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ABSTRACT 

 

 One in four women in the U.S. will contract a pelvic floor disorder (PFD) in her 

lifetime. High intra-abdominal pressure (IAP) may be a factor influencing the 

development of PFDs, causing women at risk for PFDs to receive physical activity 

restrictions. However, there is limited research as to what daily activities and exercises 

cause high IAPs. Our lab developed an intravaginal pressure transducer to measure IAP 

in women during exercise and daily activities, but utilizing the transducer as a long-term 

measurement device may present compliance issues. Waist-worn accelerometers, which 

measure acceleration and physical activity, are more commonly utilized devices and may 

prove to be reliable replacements for the transducer. We hypothesized that there is a 

positive correlation between the mean maximal vector magnitude for acceleration and the 

mean maximal IAP and mean area under the curve (AUC) for IAP. After measuring 25 

women's IAP and acceleration during specific exercises, we found an R
2
 of 0.7405 for the 

relationship between mean maximal accelerometer vector magnitude and mean maximal 

intra-abdominal pressure and of 0.5255 for the relationship between mean maximal 

accelerometer vector magnitude and mean area under the curve for intra-abdominal 

pressure. Analysis of different walking stages presented even higher R
2
 values, 

demonstrating that waist-worn accelerometers may present a viable method for predicting 

IAP. 
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INTRODUCTION 

 

 Pelvic floor disorders (PFDs) are medical disorders affecting one in four women 

in the U.S. PFDs involve the weakening of the pelvic floor muscles in women, inducing 

urinary incontinence, fecal incontinence, or pelvic organ prolapse [1]. Increasing age and 

an increasing number of vaginal childbirths are factors leading to increased likelihood of 

developing a PFD, but high intra-abdominal pressure (IAP) may also contribute to the 

development of a PFD. Many women who are at risk for a PFD or who have had 

corrective surgery are prescribed physical activity restrictions to limit the generation of 

high IAP. However, the restrictions are often based on intuition, as there is limited 

research into the IAPs generated by different activities [2]. Women, therefore, are being 

restricted in their ability to live active lifestyles despite a lack of data indicating which 

activities may be harmful to the pelvic floor. 

 One of the most significant barriers in gathering IAP data has been the methods 

utilized to measure IAP. Most often, researchers employ invasive sensor-tipped catheters 

and fluid-coupled transducers placed in the bladder, rectum, urethra, or vagina that are 

connected to laboratory equipment to measure IAP [3]. The tethering of the participant to 

the lab equipment restricts the ability of the participant to perform dynamic movements 

or movements outside of a laboratory setting, thus limiting the accuracy and relevance of 

measured IAP values and their correlations with typical physical activities. Our group 

developed a wireless intravaginal transducer to measure IAP [4], which has been 
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validated in clinical studies [5]. The device employs a piezoresistive die to detect 

pressure, which is placed within a silicone capsule containing incompressible silicone 

gel. Additionally, the transducer contains wireless components that transmit data to an 

external base station worn on the waistband of the pants that records the IAP, device 

status, temperature, time, and error messages. Using the wireless intravaginal transducer, 

we have performed several physical activity studies to better understand the IAPs 

associated with different exercise and everyday activities [6-8]. Recently, the wireless 

intravaginal transducer has undergone a transformation to a wired intravaginal transducer 

(WIVT). The transformation also included changing from the previous base station to an 

instrumentation module (IM) that is the size of a cell phone, connects directly to the 

WIVT, and records IAP data, time, and accelerometry. The IM has been used previously 

to study partial weight bearing therapy for lower extremity fractures [9]. 

 Both generations of the intravaginal transducer allow women to perform exercise 

and everyday activities without being tethered to laboratory equipment. However, use of 

the WIVT in real-life situations faces additional problems, especially when asking 

women to wear the WIVT for multiple days in order to assess IAP. Recording IAP in at-

home situations over several days would allow for better understanding of the daily IAPs 

women generate and how their normal IAPs may relate to the development of PFDs. We 

believe that women would have low compliance when asked to wear the WIVT for 

multiple days due to the invasiveness of the sensor and bulkiness of the combined WIVT 

and IM. The WIVT is inserted like a tampon into the vagina and contains a tether and a 

data cable that require access to the external environment, causing two components to 

exit the vagina. The data cable connects directly to the IM on the waistband of the pants, 
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creating a bulky apparatus for a woman to wear for several days.  

 Accelerometers, on the other hand, are measurement tools that are often used all 

day for multiple days. Many physical activity studies utilize waist-worn accelerometers to 

determine a person's physical activity levels based on accelerometry values, including the 

National Health and Nutrition Examination Survey [10, 11]. Accelerometers use 

acceleration to measure body movements, which is then used to estimate intensity of 

physical activity [12]. As the intensity of a physical activity increases, the magnitude of 

the acceleration also increases. We have found similar evidence that as the intensity of 

walking speeds increase, IAP increases [6]. Our hypothesis, therefore, is that there is a 

positive correlation between acceleration measurements from an accelerometer and IAP 

measurements from the WIVT. 

 In the current study, the subjects performed selected exercises in a controlled 

environment while wearing the WIVT and a waist-worn accelerometer. The IAP and 

acceleration values were recorded during all activities to determine the relationship 

between the two measurements. Post-exercise data analysis included the mean maximal 

magnitude of the acceleration vector and IAP and the area under the curve (AUC) for 

IAP. The primary aims in the study were to study two relationships: mean maximal 

accelerometer vector magnitude versus mean maximal IAP and mean maximal 

accelerometer vector magnitude versus mean AUC for IAP. 

 

 



 

 

 

 

METHODS AND MATERIALS 

 

 We received approval from the University of Utah Institutional Review Board 

(IRB) before initiating the study, and participants signed an informed consent form 

approved by the IRB. All participants were between the ages of 18 and 54, had body 

mass indices (BMIs) between 19 and 30 kg/m
2
, and regularly participated in strenuous 

exercise. Participants were excluded if they had incurred a musculoskeletal injury in the 

last 3 months, had undergone pelvic surgery other than hysterectomy, were currently 

using vaginal contraceptive or pessary, or responded "yes" to the question, "Do you have 

a bulging beyond your vagina?" Additionally, participants needed to pass the Physical 

Activity Readiness Questionnaire (PAR-Q), which identifies participants who have heart, 

bone, or joint problems that may be exacerbated by physical activity [13]. Such 

participants were excluded from the study. Participants also completed a history form 

detailing age, education, parity, smoking habits, hysterectomy, number of vaginal 

deliveries, and number of Cesarean deliveries. 

 The exercise sessions were conducted for one hour in an exercise physiology lab 

under the direct supervision of the research team. Only one participant was assessed at a 

time. Participants wore the WIVT and IM for all activities [4]. The WIVT contained a 

pressure sensing piezoresistive die and a microcontroller encapsulated in a medical grade 

silicone elastomeric capsule measuring 23.9 mm in diameter and 37.3 mm in length filled 

with incompressible silicone gel. A four-conductor cable connected the WIVT to the IM 
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through a tip ring ring sleeve (TRRS) connector on the side of the IM, which recorded all 

data onto a microSD card and contained the triple-axis accelerometer. The accelerometer 

within the IM was an iNEMO inertial module: 3D accelerometer and 3D gyroscope 

(ACCEL-LSM330DLC) produced by ST that measured ±2g (Figure 1). Both the WIVT 

and accelerometer sampled synchronously at 32 Hz. The WIVT was zeroed at 

atmospheric pressure for 30 seconds before insertion, causing all IAPs reported to be in 

reference to atmospheric pressure. Participants received verbal instructions for inserting 

the WIVT and wore the WIVT for approximately 5 minutes before participating in any 

activities in order to equilibrate the WIVT with body temperature. The IM was clipped 

onto the waistband of participants' pants on the non-dominant hand side, and athletic tape 

was used to secure the cable to the ipsilateral hip. A member of the research team turned 

on the IM at the beginning of the exercise session and connected/disconnected the sensor 

cable at the IM before and after each exercise. The IM was turned off at the end of each 

exercise session. A blinking green light on the IM indicated that the data write cycle to  

 

(a)  (b)  (c)  

Figure 1: WIVT and IM with accelerometer setup. (a) Open IM. The IM contains the 

triple-axes accelerometer employed in the study and is waist-worn in the orientation 

shown. (b) Closed IM. The x-axis is along the length of the IM (vertical), the y-axis is 

along the width of the IM (mediolateral), and the z-axis runs through the depth of the IM 

(anteroposterior; out of the page). (c) Instrumentation setup. The entire instrumentation 

setup consists of the IM containing the accelerometer that is placed on the waist and the 

WIVT containing the pressure sensing elements that is inserted into the vagina. 

Accelerometer +x-axis 
+z-axis 

+y-axis 
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the microSD card was completed correctly. 

 We recorded baselines for each participant for 30 seconds while the participant 

lay supine on the floor and while the participant stood with feet hip distance apart. 

Participants completed 13 exercises that consisted of three stages of the Bruce treadmill 

walking fitness test [14], 2-riser (20.32 cm) step-ups, 4-riser (30.48 cm) step-ups, lifting a 

4.5 kg box with two hands from a 96.52 cm tall counter to the floor and back 

continuously, a static plank on forearms and toes, crunches, sit-ups, pushups on knees, 

walking alternating lunges, walking alternating lunges with 4.5 kg dumbbells in each 

hand, and jumping jacks (Table 1). Each stage of the walking fitness test lasted for 3 

minutes, while every other exercise lasted for 30 seconds. Activities were not 

randomized. Participants rested for 10 seconds before and after each exercise while the 

IM was recording to ease identifying the start and end of each activity. Activities 

involving repetitions occurred at specific rhythms (beats per minute (bpm)) controlled by 

a metronome. We assessed the complete data at the end of each exercise session and 

asked participants with incomplete data to return for an additional exercise session.  

 Using a customized MATLAB (R2013a, Mathworks, Natick, MA) script, we 

determined the maximal IAPs that were at least 1 second apart, maximal accelerometer 

vector magnitudes that were at least 1 second apart, and the IAP area under the curve 

(AUC) for each activity and participant according to methods established by Hamad et al. 

[15] We computed the highest 10 maximal IAPs and accelerometer vector magnitudes for 

each walking stage and the highest 5 maximal IAPs and accelerometer vector magnitudes 

for every other activity. In order to calculate the accelerometer vector magnitude, we took  
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Table 1: Descriptive measures for baseline activities and exercise activities 

Activity Time 
(minutes)/ 
Repetitions 
(bpm) 

Mean 
maximal 
IAP (SD) 
cm H2O 

Range 
maximal 
IAP 
 (max-
min) 

Mean 
AUC  
(SD) 
cm H2O s 

Range 
AUC 
(max-
min) 

Mean 
maximal 
acceleration 
(SD) 
g-force 

Range 
maximal 
acceleration 
(max-min) 

Laying Baseline 
0.5/- 

16.7  

(4.8) 

27.2 

-4.6 

459.8 

(136.0) 

639.5-

117.7 

1.00  

(0.03) 

1.17- 

0.94 

Standing 
Baseline 

0.5/- 
36.7 

 (7.3) 

52.4- 

21.6 

1021.0 

(202.0) 

1471.7-

606.2 

1.04  

(0.03) 

1.22- 

0.98 

Walking stage 1 
1.7 mph 10% 
grade 
 

3/- 
47.3  

(7.5) 

65.9- 

30.3 

6200.6 

(1090.9) 

8441.4-

3912.4 

1.71  

(0.14) 

2.21- 

1.44 

Walking stage 2 
2.5 mph 12% 
grade 
 

3/- 
54.5  

(7.6) 

76.9- 

35.7 

6212.2 

(976.2) 

7989.9-

3840.3 

1.91  

(0.18) 

2.72- 

1.60 

Walking stage 3 
3.4 mph 14% 
grade 
 

3/- 
68.5 

(11.6) 
102.0-46.0 

6709.5 

(1169.0) 

9547.8-

4173.2 

2.27 

 (0.21) 

3.10- 

1.96 

20.32 cm Step-
ups 

0.5/24 
59.7 

(11.8) 

98.3- 

43.1 

1026.0 

(194.9) 

1365.0-

730.2 

2.16  

(0.14) 

2.60- 

1.88 

30.48 cm Step-
ups 

0.5/24 
68.7 

(12.7) 
101.1-48.5 

1040.3 

(199.3) 

1392.1-

692.0 

2.38  

(0.20) 

2.92- 

2.12 

Lifting task  
4.5 kg 

0.5/15 
48.0 

(10.8) 

89.6- 

30.3 

990.4 

(188.9) 

1470.9-

656.0 

1.75  

(0.26) 

2.41- 

1.29 

Plank 
0.5/- 

49.1 

(14.0) 

94.8- 

23.3 

1081.2 

(313.4) 

1895.9-

459.7 

1.24 

 (0.17) 

1.86- 

1.07 

Crunches 
0.5/15 

27.4 

(13.5) 

66.2- 

8.9 

439.1 

(190.0) 

968.3-

180.6 

1.09  

(0.06) 

1.26- 

1.01 

Sit-ups 
0.5/15 

64.1 

(23.6) 
133.1-28.6 

945.6 

(275.8) 

1553.0-

468.3 

1.31  

(0.22) 

2.84- 

1.09 

Pushups 
0.5/25 

45.3 

(13.3) 

83.6- 

24.5 

908.4 

(230.3) 

1444.5-

469.3 

1.72  

(0.52) 

3.48- 

1.22 

Lunges 
0.5/40 

56.8 

(11.4) 

87.9- 

39.6 

1155.4 

(197.8) 

1629.7-

860.5 

1.96  

(0.22) 

2.55- 

1.55 

Weighted Lunges 
4.5 kg/hand 

0.5/40 
57.7 

(11.7) 

90.8- 

40.9 

1169.7 

(193.3) 

1632.6-

841.3 

1.95  

(0.26) 

2.66- 

1.52 

Jumping Jacks 
0.5/60 

124.0 

(23.7) 
188.6-77.5 

1372.7 

(241.1) 

1977.8-

1017.8 

3.17  

(0.31) 

3.49- 

2.39 
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the square root of the sum of the squares of the 3 axes (x, y, z) for every time point 

(Figure 2). The combination of data from all participants determined the mean maximal 

IAPs, mean maximal accelerometer vector magnitudes, and mean IAP AUCs for every 

activity as well as the respective standard deviations. We utilized Excel (2007, Microsoft 

Office, Redmond, WA) to perform linear regressions that determined the R
2
 values for 

mean maximal accelerometer vector magnitude versus mean maximal IAP for all 

exercise activities and for mean maximal accelerometer vector magnitude versus mean 

IAP AUC for all 30-second exercise activities. 

 

(a)  (b)  

Figure 2: Raw waveforms of (a) IAP and (b) acceleration for the three stages of one 

walking fitness test. Each walking stage lasted for 3 minutes and had an increased grade 

and speed. The gray square markers indicate the respective 10 maximal IAP and 

acceleration values for each stage, and the dashed lines indicate changing to the next 

stage. 

 

 



 

 

 

 

RESULTS 

 

 Twenty-seven women enrolled in the study with 25 completing the entire 

exercise session. Two participants' data did not undergo data analysis due to the 

participants being unable to complete the exercise session. The average age with 

standard deviation (SD) of participants was 26±8 years (range 21-52), the average BMI 

with SD was 22.8± 2.5 kg/m
2
 (range 19.5-28.4), and 88% of women were nulliparous.  

 All mean maximal and AUC values were compiled to determine average values 

for each exercise, including baselines. Table 1 shows descriptive measurements for the 

IAP and accelerometer data, as well as descriptions of each activity. 

 We first examined the relationship between mean maximal IAP and mean 

maximal accelerometer vector magnitude for every exercise activity (Figure 3). 

Jumping jacks created the highest mean maximal IAP and mean maximal accelerometer 

vector magnitude, while crunches created both the lowest mean maximal IAP and mean 

maximal accelerometer vector magnitude. When plotting mean maximal accelerometer 

vector magnitude versus mean maximal IAP and performing a linear regression, we 

found an R
2
 value of 0.7405. The values for sit-ups and plank were the farthest away 

from the regression line, while the other exercises were within one standard deviation of 

the regression line.  

 Additionally, we compared the mean AUC for IAP with the mean maximal 

accelerometer vector magnitude (Figure 4). The three walking stages were not included   



10 

 

 

Figure 3: Linear regression and correlation between mean maximal IAP and mean 

maximal acceleration vector magnitude. All 13 activities were plotted and a linear 

regression performed to determine the R
2
 value for the relationship. Each diamond 

datum represents one exercise and the black line is the linear regression. Error bars 

represent SD. 

 

 

 

 
Figure 4: Linear regression and correlation between mean AUC for IAP and mean 

maximal acceleration vector magnitude. All 10 of the 30 second activities were plotted 

and a linear regression performed to determine the R
2
 value for the relationship. The 

three walking stages were excluded because they lasted for 3 minutes each. Error bars 

represent SD. 
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in the analysis because they each lasted for 3 minutes, while all other activities lasted 

for 30 seconds. Examining the relationship between AUC and accelerometer vector 

magnitude requires the activities to occur for the same amount of time to create an 

accurate linear regression due to the time component involved in AUC. Once again, 

jumping jacks generated the highest mean AUC for IAP and the highest mean maximal 

accelerometer vector magnitude, and crunches generated the lowest mean AUC for IAP 

and the lowest mean maximal accelerometer vector magnitude. The R
2
 value for the 

linear regression of the mean maximal accelerometer vector magnitude versus mean 

AUC for IAP was 0.5255. Values for three of the exercise activities were farther than 

one standard deviation away from the regression line, while all other values were within 

one standard deviation of the regression line. 

 Due to participants performing the walking fitness test stages for 3 minutes 

instead of 30 seconds, we assessed the walking stages separately (Figure 5). The mean  

 

(a) (b)  

Figure 5: Linear regression mean maximal accelerometer vector magnitude versus (a) 

mean maximal IAP (b) and versus mean AUC for IAP. Only the three walking stages 

are addressed, in which there is an increased grade and speed with progressive stages. 

Mean accelerometer vector magnitude and both IAP measurements increase almost 

linearly with an increase in grade and speed. Error bars represent SD. 
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maximal accelerometer vector magnitude correlated highly with the mean maximal IAP 

(R
2
 = 0.9995). The mean maximal accelerometer vector magnitude also showed high 

correlation with mean AUC for IAP (R
2
 = 0.8888). As the walking stage increased in 

speed and grade, the acceleration vector magnitude and both IAP measurements 

increased linearly. 

 



 

 

 

 

 

DISCUSSION 

 

 Analysis of IAP in women may be an important factor in determining the 

probability of women developing a PFD [2]. While the development of the WIVT 

enabled accurate analysis of IAP during dynamic movements without tethering a woman 

to a computer [4], the compliance of a woman wearing a WIVT for multiple days would 

most likely be limited. Accelerometers are already being used in many studies to 

determine physical activity levels. Our study examined the relationship between IAP 

measurements from the WIVT and acceleration measurements from a waist-worn 

accelerometer. The comparison between mean maximal IAP and mean maximal 

accelerometer vector magnitude showed a high R
2
 value, while the comparison between 

mean AUC for IAP and mean maximal accelerometer vector magnitude resulted in a 

slightly lower R
2
 value. When examining different types of walking, the R

2
 values for 

both comparisons remained high. 

 Performing a linear regression for mean maximal accelerometer vector magnitude 

versus mean maximal IAP resulted in an R
2
 value of 0.7405. The R

2
 value is high when 

considering that acceleration and IAP are physiological measurements that normally vary 

from person to person and do not directly influence each other. We utilized the 1 SD 

distance from the linear regression line to assess whether the magnitude of the error for 

an activity caused the activity to not follow the linear trend. Only two of the exercises 

were more than one standard deviation away from the regression line, the values being 
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for plank and sit-ups. Both plank and sit-ups highly recruit abdominal muscles, producing 

significant IAPs, but create static positioning for the waist-worn accelerometer. Planks 

employ a completely static body position, while sit-ups only move the torso with limited 

movement at the waist. The static positioning of the waist creates low acceleration while 

the high recruitment of abdominal muscles creates high IAP, which may explain the low 

correlation for the two activities. All other exercises, however, were within one standard 

deviation of the regression line, indicating that the exercises followed the linear trend and 

created a high correlation between acceleration and IAP. Mean maximal accelerometer 

vector magnitude may therefore be a strong predictor of mean maximal IAP, which 

indicates the sudden and forceful pressures placed on the pelvic floor muscles. 

The linear regression for mean maximal accelerometer vector magnitude versus 

mean AUC for IAP resulted in a smaller R
2
 value of 0.5255 than the R

2
 value for mean

maximal accelerometer vector magnitude versus mean maximal IAP. The smaller R
2

value for mean AUC for IAP indicates a weaker correlation between AUC for IAP and 

acceleration but is still strong when considering that the two measurements are indirectly 

related physiological values. Three of the ten exercises were more than one standard 

deviation away from the regression line: jumping jacks, 30.48 cm step-ups, and plank. 

The greater variability of AUC for IAP may be the result of activities that generate higher 

peaks in accelerometer vector magnitude, which may cause high spikes in IAP for short, 

sudden periods during the exercise. Activities that have lower peaks in accelerometer 

vector magnitude, on the other hand, may generate a higher baseline IAP and constant 

IAP during the entire duration of the exercise. We only included 30-second exercises in 

the analysis of AUC for IAP in order to eliminate the time variable associated with AUC, 
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creating a comparison that indicates the impact of the exercises on IAP and acceleration 

and not the impact of the duration of the activity. The relationship between mean AUC 

for IAP and mean maximal accelerometer vector magnitude is not as strong as the 

relationship between mean maximal IAP and mean maximal accelerometer vector 

magnitude, showing that accelerometry is not as strong a predictor of the overall IAP 

generated during activities. 

We additionally examined the relationship between accelerometry and IAP for the 

walking stages separately. The R
2
 value for mean maximal accelerometer vector

magnitude and mean maximal IAP was 0.9995 and 0.8888 for mean AUC for IAP. Both 

R
2
 values are very high, particularly considering acceleration and the two measurements

of IAP studied are indirectly related physiological values. The accelerometer 

measurements and pressure measurements both increase at similar rates when walking 

speed and grade increases. Our prior research found similar increases in mean maximal 

IAP and mean AUC for IAP with increased speed and grade [6, 7]. The high correlations 

are important because walking activities comprise most of women's daily physical 

activities. Therefore, mean maximal accelerometer vector magnitude may be an excellent 

predictor of a woman's IAP in real life scenarios. 

Examining the raw waveforms for IAP and acceleration may provide further 

insight into why certain activities had higher positive correlations. Figure 6 shows 

descriptive IAP and acceleration waveforms for walking, the lifting task, and the sit-ups 

for short periods of time. The walking waveforms show three steps, where each peak in 

IAP is a footstep. The corresponding acceleration waveform also shows three peaks and 

appears to be in phase with the IAP waveform, demonstrating why walking had such a  
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(a) 

(b) 

(c) 

Figure 6: IAP and acceleration raw waveforms for (a) walking, (b) lifting task, and (c) 

sit-ups. The waveforms are in phase and similar during walking. The lifting task 

generated waveforms that have similar overall trends but differ in number of peaks, while 

sit-ups created waveforms that do not reflect each other and have a poor correlation. 
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high positive correlation. All three stages of walking exhibited similar waveforms. The 

waveforms for the lifting task do not mirror each other as well as during walking due to 

the presence of more peaks in the acceleration waveform, but the overall structure of the 

waveforms reflect each other. Sit-ups, one of the activities which had low positive 

correlation, have very little similarity in the waveforms for IAP and acceleration. 

Changes in the IAP waveform show two sit-ups occurring, while the acceleration remains 

around a constant value with small fluctuations. The amount of variance between the IAP 

and acceleration waveforms helps to account for why activities like walking had higher 

positive correlations than activities like sit-ups.  

Some of the activities in the current study have been studied previously, and our 

values for IAP fall within the described ranges [16-18]. Some variations in IAP values 

are due to differing measurement techniques for IAP, including transrectal microtip 

catheters and Foley catheters connected to arterial-line pressure transducers. Cobb et al. 

found that lifting 5 kg generated ~57 cmH2O when squatting and ~36 cmH2O when 

lifting weights off a counter, a range consistent with our counter to floor to counter lifting 

task [16]. Guttormson et al. determined that IAP increased with increasing weight being 

lifted from a table or the floor [18]. Interestingly, we did not find a change in IAP 

measurements or accelerometer vector magnitude between normal lunges and weighted 

lunges with 9 kg, indicating that carrying up to 9 kg with an arm hang posture does not 

greatly affect IAP. 

While the measurement techniques employed in the study have been employed 

previously, there are some limitations. IAP measurements taken in the upper vagina may 

be affected by extraneous forces from the surrounding viscera and vaginal smooth muscle 
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contractions. However, the placement of the WIVT in the upper vagina allows the sensor 

to detect forces placed on the pelvic floor because the abdominal cavity is a closed 

system, and IAP measured in the upper vagina has been shown to approximate 

measurements from rectal and bladder transducers [19, 20]. Additionally, the 

accelerometer range in the study was ±2g, which may be too limited for more vigorous 

activities that women perform. The accelerometer in the IM is also not a conventionally 

utilized system in physical activity research. Future studies would benefit from 

employing commercially available waist-worn accelerometers, such as the ActiGraph 

GT9X Link. Lastly, the majority of participants were young, nulliparous, Caucasian 

females, necessitating the need to evaluate a wider range of ethnicities, ages, and parity to 

better understand the relationship between IAP and accelerometry. 

In this study, we have evaluated the relationship between accelerometry and IAP 

measurements, a relationship that we do not believe has been previously explored. Mean 

maximal accelerometer vector magnitude is a strong predictor of mean maximal IAP and 

a slightly weaker predictor of mean AUC for IAP. When examining changes in walking 

speed and grade, representing the most common physical activity amongst women, the 

relationship becomes even stronger. Due to the high correlation found between IAP 

measurements and accelerometer measurements, waist-worn accelerometry may be a 

viable method for increasing wear time compliance of a sensor while collecting IAP data 

in real-life situations. Women would be able to wear a less invasive sensor but still be 

able to predict their IAP, which may lead to a better understanding of the relationship of 

IAP and PFDs in the future. 
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