachability algorithms of Bouajjani

et al. [30]; Kodumal and Aiken [78]; Reps [112] and Reps et al. [113] that determine the

reachable configurations within a pushdown system. These algorithms are even polynomial-

time. Unfortunately, some of them are polynomial-time in the number of control states,

and in the abstracted CESK machine, there are an exponential number of control states.

We do not want to enumerate the entire control state-space, or else the search becomes

exponential in even the best case.

To avoid this worst-case behavior, this chapter presents a straightforward pushdown-

reachability algorithm that considers only the reachable control states. This reachability

algorithm is cast as a fixed-point iteration, which incrementally construct the reachable

subset of a pushdown system. I call these algorithms “iterative Dyck state graph construc-

tion.”

Section 3.2 defines what a Dyck state graph is and the abstract transition relation

associated with Dyck state graphs. Section 3.3 defines the pushdown analysis algorithm

as a finding the least fixed point iteratively and discusses the complexity of this approach.

Section 3.4 describes a more efficient algorithm based on work-lists and ε-graphs. Addi-

tionally, Section 3.4 includes a theorem proving termination and a discussion of complexity.

Since the work-list algorithm of Section 3.4 still has exponential-time complexity, Section

25

3.5 describes how to add widening to the analysis to achieve polynomial-time complexity.

Section 3.5 ends with a discussion of the complexity of the widened work-list algorithm.

3.2 Dyck state graph

A Dyck state graph is a compacted, rooted pushdown system G = (S,Γ, E, s0), in which:

1. S is a finite set of nodes;

2. Γ is a set of frames;

3. E ⊆ S × Γ± × S is a set of stack-action edges; and

4. s0 is an initial state;

such that for any node s ∈ S, it must be the case that:

(s0, 〈〉)
∗7−→
G

(s,~γ) for some stack ~γ.

In other words, a Dyck state graph is equivalent to a rooted pushdown system in which

there is a legal path to every control state from the initial control state.1

We use DSG to denote the class of Dyck state graphs. Clearly:

DSG ⊂ RPDS.

A Dyck state graph is a rooted pushdown system with the “fat” trimmed off; in this case,

unreachable control states and unreachable transitions are the “fat.”

We can formalize the connection between rooted pushdown systems and Dyck state

graphs with a map:

DSG : RPDS→ DSG.

Given a rooted pushdown system M = (Q,Γ, δ, q0), its equivalent Dyck state graph is

DSG(M) = (S,Γ, E, q0), where the set S contains reachable nodes:

S =

{
q : (q0, 〈〉)

∗7−→
M

(q,~γ) for some stack ~γ

}
,

and the set E contains reachable edges:

E =

{
q
g
� q′ : q

g7−→−→
M

q′
}

,

and s0 = q0.

1The term Dyck state graph was chosen because the sequences of stack actions along valid paths through
the graph correspond to substrings in Dyck languages. A Dyck language is a language of balanced, “colored”
parentheses. In this case, each character in the stack alphabet is a color.

26

In practice, the real difference between a rooted pushdown system and a Dyck state

graph is that our rooted pushdown system will be defined intensionally (having come from

the components of an abstracted CESK machine), whereas the Dyck state graph will be

defined extensionally, with the contents of each component explicitly enumerated during its

construction.

In this case, looking at the Haskell definition of a DSG helps:

type DSG control frame = (Edges control frame, control)

type Edges control frame = control :-> (StackAct frame, control)

The near-term goals are (1) to convert the abstracted CESK machine of the last chapter

into a rooted pushdown system and (2) to find an efficient method for computing an

equivalent Dyck state graph from a rooted pushdown system.

To convert the abstracted CESK machine into a rooted pushdown system, we use the

function R̂PDS : Exp→ RPDS:

R̂PDS(e) = (Q,Γ, δ, q0)

Q = Exp× Ênv × Ŝtore

Γ = F̂rame

q
ε
� q′ ∈ δ iff (q, κ̂) ; (q′, κ̂) for all κ̂

q
φ̂−
� q′ ∈ δ iff (q, φ̂ : κ̂) ; (q′, κ̂) for all κ̂

q
φ̂+
� q′ ∈ δ iff (q, κ̂) ; (q′, φ̂ : κ̂) for all κ̂

(q0, 〈〉) = Î(e).

In Haskell, the abstract transition relation is embedded as a pushdown transition relation

as follows:

adelta :: TopDelta AControl AFrame

adelta (e, ρ, σ) γ = [((e’, ρ’, σ’), g) |

(e’, ρ’, σ’, κ) <- astep (e, ρ, σ, [γ]),

let g = case κ of

[] -> Pop γ

[γ1 ,] -> Push γ1

[] -> Unch]

27

adelta’ :: NopDelta AControl AFrame

adelta’ (e, ρ, σ) = [((e’, ρ’, σ’), g) |

(e’, ρ’, σ’, κ) <- astep (e, ρ, σ, []),

let g = case κ of

[γ1] -> Push γ1

[] -> Unch]

3.3 Compacting a rooted pushdown system into a Dyck
state graph

We now turn our attention to compacting a rooted pushdown system (defined inten-

sionally) into a Dyck state graph (defined extensionally). That is, we want to find an

implementation of the function DSG. To do so, we first phrase the Dyck state graph

construction as the least fixed point of a monotonic function. This will provide a method

(albeit an inefficient one) for computing the function DSG. The next section looks at an

optimized work-list driven algorithm that avoids the inefficiencies of this version.

The function F : RPDS → (DSG → DSG) generates the monotonic iteration function

we need:

F(M) = f , where

M = (Q,Γ, δ, q0)

f(S,Γ, E, s0) = (S′,Γ, E′, s0), where

S′ = S ∪
{
s′ : s ∈ S and s 7−→−→

M
s′
}
∪ {s0}

E′ = E ∪
{
s
g
� s′ : s ∈ S and s

g7−→−→
M

s′
}

.

Given a rooted pushdown system M , each application of the function F(M) accretes new

edges at the frontier of the Dyck state graph. Once the algorithm reaches a fixed point, the

Dyck state graph is complete:

Theorem 3 DSG(M) = lfp(F(M)).

Proof. Let M = (Q,Γ, δ, q0). Let f = F(M). Observe that lfp(f) = fn(∅,Γ, ∅, q0) for some

n. When N ⊆M , then it easy to show that f(N) ⊆M . Hence, DSG(M) ⊇ lfp(F(M)).

To show DSG(M) ⊆ lfp(F(M)), suppose this is not the case. Then, there must be at

least one edge in DSG(M) that is not in lfp(F(M)). Let (s, g, s′) be one such edge, such

that the state s is in lfp(F(M)). Let m be the lowest natural number such that s appears

28

in fm(M). By the definition of f , this edge must appear in fm+1(M), which means it must

also appear in lfp(F(M)), which is a contradiction. Hence, DSG(M) ⊆ lfp(F(M)).

3.3.1 Complexity: Polynomial and exponential

To determine the complexity of this algorithm, there are two questions to ask: How

many times would the algorithm invoke the iteration function in the worst case, and how

much does each invocation cost in the worst case? The size of the final Dyck state graph

bounds the run-time of the algorithm. Suppose the final Dyck state graph has m states.

In the worst case, the iteration function adds only a single edge each time. Since there

are at most 2|Γ|m2 + m2 edges in the final graph, the maximum number of iterations is

2|Γ|m2 +m2.

The cost of computing each iteration is harder to bound. The cost of determining

whether to add a push edge is proportional to the size of the stack alphabet, while the cost

of determining whether to add an ε-edge is constant, so the cost of determining all new

push and pop edges to add is proportional to |Γ|m + m. Determining whether or not to

add a pop edge is expensive. To add the pop edge s �γ− s′, we must prove that there

exists a configuration-path to the control state s, in which the character γ is on the top of

the stack. This reduces to a CFL-reachability query [90] at each node, the cost of which is

O(|Γ±|3m3) [78].

To summarize, in terms of the number of reachable control states, the complexity of the

most recent algorithm is:

O((2|Γ|m2 +m2)× (|Γ|m+m+ |Γ±|3m3)) = O(|Γ|4m5).

While this approach is polynomial in the number of reachable control states, it is far from

efficient. The next section provides an optimized version of this fixed-point algorithm that

maintains a work-list and an ε-closure graph to avoid spurious recomputation.

Moreover, the complexity analysis above is carefully phrased in terms of “reachable”

control states because, in practice, Dyck state graphs will be extremely sparse, and because,

the maximum number of control states is exponential in the size of the input program.

After the subsequent refinement, I develop a hierarchy of pushdown control-flow analyses

that employs widening to achieve a polynomial-time algorithm at its foundation in Section

3.5.

29

3.4 An efficient algorithm: Work-lists and ε-closure
graphs

The last section developed a fixed-point formulation of the Dyck state graph construction

algorithm, but found that, in each iteration, it wasted effort by passing over all discovered

states and edges, even though most will not contribute new states or edges. Taking a

cue from graph search, we can adapt the fixed-point algorithm with a work-list. That is,

our next algorithm will keep a work-list of new states and edges to consider, instead of

reconsidering all of them. In each iteration, it will pull new states and edges from the work

list, insert them into the Dyck state graph and then populate the work-list with new states

and edges that have to be added as a consequence of the recent additions.

3.4.1 ε-closure graphs

Figuring out what edges to add as a consequence of another edge requires care, for

adding an edge can have ramifications on distant control states. Consider, for example,

adding the ε-edge q�ε q′ into the following graph:

q0
γ+ // q q′

γ− // q1

As soon this edge drops in, an ε-edge “implicitly” appears between q0 and q1 because the

net stack change between them is empty; the resulting graph looks like:

q0
γ+ //

ε

��
q

ε // q′
γ− // q1

where the implicit ε-edge is illustrated as a dotted line.

Keeping track of these implicit edges requires constructing a second graph in conjunction

with the Dyck state graph: An ε-closure graph. In the ε-closure graph, every edge indicates

the existence of a no-net-stack-change path between control states. The ε-closure graph

simplifies the task of figuring out which states and edges are impacted by the addition of a

new edge.

Formally, an ε-closure graph, is a pair Gε = (N,H), where N is a set of states, and

H ⊆ N ×N is a set of edges. Of course, all ε-closure graphs are reflexive: Every node has

a self loop. The symbol ECG denotes the class of all ε-closure graphs.

I have two notations for finding ancestors and descendants of a state in an ε-closure

graph Gε = (N,H):

←−
G ε[s] =

{
s′ : (s′, s) ∈ H

}
[ancestors]

−→
G ε[s] =

{
s′ : (s, s′) ∈ H

}
[descendants].

30

3.4.2 Integrating a work-list

Since only new states and edges are considered in each iteration, we need a work-list, or

in this case, two work-graphs. A Dyck state work-graph is a pair (∆S,∆E) in which the set

∆S contains a set of states to add, and the set ∆E contains edges to be added to a Dyck

state graph.2 ∆DSG refers to the class of all Dyck state work-graphs.

An ε-closure work-graph is a set ∆H of new ε-edges. ∆ECG refers to the class of all

ε-closure work-graphs.

3.4.3 A new fixed-point iteration-space

Instead of consuming a Dyck state graph and producing a Dyck state graph, the new

fixed-point iteration function will consume and produce a Dyck state graph, an ε-closure

graph, a Dyck state work-graph and an ε-closure work graph. Hence, the iteration space of

the new algorithm is:

IDSG = DSG× ECG×∆DSG×∆ECG.

(The I in IDSG stands for intermediate.)

3.4.4 The ε-closure graph work-list algorithm

The function F ′ : RPDS → (IDSG → IDSG) generates the required iteration function

(Figure 3.1). Please note that union is implicitly distributed across tuples:

(X,Y) ∪ (X ′, Y ′) = (X ∪X,Y ∪ Y ′).

The functions sprout , addPush, addPop, addEmpty calculate the additional Dyck state

graph and ε-closure graph edges (potentially) introduced by a new state or edge. The

function sprout adds a new state to the Dyck state graph and calculates any new push or

ε edges beginning at the new state. The function addPush adds a new push edge to the

Dyck state graph and calculates any pop edges that are enabled by the new push edge.

The function addPop adds a new pop edge to the Dyck state graph and calculates all ε

edges that result from all matching push edges. Finally, the function addEmpty adds a new

ε-closure graph edge and calculates any new edges that need to be added to complete the

transitive closure of the ε-closure graph. These functions are defined formally later in this

section. In general, these functions do not use direct mutual recursion to find all new edges

2Technically, a work-graph is not an actual graph, since ∆E 6⊆ ∆S × Γ± ×∆S; a work-graph is just a
set of nodes and a set of edges.

31

F ′(M) = f , where

M = (Q,Γ, δ, q0)

f(G,Gε,∆G,∆H) = (G′, G′ε,∆G
′,∆H ′ −H), where

(S,Γ, E, s0) = G

(S,H) = Gε

(∆S,∆E) = ∆G

(∆E0,∆H0) =
⋃
s∈∆S

sproutM (s)

(∆E1,∆H1) =
⋃

(s,γ+,s′)∈∆E

addPushM (G,Gε)(s, γ+, s
′)

(∆E2,∆H2) =
⋃

(s,γ−,s′)∈∆E

addPopM (G,Gε)(s, γ−, s
′)

(∆E3,∆H3) =
⋃

(s,ε,s′)∈∆E

addEmptyM (G,Gε)(s, s
′)

(∆E4,∆H4) =
⋃

(s,s′)∈∆H

addEmptyM (G,Gε)(s, s
′)

S′ = S ∪∆S

E′ = E ∪∆E

H ′ = H ∪∆H

∆E′ = ∆E0 ∪∆E1 ∪∆E2 ∪∆E3 ∪∆E4

∆S′ =
{
s′ : (s, g, s′) ∈ ∆E′

}
∆H ′ = ∆H0 ∪∆H1 ∪∆H2 ∪∆H3 ∪∆H4

G′ = (S ∪∆S,Γ, E′, q0)

G′ε = (S′, H ′)

∆G′ = (∆S′ − S′,∆E′ − E′).

Figure 3.1. Fixed point of the function F ′(M). This fixed point contains the Dyck state
graph of the rooted pushdown system M .

32

that result from adding a new state or edge. Instead these functions add new states and

edges to the worklist, as seen in Figure 3.1, using a breadth-first search style approach to

finding all new states and edges.

In Haskell, the function dsg will invoke the fixed point solver:

dsg :: (Ord control, Ord frame) =>

(Delta control frame) ->

control ->

frame ->

DSG control frame

dsg (δ, δ’) q0 0 =

(summarize (δ, δ’) etg1 ecg1 [] dE dH, q0) where

etg1 = (Map.empty // [q0 ==> Set.empty],

Map.empty // [q0 ==> Set.empty])

ecg1 = (Map.empty // [q0 ==> set q0],

Map.empty // [q0 ==> set q0])

(dE, dH) = sprout (δ, δ’) q0

To expose the structure of the computation, I have added a few types:

-- A set of edges, encoded as a map:

type Edges control frame =

control :-> P (StackAct frame,control)

-- Epsilon edges:

type EpsEdge control = (control, control)

-- Explicit transition graph:

type ETG control frame =

(Edges control frame, Edges control frame)

-- Epsilon closure graph:

type ECG control =

(control :-> P(control), control :-> P(control))

Figure 3.2 provides the Haskell code for summarize, which conducts the fixed point calcu-

lation, the executable equivalent of Figure 3.1:

33

summarize (δ, δ’) (fw, bw) (fe, be) [] [] [] = fw

summarize (δ, δ’) (fw, bw) (fe, be) (q:dS) [] []

| fe ‘contains‘ q = summarize (δ, δ’) (fw, bw) (fe, be) dS [] []

summarize (δ, δ’) (fw, bw) (fe, be) (q:dS) [] [] =

summarize (δ, δ’) (fw’, bw’) (fe’, be’) dS dE’ dH’ where

(dE’, dH’) = sprout (δ, δ’) q

fw’ = fw t [q ==> Set.empty]

bw’ = bw t [q ==> Set.empty]

fe’ = fe t [q ==> set q]

be’ = be t [q ==> set q]

summarize (δ, δ’) (fw, bw) (fe, be) dS ((q, g, q’):dE) []

| (q, g, q’) ‘isin’‘ fw = summarize (δ, δ’) (fw, bw) (fe, be) dS dE []

summarize (δ, δ’) (fw, bw) (fe, be) dS ((q, Push , q’):dE) [] =

summarize (δ, δ’) (fw’, bw’) (fe’, be’) dS’ dE’’ dH’ where

(dE’, dH’) = addPush (fw, bw) (fe, be) (δ, δ’) (q, Push , q’)

dE’’ = dE’ ++ dE’’

dS’ = q’:dS

fw’ = fw t [q ==> set (Push , q’)]

bw’ = bw t [q’ ==> set (Push , q)]

fe’ = fe t [q ==> set q]

be’ = fe t [q’ ==> set q’]

summarize (δ, δ’) (fw, bw) (fe, be) dS ((q, Pop , q’):dE) [] =

summarize (δ, δ’) (fw’, bw’) (fe’, be’) dS’ dE’’ dH’ where

(dE’, dH’) = addPop (fw, bw) (fe, be) (δ, δ’) (q, Pop , q’)

dE’’ = dE ++ dE’

dS’ = q’:dS

fw’ = fw t [q ==> set (Pop , q’)]

bw’ = bw t [q’ ==> set (Pop , q)]

fe’ = fe t [q ==> set q]

be’ = fe t [q’ ==> set q’]

summarize (δ, δ’) (fw, bw) (fe, be) dS ((q, Unch, q’):dE) [] =

summarize (δ, δ’) (fw’, bw’) (fe’, be’) dS’ dE [(q, q’)] where

dS’ = q’:dS

fw’ = fw t [q ==> set (Unch, q’)]

bw’ = bw t [q’ ==> set (Unch, q)]

fe’ = fe t [q ==> set q]

be’ = fe t [q’ ==> set q’]

summarize (δ, δ’) (fw, bw) (fe, be) dS dE ((q, q’):dH)

| (q, q’) ‘isin‘ fe = summarize (δ, δ’) (fw, bw) (fe, be) dS dE dH

summarize (δ, δ’) (fw, bw) (fe, be) dS dE ((q, q’):dH) =

summarize (δ, δ’) (fw, bw) (fe’, be’) dS dE’ dH’ where

(dE’, dH’) = addEmpty (fw, bw) (fe, be) (δ, δ’) (q, q’)

fe’ = fe t [q ==> set q]

be’ = fe t [q’ ==> set q’]

Figure 3.2. A Haskell implementation of pushdown control-state reachability.

34

summarize :: (Ord control, Ord frame) =>

(Delta control frame) ->

(ETG control frame) ->

(ECG control) ->

[control] ->

[Edge control frame] ->

[EpsEdge control] ->

(Edges control frame)

An explicit transition graph is an explicit encoding of the reachable subset of the transition

relation. The function summarize takes six parameters:

1. the pushdown transition function;

2. the current explicit transition graph;

3. the current ε-closure graph;

4. a work-list of states to add;

5. a work-list of explicit transition edges to add; and

6. a work-list of ε-closure transition edges to add.

The function summarize processes ε-closure edges first, then explicit transition edges and

then individual states. It must process ε-closure edges first to ensure that the ε-closure

graph is closed when considering the implications of other edges.

3.4.4.1 Sprouting

Whenever a new state gets added to the Dyck state graph, the algorithm must check

whether that state has any new edges to contribute. Both push edges and ε-edges do

not depend on the current stack, so any such edges for a state in the pushdown system’s

transition function belong in the Dyck state graph. The sprout function:

sprout (Q,Γ,δ) : Q→ (P (δ)× P (Q×Q)),

checks whether a new state could produce any new push edges or no-change edges. Dia-

grammatically the sprout function’s behavior is:

s

ε
δ

��

γ+

δ ��
q′ q′′

35

which means when adding control state s:

add edge s�ε q′ if it exists in δ, and

add edge s�γ+ q′′ if it exists in δ.

Formally:

sprout (Q,Γ,δ)(s) = (∆E,∆H), where

∆E =
{
s

ε
� q : s

ε
� q ∈ δ

}
∪
{
s
γ+
� q : s

γ+
� q ∈ δ

}
∆H =

{
s� q : s

ε
� q ∈ δ

}
.

In Haskell:

sprout :: (Ord control) =>

Delta control frame ->

control ->

([Edge control frame], [EpsEdge control])

sprout (δ, δ’) q = (dE, dH) where

edges = δ’ q

dE = [(q, g, q’) | (q’, g) <- edges, isPush g]

dH = [(q, q’) | (q’, g) <- edges, isUnch g]

3.4.4.2 Considering the consequences of a new push edge

Once the algorithm adds a new push edge to a Dyck state graph, there is a chance that it

will enable new pop edges for the same stack frame somewhere downstream. If and when it

does enable pops, it will also add new edges to the ε-closure graph. The addPush function:

addPush(Q,Γ,δ) : DSG× ECG→ δ → (P (δ)× P (Q×Q)),

checks for ε-reachable states that could produce a pop. Diagrammatically this action is:

s
γ+ //

ε
ε

FF
q ε

ε
// q′

γ−

δ
// q′′

which means if adding push-edge s�γ+ q:

if pop-edge q′ �γ− q′′ is in δ, then

36

add edge q′ �γ− q′′, and

add ε-edge s� q′′.

Formally:

addPush(Q,Γ,δ)(G,Gε)(s
γ+
� q) = (∆E,∆H), where

∆E =
{
q′

γ−
� q′′ : q′ ∈

−→
G ε[q] and q′

γ−
� q′′ ∈ δ

}
∆H =

{
s� q′′ : q′ ∈

−→
G ε[q] and q′

γ−
� q′′ ∈ δ

}
.

In Haskell:

addPush :: (Ord control) =>

ETG control frame ->

ECG control ->

Delta control frame ->

Edge control frame ->

([Edge control frame], [EpsEdge control])

addPush (fw, bw) (fe, be) (δ, δ’) (s, Push γ, q) = (dE, dH) where

qset’ = Set.toList $ fe!q

dE = [(q’, g, q’’) | q’ <- qset’, (q’’, g) <- δ q’ γ, isPop g]

dH = [(s, q’’) | (q’, Pop , q’’) <- dE]

3.4.4.3 Considering the consequences of a new pop edge

Once the algorithm adds a new pop edge to a Dyck state graph, it will create at least

one new ε-closure graph edge and possibly more by matching up with upstream pushes.

The addPop function:

addPop(Q,Γ,δ) : DSG× ECG→ δ → (P (δ)× P (Q×Q)),

checks for ε-reachable push-edges that could match this pop-edge. Diagrammatically this

action is:

s
γ+ //

ε
ε

HHs′
ε
ε
// s′′

γ−

δ
// q

which means if adding pop-edge s′′ �γ− q:

if push-edge s�γ+ s′ is already in the Dyck state graph, then

37

add ε-edge s� q.

Formally:

addPop(Q,Γ,δ)(G,Gε)(s
′′ γ−� q) = (∆E,∆H), where

∆E = ∅ and ∆H =
{
s� q : s′ ∈

←−
G ε[s

′′] and s
γ+
� s′ ∈ G

}
.

In Haskell:

addPop :: (Ord control) =>

ETG control frame ->

ECG control ->

Delta control frame ->

Edge control frame ->

([Edge control frame], [EpsEdge control])

addPop (fw, bw) (fe, be) (δ, δ’) (s’’, Pop γ, q) = (dE, dH) where

sset’ = Set.toList $ be!s’’

dH = [(s, q) | s’ <- sset’,

(g, s) <- Set.toList $ bw!s’, isPush g]

dE = []

Clearly, the new edges parameter dE could be eliminated for the function addPop, but it

has been retained it for stylistic symmetry.

3.4.4.4 Considering the consequences of a new ε-edge

Once the algorithm adds a new ε-closure graph edge, it may transitively have to add

more ε-closure graph edges, and it may connect an old push to (perhaps newly enabled)

pop edges. The addEmpty function:

addEmpty(Q,Γ,δ) : DSG× ECG→ (Q×Q)→ (P (δ)× P (Q×Q)),

checks for newly enabled pops and ε-closure graph edges: Once again, diagrammatically

this action is:

s
γ+ //

ε
ε

OOs′
ε
ε
//

ε
ε

��

ε
ε

HHs′′
ε //

ε
ε

��
s′′′

ε
ε
// s′′′′

γ−

δ
// q

38

which means if adding ε-edge s′′ � s′′′:

if pop-edge s′′′′ �γ− q is in δ, then

add ε-edge s� q; and

add edge s′′′′ �γ− q;

add ε-edges s′ � s′′′, s′′ � s′′′′, and s′ � s′′′′.

Formally:

addEmpty(Q,Γ,δ)(G,Gε)(s
′′ � s′′′) = (∆E,∆H), where

∆E =
{
s′′′′

γ−
� q : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′] and

s
γ+
� s′ ∈ G

}
∆H =

{
s� q : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′] and

s
γ+
� s′ ∈ G

}
∪
{
s′ � s′′′ : s′ ∈

←−
G ε[s

′′]
}

∪
{
s′′ � s′′′′ : s′′′′ ∈

−→
G ε[s

′′′]
}

∪
{
s′ � s′′′′ : s′ ∈

←−
G ε[s

′′] and s′′′′ ∈
−→
G ε[s

′′′]
}

.

In Haskell, the function addEmpty has many cases to consider:

addEmpty :: (Ord control) =>

ETG control frame ->

ECG control ->

Delta control frame ->

EpsEdge control ->

([Edge control frame], [EpsEdge control])

addEmpty (fw, bw) (fe, be) (δ, δ’) (s’’, s’’’) = (dE, dH) where

sset’ = Set.toList $ be!s’’

sset’’’’ = Set.toList $ fe!s’’’

dH’ = [(s’, s’’’’) | s’ <- sset’, s’’’’ <- sset’’’’]

dH’’ = [(s’, s’’’) | s’ <- sset’]

dH’’’ = [(s’’, s’’’’) | s’’’’ <- sset’’’’]

sEdges = [(g, s) | s’ <- sset’, (g, s) <- Set.toList $ bw!s’]

39

dE = [(s’’’’, g’, q) | s’’’’ <- sset’’’’,

(g, s) <- sEdges,

isPush g, let Push γ = g,

(q, g’) <- δ s’’’’ γ,

isPop g’]

dH’’’’ = [(s, q) | (, s) <- sEdges, (, , q) <- dE]

dH = dH’ ++ dH’’ ++ dH’’’ ++ dH’’’’

3.4.5 Termination and correctness

Because the iteration function is no longer monotonic, the existence of the fixed point

must be proved. It is trivial to show that the Dyck state graph component of the iteration-

space ascends monotonically with each application; that is:

Lemma 1 Given M ∈ RPDS, G ∈ DSG such that G ⊆ M , if F ′(M)(G,Gε,∆G) =

(G′, G′ε,∆G
′), then G ⊆ G′.

Since the size of the Dyck state graph is bounded by the original pushdown system M , the

Dyck state graph will eventually reach a fixed point. Once the Dyck state graph reaches a

fixed point, both work-graphs/sets will be empty, and the ε-closure graph will also stabilize.

This algorithm can also be proven correct:

Theorem 4 lfp(F ′(M)) = (DSG(M), Gε, (∅, ∅), ∅).

Proof. The proof is similar in structure to the previous one.

3.4.6 Complexity: Still exponential, but more efficient

As with the previous algorithm, to determine the complexity of this algorithm, there are

two questions to ask: How many times would the algorithm invoke the iteration function in

the worst case, and how much does each invocation cost in the worst case? The run-time

of the algorithm is bounded by the size of the final Dyck state graph plus the size of the

ε-closure graph. Suppose the final Dyck state graph has m states. In the worst case, the

iteration function adds only a single edge each time. There are at most 2|Γ|m2 +m2 edges

in the Dyck state graph and at most m2 edges in the ε-closure graph, which bounds the

number of iterations.

40

Next, we must reason about the worst-case cost of adding an edge: How many edges

might an individual iteration consider? In the worst case, the algorithm will consider every

edge in every iteration, leading to an asymptotic time-complexity of:

O((2|Γ|m2 + 2m2)2) = O(|Γ|2m4).

While still high, this is a an improvement upon the previous algorithm. For sparse Dyck

state graphs, this is a reasonable algorithm.

3.5 Polynomial-time complexity from widening

The previous section developed a more efficient fixed-point algorithm for computing a

Dyck state graph. Even with the core improvements, the algorithm remained exponential

in the worst case, owing to the fact that there could be an exponential number of reachable

control states. When an abstract interpretation is intolerably complex, the standard ap-

proach for reducing complexity and accelerating convergence is widening [42]. (Of course,

widening techniques trade away some precision to gain this speed.) It turns out that the

small-step variants of finite-state CFAs are exponential without some sort of widening as

well.

To achieve polynomial time complexity for pushdown control-flow analysis requires the

same two steps as the classical case: (1) Widening the abstract interpretation to use a global,

“single-threaded” store and (2) selecting a monovariant allocation function to collapse the

abstract configuration-space. Widening eliminates a source of exponentiality in the size

of the store; monovariance eliminates a source of exponentiality from environments. This

section redevelops the pushdown control-flow analysis framework with a single-threaded

store and calculates its complexity.

3.5.1 Step 1: Refactor the concrete semantics

First, consider defining the reachable states of the concrete semantics using fixed points.

That is, let the system-space of the evaluation function be sets of configurations:

C ∈ System = P (Conf) = P (Exp× Env × Store ×Kont).

The concrete evaluation function can be redefined to:

E(e) = lfp(fe), where fe : System → System and

fe(C) = {I(e)} ∪
{
c′ : c ∈ C and c⇒ c′

}
.

41

3.5.2 Step 2: Refactor the abstract semantics

The same approach can be taken with the abstract evaluation function, first redefining

the abstract system-space:

Ĉ ∈ Ŝystem = P
(

Ĉonf
)

= P
(
Exp× Ênv × Ŝtore × K̂ont

)
,

and then the abstract evaluation function:

Ê(e) = lfp(f̂e), where f̂e : Ŝystem → Ŝystem and

f̂e(Ĉ) =
{
Î(e)

}
∪
{
ĉ′ : ĉ ∈ Ĉ and ĉ; ĉ′

}
.

What we would like to do is shrink the abstract system-space with a refactoring that

corresponds to a widening.

3.5.3 Step 3: Single-thread the abstract store

A set of abstract stores {σ̂1, . . . , σ̂n} can be approximated with the least-upper-bound

of those stores: σ̂1 t · · · t σ̂n. This approximation can be exploited by creating a new

abstract system space in which the store is factored out of every configuration. Thus, the

system-space contains a set of partial configurations and a single global store:

Ŝystem
′
= P

(
P̂Conf

)
× Ŝtore

π̂ ∈ P̂Conf = Exp× Ênv × K̂ont .

The store can be factored out of the abstract transition relation as well, so that (_σ̂) ⊆

P̂Conf × (P̂Conf × Ŝtore):

(e, ρ̂, κ̂)
σ̂
_ ((e′, ρ̂′, κ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, κ̂′),

which gives us a new iteration function, f̂ ′e : Ŝystem
′
→ Ŝystem

′
,

f̂ ′e(P̂ , σ̂) = (P̂ ′, σ̂′), where

P̂ ′ =

{
π̂′ : π̂

σ̂
_ (π̂′, σ̂′′)

}
∪ {π̂0}

σ̂′ =
⊔{

σ̂′′ : π̂
σ̂
_ (π̂′, σ̂′′)

}
(π̂0, 〈〉) = Î(e).

42

3.5.4 Step 4: Dyck state control-flow graphs

Following the earlier Dyck state graph reformulation of the pushdown system, the set of

partial configurations can be reformulated as a Dyck state control-flow graph. A Dyck state

control-flow graph is a frame-action-labeled graph over partial control states, and a partial

control state is an expression paired with an environment:

Ŝystem
′′

= D̂SCFG × Ŝtore

D̂SCFG = P(P̂State)× P(P̂State × F̂rame± × P̂State)

ψ̂ ∈ P̂State = Exp× Ênv .

In a Dyck state control-flow graph, the partial control states are partial configurations which

have dropped the continuation component; the continuations are encoded as paths through

the graph.

If we wanted to do so, we could define a new monotonic iteration function analogous to

the simple fixed-point formulation of Section 3.3:

f̂e : Ŝystem
′′
→ Ŝystem

′′
,

again using CFL-reachability to add pop edges at each step.

3.5.4.1 A preliminary analysis of complexity

Even without defining the system-space iteration function, we can ask, How many

iterations will it take to reach a fixed point in the worst case? This question is really

asking, How many edges can we add? Also, How many entries are there in the store?

Summing these together, we arrive at the worst-case number of iterations:

DSCFG edges︷ ︸︸ ︷
|P̂State| × |F̂rame±| × |P̂State|+

store entries︷ ︸︸ ︷
|Âddr | × |Ĉlo| .

With a monovariant allocation scheme that eliminates abstract environments, the number

of iterations ultimately reduces to:

|Exp| × (2|V̂ar|+ 1)× |Exp|+ |Var| × |Lam|,

which means that, in the worst case, the algorithm makes a cubic number of iterations with

respect to the size of the input program.3

3In computing the number of frames, note that in every continuation, the variable and the expression
uniquely determine each other based on the let-expression from which they both came. As a result, the
number of abstract frames available in a monovariant analysis is bounded by both the number of variables

and the number of expressions, i.e., |F̂rame| = |Var|.

43

The worst-case cost of each iteration would be dominated by a CFL-reachability calcu-

lation, which, in the worst case, must consider every state and every edge:

O(|Var|3 × |Exp|3).

Thus, each iteration takes O(n6) and there are a maximum of O(n3) iterations, where n is

the size of the program. So, total complexity would be O(n9) for a monovariant pushdown

control-flow analysis with this scheme, where n is again the size of the program. Although

this algorithm is polynomial-time, we can do better.

3.5.5 Step 5: Reintroduce ε-closure graphs

Replicating the evolution from Section 3.4 for this store-widened analysis, we arrive at

a more efficient polynomial-time analysis. An ε-closure graph in this setting is a set of pairs

of store-less, continuation-less partial states:

ÊCG = P
(

P̂State × P̂State
)

.

Then, we can set the system space to include ε-closure graphs:

Ŝystem
′′′

= D̂SG × ÊCG × Ŝtore.

Before we redefine the iteration function, we need another factored transition relation.

The stack- and action-factored transition relation (⇁σ̂
g) ⊆ P̂State × P̂State × Store deter-

mines if a transition is possible under the specified store and stack-action:

(e, ρ̂)
σ̂
⇁
φ̂+

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, φ̂ : κ̂)

(e, ρ̂)
σ̂
⇁
φ̂−

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, φ̂ : κ̂) ; (e′, ρ̂′, σ̂′, κ̂′)

(e, ρ̂)
σ̂
⇁
ε

((e′, ρ̂′), σ̂′) iff (e, ρ̂, σ̂, κ̂) ; (e′, ρ̂′, σ̂′, κ̂′).

Now, we can redefine the iteration function (Figure 3.3).

Theorem 5 Pushdown 0CFA can be computed in O(n6)-time, where n is the size of the

program.

Proof. As before, the maximum number of iterations is cubic in the size of the program

for a monovariant analysis. Fortunately, the cost of each iteration is also now bounded by

the number of edges in the graph, which is also cubic.

44

f̂((P̂ , Ê), Ĥ, σ̂) = ((P̂ ′, Ê′), Ĥ ′, σ̂′′), where

T̂+ =

{
(ψ̂

φ̂+
� ψ̂′, σ̂′) : ψ̂

σ̂
⇁
φ̂+

(ψ̂′, σ̂′)

}
T̂ε =

{
(ψ̂

ε
� ψ̂′, σ̂′) : ψ̂

σ̂
⇁
ε

(ψ̂′, σ̂′)
}

T̂− =
{

(ψ̂′′
φ̂−
� ψ̂′′′, σ̂′) : ψ̂′′

σ̂
⇁
φ̂−

(ψ̂′′′, σ̂′) and

ψ̂
φ̂+
� ψ̂′ ∈ Ê and

ψ̂′ � ψ̂′′ ∈ Ĥ
}

T̂ ′ = T̂+ ∪ T̂ε ∪ T̂−

Ê′ =
{
ê : (ê,) ∈ T̂ ′

}
σ̂′′ =

⊔{
σ̂′ : (, σ̂′) ∈ T̂ ′

}
Ĥε =

{
ψ̂ � ψ̂′′ : ψ̂ � ψ̂′ ∈ Ĥ and ψ̂′ � ψ̂′′ ∈ Ĥ

}
Ĥ+− =

{
ψ̂ � ψ̂′′′ : ψ̂

φ̂+
� ψ̂′ ∈ Ê and ψ̂′ � ψ̂′′ ∈ Ĥ

and ψ̂′′
φ̂−
� ψ̂′′′ ∈ Ê

}
Ĥ ′ = Ĥε ∪ Ĥ+−

P̂ ′ = P̂ ∪
{
ψ̂′ : ψ̂

g
� ψ̂′

}
.

Figure 3.3. An iteration function for PDCFA with a single-threaded store.

45

3.6 Summary

This chapter defines three different algorithms for computing pushdown control-flow

analysis. The first algorithm finds the least fixed point of a monotonic function (in Section

3.3). The second algorithm uses work-lists and ε-graphs (in Section 3.4). This second

algorithm is more efficient than the first algorithm but still has exponential-time complex-

ity. The third algorithm uses widening to sacrifice some precision for the sake of having

polynomial-time complexity (in Section 3.5).

These algorithms for pushdown control-flow analysis have three advantages over CFA2

[135]: First, the analysis here does not obscure the stack and stack frames inside a summa-

rization technique, as CFA2 does, but handles pushes and pops of stack frames explicitly.

While CFA2 approximates its input as a pushdown system, this pushdown system is not

explicit and therefore can be harder to understand (depending on one’s familiarity with

the summarization technique). Second, the abstract allocation function is a parameter to

this analysis (unlike CFA2), which allows for polyvariance (multiple abstract addresses for

each variable) in the analysis. Third, because this analysis handles the stack explicitly, the

analysis is able to examine the stacks that may be paired with any given control state. As

the next chapter describes, abstract garbage collection [98] is able to examine the stack to

find reachable addresses and so is able to be combined with pushdown analysis. Because

of CFA2’s summarization technique, CFA2 cannot be combined with abstract garbage

collection.

CHAPTER 4

ABSTRACT GARBAGE COLLECTION

AND INTROSPECTIVE PUSHDOWN

CONTROL-FLOW ANALYSIS

4.1 Introduction

Abstract garbage collection [98] yields large improvements in precision by using the

abstract interpretation of garbage collection to make more efficient use of the finite address

space available during analysis. Because of the way abstract garbage collection operates,

it grants exact precision to the flow analysis of variables whose bindings die between invo-

cations of the same abstract context. Because pushdown analysis grants exact precision in

tracking return-flow, it is clearly advantageous to combine these techniques. Unfortunately,

abstract garbage collection breaks the pushdown model by requiring a full traversal of the

stack to discover the root set.

Section 4.2 defines abstract garbage collection, as originally presented by Might et

al. [98]. Section 4.3 constrains the set of pushdown systems we consider to monotonic

introspective pushdown systems. Section 4.3 also describes how abstract garbage collection

works with a monotonic introspective pushdown system. Section 4.4 defines control state

reachability and describes how to incorporate abstract garbage collection into least fixed

point algorithm from Section 3.3. Finally for this chapter, Section 4.5 discusses combining

abstract garbage collection with the work-list approach of Section 3.4.

4.2 Introspection for abstract garbage collection

Abstract garbage collection modifies the transition relation to conduct a “stop-and-copy”

garbage collection before each transition. To do this, I define a garbage collection function

Ĝ : Ĉonf → Ĉonf on configurations:

Ĝ(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂) = (e, ρ̂, σ̂|Reachable(ĉ), κ̂),

where the pipe operation f |S yields the function f , but with inputs not in the set S mapped

to bottom—the empty set. The reachability function Reachable : Ĉonf → P(Âddr) first

47

computes the root set, and then the transitive closure of an address-to-address adjacency

relation:

Reachable(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂) =

{
â : â0 ∈ Root(ĉ) and â0

∗
_
σ̂
â

}
,

where the function Root : Ĉonf → P(Âddr) finds the root addresses:

Root(e, ρ̂, σ̂, κ̂) = range(ρ̂) ∪ StackRoot(κ̂),

and the StackRoot : K̂ont → P(Âddr) function finds roots down the stack:

StackRoot〈(v1, e1, ρ̂1), . . . , (vn, en, ρ̂n)〉 =
⋃
i

range(ρ̂i),

and the relation (_) ⊆ Âddr × Ŝtore × Âddr connects adjacent addresses:

â _
σ̂
â′ iff there exists (lam, ρ̂) ∈ σ̂(â) such that â′ ∈ range(ρ̂).

The new abstract transition relation is thus the composition of abstract garbage collec-

tion with the old transition relation:

(;GC) = (;) ◦ Ĝ.

In the formulation of pushdown systems, the transition relation is restricted to looking

at the top frame, and even in less restricted formulations, at most a bounded number of

frames can be inspected. Thus, the relation (;GC) cannot be computed as a straightforward

pushdown analysis using summarization.

To accommodate the richer structure of the relation (;GC), I now define introspective

pushdown systems. Once defined, one can embed the garbage-collecting abstract inter-

pretation within this framework, and then focus on developing a control-state reachability

algorithm for these systems.

An introspective pushdown system is a quadruple M = (Q,Γ, δ, q0):

1. Q is a finite set of control states;

2. Γ is a stack alphabet;

3. δ ⊆ Q× Γ∗ × Γ± ×Q is a transition relation; and

4. q0 is a distinguished root control state.

48

The second component in the transition relation is a realizable stack at the given control-

state. This realizable stack distinguishes an introspective pushdown system from a general

pushdown system. IPDS denotes the class of all introspective pushdown systems.

Determining how (or if) a control state q transitions to a control state q′, requires

knowing a path taken to the state q. Thus, reachability needs to be defined inductively.

When M = (Q,Γ, δ, q0), transition from the initial control state considers only empty stacks:

q0
g7−→−→
M

q iff (q0, 〈〉, g, q) ∈ δ.

For nonroot states, the paths to that state matter, since they determine the stacks realizable

with that state:

q
g7−→−→
M

q′ iff there exists ~g such that q0
~g7−→−→
M

q and (q, [~g], g, q′) ∈ δ,

where q
〈g1,...,gn〉7−→−→

M
q′ iff q

g17−→−→
M

q1
g27−→−→
M
· · · gn7−→−→

M
q′.

4.2.1 Garbage collection in monotonic introspective pushdown
systems

To convert the garbage-collecting, abstracted CESK machine into an introspective push-

down system, I define the function ÎPDS : Exp→ IPDS:

ÎPDS(e) = (Q,Γ, δ, q0)

Q = Exp× Ênv × Ŝtore

Γ = F̂rame

(q, κ̂, ε, q′) ∈ δ iff Ĝ(q, κ̂) ; (q′, κ̂)

(q, φ̂ : κ̂, φ̂−, q
′) ∈ δ iff Ĝ(q, φ̂ : κ̂) ; (q′, κ̂)

(q, κ̂, φ̂+, q
′) ∈ δ iff Ĝ(q, κ̂) ; (q′, φ̂ : κ̂)

(q0, 〈〉) = Î(e).

4.3 Problem: Reachability for introspective pushdown
systems is uncomputable

As currently formulated, computing control-state reachability for introspective push-

down systems is uncomputable. The problem is that the transition relation expects to

enumerate every possible stack for every control point at every transition. Because there

are an unbounded number of stacks at each control point, it is impossible to know (without

peering into the otherwise-opaque contents of the transition relation) all the successors.

49

To make introspective pushdown systems computable, introspective pushdown systems

must operate on sets of stacks and must include a monotonicity constraint.

A monotonic introspective pushdown system is a quadruple M = (Q,Γ, δ, q0):

1. Q is a finite set of control states;

2. Γ is a stack alphabet;

3. δ ⊆ Q× P(Γ∗)× Γ± ×Q is a monotonic transition relation; and

4. q0 is a distinguished root control state.

The monotonicity constraint on the transition relations guarantees that as the set of

stacks grows larger, no previously included transitions will suddenly be excluded:

T ⊆ T ′ and δ(q, T, g, q′) implies δ(q, T ′, g, q′).

4.3.1 Garbage collection in monotonic introspective pushdown systems

Of course, abstract garabge collection must be adapted to this refined framework. To

convert the garbage-collecting, abstracted CESK machine into a monotonic introspective

pushdown system, I define the function ÎPDS
′
: Exp→ IPDS:

ÎPDS
′
(e) = (Q,Γ, δ, q0)

Q = Exp× Ênv × Ŝtore

Γ = F̂rame

(q, K̂, ε, q′) ∈ δ iff Ĝ(q, κ̂) ; (q′, κ̂) for any κ̂ ∈ K̂

(q, K̂, φ̂−, q
′) ∈ δ iff Ĝ(q, φ̂ : κ̂) ; (q′, κ̂) for any φ̂ : κ̂ ∈ K̂

(q, K̂, φ̂+, q
′) ∈ δ iff Ĝ(q, κ̂) ; (q′, φ̂ : κ̂) for any κ̂ ∈ K̂

(q0, 〈〉) = Î(e).

Assuming we can overcome the difficulty of computing with an opaquely represented set

of stacks, we can already see that this control-state reachability with garbage collection in

this formulation should be computable: Garbage collection operates on sets of frames, and

for any given control point there a finite number of sets of sets of frames.

The last challenge to consider before delving into the mechanics of computing reachable

control states is how to represent the sets of stacks that may be paired with each control

state. Fortunately, a regular language can describe the set of stacks at a control point, and,

fortuitously, this regular language is already encoded in the structure of the Dyck state

graph that is accumulated while computing reachable control states.

50

4.4 Computing reachability for monotonic introspective
pushdown systems

Having defined monotonic introspective pushdown systems and embedded our abstract,

garbage-collecting semantics within them, I am ready to define control-state reachability.

As with ordinary pushdown systems, the reachability algorithm for introspective push-

down systems is cast as finding a fixed-point, which incrementally accretes the reachable

control states into a Dyck state graph.

The goal here is to compile an implicitly-defined introspective pushdown system into

an explicited-constructed Dyck state graph. During this transformation, the per-state path

considerations of an introspective pushdown are “baked into” the Dyck state graph. This

compilation process is formulated as a map, DSG : IPDS→ DSG.

Given an introspective pushdown system M = (Q,Γ, δ, q0), its equivalent Dyck state

graph is DSG(M) = (S,Γ, E, q0), where s0 = q0, the set S contains reachable nodes:

S =

{
q : q0

~g7−→−→
M

q for some stack-action sequence ~g

}
,

and the set E contains reachable edges:

E =

{
q
g
� q′ : q

g7−→−→
M

q′
}

.

Now the goal is to find a method for computing a Dyck state graph from an introspective

pushdown system.

4.4.1 Compiling to Dyck state graphs

We now turn our attention to compiling a monotonic introspective pushdown system

(defined implicitly) into a Dyck state graph (defined explicitly). That is, we want an

implementation of the function DSG. As with ordinary pushdown systems, first the Dyck

state graph construction is defined as the least fixed point of a monotonic function. This

formulation provides a straightforward iterative method for computing the function DSG.

The function F : IPDS→ (DSG→ DSG) generates the monotonic iteration function we

need:

F(M) = f , where

M = (Q,Γ, δ, q0)

f(S,Γ, E, s0) = (S′,Γ, E′, s0), where

S′ = S ∪
{
s′ : s ∈ S and s 7−→−→

M
s′
}
∪ {s0}

E′ = E ∪
{
s
g
� s′ : s ∈ S and s

g7−→−→
M

s′
}

.

51

Given an introspective pushdown system M , each application of the function F(M) accretes

new edges at the frontier of the Dyck state graph.

4.4.2 Computing a round of F
The formalism obscures an important detail in the computation of an iteration: The

transition relation (7−→−→) for the introspective pushdown system must compute all possible

stacks in determining whether or not there exists a transition. Fortunately, this is not as

onerous as it seems: The set of all possible stacks for any given control-point is a regular

language, and the finite automaton that encodes this language can be lifted (or read off)

the structure of the Dyck state graph. The function Stacks : DSG → S → NFA performs

exactly this extraction:

Stacks(

M︷ ︸︸ ︷
S,Γ, E, s0)(s) = (S,Γ, δ, s0, {s}), where

(s′, γ, s′′) ∈ δ if (s′, γ+, s
′′) ∈ E

(s′, ε, s′′) ∈ δ if s′
~g7−→−→
M

s′′ and [~g] = ε.

Figure 4.1 renders this DSG to NFA converter in Haskell.

The Haskell code must also change the definition of transition functions to accept an

NFA describing all stacks:

type IDelta control frame =

(ITopDelta control frame, INopDelta control frame)

type ITopDelta control frame =

control ->

NFA control frame ->

frame ->

[(control, StackAct frame)]

type INopDelta control frame =

control ->

NFA control frame ->

[(control, StackAct frame)]

This means that any function that invokes the pushdown transition relation must have

access to either an NFA describing all stacks for the initial point, or it must have enough

information to compute it. In the original formulation, there are four functions that require

this—sprout, addPush, addPop and addEmpty:

52

stacks :: (Ord control, Ord frame) =>

ETG control frame ->

ECG control ->

control ->

control ->

NFA control frame

stacks (fw, bw) (fe, be) s0 s’ = (f’’, b’’, s0, s’) where

fedges = [(q, Set.fromAscList trans’) |

(q, trans) <- Map.toAscList fw,

let trans’ = [(Just c, q’) |

(g, q’) <- Set.toAscList $ trans,

isPush g,

let c = frame g]]

fedges’ = [(q, Set.fromAscList trans’) |

(q, trans) <- Map.toAscList fe,

let trans’ = [(Nothing, q’) |

q’ <- Set.toList $ trans]]

f = Map.fromAscList fedges

f’ = Map.fromAscList fedges’

f’’ = Map.union f f’

bedges = [(q, Set.fromAscList trans’) |

(q, trans) <- Map.toAscList bw,

let trans’ = [(Just c, q’) |

(g, q’) <- Set.toAscList $ trans,

isPush g,

let c = frame g]]

bedges’ = [(q, Set.fromAscList trans’) |

(q, trans) <- Map.toAscList be,

let trans’ = [(Nothing, q’) |

q’ <- Set.toList $ trans]]

b = Map.fromAscList bedges

b’ = Map.fromAscList bedges’

b’’ = Map.union b b’

Figure 4.1. Haskell conversion from Dyck state graphs to NFAs.

53

isprout :: (Ord control) =>

IDelta control frame ->

control ->

NFA control frame ->

([Edge control frame], [EpsEdge control])

addIPush :: (Ord control, Ord frame) =>

control ->

ETG control frame ->

ECG control ->

IDelta control frame ->

Edge control frame ->

([Edge control frame], [EpsEdge control])

addIPop :: (Ord control, Ord frame) =>

control ->

ETG control frame ->

ECG control ->

IDelta control frame ->

Edge control frame ->

([Edge control frame], [EpsEdge control])

addIEmpty :: (Ord control, Ord frame) =>

control ->

ETG control frame ->

ECG control ->

IDelta control frame ->

EpsEdge control ->

([Edge control frame], [EpsEdge control])

For sprouting, the exact NFA is passed, since we are concerned with only one control state.

For the remainder, the initial control state is passed, so that it may compute the NFA as

necessary.

54

4.4.3 Correctness

Once the algorithm reaches a fixed point, the Dyck state graph is complete:

Theorem 6 DSG(M) = lfp(F(M)).

Proof. Let M = (Q,Γ, δ, q0). Let f = F(M). Observe that lfp(f) = fn(∅,Γ, ∅, q0) for some

n. When N ⊆M , then it easy to show that f(N) ⊆M . Hence, DSG(M) ⊇ lfp(F(M)).

To show DSG(M) ⊆ lfp(F(M)), suppose this is not the case. Then, there must be at

least one edge in DSG(M) that is not in lfp(F(M)). By the defintion of DSG(M), each edge

must be part of a sequence of edges from the initial state. Let (s, g, s′) be the first edge in

its sequence from the initial state that is not in lfp(F(M). Because the proceeding edge is

in lfp(F(M)), the state s is in lfp(F(M)). Let m be the lowest natural number such that s

appears in fm(M). By the definition of f , this edge must appear in fm+1(M), which means

it must also appear in lfp(F(M)), which is a contradiction. Hence, DSG(M) ⊆ lfp(F(M)).

4.4.4 Simplifying garbage collection in introspective pushdown
systems

Because monotonic introspective pushdown systems consider all possible stacks at every

control point, they may provide more path-sensitivity than necessary for the intended

application. This is certainly the case with abstract garbage collection.

At the very least, abstract garbage collection is indifferent to the ordering of stack

frames: Sets of frames suffice. Even then, an analyzer need not consider all sets of sets

of frames. For instance, if the regular expression (A|B)C∗ describes all the stacks at a

given control point, then the sets of possible frames are {A}, {B}, {A,C} and {B,C}.

Because {A} ⊆ {A,C} and {B} ⊆ {B,C}, the monotonicity of the abstract transition

relation guarantees that any states considered by collecting {A} or {B} would be covered

by states considered when collecting {A,C} or {B,C}. This simplification comes at no cost

to precision.

If one is willing to sacrifice precision, then one can union all of the sets of reachable

frames together when garbage collecting at a given control point. In the prior example, it

would mean considering garbage collection with only the set of frames {A,B,C}.

55

4.5 An algorithm for introspective pushdown analysis with
garbage collection

The reachability-based analysis for a pushdown system described in Section 3.3 requires

two mutually-dependent pieces of information in order to add another edge:

1. The topmost frame on a stack for a given control state q. This is essential for return

transitions, as this frame should be popped from the stack and the store and the

environment of a caller should be updated respectively.

2. Whether a given control state q is reachable or not from the initial state q0 along

realizable sequences of stack actions. For example, a path from q0 to q along edges

labeled “push, pop, pop, push” is not realizable: The stack is empty after the first

pop, so the second pop cannot happen—let alone the subsequent push.

These two data are enough for a classic pushdown reachability summarization to proceed

one step further, and Section 3.4 presents an efficient algorithm to compute those. How-

ever, the presence of an abstract garbage collector, and the graduation to an introspective

pushdown system, imposes the requirement for a third item of data:

3. For a given control state q, what are all possible frames that could happen to be on

the stack at the moment the IPDS is in the state q?

The crucial addition to the algorithm is maintaining for each node q′ in the DSG a set

of ε-predecessors, i.e., nodes q, such that q 7−→−→~g
M q′ and [~g] = ε. In fact, only two out of

three kinds of transitions can cause a change to the set of ε-predecessors for a particular

node q: An addition of an ε-edge or a pop edge to the DSG.

A little reflection on ε-predecessors and top frames reveals a mutual dependency between

these items during the construction of a DSG. Informally:

• A top frame for a state q can be pushed as a direct predecessor, or as a direct

predecessor to an ε-predecessor.

• When a new ε-edge q
ε−→ q′ is added, all ε-predecessors of q become also ε-predecessors

of q′. That is, ε-summary edges are transitive.

• When a γ−-pop-edge q
γ−−−→ q′ is added, new ε-predecessors of a state q1 can be obtained

by checking if q′ is an ε-predecessor of q1 and examining all existing ε-predecessors of

q, such that γ+ is their possible top frame.

56

The third component—all possible frames on the stack for a state q—is straightforward

to compute with ε-predecessors: Starting from q, trace out only the edges which are labeled

ε (summary or otherwise) or γ+. The frame for any action γ+ in this trace is a possible

stack action. Since these sets grow monotonically, it is easy to cache the results of the

trace, and in fact, propagate incremental changes to these caches when new ε-summary or

γ+ nodes are introduced.

4.6 Summary

This chapter defines introspective pushdown control-flow analysis and then combines it

with abstract garbage collection. Introspection provides the ability to examine the stacks

available at any and every control-state. By being able to examine the stack, one can find

the root set of reachable addresses for each configuration (control-state and stack). Since

abstract garbage collection requires access to the root set of reachable addresses for each

configuration, combining pushdown control-flow analysis and abstract garbage collection

requires introspection. Pushdown control-flow analyses, such as the ones presented in

Chapters 2 and 3 as well as CFA2, cannot soundly be combined with abstract garbage

collection because of the lack of introspection.

The last chapter provided three algorithms for computing the pushdown control-flow

analysis of Chapter 2, and this chapter discusses two of them. The third algorithm presented

in Section 3.5, which uses widening, has polynomial-time complexity. The simplification of

the time complexity comes from simplifying the store to a single global store. Abstract

garbage collection improves performance by reducing the store associated with a state to

only what is reachable in that state. In a global store, most (if not all) values are reachable

from some state and thus cannot be removed. Therefore, it is generally not worth the effort

to add abstract garbage collection to an analysis that has been widened to a global store.

This chapter with the two before it represent the theoretic contribution to static analysis

of this dissertation. The next chapter presents the empirical results and applications of these

theoretic contributions.

CHAPTER 5

PERFORMANCE AND APPLICATIONS

OF INTROSPECTIVE PUSHDOWN

ANALYSIS

5.1 Introduction

Unlike the preceding three chapters, this chapter focuses on empirical results and ap-

plications, rather than theory. Section 5.2 presents the empirical results from a working

implementation of algorithms presented in Sections 3.4 and 4.5. Section 5.2 compares

the speed and results of k-CFA and k-PDCFA (k ∈ {0, 1}) with and without abstract

garbage collection. Both toy and real-life benchmarks are used in these tests. The toy

benchmarks were designed to showcase the worst behavior of some of the analyses. As

such, the toy benchmarks give an indication of how bad these analyses can be for small

programs. However, these toy benchmarks do not convey how useful these analyses are on

programs that are used for tasks other than testing static analyses. The real-life benchmarks

do convey how useful these analyses are on real-life programs. These real-life benchmarks

include an implementation of the public-key cryptography and a Scheme to Java compiler.

Section 5.3 discusses a few of the applications of introspective pushdown control-flow

analysis (with or without abstract garbage collection). Escape analysis determines when

it is safe to allocate a heap-allocated value on the stack, which depends upon whether

the heap-allocated values outlive the stack frame which created them. Interprocedural

dependence analysis determines resource usage based upon what and where procedures are

called, their resource usage, and the resource usage of procedures they call.

5.2 Experimental evaluation

A fair comparison between different families of analyses should compare both precision

and speed. k-CFA was implemented for a subset of R5RS Scheme and was instrumented

with a possibility to optionally enable pushdown analysis, abstract garbage collection or

both. The implementation source code and benchmarks are available:

http://github.com/ilyasergey/reachability

http://github.com/ilyasergey/reachability

58

As expected, the fused analysis does at least as well as the best of either analysis alone

in terms of singleton flow sets (a good metric for program optimizability) and better than

both in some cases. Also worthy of note is the dramatic reduction in the size of the abstract

transition graph for the fused analysis—even on top of the already large reductions achieved

by abstract garbage collection and pushdown flow analysis individually. The size of the

abstract transition graph is a good heuristic measure of the temporal reasoning ability of

the analysis, e.g., its ability to support model-checking of safety and liveness properties [94].

5.2.1 Plain k-CFA vs. pushdown k-CFA

In order to exercise both well-known and newly-presented instances of CESK-based

CFAs, the implementation was run on a series of small benchmarks exhibiting archetypal

control-flow patterns (see Table 5.1). Most benchmarks are taken from the CFA literature:

mj09 is a running example from the work of Midtgaard and Jensen [91] designed to exhibit

a nontrivial return-flow behavior, eta and blur test common functional idioms, mixing

closures and eta-expansion, kcfa2 and kcfa3 are two worst-case examples extracted from

Van Horn and Mairson’s [134] proof of k-CFA complexity, loop2 is an example from

Might’s [93, Section 13.3] dissertation that was used to demonstrate the impact of abstract

GC, and sat is a brute-force SAT-solver with backtracking. This benchmark suite was run

on a 2 Core 2.66 GHz OS X machine with 8 Gb RAM.

5.2.1.1 Comparing precision

In terms of precision, the fusion of pushdown analysis and abstract garbage collection

substantially cuts abstract transition graph sizes over one technique alone.

Singleton flow sets were also measured as a heuristic metric for precision. Singleton

flow sets are a necessary precursor to optimizations such as flow-driven inlining, type-check

elimination and constant propagation. Here again, the fused analysis prevails as the best-of-

or better-than-both-worlds.

The results of these benchmarks have revalidated hypotheses about the improvements

to precision granted by both pushdown analysis [135] and abstract garbage collection [93].

Table 5.1 contains the detailed results on the precision of the analysis. In order to make the

comparison fair, the table reports the numbers of control states, which do not contain stack

components and are the nodes of the constructed DSG. In the case of plain k-CFA, control

states are coupled with stack pointers to obtain configurations, whose resulting number is

significantly bigger.

59

T
a
b

le
5
.1

.
A

n
al

y
si

s
b

en
ch

m
a
rk

re
su

lt
s

fo
r

to
y

p
ro

gr
am

s.
T

h
e

fi
rs

t
th

re
e

co
lu

m
n
s

p
ro

v
id

e
th

e
n

am
e

of
a

b
en

ch
m

ar
k
,

th
e

n
u

m
b

er
of

ex
p

re
ss

io
n

s
a
n
d

va
ri

a
b

le
s

in
th

e
p

ro
g
ra

m
in

th
e

A
N

F
,

re
sp

ec
ti

ve
ly

.
F

or
ea

ch
of

ei
gh

t
co

m
b

in
at

io
n

s
of

p
u

sh
d

ow
n

an
al

y
si

s,
k
∈
{0
,1
}

an
d

g
ar

b
a
g
e

co
ll

ec
ti

o
n

on
or

off
,

th
e

fi
rs

t
tw

o
co

lu
m

n
s

in
a

gr
ou

p
sh

ow
th

e
n
u

m
b

er
of

co
n

tr
o
l

st
a
te

s
an

d
tr

an
si

ti
on

s/
D

S
G

ed
ge

s
co

m
p

u
te

d
d

u
ri

n
g

th
e

a
n

al
y
si

s
(f

or
b

ot
h

le
ss

is
b

et
te

r)
.

T
h

e
th

ir
d

co
lu

m
n

p
re

se
n
ts

th
e

am
ou

n
t

of
si

n
gl

et
o
n

va
ri

ab
le

s,
i.

e,
h

ow
m

an
y

va
ri

ab
le

s
h

av
e

a
si

n
g
le

la
m

b
d

a
fl

ow
to

th
em

(m
o
re

is
b

et
te

r)
.

In
eq

u
al

it
ie

s
fo

r
so

m
e

re
su

lt
s

of
th

e
p

la
in
k
-C

F
A

d
en

ot
e

th
e

ca
se

w
h

en
th

e
an

al
y
si

s
ex

p
lo

re
d

m
or

e
th

an
1
05

co
n

fi
gu

ra
ti

o
n

s
(i

.e
.,

co
n
tr

ol
st

at
ce

co
u

p
le

d
w

it
h

co
n
ti

n
u

at
io

n
s)

or
d

id
n

ot
fi

n
is

h
w

it
h

in
30

m
in

u
te

s.
F

or
su

ch
ca

se
s

w
e

d
o

n
o
t

re
p

or
t

o
n

si
n

g
le

to
n

va
ri

a
b

le
s.

P
ro

gr
am

E
x
p
re

ss
io

n
s

V
ar

ia
b
le

s
k

k
-C

F
A

k
-P

D
C

F
A

k
-C

F
A

+
G

C
k
-P

D
C

F
A

+
G

C
S
ta

te
s

E
d
ge

s
S
in

gl
et

on
s

S
ta

te
s

E
d
ge

s
S
in

gl
et

on
s

S
ta

te
s

E
d
ge

s
S
in

gl
et

on
s

S
ta

te
s

E
d
ge

s
S
in

g
le

to
n
s

m
j
0
9

19
8

0
83

10
7

4
38

38
4

36
39

4
33

32
4

1
45

4
81

2
1

44
48

1
34

35
1

32
31

1

e
t
a

21
13

0
63

74
4

32
32

6
28

27
8

28
27

8
1

33
33

8
32

31
8

28
27

8
28

27
8

k
c
f
a
2

20
10

0
19

4
23

6
3

36
35

4
35

34
4

35
34

4
1

97
0

19
35

1
87

14
4

2
35

34
2

35
34

2

k
c
f
a
3

25
13

0
27

2
32

7
4

58
63

5
53

52
5

53
52

5
1

>
32

66
2

>
88

54
8

–
17

61
40

46
2

53
52

2
53

52
2

b
l
u
r

40
20

0
46

86
76

06
4

11
5

14
6

4
90

95
10

68
76

1
0

1
12

3
14

9
10

94
10

1
10

76
82

10
75

81
1
0

l
o
o
p
2

41
14

0
14

9
16

3
7

69
73

7
43

46
7

34
35

7
1

>
10

86
7

>
16

04
0

–
41

1
52

5
3

15
1

16
3

3
14

5
15

6
3

s
a
t

51
23

0
38

44
55

47
4

54
5

77
3

4
11

37
15

43
4

25
4

31
7

4
1

>
28

43
2

>
37

39
1

–
12

82
8

16
84

6
4

95
8

13
14

5
71

73
1
0

60

The SAT-solving benchmark showed a dramatic improvement with the addition of

context-sensitivity. Evaluation of the results showed that context-sensitivity provided enough

fuel to eliminate most of the nondeterminism from the analysis.

5.2.1.2 Comparing speed

In the original work on CFA2, Vardoulakis and Shivers [135, Section 6] present exper-

imental results with a remark that the running time of the analysis is proportional to the

size of the reachable states. There is a similar correlation in our fused analysis, but it is

not as strong or as absolute. Since most of the programs from the toy suite run for less

than a second, I do not report on the absolute time. Instead, the histogram on Figure 5.1

presents normalized relative times of analyses’ executions. In these benchmarks, the pure

machine-style k-CFA is always significantly worse in terms of execution time than either

with GC or push-down system, so the plain, nonoptimized k-CFA has been excluded from

the comparison.

An earlier implementation of a garbage-collecting pushdown analysis [45] did not fully

exploit the opportunities for caching ε-predecessors, as described in Section 4.5. This led to

significant inefficiencies of the garbage-collecting analyzer with respect to the mere control-

flow analyzer, even though the former one observed a smaller amount of states and in

some cases found larger amounts of singleton variables. After this issue had been fixed, it

became clearly visible that in all cases the GC-optimized analyzer is strictly faster than its

nonoptimized pushdown counterpart.

Although caching of ε-predecessors and ε-summary edges is relatively cheap, it is not

free, since maintaining the caches requires some routine machinery at each iteration of the

analyzer. This explains the loss in performance of the garbage-collecting pushdown analysis

with respect to the GC-optimized mere CFA.

As it follows from the plot, fused analysis is always faster than the mere pushdown

analysis, and about a fifth of the time, it beats the plain CFA with garbage collection in

terms of performance. When the fused analysis is slower than just a GC-optimized one, it is

generally not much worse than twice as slow as the next slowest analysis. Given the already

substantial reductions in analysis times provided by collection and pushdown analysis, the

amortized penalty is a small and acceptable price to pay for improvements to precision.

61

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

������������������������������������ ��������������������������� ��� ��� ������������������������������������ ��� ���������������������������
���������

���������������������������

������������������

���������������������������

���������

������������������������������������

���������������������������

���

��

��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

�
��
��
��
��
��
��
�
��
��
��
�
��
��

�
��
��
�
��
��

������������������������������������ ��������������������������� ��� ��� ������������������������������������ ��� ���������������������������
���������

���������������������������

������������������

���������������������������

���������

������������������������������������

���������������������������

���

��

��

Figure 5.1. Runtime performance of various analyses. Analysis times relative to worst (=
1) in class; smaller is better. On the top is the monovariant 0CFA class of analyses, on the
bottom is the polyvariant 1CFA class of analyses. (Non-GC k-CFA omitted.)

62

5.2.2 Analyzing real-life programs with garbage-collecting
pushdown CFA

Even though this prototype implementation is just a proof of concept, this prototype

implementation was run on a set of real-life programs, and not just on the suite of toy

programs from the previous section, which were tailored for particular functional program-

ming patterns. For this experiment, four programs were chosen, dealing with numeric and

symbolic computations:

• primtest – an implementation of the probabilistic Fermat and Solovay-Strassen pri-

mality testing in Scheme for the purpose of large prime generation;

• rsa – an implementation of the RSA public-key cryptography;

• regex – an implementation of a regular expression matcher in Scheme using Brzozovski

derivatives [95, 106]; and

• scm2java – a Scheme to Java compiler.

This benchmark suite was run on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb

RAM. Unfortunately, standard k-CFA timed out on most of these examples, so those tests

are excluded from the comparison and focus on the effect of a pushdown analyzer only.

Table 5.2 presents the results of running the benchmarks for k = 0, 1 with a garbage

collector on and off. Surprisingly, for each of the six programs, the cases, which terminated

within 30 minutes, delivered the same number of found singleton variables. However, the

numbers of observed states and runtimes are indeed different in most of the cases except

scm2java, for which all the four versions of the analysis were precise enough to actually

evaluate the program. Time-wise, the results of the experiment demonstrate the general

positive effect of the abstract garbage collection in a pushdown setting, which might improve

the analysis performance for more than two orders of magnitude.

5.3 Applications

Pushdown control-flow analysis offers more precise control-flow analysis results than

the classical finite-state CFAs. Consequently, introspective pushdown control-flow analysis

improves flow-driven optimizations (e.g., constant propagation, global register allocation,

inlining [121]) by eliminating more of the false positives that block their application.

The more compelling applications of pushdown control-flow analysis are those which

are difficult to drive with classical control-flow analysis. Perhaps not surprisingly, the best

63

T
a
b

le
5
.2

.
B

en
ch

m
ar

k
re

su
lt

s
fo

r
re

a
l-

li
fe

p
ro

gr
am

s.
T

h
e

fi
rs

t
fo

u
r

co
lu

m
n

s
p

ro
v
id

e
th

e
n

am
e

of
a

p
ro

gr
am

,
th

e
n
u

m
b

er
of

ex
p

re
ss

io
n

s
a
n

d
va

ri
ab

le
s

in
th

e
p

ro
g
ra

m
in

th
e

A
N

F
,

a
n

d
th

e
n
u

m
b

er
of

si
n

gl
et

on
va

ri
ab

le
s

re
ve

al
ed

b
y

th
e

an
al

y
si

s
(s

am
e

in
al

l
ca

se
s)

.
F

or
ea

ch
o
f

fo
u

r
co

m
b

in
at

io
n

s
of
k
∈
{0
,1
}

an
d

ga
rb

ag
e

co
ll

ec
ti

on
on

or
off

,
th

e
fi

rs
t

tw
o

co
lu

m
n

s
in

a
gr

ou
p

sh
ow

th
e

n
u

m
b

er
of

v
is

it
ed

co
n
tr

ol
st

at
es

an
d

ed
ge

s,
re

sp
ec

ti
v
el

y,
an

d
th

e
th

ir
d

on
e

sh
ow

s
ab

so
lu

te
ti

m
e

of
ru

n
n

in
g

th
e

an
al

y
si

s
(f

or
b

ot
h

le
ss

is
b

et
te

r)
.

T
h

e
re

su
lt

s
of

th
e

a
n

a
ly

se
s

a
re

p
re

se
n
te

d
in

m
in

u
te

s
(′

)
o
r

se
co

n
d

s
(′
′)

,
w

h
er

e
∞

st
an

d
s

fo
r

an
an

al
y
si

s,
w

h
ic

h
h

as
b

ee
n

in
te

rr
u

p
te

d
d

u
e

to
th

e
an

ex
ec

u
ti

on
ti

m
e

g
re

at
er

th
an

3
0

m
in

u
te

s.

P
ro

gr
am

E
x
p
re

ss
io

n
s

V
ar

ia
b
le

s
S
in

gl
et

on
s

k
=

0,
G

C
off

k
=

0,
G

C
on

k
=

1,
G

C
off

k
=

1,
G

C
o
n

S
ta

te
s

E
d
ge

s
T

im
e

S
ta

te
s

E
d
ge

s
T

im
e

S
ta

te
s

E
d
ge

s
T

im
e

S
ta

te
s

E
d
ge

s
T

im
e

p
r
i
m
t
e
s
t

15
5

44
16

79
0

95
5

14
′′

11
3

12
7

1
′′

>
43

14
6

>
54

67
9
∞

44
2

56
2

1
3′
′

r
s
a

21
1

93
36

12
67

15
07

23
′′

35
5

40
7

6
′′

20
74

6
28

89
5

21
′

92
6

11
66

2
8′
′

r
e
g
e
x

34
4

15
0

44
94

3
95

6
54
′′

57
8

58
9

45
′′

11
53

11
79

88
′′

57
8

58
9

5
0′
′

s
c
m
2
j
a
v
a

11
35

46
0

63
37

6
37

5
13
′′

37
6

37
5

13
′′

3
76

37
5

14
′′

37
6

37
5

1
3′
′

64

examples of such analyses are escape analysis and interprocedural dependence analysis.

Both of these analyses are limited by a static analyzer’s ability to reason about the stack,

the core competency of introspective pushdown control-flow analysis.

5.3.1 Escape analysis

In escape analysis, the objective is to determine whether a heap-allocated object is safely

convertible into a stack-allocated object. In other words, the compiler is trying to figure out

whether the frame in which an object is allocated outlasts the object itself. In higher-order

languages, closures are candidates for escape analysis.

Determining whether all closures over a particular λ-term lam may be heap-allocated is

straightforward: Find the control states in the Dyck state graph in which closures over lam

are being created, then find all control states reachable from these states over only ε-edge

and push-edge transitions. Call this set of control states the “safe” set. Now find all control

states which are invoking a closure over lam. If any of these control states lies outside of

the safe set, then stack-allocation may not be safe; if, however, all invocations lie within

the safe set, then stack-allocation of the closure is safe.

5.3.2 Interprocedural dependence analysis

In interprocedural dependence analysis, the goal is to determine, for each λ-term, the

set of resources which it may read or write when it is called. Might and Prabhu [96] showed

that if one has knowledge of the program stack, then one can uncover interprocedural

dependencies. This technique can be adapted to work with Dyck state graphs. For each

control state, find the set of reachable control states along only ε-edges and pop-edges. The

frames on the pop-edges determine the frames which could have been on the stack when in

the control state. The frames that are live on the stack determine the procedures that are

live on the stack. Every procedure that is live on the stack has a read-dependence on any

resource being read in the control state, while every procedure that is live on the stack also

has a write-dependence on any resource being written in the control state. This logic is the

direct complement of “if f calls g and g accesses a, then f also accesses a.”

5.4 Summary

The empirical results show that introspective pushdown control-flow analysis and ab-

stract garbage collection are both powerful improvements over k-CFA, especially when

paired together. For example, the satisfiability benchmark (sat) clearly shows the ad-

vantage of using introspective pushdown control-flow analysis and abstract garbage collec-

65

tion together. However, the Scheme to Java compiler benchmark (scm2java) shows that

introspective pushdown control-flow analysis can perform well without abstract garbage

collection.

Beyond the applications discussed in Section 5.3, introspective pushdown control-flow

analysis is useful for any application that can use k-CFA, especially those that require

reasoning about the stack. Introspective pushdown control-flow analysis is also useful for

applications that do not specifically require reasoning about the stack if the input programs

contain recursion. k-CFA, especially for low values of k, is limited in the depth of the stack

that it keeps precise. Therefore k-CFA does not perform well on arbitrarily-deep recursion

because the stack becomes too deep. Introspective pushdown control-flow analysis has no

limit on the depth of the stack that it can keep precise, and as such avoids the problems

that k-CFA has with deep stacks.

Other than Section 9.2 on the work related to introspective pushdown control-flow

analysis, this chapter is the end of the static analysis portion of this dissertation. The next

three chapters, along with Section 9.3, present Nebo, a declarative domain-specific language

embedded in C++ for discretizing partial differential equations for transport phenomena.

CHAPTER 6

SYNTAX AND SEMANTICS OF NEBO

6.1 Introduction

This chapter and the following two chapters present Nebo: Its design, its implementa-

tion, its use, and its performance. This chapter focuses on Nebo’s design, specifically its

syntax and semantics. The next chapter focuses on Nebo’s implementation, and Chapter 8

focuses on the use and performance of Nebo.

Nebo is a domain-specific language for numerically solving PDEs in high-performance

simulations. Because Nebo’s domain is so limited, Nebo’s syntax and semantics are lim-

ited. Numerically solving partial differential equations does not require a Turing-complete

language, and thus Nebo is not Turing-complete. Because Nebo is not Turing-complete,

the syntax and semantics are almost completely limited to assignment statements. Each

assignment statement in Nebo is roughly analogous to a mathematical equation over fields.

Nebo is embedded within C++ [125], and as such Nebo’s syntax is restricted to C++’s

syntax. Thus, standard C++ compilers parse Nebo code without modification. On one

hand, Nebo is limited to C++’s basic syntax: Nebo uses C++-style function call syntax,

C++-style operator syntax, and only the operators that can be overloaded within C++.

On the other hand, Nebo inherited syntax, operators, and operator precedence that are

well-defined, well-documented, and well-understood by C++ programmers. Furthermore,

Nebo maintains the semantic meaning of the operators it overloads, lifted over fields. For

example, addition of two fields represents the pointwise-addition of the elements with those

two fields. The sole exception to Nebo maintaining the semantic meaning of its overloaded

operators is its assignment operator, which will be discussed in Section 6.3.

Nebo carefully defines what the calculation of a specific Nebo Expression means. This

calculation is the same for all valid elements in fields involved in a given Nebo Expres-

sion.1 Nebo intentionally does not define the order in which the calculation of a Nebo

Expression happens to individual elements/indices. This unspecified order is the source of

Nebo’s architecture-independent parallelism. Nebo is able to pass this flexibility on to the

1Stencil operations (Section 6.6) invalidate edge elements in well-defined ways.

67

underlying parallelism constructs to avoid synchronization and communication, which is

discussed in detail in Section 7.4.

The full grammar for Nebo Expressions is given in Figure 6.1. The rest of this chapter

is laid out as follows: Section 6.2 discusses basic Nebo Expressions. Section 6.3 discusses

Nebo assignment. Section 6.4 discusses Nebo reductions. Section 6.5 discusses conditional

expressions within Nebo. Finally, Section 6.6 discusses stencil operations in Nebo.

6.2 Basic Nebo Expressions

Expressions are the basic abstraction of Nebo. Unlike traditional expressions, Nebo

Expressions represent calculations, not values. Nebo Expressions do produce values, but

the values they produce depend on how the expressions are used. The current uses of Nebo

Expressions are field assignment and reductions (see Sections 6.3 and 6.4, respectively.)

A Nebo Expression can be:

• a scalar value;

• a field;

• the valid use of supported operators and functions (below), whose arguments them-

selves are Nebo Expressions;

• a conditional expression, which is discussed in Section 6.5; or

• a stencil operator applied to a Nebo Expression, which is discussed in Section 6.6.

Nebo Expressions support the following operations and functions:

• algebraic operators: addition [•+•], subtraction [•−•], multiplication [•∗•], division

[•/•], and negation [−•];

• trigonometric functions: sine [sin(•)], cosine [cos(•)], tangent [tan(•)], and hyper-

bolic tangent [tanh(•)]; and

• other mathematical functions: exponentiation with base e [exp(•)], exponentiation

with given base [pow(•, •)], absolute value [abs(•)], square root [sqrt(•)], natural

logarithm [log(•)], minimum of two values [min(•, •)], and maximum of two values

[max(•, •)].

Nebo provides support for these operators and functions through operator (and function)

overloading and template metaprogramming.

68

s ∈ SCALARS ::= scalar values
f ∈ FIELDS ::= field objects
b ∈ BOOLEANS ::= boolean values

StOp ∈ STENCILS ::= stencil operators
e ∈ EXPRESSIONS ::= s

| f
| e1 + e2

| e1 − e2

| e1 ∗ e2

| e1 / e2

| − e
| sin(e)
| cos(e)
| tan(e)
| tanh(e)
| exp(e)
| pow(e1, e2)
| abs(e)
| sqrt(e)
| log(e)
| min(e1, e2)
| max(e1, e2)
| cond(be1, e1) . . . (ben, en)(en+1)

| StOp(e)
be ∈ BOOLEXPR ::= b

| e1 == e2

| e1! = e2

| e1 < e2

| e1 > e2

| e1 <= e2

| e1 >= e2

| be1 && be2

| be1 || be2

| ! be

Figure 6.1. Grammar for Nebo Expressions.

69

6.3 Assignment

Because Nebo calculates the discretized results of partial differential equations, using

Nebo Expressions in assignments keeps Nebo’s syntax very close to the source equations.

Field assignment is the primary use of Nebo Expressions, which is comparable to a foreach

operation or Lisp’s map operation. With field assignment, Nebo Expressions produce a

field (array) of values, which are the values used in the assignment. Nebo uses operator

<<= for assignment instead of operator = because using operator <<= makes it explicit

when and where Nebo assignment is taking place. This assignment operator is the only

operator that Nebo has changed the semantic meaning from the semantics of C++, other

than lifting the operations over fields. Because Nebo’s target domain does not explicitly

use bitwise shifts, let alone compound bitwise shift assignments, Wasatch developers do not

confuse Nebo assignment with the compound bitwise left shift assignment operation.

For a concrete example of Nebo assignment, consider the following equation, where a,

b, and c are fields:

c = a+ sin(b)

Without Nebo, this equation could be calculated with the following code:2

Fie ld a , b , c ;
// . . .
Fie ld : : i t e r a t o r i c = c . begin () ;
F i e ld : : i t e r a t o r const ec = c . end () ;
F i e ld : : c o n s t i t e r a t o r i a = a . begin () ;
F i e ld : : c o n s t i t e r a t o r ib = b . begin () ;
while (i c != ec) {

∗ i c = ∗ i a + s i n (∗ ib) ;
++i c ;
++i a ;
++ib ;

}

With Nebo, this same equation can be calculated by:

Fie ld a , b , c ;
// . . .
c <<= a + s i n (b) ;

When not using Nebo, executable code in C++ loses the simplicity of the mathematical

equations being modeled, and becomes bogged down with implementation-specific details

such as iterators. When using Nebo, Wasatch developers are able to write code that focuses

on what the calculation should do and not how the calculation should be done.

2There are many ways to calculate the results of the equations in this domain. The non-Nebo code in
this chapter is based on how Wasatch developers wrote code before they started using Nebo.

70

6.4 Reductions

Reductions, such as sum and max (of a field), use Nebo Expressions both to simplify

the implementation of the reductions themselves as well as restrict Nebo’s end users to use

syntax with which they are already familiar. Reductions, along with field assignment, are

currently the only uses of Nebo Expressions. These reductions act much like MapReduce,

where the calculation of the Nebo Expression is the map step, and the reduction operation

(sum, max, etc.) is the reduce step. Thus, with reductions, Nebo Expressions produce a

single scalar value. Currently, Nebo supports the following reductions directly: Finding

the minimum value in a field, finding the maximum value of a field, finding the sum of the

entire field, and finding the L2 norm of a field3.

For example, consider the following expression which returns the summation of all scalar

values of the calculated field, where a, b, and c are fields:

sum(a+ sin(b))

Without Nebo, this equation could be calculated with the following code:

Fie ld a , b , c ;
Sca l a r sum ;
// . . .
Fie ld : : i t e r a t o r i c = c . begin () ;
F i e ld : : i t e r a t o r const ec = c . end () ;
F i e ld : : c o n s t i t e r a t o r i a = a . begin () ;
F i e ld : : c o n s t i t e r a t o r ib = b . begin () ;
while (i c != ec) {

∗ i c = ∗ i a + s i n (∗ ib) ;
++i c ;
++i a ;
++ib ;

}

sum = 0 ;
i c = c . begin () ;
while (i c != ec) {

sum += ∗ i c ;
++i c ;

}

Or by hand-fusing the loops:

Fie ld a , b ;
Sca l a r sum ;
// . . .
sum = 0 ;

3Technically, finding the L2 norm of a field is more than a simple reduction: The L2 norm is the square
root of the sum of the square of each element. Wasatch developers occasionally use the L2 norm of fields
for testing, thus it is convenient for them to have a single function they can call.

71

Fie ld : : c o n s t i t e r a t o r i a = a . begin () ;
F i e ld : : c o n s t i t e r a t o r const ea = a . end () ;
F i e ld : : c o n s t i t e r a t o r ib = b . begin () ;
while (i a != ea) {

sum += ∗ i a + s i n (∗ ib) ;
++i a ;
++ib ;

}

This example is trivial to calculate the sum with a single loop. However, with some

operations, such as stencils (see Section 6.6), Wasatch developers would write multiple loops

before using Nebo. While hand-fusing loops is technically possible, Wasatch developers

found that the hand-fused code was more complex than they were willing to maintain.

With Nebo, this same expression can be calculated by:

Fie ld a , b , c ;
Sca l a r sum ;
// . . .
c <<= a + s i n (b) ;
sum = nebo sum (c) ;

Or simply just:

Fie ld a , b ;
Sca l a r sum ;
// . . .
sum = nebo sum (a + s i n (b)) ;

Unless Wasatch developers need the calculated field (c in the above example) for some

purpose other than the summation, they prefer to merge the loops with Nebo (last code

snippet). Avoiding single-use variables is easy with Nebo and has two distinct advantages:

First, code with fewer variables and fewer loops is easier for Wasatch developers to maintain.

Second, code with fewer loops has better runtime performance in general.

6.5 Conditional expressions

Because of the way C++ is defined, the predefined conditionals if and the ternary

operator (• ? • : •) cannot be overloaded. Thus, to have point-wise conditional evaluation

over fields, Nebo needed a different type of conditional expression.

We considered two main options: WHERE, as introduced in Fortran 90, and cond, as used

in many functional languages (introduced by LISP). The main advantage of WHERE is that

many Wasatch developers have experience with Fortran and therefore would not need to

be trained on its use. However, the syntax of WHERE in Fortran does work easily with the

syntax of C++. The main advantage of cond is that it can fit into the syntax of C++ using

operator overloading and template metaprogramming, which Nebo already exploits. cond’s

72

main disadvantage is that Wasatch developers were unfamiliar with its syntax.

Ultimately, we decided to use cond because cond because fits into Nebo’s familiar

declarative syntax. We overcame cond’s disadvantage by tightly controlling the valid syntax

of cond. With our simple syntax, we found that Wasatch developers were quickly able to

learn and use cond.

For conditional expressions to be useful, we must have expressions that express boolean

values. As most languages, Nebo uses expressions that evaluate to true or false; that is, Nebo

includes boolean expressions, called Nebo Boolean Expressions. Nebo Boolean Expressions

are similar to Nebo Expressions in that they represent calculations, not values. However,

when Nebo Boolean Expressions are evaluated they produce boolean values rather than

scalar values, which Nebo Expressions produce. A Nebo Boolean Expression can be:

• a boolean value;

• the numeric comparison of two Nebo Expressions, using any of the C++ numeric

comparison operators (==, ! =, <, >, <=, and >=); or

• a logical connective of Nebo Boolean Expressions, using any of the C++ logical

connective operators (&&, ||, and !).

Many functional languages that implement some form of cond provide support for a

wide range of clause styles. In effect these languages trust and enable the end users to

select the proper clause style for their current task. In these languages, if the end user does

not understand how certain clause styles work and misuses them, that end user is expected

to figure it out for themselves. Nebo’s average end user views learning new syntax as a

burden. Thus, Nebo restricts syntax to focus the user’s attention on as few new syntactic

forms as possible with as little surprise as possible.

With these goals in mind, Nebo’s implementation of cond has the following restrictions:

Every nonfinal clause must contain exactly two arguments, and the last clause must contain

exactly one argument. The second argument of each nonfinal clause and the single argument

of the final clause must be a valid Nebo Expression. The first argument of each nonfinal

clause must be a Nebo Boolean Expression, which are explained above. Of course, any

use of cond that does not follow these restrictions will cause compiler errors and will not

compile.

The semantics of cond mimic a nested if-statement, lifted pointwise over fields. For

each element, the Nebo Boolean Expression of the first clause is evaluated. If that boolean

expression returns true, the second argument (a Nebo Expression) is evaluated and returned

73

as the result of the cond. If that boolean expression returns false, evaluation skips to the

next clause and evaluates its boolean expression, again branching on the resulting value. If

the final clause is reached, its only argument (a Nebo Expression) is evaluated and returned

as the result of the conditional expression.

These semantics imply that every cond expression represents a well-defined and user-

specified calculation. For each point, the conditional expression returns the value associated

with the first true Nebo Boolean Expression. If none of the Nebo Boolean Expressions

evaluate to true the conditional expression returns the value of the final clause.

Thus there is no undefined behavior or runtime errors that can surprise an end user.

Furthermore, specifying only two clause styles that must be used in each cond expression4

limits the syntax that end users must learn to the syntax that end users will actually use.

For a concrete example, consider the following code:

bool d ;
F i e ld a , b ;
// . . .
Fie ld : : i t e r a t o r ib = b . begin () ;
F i e ld : : i t e r a t o r const eb = b . end () ;
F i e ld : : c o n s t i t e r a t o r i a = a . begin () ;
while (ib != eb) {

i f (∗ i a > 0 . 0)
∗ ib ∗= ∗ i a ;

else i f (∗ i a < 0 . 0)
∗ ib ∗= −(∗ i a) ;

else i f (d)
∗ ib ∗= ∗ ib ;

++ib ;
++i a ;

}

With Nebo, this code can be rewritten:

bool d ;
Sca l a r s ;
F i e ld a , b ;
// . . .
b <<= b ∗ cond (a > 0 . 0 , a)

(a < 0 . 0 , −a)
(d , b)
(1 . 0) ;

In the above example, the code not using Nebo implicitly does not change the value of the

current element of b, if the value of the current element of a is exactly zero and the double

4Technically, cond expressions only containing a final clause are valid, such as: a <<= cond(b), where
a and b are fields. However, these single-clause cases are useless and needlessly complex. The cond in each
single-clause cond can be removed without changing the meaning of the expression. The previous example
could be rewritten as: a <<= b. Thus, any practical use of cond will contain at least two clauses.

74

d is false. In the code that uses Nebo, this case must be explicitly handled, forcing the user

to think about the final case and what should happen if all the previous cases fail.

6.6 Stencil operations

Computational fluid dynamics heavily uses stencils, a nonpoint-wise array access pat-

tern. A stencil is a fixed set of array offsets describing what array cells are needed for

the current numeric computation. Some other implementations of stencils allow the stencil

to change shape at runtime. However, in this domain stencil shapes are dependent upon

compile-time and type information, and therefore do not change at runtime.

Consider the following 1-dimensional stencil example, which calculates a gradient of field

T and uses traditional C array access (array[•]) for clarity:

int t o t a l ;
F i e ld1 T;
F ie ld2 tmp ;
// . . .
int cur = 0 ;
while (cur < t o t a l) {

tmp [cur] = 0 .5 ∗ (T[cur] + T[cur + 1]) ;
++cur ;

}

Graphically, with arbitrary values in field T, this gradient calculation looks like:

T = 3 5 7 11 13

�� }} �� }} �� {{ �� zz

tmp = 4 6 9 12 X

The values in field tmp come directly from field T: 0.5 ∗ (3 + 5) = 4; 0.5 ∗ (5 + 7) = 6;

0.5 ∗ (7 + 11) = 9; and 0.5 ∗ (11 + 13) = 12.

The last cell of field tmp does not contain a valid value because there is no further cell in

field T. With any stencil there are edge cases that cannot be computed. There are various

ways to handle such edge conditions. Uintah and Wasatch use “ghost cells,” a layer of cells

surrounding the fields on all sides, so that stencils can fill the entire result field with valid

results.

Using these operations before the use of Nebo was so complex that Wasatch developers

developed their own abstraction prior to Nebo development and use. Each stencil operation

Wasatch developers use contains 2, 3, 4, 9, or 27 points, with constant coefficients. Wasatch

developers do not think about stencil calculations as stencils with definite shapes. Instead

they think in terms of operations that happen to use stencils: Taking the gradient of a

75

field, interpolating one field type to another, taking the divergence of field, etc. So they

developed an object-oriented approach where each operation is its own object, and each

operation object supports an apply to field method.

For example, the gradient operation becomes:

Fie ld1 T;
F ie ld2 tmp ;
// . . .
GradX . a p p l y t o f i e l d (T, tmp) ;

Unfortunately, this approach limits its application to a single stencil operation which

cannot be combined with any other calculation. For example, consider applying a divergence

operation to the result of gradient operation:

φ = ∇ · ∇(T)

where ∇ is the gradient operation and ∇· is the divergence operation. With Wasatch

developers’ syntax, this calculation becomes:

Fie ld1 phi , T;
F i e ld2 tmp ;
// . . .
GradX . a p p l y t o f i e l d (T, tmp) ;
DivX . a p p l y t o f i e l d (tmp , phi) ;

(The operations are called GradX and DivX because they are gradient and divergence

operations respectively, along the X-axis.) While this approach works, the syntax looks

nothing like the mathematical equation, and requires two loops that cannot be fused.

To allow loop fusion, Nebo uses stencil points as the basic stencil abstraction, which

fits well into Nebo’s declarative structure. For example, the above gradient operation could

theoretically be written in Nebo as:

Fie ld1 T;
F ie ld2 tmp ;
// . . .
tmp <<= 0.5 ∗ (StPt<0>(T) + StPt<1>(T)) ;

Each stencil point describes a computation that has been shifted by the given offset. This

approach treats each stencil point as a function that modifies the calculation by shifting its

values. Thus, stencil points can be arbitrarily composed. However, using stencil points

forces Wasatch developers to consider explicitly the stencil shape rather than just the

operation they wish to calculate. For example, in addition to the above gradient operation,

consider the divergence operation defined using stencil points:

Fie ld1 phi ;

76

Fie ld2 tmp ;
// . . .
phi <<= 0.5 ∗ (StPt<−1>(tmp) + StPt<0>(tmp)) ;

Performing these stencil operations in sequence becomes:

Fie ld1 T, phi ;
F i e ld2 tmp ;
// . . .
tmp <<= 0.5 ∗ (StPt<0>(T) + StPt<1>(T)) ;
phi <<= 0.5 ∗ (StPt<−1>(tmp) + StPt<0>(tmp)) ;

Chaining these stencil operations together into a single assignment becomes:

Fie ld1 T, phi ;
// . . .
phi <<= 0.5 ∗ (StPt<−1>(0.5 ∗ (StPt<0>(T) +

StPt<1>(T))) +
StPt< 0>(0.5 ∗ (StPt<0>(T) +

StPt<1>(T)))) ;

With basic algebra and the reasoning that moving to the right (StPt<1>) and then moving

to the left (StPt<-1>) is the same as not moving (StPt<0>):

Fie ld1 T, phi ;
// . . .
phi <<= 0.25 ∗ StPt<−1>(T) +

0 .5 ∗ StPt< 0>(T) +
0.25 ∗ StPt< 1>(T) ;

While the stencil point approach may be more efficient than using the object oriented

approach, the stencil point approach is much more error-prone as well as being more difficult

to read and to maintain.

Thus, Nebo actually provides the use of stencil operations as Nebo functions that take

a Nebo Expression as an argument and return a Nebo Expression. These functions use the

following syntax:

Fie ld1 T, phi ;
F i e ld2 tmp ;
// . . .
tmp <<= GradX(T) ;
phi <<= DivX(tmp) ;

The shape and coefficients of GradX and DivX are determined by compile-time type infor-

mation. The resulting code is much easier to understand and maintain:

Fie ld1 T, phi ;
// . . .
phi <<= DivX(GradX(T)) ;

Additionally, this code is about as close as one can get to the mathematical equation in

77

ASCII-based source files.

Furthermore, the shape of a stencil operation depends upon the types of the fields

involved. Consider taking the gradient of a volume field, T, resulting in a X-face field, tmp,

using the stencil operation, GradX:5

tmp <<= GradX(T) ;

There are four types of volume fields, and each volume field type has a X-face field type

associated with it. Each of these pairs of types has a different interpolant operation, each

with a potentially different stencil shape. Using Nebo’s functional stencil operation syntax

in a function templated over the field types, the above code will work with any pair of

volume and X-face field types. The type system is able to determine the correct shape of

the stencil operation at compile-time. Using the stencil point syntax, each pair of volume

and X-face types would require a separate function, rather than having a single templated

function. Section 7.3 has more information about field types and stencil operations.

This stencil syntax is another example of how we have restricted Nebo’s syntax. While

stencil points are not directly supported by Nebo, common stencil usage patterns are

available through stencil operations. By chaining the provided stencil operations, end users

can create new stencil shapes quickly and without error. While it is straightforward to add

new stencil shapes to Nebo, doing so requires some knowledge of Nebo’s implementation.

The average Wasatch developer does not create new Nebo stencil shapes. However, once

a Nebo developer (or possibly a Wasatch power-developer) creates a new stencil shape, all

Wasatch developers can use it in the same way as any other Nebo stencil shape.

6.7 Summary

This chapter deliberately presents what can be done with Nebo without discussing how

it is done. This distinction is the heart of Nebo’s main design goal: What is to be calculated

should be easy to write, easy to read, and contain no notion of how that calculation should be

done. Thus, Nebo has a clean declarative syntax. While code written in Nebo is declarative

and simple, the code that implements Nebo is not. The next chapter discusses the details

of Nebo’s implementation. In particular, the next chapter explains how the syntax of

Nebo from this chapter is translated, in standard C++ compilers, into runnable C++ (and

CUDA) code.

5Each element of a volume field contains a scalar value measuring a quantity of the volume of the cell at
that index. Each element of a X-face field contains a scalar value measuring a quantity at a face (normal to
the X-axis) of the cell at that index.

CHAPTER 7

IMPLEMENTATION OF NEBO

7.1 Introduction

This chapter presents the implementation of Nebo and is divided into three main

sections: Parsing (Section 7.2), the type system (Section 7.3), and the backends (Section

7.4). This implementation can be downloaded using git from:

git://software.crsim.utah.edu/SpatialOps.git

Parsing is handled by a standard C++ compiler and in particular through template

metaprogramming. The C++ template system is Turing-complete, and template metapro-

gramming is the technique of using the C++ template system to perform arbitrary com-

putation within a standard C++ compiler, during compilation. Every Nebo Expression

is parsed into a type that represents an abstract syntax tree. An abstract syntax tree

represents the calculation of its originating Nebo Expression. Section 7.2 discusses how

Nebo is parsed with template metaprogramming in abstract syntax trees.

Nebo uses the same types and data structures as Wasatch, and in any given assignment

the types of the fields used must match. For example, when adding two fields, they

must have the same type, and they return the same type. Likewise, applying sine to

a Nebo Expression results in an expression of the same type as the input expression.

Stencils complicate this straightforward model: Every stencil operation takes a field or

Nebo Expression of a certain type and returns a Nebo Expression of a different type. Using

a stencil operation, values from a field of one type can be assigned to values of a different

type. Section 7.3 goes into more detail how stencil operations change types.

Section 7.4 discusses how an abstract syntax tree is converted into running code for

each of Nebo’s backends. Every Nebo Expression can be run on a single-core chip (Section

7.4.1), on a multicore chip (Section 7.4.2), and on a many-core/GPU chip (Section 7.4.3).

The only exception to this universality of Nebo Expressions is reductions (Section 7.4.4).

Currently reductions are only implemented for single-core execution.

git://software.crsim.utah.edu/SpatialOps.git

79

7.2 Template metaprogramming

Nebo uses function and operator overloading in C++ to implement Nebo Expressions,

which are then evaluated by Nebo assignment statements or Nebo reductions. Nebo could

use C++ class inheritance to build Nebo Expressions from the overloaded functions and

operators. This approach would use a Nebo Expression base class, from which specific

operations would inherit. Operations, such as addition, which have subexpressions, would

contain base class pointers to the operation’s subexpressions. When evaluating a specific el-

ement, an operation would call virtual member functions on its subexpressions to determine

their values for the current element. Any call to a virtual member function requires a lookup

in a virtual table of function pointers. Unfortunately, this approach would require a lookup

in a virtual table for every subexpression in a Nebo Expression for each element during every

evaluation. These lookups are an unacceptable amount of overhead at runtime. Thus, Nebo

does not use class inheritance, but instead uses C++ template metaprogramming.

The C++ template system is a completely-pure, Turing-complete functional language

with burdensome syntax. There are several implementations C++ template metaprograms

that serve as proofs of concept [133, 136]. While the Turing-completeness of C++ templates

is interesting, it is not immediately useful. Unless the compile-time computation affects the

generated code, there are more straightforward tools that can compute the same results.

Since this system is part of the type system of C++, compile-time computation can remove

runtime overhead, by informing the compiler about constant values, functions, and control

flow paths. Thus, using the C++ template system, we can inform the compiler exactly what

the subexpressions in a given Nebo Expression are and avoid using virtual tables altogether.

Furthermore, since all Nebo functions are marked as inline, the compiler often can inline

nested calls to subexpressions, avoiding the runtime overhead of calling these functions.

Nebo Expressions are template objects, whose template parameters are the types of the

expression’s subexpressions. Thus, when analyzing the function calls to subexpressions,

the compiler knows the specific type and therefore the specific function that will be called

to evaluate a specific element at runtime. Therefore, the type of a Nebo Expression is an

abstract syntax tree (AST) of the calculation that Nebo Expression is to perform. Consider

the following Nebo code:

Fie ld a , b ;
// . . .
b <<= 3.14159 + s i n (a) ;

Building this AST framework is rather straightforward. C++ operator overloading allows

functions and operators to return any type. The + operator generates an object of type

80

SumOp<Arg1, Arg2>, and the sin function generates an object of type SinOp<Arg>. A

simplified1 version of the right-hand side’s return type in the above example is:

NeboExpression<SumOp<NeboScalar, SinOp<NeboField> > >

Graphically, this AST is:

NeboExpression

��
SumOp

ss ++
NeboScalar SinOp

��
NeboConstField

This AST model works well for simple Nebo assignment and stencils. Unlike operators

and functions, Nebo conditionals do not have a fixed number of operands, complicating

this AST framework. Just as functional programming provided the idea of cond, functional

programming techniques provide the most simple framework: We represent each clause as

its own type/object, and the entire conditional expression as a list of clauses. To build

this list, we use an auxiliary structure CondBuilder that has function call, operator (),

overloaded. When a clause is applied to this structure, CondBuilder returns a new version

of itself with the given clause added to the list of clauses. When the final clause is applied

to this structure, CondBuilder returns the Nebo Expression form of cond.

The syntax of cond and C++’s parsing method create some complications to this model.

The clauses are added to the structure CondBuilder in the order they appear (and the order

in which they are to be evaluated). CondBuilder adds the clauses to its list in the order that

it parses them, which creates a list of clauses in the reverse order in which they need to be

evaluated at runtime. When the final clause has been parsed, CondBuilder reverses its list

of clauses. Fortunately, reversing a proper list in a pure system/language is straightforward.

We also use this template/type AST approach to generate different backends. Depending

on available resources and run-time conditions, Nebo is able to run on a single thread, on

multiple threads, or on a GPU. Each backend requires different yet related functionality

to run on its target architecture. To keep each backend separate and distinct, Nebo again

uses templates, or rather more template parameters. Each specific Nebo Expression has a

template parameter for mode. A mode is either a backend or an intermediate step towards

a backend. When a use of a Nebo Expression, such as Nebo assignment, is executed, an

1Information about the Field type and the mode have been left out. See Section 7.3 for information
about Field type information, and see below in this same section and Section 7.4 for information about
modes.

81

instance of the Nebo Expression AST is constructed in the Initial mode. Then, based on

compile-time and runtime conditions, a specific backend is chosen, and the Nebo Expression

AST is constructed with the appropriate mode.

Consider again the example from the beginning of this section:

Fie ld a , b ;
// . . .
b <<= 3.14159 + s i n (a) ;

The type of the Nebo Expression in this assignment starts out as:

NeboExpression<SumOp<I n i t i a l ,
NeboScalar<I n i t i a l >,
SinOp<I n i t i a l , NeboField<I n i t i a l > > > >

When a specific backend has been chosen, the top-level NeboExpression type is dropped.

If the single-core/thread backend is chosen, a new instance of the AST is created in the

SeqWalk mode (short for sequential walk). The type of this AST is:

SumOp<SeqWalk , NeboScalar<SeqWalk>, SinOp<SeqWalk , NeboField<SeqWalk> > >

There are a total of five modes: Initial, SeqWalk, Resize, GPUWalk, and Reduction. Each

mode is a type that is declared but not defined. Thus, each mode can be used as a template

argument but cannot be used as the type of a variable. For example, Initial declaration

is simply:

struct I n i t i a l ;

Currently, there are 32 different classes that define specific Nebo Expression terms and

take a mode template parameter. These are the classes that define how fields, scalar

values, operators, functions, conditional expressions, and stencil operations as defined in

Chapter 6 actually operate. Since each of these classes behaves differently for each of

the five modes, there are 160 different class definitions relating to how each specific Nebo

Expression term behaves in each mode. Each of these class definitions is a partial template

specialization, specialized on the mode with template parameters remaining for the field

type and any operands that the term takes. For example, the full template signature of

SumOp is SumOp<Mode, Arg1, Arg2, FieldType>, and for SinOp is SinOp<Mode, Arg,

FieldType>. How each mode/backend is implemented is covered in Section 7.4.

7.3 Field type system and stencils

To numerically solve partial differential equations, Wasatch calculates scalar fields,

vector fields, and tensor fields. Simply put, a scalar field has single scalar value for each

82

element of the field. A vector field has a vector for each element of the field. These vectors

are represented by their scalar components, so each vector field contains three scalar values

for each element of the field. A tensor field has a tensor for each element of the field. Like

the vector field, these tensors are represented by their scalar components, so each tensor

field contains nine scalar values for each element of the field. Wasatch stores all of its fields

as scalar fields. Thus, Wasatch uses three scalar fields to represent one vector field and nine

scalar fields to represent one tensor field.

Stencil operations, such as gradient and interpolant, convert scalar fields into vector (or

tensor) fields. Other stencil operations, such as divergence and interpolant, convert vector

(or tensor) fields back to scalar fields. Since Wasatch stores vector and tensor fields as scalar

fields, a single operation like divergence, generally requires three or nine stencil operations

respectively, one for each scalar value. To help keep everything straight, Wasatch uses four

types of scalar fields: A volume field, and three face fields, each named for a different axes

(X, Y, or Z).2 In general, a volume field represents a scalar field, and together the three

different face fields represent a vector field. A tensor field is represented by nine face fields,

three of each type.

To further complicate matters, Wasatch uses staggered fields (or staggered meshes),

where the elements are conceptually offset by half a cell width. There are four types of

staggering: No offset, and offset along each of the different axes (X, Y, and Z). When

comparing an unstaggered field with a field staggered along the X axis, the cell center of

the staggered field lies directly on the boundary between two cells of the unstaggered field.

Again to help keep everything straight, each staggered field is represented as a different

type. Thus, there are 16 different scalar field types used in Wasatch and Nebo: For each of

the four different staggers, there is a volume field and three face fields.

Nebo enforces the difference between these field types at compile-time. That is, all

Nebo Expressions, except stencils, must be calculated from (and assign to) the same field

type. For example, consider a modified version of the example from the last section, where

VolField and XFaceField are unstaggered volume and X-face fields, respectively:

VolFie ld a ;
XFaceField b ;
// . . .
b <<= 3.14159 + s i n (a) ;

2Each face field represents some scalar value on the face that is normal, or perpendicular, to the axis it
is named after. For example, an X-face field represents scalar values on the face normal to the X-axis.

83

This code will not compile, but instead raise compile-time errors about incompatible types.

The original example, where the fields a and b had the same type, will compile for any of

the sixteen field types.

Stencil operations are the only way in Nebo to calculate results from fields of different

types. In fact, in the case of some interpolants, the stencil operation is only used to overcome

Nebo’s type restrictions. In these cases, the center of a volume field lines up with the center

of a face field with a different stagger. When the centers line up in this way, interpolating

from one type to the other is simply a copy, and no stencil points are needed. These stencils

are called null stencils, precisely because the stencil is a direct copy of its argument.

However, these interpolants are the exception, not the rule. All other stencils in Nebo,

including interpolants where field centers do not line up, use stencil points. As discussed

in Section 6.6, Nebo stencil operations are implemented in terms of stencil points. In fact,

a Nebo stencil is defined by four pieces of information: The field type of its argument, the

field type that it returns, the list of stencil points it uses, and the list of coefficients that

are multiplied to the value from each stencil point. For efficiency, all of this information,

except the coefficients, is compile-time.

Just before evaluating a Nebo Expression that contains stencils, each stencil operation

in the expression creates a shallow copy of its argument for each of its stencil points. Each

shallow copy is passed a stencil point offset, which it uses to shift its memory accesses to

the correct data. Shallow copies are used to avoid allocating space for and storing multiple

copies of the same scalar values. During execution of an individual element, the argument

copies evaluate their shifted point. Then, the stencil operation multiplies the values of each

stencil point to the correct coefficients, and sums the result.

Nested stencils, where a stencil is part of the argument to another stencil, follow the same

basic process. The outer stencil operation creates copies of its argument, which includes

another stencil operation. Within each copy of the outer stencil operation’s argument, the

inner stencil creates copies of its argument. However, the inner stencil does not directly

pass its stencil points to the copies of its argument. Instead the inner stencil combines the

shift/stencil point it receives from the outer stencil with its own stencil points to create the

shifts it passes to the copies of its arguments. In Nebo, this process of nesting stencils is

generalized to work with arbitrary nesting of stencils.

Finally, as mentioned in Section 6.6, stencil operations have edge cases where they

cannot evaluate elements because the stencil shape would go outside of the field. Nebo

stencil operations automatically account for these invalidated ghost cells. Wasatch uses

84

ghost cells to cover these edge cases. Ghost cells are populated with values, generally from

bordering partitions of the simulation. Thus, Nebo skips ghost cells in assignment where

the shape of the stencils used cannot produce valid values. Furthermore, Nebo raises an

error when there are not enough ghost cells to cover the edge cases. These invalidated ghost

cells are determined directly from the largest extents of the stencil points (including nested

stencils) in the expression.

7.4 Backends

This section discusses how Nebo decides which backend to use during execution and

how each backend of Nebo works. As discussed in Section 7.2, Nebo uses different modes to

implement different backends to Nebo. The different modes are represented by a template

argument to a Nebo Expression term. Each mode for each Nebo Expression term is a

partial template specialization. Each partial template specialization has no restrictions on

what it can and cannot contain, beyond the limits of a C++ class. However, by convention

in Nebo’s implementation, each mode provides a uniform interface. For example, every

term’s Initial mode implements an init() method, which takes arguments for the valid

number ghost cells remaining and the shift it needs to perform and returns the same Nebo

Expression but in the SeqWalk mode. Similarly, every term’s SeqWalk mode provides an

eval() method, which takes no arguments and returns the value of the Nebo Expression at

the current element. Thus, Nebo’s partial template specializations behave much like C++

classes that have inherited some basic interface. This convention creates a uniform way for

Nebo Expression terms to interact with their subexpressions. On one hand, Nebo does not

benefit from the compile-time error checking that traditional C++ inheritance provides.

That is, if some part of Nebo breaks a mode’s interface convention, any resulting errors

generally do not clearly state how the interface convention has been violated. On the other

hand, Nebo’s interface convention avoids the use of virtual tables for function lookups.

Nebo uses a mix of compile-time and runtime parameters to determine which backends

to use. For the compile-time flags, Nebo uses the C preprocessor macros #def and #ifdef

add or ignore Nebo’s various backends. By default, Nebo only compiles the single-core CPU

backend, and regardless of how flags are set this backend is always available. The thread-

parallel and GPU backends are compiled by defining ENABLE THREADS and ENABLE CUDA,

respectively. Furthermore, for the GPU backend to be used, the code must be compiled by

NVidia’s CUDA compiler, nvcc.

At runtime, the Initial mode of a Nebo Expression is constructed first. If the Nebo

85

Expression is used in a reduction, the expression switches to the reduction mode, and

continues as explained in Section 7.4.4. If the Nebo Expression is used in an assignment,

Nebo then chooses which particular backend to use based on choices implicitly made by

the user/developer. Assuming all backends are compiled, Nebo first checks the location

of the memory for the result. If the memory is located on a GPU, then Nebo uses its

GPU backend. If the memory is located on a CPU, then Nebo checks the number of active

threads in the thread-pool it uses. If there is more than one active thread, Nebo uses its

thread-parallel backend. Otherwise, Nebo uses its single-core CPU backend. Of course, if a

particular backend of Nebo is not compiled, Nebo will skip the check to use that backend.

Because of its scope, Nebo leaves the decisions of how many threads to use and where

to allocate memory up to end users. Nebo only considers how to efficiently compute the

calculation in a single Nebo Expression. Determining how many threads to use depends on

how many cores are present and available, the effectiveness of the current hardware’s hyper-

threading, and what other calculations are running concurrently. Likewise, determining

whether to run on a CPU or GPU depends on the speed of the CPU and GPU available,

the current load on each processor, the location of the input data to the current calculation,

and whether or not the current calculation’s result is needed for future calculations that

must run on the CPU. Nebo has no way of knowing any of this information, let alone

determining the best approach. These are important issues that determine the efficiency of

the overall application, and as such Nebo’s syntax and different backends make it easy and

simple to change scheduling and memory locality decisions.

With Nebo’s declarative syntax, each backend is able to specify its own execution model.

These execution models are described in the following sections.

7.4.1 Single-core implementation

The SeqWalk mode3 implements Nebo’s default single-core execution implementation.

The SeqWalk mode uses an interface for Nebo Expressions which is almost identical to the

standard interface for forward iterators. There are two differences between the single-core

interface and forward iterators’ interface: First, the single-core interface allows for arbi-

trary evaluation rather than just dereference. Second, rather than using C++’s increment

operator (++), Nebo uses the method name next().

The interface has two functions for the right-hand side (Nebo Expression) of an as-

signment: A next() method that moves the underlying iterators to the next element in

3SeqWalk is short for sequential walk.

86

the fields, and a eval() method which evaluates the value of the Nebo Expression at the

current element. The constructor for the SeqWalk mode initializes all underlying iterators.

The interface has three functions for the left-hand side of an assignment (a NeboField

object): A next() method that moves the underlying iterator to the next element in the

field, a ref() method which returns a reference to the current element of the underlying

field, and an at end() method that returns true if and only if the underlying iterator is at

the end of the field. The interface for the right-hand side (Nebo Expression) is public, but

the interface for the left-hand side is private. To execute the assignment, Nebo calls the

assign method on the left-hand side, passing the right-hand side as an argument:

template<typename RhsType>
inl ine void a s s i g n (RhsType rhs) {

while (! at end ()) {
r e f () = rhs . eva l () ;
next () ;
rhs . next () ;

}
}

Since the assign method is part of the left-hand side, it has access to the necessary methods

for both the left-hand and right-hand sides of the assignment. The while loop in the assign

method iterates over all the elements in the underlying fields and is simple intentionally. The

simplicity of this loop has two main advantages. First, the simplicity is easy to maintain and

debug. Second, with all the methods marked as inline, optimizing compilers can recoginize

the pattern of the loop and apply standard optimizations, such as loop unrolling.

For example, consider the single-core execution of the example from Section 7.2:

Fie ld a , b ;
// . . .
b <<= 3.14159 + s i n (a) ;

Ignoring the SeqWalk mode and the field type template arguments, the type of the left-

hand side of this assignment becomes NeboField. The type of the right-hand side of this

assignment becomes SumOp < NeboScalar, SinOp < NeboField > >.

Each call to lhs.ref() and lhs.next() behave exactly like the methods for forward

iterators over mutable data. Each call to rhs.eval(), SumOp’s evaluate method, calls the

evaluate method on both of its arguments, adds the values from these evaluate calls together,

and returns the result. Each call to NeboScalar’s evaluate method simply returns its scalar

value, which is in this case 3.14159. Each call to SinOp’s evaluate method calls the evaluate

method on its argument, applies the sine function to the value from this evaluate call, and

returns the result. Each call to NeboConstField’s evaluate method dereferences the value

87

from the iterator it contains and returns that value.

Each call to rhs.next(), SumOp’s increment method, simply calls the increment method

on both of its arguments. Each call to NeboScalar’s increment method does nothing—a

scalar value has nothing to change. Each call to SinOp’s increment method calls the evaluate

method on its argument. Each call to NeboConstField’s increment method increments the

iterator it contains.

While there are a lot of function calls for each iteration of the above while loop, all of

these functions are declared with the C++ keyword inline. Defining a function with the

inline keyword does not guarantee that that function will be inlined. Fortunately, these

function calls are textbook examples of functions to inline: First, they are short and simple

(other than calls to other short and simple functions). Second, each function is used in

exactly one location. Thus, when compiling Nebo with standard optimizations, such as

gcc’s -O3 optimizations, gcc generally inlines most evaluate and increment function calls.

7.4.2 Multicore implementation

Nebo’s strategy for multithread execution is to divide the fields underlying the current

Nebo Expression into subfields. Each subfield is then assigned to a thread and executed

sequentially on that thread. Nebo’s semantics define that elements in Nebo assignment can

be evaluated and assigned in any order. Thus, there is no need for communication between

threads other than to signal that a subfield has finished execution.

When Nebo has determined that it is to use the multicore backend, Nebo determines

the active number of threads. Then Nebo partitions the fields underlying the current

Nebo Expression into subfields. Nebo partitions the fields along a single axis, which is

determined by the shape of the original fields. Nebo picks an axis, based on size of the

original field and on how contiguous the underlying memory will be for each field. Thus,

given the typical memory layout in Wasatch, Nebo prefers to partition fields along the Z

axis. Once Nebo has determined its partitioning scheme, Nebo creates an instance of the

Nebo Expression in Resize mode for each subfield. Each instance of the Nebo Expression

is passed information about the location and size of its subfield as well as a pointer to a

semaphore. The original Nebo Expression passes each Resize instance to a FIFO thread

pool to schedule the calculation. The original instance of the Nebo Expression in Initial

mode then waits on the semaphore for each Resize instance to post to the semaphore.

Once a Nebo Expression in Resize mode is started in a different thread, it creates an

instance of the Nebo Expression in SeqWalk mode. After the SeqWalk instance has finished

its assignment, the Resize instance posts to the semaphore.

88

7.4.3 Many-core (GPU) implementation

Because GPUs use a SIMD model of execution, Nebo’s GPU backend is very different

from Nebo’s other backends. Nebo’s GPU backend sets up a “plane” of threads, such that

each thread has a unique pair of X-axis and Y-axis indices. Then all the threads together

iterate through all the Z indices. At each Z index, each thread calculates the result for its

unique combination of X, Y, and Z indices. For example, consider a field whose dimensions

are 3 by 4 by 5 (X, Y, Z, respectively). In this case, Nebo’s GPU backend would use 12

threads (three times four), and each thread would calculate five different elements.

When Nebo determines that it is to execute on the GPU, it builds an instance of the

Nebo Expression in GPUWalk mode. Nebo then calls a templated CUDA kernel:

template<typename LhsType , typename RhsType>
g l o b a l void g p u a s s i g n k e r n e l (LhsType lhs , RhsType rhs) {
l h s . a s s i g n (rhs) ;

} ;

The code of the assign method for the left-hand side is deceptively like the code for

sequential execution:

template<typename RhsType>
d e v i c e inl ine void a s s i g n (RhsType rhs) {
const int i i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
const int j j = blockIdx . y ∗ blockDim . y + threadIdx . y ;

s t a r t (i i , j j) ;
rhs . s t a r t (i i , j j) ;

while (! at end ()) {
i f (v a l i d ()) { r e f () = rhs . eva l () ; } ;
next () ;
rhs . next () ;

} ;
} ;

Despite the differences between execution model, the code to execute Nebo assignment on

a GPU looks very similar: The first obvious difference between the sequential CPU code

and the GPU code is the use of the start method. Because the CUDA constructs the

Nebo Expression for each thread exactly the same for all threads, except for a few indexing

variables (blockIdx, blockDim, and threadIdx), each thread must determine what its

assigned X-axis and Y-axis indices are. The next obvious difference is the guard method,

valid(). For the sake of execution speed and regularity, sometimes threads are assigned

X-axis and Y-axis indices that are outside the bounds of the fields. Thus, the valid() check

is needed to ensure that the given X-axis and Y-axis indices point to a valid element of the

fields.

89

Because Nebo uses asynchronous kernel invocations, some synchronization is handled

by the end user. When the ENABLE CUDA C preprocessor flag is defined at compile-time,

each field contains a cudaStream t, which defaults to the default CUDA stream (0). A

cudaStream t informs the CUDA software and GPU hardware what CUDA kernels must

be executed in order and which can be run in parallel. Two CUDA kernels invoked with

the same CUDA stream are executed in the order they were invoked. Conversely, two

CUDA kernels invoked with different CUDA streams can be executed in any order, even

concurrently. When Nebo invokes the templated CUDA kernel above, Nebo passes the

CUDA stream in the field on the left-hand side of the assignment (the assignee). When

Wasatch is compiled with Nebo’s GPU backend enabled, it copies the same CUDA stream

into all fields that are assigned in the same task. Furthermore, each task has its own CUDA

stream object. Thus, all calls to Nebo in a Wasatch task are in the same stream, and calls

to Nebo from different Wasatch tasks are in different streams.

Finally, just before a Wasatch task finishes, it calls cudaStreamSynchronize() with the

task’s CUDA stream. This synchronization point forces all the Nebo CUDA kernels invoked

in a task to finish before the Wasatch task can finish. While Nebo could handle all of the

synchronization internally, having the users of Nebo handle the synchronization reduces the

synchronization overhead.

7.4.4 Reduction implementation

The Reduction mode implements Nebo’s reduction operations. Currently, Nebo reduc-

tions only work for single-core execution. Thus, the Reduction mode uses an interface

for Nebo Expressions which is almost identical to the interface for SeqWalk mode. The

major difference between a reduction and a single-core assignment is that there is no

left-hand-side/assignee in a reduction. So, in addition to increment and evaluate methods,

a Nebo Expression in Reduction mode provides an end condition method (at end). Like

single-core assignment, the constructor for the Reduction mode is required to initialize all

underlying iterators.

The reduction-core backend uses a while similar to the loop in the single-core backend:

while (! (expr . at end ())) {
r e s u l t = proc (r e s u l t , expr . eva l ()) ;
expr . next () ;

} ;

The increment, evaluate, and end condition methods all behave the same way as they do in

the single-core backend. However, the reduction backend does have the sensible restriction

90

that a reduction must be over a Nebo Expression that has a definite size. Any Nebo

Expression that contains at least one field has a definite size. Any Nebo Expression whose

terminals are only scalars does not have a definite size. Fortunately, a Nebo Expression

made up of only scalars is itself a scalar, and so a reduction is unnecessary.

7.5 Summary

This chapter presents the “magic” behind Nebo. If Nebo were implemented without any

one part discussed in this chapter, Nebo would not be nearly as easy to use or as useful

as it is now. Without template metaprogramming to do the parsing, Nebo would require

a stand-alone compiler. Other DSL projects use stand-alone compilers, and stand-alone

compilers do have advantages. On one hand, with a stand-alone compiler, optimizations are

not limited by constraints imposed by pre-existing language design. While Nebo is limited

in its optimizations, the next chapter will show that it does not suffer for this limitation.

On the other hand, stand-alone compilers complicate build systems. In large existing

software projects, build systems are complicated enough without another component to

maintain. Since Nebo is implemented as a header file, adding Nebo fits into the standard

C++ framework for including simple libraries.

Without stencil operations and Nebo’s type system, Nebo would be limited to point-wise

functions over fields of the same type, such as algebraic, trigonometric, and conditional

calculations. While Nebo could be still useful with such a restriction, Nebo could not fulfill

its purpose: Numerically solving partial differential equations requires stencil operations to

implement various vector operators. Other abstractions exist for these vector operators,

such as apply to field discussed in Section 6.6. Unfortunately, these abstractions limit

loop fusion, other optimizations, and performance as will be seen in Section 8.2 of the next

chapter.

Finally, without Nebo’s multiple backends, Nebo loses much of its appeal to application

developers. When refactoring existing code or writing new code, application developers

need a clear benefit to using a new tool. Beyond Nebo’s simple and clean syntax, Nebo’s

backends provide two clear benefits. First, Nebo’s single-core implementation performs

at least as well and sometimes significantly better than the hand-written C++ code that

it replaces.4 Second, Nebo’s multiple backends mean that developers can target multiple

architectures without maintaining a separate implementation for each architecture. The

next chapter demonstrates these two benefits of Nebo.

4Section 8.2 contains an example of this benefit.

CHAPTER 8

CASE STUDIES OF THE USE AND

PERFORMANCE OF NEBO

8.1 Introduction

All the case studies in this chapter, with the exception of the first (Section 8.2), are

taken directly from Wasatch [103]. As such, the five case studies taken from Wasatch were

written by Wasatch developers, and were written for their own uses. The case studies from

Wasatch show how Nebo’s end users (who are not Nebo developers) actually use Nebo.

Wasatch can be downloaded using svn from:

https://gforge.sci.utah.edu/svn/uintah/trunk

There are a few caveats about the Wasatch code presented here as well as the results.

First, other than the Taylor-Green vortex [130, 31] tests (Sections 8.6 and 8.7), these tests

were run outside of Wasatch. Each benchmark is essentially a single Wasatch task, except

again for the Taylor-Green vortex tests. Thus, these results reflex Nebo’s performance

without the overhead Wasatch would bring to such small benchmarks.

Second, the case studies which include older Wasatch code as originally written will no

longer run in Wasatch. Before Nebo was introduced, compound assignment operators were

implemented as a “one-operation” version of Nebo. For example, the following compound

addition assignment,

Fie ld a , b ;
// . . .
b += a ;

is equivalent to the following Nebo assignment:

Fie ld a , b ;
// . . .
b <<= b + a ;

Also, the traditional C++ assignment operator (=) was implemented to initialize fields,

either from another field or from a scalar value. Since Nebo’s adoption, this syntax has been

removed, and there have been major improvements to underlying structures in the interim.

https://gforge.sci.utah.edu/svn/uintah/trunk

92

In the interest of a fair comparison of coding styles, in the benchmarks I have replaced all

uses of the compound assignment and traditional assignment with the line-for-line Nebo

equivalent. Thus the obsolete code can take advantage of updates and improvements to the

underlying structures, just as the new Nebo-based code can.

Finally, Wasatch is not a static software project. Since Nebo’s adoption, Wasatch code

has changed. Thus, pre-Nebo Wasatch code will have different flags to do slightly different

tasks than the current Wasatch code based on Nebo. Each time there is a difference, the

benchmarks were run such that they calculate the same result, with perhaps some rounding

error due to a different order of operations. Furthermore, I specify what code is executed

for each benchmark.

The first four case studies, those run outside of Wasatch, were run on all of Nebo’s

backends. The following tables summarize the results: Table 8.1 shows the improved

performance of using Nebo over older coding styles. Table 8.2 shows the performance

of using Nebo with 2, 4, 6, 8, 10, or 12 threads as well as the improved performance of the

GPU backend with a field size of 643. Table 8.3 likewise shows the performance of using

Nebo with its various backends but with a field size of 1283.

The simple heat equation in Section 8.2 is the only case study not written by Wasatch

developers. It was written to demonstrate the simple syntax of nesting stencil operations.

The Scalar right-hand side term in Section 8.3 is a good example of how Nebo has been

used as it has been developed and contains three different versions of the same computation.

The detailed conditional expression in Section 8.4 shows the utility of having a nestable

conditional expression in Nebo. Section 8.5 presents a complex use of Nebo and shows

how complex point-wise calculations in Nebo can become. Sections 8.6 and 8.7 both

present different aspects of the Taylor-Green vortex test. Section 8.6 discusses comparing

Wasatch and Nebo to other components of Uintah, which do not use a DSL for their

numeric calculations. Section 8.7 discusses weakly scaling the Taylor-Green vortex test on

the supercomputer Titan [25]. All tests were run on two Intel Xeon E5-2620 (six processors

each, 2.00 GHz) with 16 Gb RAM.

8.2 Simple heat equation
Consider the following parabolic PDE:

∂T

∂t
= ∇ · (−λ∇T)︸ ︷︷ ︸

φ

(8.1)

In the right-hand side of this equation (φ), the fields, λ and T , are input, and several

stencil operators are applied before assigning the result to φ. Namely, the gradient operator

93

Table 8.1. Increases in performance from better use of Nebo. Heat equation compares
the single-core runtime performance of the original code and the Nebo code from Section
8.2, in Figures 8.1 and 8.2, respectively. First scalar RHS compares the single-core runtime
performance of the original code and the initial Nebo version from Section 8.3, in Figures
8.3 and 8.4, respectively. Second scalar RHS compares the single-core runtime performance
of the original code and the current Nebo version from Section 8.3, in Figures 8.3 and 8.5,
respectively.

Size Heat equation First scalar RHS Second scalar RHS

643 0.94x 1.00x 1.88x
1283 0.95x 1.03x 1.91x

Table 8.2. Nebo speedup on real uses in Wasatch on problem size 643. Heat equation
is the Nebo code from Section 8.2, in Figure 8.2. First scalar RHS is the initial version
of the scalar right-hand side code that uses Nebo from Section 8.3, in Figure 8.4. Second
scalar RHS is the current version of the scalar right-hand side code that is in Wasatch from
Section 8.3, in Figure 8.5. Conditional is the benchmark from Section 8.4, in Figure 8.6.
Complex is the benchmark from Section 8.5, in Figure 8.7.

Benchmark 2 threads 4 threads 6 threads 8 threads 10 threads 12 threads GPU

Heat equation 1.31x 2.41x 2.45x 2.59x 3.26x 3.28x 13.78x
First scalar RHS 1.65x 1.61x 1.99x 1.85x 2.14x 2.07x 12.49x
Second scalar RHS 1.81x 2.93x 2.93x 3.41x 3.63x 3.60x 16.25x
Conditional 1.93x 3.42x 5.31x 3.91x 5.33x 5.51x 23.12x
Complex 1.84x 2.33x 3.61x 4.89x 5.88x 5.52x 27.27x

Table 8.3. Nebo speedup on real uses in Wasatch on problem size 1283. Heat equation
is the Nebo code from Section 8.2, in Figure 8.2. First scalar RHS is the initial version
of the scalar right-hand side code that uses Nebo from Section 8.3, in Figure 8.4. Second
scalar RHS is the current version of the scalar right-hand side code that is in Wasatch from
Section 8.3, in Figure 8.5. Conditional is the benchmark from Section 8.4, in Figure 8.6.
Complex is the benchmark from Section 8.5, in Figure 8.7.

Benchmark 2 threads 4 threads 6 threads 8 threads 10 threads 12 threads GPU

Heat equation 1.91x 3.86x 4.91x 6.84x 7.76x 5.98x 25.99x
First scalar RHS 1.85x 3.03x 2.99x 3.29x 2.80x 3.08x 10.43x
Second scalar RHS 2.00x 3.63x 4.95x 6.53x 6.08x 4.81x 13.51x
Conditional 1.92x 3.87x 5.39x 6.13x 6.97x 6.65x 33.57x
Complex 1.90x 3.60x 5.19x 6.00x 7.33x 6.63x 37.42x

94

(∇) is applied to T , and there is an implicit interpolant operator applied to λ.

The results of these two operators are multiplied together and then negated. Finally,

the divergence operator (∇·) is applied to the negated multiplication.

To complicate matters, each of these operators has an implied directionality to it. When

the directions are explicit, the right-hand side of this equation becomes:

φ = ∇x · (−λx∇xT) (8.2)

+∇y · (−λy∇yT) (8.3)

+∇z · (−λz∇zT) (8.4)

The code necessary to calculate the right-hand side of this equation is in Figure 8.1.

Before Nebo was available, this equation required 16 loops to implement.

The code for each direction’s calculation is detailed and yet repetitive. The difference

between calculating the X direction (lines 1-4), calculating the Y direction (lines 6-9), and

the Z direction (lines 11-14) is limited to the names of variables, and stencil operations1.

Of course, the internal implementations of the stencils are different; however, from the

end user’s perspective, these stencils are only slight variations of the same operation.

Additionally, because of the use of the apply to field method, this code cannot easily

be simplified or optimized through loop fusion.

However, when using Nebo, the code mirrors the directionally-explicit mathematical

terms (equations 8.2-8.4), as seen in Figure 8.2.

While this code is still repetitious in its use of stencils, it fuses the 16 loops into a single

loop. Additionally, the Nebo version of this simple heat equation is easier to write, read,

and maintain than the pre-Nebo version.

In this code, there is no branching, so it is obvious how the code was executed.

Because Nebo currently forces nested stencil expressions to recalculate all intermediate

results, nested stencil expression can cause minor slow down for single-core execution, as

seen in Table 8.1. While this recalculation is a current problem, it is not a fundamental

part of Nebo. Optimizations could be added to Nebo to save intermediate results and use

them rather than recalculating them each time. Nebo could break its single calculation

loop into several, mimicing the old syntax, but this would require saving all intermediate

results. Alternatively, in a single calculation loop, Nebo could do a form of memoization.

Nebo could calculate the intermediate results the first time they are needed, and then store

the value until it is no longer needed.

1The field types are also different, but discussion of that aspect of Nebo has been left out for clarity and
space constraints.

95

1 InterpX . a p p l y t o f i e l d (lambda , lambdaX) ;
2 GradX . a p p l y t o f i e l d (T, gradTX) ;
3 lambdaX ∗= gradTX ;
4 DivX . a p p l y t o f i e l d (lambdaX , phiX) ;
5
6 InterpY . a p p l y t o f i e l d (lambda , lambdaY) ;
7 GradY . a p p l y t o f i e l d (T, gradTY) ;
8 lambdaY ∗= gradTY ;
9 DivY . a p p l y t o f i e l d (lambdaY , phiY) ;

10
11 InterpZ . a p p l y t o f i e l d (lambda , lambdaZ) ;
12 GradZ . a p p l y t o f i e l d (T, gradTZ) ;
13 lambdaZ ∗= gradTZ ;
14 DivZ . a p p l y t o f i e l d (lambdaZ , phiZ) ;
15
16 phi = 0 . 0 ;
17 phi −= phiX ;
18 phi −= phiY ;
19 phi −= phiZ ;

Figure 8.1. Code to evaluate equation (8.1). Lines 1-4, 6-9, and 11-14 correspond to
calculating equations (8.2), (8.3), and (8.4), respectively. The final block of code (lines
16-20) calculates the final result from the intermediate results of the previous code.

phi <<= DivX(−InterpX (lambda) ∗ GradX(T))
+ DivY(−InterpY (lambda) ∗ GradY(T))
+ DivZ(− InterpZ (lambda) ∗ GradZ(T)) ;

Figure 8.2. Nebo code to evaluate equation (8.1).

Table 8.3 show that the Nebo code scales linearly (with greater than 90% efficiency)

up to four processors, with fields sized 1283. Table 8.2 show that the Nebo code scales

linearly (with greater than 90% efficiency) only up to two processors, with fields sized 643.

Both tables show greater than 13x speed up with Nebo’s GPU backend. The simple heat

equation example is a very simple calculation, and therefore is memory-bound, limiting its

scalability.

8.3 Scalar right-hand side term

The scalar right-hand side Wasatch task is a great example of how Nebo has improved

code development in Wasatch. The original code in Figure 8.3 predates Nebo’s adop-

tion, and uses the compound assignment operator as well as the original object-oriented

method syntax for stencil operations. This code is old enough that it predates the field

type restrictions on stencil operators. Quite simply, this code checks first for how to

96

1 rhs = 0 . 0 ;
2
3 i f (doXDir) {
4 i f (haveConvect ion) {
5 divOpX −>a p p l y t o f i e l d (xConvFlux , tmp) ;
6 rhs −= tmp ;
7 }
8 i f (h aveD i f f u s i on) {
9 divOpX −>a p p l y t o f i e l d (xDi f fF lux , tmp) ;

10 rhs −= tmp ;
11 }
12 }
13
14 i f (doYDir) {
15 i f (haveConvect ion) {
16 divOpY −>a p p l y t o f i e l d (yConvFlux , tmp) ;
17 rhs −= tmp ;
18 }
19 i f (h aveD i f f u s i on) {
20 divOpY −>a p p l y t o f i e l d (yDi f fF lux , tmp) ;
21 rhs −= tmp ;
22 }
23 }
24
25 i f (doZDir) {
26 i f (haveConvect ion) {
27 divOpZ −>a p p l y t o f i e l d (zConvFlux , tmp) ;
28 rhs −= tmp ;
29 }
30 i f (h aveD i f f u s i on) {
31 divOpZ −>a p p l y t o f i e l d (zDi f fF lux , tmp) ;
32 rhs −= tmp ;
33 }
34 }

Figure 8.3. Original code for Scalar right-hand side term.

handle dimensionality (do the fields have one, two, or three dimensions), checking each

axis independently. For each axis that is valid, the code checks for convection and diffusion,

computing them and adding them in independent of one another. For the benchmarks, every

branch is taken; that is, the code calculates convection and diffusion in three dimensions.

When Nebo was first introduced, stencils were not an acceptable part of the language,

and as such Wasatch solely used the apply to field operator. While the code after refactor

in Figure 8.4 follows much the same pattern as the original version, it does improve upon

its use of the divergence operator. Convection and diffusion still are handled separately,

but divergence is applied afterwards (divergence distributes over subtraction). This control

flow means exactly three divergence operators are executed rather than a flexible number

(zero to six) of the original. The three-dimensional case is the most common in this domain,

97

1 rhs <<= 0 . 0 ;
2
3 i f (doXDir) {
4 i f (haveConvect ion) tmpx <<= − xConvFlux ;
5 else tmpx <<= 0 . 0 ;
6 i f (h aveD i f f u s i on) tmpx <<= tmpx − xDi f fF lux ;
7 i f (haveXAreaFrac) {
8 xAreaFracInterpOp −>a p p l y t o f i e l d (xa r ea f r a c , xAreaFracInterp) ;
9 tmpx <<= tmpx ∗ xAreaFracInterp ;

10 }
11 divOpX −>a p p l y t o f i e l d (tmpx , rhs) ;
12 }
13
14 i f (doYDir) {
15 i f (haveConvect ion) tmpy <<= yConvFlux ;
16 else tmpy <<= 0 . 0 ;
17 i f (h aveD i f f u s i on) tmpy <<= tmpy + yDi f fF lux ;
18 i f (haveYAreaFrac) {
19 yAreaFracInterpOp −>a p p l y t o f i e l d (ya r ea f r a c , yAreaFracInterp) ;
20 tmpy <<= tmpy ∗ yAreaFracInterp ;
21 }
22 divOpY −>a p p l y t o f i e l d (tmpy , tmp) ;
23 rhs <<= rhs − tmp ;
24 }
25
26 i f (doZDir) {
27 i f (haveConvect ion) tmpz <<= zConvFlux ;
28 else tmpz <<= 0 . 0 ;
29 i f (h aveD i f f u s i on) tmpz <<= tmpz + z D i f f F l ux ;
30 i f (haveZAreaFrac) {
31 zAreaFracInterpOp −>a p p l y t o f i e l d (z a r e a f r a c , zAreaFracInterp) ;
32 tmpz <<= tmpz ∗ zAreaFracInterp ;
33 }
34 divOpZ −>a p p l y t o f i e l d (tmpz , tmp) ;
35 rhs <<= rhs − tmp ;
36 }

Figure 8.4. Initial version of Nebo code for Scalar right-hand side term.

which this control flow optimizes for. Despite the control flow, this first refactor does not

use Nebo very efficiently. Finally, this version adds an area fracture interpolant. For the

benchmarks, every branch but the area fracture interpolants are taken; thus, the code

calculates convection and diffusion in three dimensions, as did the original code.

The current version in Figure 8.5 makes full use of Nebo. In fact, this code takes manual

inlining to an extreme not generally seen elsewhere in Wasatch. Rather than independently

handling the dimensions, the code checks for the most common cases, three-dimensional

fields with convection and diffusion, with or without the area fracture interpolant. For

the benchmarks, again the simulation is on three-dimensional fields with convection and

diffusion but not the area fracture interpolant, which means lines 9-11 are the only ones

98

1 i f (doXDir && doYDir && doZDir && haveConvection && h aveD i f f u s i on) {
2 // i n l i n e e v e r y t h in g
3 i f (haveXAreaFrac) {
4 rhs <<= −(divOpX) ((xAreaFracInterpOp) (x a r e a f r a c) ∗
5 (xConvFlux + xDi f fF lux))
6 −(divOpY) ((yAreaFracInterpOp) (y a r e a f r a c) ∗
7 (yConvFlux + yDi f fF lux))
8 −(divOpZ) ((zAreaFracInterpOp) (z a r e a f r a c) ∗
9 (zConvFlux + z D i f f F l u x)) ;

10 }
11 else {
12 rhs <<= −(divOpX) (xConvFlux + xDi f fF lux)
13 −(divOpY) (yConvFlux + yDi f fF lux)
14 −(divOpZ) (zConvFlux + z D i f f F lu x) ;
15 }
16 }
17 else {
18 // handle 2D and 1D cases − not q u i t e as e f f i c i e n t s ince we won ’ t be
19 // running as many product ion s c a l e c a l c u l a t i o n s in t h e s e c on f i g u r a t i on s
20 // . . .

Figure 8.5. Current version of Nebo code for Scalar right-hand side term. The code to
handle the Y dimension has been shortened and code to handle the Z dimension has been
omitted due to space constraints. The omitted code is almost identical to the code from
Figure 8.4, allowing for any subset of the dimensions to be inactive.

run for the benchmarks.

Table 8.1 shows that there is no real improvement in using the first version of Nebo

over the original code for the scalar right-hand side term. Given the similarity of structure

between the original code and the first Nebo version of the code, this is not surprising. On

the other hand, Table 8.1 also shows that the current Nebo version of the code performs

1.9x faster than the original version of the code, with Nebo’s single-core backend. This is a

prime example of how loop fusion, through Nebo’s syntax, clearly benefits performance.

Tables 8.2 and 8.3 show that the first Nebo version of the scalar right-hand side term does

not scale. However, these tables do show that the current Nebo version of the code scales

much better, especially with fields sized 1283. While the scaling of the current version is not

ideal, this code has not be modified in anyway for parallel execution. The scalar right-hand

side term is about as complex as the simple heat equation example of the last section, and

likewise is memory-bound, limiting its scalability.

8.4 A detailed conditional expression

A Wasatch task to calculate the effective viscosity of a precipitate uses a complex

conditional expression in Nebo as seen in Figure 8.6. Interestingly, this conditional contains

99

1 r e s u l t <<= cond (volumeFraction < 1e−10,
2 b a s e V i s c o s i t y)
3 (1 . 0 > (1 + 2 .5 ∗ corrFac ∗ volumeFraction) ∗
4 pow (2 . 0 ∗ strainMagnitude , power /2) ,
5 b a s e V i s c o s i t y)
6 (s q r t (2 . 0 ∗ stra inMagnitude) < minStrain &&
7 1 .0 > (1 + 2 .5 ∗ corrFac ∗ volumeFraction) ∗
8 pow(minStrain , power) ,
9 b a s e V i s c o s i t y)

10 (s q r t (2 . 0 ∗ stra inMagnitude) < minStrain ,
11 (1 + 2 .5 ∗ corrFac ∗ volumeFraction) ∗
12 pow(minStrain , power) ∗ b a s e V i s c o s i t y)
13 ((1 + 2 .5 ∗ corrFac ∗ volumeFraction) ∗
14 pow (2 . 0 ∗ strainMagnitude , power /2) ∗ b a s e V i s c o s i t y) ;

Figure 8.6. A complex use of Nebo conditionals.

several values that are scalar. For example, volumeFraction and baseViscosity are both

scalar, which makes the first clause completely scalar in practice. Furthermore, the first

half of the third clause’s conditional is the same as the whole conditional for the fourth

clause.

Tables 8.2 and 8.3 show that this conditional use of Nebo is complex enough to scale to six

processors with 90% efficiency with Nebo’s multicore backend. This conditional case is more

computationally complex than the scalar right-hand side term or the simple heat equation

example of the last two sections, and as such scales better than the other benchmarks.

Unfortunately, this benchmark is still a memory-bound calculation, and as such does not

scale as much further than the previous two benchmarks on Nebo’s multicore backend. Yet,

this benchmark’s performance is much better than the previous two benchmarks on Nebo’s

GPU backend. This benchmark’s GPU performance is surprising given that this benchmark

is based on branching behavior. However, Nebo’s implementation of cond lifts as much as

possible out of its branches, which aids the GPU performance by spending as little time as

possible in the cond branches.

8.5 A complex use of Nebo

The code in Figure 8.7 implements a homogeneous nucleation term. Other than being a

highly complex calculation, this code is interesting because it could be represented as just

two Nebo assignments (one for each branch of the if statement). However, the Wasatch

developer who wrote it decided to break it into separate terms. By doing so, the developer

avoided verbosely repeating the definitions of the assignee fields. For the benchmarks, I

chose to follow the then branch (lines 3-13 and 30-39).

100

1 i f (surfaceEngTag != Expr : : Tag ()) {
2
3 delG <<= 16.0 ∗ PI / 3 .0 ∗ molecularVolume ∗ molecularVolume ∗
4 surfaceEng ∗ sur faceEng ∗ sur faceEng / (KB ∗ KB ∗
5 temperature ∗ temperature ∗ l og (superSat) ∗
6 log (superSat)) + KB ∗ temperature ∗ l og (superSat) −
7 surfaceEng ∗ pow (36 . 0 ∗ PI ∗ molecularVolume ∗
8 molecularVolume , 1 . 0 / 3 . 0) ;
9

10 iC <<= 32.0 ∗ PI / 3 .0 ∗ molecularVolume ∗ molecularVolume ∗
11 surfaceEng ∗ sur faceEng ∗ sur faceEng / (KB ∗ KB ∗ KB ∗
12 temperature ∗ temperature ∗ temperature ∗ l og (superSat) ∗
13 log (superSat) ∗ l og (superSat)) ;
14 }
15 else {
16
17 delG <<= 16.0 ∗ PI / 3 .0 ∗ molecularVolume ∗ molecularVolume ∗
18 sur faceEnergy ∗ sur faceEnergy ∗ sur faceEnergy / (KB ∗
19 KB ∗ temperature ∗ temperature ∗ l og (superSat) ∗
20 log (superSat)) + KB ∗ temperature ∗ l og (superSat) −
21 sur faceEnergy ∗ pow (36 . 0 ∗ PI ∗ molecularVolume ∗
22 molecularVolume , 1 . 0 / 3 . 0) ;
23
24 iC <<= 32.0 ∗ PI / 3 .0 ∗ molecularVolume ∗ molecularVolume ∗
25 sur faceEnergy ∗ sur faceEnergy ∗ sur faceEnergy / (KB ∗
26 KB ∗ KB ∗ temperature ∗ temperature ∗ temperature ∗
27 log (superSat) ∗ l og (superSat) ∗ l og (superSat)) ;
28 }
29
30 z <<= s q r t (delG / (3 . 0 ∗ PI ∗ KB ∗ temperature ∗ iC ∗ iC)) ;
31
32 kF <<= d i f f u s i o n C o e f ∗ pow (48 . 0 ∗ PI ∗ PI ∗ molecularVolume ∗
33 iC , 1 . 0 / 3 . 0) ;
34
35 N1 <<= NA ∗ eqConc ∗ superSat ;
36
37 r e s u l t <<= cond (superSat > 1 . 0 ,
38 z ∗ kF ∗ N1 ∗ N1 ∗ exp (− delG / KB / temperature))
39 (0 . 0) ;

Figure 8.7. A complex use of Nebo.

While Table 8.2 shows that this benchmark struggles to scale past two processors

with fields sized 643, Table 8.3 shows that these benchmarks scale linearly, with at least

86% efficiency, up to six processors with fields sized 1283 on Nebo’s multicore backend.

Furthermore, both tables show that this benchmark performs better than any of the other

benchmarks on Nebo’s GPU backend. These results are hardly surprising because this

benchmark, despite being broken up into six loops, is more computationally bound than

the other benchmarks. Finally, it bears mentioning again that this benchmark was not

optimized for parallel execution.

101

8.6 Comparing Wasatch to Arches and ICE

The Taylor-Green vortex [130, 31] is a classic two-dimensional fluid dynamics problem,

which has an analytic solution. Because the Taylor-Green vortex has a closed-form solution,

it is often used to verify general algorithms for fluid dynamics.

In this section, I am not using the Taylor-Green vortex for verification but rather for

comparison. Since the Taylor-Green vortex is a classic problem, many software pack-

ages for computational fluid dynamics implement the Taylor-Green vortex. In particular,

Arches [120] and ICE [59] are components of Uintah, just as Wasatch is. As components of

Uintah, Arches and ICE use the same interface and framework for communication and data

storage as Wasatch does. Arches, ICE, and Wasatch take different approaches and target

different problem domains. While this comparison does not validate Uintah’s framework,

this comparison does show that Wasatch’s approach and use of Nebo is competitive. In

particular, Nebo does not create overhead that prevents Wasatch from performing better

than both Arches and ICE and even helps Wasatch’s performance. It also bears mentioning

that the timings reported in this section exclude the linear solver, which is used in the same

manner across all three components. Thus, the differences in performance are in the direct

control of the developers of each component.

Table 8.4 presents the results from comparing Wasatch, Arches, and ICE on a single

processor using a single thread. While using small domain sizes, Wasatch, Arches, and

ICE perform roughly the same with Wasatch doing slightly better. As the domain size

grows, Wasatch performs increasingly well compared to Arches and ICE. At the largest

size, Wasatch runs roughly six times faster than Arches and roughly an order of magnitude

faster than ICE.

Nebo is only a part of Wasatch and can only take part of the credit for Wasatch’s

performance. However, Nebo does perform most of Wasatch’s numeric calculations. Nebo

has a fixed amount of overhead for the Taylor-Green vortex code. As the domain size grows,

overhead becomes a smaller part of the execution of each simulation.

Table 8.4. Taylor-Green vortex test results comparing Wasatch with Arches and ICE.
Each test ran on a single processor using a single thread. In these simulations of the
Taylor-Green vortex, Wasatch is faster than Arches and ICE for all domain sizes.

Component 83 163 323 643 1283

Arches 1.3x 2.5x 4.2x 5.3x 5.8x
ICE 1.7x 3.2x 6.2x 9.0x 9.8x

102

8.7 Weakly scaling Wasatch on Titan

The tests in this section run the same code as in the last section. The difference between

the Wasatch tests of the last section and the test of this section is that these tests were

run on Titan [25] using various numbers of processors. For these tests, Nebo was only used

with its single-core implementation, and communication between processors was handled

by Uintah’s MPI framework.

Figure 8.8 shows how the Taylor-Green vortex code in Wasatch weakly scales from 32 to

262,144 processors. Each plot denotes a different domain size per processor, ranging from

10
1

10
2

10
3

10
4

10
5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Processors

S
c
a

la
b

ili
ty

Weak scaling on Titan

32
3

43
3

64
3

128
3

Figure 8.8. Weak scaling of the Taylor-Green vortex on Titan. Values closer to 1 are
better: They represent better scaling. With these tests, the problem size per processor was
fixed, and the number of processors was increased. Number of processor ranges from 25 to
218.

103

323 to 1283 elements per processor. Because these tests measure weak scalability, values

closer to 1 are better. Thus, for 323 elements per processor, weak scaling starts to break

down at 4096 processors. For 433 and 643 elements per processor, weak scaling starts to

break down at 32,768 processors. For 1283 elements per processor, weak scaling stays strong

through the largest tests run, with 262,144 processors. Again, as in the last section, we see

that Wasatch and Nebo perform better with more elements per processor.

Just as with the tests from the last section, Nebo cannot take all of the credit for

these results. Much time and effort has gone into developing Uintah, Wasatch, and Nebo.

All three software packages must perform efficiently and scalably for the Taylor-Green

vortex problem to scale to 262K processors. For example, if Uintah handled the MPI

communication poorly, these tests would not scale. Alternatively, if Nebo had more overhead

or was less efficient, these tests may scale even better than they do, by hiding communication

latency behind inefficient numeric calculations. However, in this case, efficiency would suffer

and Wasatch would not perform favoriably in comparison tests with other components of

Uintah. Fortunately, the previous section shows that Wasatch is efficient, and so Wasatch,

using Nebo, is scalable and efficient.

8.8 Summary

This chapter presents evidence that Nebo’s backends are efficient and useful. Nebo’s

single-core implementation performs at least as well as the hand-written C++ that it

replaces and often better. Nebo’s multicore implementation can scale linearly up to six

threads. Nebo’s many-core (GPU) implementation generally performs at least an order

of magnitude faster than its single-core implementation, and can be as much as 37 times

faster. Moreover, Wasatch with its heavy use of Nebo compares favorably to Arches and

ICE, and can be up to an order of magnitude faster. While Uintah has weakly scaled to

262K processors with other components before, Uintah scaling to that same point with

Wasatch and Nebo proves that Nebo (and Wasatch) are efficient and scalable as well.

This chapter concludes the contributions of this dissertation. The next chapter discusses

work related to introspective pushdown control-flow analysis and Nebo.

CHAPTER 9

RELATED WORK

9.1 Introduction

This chapter discusses work related to introspective pushdown control-flow analysis as

well as work related to Nebo. Section 9.2 discusses other approaches to approximating

program behavior, either as a pushdown system or as another context-free model. Section

9.3 discusses other approaches to designing languages and systems for large-scale parallel

computation. Section 9.3.1 discusses parallel paradigms, including shared memory, dis-

tributed memory, and PGAS along with other models. Section 9.3.2 discusses the various

approaches to designing parallel languages. Sections 9.3.1.4.7 and 9.3.2.4 specifically discuss

domain-specific languages similar to Nebo.

9.2 Control-flow analysis

The static analysis portion of this dissertation is based on an earlier work: Introspective

pushdown analysis of higher-order programs, in the Proceedings of the 17th ACM SIGPLAN

International Conference on Functional Programming, c© ACM, 2012. http://doi.acm.org/

10.1145/2364527.2364576. Included here by permission.

The complete development of pushdown analysis from first principles stands as a new

contribution, and it constitutes an alternative development of CFA2. It goes well beyond

the ICFP 2012 work (and work on CFA2) by specifying specific mechanisms for reducing the

complexity to polynomial time as well. An immediate advantage of the complete develop-

ment is its exposure of parameters for controlling polyvariance and context-sensitivity. The

development of introspective pushdown systems is also more complete and more rigorous.

The complete development of pushdown analysis also exposes the critical monotonicity

constraint absent from the ICFP 2012 work. More importantly, this work uses additional

techniques to improve the performance of the implementation and discusses those changes.

Garbage-collecting pushdown control-flow analysis draws on work in higher-order control-

flow analysis [121], abstract machines [47] and abstract interpretation [42].

105

9.2.1 Context-free analysis of higher-order programs

The motivating work for the pushdown analysis presented here is Vardoulakis and Shiv-

ers’ [135] very recent discovery of CFA2. CFA2 is a table-driven summarization algorithm

that exploits the balanced nature of calls and returns to improve return-flow precision in a

control-flow analysis. Though CFA2 exploits context-free languages, context-free languages

are not explicit in its formulation in the same way that pushdown systems are explicit

in our presentation of pushdown flow analysis. With respect to CFA2, the pushdown

flow analysis in this dissertation is also polyvariant/context-sensitive (whereas CFA2 is

monovariant/context-insensitive), and it covers direct-style.

On the other hand, CFA2 distinguishes stack-allocated and store-allocated variable

bindings, whereas my formulation of pushdown control-flow analysis does not: It allocates

all bindings in the store. If CFA2 determines a binding can be allocated on the stack, that

binding will enjoy added precision during the analysis and is not subject to merging like

store-allocated bindings. While I could incorporate such a feature in our formulation, it

is not necessary for achieving “pushdownness,” and in fact, it could be added to classical

finite-state CFAs as well.

9.2.2 Calculation approach to abstract interpretation

Midtgaard and Jensen [92] systematically calculate 0CFA using the Cousot-Cousot-style

calculation-based approach to abstract interpretation [41] applied to an ANF λ-calculus.

Like the present work, Midtgaard and Jensen start with the CESK machine of Flanagan et

al. [48] and employ a reachable-states model.

The analysis is then constructed by composing well-known Galois connections to reveal

a 0CFA incorporating reachability. The abstract semantics approximate the control stack

component of the machine by its top element. Midtgaard and Jensen remark monomor-

phism materializes in two mappings: “one mapping all bindings to the same variable,” the

other “merging all calling contexts of the same function.” [92, p. 293] Essentially, the

pushdown 0CFA of Section 2.3 corresponds to Midtgaard and Jensen’s analysis when the

latter mapping is omitted and the stack component of the machine is not abstracted.

9.2.3 CFL-reachability and pushdown-reachability techniques

This work also draws on CFL-reachability and pushdown-reachability analysis [30, 79,

112, 113]. For instance, ε-closure graphs, or equivalent variants thereof, appear in many

context-free-language and pushdown reachability algorithms. For my analysis, I implicitly

106

invoked these methods as subroutines. When these algorithms showed their weaknesses (as

with their enumeration of control states), I developed Dyck state graph construction.

CFL-reachability techniques have also been used to compute classical finite-state ab-

straction CFAs [90] and type-based polymorphic control-flow analysis [110]. These analyses

should not be confused with pushdown control-flow analysis, which is computing a fun-

damentally more precise kind of CFA. Moreover, Rehof and Fahndrich’s [110] method is

cubic in the size of the typed program, but the types may be exponential in the size of the

program. Finally, the technique presented here is not restricted to typed programs.

9.2.4 Model-checking higher-order recursion schemes

There is terminology overlap with work by Kobayashi [77] on model-checking higher-

order programs with higher-order recursion schemes, which are a generalization of context-

free grammars in which productions can take higher-order arguments, so that an order-0

scheme is a context-free grammar. Kobayashi exploits a result by Ong [105], which shows

that model-checking these recursion schemes is decidable (but ELEMENTARY-complete)

by transforming higher-order programs into higher-order recursion schemes.

Given the generality of model-checking, Kobayashi’s technique may be considered an

alternate paradigm for the analysis of higher-order programs. For the case of order-0,

both Kobayashi’s technique and the one presented in this dissertation involve context-free

languages, though mine is for control-flow analysis and his is for model-checking with respect

to a temporal logic. After these surface similarities, the techniques diverge. In particular,

higher-order recursion schemes are limited to model-checking programs in the simply-typed

lambda-calculus with recursion.

9.3 Parallel processing languages for large-scale
parallel computation

Computer science attempts at parallel processing languages for large-scale parallel com-

putation have failed to gain traction over the last 20 years because of hidden costs and

adopter uncertainty. Creating a language is a fairly inexpensive and fast process; however,

building a highly optimized and efficient compiler for a new language is an expensive process,

in terms of developers’ time. Many language designers consider their work done when a

prototype implementation is complete. Thus, many language designers do not spend the

time necessary to optimize for large scale computation. Many of the languages discussed

below have no current support. Researchers and members of industry interested in adopting

new parallel technologies are justifiably concerned that their projects may be orphaned if

107

the trendy new parallel programming language used by their projects loses support.

The rest of this chapter is laid out as follows: Section 9.3.1 discusses the main types of

parallel models used by parallel programming languages. Section 9.3.2 discusses the various

methods of designing a new parallel programming model as well as which languages are still

actively used. Section 9.3.3 discusses why so many of the languages discussed in Sections

9.3.1 and 9.3.2 have failed to gain traction and why the few that have been successful found

success.

9.3.1 Models of parallelism

There are many models of parallel computation. This section divides the models gen-

erally upon how each language handles memory. Shared memory models view memory

as a single globally addressed entity. Distributed memory models view memory as locally

partitioned. Message passing models allow computation units to share information with

each other through the use of explicit messages. Data parallel models force all computation

units to execute the same instructions. Because of the interrelation of these models, I

combine distributed memory, message passing, and data parallel models into a single section.

PGAS (partitioned global address space) models combine shared and distributed memory

models, for a globally addressed, yet locally positioned memory model. Finally, I discuss

other models, which generally abstract memory management from the programmer’s direct

control in various ways.

9.3.1.1 Shared memory

Within the shared memory model, each processor/computation unit has access to every

address in memory. Traditionally, the shared memory model implies uniform access. With

uniform access, each address takes as long to access as every other. In practice, caches

and prefetchers optimize memory access times for spatial and temporal locality. That is,

memory recently accessed or memory near recently accessed memory is faster to access than

other memory. For sequential computation, caches and prefetchers can significantly improve

performance. For parallel computation, caches and prefetchers can improve performance

but also complicate the memory model. A cache keeps a local copy of some memory, which

can change independent of any other copies in other caches or in main memory. However,

cache coherence for shared memory models is generally handled by hardware.

The explicit or implicit use of computational units, or threads, mainly defines shared

memory models. For example, ACE [44], Pthreads [6], and Presto [20] all give explicit

control of threads to the programmer. When controlling threads directly, the programmer

108

must determine when it is best to create and destroy threads as well as how best to manage

them. For a diligent programmer, this control can allow better performing code, but it also

forces more work onto the programmer.

Implicitly controlled, or rather language/compiler-controlled, threading requires less

work from the programmer but also require the compiler to determine the best means

for managing the threads. Fork [60], Cilk [53], ParC [55], COOL (Concurrent object

oriented language) [36], FX [126], and OpenMP [8] provide parallel structures/syntax for

the programmer to use. Generally, these parallel structures/syntax inform the compiler of

parallel opportunities but are not required to be executed in parallel or even to be scheduled

for parallel execution. Fork and Cilk provide “spawn points” after which execution may be

performed in parallel. ParC, among other languages, provides parallel loop structures, that

allows different iterations of the loop to be executed in parallel. ParC also provides a split

block, in which each statement can be executed in parallel. The function definition syntax

of COOL specifies if a function can be executed in parallel or must be computed atomically.

Users of the FX library describe tasks, which FX schedules on threadpools that it manages.

The OpenMP library allows for both parallel loop execution as well as task descriptions for

parallel execution.

Synchronization also varies among languages that use shared memory. For example,

COOL uses mutex functions to specify sole access to objects. The Pthread library and

ParC provide synchronization primitives, such as barriers, semaphores, and mutex locks.

Similarly, Presto provides synchronization classes, which can be expanded through class

inheritance.

9.3.1.2 Nonshared memory

A distributed memory model has memory divided into sections, each of which is near a

computation unit. This model reflects clusters and networks more accurately than shared

memory models. With clusters and networks, memory accesses between physical chips is

not identical to memory accesses on the same physical chip. Memory accesses across chips

takes longer to complete and must use communication channels that are physically different

that on-chip memory accesses. If computation units are to communicate information, it

cannot be through memory. Most distributed memory models focus on either eliminating

communication or providing mechanisms for computation units to pass information between

each other.

The distributed memory models that focus on information sharing, generally use explicit

message passing. CSP [64] was an early and influential message passing language, and

109

Occam [89] is heavily based off of it. MPI [138] is a widely used message passing library

with several implementations for several languages. ISIS [24] is a message passing library

for Fortran, and Fortran-M [51] adds message passing and task parallelism to Fortran77.

MpC [84] implements a subset of MPI as part of its core language. SuperPascal [63] is

Pascal [139] extended with message passing. POOL-I [11], Sina [132] and DC++ [34] pass

messages between objects. Furthermore, DC++ is built upon C++ and uses special classes

for communication, which act like channels, and uses other specialized classes for messages.

P++ [85] is also built upon C++ but does not allow inheritance from its channels and

messages. V [81] uses streams over shared or distributed memory models.

ACT++ [70] and Joyce [62] use the actor model. In the actor model, everything is

an actor, which acts based upon the messages it receives. Computation follows a cascade

of messages. Actors are concepts more general than threads because they can respond

to multiple messages at once in parallel. Thus more than one thread may be needed to

implement a single actor.

Charm [71] and Charm++ [73] use chares for message passing. A chare is similar to an

actor; however, a chare must sequentially process a single message at a time. Thus a single

thread can implement a chare.

The distributed memory models that attempt to eliminate communication usually focus

on data parallelism for problems where there are no or few dependencies between data.

Thus different computation units can run the same computation on different data. This

parallelism is very similar to the loop parallelism in the shared memory model languages,

such as pC++ [28]. However, generally data parallel models still provide some form of

communication for problems with data dependencies. In the strictest data parallel models,

all the computation units must execute the same instruction in lock-step. Generally,

though, data parallel models only force the computation units to execute the same block of

instructions or function.

P3L (Pisa Parallel Programming Language) [16] models both data and task parallelism.

Data parallelism comes through explicit parallel loop and functional map constructs. Task

parallelism comes through the pipe functionality, which essentially chains computational

blocks together creating streams of computed values.

DOME [13] is an object oriented language that defines parallelism through classes

that contain arrays of data. Similarly, pC++ [28] and Correlate [116] extend C++ and

Java, respectively, with data parallel constructs. Fortran D [52] adds data parallelism to

Fortran77.

110

NESL [26] allows for nested data parallelism. Data parallelism is nested when data

parallel functions can be performed in parallel. NESL also builds measures of the complexity

of the work and the depth of the nested data parallelism, which helps to estimate the amount

of parallelism for analysis.

C* [117] provides the ability to define shapes, which are regularly- or irregularly-shaped

arrays. C* decomposes the user specified shapes to exploit data parallelism. The compiler

then handles any information sharing that arises from the decomposition of the shapes.

Vic* [40] extends C* with virtual memory. While not directly related, C** [83] extends

C++ with classes called aggregates that are essentially shapes from which other classes can

inherit.

9.3.1.3 PGAS

Partitioned global address space (PGAS) is the best of both shared and distributed

memory models. Programs can uniformly access memory on hardware that is physically

distributed. Uniform memory access simplifies the structure of programs. Compilers are

able to hide the difference between local and nonlocal memory accesses. However, nonlocal

(off-chip) memory accesses must still travel longer distances than local (on-chip) memory

accesses and therefore have more latency. This latency directly hinders performance. Thus

several PGAS languages, especially the later ones, distinguish between local and nonlocal

memory in the type system. This type-system distinction on memory allows memory

accesses to have a uniform syntax, while still forcing the programmer to consider the latency.

Furthermore, the type-system distinction allows compilers to better optimize local memory

accesses, because there does not have to be a runtime check for nonlocal memory access.

9.3.1.3.1 Early PGAS languages. Many PGAS languages predate the terminol-

ogy, “partitioned global address space.” These languages describe themselves as working

on distributed memory systems while providing the syntax of shared memory systems.

Split-C [86], XPC (explicitly parallel C) [109], and UC [17] extend C with global pointers

and synchronization primitives. CC++ [38] and MPC++ similarly extend C++ with

global pointers and synchronization (inheritable) classes. KOAN (Fortran-S) [82] extends

Fortran77 with a virtual shared memory. Likewise, HPF (High Performance Fortran) [1, 2]

extends Fortran90 and Fortran95 with a virtual shared memory. Modula-2* [131] extends

Modula-2 with a virtual shared memory. Also, Midway [21], Millipede [66], TreadMarks [12],

Lparx [80], and Orca [18] all provide a virtual shared memory space. Beyond just providing

a virtual shared memory, Munin [19] analyzes the types of nonlocal memory accesses. Munin

uses this analysis to intelligently select different distributed information sharing techniques

111

for better performance. DSM-Threads [99] can replace Pthreads [6] in existing applications

to use these applications in a distributed memory setting with virtual shared memory. GA

(Global Arrays) [102] is a library for Fortran, C, C++, and Python and provides virtual

shared memory and automatically distributed arrays.

Not all early PGAS-like languages provided uniform memory access. Some provided a

mix of shared memory in certain contexts and distributed memory information sharing

techniques everywhere else. While this two-level memory distinction disqualifies these

languages from being true PGAS languages, they represent a first step towards unifying

shared and distributed memory models. The desire for unification began with the use of

multicore chips in clusters. Here traditionally shared memory devices were being used in

distributed memory settings. Without some way of addressing the difference, such systems

must use distributed models on the multicore chips, which introduces unnecessary latency

for communication between computation units on the same chip. Thus, these hybrid systems

were proposed. HPC++ (High Performance C++) [69], ABC++ (Abstract Base Class) [14]

and QPC++ (Quasi-Parallel C++) [29] extend C++ with shared memory within objects

but message passing between objects. Interestingly, QPC++ also allows variables to be

shared between objects when the variables are explicitly scoped and labeled as shared.

Nexus [49] is a library communication between CC++ [38] and Fortran-M [51]. Nexus

adds its own concept of shared versus distributed memory through contexts. Within a

context a shared memory model is used, and message passing is used between them.

9.3.1.3.2 Modern PGAS languages. There are also several relatively recent lan-

guages that use PGAS explicitly and intensionally. Co-Array Fortran [104] extends For-

tran95 with PGAS. Co-Array Fortran creates images, which are essentially data parallel

copies of the program. Synchronous primitives are included to simplify communication

between images. Co-Array Fortran has become part of standard Fortran (as of the 2008

standard) [111].

UPC (Unified Parallel C) [4] extends C with PGAS. UPC uses explicit threads for

parallelism as well as explicit synchronization primitives. UPC requires variables that are

to be shared between threads to be explicitly marked with the keyword, shared. For shared

variables, UPC provides the same pointer arithmetic as local (standard C) pointers and extra

support for programmers to discover what parts of shared variables are local. Currently

there is ongoing research with and support for UPC, unlike most of the other languages

that extend C with parallel capabilities.

Titanium [141] extends Java with PGAS. Titanium uses threads to model parallelism.

112

Titanium does not require any special annotations for variables and data to be shared

across threads. Titanium is easily ported between systems of various memory layouts.

However, some systems, especially distributed memory ones, generally need tuning for

optimal performance, which is usual for distributed memory systems. Titanium, unlike

most other parallel languages, provides garbage collection, which it inherits from Java. The

Titanium project appears to no longer be maintained, but some of the applications built

upon Titanium are still used for research. Thus Titanium lives on in one form or another.

X10 [119] uses syntax similar to C and C++ but does not directly inherit from either

language. X10 divides data among places, which act very similar to threads. Like threads,

places can pass messages to each other to simplify communication. X10 provides activities,

which asynchronously execute statements, which threads generally cannot do. For synchro-

nization, X10 provides clocks, which are dynamic barriers, and hierarchical relationships

between activities. One activity can spawn a child activity and thus become the new

activity’s parent. A child activity cannot wait for its parent to finish. However, a parent

can wait for its children to finish. X10 also provides support for certain blocks of statements

to be executed on NVidia’s GPUs, through a CUDA backend. X10 also provides syntax

for compiler annotations, which allows programmers to selectively use compiler add-ons,

for specialized features and optimizations. This ability to grow the language through

annotations is rather unique among parallel languages. X10 was created and is currently

supported by IBM.

Chapel [9] is a procedural PGAS language with syntax common to many languages,

such as C++, Fortran, and Matlab. Chapel defines a locale as its local memory unit/basic

computational unit. Chapel is designed around the idea of incremental implementation.

Incremental implementation provides high-level simple commands to perform common com-

plex tasks and allows for gradual replacement of those commands with more specialized

and more detailed commands, if and when better performance is required. Incremental

implementation also guides data allocation among locales: Easy and fast-to-code commands

for data allocation exist, as do complex, detailed, and optimized commands for the same

tasks. Similar to X10’s activities, Chapel uses task-based constructions to exploit task

parallelism. Chapel is supported by Cray, and is under steady if slow development. To wit,

version 0.4 was released in 2005 [3], and the current version, 0.91 was released last year [9].

There is no information as to when the first full version (1.0) will be released.

Fortress [10] is a PGAS language that incorporates many recent concepts and designs

from the programming language research community. Fortress is object oriented but uses

113

traits instead of inheritance. Fortress is statically typed and can use type inference to de-

termine the type of various statements and expressions. With type inference, programmers

can skip specifying many of the type annotations that otherwise generally plague statically

typed programs. Fortress also employs components, which are essentially modules. A

module or component defines functions, objects, types, and values which can be exported

to other modules for use. Thus a module is a lot like a user-defined library. In fact, many

libraries are written as modules when supported by a given language. However, unlike most

nonmodule libraries, modules can selectively chose what definitions they wish to provide,

thus allowing global definitions in the module to be private to it. While all of these features

make Fortress attractive to potential users, Fortress has come to a crucial and potentially

fatal point in its development. Fortress was originally designed by Sun Microsystems and

has been maintained by Oracle. Unfortunately, Oracle just last year announced that it

decided to pull support from Fortress [124]. Loss of corporate support is not the end of

Fortress, but Fortress must now rely on its open source community for long-term support

and use. Since Fortress began as a corporate project, the open source community around

Fortress is largely untested and now must for the first time bear Fortress’s full support

commitments. Fortress’s future is very unclear at the moment.

It is worth noting here that the last three languages discussed, X10, Chapel, and

Fortress, all were begun by corporations as part of DARPA’s HPCS (High Productivity

Computing Systems) project [88]. This project lasted until 2010, although corporate

support continued afterward. It is not surprising that these three languages are the biggest

and most interesting projects of their kind in the last few years. However, only time will

tell if these projects are directly useful or through derivative languages indirectly useful to

future parallel programming needs.

9.3.1.4 Other models

In this section, I discuss parallel processing languages that do not fit into the previous

categories. First, I will discuss a few unique languages and then some small categories, all

of which handle memory quite differently than the above languages.

µCRL (micro-Common Representation Language) [58] is a language built to mathe-

matically study communicating processes. Alternatively, µCRL can also be described as

an algebraic language of communicating processes. The syntax and semantics of µCRL

essentially represents a term rewriting system. This approach to syntax and semantics

translates very directly into mathematical notation for proofs of correctness, termination,

and properties. Of course, µCRL is Turing-complete and as such generally is not decidable.

114

However, under certain well-defined conditions, µCRL is terminating. This result and

other results about program properties makes µCRL interesting to those studying the

computational theory behind parallel programs. Conversely, µCRL is not designed for

ease of use or efficiency and thus is not interesting to those wishing to build applications

not relating to the computational theory behind parallel programs.

Mentat [57] is a language loosely based on C++, designed to explore how far compiler-

driven parallelism can be taken. Mentat’s basic work flow is as follows: A programmer

writes object-oriented yet sequential code and provides hints/annotations about which

computations, tasks, functions, and data are worth parallelizing. The compiler then an-

alyzes the code and determines all data and task dependencies. Using this dependency

information and the programmer’s annotations, the compiler automatically parallelizes the

code. Theoretically, this heavy reliance on the compiler is ideal. The programmer focuses

on what is to be computed and hints what is difficult and contains parallelization potential,

while the compiler focuses on how to do the computation. If the compiler is properly built,

it could support any hardware configuration and efficiently map the computation to the

hardware’s strengths without any extra input or tuning from the programmer. However, in

practice, a compiler of this sort is limited to what it has been designed to analyze. Thus the

compiler is limited to the experience and knowledge of the designers and implementors of

the compiler. That said, no other language focuses as much as Mentat does on both ease of

programming and performance optimization. The other languages focus on providing easy

programming at the cost of performance or high performance at the cost of dealing with

minute but influential details that complicate the source code.

Unity [37] is a pure research language of a very different vein than µCRL. Where µCRL

focuses on mathematical rigor, Unity focuses on convergence theory. A program written

in Unity is primarily composed of a series of statements. These statements are executed

randomly in parallel repeatedly. The computation continues infinitely until a fixed point is

reached. In this context, a fixed point is when executing any statement does not change

anything, i.e., no data/state change. Unity models infinite parallel computations as well as

parallel fixed point computations. Much like µCRL, Unity’s primary interest is theoretic

and not practical. Unity was implemented as a teaching tool, and not as a language for

practical applications [56].

Falcon [101] focuses on providing a common, broad and efficient toolbox of techniques

and styles. Falcon contains six programming language paradigms: Procedural, functional,

class-based object orientation, prototype-based object orientation, message orientation, and

115

tabular. With this collection of paradigms, a programmer can use procedures, first-class

functions, inheritable objects, dynamically composed objects, messages, or table-based

computing. Rather than restricting programmers to one or two paradigms, Falcon allows

programmers to pick the right paradigm—or tool—for the current task or subtask without

changing languages. Falcon provides only limited parallelism through its message passing

mechanism, but its approach to programmer freedom is what makes Falcon interesting.

9.3.1.4.3 Coordination languages. Coordination models use a logical tuple-space,

or global heap, that coordinates computation units through their interaction with the tuples.

Coordination models can be considered an indirect message passing model. Linda [54] is

the original coordination language, and as such all the other languages in this section derive

from Linda. Objective Linda [76] replaces the tuple-space with a global object store. The

main difference between Objective Linda and classic Linda is that methods are now passed

along with data. Structured Dagger [72] combines Linda with Charm [71] to add direct

communication between threads/computation units. Eilean [35] is an implementation of

Linda that uses MPI for its basic communication primitives. ISETL-Linda [118] combines

the ISETL approach to imagine processing with Linda-based communication. ParLin [122]

combines C with Linda-based communication.

9.3.1.4.4 Graph-based languages. Almost all the languages discussed so far in

this chapter focused on data parallelism: The placement of data, communication of data,

etc., etc. Unlike those languages, graph-based languages focus mostly on task paral-

lelism. Graph-based languages decompose computation into graphs, where edges are data-

dependencies. Compiler-based schedules are able to use the graph structure to determine

what nodes of computation are ready to execute. Similarly, these schedulers can focus on

critical paths and bottlenecks to increase parallelism. GLU [67] is a rather straightforward

graph-based language. Jade [115] is a shared memory extension to C that uses task graphs to

exploit task parallelism. Code [100] is an Ada/C based graph-based language that employs

lazy evaluation. Lazy evaluation is a model of evaluation where a value is only evaluated

when it is actually needed for another computation. PSDM (Parallel Software Design

Model) [74] is a graph-based language that tightly ties task nodes to processors.

9.3.1.4.5 Logic and functional parallel languages. The best known logic pro-

gramming language is Prolog. Logic programming is declarative. Facts, rules, and informa-

tion are declared. Statements posed as queries then drive computation. The logical system

tries to prove or disprove these queries. There is no notion of memory or state in logic

programming. Parlog [39], Strand [50], and Aurora [87] are all Prolog-derived languages

116

that parallelize the logical proof system.

Functional languages pose computation as the composition of functions with no (or

little) global state. Even with global state, there is no notion of memory in a functional

language. Lisp is one of the oldest functional languages, and multilisp [61] is a parallel

variation of lisp. Multilisp introduces the concept of futures. A future is the result of a

concurrently-performed computation/evaluation that may or may not be ready. Any use

of a future before it is ready blocks. Also, multilisp introduces a parallel function call that

causes parallel execution/evaluation of the given call’s arguments.

9.3.1.4.6 GPU languages. GPUs are hardware processors that are specifically

designed to work over massive amounts of data in parallel. Unlike traditional CPUs, GPUs

tend to have a large number of registers, lock-stepped instruction execution across many

processors, and explicitly managed memory and cache. CUDA [5] is a low-level language

designed by NVidia, the makers of a large portion of GPUs on the market. CUDA attempts

to be the C of GPUs, with a great deal of processor control and optimization directly given

to the programmer. CUDA can be used within C, C++, and Fortran. On the other hand,

OpenCL [7] focuses on a broader range of processors, targeting both CPUs and GPUs.

9.3.1.4.7 Domain-specific languages. A recent approach to designing parallel

processing languages is to limit the scope of the language to a specific domain or area

of application. On one hand, limiting a language to a single application does have the

obvious drawback of restricting the potential users of a language to those interested in

its target domain. On the other hand, a new domain-specific language can focus on the

abstractions and the potential parallelism of its domain. Nebo clearly fits into this category.

There are many other DSLs that have functionality and domains similar to Nebo, but

none contain all of Nebo’s features. POOMA [114] and Blitz++ [137] are the only other

DSLs to allow incremental adoption in the same general domain. POOMA provides support

for message-passing and thread-based parallelism but not GPU support. Out of all the

languages discussed in this chapter, Blitz++ does not support parallel execution but is

included because of its similarity to Nebo.

Liszt [43] solves PDEs by abstracting based on geometry and spatial reasoning rather

than mathematical equations as Nebo does. While Liszt supports both CPU- and GPU-

based parallelism, Liszt generates only code that supports one type of parallelism at a time.

Furthermore, Liszt does not support incremental adoption.

DSLs, such as OptiMesh [128] and OptiML [127], developed with the Delite compiler [33],

offer CPU- and GPU-based parallel backends within the same runtime environment, like

Nebo. The Delite language/compiler is a metadomain-specific language/tool. Delite fa-

117

cilitates the creation of DSLs that can interact with other DSLs created within Delite.

OptiMesh uses the same abstractions and much of the same syntax as Liszt for solving

PDEs. In general, OptiMesh performs better than Liszt because Delite provides support

for more aggressive optimizations, and OptiMesh is able to work with other Delite-based

DSLs. OptiML is a domain-specific language for machine learning.

The Pochoir stencil compiler [129] supports stencil calculations very similar to the

stencils Nebo provides. However, the shape of Pochoir’s stencils are not polymorphic, as

Nebo’s are. (See Section 7.3 for more information on Nebo’s polymorphic stencils.) Pochoir

does more optimizations than Nebo; however, Pochoir must analyze the entire time-step

function, which currently limits it to simple time-step functions. By comparison, Wasatch

regularly runs time-step functions that use dozens and sometimes hundreds of variables.

Pochoir and DSLs from Delite support forms of incremental adoption. Generally, partial

adoption of these languages requires extra code/syntax for DSL and host code to interact.

Partial adoption for these languages does require changing the build system to use a new

language-specific compiler. In comparison, Nebo works with the host representation of data

(and so does not require interface code) and is included with a header file as any C++

library is.

9.3.2 Language design approaches

When designing a new parallel programming language, there are four basic approaches

that language designers take. First, they can design a novel language, inheriting little if

anything from previous languages. Second, they can heavily borrow syntax and model

designs from existing languages. Often heavily relying on another language means creating

a new language that contains the original as a subset of the new language. Third, they

can design libraries that are linked into existing languages’ syntax and compilers. The

second and third approaches are very similar but can be distinguished by implementation.

When a new parallel language is contains another established language as a subset (second

approach), often the new language features and semantics require the implementation and

use of a new compiler and tool chain for the new parallel language. When a new parallel

language is designed as a library for use with existing languages (third approach), the new

language features and semantics require only modifying existing compilers and tools, often

requiring only extra compiler flags to enable the new parallel language. Fourth, language

designers can build a domain-specific language. A new language targeting a specific domain

generally takes one of two paths: A new domain-specific language can stand alone or be

embedded in another language. A stand-alone domain-specific language generally is a novel

118

language with its own compiler. An embedded language, like Nebo, either expands an

existing language or is linked in like a library.

Each of these four approaches has its own benefits and drawbacks. It should be noted

that languages listed as no longer active, are listed so because they have had no recent

publications, recent support updates, or publicly known applications currently in use. Thus

a language listed as inactive may be active, but it is unlikely.

9.3.2.1 Novel language approach

Novel language design is mainly useful for language designers who are building a language

on a novel parallelism model or a very new one. µCRL [58], CSP [64], GLU [67], Linda [54],

Unity [37], Code [100], Falcon [101], PSDM [74], and Chapel [9] all fit into this category.

Out of these, only Falcon and Chapel are still in use. It should be noted, however, that

Linda still has derivative languages that are still in use.

9.3.2.2 Language extension

Language extension is a better option for a language designer. The language’s users,

that is programmers, will need to learn less to adopt the language.

There are at least 15 languages that derive from C [75]: Split-C [86], Jade [115],

Midway [21], MpC [84], ParC [55], UC [17], C* [117], Vic* (builds on C*) [40], Charm [71],

Cilk [53], Fork [60], ParLin (combines C and Linda) [122], XPC [109], UPC [4], and

OpenCL [7]. Out of these 15, Cilk, UPC and OpenCL are clearly still supported and

actively developed.

There are at least 19 languages that derive from C++ [125]: ACE [44], Correlate [116],

HPC++ [69], pC++ [28], CC++ [38], MPC++ [65], ABC++ [14], Mentat [57], Presto [20],

Munin (builds on Presto) [19], Parallel-C++ [68], DC++ [34], QPC++ [29], C** [83],

Charm++ (builds on Charm) [73], COOL [36], DOME [13], P++ [85], and P3L [16]. Out

of these 19, ACE is still used in industrial applications.

Java is the basis of: A version of ACE [44], Correlate (shifted from C++ toward the

end of its support) [116], Titanium [141], and DPJ (Deterministic Parallel Java) [27]. Of

these, ACE and DPJ are still used in industrial applications.

Fortran had at least six derivatives: KOAN/Fortran-S [82], Polaris [107], Fortran-M [51],

Co-Array Fortran [104], Fortran-D [52], and HPF [2]. Out of these, Co-Array Fortran is

part of the latest Fortran standard [111], and HPF is still actively used and supported.

None of the following parallel derivative languages are known to be currently used

or supported: Modula-P [32], Modula-2* [131], and Orca [18] derived from Modula-2.

119

NESL [26] derives from ML. Linda [54] is the basis of Objective Linda [76], Structured

Dagger (builds on Charm and C) [72], Eilean (uses MPI) [35], and ISETL-Linda [118].

Multilisp multilisp [61] derives from Lisp. Prolog is the basis of Parlog [39], Strand [50],

and Aurora [87]. CSP [64] is the core of Occam [89]. SuperPascal [63] is a superset of

Pascal.

9.3.2.3 Language as library

Next, a language designer can build their parallel model as an library to be added onto

both existing languages and existing compilers. This approach will not work for parallel

models that are great departures from traditional programming paradigms. However, if

the parallel model can be captured in a library, this is generally a language designer’s

best chance of success. Rather than tying their design to a specific definitive language, a

library allows any language/compiler community to pick it up and implement a convenient

interface for their language. Thus a language designer can build a prototype of their library

as just a proof of concept, and let interested communities build the practical and useful

implementations onto already successful compilers and languages.

MPI [138], OpenMP [8], and Pthreads [6] are probably the most successful libraries and

works with C, C++, and Fortran. CUDA [5], while not technically a library, behaves very

much like a library when interacting with C, C++, and Fortran and is used with most GPUs.

The Meta-Chaos library [46] allows HPF [2], pC++ [28] and other languages to communicate

in the same application; however, this library is no longer in use. POOMA [114] and

POET [15] are libraries for C++ that are now defunct but did spark greater interest in

using C++ template metaprogramming for parallel applications.

9.3.2.4 Domain-specific languages

As mentioned above, a domain-specific language can either be embedded within an

existing language, or it can stand alone with its own compiler. POOMA [114], POET [15],

Blitz++ [137], and Nebo are all embedded within C++. Stand-alone domain-specific

languages, such as Liszt [43], OptiMesh [128], and Pochoir [129], have their own compilers,

which often target other common languages, especially C, CUDA, and OpenCL. Entire

applications can be written in stand-alone domain-specific languages, whereas embedded

domain-specific languages generally require use of the host language for many tasks not

directly related to the target domain. Since many stand-alone domain-specific languages are

compiled to a common language, such as C, they can be used in existing domain projects

by being compiled separately and then linked into other parts of the project. Adding a

120

stand-alone domain-specific language to an existing project requires the addition of a com-

piler to the project’s build system as well as refactoring code to match the domain-specific

language’s abstractions and capabilities. Adding an embedded domain-specific language

to an existing project requires the project to use the host language and the abstractions

of the domain-specific language. All of the languages other than POOMA and POET are

currently under development.

9.3.3 Failure to gain traction

Out of all the languages discussed in this chapter, only a few are in use today, and

many of those are recent language that are still in their initial development effort. So why

did most of these languages fail? The most prominent reason is lack of compiler support.

Many of these languages and libraries never were implemented as more than prototypes

and proofs-of-concepts. If there is no working compiler for a language, no one will write

meaningful and useful applications in it for that simple reason.

Furthermore, the more complex the parallel model, language, and resulting implemen-

tation are, the more difficult the work to build a useful and efficient implementation. Even

for the language designers, in many cases, it is not worth the money, the time, or the effort

to build a useful and efficient implementation.

Next, even when there is an actively supported compiler, future support is not guaran-

teed. For example, POOMA [114] and POET [15] lost their institutional support1 just about

the time that interest was growing in them. Likewise, both ACE [44] and DPJ [27] have no

active support but do have active applications based upon them. This climate of short-lived

parallel languages is bad for adoption or increased support. Application developers become

wary of using any new language, even if it has a currently supported useful and reasonably

efficient compiler, if they fear that support will vanish while they still need to support their

application. Likewise, open source contributors become wary of volunteering their time and

effort to supporting a compiler project that may disappear in the next few years.

Finally, there was a conceptual fallacy among many of the language and model designers

of the 1990s. Many designers felt that previous parallel languages had failed because their

model was flawed, too detail-oriented, or not detail-oriented enough. Thus these designers

were convinced that their superior model would solve the parallel programming problem.

This attitude was apparent in the literature from the various designers’ discussions of other

previous parallel languages that had already failed or were in decline. For example, the

1Both were developed at National Laboratories.

121

designers of HPC++ [69] felt justified in creating another C++-based parallel language

because in their number where designers of pC++ [28], CC++ [38], and MPC++ [65], all

of which had already failed. With their combined learned lessons from these projects they

would create a new language that avoided past mistakes in HPC++’s design. However,

HPC++ ended up almost indistinguishable from these other languages.

9.4 Summary

While Section 9.3 is far from exhaustive of the parallel processing languages that have

been developed over the last 20 years, it is a representative sample of these languages.

Despite the mass of defunct parallel processing languages, the final message is not all

doom and gloom. Languages and libraries, such as CUDA [5], OpenMP [8], MPI [138],

Pthreads [6], and OpenCL [7] have strong and vibrant communities supporting them.

Everyone heavily using these languages and libraries has an invested interest in keeping

these projects supported and active. CUDA provides a clear and strong financial incentive

for NVidia to continue supporting the project. Other projects, such as OpenMP and MPI,

have a broad base of users, many of whom are willing to donate time and effort, in varying

amounts, to supporting the underlying implementations.

These successful projects do pose something of a chicken-and-egg problem: A successful

project will sustain itself making it more successful. However, there are a few commonalities

among these libraries. All fit rather seamlessly into existing successful compiler tool-chains.

None of them require a fundamental shift in the core paradigm of the host language. Lan-

guage extensions that do shift the core paradigm of the host language require vast refactoring

to add them to existing compiler projects. Also, the successful parallel libraries provide

a mix of low-level control and simple structures. True, these simple structures can easily

create hard-to-detect data races, misaligned synchronous checks, and other common parallel

pitfalls. But these simple parallel structures do allow high-performance applications to take

advantage of whatever performance gains are available by hand-writting optimizations.

Domain-specific languages are better suited to meet the challenges general-purpose

parallel processing languages face than the general-purpose languages themselves. The

cost of creating a new compiler can be mitigated by the language being embedded in an

established language or by the domain-specific language’s compiler generating code for an

established language. With less work needed to produce a production-ready implementation

of a language, it is far easier to produce and then maintain a domain-specific language than

a general-purpose parallel processing language. Most domain-specific languages allow some

122

form of incremental adoption, which in turn reduces the cost of adopting these languages.

That is, these languages can be used in pre-existing projects in their target domain. Many

domain-specific languages target multiple architectures, such as CPUs and GPUs. Without

some sort of abstraction over multiple architectures, current and future projects will need to

maintain implementations of the same functionality for each architecture. Domain-specific

languages with abstractions well-suited for their domains are the future for large-scale

parallel computation.

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Introspective pushdown analysis

Introspective pushdown control-flow analysis approximates programs directly as push-

down systems, unlike CFA2 which uses a summarization technique to handle changes to

the stack. CFA2’s summarization technique obscures the stack, making CFA2 incompatible

with static analysis techniques which need to reason about the stack. Abstract garbage

collection is one such technique that requires access to the stack. Introspective pushdown

control-flow analysis allows for the power of CFA2 to be combined with abstract garbage

collection. The results in Chapter 5 show that pushdown control-flow analysis and abstract

garbage collection are powerful static analysis tools in their own right. However, these

results also show that there can be great benefit to using these two tools together by

improving the precision of the analysis as well as lowering the execution time beyond

what each tool can do on their own. In practice, more programs are tractable with the

two techniques together, which means that the compilation of more programs can benefit

from static analysis. Unfortunately, these algorithms are still exponential. Section 3.5

presents an algorithm with polynomial-time complexity (O(n6)) for pushdown control-flow

analysis. This polynomial-time algorithm can be used on programs that are intractable with

the exponential-time algorithms, and the results would still benefit from perfectly precise

return-flow.

Looking forward, research on introspective pushdown control-flow analysis is progressing

in two intertwined directions. First, further improvements to precision and more informative

techniques are being developed. For example, CFA2 includes a way of allocating local

variables on the abstract stack frame to avoid merging in the abstract store (heap). With

the summarization technique, CFA2 needs this local stack allocation. With an explicit

pushdown system, this local stack allocation is not necessary but would often be useful.

Similarly, techniques for more informative uses of pushdown control-flow analysis are being

investigated. The main goal of static analysis is to understand algorithmically program

behavior. Algorithmically understanding program behavior leads to two benefits. Compilers

124

can check for undesirable behavior (bugs and malware) and can check for inefficient behavior,

for which there is a known equivalent version that is more efficient. Traditionally, static

analysis has focused on mistakes, such as bugs and inefficient code. However, as more code

is written and made publicly available it is becoming increasingly difficult to trust the source

of the code and the code itself. Thus static analysis, and pushdown control-flow analysis in

particular, are being used to detect malware in untrusted code.

10.2 Nebo

Nebo is an expressive, portable, efficient, and scalable language for numerically solving

partial differential equations. Nebo’s declarative syntax is shorter and easier to read and to

maintain than the hand-written C++ that Nebo code replaces. Nebo’s multiple functioning

backends prove that Nebo is architecture-independent. Comparisons between Nebo and

the code it has replaced in Wasatch as well as comparisons between Wasatch and other

components of Uintah proves Nebo’s efficiency. The Uintah scaling tests prove that Nebo

with a good framework can scale to 262K cores.

While Nebo is all of these things, Nebo is not a static language but is continuing to

change and expand. Nebo is expanding on three fronts. First, new architectures are being

studied to see if they would be a good fit for Nebo and Wasatch. For example, Intel’s new

Xeon Phi many-core chip, in theory, would be a good fit for Nebo. However, it is not clear

yet if the Xeon Phi and its associated software is mature enough to be useful, nor is it clear

if any of Wasatch’s end users want to run their code on Xeon Phi chips.

Second, since Nebo has proved that it can run efficiently on GPUs, Wasatch developers

have become more interested in using Nebo everywhere possible. For Wasatch to use GPUs

efficiently, as many numeric calculations must be moved to the GPU as possible. There are

many calculations that Nebo cannot handle. To support Wasatch developers in their quest

to move everything to GPUs, new features for Nebo are under development. For example,

mask/filter operations and a generalized catamorphism1 are currently being developed.

Finally, as seen from the code in Section 7.4, the loops that Nebo generates for execution

are very simple and unoptimized. Thus far, this code, optimized only by the C++ compiler

in use, is good enough. In fact, the case studies of Chapter 8 show that Nebo’s performance

is very good, especially compared to similar projects that do not use any domain-specific

languages. Despite the good performance Nebo has now, further improvements can and

1This generalized catamorphism in theory could handle arbitrary procedures; however, it is not yet known
how many such procedures would be executable on a GPU. This generalized catamorphism will work on
Nebo’s other backends without issue.

125

will be made. For example, Nebo currently does not make use of any SSE instructions

in its CPU backends. Given the nature of computations in Nebo, SSE instructions could

significantly increase performance on some architectures.

APPENDIX

PUSHDOWN PRELIMINARIES

The literature contains many equivalent definitions of pushdown machines, so I adapt

definitions from Sipser [123].

A.1 Syntactic sugar

When a triple (x, `, x′) is an edge in a labeled graph:

x
`
�x′ ≡ (x, `, x′).

Similarly, when a pair (x, x′) is a graph edge:

x� x′ ≡ (x, x′).

I use both string and vector notation for sequences:

a1a2 . . . an ≡ 〈a1, a2, . . . , an〉 ≡ ~a.

A.2 Stack actions, stack change and stack manipulation

Stacks are sequences over a stack alphabet Γ. To reason about stack manipulation

concisely, I first turn stack alphabets into “stack-action” sets; each character represents a

change to the stack: Push, pop or no change.

For each character γ in a stack alphabet Γ, the stack-action set Γ± contains a push

character γ+; a pop character γ−; and a no-stack-change indicator, ε:

g ∈ Γ± ::= ε [stack unchanged]

| γ+ for each γ ∈ Γ [pushed γ]

| γ− for each γ ∈ Γ [popped γ].

In this dissertation, the symbol g represents some stack action. In Haskell, we can turn any

data type in a stack-action alphabet:

127

data StackAct frame = Push { frame :: frame }

| Pop { frame :: frame }

| Unch

Chapter 4, which develops introspective pushdown systems, uses the following for-

malisms for easily manipulating stack-action strings and stacks. Given a string of stack

actions, we can compact it into a minimal string describing net stack change. I do so

through the operator b·c : Γ∗± → Γ∗±, which cancels out opposing adjacent push-pop stack

actions:

b~g γ+γ− ~g
′c = b~g ~g ′c b~g ε ~g ′c = b~g ~g ′c,

so that b~gc = ~g, if there are no cancellations to be made in the string ~g.

We can convert a net string back into a stack by stripping off the push symbols with

the stackify operator, d·e : Γ∗± ⇀ Γ∗:

dγ+γ
′
+ . . . γ

(n)
+ e = 〈γ(n), . . . , γ′, γ〉,

and for convenience, [~g] = db~gce. Notice the stackify operator is defined for strings contain-

ing only push actions.

A.3 Pushdown systems

A pushdown system is a triple M = (Q,Γ, δ) where:

1. Q is a finite set of control states;

2. Γ is a stack alphabet; and

3. δ ⊆ Q× Γ± ×Q is a transition relation.

The set Q × Γ∗ is called the configuration-space of this pushdown system. I use PDS to

denote the class of all pushdown systems.

For the following definitions, let M = (Q,Γ, δ).

• The labeled transition relation (7−→M) ⊆ (Q×Γ∗)×Γ±×(Q×Γ∗) determines whether

one configuration may transition to another while performing the given stack action:

(q,~γ)
ε7−→
M

(q′, ~γ) iff q
ε
� q′ ∈ δ [no change]

(q, γ : ~γ)
γ−7−→
M

(q′, ~γ) iff q
γ−
� q′ ∈ δ [pop]

(q,~γ)
γ+7−→
M

(q′, γ : ~γ) iff q
γ+
� q′ ∈ δ [push].

128

• If unlabelled, the transition relation (7−→) checks whether any stack action can enable

the transition:

c 7−→
M

c′ iff c
g7−→
M

c′ for some stack action g.

• For a string of stack actions g1 . . . gn:

c0
g1...gn7−→
M

cn iff c0
g17−→
M

c1
g27−→
M
· · · gn−17−→

M
cn−1

gn7−→
M

cn,

for some configurations c0, . . . , cn.

• For the transitive closure:

c
∗7−→
M

c′ iff c
~g7−→
M

c′ for some action string ~g .

In Haskell, I need to two functional encodings of δ:

type Delta control frame =

(TopDelta control frame, NopDelta control frame)

type TopDelta control frame =

control -> frame -> [(control,StackAct frame)]

type NopDelta control frame =

control -> [(control,StackAct frame)]

If we only want to know push and no-change transitions, we can find these with a NopDelta

function without providing the frame that is currently on top of the stack. If we want pop

transitions as well, we can find these with a TopDelta function, but of course, it must have

access to the top of the stack. In practice, a TopDelta function would suffice, but there

are situations where only push and no-change transitions are needed, and having access to

NopDelta avoids extra computation.

Some texts define the transition relation δ so that δ ⊆ Q× Γ×Q× Γ∗. In these texts,

(q, γ, q′, ~γ) ∈ δ means, “if in control state q while the character γ is on top, pop the stack,

transition to control state q′ and push ~γ.” Clearly, we can convert between these two

representations by introducing extra control states to my representation when it needs to

push multiple characters.

A.4 Rooted pushdown systems

A rooted pushdown system is a quadruple (Q,Γ, δ, q0) in which (Q,Γ, δ) is a pushdown

system and q0 ∈ Q is an initial (root) state. RPDS is the class of all rooted pushdown

systems.

129

For a rooted pushdown system M = (Q,Γ, δ, q0), I define the reachable-from-root tran-

sition relation:

c
g7−→−→
M

c′ iff (q0, 〈〉)
∗7−→
M

c and c
g7−→
M

c′.

In other words, the root-reachable transition relation also makes sure that the root control

state can actually reach the transition.

I overload the root-reachable transition relation to operate on control states:

q
g7−→−→
M

q′ iff (q,~γ)
g7−→−→
M

(q′, ~γ ′) for some stacks ~γ,~γ ′.

For both root-reachable relations, if we elide the stack-action label, then, as in the unrooted

case, the transition holds if there exists some stack action that enables the transition:

q 7−→−→
M

q′ iff q
g7−→−→
M

q′ for some action g.

A.5 Computing reachability in pushdown systems

A pushdown flow analysis can be construed as computing the root-reachable subset of

control states in a rooted pushdown system, M = (Q,Γ, δ, q0):{
q : q0 7−→−→

M
q

}
.

Reps et al. and many others provide a straightforward “summarization” algorithm to com-

pute this set [30, 79, 112, 113]. Chapter 3 develops a complete alternative to summarization.

A.6 Pushdown automata

A pushdown automaton is an input-accepting generalization of a rooted pushdown

system, a 7-tuple (Q,Σ,Γ, δ, q0, F,~γ) in which:

1. Σ is an input alphabet;

2. δ ⊆ Q× Γ± × (Σ ∪ {ε})×Q is a transition relation;

3. F ⊆ Q is a set of accepting states; and

4. ~γ ∈ Γ∗ is the initial stack.

I use PDA to denote the class of all pushdown automata.

130

Pushdown automata recognize languages over their input alphabet. To do so, their

transition relation may optionally consume an input character upon transition. Formally,

a PDA M = (Q,Σ,Γ, δ, q0, F,~γ) recognizes the language L(M) ⊆ Σ∗:

ε ∈ L(M) if q0 ∈ F

aw ∈ L(M) if δ(q0, γ+, a, q
′) and w ∈ L(Q,Σ,Γ, δ, q′, F, γ : ~γ)

aw ∈ L(M) if δ(q0, ε, a, q
′) and w ∈ L(Q,Σ,Γ, δ, q′, F,~γ)

aw ∈ L(M) if δ(q0, γ−, a, q
′) and w ∈ L(Q,Σ,Γ, δ, q′, F,~γ′)

where ~γ = 〈γ, γ2, . . . , γn〉 and ~γ′ = 〈γ2, . . . , γn〉,

where a is either the empty string ε or a single character.

A.7 Nondeterministic finite automata

In this disseration, I need a finite description of all possible stacks at a given control

state within a rooted pushdown system. I exploit the fact that the set of stacks at a

given control point is a regular language. Specifically, I extract a nondeterministic finite

automaton accepting that language from the structure of a rooted pushdown system. A

nondeterministic finite automaton (NFA) is a quintuple M = (Q,Σ, δ, q0, F):

• Q is a finite set of control states;

• Σ is an input alphabet;

• δ ⊆ Q× (Σ ∪ {ε})×Q is a transition relation.

• q0 is a distinguished start state.

• F ⊆ Q is a set of accepting states.

I denote the class of all NFAs as NFA.

In Haskell, I represent an NFA as a set of labeled forward edges, the inverse of those

edges (for convenience), a start state and an end state:

type NFA state char =

(NFAEdges state char, NFAEdges state char, state, state)

type NFAEdges state char = state :-> P(Maybe char, state)

131

A.8 Transliterating formalism into Haskell

Where it is critical to understanding the details of the analysis, I have transliterated the

formalism into Haskell. I make use of a two extensions in GHC:

-XTypeOperators -XTypeSynonymInstances

All code is in the context of the following header:

import Prelude hiding ((!!))

import Data.Map as Map hiding (map,foldr)

import Data.Set as Set hiding (map,foldr)

import Data.List as List hiding ((!!))

type P s = Set.Set s

type k :-> v = Map k v

(==>) :: a -> b -> (a,b)

(==>) x y = (x,y)

(//) :: Ord a => (a :-> b) -> [(a,b)] -> (a :-> b)

(//) f [(x,y)] = Map.insert x y f

set x = Set.singleton x

REFERENCES

[1] High Performance Fortran language specification version 1.0, tech. rep., High Perfor-
mance Fortran Forum (HPFF), 1993.

[2] High Performance Fortran language specification version 2.0, tech. rep., High Perfor-
mance Fortran Forum (HPFF), 1997.

[3] Chapel Specification 0.4, tech. rep., Cray Inc, Feb. 2005.

[4] UPC language specifications, version 1.2, tech. rep., Lawrence Berkeley National
Laboratory, 2005.

[5] Nvidia CUDA compute unified device architecture: Programming guide version 1.0,
tech. rep., 2007.

[6] Base specifications, issue 7, tech. rep., The Open Group, 2009.

[7] The OpenCL specification, version 1.2, revision 19, tech. rep., Khronos OpenCL
Working Group, 2011.

[8] OpenMP specifications version 3.1, tech. rep., OpenMP Architecture Review Board,
2011.

[9] Chapel Specification 0.91, tech. rep., Cray Inc, 2012.

[10] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund, et al., The
Fortress language specification, Sun Microsystems, 2005.

[11] P. America and F. van der Linden, A parallel object-oriented language with
inheritance and subtyping, in Proceedings of the European Conference on Object-
Oriented Programming on Object-Oriented Programming Systems, Languages, and
Applications, New York, NY, USA, 1990, ACM, pp. 161–168.

[12] C. Amza, A. L. Cox, H. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, Treadmarks: Shared memory computing on networks
of workstations, IEEE Computer, 29 (1996), pp. 18–28.

[13] J. N. C. Árabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and
P. Stephan, Dome: Parallel programming in a distributed computing environment,
in Parallel Processing Symposium, 1996., Proceedings of IPPS’96, The 10th Interna-
tional, IEEE, 1996, pp. 218–224.

[14] E. Arjomandi, W. O’Farrell, I. Kalas, G. Koblents, F. C. Eigler, and
G. G. Gao, ABC++: Concurrency by Inheritance in C++, IBM Systems Journal,
34 (1995), pp. 120–137.

133

[15] R. Armstrong, POET (Parallel Object-oriented Environment and Toolkit) and
Frameworks for Scientific Distributed Computing, in Proceedings of the 30th Hawaii
International Conference on System Sciences: Software Technology and Architecture
- Volume 1, HICSS ’97, Washington, DC, USA, 1997, IEEE Computer Society.

[16] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi, P3L:
A structured high-level parallel language, and its structured support, Concurrency:
Practice and experience, 7 (1995), pp. 225–255.

[17] R. Bagrodia, M. Chandy, and M. Dhagat, UC: A set-based language for data-
parallel programming, Journal of Parallel Distributed Computing, 28 (1995), pp. 186–
201.

[18] H. E. Bal and A. S. Tanenbaum, Distributed programming with shared data,
Computer Languages, 16 (1991), pp. 129–146.

[19] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, Munin: Distributed shared
memory based on type-specific memory coherence, SIGPLAN Not., 25 (1990), pp. 168–
176.

[20] B. N. Bershad, E. D. Lazowska, and H. M. Levy, PRESTO: A system for
object-oriented parallel programming, Softw. Pract. Exper., 18 (1988), pp. 713–732.

[21] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, The Midway Distributed
Shared Memory System, Carnegie Mellon University, Pittsburgh, PA, USA, 1993.

[22] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C. A. Wight, and J. R.
Peterson, Uintah: A scalable framework for hazard analysis, in Proceedings of the
2010 TeraGrid Conference, TG ’10, New York, NY, USA, 2010, ACM, pp. 3:1–3:8.

[23] M. Berzins, Q. Meng, J. Schmidt, and J. C. Sutherland, DAG-based software
frameworks for PDEs, in Euro-Par 2011: Parallel Processing Workshops, Springer,
2012, pp. 324–333.

[24] K. P. Birman, R. Cooper, T. A. Joseph, K. Marzullo, M. Makpangou,
K. Kane, F. Schmuck, and M. Wood, The ISIS system manual, version 2.0,
tech. rep., Upson Hall, Ithaca, NY, USA, 1990.

[25] B. Bland, Titan - Early experience with the Titan system at Oak Ridge National
Laboratory, SC Companion: High Performance Computing, Networking Storage and
Analysis, (2012), pp. 2189–2211.

[26] G. E. Blelloch and J. Greiner, A provable time and space efficient implementa-
tion of NESL, in Proceedings of the first ACM SIGPLAN International Conference on
Functional Programming, ICFP ’96, New York, NY, USA, 1996, ACM, pp. 213–225.

[27] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komu-
ravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian, A type and effect
system for deterministic parallel java, in Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, New York, NY, USA, 2009, ACM, pp. 97–116.

[28] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X. Yang, Distributed
pC++: Basic ideas for an object parallel language, Scientific Programming, 2 (1993),
pp. 7–22.

134

[29] D. Boles, Parallel object-oriented programming with QPC++, Structured Program-
ming, 14 (1993), pp. 14–158.

[30] A. Bouajjani, J. Esparza, and O. Maler, Reachability analysis of pushdown
automata: Application to model-checking, in Proceedings of the 8th International
Conference on Concurrency Theory, CONCUR ’97, Springer-Verlag, 1997, pp. 135–
150.

[31] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. Nickel, R. H. Morf, and
U. Frisch, Small-scale structure of the Taylor-Green vortex, J. Fluid Mech, 130
(1983), pp. 411–452.

[32] T. Bräunl, Parallel programming: An introduction, Prentice Hall, 1993.

[33] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Oder-
sky, and K. Olukotun, A heterogeneous parallel framework for domain-specific
languages, in 2011 International Conference on Parallel Architectures and Compilation
Techniques (PACT), IEEE, 2011, pp. 89–100.

[34] H. Carr, Distribued C++, PhD thesis, University of Utah, 1994.

[35] J. Carreira, L. Silva, J. G. Silva, and J. G. Silva, On the design of Eilean:
A Linda-like library for MPI, tech. rep., Proceedings of the Second Scalable Parallel
Libraries Conference, 1994.

[36] R. Chandra, A. Gupta, and J. L. Hennessy., COOL: A language for parallel
programming, tech. rep., Stanford, CA, USA, 1989.

[37] K. Chandy and J. Misra, Parallel program design: A foundation, Computer Science
Series, Addison-Wesley Pub. Co., 1988.

[38] K. M. Chandy and C. Kesselman, CC++: A declarative concurrent object
oriented programming notation, tech. rep., Pasadena, CA, USA, 1993.

[39] K. Clark and S. Gregory, PARLOG: Parallel programming in logic, ACM Trans.
Program. Lang. Syst., 8 (1986), pp. 1–49.

[40] A. Colvin, ViC*: Running Out-Of-Core Instead Of Running Out Of Core, PhD
thesis, Dartmouth College, 1999.

[41] P. Cousot, The calculational design of a generic abstract interpreter, in Calculational
System Design, M. Broy and R. Steinbrüggen, eds., NATO ASI Series F. IOS Press,
Amsterdam, 1999.

[42] P. Cousot and R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints, in Confer-
ence Record of the Fourth ACM Symposium on Principles of Programming Languages,
ACM Press, 1977, pp. 238–252.

[43] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barri-
entos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, et al., Liszt: A domain
specific language for building portable mesh-based PDE solvers, in Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis, ACM, 2011, p. 9.

135

[44] J. Dorband and M. Aburdene, Architecture-adaptive computing environment: A
tool for teaching parallel programming, Frontiers in Education, 3 (2002).

[45] C. Earl, I. Sergey, M. Might, and D. Van Horn, Introspective pushdown
analysis of higher-order programs, in Proceedings of the 17th ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP 2012), ICFP ’12, ACM,
2012, pp. 177–188.

[46] G. Edjlali, A. Sussman, and J. Saltz, Interoperability of data parallel runtime
libraries with Meta-Chaos, in Proceedings of the Eleventh International Parallel
Processing Symposium, Society Press, 1997.

[47] M. Felleisen and D. P. Friedman, A calculus for assignments in higher-order lan-
guages, in POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ACM, 1987, pp. 314+.

[48] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, The essence of
compiling with continuations, in PLDI ’93: Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation, ACM, 1993,
pp. 237–247.

[49] I. Foster, C. Kesselman, and S. Tuecke, The Nexus task-parallel runtime
system, in Proc. 1st Intl Workshop on Parallel Processing, 1994, pp. 457–462.

[50] I. Foster, S. Taylor, et al., Strand: A practical parallel programming language,
tech. rep., Argonne National Lab., IL (USA), 1989.

[51] I. T. Foster and K. M. Chandy, Fortran M: A language for modular parallel
programming, Journal of Parallel and Distributed Computing, 26 (1995), pp. 24–35.

[52] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W.
Tseng, and M.-Y. Wu, Fortran D language specification, tech. rep., Center for
Research on Parallel Computation, Rice University, 1990.

[53] M. Frigo, C. E. Leiserson, and K. H. Randall, The implementation of the
Cilk-5 multithreaded language, in Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, PLDI ’98, New York, NY,
USA, 1998, ACM, pp. 212–223.

[54] D. Gelernter and N. Carriero, Coordination languages and their significance,
Commun. ACM, 35 (1992), pp. 97–107.

[55] R. Govindarajan, L. Guo, S. Yu, and P. Wang, ParC project: Practical con-
structs for parallel programming languages, in Computer Software and Applications
Conference, 1991. COMPSAC ’91., Proceedings of the Fifteenth Annual International,
1991, pp. 183–189.

[56] A. Granicz, D. M. Zimmerman, and J. Hickey, Rewriting Unity, in Proceedings
of the 14th International Conference on Rewriting Techniques and Applications,
RTA’03, Berlin, Heidelberg, 2003, Springer-Verlag, pp. 138–147.

[57] A. Grimshaw, Easy-to-use object-oriented parallel processing with Mentat, IEEE
Computer, 26 (1993), pp. 39–51.

[58] J. F. Groote and A. Ponse, The syntax and semantics of µCRL, Springer, 1995.

136

[59] J. E. Guilkey, T. B. Harman, and B. Banerjee, An Eulerian-Lagrangian
approach for simulating explosions of energetic devices, Comput. Struct., 85 (2007),
pp. 660–674.

[60] T. Hagerup, A. Schmitt, and H. Seidl, Fork: A high-level language for prams,
Future Generation Computer Systems, 8 (1992), pp. 379–393.

[61] R. H. Halstead Jr, Multilisp: A language for concurrent symbolic computation,
ACM Transactions on Programming Languages and Systems (TOPLAS), 7 (1985),
pp. 501–538.

[62] P. B. Hansen, Joycea programming language for distributed systems, Software:
Practice and Experience, 17 (1987), pp. 29–50.

[63] , The programming language SuperPascal, Software: Practice and Experience, 24
(1994), pp. 467–483.

[64] C. A. R. Hoare, Communicating sequential processes, Communications of the ACM,
21 (1978), pp. 666–677.

[65] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte, H. Tezuka, H. Kon-
aka, M. Maeda, and K. Kubota, Design and implementation of metalevel ar-
chitecture in C++-MPC++ approach, in Proceedings of Reflection, vol. 96, 1996,
pp. 153–166.

[66] A. Itzkovitz, A. Schuster, and L. Shalev, Supporting multiple programming
paradigms for distributed clusters on top of a single virtual parallel machine–the
millipede concept, in Proceedings, Second International Workshop on High-Level
Programming Models and Supportive Environments, 1997.

[67] R. Jagannathan, C. Dodd, and I. Agi, GLU: A high-level system for granular
data-parallel programming, Concurrency - Practice and Experience, 9 (1997), pp. 63–
83.

[68] C.-H. Jo, C.-H. Lee, and J. G. Son, A realization of a concurrent object-oriented
programming, in Proceedings of the 1998 ACM symposium on Applied Computing,
ACM, 1998, pp. 558–563.

[69] E. Johnson and D. Gannon, HPC++: Experiments with the parallel standard tem-
plate library, in Proceedings of the 11th International Conference on Supercomputing,
ACM, 1997, pp. 124–131.

[70] D. G. Kafura, M. Mukherji, and G. R. Lavender, ACT++ 2.0: A class library
for concurrent programming in C++ using actors, tech. rep., 1992.

[71] L. Kalé, B. Ramkumar, A. Sinha, and A. Gürsoy, The Charm parallel program-
ming language and system: Part I—description of language features, IEEE TPDS, 12
(1994).

[72] L. V. Kalé and M. A. Bhandarkar, Structured Dagger: A coordination language
for message-driven programming, in Euro-Par’96 Parallel Processing, Springer, 1996,
pp. 646–653.

137

[73] L. V. Kale and S. Krishnan, Charm++: A portable concurrent object oriented
system based on C++, in Proceedings of the Conference on Object Oriented Program-
ming Systems, Languages, and Applications, 1993, pp. 91–108.

[74] K. K. Kee and S. Hariri, Efficient communication algorithms for pipeline multi-
computers, in Proceedings of the 1994 ACM/IEEE Conference on Supercomputing,
Supercomputing ’94, Los Alamitos, CA, USA, 1994, IEEE Computer Society Press,
pp. 468–477.

[75] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint, The C Programming
Language, Second Edition, Prentice-Hall Englewood Cliffs, 1988.

[76] T. Kielmann, Object-oriented distributed programming with Objective Linda, in
Proceeding of the First International Workshop on High Speed Networks and Open
Distributed Platforms, 1995.

[77] N. Kobayashi, Types and higher-order recursion schemes for verification of higher-
order programs, in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, vol. 44 of POPL ’09, ACM, Jan.
2009, pp. 416–428.

[78] J. Kodumal and A. Aiken, The set constraint/CFL reachability connection in
practice, SIGPLAN Not., 39 (2004), pp. 207–218.

[79] , The set constraint/CFL reachability connection in practice, in PLDI ’04: Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, ACM, June 2004, pp. 207–218.

[80] S. R. Kohn and S. B. Baden, A robust parallel programming model for dynamic
non-uniform scientific computations, in Proceedings of the Scalable High-Performance
Computing Conference, IEEE, 1994, pp. 509–517.

[81] S. Kusakabe and M. Amamiya, A dataflow-based massively parallel programming
language V and its implementation on a stock parallel machine, in Theory and Practice
of Parallel Programming, Springer, 1995, pp. 457–471.

[82] Z. Lahjomri and T. Priol, Koan: A shared virtual memory for the iPSC/2
hypercube, in Proceedings of the Second Joint International Conference on Vector and
Parallel Processing: Parallel Processing, CONPAR ’92/ VAPP V, Springer, 1992,
pp. 441–452.

[83] J. R. Larus, B. Richards, and G. Viswanathan, C**: A large-grain, object-
oriented, data-parallel programming language, in Languages and Compilers for Parallel
Computing (5th International Workshop), vol. 757, 1992, pp. 326–341.

[84] A. L. Lastovetsky, mpC: A multi-paradigm programming language for massively
parallel computers, ACM SIGPLAN Notices, 31 (1996), pp. 13–20.

[85] M. Lemke and D. J. Quinlan, P++, a C++ virtual shared grids based programming
environment for architecture-independent development of structured grid applications,
in Proceedings of the Second Joint International Conference on Vector and Parallel
Processing: Parallel Processing, CONPAR ’92/ VAPP V, London, UK, UK, 1992,
Springer-Verlag, pp. 121–126.

138

[86] S. S. Lumetta, A. Krishnamurthy, and D. E. Culler, Towards modeling
the performance of a fast connected components algorithm on parallel machines, in
Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), 1995.

[87] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H.
Warren, A. Calderwood, P. Szeredi, S. Haridi, et al., The Aurora or-parallel
Prolog system, New Generation Computing, 7 (1990), pp. 243–271.

[88] E. Lusk and K. Yelick, Languages for high-productivity computing: the darpa hpcs
language project, Parallel Processing Letters, 17 (2007), pp. 89–102.

[89] D. May, Occam, ACM Sigplan Notices, 18 (1983), pp. 69–79.

[90] D. Melski and T. W. Reps, Interconvertibility of a class of set constraints and
context-free-language reachability, Theoretical Computer Science, 248 (2000), pp. 29–
98.

[91] J. Midtgaard, Transformation, Analysis, and Interpretation of Higher-Order Pro-
cedural Programs, PhD thesis, University of Aarhus, 2007.

[92] J. Midtgaard and T. P. Jensen, Control-flow analysis of function calls and returns
by abstract interpretation, in ICFP ’09: Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming, ACM, 2009, pp. 287–298.

[93] M. Might, Environment Analysis of Higher-Order Languages, PhD thesis, Georgia
Institute of Technology, June 2007.

[94] M. Might, B. Chambers, and O. Shivers, Model checking via Gamma-CFA,
in Proceedings of Verification, Model Checking, and Abstract Interpretation, 2007,
pp. 59–73.

[95] M. Might, D. Darais, and D. Spiewak, Parsing with derivatives: A functional
pearl, in ICFP ’11: Proceeding of the 16th ACM SIGPLAN International Conference
on Functional Programming, ACM, 2011, pp. 189–195.

[96] M. Might and T. Prabhu, Interprocedural dependence analysis of higher-order
programs via stack reachability, in Proceedings of the 2009 Workshop on Scheme and
Functional Programming, 2009.

[97] M. Might and O. Shivers, Environment analysis via Delta-CFA, in Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2006), ACM, 2006, pp. 127–140.

[98] , Improving flow analyses via Gamma-CFA: Abstract garbage collection and
counting, in Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2006), ACM, 2006, pp. 13–25.

[99] F. Mueller, Distributed shared-memory threads: DSM-threads, in Workshop on
Run-Time Systems for Parallel Programming, 1997, pp. 31–40.

[100] P. Newton and J. C. Browne, The CODE 2.0 graphical parallel programming
language, in Proceedings of the 6th International Conference on Supercomputing,
ACM, 1992, pp. 167–177.

139

[101] G. Niccolai, The Falcon programming language in a nutshell, Linux Journal, 2008
(2008), p. 4.

[102] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Aprà, Advances, applications and performance of the global arrays shared memory
programming toolkit, International Journal of High Performance Computing Applica-
tions, 20 (2006), pp. 203–231.

[103] P. K. Notz, R. P. Pawlowski, and J. C. Sutherland, Graph-based software de-
sign for managing complexity and enabling concurrency in multiphysics PDE software,
ACM Transactions on Mathematical Software (TOMS), 39 (2012).

[104] R. W. Numrich and J. Reid, Co-Array Fortran for parallel programming, in
Proceedings of ACM Sigplan Fortran Forum, vol. 17, 1998, pp. 1–31.

[105] C. H. L. Ong, On model-checking trees generated by higher-order recursion schemes,
in 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), IEEE,
2006, pp. 81–90.

[106] S. Owens, J. Reppy, and A. Turon, Regular-expression derivatives re-examined,
Journal of Functional Programming, 19 (2009), pp. 173–190.

[107] D. A. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weath-
erford, and K. Faigin, Polaris: A new-generation parallelizing compiler for MPPs,
in CSRD Rept. No. 1306. Univ. of Illinois at Urbana-Champaign, 1993.

[108] S. G. Parker, A component-based architecture for parallel multi-physics PDE simu-
lation, in Computational ScienceICCS 2002, Springer, 2002, pp. 719–734.

[109] M. J. Phillip, Unification of Synchronous and Asynchronous Models for Parallel
Programming Languages, Master’s Thesis, School of Electrical Engineering, Purdue
University, West Lafayette, Indiana, (1989).

[110] J. Rehof and M. Fähndrich, Type-based flow analysis: From polymorphic sub-
typing to CFL-reachability, in POPL ’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM, 2001, pp. 54–
66.

[111] J. Reid, The new features of Fortran 2008, in Proceedings of ACM SIGPLAN Fortran
Forum, vol. 27, ACM, 2008, pp. 8–21.

[112] T. Reps, Program analysis via graph reachability, Information and Software Technol-
ogy, 40 (1998), pp. 701–726.

[113] T. Reps, S. Schwoon, S. Jha, and D. Melski, Weighted pushdown systems and
their application to interprocedural dataflow analysis, Science of Computer Program-
ming, 58 (2005), pp. 206–263.

[114] J. Reynders, The POOMA framework: A templated class library for parallel scien-
tific computing, in Proceedings of the Eighth SIAM Conference on Parallel Processing
for Scientific Computing, 1997.

[115] M. C. Rinard and M. S. Lam, The design, implementation, and evaluation of Jade,
ACM Transactions on Programming Languages and Systems (TOPLAS), 20 (1998),
pp. 483–545.

140

[116] B. Robben, W. Joosen, F. Matthijs, B. Vanhaute, and P. Verbaeten, A
metaobject protocol for correlate, Lecture Notes in Computer Science, 1543 (1998),
pp. 367–368.

[117] J. Rose and G. L. Steele Jr, C*: An extended C language for data parallel
programming, tech. rep., Technical Report PL87-5, Thinking Machines Corporation,
1987.

[118] A. Rowstron and A. Wood, Implementing mathematical morphology in ISETL-
Linda, in Image Processing and its Applications, 1995., Fifth International Conference
on, IET, 1995, pp. 847–851.

[119] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, X10
language specification, tech. rep., IBM, 2012.

[120] J. Schmidt, M. Berzins, J. Thornock, T. Saad, and J. Sutherland, Large
scale parallel solution of incompressible flow problems using uintah and hypre, IEEE
International Symposium on Cluster Computing and the Grid, (2013), pp. 458–465.

[121] O. G. Shivers, Control-Flow Analysis of Higher-Order Languages, PhD thesis,
Carnegie Mellon University, 1991.

[122] J. G. Silva, J. Carreira, and F. Moreira, ParLin: From a centralized tuple space
to adaptive hashing, Transputer Applications and Systems 94, (1993), pp. 91–104.

[123] M. Sipser, Introduction to the theory of computation, Cengage Learning, 2 ed., 2005.

[124] G. Steele, Fortress wrapping up. https://blogs.oracle.com/projectfortress/entry/
fortress wrapping up, July 2012.

[125] B. Stroustrup, The C++ programming language, Addison-Wesley Publishing Com-
pany, 1997.

[126] J. Subhlok, D. R. O’Hallaron, and T. Gross, Task parallel programming in
Fx, tech. rep., DTIC Document, 1994.

[127] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun, OptiML: An implicitly parallel domain-specific
language for machine learning, in Proceedings of the 28th International Conference
on Machine Learning (ICML-11), 2011, pp. 609–616.

[128] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi, V. Popic, M. Wu,
A. Prokopec, V. Jovanovic, M. Odersky, et al., Composition and reuse with
compiled domain-specific languages, in Proceedings of ECOOP, 2013.

[129] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiser-
son, The Pochoir stencil compiler, in Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures, ACM, 2011, pp. 117–128.

[130] G. Taylor and A. Green, Mechanism of the production of small eddies from
large ones, Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 158 (1937), pp. 499–521.

[131] W. F. Tichy and C. G. Herter, Modula-2*: An extension of Modula-2 for highly
parallel, tech. rep., University of Karlsruhe, 1990.

141

[132] A. Tripathi and M. Akşit, Communication, scheduling, and resource management
in SINA, Journal of Object-Oriented Programming, 1 (1988), pp. 24–31.

[133] E. Unruh, Prime number computation, tech. rep., ANSI X3J16-94-0075/ISO WG21-
462, 1994.

[134] D. Van Horn and H. G. Mairson, Deciding kCFA is complete for EXPTIME,
in ICFP ’08: Proceeding of the 13th ACM SIGPLAN International Conference on
Functional Programming, ACM, 2008, pp. 275–282.

[135] D. Vardoulakis and O. Shivers, CFA2: A context-free approach to control-flow
analysis, in European Symposium on Programming (ESOP), vol. 6012 of LNCS,
Springer, 2010, pp. 570–589.

[136] T. Veldhuizen, Template metaprograms, C++ Report, 7 (1995), pp. 36–43.

[137] T. L. Veldhuizen, Arrays in Blitz++, in Computing in Object-Oriented Parallel
Environments, Springer, 1998, pp. 223–230.

[138] D. W. Walker, D. W. Walker, J. J. Dongarra, and J. J. Dongarra, MPI:
A standard message passing interface, Supercomputer, 12 (1996), pp. 56–68.

[139] N. Wirth, The programming language Pascal, Acta informatica, 1 (1971), pp. 35–63.

[140] A. K. Wright and S. Jagannathan, Polymorphic splitting: An effective polyvari-
ant flow analysis, ACM Transactions on Programming Languages and Systems, 20
(1998), pp. 166–207.

[141] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, et al., Titanium:
A high-performance Java dialect, Concurrency Practice and Experience, 10 (1998),
pp. 825–836.

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgements
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Skirting undecidability
	Dissertation
	Introspective pushdown analysis
	Accessing the whole stack versus just the top
	Overview

	Nebo: A domain-specific language for numerically solving PDEs in high-performance simulations
	Other domain-specific languages solving PDEs
	Uintah
	Wasatch
	Use of Nebo in Wasatch
	Overview

	Contributions

	=10000=10000=0Pushdown Control-Flow Analysis
	-22pt
	Introduction
	Setting: A-Normal Form -calculus
	Semantics
	Transition relation

	An infinite-state abstract interpretation
	Program injection
	Atomic expression evaluation
	Reachable configurations
	Transition relation
	Allocation: Polyvariance and context-sensitivity
	Monovariance: Pushdown 0CFA
	Context-sensitive: Pushdown 1CFA
	Polymorphic splitting: Pushdown poly/CFA
	Pushdown k-CFA

	Partial orders
	Soundness

	From the abstracted CESK machine to a PDA
	Problem: Doubly exponential complexity

	Summary

	=10000=10000=0Computable and Tractable Pushdown Control-Flow Analysis
	-22pt
	Introduction
	Dyck state graph
	Compacting a rooted pushdown system into a Dyck state graph
	Complexity: Polynomial and exponential

	An efficient algorithm: Work-lists and epsilon-closure graphs
	epsilon-closure graphs
	Integrating a work-list
	A new fixed-point iteration-space
	The epsilon-closure graph work-list algorithm
	Sprouting
	Considering the consequences of a new push edge
	Considering the consequences of a new pop edge
	Considering the consequences of a new bold0mu mumu dotted-edge

	Termination and correctness
	Complexity: Still exponential, but more efficient

	Polynomial-time complexity from widening
	Step 1: Refactor the concrete semantics
	Step 2: Refactor the abstract semantics
	Step 3: Single-thread the abstract store
	Step 4: Dyck state control-flow graphs
	A preliminary analysis of complexity

	Step 5: Reintroduce epsilon-closure graphs

	Summary

	=10000=10000=0Abstract Garbage Collection and Introspective Pushdown Control-Flow Analysis
	-22pt
	Introduction
	Introspection for abstract garbage collection
	Garbage collection in monotonic introspective pushdown systems

	Problem: Reachability for introspective pushdown systems is uncomputable
	Garbage collection in monotonic introspective pushdown systems

	Computing reachability for monotonic introspective pushdown systems
	Compiling to Dyck state graphs
	Computing a round of F
	Correctness
	Simplifying garbage collection in introspective pushdown systems

	An algorithm for introspective pushdown analysis with garbage collection
	Summary

	=10000=10000=0Performance and Applications of Introspective Pushdown Analysis
	-22pt
	Introduction
	Experimental evaluation
	Plain k-CFA vs. pushdown k-CFA
	Comparing precision
	Comparing speed

	Analyzing real-life programs with garbage-collecting pushdown CFA

	Applications
	Escape analysis
	Interprocedural dependence analysis

	Summary

	=10000=10000=0Syntax and semantics of Nebo
	-22pt
	Introduction
	Basic Nebo Expressions
	Assignment
	Reductions
	Conditional expressions
	Stencil operations
	Summary

	=10000=10000=0Implementation of Nebo
	-22pt
	Introduction
	Template metaprogramming
	Field type system and stencils
	Backends
	Single-core implementation
	Multicore implementation
	Many-core (GPU) implementation
	Reduction implementation

	Summary

	=10000=10000=0Case Studies of the Use and Performance of Nebo
	-22pt
	Introduction
	Simple heat equation
	Scalar right-hand side term
	A detailed conditional expression
	A complex use of Nebo
	Comparing Wasatch to Arches and ICE
	Weakly scaling Wasatch on Titan
	Summary

	=10000=10000=0Related Work
	-22pt
	Introduction
	Control-flow analysis
	Context-free analysis of higher-order programs
	Calculation approach to abstract interpretation
	CFL-reachability and pushdown-reachability techniques
	Model-checking higher-order recursion schemes

	Parallel processing languages for large-scale parallel computation
	Models of parallelism
	Shared memory
	Nonshared memory
	PGAS
	Early PGAS languages.
	Modern PGAS languages.

	Other models
	Coordination languages.
	Graph-based languages.
	Logic and functional parallel languages.
	GPU languages.
	Domain-specific languages.

	Language design approaches
	Novel language approach
	Language extension
	Language as library
	Domain-specific languages

	Failure to gain traction

	Summary

	=10000=10000=0Conclusions and future work
	-22pt
	Introspective pushdown analysis
	Nebo

	=10000=10000=0APPENDIX: Pushdown preliminaries

	REFERENCES

