
Synthesis of Timed Circuits using BDDs
�

Robert A. Thacker Chris J. Myers

Computer Science Department Electrical Engineering Department

University of Utah University of Utah

Salt Lake City, UT 84112 Salt Lake City, UT 84112

Abstract

This paper presents a tool which synthesizes timed cir-

cuits from reduced state graphs. Using timing information

to reduce state graphs can lead to significantly smaller and

faster circuits. The tool uses implicit techniques (binary de-

cision diagrams) to represent these graphs. This allows us

to synthesize larger, more complex systems which may be in-

tractablewith an explicit representation. We are also able to

create a parameterized family of solutions, facilitating tech-

nology mapping.

1. Introduction

Asynchronous design has been gaining in popularity in

recent years [5, 6, 8, 14]. Increasing clock speeds and lar-

ger ICs make it ever more difficult to maintain a globally

synchronous environment. Asynchronous circuits eliminate

these difficulties by removing clocks and using independent

handshaking protocols. We work with a class of asynchron-

ous circuits known as timed circuits, which use explicit tim-

ing information to optimize the implementation[10]. Using

timing information makes it possible to greatly reduce the

state space to be explored. It can also lead to much more

efficient circuits, since eliminated states do not need to be

considered when implementing the specification.

The goal of this work is to facilitate synthesis of efficient

asynchronous circuits using implicit techniques. Binary

decision diagrams (BDDs) are a simple, efficient method

of representing and manipulating design information[3].

BDDs allow us to compactly represent very large state

spaces, and traverse and manipulate them in reasonable

amounts of time. They also allow us to derive whole fam-

ilies of results which can be easily evaluated. Having mul-

tiple results is very useful during technology mapping: one

result may already have been mapped for another signal, or

be easier to decompose than others. These options are not

available if only one solution is found.✁
This research is supported by a grant from Intel Corporation and NSF

CAREER award MIP-9625014.

2. BDD representation of a reduced state graph

Our synthesis system starts with a circuit specification

represented in a reduced state graph (RSG), which can be

derived from many higher-level languages such as CHP and

STGs [10], as well as more recently VHDL [16]. State

graphs are a common intermediate form for many asyn-

chronous CAD tools [7, 13, 15]. A RSG is a state graph

wherein the number of reachable states has been reduced

by considering timing information. A number of algorithms

exist for doing the necessary timing analysis [2, 11]. A RSG

is represented as a graph in which the vertices are states and

the edges are possible state transitions. States are represen-

ted by a vector ✂☎✄ ✆✞✝✠✟☛✡☞✝✍✌✎✡✑✏✒✏✒✏✓✝✕✔✗✖
, where each variable

✝✕✘
represents a signal in the system. These variables may take

on any one of the following values: ✙ denotes a stable low

signal, ✚ denotes a signal enabled to rise, ✛ denotes a stable
high signal, and finally ✜ denotes a signal enabled to fall. A

transition between two states indicates that, upon the appro-

priate signal change, the systemwill change to the successor

state.

For example, Figure 1(a) shows the block diagram for a

self-resetting dynamic OR gate (SRDOR). When an input

rises, the output rises. After some delay, the internal signal
✝

will fall, causing the gate to be reset (the input is assumed to

have fallen by this point). The RSG describing the behavior

of this circuit is shown in Figure 1(b). In the initial state,

where ✂✢✄ ✆✤✣ ✛ ✡✥✣✧✦✕✡☞✝★✡☞✩✪✖
= (RR10), both

✣ ✛ and
✣✫✦

are en-

abled to rise, while
✩
is stable low and

✝
is stable high. This

state may be exited either on the transition
✣ ✛✭✬ or

✣✧✦ ✬ . If✣ ✛ rises, the state (F01R) is entered, in which either
✩
may

rise or
✣ ✛ may fall, while

✣✧✦
is stable low, and

✝
is stable

high. Notice that there is no edge for the possible transition✣ ✛✯✮ . Timing considerations allow us to determine that
✩ ✬

always occurs first, so we eliminate (001R) as a reachable

state. Also, note that the environment will provide only one

of the transitions
✣ ✛✭✬ and

✣✧✦ ✬ ; it is assumed both will not

be asserted simultaneously. The occurrence of
✣ ✛✑✬ there-

fore disables the transition
✣✧✦ ✬ , and we enter state (F01R),

not (FR1R).

To represent the reachable state space as a BDD, a pre-

1

i1

i2 i2

x

1 0

0

0 1

0 1

1

01
F0F1

F01R

RR10

0F1R

0FF1

RRR0

RR0F

(i1,i2,x,a)

x-

a-

i1+ i2+

a+ a+

i1- i2-

(b)

RRF1

x+i1

i2

x

a

(a) (c)

Figure 1. Self-resetting dynamic OR gate: (a)block diagram, (b)RSG, and (c)BDD for ✰ .
dicate ✰ on the vector ✂ is defined which returns true for all

states reachable in any number of transitions from the initial

state. Figure 1(c) shows the BDD for the state space pre-

dicate for the SRDOR example. The BDD ✰ shows that the

reachable states are those inwhich (1) both
✣ ✛ and ✣✧✦ are low,

or (2) exactly one of
✣ ✛ and ✣✫✦ are high and

✝
is also high.

The NextState function ✱ is a predicate on ✰✳✲✴✰ which

returns true for all state pairs ✵✫✶ ✡ ✶✸✷✺✹ for which ✶✻✷ may be

reached from ✶ in exactly one signal transition. The BDD✱ is analogous to ✰ , but a complete path through the graph

represents a pair of states (i.e., it passes through nodes rep-

resenting ✂ and ✂✼✷), and the terminal node indicateswhether

a transition from ✰ to ✰✽✷ is valid.
A complication arises from the use of timing in generat-

ing the RSGs. Asmentionedbefore, when timing considera-

tions showa state to be unreachable, it may be removed from

the RSG. If we based our implementation only on the RSG,

the signal enablings leading to each of these states would

be lost, and the resulting circuit would be suboptimal. In

the SRDOR example, a naive derivation of ✰ and ✱ actu-

ally represents the state graph found in Figure 2(a). This

graph correctly describes the signal changes, but not the en-

ablings, and produces the circuit found in Figure 2(b). A

correct graph is shown in Figure 2(c) and produces the cir-

cuit shown in Figure 2(d). This circuit is smaller and faster

than the circuit derived from the incorrect RSG.

The basic problem can be illustrated using the famil-

iar diamond shown in Figure 3. The original speed-

independent graph is shown in Figure 3(a). Because our tim-

ing analysis says that the signal ✾ will always rise before ✩ ,
we remove the state (1R) from the graph. If the correct en-

ablings are not maintained, we end up with the less concur-

rent graph shown in Figure 3(b). The enabling of
✩
is now

delayed by the time necessary to fire ✾ , and each cycle of the
circuit is slowed by that amount. It should also be noted that

the less concurrent circuitmay not only be slower, but it may

also be incorrect if it violates the original overall timing as-

sumptions.

To maintain the correct enablings, we add to the RSG a

transition to a “ghost state” whenever we find an enabling

without a matching next state. This ghost state consists of

the same values as the original state, except that the enabled

signal has changed phase. Now, when we compute N, the

correct enablings are derived.

Figure 3(c) shows an example of a “haunted” graph

where the state (1R) has been reinserted as a “ghost state”,

with a transition from (RR). This path will never be taken,

but it is essential that it be represented. In the SRDOR ex-

ample, several ghost states are necessary, such as (001R)

which would be reached from state (F01R) by the transition✣ ✛✯✮ .
3. A parameterized family of timed circuits

Our timed circuits are implemented by creating a func-

tion block for each output signal, consisting of a C-element

with a sum of products (SOP) block for the set and another

for the reset. The circuit may be implemented using a stand-

ard C-element (SC) structure using discrete gates or using a

complex gate known as a generalized C-element (gC)[9].

Each “product” block implements a single excitation re-

gion (ER) for a given output signal. An excitation region for

the output signal
✝
is a maximally connected set of states

in which the signal is enabled to change to a given value

(i.e.,
✝ ✄✿✚ or

✝ ✄❀✜). If the signal is rising in the re-

gion (i.e.,
✝ ✄❁✚), it is called a set region, otherwise the re-

gion is called a reset region. We also define a set of excited

states (ES), which is the union of the excitation regions for

a given signal transition. For each signal transition, there is

also an associated set of stable, or quiescent, states (QS). For

a rising transition
✝ ✬ , this is the set of states where the sig-

nal is stable high, and is similarly defined for a falling trans-

ition. Given ✱ , the BDD representations of ES, QS, and ER

are straightforward to obtain.

In our SRDOR example, let us consider the excita-

tion region for
✝ ✮ . In the naive graph, this region is

just ❂ (00F1) ❃ . In the “haunted” version, it is extended

to ❂ (RRF1),(0FF1),(F0F1) ❃ . The quiescent set for the

same transition is ❂ (RR0F) ❃ (in the naive derivation it is❂ (000F) ❃).
In [4], a parameterized family of decompositions is in-

vestigated one at a time by adding additional variables. We

extend this idea to synthesis by representing the potential

RR10

x-

a-

i1+ i2+

a+ a+

i1- i2-

101R 011R

F011

00F1

000F

00R0

0F11

x+ i1

i2

a

i2
i1

x

i1

i2

x

a

F0F1

F01R

RR10

0F1R

0FF1

RR0F

RRR0

x+

x-

a-

i1+ i2+

a+ a+

i1- i2-

RRF1

(a) (b) (c) (d)

(i1,i2,x,a) (i1,i2,x,a)

Figure 2. SRDOR: (a) incorrect enablings and (b) circuit, (c) correct enablings and (d) circuit.

0R

11

R1

b+

a+

(b)

1R

11

R1

RR
b+

a+

(c)

a+
RR

1R R1

11

a+

a+

b+

b+

(a)

(a,b) (a,b)(a,b)

Figure 3. Simple diamond:(a)speed inde-
pendent, (b)timed with incorrect enablings,
(c)timed with correct enablings, and a trans-
ition to a “ghost state”.

“product” covers for each excitation region. Our covers are

represented by a series of implications of the form ✵❅❄ ✘✴❆✝✕✘ ✹❈❇❉✵✺❄ ✔❋❊✍✘●❆ ❍■✝❏✘ ✹ . The ❄ variables enable us to con-

sider separately the positive and negative phases of each

signal, and indicate the possibility of using that signal and

phase in a cover. These implications will be ANDed to-

gether to produce a BDD which represents every possible

potential single cube cover of the corresponding ER, i.e.,❑❈▲ ✄◆▼
✔✘✺❖✽✟◗P ✘✧❘ ▲ ✡

where
P ✘✧❘ ▲ ✄❚❙✒✵✺❄ ✘✧❘ ▲ ❆❯✝❏✘ ✹✼❇❱✵❅❄ ✔✪❊✍✘✫❘ ▲ ❆❍■✝✕✘ ✹✧❲ .

Occasionally an excitation region is found which cannot

be covered by a single cube. To solve this problem, we gen-

eralize the “product” block to a SOP block to represent this

region. If a single cube solution is not found, a second (or

third, etc.) initial cover is created, and ORed together with

the preceding initial cover (i.e.,
❑ ✄ ❑ ▲■❳ ❑ ✟ ❳ ✏✒✏✒✏ ❳ ❑❩❨

).

In order to create a valid timed circuit implementation, it

is necessary to define the states a cover must include, may

include, and may not include. The correctness constraints

discussed here were developed in [1] for speed-independent

circuits and extended to timed circuits in [12]. In a gC im-

plementation, the allowed growth regions include all states

in ES and QS for the corresponding signal transition. This

covering constraint prevents the gate from being pulled up

and down simultaneously or changing values at the wrong

time. In a SC implementation, additional internal signals

are introduced by the use of discrete gates. In order to pre-

vent the introduction of hazards, additional restrictions are

placed on the states allowed in the cover. These restrictions

ensure that each cover makes a single monotonic acknow-

ledged transition when it is actively changing the output and

makes no transitions at any other time. The covering con-

straint is modified to include only states from this ER or

the corresponding QS. This ensures that only one “product”

block is on at a time, so the transition can be acknowledged

by a transition on the output. In addition, the covermay only

be entered through the excitation region. This entrance con-

straint guarantees a single monotonic transition, with no un-

acknowledged glitch in the function block.

The BDD for the valid cover, VC, is constructed such that

it returns all implementations that completely cover the cor-

responding excitation region and possibly cover other states

as allowed by the correctness conditions. Any satisfying as-

signment of the remaining BDD is a valid implementation:

if a ❄ variable appears in the positive phase, the implied vari-

able must appear in the cover; if it appears in the negative

phase, the variable cannot be included; and if it does not ap-

pear at all, its use is at the designers discretion.

4. Results and conclusions

The complete BDD timed circuit synthesis procedure is

shown in Algorithm 4.1. First, we derive the characteristic

functions for the state graph (✰) and NextState relation (✱).

A correct NextState relation requires that the graph first be

populated with appropriate “ghost” states. For each output

signal, we then decompose the graph into appropriate qui-

escent sets (❬❭✰), excited sets (❪❫✰), and excitation regions

(❪❫✚). The set of violating states (❴) for each ❪❭✚ is then

found, and a valid cover is derived (i.e., one which includes

the ❪❭✚ , but no part of ❴). If no valid cover can be found,

the potential cover (
❑
) is expanded, and the covering step

is retried. In this fashion, we transparently derive multicube

covers as necessary.

This algorithm has been automated within the CAD tool

ATACS and applied to the design of a large number of

circuits (see Table 1). The first five are standard speed-

independent benchmarks, and the rest are timed circuits.

The table gives the size of the state space both in states(❵)
and transitions(❛) (for the explicit representation) and BDD
nodes (for the implicit representation). The runtimes repor-

Algorithm 4.1 (Synthesize)

bdd list Synthesize(RSG G) ❂✰ = FindStateGraphBDD(❜);❜ = Haunt(❜);✱ = NextState(❜);

Foreach output
✝✕✘

in ✂❝❂
Foreach

✝✕✘ �
in ❂ ✝✕✘ ✬ ✡☞✝✕✘ ✮❞❃✗❂❑

= Generate
❑❈▲

;

If ✵ � ✄❡✬❞✹❢❂❬❭✰❩✵ ✝❏✘ � ✹■✄❡❣ ✝✍✣ ✶❢❤ ✐✪✵❅✂ ✷ ✡☞✝❏✘ ❇ ✝ ✷✘ ❇❥✱❦✹ ;❪❭✰❩✵ ✝ ✘ � ✹■✄❁❣ ✝✍✣ ✶☞❤ ✐✪✵❅✂✼✷ ✡☞❍■✝ ✘ ❇ ✝ ✷✘ ❇❥✱❦✹ ; ❃
else ❂❬❭✰❩✵ ✝ ✘ � ✹■✄❡❣ ✝✍✣ ✶❢❤ ✐✪✵❅✂✼✷ ✡☞❍■✝ ✘ ❇ ❍❧✝ ✷✘ ❇❥✱❦✹ ;❪❭✰❩✵ ✝ ✘ � ✹■✄❁❣ ✝✍✣ ✶☞❤ ✐✪✵❅✂✼✷ ✡☞✝ ✘ ❇ ❍■✝ ✷✘ ❇❥✱❦✹ ; ❃❪❭✚♠✵ ✝ ✘ � ✹❝✄❁✜ ✣✫♥✼♦ ❪❭✚♠✵❅✂ ✡ ✱ ✡ ❪❭✰❝✹ ;
Foreach ❪❭✚q♣ in ❪❫✚❭❂

Do ❂
if (gC) then❴◆✄❁✰❥❇ ❍ ❪❭✰r❇ ❍ ❬❭✰ ;
else ❂❴ ✟ ✄◆✰❥❇ ❍ ❪❭✚q♣❈❇ ❍ ❬❭✰ ;❴ ✌ ✄❡st✚q✉❞✱❦✰❩✵✺✂✼✷✼✈✇✂ ✡ ❣ ✝✍✣ ✶❢❤ ✐✪✵①✵✺✂ ✡

✱②✵✺✂ ✡ ✂✼✷✺✹✸❇ ❍ ❑ ✵❅✂★✹✸❇ ❑ ✵✺✂✼✷✒✹✸❇ ❍ ❪❭✚ ♣ ✵❅✂✼✷③✹①✹④✹ ;❴◆✄⑤❴ ✟ ❳ ❴ ✌ ; ❃❴ ❑ ✄◆⑥ ♥✼✣✫⑦ ✐✪✵✺✂ ✡ ✵ ❍ ❑ ❳ ❍ ❴⑧✹⑨❇✴✵ ❍ ❪❫✚ ♣ ❳ ❑ ✹④✹ ;
If ✵✤❴ ❑ ✄❁⑩✗✹❑ ✄ ❑ ❳

Generate next
❑❩❶
;❃ While ✵❷❴ ❑ ✄❡⑩✗✹ ;

add ❴ ❑
to ✶✑❣❢❤ ❸✎❹ ❺✎❣✭✶✑⑥❏❻✒❤✥✶ ; ❃⑨❃✗❃

Return ✶✭❣☞❤ ❸✎❹ ❺✎❣✭✶✭⑥✕❻✒❤✥✶✯❃
Figure 4. Function to synthesize circuit from
a reduced state graph ❜

ted are in milliseconds on a 200 MHz PentiumPro work-

station with 32 Mbytes of memory. The sixth column of

each table reports the runtime to translate the explicit rep-

resentation of the state space to two BDDs. We compare

the runtimes of our BDD synthesis method to a heuristic

single-cube algorithm [10], and to a general multi-cube al-

gorithm [1]. For each algorithm, we compare the runtimes

for generating both a gC and a SC implementation. An entry

of “fail” indicates that an algorithm did not complete due to

limitations in time and space.

The last two columns present the number of potential

implementations for the entire circuit. This number is the

product of the possible covers for each individual excita-

tion region. For example, in the gC implementation of the

SRDOR, the set region for
✝
has 8 solutions, the reset region

has
✦
, and the 2 set regions and the reset region for

✩
each

have 8 solutions, which makes a total of ❼❈✲ ✦ ✲❭❼❈✲❭❼❽✲❾❼✴✄❼✕✛✑❿ ✦ . The SC implementation is more restricted so it only

has ❼⑨✙ possible solutions. Obviously the user could not be

expected to consider each of these solutions separately. Fil-

ters would be used to reduce the set to those having reason-

able implementations in the target technology (e.g. a circuit

requiring a CMOS gate with 20 inputs can probably be dis-

counted entirely). This process could also be used to factor

common subexpressions and enable component sharing.

We observe that although it is somewhat slower than the

heuristic single-cube algorithm, our BDD synthesis method

never fails, and in comparable runtime, finds BDD repres-

entations for a huge number of possible synthesis solutions.

The heuristic algorithm fails whenmulti-cube covers are re-

quired. Our BDDmethod typically takes more than an order

of magnitude less time than the general algorithmwhile still

finding all possible solutions. The general algorithm fails

on the smaller examples as the resolution of cyclic cover-

ing tables is not implemented. The general algorithm fails

on larger examples such as trimos-send due to limitations in

time and space.

This paper presents a new synthesis method for timed cir-

cuitswhich utilizesBDDs. We formulated a BDDrepresent-

ation for state spaces which have been reduced using tim-

ing information. We use ghost transitions to preserve accur-

ate signal enabling information. We have developed BDD

formulations and algorithms for both standard-C and gener-

alized C-element implementation styles. These algorithms

find all valid covers for each excitation region (if necessary,

by transparently finding minimal multi-cube covers). Our

BDD synthesis method performs nearly as fast as a heur-

istic single-cubemethod, and it can performmore than an or-

der of magnitude better than a general multi-cube algorithm.

The major advantage of the BDD synthesis method is that

a parameterized family of solutions is found while earlier

algorithms merely found a single solution. Considering all

possible valid implementations will greatly facilitate tech-

nology mapping, which we are beginning to investigate.

While at the moment we are using an explicit state graph

derived by ATACS, in the future we plan to extend our al-

gorithm to derive the BDD representation of the reduced

state space directly from a higher-level specification. We are

also investigating methods for choosing covers for various

cost functions. Finally, we plan to extend our work to the

technology mapping of timed circuits.

5. Acknowledgments

We are especially grateful to Dr. Steve Burns from In-

tel Corporation for numerous insightful discussions about

BDDs. We would also like to thank Wendy Belluomini, Dr.

Ganesh C. Gopalakrishnan, Luli Josephson, Hans Jacobson,

Brandon Bachman, and Eric Mercer for their illuminating

comments on this paper. Finally, we would like to extend

our thanks to Dr. David Long of AT&T Bell Labs for writ-

ing a great BDD package.

Table 1. Experimental results for timed benchmarks. Time values are given in milliseconds. An entry
of fail indicates that the synthesis did not complete.

S & N Synthesis time Solutions

gen. single-cube general BDD found

Examples ➀ ❵❭➀ ➀ ❛➁➀ ➀ ✰❈➀ ➀ ✱☎➀ time gC SC gC SC gC SC gC SC

pe-rcv-ifc 65 76 77 274 20.5 28 43 fail fail 71 319 2e68 1e64

pe-send-ifc 117 213 78 315 40 48 73 2300 fail 130 752 2e51 7e46

trimos-send 336 888 29 480 163 fail fail 970 fail 268 2e4 4e9 6e8

xyz 8 10 1 20 0.7 fail fail 212 230 3.8 15 384 288

etlatch 93 206 40 230 27 fail fail 510 4e3 131 2e3 4e10 2e10

scsiSVT 15 20 10 59 2.8 4 4 230 230 5.4 18 2e5 3e4

slatch 30 46 35 147 8.3 8 10 440 720 22 68 2e17 7e15

elatch 37 61 38 178 11 10 12 460 860 30 87 3e14 5e12

JSPslatch 30 46 35 141 8.1 8 10 440 720 21 65 2e17 7e15

JSPelatch 37 61 38 186 10.7 10 13 450 866 30 93 3e14 5e12

mmuopt 46 90 27 159 13 10 12 360 550 19 105 7e11 8e8

CTRL 116 169 109 510 86 57 81 2e3 fail 90 680 2e37 1e35

SEL 53 89 62 309 28 17 21 740 4e3 48 300 4e31 8e26

SELopt 73 302 45 247 168 21 28 730 fail 46 247 8e27 8e23

srdor 18 22 5 28 2.6 3 8 190 190 2.7 8 8e3 82

srdand 10 50 4 36 2.7 4.2 4.5 150 155 2.6 8 512 96

srdaoi 19 31 14 99 5.7 4.4 4.8 fail 215 8 27 8e6 3e5

cnt2 24 40 10 60 4.4 7 8 440 540 8.6 27 1e6 9

References

[1] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Automatic syn-

thesis of gate-level speed-independentcircuits. Technical Re-

port CSL-TR-94-648, Stanford University, Novermber 1994.
[2] W. Belluomini and C. J. Myers. Efficient timing analysis al-

gorithms for timed state space exploration. In Proc. Inter-

national Symposium on Advanced Research in Asynchronous

Circuits and Systems, pages 88–100, April 1997.
[3] R. E. Bryant. Graph-based algorithms for boolean function

manipulation. IEEE Transactions on Computers, 35(8):677–

691, Aug. 1986.
[4] S. M. Burns. General condition for the decomposition of

state-holding elements. In Proceedings of the International

Symposium on Advanced Research in Asynchronous Circuits

and Systems, April 1996.
[5] B. Coates, A. Davis, and K. Stevens. The Post Office exper-

ience: Designing a large asynchronous chip. Integration, the

VLSI journal, 15(3):341–366, Oct. 1993.
[6] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.

Woods. A micropipelined ARM. In VLSI ’93, 1993.
[7] L. Lavagno. Synthesis and Testing of Bounded Wire Delay

Asynchronous Circuits from Signal Transition Graphs. PhD

thesis, U.C. Berkeley,Nov. 1992. Technical report UCB/ERL

M92/140.
[8] A. Marshall, B. Coates, and P. Siegel. Designing an asyn-

chronous communications chip. IEEE Design& Test of Com-

puters, 11(2):8–21, 1994.
[9] A. J. Martin. Programming in VLSI: from communicating

processes to delay-insensitive VLSI circuits. In C. Hoare, ed-

itor, UT Year of Programming Institute on Concurrent Pro-

gramming. Addison-Wesley, 1990.
[10] C. J. Myers. Computer-Aided Synthesis and Verification of

Gate-Level Timed Circuits. PhD thesis, Stanford University,

1995.
[11] C. J. Myers and T. H.-Y. Meng. Synthesis of timed asyn-

chronous circuits. IEEE Transactions on VLSI Systems,

1(2):106–119, June 1993.
[12] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Auto-

matic synthesis of gate-level timed circuits with choice. In

16th Conference on Advanced Research in VLSI, pages 42–

58. IEEE Computer Society Press, 1995.
[13] E. Pastor and J. Cortadella. Polynomial algorithms for the

synthesis of hazard-free circuits from signal transition graphs.

In Proc. International Conf. Computer-Aided Design (IC-

CAD), pages 250–254. IEEE Computer Society Press, Nov.

1993.
[14] C. K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Ron-

cken, and F. Saeijs. A fully-asynchronous low-power error

corrector for the digital compact cassette player. In IEEE In-

ternational Solid-State Circuits Conference, 1994.
[15] A. V. Yakovlev, A. Petrov, and L. Rosenblum. Synthesis of

asynchronous control circuits from symbolic signal transition

graphs. In S. Furber and M. Edwards, editors, Asynchronous

Design Methodologies, volume A-28 of IFIP Transactions,

pages 71–85. Elsevier Science Publishers, 1993.
[16] H. Zheng and C. J. Myers. Specification and compilation of

mixed-timed systems using vhdl. forthcoming paper.

