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ABSTRACT 

 

 Systematic differences in functional connectivity magnetic resonance imaging 

metrics have been consistently observed in autism. I attempted to predict group 

membership using data provided by the Autism Brain Imaging Data Exchange, including 

resting state functional magnetic resonance imaging data obtained from 964 subjects and 

16 separate international sites. For each of 964 subjects, I obtained pairwise functional 

connectivity measurements from a lattice of 7266 regions of interest covering the gray 

matter and attempted to classify the subjects using a leave-one-out classifier with the 26.4 

million connections as features. Classification accuracy significantly outperformed 

chance but was much lower for multisite prediction than for previous single site results. 

As high as 60% accuracy was obtained for whole brain classification. Classification 

accuracy was significantly higher for sites with longer blood oxygen-level dependent 

imaging times. Attempts to use multisite classifiers will likely require improved 

classification algorithms, longer blood oxygen-level dependent imaging times, and 

standardized acquisition parameters for possible future clinical utility. 

Lateralization of brain structure and function occurs in typical development and 

subserves functions such as language and visuospatial processing. Abnormal 

lateralization is present in various neuropsychiatric disorders. It has been conjectured that 

individuals may be left-brain dominant or right-brain dominant based on personality and 

cognitive style, but neuroimaging data has not provided clear evidence whether such
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phenotypic differences in the strength of left-dominant or right-dominant networks exist. 

I evaluated whether strongly lateralized connections covaried within the same typically 

developing individuals (n = 1011). I also compared lateralization of functional 

connections in typical development and in autism. In typical development, left- and right-

lateralized hubs formed two separable networks of mutually lateralized regions. 

Connections involving only left- or only right-lateralized hubs showed positive 

correlation across subjects, but only for connections sharing a node. Our data are not 

consistent with a whole-brain phenotype of greater “left-brained” or greater “right-

brained” network strength across individuals. The autism group lacked left lateralization 

in three connections involving language regions and regions from the default mode 

network. Abnormal language lateralization in autism may be due to abnormal language 

development rather than a deficit in hemispheric specialization of the entire brain.
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CHAPTER 1 

 

INTRODUCTION 

 

With a better understanding of the underlying neural differences in individuals 

with autism, a faster, more objective, biologically-based diagnostic test could be 

implemented. Currently, diagnosis is made with only a clinical observation session of the 

patient and an interview of someone close to the patient (Lord et al., 2000; Lord, Rutter, 

& Le Couteur, 1994). The diagnosis requires multiple hours of careful analysis. 

Diagnostic accuracy depends upon clinician training, interviewer training, and 

interviewee reliability.  

Observations of abnormal neural synchrony in autism have become more and 

more common in scientific literature. In task-related functional connectivity studies, 

individuals with autism had decreased connectivity in the motor execution network 

during a motor task (Mostofsky et al., 2009a), in the cortical language system during a 

sentence comprehension task (Just, Cherkassky, Keller, & Minshew, 2004), in 

connections between the fusiform face area and other limbic structures during a face 

identification task (Kleinhans et al., 2008), and in connections between the parietal lobe 

and other brain regions during a working memory task (Koshino et al., 2005). In resting 

state functional connectivity studies, the autism group was marked by decreased 

connectivity in the default mode network (Assaf et al., 2010; Kennedy & Courchesne, 
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2008a, 2008b; Kennedy, Redcay, & Courchesne, 2006; Monk et al., 2009; Weng et al., 

2010). The default mode network is a set of brain regions that consistently increase in 

activity at rest and decrease in activity during cognitive tasks performed in the scanner. 

Along with the default mode network, our lab has found differences in interhemispheric 

connections of homologous brain regions (Anderson et al., 2011). Understanding where 

differences in functional connectivity exist and when the differences occur will help 

single out which brain networks to target for pharmacological studies and when the 

treatments would be most needed and/or effective. 

In addition to reports of abnormal neural synchrony, there are ample reports of 

abnormal lateralization of brain structure and function in autism (Anderson et al., 2010; 

Lange et al., 2010b). The initial reports on lateralization of brain function conducted by 

Paul Broca and Karl Wernicke found that language function in their patients was 

localized to the left hemisphere. More recent studies report that ~95% of right-handed 

and ~75% of left-handed individuals have language function localized to the left 

hemisphere, and handedness relates significantly to lateralization of language function 

(Knecht et al., 2000a; Knecht et al., 2000b). Because of the strong link between brain 

lateralization and language and between autism and language, the overwhelming majority 

of studies investigating autism and abnormal lateralization have restricted their analyses 

to core brain regions involved in language processing. 

The purpose of this dissertation is three-fold: 

1) Develop a multisite diagnostic classifier using functional connectivity MRI. 

2) Identify lateralized brain networks in healthy controls and compare the synchrony  
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of these networks to those of individuals with autism. 

3) Determine whether “left-brain” and “right-brain” phenotypes exist.



 

 

CHAPTER 2 

 

MULTISITE FUNCTIONAL CONNECTIVITY MRI  

CLASSIFICATION OF AUTISM: ABIDE  

RESULTS 

 

Brain imaging classification strategies of autism have used information from 

structural MRI (Calderoni et al., 2012; Ecker et al., 2010a; Ecker et al., 2010b; Jiao et al., 

2010; Sato et al., 2013; Uddin et al., 2011), functional MRI (Anderson et al., 2011d; 

Coutanche, Thompson-Schill, & Schultz, 2011; Wang, Chen, & Fushing, 2012), diffusion 

tensor MRI (Ingalhalikar, Parker, Bloy, Roberts, & Verma, 2011; Lange et al., 2010a), 

positron emission tomography (Duchesnay et al., 2011), and magnetoencephalography 

(Khan et al., 2013; Roberts et al., 2011; Roberts et al., 2010; Tsiaras et al., 2011). Such 

approaches have been undertaken for several clinical objectives. Sensitive and specific 

biomarkers for autism may contribute potentially useful biological information to 

diagnosis, prognosis, and treatment decision-making. It is hoped that imaging biomarkers 

may also help delineate subtypes of individuals with autism that may have common brain 

neuropathology and respond to similar treatment strategies, although different 

methodology will likely be required for subgrouping individuals than for classifying 

individuals by diagnosis. Such quantitative biomarkers may also serve as a metric for 

biological efficacy of potential behavioral or pharmacologic interventions. Finally, 
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imaging biomarkers may help identify pathophysiologic mechanisms of autism in the 

brain that can guide investigations into the specific neural circuits, developmental 

windows, and genetic or environmental factors that may result in improved treatments. 

Abnormal functional connectivity MRI (fcMRI) has been among the most 

replicated imaging metrics in autism. The proposed basis for fcMRI is that connected 

brain regions are likely to exhibit synchronized neural activity, which can be detected as 

covariance of slow fluctuations in blood oxygen level dependent (BOLD) signal between 

the regions. Initial reports of decreased functional connectivity in autism by three 

independent groups (Just et al., 2004; Villalobos, Mizuno, Dahl, Kemmotsu, & Muller, 

2005; Welchew et al., 2005) have been followed by more than 50 primary reports of 

abnormal functional connectivity in autism in the literature, derived from fMRI data both 

in a resting state and acquired during cognitive tasks (Anderson, 2013). 

Most reports show decreases in connectivity between distant brain regions, 

including nodes of the brain’s default mode network (Cherkassky, Kana, Keller, & Just, 

2006; Kennedy & Courchesne, 2008b; Wiggins et al., 2011), social brain regions (Gotts 

et al., 2012; von dem Hagen, Stoyanova, Baron-Cohen, & Calder, 2012), attentional 

regions (Koshino et al., 2005), language regions (Dinstein et al., 2011), interhemispheric 

homologues (Anderson et al., 2011), and throughout the brain (Anderson et al., 2011d). 

Nevertheless, some reports have also shown abnormal increases in functional 

connectivity in autism (Muller et al., 2011) or unchanged connectivity (Tyszka, Kennedy, 

Paul, & Adolphs, 2013). In particular, higher correlation between brain regions has been 

observed in negatively correlated connections (Anderson et al., 2011d), corticostriatal 

connections (Di Martino et al., 2011), visual search regions (Keehn, Shih, Brenner, 
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Townsend, & Muller, 2012), and brain network-level metrics (Anderson, Ferguson, & 

Nielsen, 2013a; Lynch et al., 2013). 

Despite the large and growing body of reports of abnormal functional 

connectivity in autism, uncertainty remains about the spatial distribution of decreased and 

increased connectivity and how this relates to the clinical heterogeneity of autism 

spectrum disorders (ASD). One of the challenges for answering these questions has been 

fractionation of the available data into individual site-specific studies with relatively 

small sample sizes. There is a need for analysis of multisite datasets that can improve 

statistical power, represent greater variance of disease and control samples, and allow 

replication across multiple sites with differential subject recruitment, imaging parameters, 

and analysis methods. Ultimately, clinically useful biomarkers will need to be replicated 

in diverse acquisition conditions that reflect community and academic imaging practices. 

The advent of cooperative, publicly available datasets for resting state functional 

MRI is an important step forward. Multiple such datasets have now been released 

including the 1000 functional connectome project (Biswal et al., 2010), the attention 

deficit  200 Consortium dataset (ADHD-200_Consortium, 2012), and most recently the 

Autism Brain Imaging Data Exchange (ABIDE; (Di Martino et al., 2013), consisting of 

images from 539 individuals with ASD and 573 typical control individuals, acquired at 

16 international sites. In the present study, we evaluate classification accuracy of whole-

brain functional connectivity across sites, and determine which abnormalities in 

connectivity across the brain are most informative for predicting autism from typical 

development, which imaging acquisition features lead to greatest accuracy, whether 
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functional connectivity abnormalities covary with metrics of disease severity, and the 

extent to which abnormal functional connectivity is replicated across sites. 

 

Materials and Methods 

Subject Sample 

ABIDE consists of 1112 datasets comprised of 539 autism and 573 typically 

developing individuals (Di Martino et al., 2013). Each dataset consists of one or more 

resting fMRI acquisitions and a volumetric MPRAGE image. All data are fully 

anonymized in accordance with HIPAA guidelines, with analyses performed in 

accordance with pre-approved procedures by the University of Utah Institutional Review 

Board. All images were obtained with informed consent according to procedures 

established by human subjects research boards at each participating institution. Details of 

acquisition, informed consent, and site-specific protocols are available at 

http://fcon_1000.projects.nitrc.org/indi/abide/. 

Inclusion criteria for subjects were successful preprocessing with manual visual 

inspection of normalization to Montreal Neurologic Institute (MNI) space of the 

magnetization prepared rapid gradient echo (MPRAGE) image, coregistration of BOLD 

and MPRAGE images, segmentation of MPRAGE image, and full brain coverage from 

MNI z>-35 to z<70 on all BOLD images. Inclusion criteria for sites were a total of at 

least 20 subjects meeting all other inclusion criteria. A total of 964 subjects met all 

inclusion criteria (517 typically developing subjects and 447 subjects with autism from 

16 sites). Each site followed different criteria for diagnosing patients with autism or 

ascertaining typical development, however, the majority of the sites used the Autism 
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Diagnostic Observation Schedule (Lord et al., 2000) and Autism Diagnostic Interview-

Revised (Lord et al., 1994). Specific diagnostic criteria for each site can be found at 

fcon_1000.projects.nitrc.org/indi/abide/index.html.  

Subject demographics for individuals satisfying inclusion criteria are shown in 

Table 2.1. Six different testing batteries were used to calculate verbal IQ and 

performance IQ, respectively. In addition to the IQ measures, the following measures 

were included in correlations with the classifier score (see Table 2.1 for summary of 

behavioral measures): the Social Responsiveness Scale (Constantino & Todd, 2003) is a 

measure of social function and the Vineland Adaptive Behavior Scales (Sparrow, Balla, 

& Cicchetti, 1984) is a measure of daily functioning. See the ABIDE website for more 

information on the specific behavioral measures used. For handedness, categorical 

handedness (i.e, right-handed, left-handed, or ambidextrous) was used in the leave-one-

out classifier (see details below). In the case that only a quantitative handedness measure 

was reported, positive values were converted to right-handed, negative values to left-

handed, and a value of zero to ambidextrous. Fifteen subjects lacked a categorical and 

quantitative measure of handedness. In those cases, a nearest neighbor classification 

function (ClassificationKNN.m in MATLAB) was used to assign categorical handedness. 

For the classifier, 862 subjects were right-handed, 95 were left-handed, and 7 were 

ambidextrous. 
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BOLD Preprocessing 

Preprocessing was performed in MATLAB (Mathworks, Natick, MA) using 

SPM8 (Wellcome Trust, London) software. The following sequence of preprocessing 

steps was performed: 

1) Slice timing correction 

2) Realign and reslice correction of motion for each volume relative to initial volume 

3) Coregistration of BOLD images to MPRAGE anatomic sequence 

4) Normalization of MPRAGE to MNI template brain, with normalization 

transformation also applied to coregistered BOLD images 

5) Segmentation of gray matter, white matter, and cerebral spinal fluid (CSF) 

components of MPRAGE image (thorough clean) 

6) Voxelwise bandpass filter (0.001 to 0.1 Hz) and linear detrend 

a. The lower limit of 0.001 Hz was chosen in order to be certain as much 

neural information was included as possible (Anderson, Zielinski, Nielsen, 

& Ferguson, 2013c). The linear detrend removed much of the contribution 

of low frequencies given the relatively short time series available in the 

dataset. 

7) Extraction of mean time courses from the restriction masks applied to BOLD 

images from ROIs consisting of: 

a. CSF segmented mask with bounding box -35<x<35, -60<y<30, 0<z<30 

b. White matter segmented mask overlapping with 10 mm radii spheres 

centered at x=-27,y=-7,z=30, x=27, y=-7,z=30 

c. Mask of scalp and facial soft tissues (Anderson et al., 2011a) 
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8) Voxelwise regression using glmfit.m (MATLAB Statistics Toolbox) software of 

CSF, WM, Soft tissue, and 6 motion parameters from realignment step from time 

series of each voxel of BOLD images 

9) Motion scrubbing (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) of 

framewise displacement and DVARS with removal of volumes before and after a 

root-mean-square displacement of >0.2 mm for either parameter and 

concatenation of remaining volumes. In 86.2% of the participants more than 50% 

of the volumes remained after motion scrubbing. Among the remaining 

participants with fewer than 50% retained volumes, the majority belonged to the 

autism group (8.8%, compared to 5.0% from the typically developing group; p = 

0.02). The groups differed in the number of retained volumes when considering 

the entire sample of 964 subjects (t = 4.11, p < 0.001) and when considering only 

those with greater than 50% of the volumes remaining (t = 2.04, p = 0.04). 

10)  No spatial smoothing was performed. The global mean signal and gray matter 

time courses were not regressed from voxelwise data (Jo, Saad, Gotts, Martin, & 

Cox, 2013; Saad et al., 2013; Saad et al., 2012). 

	  

ROI Analysis 

From preprocessed BOLD images for each subject, mean time course was 

extracted from 7266 gray matter regions of interest (ROIs). These ROIs from a lattice 

covering the grey.nii image (SPM8) from z=-35 to z= 70 at 5-mm resolution, with MNI 

coordinates of centroids previously reported (Anderson et al., 2011d). The ROIs averaged 

4.9 +/- 1.3 standard deviation voxels in size for 3 mm isotropic voxels. A 7266 x 7266 
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matrix of Fisher-transformed Pearson correlation coefficients was obtained for each 

subject from the ROI timecourses representing an association matrix of functional 

connectivity in each subject between all pairs of ROIs. Each pair of ROIs is termed a 

“connection” for the present analysis. 

 

Leave-One-Out Classifier 

The classification approach is summarized in Figure 2.1. Overall, a leave-one-out 

classifier was used to generate a classification score for each of the 964 subjects, leaving 

out one subject at a time and calculating the classification score for the left out subject. 

The classification approach followed the approach reported previously, with slight 

modifications (Anderson et al., 2011d). First, the correlation measurements for the 

remaining 963 subjects were extracted for one of the 26.4 million connections from the 

7266 x 7266 association matrix described above (Figure 2.1, Step 1). Second, a general 

linear model was fit to the measurements separately for autism (red fit line in Figure 2.1, 

Step 2) and control subjects (black fit line in Figure 2.1, Step 2) for the given connection 

with covariates of subject age, age-squared, gender, and handedness. From these data, 

estimated values for the left out subject for this connection were calculated based on the 

left out subject’s age, gender, and handedness. A value was estimated separately from the 

remaining autism subjects (blue X in Figure 2.1, Step 2) and remaining control subjects 

(green X in Figure 2.1, Step 2).  

Because each site used slightly different scanning hardware and parameters that 

may systematically bias results, the estimated values of the left out subject (blue and 

green X in Figure 2.1, Step 2) were adjusted by adding the difference of the site’s mean 
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value for that connection (minus the left out subject) from the mean value for that 

connection from all other sites. Finally, the actual value for the left out subject for the 

connection (green dot in Figure 2.1, Step 2) was subtracted from the estimated value 

obtained from autism subjects (blue vertical line on Figure 2.1, Step 2) and from the 

estimated value obtained from control subjects (green vertical line in Figure 2.1, Step 2). 

The difference of the absolute value of these two differences was then multiplied by the 

F-statistic for the difference between the remaining autism and control subjects. This 

process was iteratively carried out for all 26.4 million connections and then averaged 

across the 7265 connections in which each of 7266 ROIs participates. Then the averaged 

values for each of the 7266 ROIs were summed. The summed value was equal to the 

classification score for the subject. More negative values for the classification score 

predict the left out subject was a control subject, and more positive values for 

classification score predict the left-out subject was an autism subject. 

 

Bins of “Connections” 

Connections were grouped into bins in several different ways to aggregate groups 

of connections to test for accuracy in discriminating autism from control subjects. First, a 

measurement of correlation strength was obtained for each connection from 961 

independent subjects from the 1000 Functional Connectome project using identical 

preprocessing steps. Subjects included in this sample have been previously described 

(Ferguson & Anderson, 2011). Second, Euclidean distance between each pair of ROIs 

was calculated from the centroid coordinates for the ROIs. Connections were grouped 

into two-dimensional bins based on the strength of the correlation and the distance 
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between the ROIs, with bin spacing of 0.05 units of Fisher-transformed correlation and 5-

mm distance.  

A separate binning scheme was performed during the evaluation of a leave-one-

out-classifier. For each left out subject, sets of connections were calculated that satisfied 

a two-tailed t-test between remaining autism and control subjects with p-values less than 

0.01, 0.001, 0.0001, and 0.00001. These sets of connections varied slightly for each left 

out subject, since no data that can reflect the value of the left-out subject’s connectivity 

measurement can be used in the classifier. 

Classification accuracy, sensitivity, and specificity were calculated for the set of 

connections that differed between autism and control subjects at p-values of 0.01, 0.001, 

0.0001, 0.00001. We used this last binning system because there is a tradeoff in using 

many connections in constructing the classifier scores and using fewer but more 

informative connections. We wanted to determine which thresholded bin yielded the 

highest accuracy. 

 

Statistical Analyses 

For each bin of connections, a vector of 964 classification scores was obtained 

(one for each left out subject) and the classification score was thresholded at 0 (in the 

case of the strength/Euclidean distance bins, or at a threshold selected to optimize the 

area under a receiver operating characteristic curve for the case of the bins determined by 

p-values. Predicted diagnosis (autism vs. control) was compared to the actual diagnosis of 

each left out subject, and significant classification accuracy was determined by a 

binomial distribution. For 964 subjects, predicting 509 subjects (52.8%) correctly 
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corresponded to an uncorrected p-value of less than 0.05, and predicting 531 subjects 

(55.1%) correctly corresponds to p-value of less than 0.001. Two-proportion z-tests were 

used to test the following: 1) whether there was a group difference in the proportion of 

subjects with less than 50% of the BOLD volumes remaining after motion scrubbing 

(results found in the BOLD Preprocessing section), 2) whether classification accuracy 

differed between the eyes open and eyes closed subjects, 3) whether classification 

accuracy differed between the male and female subjects, and 4) whether accuracy 

increased when considering only those subjects with greater than 50% of the BOLD 

volumes remaining after motion scrubbing, rather than all 964 subjects. Two-sample t-

tests were used to determine if there was a group difference in the number of remaining 

volumes (results above in BOLD preprocessing section). 

 

Results 

First, we investigated the overall accuracy, sensitivity, and specificity of the 

leave-one-out classifier for all 964 subjects in the ABIDE consortium (Figure 2.2) and the 

16 data collection sites individually (Figure 2.3). For the entire ABIDE consortium, we 

achieved the highest overall accuracy (60.0%), sensitivity (62.0%), and specificity 

(58.0%) when connections were included in the classification algorithm if group 

differences for the connection met a p-value threshold of less than 10-4; whereas the 

lowest accuracy (55.7%), sensitivity (57.1%), and specificity (54.4%) were found when 

all 26.4 million connections were included in the leave-one out classifier. When 

considering only those subjects with greater than 50% of the BOLD volumes remaining 

after motion scrubbing, the accuracy for the five different p-value thresholds increased 
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between 0.6% and 3.1%, although the difference was not significant compared to the 

accuracy for all 964 subjects (p > 0.18). No difference in classification accuracy was 

found between subjects who had their eyes open during the scan versus those who had 

their eyes closed, after correcting for multiple comparisons using an FDR of q< 0.05. 

Also, no difference in classification accuracy was found between male and female 

subjects, after correcting for multiple comparisons using an FDR of q< 0.05. 

We also compared the accuracy, sensitivity, and specificity across sites using 

different p-value thresholds for determining which connections to include in the leave-

one-out classifier. The accuracy, sensitivity, and specificity varied at each site depending 

on the p-value threshold, however, we consistently achieved the highest accuracy at 

Social Brain Lab (SBL; mean accuracy = 69.3%), Utah School of Medicine (USM; mean 

accuracy = 69.1%), Stanford (mean accuracy = 67.7%), and Pitt (mean accuracy = 

65.4%); the highest sensitivity at San Diego State University (SDSU; 90.0%), Leuven 

(88.9%), SBL (84.0%), and Stanford (74.4%); and the highest specificity at 

USM(79.5%), Olin (75.0%), University of California-Los Angeles (UCLA; 71.5%), and 

Kennedy Krieger Institute (KKI; 70.6%). 

Next, we determined whether the site’s sample size or the number of imaging 

volumes from a single run related to the site’s classification accuracy (Figure 2.4). The 

number of imaging volumes was positively correlated with accuracy (r = 0.55, p = 0.03). 

If the number of imaging volumes postscrubbing was averaged across site, the 

relationship between number of imaging volumes and accuracy was no longer significant. 

Sample size did not correlate with site’s classification accuracy (r = 0.17, p = 0.53). 
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We then determined which brain regions and connection characteristics accurately 

classified the ABIDE subjects. In Figure 2.5, the following brain regions (and the 7265 

connections in which they were involved) resulted in the highest accuracy: 

parahippocampal and fusiform gyri, insula, medial prefrontal cortex, posterior cingulate 

cortex, Wernicke area, and intraparietal sulcus. In Figure 2.6, two clusters of bins resulted 

in the highest accuracy. The first cluster included bins with short-range (10-25 mm) and 

medium-strength connections (0.3 <z< 0.5). The second cluster included bins with long-

range (100-125 mm) and medium-strength connections (0.15 <z< 0.4). 

Finally, we investigated the relationship between the subject’s classifier score and 

behavioral measures (Figure 2.7). Estimates of symptom severity (r = 0.13, p = 0.01), as 

measured by the autism diagnostic observation schedule-generic (ADOS-G) social + 

communication algorithm score, and SRS (r = 0.17, p = 0.002) positively correlated with 

the classifier score; however, symptom severity, as measured by the autism diagnostic 

interview-revised (ADI-R) verbal domain algorithm score (r = -0.06, p = 0.30) or social 

domain algorithm score (r = -0.04, p = 0.51), and performance IQ (r = -0.03, p = 0.38) 

did not correlate with the classifier score. Verbal IQ (r = -0.07, p = 0.05) and Vineland 

adaptive behavior composite score (r = 0.17, p = 0.002) negatively correlate with the 

classifier score. In other words, as social function (lower SRS score is indicative of better 

social function), verbal IQ, and daily living skills increased and current level of symptom 

severity decreased, a subject was more likely to be classified as a control. 
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Discussion 

Functional connectivity MRI data from a set of 26.4 million “connections” per 

subject is able to successfully classify a subject as autistic or typically developing using a 

leave-one-out approach with an accuracy of 60.0% (p<2.2 * 10-10), across a set of 964 

subjects contributed from 16 different international sites. Overall specificity was 58.0% 

and overall sensitivity was 62.0%. Classification consisted of a weighted average of 

connections that used no information about the left out subject except for age, gender, 

site, and handedness. Using a weighted average of all 26.4 million connections resulted in 

a classification accuracy of 55.7% (p = 0.00017), with best accuracy (60.0%) achieved 

for a subset of connections that satisfied p < 10-4 for a difference between autism and 

control among remaining subjects for each left-out subject. Classification scores 

significantly covaried with metrics of current disease severity including ADOS-G (as 

opposed to ADI-R, which incorporates disease severity at early ages), SRS, and verbal IQ 

metrics. Classification accuracy significantly improved in sites for which longer BOLD 

imaging times were used, but no relationship was found between number of subjects 

contributed by a site and classification accuracy. 

Classification accuracy was lower in this multisite study despite its much larger 

sample size when compared with a prior study using similar methods from a single site 

(Anderson et al., 2011d). The prior study achieved approximately 80% accuracy, with 

90% accuracy for subjects under 20 years of age in both a primary cohort and a 

replication sample of affected and unaffected individuals from multiplex families. 

Several reasons may explain this difference. Expanding a classifier to accommodate 

multisite data necessarily involves dealing with many additional sources of variance. The 
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pulse sequence, magnetic field strength, scanner type, patient cohort and recruitment 

procedures, scan instructions (eyes open vs. closed vs. fixation), BOLD imaging length, 

age distribution, gender differences, and population ethnicity all varied across sites. Each 

of these variables has the potential to decrease sensitivity and specificity of functional 

connectivity measurements for autism. Nevertheless, a multisite cohort helps test 

generalizability of the results across different samples, making it more likely that 

connections identified as discriminatory between autism and control reflect disease 

properties rather than particulars of a single dataset.  

Classification accuracy in the multisite cohort varied with the subset of 

connections used to construct the classifier. This finding reflected a tradeoff between 

improved accuracy when using more connections with decreased accuracy when 

including less specific connections in the classifier. This result argues against a 

homogenous regional distribution of connectivity abnormalities in autism in favor of a 

heterogeneous spatial distribution of connectivity disturbances that involves specific 

brain regions. Analysis of brain regions most affected in abnormal connections herein 

confirms the findings of previous reports: areas of greatest abnormality included the 

insula, regions of the default mode network including posterior cingulate and medial 

prefrontal cortex, fusiform and parahippocampal gyri, Wernicke area (posterior middle 

and superior temporal gyrus), and intraparietal sulcus (Anderson et al., 2011d; Gotts et 

al., 2012). All of these regions correspond to functional domains that are known to be 

impaired in autism, including attention, language, interoception, and memory. We note 

that some of these regions are in brain areas with relatively high susceptibility artifact and 

sensitivity to changes in brain shape (such as the medial prefrontal cortex). However, 
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given the coherent distribution of the default mode network, we favor an interpretation of 

network-based differences attributable to autism rather than underlying structural or 

artifactual sources of these findings. 

When interrogating subsets of connections from an independent dataset based on 

the Euclidean distance between ROIs and connection strength in a previous study, we 

found that the most informative connections consisted of typically strong connections 

between distant ROIs that were weaker in autism, and typically negatively correlated 

connections, that were less negative in autism (less anticorrelated; (Anderson, Ferguson, 

Lopez-Larson, & Yurgelun-Todd, 2011). In the current study, the connection bins based 

on strength and distance that showed greatest classification accuracy were not precisely 

the same connection bins found previously. Rather, they were adjacent to the bins in the 

previous study. This is the case because the classification algorithm in the current study 

takes advantage of larger numbers of connections. There was again a tradeoff between 

using more connections, given that individual connections exhibited relatively little 

information, and using sets of connections that differed more in autism. Thus, bins of 

medium strength connections (0.3<z<0.5) outperformed the more specific bins of 

stronger connections (z>0.5) because the slightly weaker sets of connections included 

many more connections in the bin. This cautionary finding is relevant when attempting to 

identify the “optimal” set of connections for constructing candidate brain imaging 

biomarkers for ASD. Although specific affected regions appear to have autism 

connectivity abnormalities, classification schemes using only a small number of 

connections are likely to suffer from the high variance in metrics for individual 

connections. 
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This point is reinforced by a significant positive relationship between 

classification accuracy across sites and the length of BOLD imaging time per subject. 

Previous studies of test-retest reliability using functional connectivity MRI have shown 

that accuracy of results varies with one over the square root of BOLD imaging time 

(Anderson, Ferguson, Lopez-Larson, & Yurgelun-Todd, 2011c; Van Dijk et al., 2010), 

with only moderate reproducibility when short BOLD imaging times such as 5 minutes 

are used (Anderson et al., 2011c; Shehzad et al., 2009; Van Dijk et al., 2010). This 

relationship would suggest that classifiers using information from many brain regions 

continue to show benefit from much longer imaging times, with continued improvements 

even after hours of imaging across multiple sessions per subject to the extent this is 

practical (Anderson et al., 2011c; Anderson et al., 2013b; Greicius, Boyett-Anderson, 

Menon, & Reiss, 2004). Improvements in pulse sequence technology may also facilitate 

acquisition of greater numbers of volumes in shorter periods of time (Feinberg & 

Yacoub, 2012). The correlation between total imaging time and accuracy was more 

significant than the correlation between number of volumes used after scrubbing and 

accuracy. This might indicate that imaging time is more important than the number of 

volumes used. As multiband acquisition protocols become more prevalent (Setsompop et 

al., 2012), it will be important to determine the extent to which finer sampling versus 

longer imaging time will contribute to specificity of BOLD fcMRI measurements.  

In a prior study that examined the effect of BOLD imaging time on ability to 

identify functional connectivity values obtained from a single individual compared to a 

group mean, individual “connections” could only be reliably distinguished after 25 

minutes of BOLD imaging time. The number of connections that could be reliably 
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distinguished increased exponentially with imaging time for at least up to 10 hours of 

total imaging time (Anderson, Ferguson, Lopez-Larson, & Yurgelun-Todd, 2011b). 

Indeed, there is good theoretical basis that any desired accuracy can be obtained with 

sufficient imaging time, stretching into many hours. Although Van Dijk and colleagues 

report that the intrinsic connectivity measurements stabilize around 5 minutes of imaging 

time, they also state that noise continues to decrease at a rate of 1/sqrt(n), where n is the 

amount of imaging time (Van Dijk et al., 2010), which is in accordance with our findings 

(Anderson et al., 2011b). Moreover, they report that the stabilization is of composite 

network-level metrics rather than connections between small individual ROIs. In contrast, 

we have found that coarse network-level measurements are not particularly informative 

in classification compared to fine-grained metrics that take into account specific 

differences in the spatial distribution of connectivity. There may be no upper limit for 

continued improvements if more imaging time were obtained.  

We found significant relationships between the classification score and some 

behavioral measures, such as social function and daily living skills; however, the 

proportion of variance in the behavioral measures that was explained by the linear 

relationship between the classification score and the behavioral measure was small 

(between 0.5% and 2.9%). This may be due to the overall poor accuracy of the 

classification approach. As accuracy and techniques for combining multisite data 

improves, we also expect an increase in the proportion of variance accounted for by the 

correlations. 

Additional benefits may be achieved through improved classification algorithms 

that take advantage of machine learning techniques to allow more effective weighted 
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combinations of connections. Similarly, multimodal classifiers remain a promising, 

relatively untapped method for characterizing diagnostic and prognostic information 

about autism. Given classification accuracies of single site datasets exceeding 80% for 

structural MRI (Calderoni et al., 2012; Ecker et al., 2010a; Ecker et al., 2010b; Jiao et al., 

2010; Sato et al., 2013; Uddin et al., 2011), diffusion tensor MRI (Ingalhalikar et al., 

2011; Lange et al., 2010a), positron emission tomography (Duchesnay et al., 2011), and 

magnetoencephalography (Khan et al., 2013; Roberts et al., 2011; Roberts et al., 2010; 

Tsiaras et al., 2011), it would be of great interest to determine whether different 

modalities identify similar cohorts of subjects correctly, and whether a combination 

neuroimaging approach that leverages these different features might be able to achieve 

even greater accuracy than any one alone. 

Although multisite datasets such as those in ABIDE are invaluable for testing 

replicability of neuroimaging findings in autism, they contain inherent limitations that 

should be recognized. Large inhomogeneities in acquisition parameters, subject 

populations, and research protocols limit the sensitivity for detecting abnormalities. 

These inhomogeneities may overwhelm the ability of discriminating many findings, and 

may lead to overconfidence in a result as definitive because of the large sample of 

subjects used. There remains a need for replicating results in high-quality, carefully 

controlled individual datasets that may show increased sensitivity for some results 

compared to multisite data, as exhibited by classification accuracy in the present study. 

Preprocessing methods may also bias results in unpredictable ways, as has been 

suggested with head motion correction strategies (Power et al., 2012; Van Dijk, Sabuncu, 

& Buckner, 2012) and regression procedures (Anderson et al., 2011a; Murphy, Birn, 
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Handwerker, Jones, & Bandettini, 2009; Saad et al., 2012). Datasets such as those in 

ABIDE will be of great value in testing multiple procedural manipulations in relatively 

large samples allowing determination of optimal processing methods for specific 

questions. Ultimately, it is unknown whether differences in resting state functional 

connectivity in autism arise from differential performance of the “resting” task or 

underlying differences in structural connectivity reflected in the measurements. 

Continuing comparison with structural metrics such as diffusion tensor imaging will help 

to clarify this point. 

Nevertheless, it remains an attractive hypothesis that with longer imaging times, 

controlled acquisition strategies, integration of multimodal features, and improvement in 

classification methodology, neuroimaging may be able to contribute useful biological 

information to the clinical diagnosis and care of individuals with autism spectrum 

disorders and further elucidate pathophysiology and brain-based intermediate 

phenotypes. 
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Table 2.1. Subjects included from the ABIDE sample with demographic information. 

 

  

 Age ADI-R social ADI-R verbal  ADOS-G 
total  Verbal IQ Performance IQ SRS total Vineland 

Number of subjects 964 348 349 348 781 796 335 201 

Control (426 M, 91 F) 0 0 32 413 425 160 80 

Autism (396 M, 51 F) 348 349 316 367 371 175 121 

Control mean +/- s.d. 16.9 +/- 7.56 NA NA 1.25 +/- 1.37 112 +/- 13.3 108 +/- 13.3 21.2 +/- 16.2 105 +/- 
11.6 

(Control range) (6.47 - 56.2) NA NA (0 - 4) (67 - 147) (67 - 155) (0 - 103) (77 - 131) 

Autism mean +/- s.d. 16.6 +/- 8.1 19.7 +/- 5.65 15.9 +/- 4.55 11.9 +/- 3.81 105 +/- 17.4 106 +/- 17.2 91.6 +/- 30.6 75 +/- 
13.2 

(Autism range) (7 - 64) (2 - 30) (2 - 26) (2 - 22) (50 - 149) (59 - 157) (6 - 164) (41 - 106) 
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Figure 2.1. Summary of classification approach. Step 1: Association matrices 

corresponding to the intrinsic connectivity between each pair of 7266 gray matter regions 

(about 26.4 million connections) are estimated for the left out subject and the 963 

remaining subjects. Step 2: Plot depicting an example connection (i.e., single cell of the 

possible 26.4 million cells from the association matrices in Step 1) for the 964 subjects. 

The plot includes axes for correlation strength and age; however, the plot represents a 

multidimensional space that includes age-squared, gender, and handedness as covariates. 

Black line, fit line for the control group; red line, fit line for the autism group; green data 

point, left out subject (a control subject in this example); green X, estimated value for the 

control group; blue X, estimated value for autism group; green vertical line, difference 

between actual connection strength value for left out subject and estimated value for 

control group; blue vertical line, difference between actual connection strength value for 

left out subject and estimated value for autism group. Steps 3 and 4 are described in the 

text. 
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Figure 2.2 Total accuracy, sensitivity, and specificity for leave-one-out classifier in 964 

subjects. The total accuracy, sensitivity, and specificity are shown when all 26.4 million 

connections were included in the classifier and then for different p-value thresholds that 

determine which connections are included in the classifier. 
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Figure 2.3. Accuracy, sensitivity, and specificity for each data acquisition site. Accuracy 

(A) is shown for each data acquisition site at different p-value thresholds. The sensitivity 

and specificity (B) are shown for each data acquisition site at a threshold of p< 0.0001 

(i.e., the threshold at which optimal total accuracy was obtained in Figure 2.2). 
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Figure 2.4. Relationship between a site’s total accuracy and the number of imaging 

volumes acquired by each site. Each site’s total accuracy was calculated when using a p< 

0.0001 threshold (i.e., the threshold at which optimal total accuracy was obtained in 

Figure 2.2) and correlated with the number of BOLD imaging volumes acquired during 

the resting-state sequence. 
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Figure 2.5. Total accuracy for 7266 brain regions. Accuracy was determined for each of 

the 7266 brain regions independently by only taking into account the 7265 connections in 

which a given region was involved (no p-value threshold, all connections used). The 

minimum accuracy displayed for a single region is 53.95%, which was the false 

discovery rate corrected percentage for 7266 regions and a binomial cumulative 

distribution. 
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Figure 2.6. Total accuracy across connection strength and distance between brain regions. 

The 26.4 million connections were divided up into bins based on the correlation strength 

of the connection (determined by an independent sample) and the distance between the 

connection’s two endpoints. Accuracy is displayed for each bin with at least one 

connection. 
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Figure 2.7. Scatterplots of relationships between classifier scores and behavior. 

Scatterplots depict the relationship between the classifier scores for control subjects 

(black) and subjects with autism (red) and the following behavioral measures: ADOS-G 

social + communication algorithm score (A), ADI-R social verbal algorithm score (B), 

verbal IQ (C), performance IQ (D), SRS total score (E), and Vineland adaptive composite 

standard score (F). Correlation coefficients and corresponding p-values are included on 

the plots. 
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CHAPTER 3 

 

AN EVALUATION OF THE LEFT-BRAIN VERSUS RIGHT-BRAIN  

HYPOTHESIS WITH FUNCTIONAL CONNECTIVITY  

MAGNETIC RESONANCE IMAGING 

 

Lateralized brain regions direct functions such as language and visuospatial 

processing. In most right-handed individuals, paying attention to stimuli involving 

language elicits brain activity lateralized to the left hemisphere, whereas paying attention 

to stimuli involving visuospatial processing elicits brain activity lateralized to the right 

hemisphere (Herve, Zago, Petit, Mazoyer, & Tzourio-Mazoyer, 2013; Shulman et al., 

2010; Stephan et al., 2003; Toga & Thompson, 2003). Atypical lateralization in brain 

structure and function is associated with neuropsychiatric disorders such as autism 

spectrum disorders and schizophrenia (Chance, Casanova, Switala, & Crow, 2008; 

Fletcher et al., 2010; Herbert et al., 2002; Kleinhans, Muller, Cohen, & Courchesne, 

2008a; Lange et al., 2010b; Oertel-Knochel & Linden, 2011), although there is 

considerable variation within typically developing individuals in the strength to which 

specific functions such as language are lateralized to the canonical side, particularly for 

left-handed and ambidextrous individuals (Szaflarski et al., 2002). 

Previous studies of brain laterality are largely limited to regional assessment of 

specialized functions and differences in structural lateralization. It has been well 
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documented that small structural asymmetries consisting of a frontal (right>left) and 

occipital (left>right) shear effect are present in most individuals (LeMay, 1977), in 

addition to asymmetries of the planum temporale, angular gyrus, caudate, and insula 

(Watkins et al., 2001). A diffusion tensor study of a predefined brain parcellation using 

graph-theoretical methods showed increased efficiency and connectedness within the 

right hemisphere, but with regions of greatest network centrality in the left hemisphere 

(Iturria-Medina et al., 2011). Additional asymmetries in gray matter volume have been 

observed within nodes of the default mode network (Saenger, Barrios, Martinez-Gudino, 

& Alcauter, 2012). 

With the recent development of resting state functional connectivity magnetic 

resonance imaging (rs-fcMRI) techniques, it has become possible to characterize whole-

brain lateralization using a data-driven approach. Two recent studies have investigated 

whole-brain lateralization using rs-fcMRI (Liu, Stufflebeam, Sepulcre, Hedden, & 

Buckner, 2009; Tomasi & Volkow, 2012b). Liu et al. (2009) found that connectivity of 

classical language regions, medial prefrontal cortex, and posterior cingulate cortex was 

most strongly left-lateralized, whereas that of insula, angular gyrus, anterior cingulate 

cortex, and visual cortex was most strongly right-lateralized. Males had more strongly 

lateralized connections than females. In a factor analysis, the four factors that accounted 

for the most variance involved regions from the following cortical networks: visual, 

default, salience, and language. Handedness influenced the laterality of the four factors; 

however, it affected laterality differently across the factors. 

Tomasi and Volkow (2012) demonstrated that short- and long-range connections 

were predominantly right-lateralized in brain regions surrounding the lateral sulcus, 
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whereas left-lateralized connections were limited to medial areas of the occipital cortex 

and superior rim of the parietal and posterior frontal lobes (Tomasi & Volkow, 2012b). 

Additionally, much of the medial aspect of the frontal and parietal lobes had right-

lateralized long-range connections, whereas Broca area and angular gyrus had left-

lateralized long-range connections. As in Liu et al. (2009), males had more lateralized 

connections than females, although the effect was small. 

These studies raise important questions. Does functional connectivity 

lateralization reflect structural asymmetry or does it represent a lateralized difference in 

the strength of synaptic connections? Does a whole-brain phenotype of relatively greater 

“left-brain” or “right-brain” functional specialization across individuals exist, or are 

lateralized connections in different brain networks independent of each other within an 

individual? Are these connectivity patterns modified with age, as the brain matures into 

an adult phenotype? In this manuscript, we address these questions and find that 

lateralized regions create left- and right-lateralized networks, lateralized connections are 

independent from one another across individuals, and that the majority of functional 

lateralization occurs before age 7. 

 

Materials and Methods 

Publicly Released Datasets – 1011 subjects 

One thousand and eleven subjects were analyzed from publicly available datasets 

released with the open-access 1000 Functional Connectomes Project 

(http://fcon_1000.projects.nitrc.org/) in which resting-state functional magnetic 

resonance imaging (fMRI) scans have been aggregated from 28 sites (Biswal et al., 2010) 
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as well as typically developing subjects from the ADHD 200 project from the 

International Neuroimaging Data-sharing Initiative 

(fcon_1000.projects.nitrc.org/indi/adhd200/index.html) including 8 sites (ADHD-

200_Consortium, 2012). For inclusion we required that subjects’ ages were between 7 

and 29, with BOLD whole-brain coverage from Montreal Neurologic Institute (MNI) 

coordinates z=-35 to z=70. Any subject for whom preprocessed data did not cover all 

7266 regions of interest (ROIs) used for this analysis was discarded prior to analysis (see 

Anderson et al. (2011) for a list of the MNI coordinates for the 7266 ROIs). Also for 

inclusion, all subjects included an MPRAGE anatomic sequence that was successfully 

segmented and normalized to MNI space. Although preprocessing steps were performed 

using an automated batch script, the results of normalization, segmentation, and 

realignment steps were manually inspected for all subjects, and any subject for whom the 

normalized and segmented images were not in close alignment with the MNI template on 

visual inspection were discarded. The datasets from which subjects met all criteria are 

listed in Table 3.1. The mean age of all subjects was 18.3 +/- 5.6 s.d. years (range 7-29). 

587 subjects were male; 424 were female. All subjects were processed in the same 

manner regardless of the site from which they were obtained. 

 

Gray Matter Density Measurements and Structural Lateralization Metric 

Gray matter density images were created by normalizing and segmenting 

MPRAGE images using SPM8 (Wellcome Trust, London) into three tissue classes 

representing gray matter, white matter, and cerebrospinal fluid (CSF). Smoothly varying 

intensity changes as well as artifactual intensity alterations as a result of the 
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normalization step were corrected for using a standard modulation algorithm within SPM. 

We then derived mean gray matter intensities within 7266 spherical (5 mm radius) seed 

ROI (Anderson, Ferguson, Lopez-Larson, & Yurgelun-Todd, 2011; Anderson et al., 

2011d; Ferguson & Anderson, 2012) that formed a lattice covering the gray matter. 

Segmented gray matter images from the normalized MPRAGE images were also 

flipped across the midsagittal plane, and the difference in mean gray matter density was 

recorded for each ROI as the structural lateralization index ([unflipped density - flipped 

density]/ [unflipped density + flipped density]).  

 

fMRI Preprocessing  

The following sequence was used for image preprocessing of all blood oxygen 

level-dependent (BOLD) image datasets. Using SPM8 toolbox (Wellcome Trust, 

London), BOLD images were realigned (realign, estimate and write), coregistered to 

MPRAGE image (coregister, estimate and write), and the MPRAGE image (with 

coregistered BOLD images) was normalized to an MNI template with spatial resolution 

of 3 mm3 voxels (normalize, estimate and write, T1.nii template). Gray matter, white 

matter and CSF were segmented from MPRAGE images using SPM8 segment function 

(modulated, normalized, thorough clean). Images were bandpass filtered between 0.001 

and 0.1 Hz and a linear detrend was performed at each voxel in the brain. The lower limit 

of 0.001 Hz was chosen in order to be certain as much neural information was included 

as possible (Anderson et al., 2013c). The linear detrend removed much of the 

contribution of low frequencies given the relatively short time series available in the 

dataset. Time series were averaged from two ROIs in the white matter (bilateral centrum 



	  

	  

39	  

semiovale), CSF (lateral ventricles), soft tissues of the head and face, and six rigid 

motion correction parameters from the realignment step as previously described and for 

each voxel (Anderson et al., 2011d), a general linear model was used to find a best fit for 

white matter, CSF, soft tissues, and motion parameter time series, which were subtracted 

from the voxel’s time series. No regression of the global signal was included. No 

smoothing was performed to avoid contaminating the signal near the midsagittal plane. 

Recent reports have highlighted the necessity to take extra precaution when dealing with 

motion artifact (Power et al., 2012; Satterthwaite et al., 2013; Van Dijk et al., 2012). 

Therefore, a motion scrubbing procedure was implemented that involved removing 

frames with root-mean-square motion parameters > 0.2 mm prior to analysis of 

connectivity results (Power et al., 2012). 

 

Functional Lateralization Metric 

Functional correlation was obtained as the Fisher-transformed Pearson correlation 

coefficient between each pair of the 7266 ROIs within the same hemisphere. We only 

analyzed connections within a single hemisphere and the opposite hemisphere 

homologues because of ambiguity of “lateralization” of a cross-hemisphere connection. 

Preprocessed images were inverted across the midsagittal plane, and analogous Fisher-

transformed correlation coefficients were obtained between each pair of the same ROIs 

on the flipped images. Functional lateralization index was defined as the difference 

(unflipped - flipped) between Fisher-transformed correlation coefficients. The functional 

lateralization index did not include the normalization term in the denominator like the 

structural lateralization index or that is commonly used in functional lateralization studies 
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(Seghier, 2008) because the functional connectivity correlations include positive and 

negative values rather than strictly positive values. The use of a denominator when 

calculating a functional lateralization index may result in index values with a 

discontinuity in the denominator, binary index values (e.g., if flipped = -0.01 and 

unflipped = +0.01, then [unflipped – flipped] / [|unflipped| + |flipped|]  = 1), or index 

values that accentuate small differences in laterality (e.g., if flipped = 0.01 and unflipped 

= 0.03, then [unflipped – flipped] / [|unflipped| + |flipped|] = 0.5). Moreover, the 

functional correlation measurements already occupy the interval between -1 and 1. 

The structural effects were regressed out of the functional lateralization metrics. 

For each of the 7266 ROIs, the structural lateralization indices (Figure 3.1) calculated for 

the given ROI and the other 7265 ROIs were regressed from the corresponding functional 

lateralization indices on a subject-by-subject basis using a general linear model (glmfit.m 

in MATLAB). More specifically, for a connection involving two ROIs, the mean 

structural lateralization index for the two ROI endpoints was used as a regressor, with 

regression performed across the set of all connections for an individual subject. Most of 

the structural/functional correlation was removed after regression, although a residual 

relationship remains. These data indicate that even after accounting for subject-to-subject 

variation in structural asymmetries, nodes that show more gray matter in one hemisphere 

tend to have stronger functional connections involving that node in the same hemisphere. 

After regression, significantly lateralized connections were those for which a two-

tailed t-test showed values that were different from 0 after correction for multiple 

comparisons using acceptable false discovery rate of q<0.05. Sparse binarized graphs of 

significantly left- and right-lateralized connections were obtained and the degree was 
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calculated as the sum of all significantly left- or right-lateralized connections in which a 

given node is represented. Hubs were defined as local maxima in the images of degree of 

the left- and right-lateralized graphs (Table 3.2 and Figure 3.2). In neuroimaging 

literature, it is common to refer to hubs as brain regions that are highly connected, either 

structurally or functionally, to other brain regions and play a central role in brain network 

dynamics (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Buckner et al., 

2009; Sporns, Honey, & Kotter, 2007). In this manuscript, we take that definition one 

step further by referring to hubs as brain regions that are involved in many lateralized 

functional connections. Thus, “hubs” need not represent nodes of intrinsic connectivity 

networks. Large changes in degree were seen with structural regression compared to 

without structural regression in the occipital pole, medial posterior insula, caudate, 

putamen, thalamus, and lingual gyrus adjacent to the occipital horn of the lateral 

ventricle. These regions were not considered hubs in subsequent analyses since there was 

likely a large effect of structural asymmetry on lateralization. We identified 9 remaining 

hubs in the left-lateralized graph and 11 hubs in the right-lateralized graph. We ensured 

that all 9 left-lateralized hubs and 11 right-lateralized hubs, respectively, were at least 10 

mm apart from one another. Two of the left hubs were within 10 mm of the 

interhemispheric homologues of two of the right hubs (Broca area and Broca homologue 

and left and right supplementary motor area), meaning the areas participate in strongly 

lateralized connections in both hemispheres. 
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Statistical Analyses 

All statistical analyses were performed in MATLAB using MATLAB’s statistical 

toolbox. Each cortical hub’s lateralization pattern with other hubs in the ipsilateral 

hemisphere of the cerebral cortex was determined by performing one-sample t-tests on 

the functional connections involving the cortical hub as the seed and the other ipsilateral 

hubs. Global versus local lateralization was tested by calculating a functional 

lateralization index for connections involving right-hemispheric hubs (i.e., 11 right-

hemispheric hubs resulting in 55 pairwise connections) and connections involving left-

hemispheric hubs (i.e., 9 left-hemispheric hubs resulting in 36 pairwise connections) for 

each subject and then covarying each connection with all other connections across 

subjects for a total of 4095 pairs of 91 connections. This effectively asks whether two 

connections, each between hubs in one hemisphere, tend to be relatively stronger in the 

same subjects. To test for gender effects, two-sample t-tests were applied to 1) the 

average left and right functional laterality index values for each subject and 2) on the set 

of connections involving the 20 lateralization hubs (total of 195 comparisons). To test the 

effects of age, correlations were measured for 1) the average left and right functional 

laterality index values for each subject and 2) the set of connections involving the 20 

lateralization hubs (total of 195 correlations).  

To test whether the results from a single site corresponded with overall results, the 

mean functional laterality indices for the Beijing (site with largest sample size) subjects 

were correlated with the mean functional laterality indices for all other subjects. To test if 

excessive noise was introduced by including sites with small samples (i.e., < 10 subjects), 

the mean functional laterality indices excluding the 23 subjects from sites with small 
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samples were correlated with the mean functional laterality indices for all subjects. 

Spearman correlations (because of the non-Gaussian nature of the data) were used to test 

whether there was any relationship between functional lateralization index of the 91 

connections involving intrahemispheric hubs and the following movement measurements: 

mean movement during scan, maximum movement from one frame to the next, the 

number of frames discarded during the scrubbing procedure described above, and the 

percent of frames discarded during the scrubbing procedure. All analyses in this 

manuscript that involved more than a single test included a correction for multiple 

comparisons using a false discovery rate of q < 0.05. 

 

Results 

We first investigated each cortical hub’s lateralization pattern across the 

ipsilateral hemisphere of the cerebral cortex. The lateralization pattern consisted of two 

parts (Figure 3.3). First, the left-lateralized connections included regions from the default 

mode network (medial prefrontal cortex, posterior cingulate cortex, temporoparietal 

junction, and inferior temporal cortex) and classical language regions (Broca area and 

Wernicke area). Second, the right-lateralized connections included regions that can be 

broadly categorized as attentional areas (frontal eye fields, middle temporal area (area 

MT), anterior cingulate cortex, insular cortex, supplementary motor area, intraparietal 

sulcus, superior parietal lobules, and dorsolateral prefrontal cortex). The lone exception 

among the left-hemispheric hubs, the medial prefrontal cortex, shared right-lateralized 

connections with much of the typically left-lateralized surrounding cortex and the 

posterior cingulate cortex. Among the right-hemispheric hubs there were two patterns: 
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hubs that were right-lateralized to the default mode network (and all other right-

hemispheric hubs), and hubs that were left-lateralized to default mode network (but right-

lateralized to the right-hemispheric hubs). Nevertheless, some of the hubs that were right-

lateralized (such as lateral IPS) to all 20 hubs show extensive left-lateralized connections 

to nonhub regions, indicating that lateralization networks have hub-specific features. 

The laterality of connections between the 20 hubs is summarized in Figure 3.4. 

Colored squares indicate connections where the functional lateralization index, after 

regression of the structural lateralization index across subjects, was significantly left or 

right lateralized after FDR correction for multiple comparisons across all possible 

connections among the 20 hubs. When comparing the laterality between interhemispheric 

connections (i.e., connection involving a left-lateralized hub and a right-lateralized hub), 

the functional lateralization index was calculated by flipping the right-lateralized hub 

across the midsagittal plane into the left hemisphere in order to maintain intrahemispheric 

comparisons. Connections between left-hemispheric hubs were almost entirely left-

lateralized, and connections between right-lateralized hubs were almost entirely right-

lateralized. Although the hubs were selected for having a high degree in the graph of 

significantly lateralized connections, this did not require the hubs to all show consistent 

lateralization with each other and suggests that the left-hemispheric hubs and right-

hemispheric hubs form a backbone of two broader lateralized networks in the brain, one 

in the left hemisphere and one in the right hemisphere. 

Next, we determined whether lateralization was a whole brain or a local property. 

In other words, if connections between left-hemispheric hubs were strongly left-

lateralized in a subject, did this correspond to connections among right-hemispheric hubs 
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showing stronger right lateralization? Figure 3.5 summarizes the results. Of the 630 

comparisons involving left-hemispheric hubs, only one (0.2%) showed significant 

negative correlation (i.e., as one connection between left-hemispheric hubs became more 

left-lateralized the other connection between left-hemispheric hubs became less left-

lateralized), whereas 144 significant comparisons (22.9%) involved positively correlated 

connections. Of the 990 comparisons involving right-hemispheric hubs, none negatively 

correlated and 329 comparisons (33.2%) involved positively correlated connections. 

Almost all of the significant positively correlated connections (left: 141/144; right: 

314/329) included connections with a common hub. Of the 1620 comparisons involving 

right-hemispheric hub connections versus left-hemispheric hub connections, 20 were 

significantly negatively correlated (1.2%) and 16 are significantly positively correlated 

(1.0%). The majority of the significant negatively correlated connections (16/20) and 

significant positively correlated connections (8/16) included connections with a right-

hemispheric hub that when flipped across the midline is <10 mm from a left-hemispheric 

hub.  

Together, these results imply lateralization is a local property rather than a whole-

brain property. If a hub formed a strongly lateralized connection with another ipsilateral 

hub in a subset of subjects, it was more likely that the same hub would form strongly 

lateralized connections with other ipsilateral hubs in those subjects. But with rare 

exceptions, no effect was seen between other distinct ipsilateral hubs in the same 

subjects. 

We investigated the effects of gender on lateralization and how lateralization 

changes over development between the ages of 7 and 29. No significant gender effects 
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were found when testing the mean lateralization for the connections involving left- and 

right-hemispheric hubs, respectively, or a subset of connections between the 20 hubs. We 

found small, significant relationships between age and mean lateralization for the 

connections involving left- and right-hemispheric hubs, respectively (Figure 3.6; left: r = 

0.08 p = 0.009; right: r = 0.09 p = 0.004). Because there was a significant effect, albeit  

small, when averaging across all connections between left-hemispheric or right-

hemispheric hubs, we extended our analysis to the individual left hub-left hub and right 

hub-right hub connections. Table 3.3 lists the ten right-lateralized connections that 

become significantly more right-lateralized across development and survive correction 

for multiple comparisons using a false discovery rate of q < 0.05.   

Finally, we tested whether the results described were reproducible in a smaller 

sample and whether they were due to potential confounds. We compared the relationship 

between mean functional lateralization of the 91 connections involving intrahemispheric 

hubs from the Beijing site, the site with the largest sample size, and the mean from all 

other sites. The measurements between the two subsamples corresponded highly (r = 

0.85, p = 2.3 e -26). We also determined that including sites with small samples (5 sites 

with less than 10 subjects for a total of 23 subjects) did not introduce excessive amounts 

of variability (Figure 3.7B) and that the lateralization results were not due to head motion 

artifact. The mean functional lateralization of the 91 connections involving 

intrahemispheric hubs was virtually identical when including subjects from sites with 

small samples (Figure 3.7B; r = 0.999, p = 7.9 e -128). No relationship between the 

functional lateralization index of the 91 connections involving intrahemispheric hubs and 

the single-subject motion measurements (e.g., mean movement, the number of frames 
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discarded during the scrubbing procedure described above, etc.) survived multiple 

comparison correction (false discovery rate of q < 0.05).  

 

Discussion 

By comparing the magnitude of functional connectivity in a large multisite cohort 

(n=1011) of subjects, we demonstrate that a left-dominant network and a right-dominant 

network can be defined in which discrete hubs show consistent lateralization among 

connections between the respective left- and right-hemispheric hubs. The identified left-

dominant and right-dominant hubs correspond well to known architecture of intrinsic 

connectivity networks, and show persistent lateralization of connectivity even after 

removal of the variance attributed to structural asymmetry of gray matter. We also 

demonstrate that lateralization is a local rather than a whole-brain property. In other 

words, when a connection of interest is strongly lateralized, the degree of lateralization 

for the other connections throughout the brain relates only in the connections that have a 

hub in common with the connection of interest.  

Our data are broadly consistent with previous studies regarding the spatial 

distribution of lateralization of functional connectivity (Liu et al., 2009; Tomasi & 

Volkow, 2012b). We find that brain regions showing consistently strong left-

lateralization include classical language regions (Broca area, Wernicke area, lateral 

premotor, and anterior supplementary motor areas). MNI coordinates associated with 

greatest left-lateralization match closely those reported in task-based fMRI studies of 

language (Anderson et al., 2010). Broca and Wernicke areas have been shown to 

comprise a distributed language network, predominantly left-lateralized, in their 
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functional connections and include both adjacent cortical as well as subcortical regions 

(Tomasi & Volkow, 2012a).  

Other left-lateralized hubs include core regions of the default mode network 

(posterior cingulate, medial prefrontal, temporoparietal junction (Raichle et al., 2001). In 

a diverse assortment of cognitive tasks (Gusnard & Raichle, 2001), this network shows 

greater activity during the resting state than during the task (Mayer, Roebroeck, Maurer, 

& Linden, 2010), and it has been proposed that this network may be involved in attending 

to internal stimuli, internal narrative, or self-reflection (Andrews-Hanna, Reidler, Huang, 

& Buckner, 2010; Cavanna & Trimble, 2006; Gusnard, Akbudak, Shulman, & Raichle, 

2001; Northoff et al., 2006). Recent evidence suggests this network may be comprised of 

a midline core active during self-referential thought, and a medial temporal core active 

during memory of past events (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 

2010), with the precuneus showing three anterior/posterior subdivisions with differing 

connectivity patterns (Margulies et al., 2009). 

In contrast, hubs of right-lateralized functional connectivity correspond well to 

canonical regions of the dorsal and ventral attention networks and the cingulo-insular or 

salience network (Dosenbach et al., 2007; Fox, Corbetta, Snyder, Vincent, & Raichle, 

2006; Fox et al., 2005; Seeley et al., 2007; Yeo et al., 2011). This network is more active 

during tasks requiring attention to external stimuli or assessment of stimulus salience or 

novelty (Corbetta & Shulman, 2002; Seeley et al., 2007). Virtually all of the described 

hubs of this network show right lateralization to each other in our analysis, including 

intraparietal sulcus, frontal eye fields, area MT, anterior insula, and dorsolateral 

prefrontal cortex. Right lateralization of external stimulus attention is consistent with 
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lesion studies reporting much greater incidence of hemispatial neglect following right-

hemispheric injury (Corbetta & Shulman, 2011; Sestieri, Corbetta, Romani, & Shulman, 

2011), particularly associated with lesions to regions of the ventral attention network 

(Corbetta & Shulman, 2011). 

In popular reports, "left-brained" and "right-brained" have become terms 

associated with both personality traits and cognitive strategies, with a "left-brained" 

individual or cognitive style typically associated with a logical, methodical approach and 

"right-brained" with a more creative, fluid, and intuitive approach. Based on the brain 

regions we identified as hubs in the broader left-dominant and right-dominant 

connectivity networks, a more consistent schema might include left-dominant 

connections associated with language and perception of internal stimuli, and right-

dominant connections associated with attention to external stimuli. 

Yet our analyses suggest that an individual brain is not "left-brained" or "right-

brained" as a global property, but that asymmetric lateralization is a property of 

individual nodes or local subnetworks, and that different aspects of the left-dominant 

network and right-dominant network may show relatively greater or lesser lateralization 

within an individual. If a connection involving one of the left hubs is strongly left-

lateralized in an individual, then other connections in the left-dominant network also 

involving this hub may also be more strongly left lateralized, but this did not translate to 

a significantly generalized lateralization of the left-dominant network or right-dominant 

network. Similarly, if a left-dominant network connection was strongly left lateralized, 

this had no significant effect on the degree of lateralization within connections in the 
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right-dominant network, except for those connections where a left-lateralized connection 

included a hub that was overlapping or close to a homotopic right-lateralized hub. 

We observe that lateralization of uncorrected functional correlation measurements 

includes a significant effect from structural asymmetries such as gyral position. We 

attempted to correct for this effect by regressing out gray matter density across subjects 

for each of the endpoints of every connection in our dataset to obtain a less biased 

measurement of functional lateralization. Although this effect is difficult to completely 

remove, it is unlikely that the relationships we describe are wholly attributable to 

structural asymmetries. The map of gray matter density lateralization shows a different 

spatial distribution from the map of functional connectivity lateralization, with structural 

lateralization varying abruptly between left and right with each gyrus, and functional 

lateralization following well-known functional architecture of intrinsic connectivity 

networks. Two of the nodes are within 10 mm of their homotopic equivalents in the left- 

and right-dominant networks. Thus, the same hub is lateralized to one set of connections 

in the left hemisphere and to a different set of connections in the right hemisphere. This is 

consistent with prior diffusion tensor and functional connectivity MRI analyses showing 

that connections between the temporoparietal junction and insula are asymmetrically 

lateralized to the right, while connections between the temporoparietal junction and the 

inferior frontal gyrus are asymmetrically lateralized to the left (Kucyi, Hodaie, & Davis, 

2012). 

It is also possible that the relationship between structural lateralization and 

functional lateralization is more than an artifact. Brain regions with more gray matter in 

one hemisphere may develop lateralization of brain functions ascribed to those regions. 
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Alternately, if a functional asymmetry develops in a brain region, it is possible that there 

may be hypertrophy of gray matter in that region. The extent to which structural and 

functional asymmetries co-evolve in development will require further study, including 

imaging at earlier points in development and with longitudinal imaging metrics, and 

whether asymmetric white matter projections (Iwabuchi et al., 2011; Kraemer, Yesavage, 

Taylor, & Kupfer, 2000) contribute to lateralization of functional connectivity. 

It is important to note that our data measure only asymmetries in the magnitude of 

functional connectivity between homotopic connections, but do not measure differences 

in the content of cognitive information between analogous connections in opposite 

hemispheres. Thus, a connection in the left hemisphere could be associated with a 

completely novel neural computation from a homotopic connection in the right 

hemisphere yet show no difference in functional connectivity lateralization. Nevertheless, 

lateralized functional correlation suggests a network architecture that differs between the 

two hemispheres and may be an indicator of the content of the two networks given 

known differences in function of the respective left- and right-lateralized hubs. 

We observed a weak generalized trend toward greater lateralization of 

connectivity with age between the 20 hubs included in the analysis, but most individual 

connections did not show significant age-related changes in lateralization.  The weak 

changes in lateralization with age should be interpreted with caution because the 

correlations included >1000 data points, so very subtle differences may be observed that 

are not associated with behavioral or cognitive differences. Prior reports with smaller 

sample sizes have reported differences in lateralization during adolescence in prefrontal 
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cortex (Bergerbest et al., 2009) as well as decreased structural asymmetry with age over a 

similar age range (Kovalev, Kruggel, & von Cramon, 2003).  

Similarly, we saw no differences in functional lateralization with gender. These 

results differ from prior studies in which significant gender differences in functional 

connectivity lateralization were reported (Liu et al., 2009; Tomasi & Volkow, 2012b). 

This may be due to differing methods between the two studies, including the use of short-

range connectivity in one of the former reports and correction for structural asymmetries 

in this report. A prior study performing graph-theoretical analysis of resting state 

functional connectivity data using a predefined parcellation of the brain also found no 

significant effects of hemispheric asymmetry with gender, but reported that males tended 

to be more locally efficient in their right hemispheres and females tended to be more 

locally efficient in their left hemispheres (Tian, Wang, Yan, & He, 2011) 

It is intriguing that two hubs of both the left-lateralized and right-lateralized 

network are nearly homotopic. Maximal left-lateralization in Broca area corresponds to a 

similar right-lateralized homotopic cluster extending to include the anterior insula in the 

salience network. Although both networks have bilateral homologues in the inferior 

frontal gyrus/anterior insular region, it is possible that the relative boundaries of Broca 

Homologue on the right and the frontoinsular salience region may "compete" for adjacent 

brain cortical function. Future studies in populations characterized for personality traits 

(Adelstein et al., 2011) or language function may be informative as to whether local 

connectivity differences in these regions are reflected in behavioral traits or abilities. The 

study is limited by the lack of behavioral data and subject ascertainment available in the 

subject sample. In particular, source data regarding handedness is lacking. However, 
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none of the hubs in our left- and right- lateralized networks involve primary motor or 

sensory cortices and none of the lateralized connections showed significant correlation 

with metrics of handedness in subjects for whom data were available. 

Despite the need for further study of the relationship between behavior and 

lateralized connectivity, we demonstrate that left- and right-lateralized networks are 

homogeneously stronger among a constellation of hubs in the left and right hemispheres, 

but that such connections do not result in a subject-specific global brain lateralization 

difference that favors one network over the other (i.e., left-brained or right-brained). 

Rather, lateralized brain networks appear to show local correlation across subjects with 

only weak changes from childhood into early adulthood and very small if any differences 

with gender. 
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Table 3.1. Sources of open access datasets used for analysis of 1011 scans. 

 
* Sites with multiple runs or sequences with differing numbers of imaging volumes. The 
reported number of imaging volumes is the most frequently used number per subject for 
the site.  
  

Site 
(FCON 
1000) 

n 
(Imaging 
Volumes) 

Site 
(FCON 1000) 

n 
(Imaging 
Volumes) 

Site 
(ADD 200) 

n 
(Imaging 
Volumes) 

Ann Arbor 16 (295) Leipzig 29 (195) Kennedy Krieger 49 (124*) 

Baltimore 11 (123) New York 30 (192*) NeuroImage 18 (261) 

Bangor 1 (265) Newark 15 (135)  NYU 87 (352*) 

Beijing 187 (225) Orangeburg 3 (165) OHSU 22 (234) 

Berlin 16 (195) Oulu 33 (245) Peking 109 (236) 

Cambridge 171 (119) Oxford 8 (175) Pittsburgh 72 (196*) 

Cleveland 5 (127) Palo Alto 6 (175) Washington U 35 (396*) 

ICBM 13 (128) Queensland 14 (190)   

Leiden 30 (215) Saint Louis 31 (127)   
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Figure 3.1: Significant lateralization of gray matter density. Colored regions included 

ROIs that showed significantly greater left- or right-lateralization of gray matter density 

across 1011 subjects, correcting for multiple comparisons using a false discovery rate 

correction of q<0.05 across 7266 ROIs. Color bars show t-statistics for the left and right 

hemispheres, respectively. Images are in radiologic format with subject left on image 

right. 
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Figure 3.2. Degree maps for significantly left- and right-lateralized connections after 

regression of structural laterality index from all connections. Significantly lateralized 

connections (after correcting for multiple comparisons using a false discovery rate of q < 

0.05, across all 14.1 million intrahemispheric connections) were used to construct a graph 

of significantly left-lateralized connections among left hemisphere ROIs and a separate 

graph of significantly right-lateralized connections among right hemisphere ROIs. Color 

scale shows graph-theoretical degree (i.e., sum of all significantly lateralized connections 

in which a given node is represented) for each ROI. Images are in radiologic format with 

subject left on image right. 
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Table 3.2. MNI coordinates of 20 lateralization hubs. 

 

 

Left Hemisphere Hubs X Y Z Right Hemisphere Hubs X Y Z 

Broca Area (Br) -45 25 0 Right Supplementary 
Motor Area (r-S) 5 8 61 

Wernicke Area (We) -58 -44 -2 Mid Insula (MI) 38 4 12 

Inferior Dorsolateral 
Prefrontal Cortex (DP) -43 43 1 Parietooccipital (PO) 36 -74 35 

Left Supplementary 
Motor Area (l-S) -6 10 62 Lateral Intraparietal 

Sulcus (LI) 55 -44 32 

Lateral Premotor 
Cortex (LP) -35 8 53 Frontal Eye Fields (FE) 43 0 51 

Medial Prefrontal 
Cortex (MP) -4 51 19 Dorsolateral Prefrontal 

Cortex (DL) 34 40 32 

Medial Superior 
Frontal (SF) -16 34 46 Middle Temporal Area 

(MT) 49 -60 0 

Posterior Cingulate 
Cortex (PC) -4 -56 31 Broca Homologue (Bh) 43 26 -3 

Lateral 
Temporoparietal (TP) 
Junction (TP) 

-45 -67 30 Mid Cingulate Cortex 
(MC) 13 -32 47 

    Superior Medial 
Intraparietal Sulcus (IP) 12 -73 44 

    Anterior Insula (AI) 36 26 8 
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Figure 3.3. Significantly lateralized connections to each hub. The hemispheric 

lateralization maps for the 9 hubs of the left-lateralized network and 11 hubs of the right-

lateralized network are shown in lateral and medial projections. Color scale (t-statistic) 

shows significantly left-lateralized (warm colors) or right-lateralized (cool colors) to the 

seed (i.e., hub). A black circle marks the position for each seed. 
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Figure 3.4: Significantly lateralized connections between each of the 20 hubs. Warm 

colors show significant left lateralization and cool colors show significant right 

lateralization. Color bar shows t-statistic for each connection. All colored squares were 

significant after correcting for multiple comparisons using a false discovery rate of 

q<0.05 among all possible connections between the hubs. See Table 3.2 or Figure 3.3 for 

the hubs’ two-letter abbreviations.  
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Figure 3.5. Significant correlation of lateralized connections across subjects. Yellow 

nodes represent connections between left hubs and green nodes represent connections 

between right hubs. An edge is present if lateralization was found to significantly 

correlate across subjects between the two connections, with red edges showing positive 

correlation and blue edges negative correlation, after correcting for multiple comparisons 

using a false discovery rate of q<0.05 across all possible connection-to-connection pairs. 

Virtually all edges are between nodes with a hub in common. A Kamada-Kawai 

algorithm was implemented in Social Network Image Animator software 

(http://www.stanford.edu/group/sonia/). The software was also used to visualize the 

relationship between connections. See Table 3.2 or Figure 3.3 for the hubs’ two-letter 

abbreviations. 
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Figure 3.6. Change in mean functional lateralization with age. Mean functional 

lateralization index for all connections between left (A) and right (B) hubs, respectively, 

is shown for each subject, plotted against subject age. Pearson correlation coefficients 

and p-values are shown above both plots. 
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Figure 3.7. Reproducibility of lateralization. A) Mean functional lateralization index for 

the 91 intrahemispheric connections (blue, connections involving right-lateralized hubs; 

red, connections involving left-lateralized hubs) is compared when averaging across all 

subjects except those from the Beijing site and when averaging across only subjects from 

the Beijing site. Pearson correlation coefficients and p-values are shown in both plots. B) 

Mean functional lateralization index for the 91 intrahemispheric connections (blue, 

connections involving right-lateralized hubs; red, connections involving left-lateralized 

hubs) is compared when averaging across all subjects and when averaging across all 

subjects except those that come from a site with less than 10 subjects.  
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Table 3.3. Connections between right-lateralized hubs that change in lateralization across 
development between the ages of 7 and 29. 

 

Hub 1 Hub 2 r p 

Right Supplementary Motor Area Mid Insula 0.129 5.7e-5 

Right Supplementary Motor Area Middle Temporal Area 0.089 0.0052 

Right Supplementary Motor Area Mid Cingulate Cortex 0.084 0.0092 

Mid Insula Broca Homologue 0.116 0.0003 

Parietooccipital Frontal Eye Fields 0.099 0.0021 

Parietooccipital Mid Cingulate Cortex 0.110 0.0006 

Lateral Intraparietal Sulcus Broca Homologue 0.102 0.0013 

Frontal Eye Fields Middle Temporal Area 0.083 0.0087 

Frontal Eye Fields Mid Cingulate Cortex 0.088 0.0063 

Frontal Eye Fields Superior Medial 
Intraparietal Sulcus 

0.128 6.9e-5 



 

 

 

CHAPTER 4 

 

LATERALIZATION OF FUNCTIONAL CONNECTIVITY IN AUTISM 

 

Brain lateralization occurs during typical development (Toga & Thompson, 

2003), and atypical lateralization in brain structure and function is associated with 

neuropsychiatric conditions and developmental disorders such as autism, schizophrenia, 

and specific language impairment (Chance et al., 2008; de Guibert et al., 2011; Fletcher 

et al., 2010; Herbert et al., 2002; Kleinhans, Muller, Cohen, & Courchesne, 2008; Lange 

et al., 2010b; Oertel-Knochel & Linden, 2011). More specifically, autism is associated 

with abnormal lateralization of brain function in core language regions, as measured by 

multiple functional imaging and electrophysiologic modalities. 

 Electroencephalographic studies have reported that evoked response lateralization 

during simple language stimuli in children with autism or high-risk infants was more 

often right-lateralized or lacked left lateralization compared to the typically developing 

children’s left-lateralized evoked responses (Dawson, Finley, Phillips, & Galpert, 1986; 

Dawson, Finley, Phillips, & Lewy, 1989; Seery, Vogel-Farley, Tager-Flusberg, & 

Nelson, 2013). Also, lateralization of evoked response in children with autism correlated 

with language ability, where right lateralization related with poorer language ability 

(Dawson et al., 1986). Later studies utilizing positron emission tomography confirmed 
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that right lateralization exists in core language regions of adults (Boddaert et al., 2003; 

Muller et al., 1999) and children (Boddaert et al., 2004) with autism.  

Functional magnetic resonance imaging (MRI) studies have found that typically 

developing individuals have significant left lateralization in language regions of the 

frontal lobe, whereas those with autism more commonly lack left lateralization or have 

reversed lateralization during language tasks (Kleinhans et al., 2008; Knaus, Silver, 

Lindgren, Hadjikhani, & Tager-Flusberg, 2008). Redcay et al. (2008) report a trend of 

left-lateralized function in typically developing toddlers listening to speech stimuli while 

sleeping (Redcay & Courchesne, 2008). Toddlers with autism show relative decrease in 

functional lateralization in Broca area or Wernicke area (Redcay & Courchesne, 2008). In 

a follow-up study to Redcay et al. (2008), Eyler et al. (2012) found that toddlers with 

autism have greater right-hemispheric activity in the temporal cortex in response to 

language (Eyler, Pierce, & Courchesne, 2012). This effect becomes more pronounced as 

the children with autism age (Eyler et al., 2012). Adolescents and adults with autism 

show decreased left-lateralized activity in response to language with greater bilaterality 

of functional activation (Anderson et al., 2010).  

Studies of structural lateralization also report either a lack of left lateralization or 

a reversal in lateralization in autism. Herbert et al. (2002) parcellated the brain into 48 

gyral regions per hemisphere and hypothesized that core language areas (i.e., Broca and 

Wernicke areas) would have abnormal volumetric lateralization in autism. Only gray 

matter volumes in Broca area were abnormally right-lateralized in autism participants 

(Herbert et al., 2002). In an exploratory whole-brain analysis, the authors also found that 

posterior temporal fusiform gyral volume was significantly more left-lateralized in autism 
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participants compared to typically developing participants (Herbert et al., 2002). Another 

volumetric lateralization analysis by the same group failed to find any group differences 

at the grossest parcellation level (i.e., total hemispheric volumes); however, as the 

parcellation scheme became finer in resolution, volumetric lateralization in autism was 

shifted to the right compared to typically developing individuals and a developmental 

language disorder group (Herbert et al., 2005). The majority of differences were due to 

either a loss of left lateralization or a gain of right lateralization in language (e.g., Broca 

area), face-processing (e.g., fusiform gyrus), and default mode (e.g., precuneus) regions 

(Herbert et al., 2005). De Fosse et al. (2004) found autism participants with language 

impairments and participants with specific language impairment had reversed volumetric 

laterality in Broca area, whereas typically developing participants and participants with 

autism but no language impairment had left-lateralized Broca area volumes (De Fosse et 

al., 2004). When lateralization of language function was investigated with a functional 

MRI task, autism had a greater proportion of atypical functional lateralization; however, 

functional lateralization rather than diagnosis accounted for a decrease in Broca area 

volumes and increase in white matter integrity in arcuate fasciculus (Knaus et al., 2010). 

In diffusion tensor imaging (DTI) studies, autism has decreased or reversed lateralization 

of white matter integrity in the arcuate fasciculus, superior temporal gyrus, cingulum, and 

uncinate fasciculus (Fletcher et al., 2010; Lange et al., 2010b; Lo et al., 2011).  

Abnormal connectivity observations in autism have been made using both 

functional and structural connectivity analyses. These studies suggest the 

pathophysiology of autism includes widespread deficits across structural and functional 

networks, rather than deficits confined to a single brain region. In task-related functional 
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connectivity studies, those with autism had decreased connectivity in the motor execution 

network during a motor task (Mostofsky et al., 2009b), in the cortical language system 

during a sentence comprehension task (Just et al., 2004), in connections between the 

fusiform face area and other limbic structures during a face identification task (Kleinhans 

et al., 2008), and in connections between the parietal lobe and other brain regions during 

a working memory task (Koshino et al., 2005). The results of altered connectivity in the 

motor execution network and cortical language system are further supported by structural 

connectivity studies that employed DTI. The structural connectivity studies measured 

decreased fractional anisotropy, a measure of compromised white matter tract integrity, 

in the cerebellum (Catani et al., 2008; Cheng et al., 2010), the superior temporal gyrus 

(Lee et al., 2007), and the arcuate fasciculus (Fletcher et al., 2010) in autism.  

In resting-state functional connectivity studies, autism is marked by decreased 

connectivity in the default mode network (Anderson et al., 2011d; Assaf et al., 2010; 

Kennedy & Courchesne, 2008a, 2008b; Kennedy et al., 2006; Monk et al., 2009; Weng et 

al., 2010), which is a set of spatially-distributed brain regions whose activity is associated 

with internal dialogue and narrative, autobiographical memory, mentalizing, and social 

processes (Buckner, Andrews-Hanna, & Schacter, 2008). Along with the default mode 

network, differences were found in the “social brain” (Gotts et al., 2012), which includes 

the regions of the default mode network among others, and in interhemispheric 

connections of homologous brain regions (Anderson et al., 2011). Increased connectivity 

has been seen for negatively correlated connections and for connections involving 

subcortical nuclei (Di Martino et al., 2010). These core findings have been confirmed in a 

multisite dataset with over 1000 subjects (Anderson et al., 2011; DiMartino et al., 2013). 
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These results from resting state analyses are confirmed in structural connectivity studies, 

again using DTI, that have found decreased fractional anisotropy in the default mode 

network and corpus callosum (Travers et al., 2012). Another recently employed 

technique, structural covariance MRI, investigates structural brain networks by 

correlating a group’s gray matter measurement (e.g., cortical thickness, gray matter 

density, etc.) in one brain region with the gray matter measurement in other brain regions 

(Alexander-Bloch, Giedd, & Bullmore, 2013; Zielinski, Gennatas, Zhou, & Seeley, 

2010). Children, adolescents, and young adults with autism have abnormal spatial 

distributions in structural covariance MRI networks that correspond to the default mode 

and salience networks (Zielinski et al., 2012).  

As has been highlighted above, autism is characterized by abnormal lateralization 

of brain structure and function in regions specific to language. It is also more generally 

characterized by connectivity abnormalities across many large-scale brain networks. The 

first study to characterize whether functional lateralization abnormalities existed outside 

of language-specific regions found diffuse differences across many different functional 

networks (Cardinale, Shih, Fishman, Ford, & Muller, 2013). These widespread 

differences in functional lateralization existed in a small sample of children and 

adolescents, using independent component analysis to identify the functional networks. 

Two recent reports describe how lateralized brain function segregates into two 

broad networks, a right- and left-lateralized network (Gotts et al., 2013a; Nielsen, 

Zielinski, Ferguson, Lainhart, & Anderson, 2013). The left-lateralized network appears to 

participate more in intrahemispheric connections, while the right-lateralized network 

participates in connections between hubs of the network and brain regions in both 
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hemispheres (Gotts et al., 2013a). In one report the broad networks include 20 

lateralization hubs, 9 in the left-lateralized network and 11 in the right-lateralized 

network. The left-lateralized network includes core language regions (Broca area and 

Wernicke area) and regions of the default mode network (posterior cingulate cortex, 

medial prefrontal cortex, lateral temporal parietal junction, among other areas; (Nielsen et 

al., 2013). The right-lateralized network includes regions from three networks associated 

with attention to external stimuli: the dorsal and ventral attention networks and the 

frontoparietal executive network. 

In the present study, we investigate these 20 lateralization hubs in autism and 

typical development and determine whether the lateralization of brain function differs 

between autism and typical development in a diffuse, network-wide manner or within 

isolated brain regions. We also determine whether lateralization of brain function 

correlates with clinical severity, age, and handedness.  

 

Materials and Methods 

Subject Sample 

The Autism Brain Imaging Data Exchange (ABIDE) consists of 1112 datasets 

comprised of 539 autism and 573 typically developing individuals (DiMartino et al., 

2013). Each dataset consists of one or more resting functional MRI acquisitions and a 

volumetric magnetization-prepared rapid acquisition with gradient echo (MPRAGE) 

image. All data are fully anonymized in accordance with HIPAA guidelines, with 

analyses performed in accordance with pre-approved procedures by the University of 

Utah Institutional Review Board. All images were obtained with informed consent 
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according to procedures established by human subjects research boards at each 

participating institution. Details of acquisition, informed consent, and site-specific 

protocols are available at http://fcon_1000.projects.nitrc.org/indi/abide/. 

Inclusion criteria for subjects were successful preprocessing with manual visual 

inspection of normalization to Montreal Neurological Institute (MNI) space of 

MPRAGE, coregistration of blood-oxygen-level dependent (BOLD) and MPRAGE 

images, segmentation of MPRAGE image, and full brain coverage from MNI z > -35 to z 

< 70 on all BOLD images. Inclusion criteria for sites were a total of at least 20 subjects 

meeting all other inclusion criteria. A total of 964 subjects met all inclusion criteria (517 

typically developing subjects and 447 subjects with autism from 16 sites and 19 datasets 

because 3 sites had multiple datasets). We also did secondary analyses using more strict 

inclusion criteria. The more strict inclusion criteria required, first, a subject have at least 

50% of his or her resting state BOLD volumes remaining after motion scrubbing. Second, 

some of the ABIDE data for the typically developing controls were included in the 1000 

Functional Connectomes (http://fcon_1000.projects.nitrc.org/) and/or ADHD-200 

samples (http://fcon_1000.projects.nitrc.org/indi/adhd200/). The 1000 Functional 

Connectomes and ADHD-200 datasets were used as the basis for the 20 lateralization 

hubs interrogated in the present study (Nielsen et al., 2013). We were not able to 

determine which subjects were present in both the ABIDE sample and the 1000 

Functional Connectomes or ADHD-200 samples due to anonymous submission of data to 

the publicly available samples. Therefore, we excluded sites where there was possible 

overlap in samples. 
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Each site followed different criteria for diagnosing patients with autism or ascertaining 

typical development, however, the majority of the sites used the Autism Diagnostic 

Observation Schedule (Lord et al., 2000) and Autism Diagnostic Interview-Revised (Lord 

et al., 1994). Specific diagnostic criteria for each site can be found at 

fcon_1000.projects.nitrc.org/indi/abide/index.html. Subject demographics for individuals 

satisfying inclusion criteria are shown in Table 4.1. Six different testing batteries were 

used to calculate verbal IQ and performance IQ, respectively. Specific IQ testing batteries 

and other behavioral measures for each site can be found at 

fcon_1000.projects.nitrc.org/indi/abide/index.html. In the case that no categorical 

measure (i.e., right-handed, left-handed, or ambidextrous) was reported, positive values 

were converted to right-handed, negative values to left-handed, and a value of zero to 

ambidextrous. Fifteen subjects lacked both a quantitative and categorical measurement of 

handedness.  

 

BOLD Preprocessing 

Preprocessing was performed in MATLAB (Mathworks, Natick, MA) using SPM8 

(Wellcome Trust, London) software. The following sequence of preprocessing steps was 

performed: 

1) Slice timing correction 

2) Realign and reslice correction of motion for each volume relative to initial volume 

3) Coregistration of BOLD images to MPRAGE anatomic sequence 

4) Normalization of MPRAGE to MNI template brain, with normalization 

transformation also applied to coregistered BOLD images 
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5) Segmentation of gray matter, white matter (WM), and cerebrospinal fluid (CSF) 

components of MPRAGE image (thorough clean) 

6) Extraction of mean time courses from the restriction masks applied to BOLD 

images from ROIs consisting of: 

a. CSF segmented mask with bounding box -35 < x < 35, -60 < y < 30, 0 < z 

< 30 

b. White matter segmented mask overlapping with 10 mm radii spheres 

centered at x = -27, y = -7, z = 30, x = 27, y = -7, z = 30 

c. Mask of scalp and facial soft tissues (Anderson et al., 2011a) 

7) Voxelwise bandpass filter (0.001 to 0.1 Hz) and linear detrend, performed 

concurrently with step 8. 

8) Voxelwise regression using glmfit.m (MATLAB Statistics Toolbox) software of 

CSF, WM, Soft tissue, and 6 motion parameters from realignment step from time 

series of each voxel of BOLD images 

9) Motion scrubbing (Power et al., 2012) of framewise displacement and DVARS 

with removal of volumes before and after a root-mean-square displacement of > 

0.2 for either parameter and concatenation of remaining volumes 

10)  No spatial smoothing was performed to avoid contaminating the signal near the 

midsagittal plane. The global mean signal and gray matter time courses were not 

regressed from voxelwise data (Anderson et al., 2011a; Gotts et al., 2013b; 

Murphy et al., 2009; Saad et al., 2012). 
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ROI Analysis 

From preprocessed BOLD images for each subject, mean time course was 

extracted from 7266 gray matter ROIs. These ROIs from a lattice covering the grey.nii 

image (SPM8) from z = -35 to z = 70 at 5-mm resolution, with MNI coordinates of 

centroids previously reported (Anderson et al., 2011d). The ROIs averaged 4.9 +/- 1.3 

standard deviation voxels in size for 3 mm isotropic voxels. A 7266 x 7266 matrix of 

Fisher-transformed Pearson correlation coefficients was obtained for each subject from 

the ROI timecourses representing an association matrix of functional connectivity in each 

subject between all pairs of ROIs. Each pair of ROIs is termed a “connection” for the 

present analysis. 

 

Functional Lateralization Metric 

Functional correlation was obtained as the Fisher-transformed Pearson correlation 

coefficient between each pair of the 7266 ROIs within the same hemisphere. We only 

analyzed connections within a single hemisphere and the opposite hemisphere 

homologues because of ambiguity of “lateralization” of a cross-hemisphere connection. 

Preprocessed images were inverted across the midsagittal plane, and analogous Fisher-

transformed correlation coefficients were obtained between each pair of the same ROIs 

on the flipped images. Functional lateralization index was defined as the difference 

(unflipped - flipped) between Fisher-transformed correlation coefficients. 

In a previous study of typical development, 20 cortical regions were identified as 

lateralization hubs, or brain regions involved in the most functionally-lateralized 

connections (Figure 4.1; (Nielsen et al., 2013). The 20 lateralization hubs were a subset 
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of 7,266 ROIs described above and comprised 9 left-hemispheric regions and 11 right-

hemispheric regions. All analyses in the present study focused on connections between 

the 20 lateralization hubs. For the MNI coordinates of the 20 lateralization hubs and more 

information on the methods for identifying the lateralization hubs, refer to Nielsen et al. 

(2013). 

 

Statistical Analyses 

All statistical analyses were performed in MATLAB using MATLAB’s statistical 

toolbox. Each lateralization hub’s pattern of lateralization with other hubs in the 

ipsilateral hemisphere of the cerebral cortex was determined separately for the typically 

developing group and the autism group by performing one-sample t-tests on the 

functional connections involving the cortical hub as the seed and the other ipsilateral 

hubs (Figure 4.2). We corrected for multiple comparisons using a false discovery rate of 

q < 0.05.To test for group differences in lateralization of intrinsic connectivity, two-

sample t-tests were applied on the set of ipsilateral connections involving the 20 

lateralization hubs (36 left-lateralized connections and 55 right-lateralized connections; 

Figures 4.1 and 4.2). We again corrected for multiple comparisons using a false discovery 

rate of q < 0.05. We also used different inclusion criteria for the subjects when testing 

group differences in lateralization of the 91 lateralized connections (Table 4.2). To test 

for the effect of clinical severity, age, and handedness, Pearson correlation coefficients 

were calculated across all participants for the three connections with abnormal 

lateralization when comparing the typically developing group to the autism group (Figure 

4.3). 
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Results 

We investigated the lateralization patterns among the lateralization hubs of the 

left- and right-lateralized networks in typical development and autism, and then 

compared the lateralization patterns of the two groups. In the typically developing group, 

strong lateralization existed between the hubs of the left- and right-lateralized networks, 

respectively (Figure 4.2A). In the autism group, lateralization between the hubs also 

existed, although not as strongly as in the typically developing group (Figure 4.2B). 

When comparing the two groups, the majority of the differences existed in connections 

involving specific left-lateralized hubs (Figure 4.1 and Figure 4.2C). Only three of the 

connections survived multiple comparisons correction using a false discovery rate of q < 

0.05. The three connections were in the left-lateralized network—Wernicke area to the 

posterior cingulate cortex; Wernicke area to the temporoparietal junction; and Broca area 

to the posterior cingulate cortex. All three either lacked left lateralization or had greatly 

diminished left lateralization in the autism group compared to the typically developing 

group (Wernicke-posterior cingulate: t(961) = 3.36, p = 0.0008; Wernicke-

temporoparietal: t(962) = 3.30, p= 0.001; Broca-posterior cingulate: t(960) = 3.04, p = 

0.002). 

We also repeated the analyses that identified the group differences in lateralized 

functional connections, using three additional inclusion criteria to determine which 

subjects would be included in the analysis (Table 4.2). Regardless of which inclusion 

criteria was used for the subjects, the connection involving Wernicke area and posterior 

cingulate cortex and the connection involving Wernicke area and temporoparietal 

junction were abnormal in the autism group. Four other connections were abnormal in at 
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least one of the four inclusion criteria analyses, all involving core language regions and 

default mode regions in the left-lateralized network. 

Finally, we investigated the relationship between lateralization in the three 

abnormal connections and autism severity, age, and handedness. The connection between 

Wernicke area and the posterior cingulate cortex negatively correlated with autism 

severity (r(346) = -0.13, p = 0.02; Figure 4.3). As left lateralization decreased between 

Wernicke area and posterior cingulate cortex, autism severity increased. No significant 

relationships between lateralization and age or lateralization and handedness were found. 

 

Discussion 

In this study, we tested brain lateralization in autism using functional connectivity 

MRI and found that abnormal lateralization of functional connectivity during rest in 

autism is restricted to specific left-lateralized connections that involve language regions 

(i.e., Broca area and Wernicke area) and regions of the default mode network (i.e., 

temporoparietal junction and posterior cingulate cortex), rather than diffusely affecting 

either the left- or right-lateralized functional networks. We also replicated previous 

results in the typically developing group that two interconnected lateralized networks 

exist in the brain, one in the left hemisphere, and one in the right hemisphere, with the 

left-lateralized network involving language and default mode regions, and the right-

lateralized network involving brain attentional regions (Nielsen et al., 2013). 

Cardinale and colleagues found that abnormal lateralization in autism existed 

across many intrinsic networks, including primary sensory and higher-level association 

networks (Cardinale et al., 2013). We, too, found either a lack of left lateralization or 
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greater right lateralization in the autism group; however, the regions or networks 

involved in abnormal lateralization differed. Rather than finding abnormalities 

throughout a number of networks as Cardinale and colleagues did, we only found 

differences in a handful of connections involving language regions and regions of the 

default mode network. Cardinale and colleagues did find lateralization in the default 

mode network in some of their supplemental analyses; however, they did not directly test 

lateralization between language regions and default mode regions. The inconsistent 

results are most likely due to differences in the sample age, sample size, number of data 

acquisition sites, and/or data analysis methods. 

We also found that abnormal lateralization relates to clinical severity, which 

corresponds with previous reports of abnormal brain lateralization and intrinsic 

connectivity in general. In individuals with autism, reduced functional connectivity 

within the default mode network relates to more social and communication impairments 

(Anderson et al., 2011d; Assaf et al., 2010; Gotts et al., 2012; Monk et al., 2009; Weng et 

al., 2010). Cardinale and colleagues did not find a relationship between abnormal 

lateralization of intrinsic networks and social or communication impairments that 

survived multiple comparisons (Cardinale et al., 2013). 

The abnormal lateralization of connections involving regions of the default mode 

network and core language regions may represent an overall lack of specialization in 

brain regions that process language and social stimuli. Regions of the default mode 

network are involved in tasks that require language (e.g., internal narrative and 

autobiographical memory) and theory of mind or understanding of another’s mental state 

(Buckner et al., 2008; Gusnard et al., 2001; Saxe & Kanwisher, 2003). The 
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temporoparietal junction and posterior cingulate cortex participate in the same component 

as core language regions during a language task (Geranmayeh et al., 2012). The 

temporoparietal junction participates in both semantic tasks and deactivates during 

cognitively taxing tasks (i.e., has default mode characteristics; (Seghier, Fagan, & Price, 

2010). The posterior cingulate cortex is more active in congruent and coherent language 

compared to incongruent or incoherent language (Ferstl, Neumann, Bogler, & von 

Cramon, 2008; Tesink et al., 2009b). The right inferior frontal gyrus is more active in 

autism compared to typical development during a language task, implying abnormal 

lateralization in a core language region that may have implications in its relationship with 

other brain regions (e.g., as we found with the connection between Broca area and 

posterior cingulate cortex; (Tesink et al., 2009a). Together these observations suggest the 

abnormal lateralization between core language regions and default mode regions could 

account for some of the communication and social deficits experienced by individuals 

with autism. This possibility is also supported by findings that abnormal lateralization in 

language regions are correlated with decreased function on standardized testing (Gotts et 

al., 2013a). 

The observation that abnormal functional lateralization in autism is limited to 

connections between core language regions constrains hypotheses of developmental 

pathophysiology in autism. Our analysis suggests that abnormal language lateralization in 

autism may be due to abnormal language development rather than a deficit in 

hemispheric specialization of the entire brain, and would be more consistent with a search 

for mechanisms involving brain substrates for language acquisition rather than earlier 

potential mechanisms where hemispheric asymmetries emerge. This constraint is also 
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supported by multimodal observations from DTI, functional MRI, structural MRI, and 

electrophysiologic studies that have all identified specific deficits in language-related 

lateralization but not differences in lateralization in other cognitive subsystems. 

While the large sample size of the ABIDE dataset can be a tremendous advantage 

for improving statistical power and external generalizability of the results, it can also be a 

liability. The individual sites differ in many important data acquisition variables 

including inclusion criteria, demographics, pulse sequence, scanner type, and length of 

scan. Most of the included scans were very short, less than 10 minutes duration per 

subject. It is possible that the heterogeneity of the dataset may limit sensitivity for 

detecting small changes, and that in a more homogenous data sample additional 

differences in lateralization would be found.  

An additional limitation is that we did not attempt a discovery of all lateralization 

differences in an attempt to control the multiple comparison problem that would arise, but 

instead looked for lateralization differences only between a set of 20 regions that were 

previously identified as being hubs of lateralized networks in a control population 

(different from the control subjects used here). It is possible that systematic differences in 

lateralization are present in brain regions that are not necessarily hubs of lateralization 

networks in the brain, and which we could not detect. 

In conclusion, brain lateralization occurs in typical development and is abnormal 

in autism. As has been shown in multiple reports, left lateralization of core language 

regions in autism is diminished. In addition to core language regions, we have shown that 

the synchronization between core language regions and default mode regions lacks left-

sided lateralization in autism. The abnormal lateralization correlates with more severe 
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communication and social deficits. These abnormalities represent differences that persist 

from childhood throughout adulthood, in at least a subgroup of individuals with autism, 

and suggest a lack of specialization. 
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Table 4.1. Subjects included from the ABIDE sample with demographic information. 

 Age ADOS-G total  Handedness (left, 
right, ambidextrous) 

Handedness (-100 
– +100) Verbal IQ Performance 

IQ 

Number of subjects 964 348 949 348 781 796 

     Control (426 M, 91 F) 32 (472 R, 34 L, 3 A) 184 413 425 

     Autism (396 M, 51 F) 316 (378 R, 58 L, 4 A) 164 367 371 

Control mean +/- s.d. 16.9 +/- 7.56 1.25 +/- 1.37 N/A 67.4 +/- 39.0 112 +/- 13.3 108 +/- 13.3 

     (Control range) (6.47 - 56.2) (0 - 4) N/A (-100 – +100) (67 - 147) (67 - 155) 

Autism mean +/- s.d. 16.6 +/- 8.1 11.9 +/- 3.81 N/A 51.8 +/- 54.5 105 +/- 17.4 106 +/- 17.2 

     (Autism range) (7 - 64) (2 - 22) N/A (-100 – +100) (50 - 149) (59 - 157) 

 

 

Table 4.2. Group differences in lateralization for various subject inclusion criteria. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A: Met all preprocessing criteria (described in Methods and Materials section) and part of site with >20 subjects 
B: Criteria A + subject has >50% resting state BOLD volumes after motion scrubbing 
C: Criteria A + subject not included in 1000 Functional Connectomes or ADHD200 datasets 
D: Criteria A + B + C 

  

Inclusion 
criteria 

Total n 
(Autism n) ROI 1 ROI 2 t p 

A 964 (447) Posterior cingulate Wernicke 3.37 7.7 x 10-4 

  Posterior cingulate Broca 3.04 2.4 x 10-3 

  Temporoparietal junction Wernicke 3.63 2.9 x 10-4 

B 831 (362) Posterior cingulate Wernicke 3.39 7.2 x 10-4 

  Posterior cingulate Lateral premotor 2.93 3.5 x 10-3 

  Temporoparietal junction Wernicke 3.66 2.7 x 10-4 

C 765 (447) Posterior cingulate Wernicke 3.69 2.4 x 10-4 

  Posterior cingulate Broca 3.52 4.6 x 10-4 

  Posterior cingulate Lateral premotor 3.63 3.0 x 10-4 

  Posterior cingulate Left supplementary motor area 2.74 6.3 x 10-3 

  Temporoparietal junction Wernicke 3.78 1.6 x 10-4 

  Temporoparietal junction Left supplementary motor area 2.87 4.2 x 10-3 

D 645 (362) Posterior cingulate Wernicke 3.83 1.4 x 10-4 

  Posterior cingulate Lateral premotor 3.79 1.7 x 10-4 

  Temporoparietal junction Wernicke 3.71 2.3 x 10-4 
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Figure 4.1. Lateralized hub locations and abnormally lateralized connections. The left- 

(red) and right-lateralized (blue) brain regions that participate in the most left- and right-

lateralized connections, as determined in a separate sample of 1011 typically developing 

subjects, are displayed on rendered brain images. Three connections (black lines) are less 

left-lateralized in the autism group compared to the typically developing group when all 

964 subjects are included in the analysis. Abbreviations: Broca area (Br), Wernicke area 

(We), inferior dorsolateral prefrontal cortex (DP), left supplementary motor area (l-S), 

lateral premotor cortex (LP), medial prefrontal cortex (MP), medial superior frontal 

cortex (SF), posterior cingulate cortex (PC), temporoparietal junction (TP), right 

supplementary motor area (r-S), mid insula (MI), parietooccipital cortex (PO), lateral 

intraparietal sulcus (LI), frontal eye fields (FE), dorsolateral prefrontal cortex (DL), 

middle temporal area (MT), Broca homologue (Bh), mid cingulate cortex (MC), superior 

medial intraparietal sulcus (IP), anterior insula (AI).  
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Figure 4.2. Group lateralization patterns. The lateralization patterns of the connections 

involving the 20 lateralized hubs displayed in the typically developing group (A), autism 

group (B), and group differences (C). The colored connections (i.e., squares of the plot) 

represent a group difference of p < 0.05 and colored connections with asterisk represent a 

group difference that survives multiple comparisons correction using a false discovery 

rate of q < 0.05. See Figure 4.1’s legend for list of abbreviations. 
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Figure 4.3. Relationship between lateralization and autism severity. The left lateralization 

of the functional connection involving Wernicke area and posterior cingulate cortex 

shares a negative correlation with autism severity, as calculated by adding the ADOS-G 

social and communication domains’ total scores for each subject with autism (red) and 

typically developing subject (black) separately. See plot for correlation coefficient and 

corresponding p-value.



 
 

 

CHAPTER 5 

 

CONCLUSIONS 

 

The first conclusion of these studies is that much work must still be done to 

develop technologies and methods that will allow for across site classification algorithms 

to be implemented. The signal-to-noise ratio when comparing the biological signal 

introduced by individuals with autism to the noise introduced by different scanners and 

parameters used in MR imaging is low. One point to consider going forward is the length 

of time an individual is scanned. The synchrony in brain activity between two different 

regions is fairly stable after 5 minutes of scanning (Van Dijk et al., 2010); however, in 

order to use functional connectivity analyses to distinguish a single person from a group, 

longer imaging time must be used (Anderson et al., 2011). 

The second conclusion is that, contrary to popular belief among the lay public, 

individuals are not “left brained” or “right-brained.” We showed that the brain is made up 

of two lateralized networks, a right-lateralized network made up of attentional regions 

and a left-lateralized network made up of core language regions and default mode 

regions. We also showed that if the synchrony between two regions in the left-lateralized 

network is strongly synchronous, it has no bearing on how synchronous the other 

connections are in the left- or right-lateralized networks. 
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Finally, the third conclusion is that individuals with autism lack left lateralization 

in connections involving core language regions and default mode regions. These 

abnormalities relate to disorder severity, and may underlie the communication and 

language deficits. They may also reflect an abnormal interface between language regions 

involved internal dialogue (e.g., default mode regions) and regions involved in processing 

speech and producing speech (e.g., Broca and Wernicke areas). 
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