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ABSTRACT 
 
 

With the rapid proliferation of high-throughput sequencing methods, both the 

number and variety of genome assemblies have increased and require rigorous and 

sophisticated methods for genome annotation. As more species’ genomes are sequenced, 

the targets of genome annotation projects will more commonly be species with few 

closely related species that have been analyzed previously. This can be a serious 

challenge for genome annotation, here defined as the identification and demarcation of 

gene models in a genome assembly.  

My PhD research has focused on the application and development of genome 

annotation methods for non-model organisms. In the first chapter of my thesis, I present a 

review of the field of genome annotation, which discusses current challenges and best-

practice approaches. In the second chapter of my thesis, I present analyses of the 

important agronomic pest, Cronartium quercuum sp. fusiforme (CQF), which causes 

fusiform rust disease in loblolly pine trees. I annotated the genome and used genome-

resequencing data to confirm results from a previous linkage mapping study that 

identified the location of virulence factor 1 (Avr1) and to identify candidate Avr1 genes.	
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

A Brief Introduction to Genome Annotation 
 
 Genome annotation can be summarized as the process of identifying the location 

and structure of protein-coding genes within genomic sequence (1). In addition to 

identifying protein-coding genes, genome annotation can also be said to include the 

process of identification of repetitive sequence in a genome (2–4), as well as the process 

of assigning functional annotations to protein-coding genes (5–9). Genome annotation 

projects are usually undertaken on organisms whose genomes have recently been 

sequenced and assembled for the first time. Exceptions to this rule include the ongoing 

revisions and updates as reference genome assemblies are updated (as is currently done 

with the human reference genome) and whole-scale re-annotation projects necessitated by 

advances in the evidence available for the organism of interest (see Chapter 4 of this 

thesis for the re-annotation of the Trichomonas vaginalis (T. vaginalis) reference 

genome).  

 The first organisms to have their genomes sequenced, assembled, and annotated 

were model organisms, for which there were plenty of resources in the form of EST and 

cDNA libraries and amino-acid sequences of proteins, which could be used in the 

genome annotation process. The high-quality reference genomes produced in the first 

years of the “genomics-era” (10–13), in combination with the volume and quality of the 
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evidence that had been produced by decades of prior research, allowed for confident 

analyses within and between species.  

 
Genome Annotation of Non-Model Organisms 

 
 Following the release of the first annotated reference genomes, the advent of next-

generation sequencing technologies (NGS) dramatically reduced the cost of genome 

sequencing (14, 15). Reference-based comparisons of the genomes of multiple 

individuals within a species allow for investigation of population genetics questions, 

while comparisons of de novo assemblies of genomes of multiple species can allow for 

studies of evolution at larger phylogenetic distances. Although NGS technologies 

allowed for the investigation of many more new and different kinds of genomic studies 

than before, the draft assemblies produced with these methods failed to reach the 

completeness and contiguity of the generation of reference genomes.  

Additionally, genome projects are not equally distributed across the tree of life 

(16). As previously noted, multiple genome assemblies of related organisms enable 

comparative studies at varying phylogenetic distances. The comparisons can investigate 

questions such as the molecular evolution of orthologous genes in different species (17–

20), the expansion or contraction of gene families (21), and the identification of so-called 

“orphan” genes that are present in only a single species within a clade (22). An additional 

use of those genomes is to leverage the annotated protein-coding genes from related 

species in the genome annotation of newly sequenced organisms. Early on in my thesis 

research, I contributed genome annotations for two species of hymenopteran insects 

(Cardiocondyla obscurior and Megachile rotundata), which benefited from many other 

hymenopteran genomes that have been annotated (23). These genome annotations formed 
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the basis of published research which investigated evolutionary questions within and 

between species (23, 24, see Appendices A and B for full-text of publications). A study 

that includes the annotation of a newly sequenced and assembled genome as well as inter- 

and intraspecific genomic comparisons with multiple reference genomes is included in 

Chapter 3 of this thesis.  

As a corollary to benefits of “annotation-rich” taxonomic neighborhoods noted 

above, genome projects in “annotation-poor” or understudied groups of organisms can 

encounter pitfalls in a lack of available resources from species closely related to the 

organisms of interest. These pitfalls can include a lack of annotated protein-coding genes 

that can be used for homology searches in the target genome, as well as novel 

transposable elements (TE) families in the target genome that will not be identified by 

repeat-masking software using data from previously published genomes. An example of 

these problems is the genome annotation of T. vaginalis in which 60,000 protein-coding 

genes were reported in a 160 Mbp genome (26) when an unknown number of those 

protein-coding genes are probably encoded by Maverick TE elements (27). The re-

annotation of the T. vaginalis genome, along with inter- and intraspecific comparisons 

using a novel reference-free comparative genomics method, is reported in Chapter 4 of 

this thesis. 
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CHAPTER 2 
 
 

A BEGINNER’S GUIDE TO EUKARYOTIC 
 

GENOME ANNOTATION 
 
 
 The following chapter is a reprint of a review article coauthored by Mark Yandell 

and myself, and is presented here with permissions of the authors and kind permission of 

Springer Nature. This review article was first published in Ence D. and Yandell M. 

(2012) A beginner’s guide to eukaryotic genome annotation. Nature Reviews Genetics 

13(5):329-340. Available at: 

http://www.nature.com/nrg/journal/v13/n5/abs/nrg3174.html.
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CHAPTER 3 
 
 

A GENOMIC REGION IN THE FUSIFORM RUST 
 

PATHOGEN INTERACTS SPECIFICALLY 
 

WITH THE PINUS TAEDA L. 
 

FR1 RESISTANCE LOCUS 
 
 
 The following chapter is a manuscript coauthored by Katherine E. Smith, Amanda 

L. Pendleton, Thomas L. Kubisiak, Claire L. Anderson, Asaf Salamov, Andrea Aerts, 

Robert W. Riley, Alicia Clum, Erika A. Linquist, Michael Campbell, Zev Kronenberg, 

Nicolas Feau, Braham Dhillon, Richard C. Hamelin, Jason A. Smith, Mark Yandell, C. 

Dana Nelson, Igor V. Grigoriev, John M. Davis, and myself.  

Katherine E. Smith and I contributed equally to this work. Michael Campbell and 

I prepared the genome annotation. Zev Kronenberg developed the tests for genomic 

selection. This manuscript will be submitted to Fungal Genetics and Biology in October 

or November 2016.
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Abstract 

 Heteroecious rust pathogens colonize two or more plant hosts to complete their 

life cycles. Typically, interactions between rust pathogens and their telial (i.e., repeat) 

hosts have attracted much research attention given the economic importance of these 

hosts. Conversely, for oak-pine rusts, only minor symptoms are observed on telial hosts 

(Quercus spp.) whereas significant economic losses can occur on aecial hosts (Pinus 

spp.). We sequenced, assembled, and annotated the genome of the fusiform rust pathogen 

Cronartium quercuum f.sp. fusiforme (Cqf) which incites gall symptoms on the stems of 

commercially important species such as loblolly pine (Pinus taeda L.). To further refine 

and characterize the genomic region in Cqf that was previously shown by 

recombinational linkage mapping to specifically interact with the pine Fr1 gene, pycnial 

droplets were collected from Fr1/fr1 (virulence selected) resistant hosts and fr1/fr1 (non-

selecting) susceptible hosts and were sequenced. Using this approach, we identified a 

selective sweep in the genomic region that was genetically mapped to Avr1 in Cqf. To 

further our ongoing map-based cloning and genome finishing efforts, we aligned genetic 

marker sequences to scaffolds in order to place the Cqf genome within the context of the 

genetic map framework. These results suggest that bulk segregant sequencing should 

enable additional avirulence loci to be identified in Cqf, opening the door for the 

development of specific genetic marker assays to monitor Cqf virulence in the field, a 

technique that would allow for more informed predictions regarding the most resistant 

pine genotype to be planted across the range of loblolly pine. 
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Introduction 

 Fusiform rust disease is incited by the heteroecious, macrocyclic pathogen 

(Cronartium quercuum f.sp. fusiforme or Cqf; Fig. 3.1). In contrast to most rust-disease 

systems, disease symptoms on the oak (telial, repeating) host are quite minor and of little 

to no economic importance, and have therefore motivated little to no research to identify 

genetic resources of resistance in this host. However, genetic resistance on the pine 

(aecial, non-repeating) host is of great economic importance because the disease causes 

major damage to pine seedlings. Each year, ca. 1 billion seedlings of loblolly pine (Pinus 

taeda L.) are planted in the US, with the majority of those seedlings being genetically 

selected for improved resistance to fusiform rust disease via traditional breeding (1). 

Genetic resistance to fusiform rust in the aecial host is largely conditioned by major 

genes. This inference is based on a series of studies in which the no-gall phenotype was 

genetically mapped to single genetic loci in the host, after inoculation with single-

aeciospore-derived spore population of Cqf (Fr1 (2); Fr1-Fr9 (3)). Recently, a candidate 

gene for Fr1 was identified in the loblolly pine draft genome assembly (4). There is also 

evidence that each of the mapped Fr loci has been overcome, to varying degrees 

depending on the geographic origins of spore collections used to inoculate known Fr1/- 

resistant compared to fr1/fr1 susceptible seedlings (5). 

In the past decade, much progress has been made in discovering effectors, the 

gene products in rust fungi that enable resistance genes to be defeated, i.e., effect host 

manipulation to suppress host defenses, obtain nutrients, and generate disease symptoms 

(6–8). Despite remarkable progress made in understanding the structure and function of 

effectors in rusts, thus far experiment data for effectors on aecial hosts are lacking. Rust 
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pathogen interactions with telial and aecial hosts are distinct with respect to the disease 

phenotype, the host organ in which the interaction occurs, the cellular structures formed, 

and length of coevolution (9, 10). This suggests that there may be distinct effectors and/or 

distinct targets for effectors in telial versus aecial hosts. Effectors often lack homologs in 

related species, potentially due to the rapid evolution of fungal pathogen genomes, which 

leads to taxon-specific gene models and thus limiting comparative analyses. In an 

analysis of gene family evolution in 15 basidiomycete fungi, ca. 20% of Cqf gene models 

with evidence of expression in the transcriptome were Cqf-specific (11). We chose to 

pursue genomic mapping of Avr1, since it was previously inferred to be a single locus 

based on linkage to markers on linkage group III in the genetic map of Cqf (12). Here we 

leveraged segregation ratio differences between aeciospore pools derived from resistant 

versus susceptible pines to compare the segregation of SNVs across the Cqf genome and 

identified candidate genes for Avr1. 

 
Materials and Methods 

The haploid genome of Cronartium quercuum f. sp. fusiforme was sequenced using 

the Illumina and 454 platforms. Genomic DNA was isolated from pycniospores collected 

from a single gall (G-11) on the Harrison Experimental Forest near Saucier, Mississippi. 

A panel of eight microsatellite markers (13)  was used to confirm the haploid status (i.e., 

single genotype purity) of the sample prior to the library construction and sequencing. 

Two libraries, one with an insert size of 270 bp and one with a long mate-pair insert size 

of 27 kb, were sequenced using Illumina technology, generating 2 X 100 bp reads. A 

single 4kb paired-end library was sequenced using Roche 454 pyrosequencing 

technology. Reads were quality control filtered for artifacts and process contamination, 
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then assembled with the short read genome assembler AllPathsLG release version 

R40582 (14). The genome was annotated using the JGI annotation pipeline (15), which 

combines several gene prediction and annotation methods (see below) and integrates the 

annotated genome into the web-based fungal resource MycoCosm (16) for comparative 

genomics.  

Genome fragmentation was assessed with the Benchmarking Universal Single-Copy 

Orthologs (BUSCO) on the Cqf genome, as well as genome assemblies for two other rust 

fungi (Melampsora tritic, Puccinia graminis) obtained from MycoCosm (17).  

Before gene prediction, assembly scaffolds were masked using RepeatMasker (18) 

with the current edition of the RepBase library (19), with the most frequent (observed 

>150 times) repeats recognized by RepeatScout (20). The following combination of gene 

predictors was run on the masked assembly: ab initio Fgenesh (21) and GeneMark (22) 

homology-based Fgenesh+ (21) and Genewise (23) seeded by blastx alignments against 

the NCBI non-redundant (NR) database; and transcriptome-based CombEST. In addition 

to protein coding genes, tRNAs were predicted using tRNAscan-SE (24). All predicted 

proteins were functionally annotated using SignalP (25, 26) for signal sequences, 

TMHMM (27) for transmembrane domains, InterProScan (28) for integrated collection of 

protein domains, and protein alignments to the NCBI NR database, SwissProt 

www.expasy.org/sprot/, KEGG (29) for metabolic pathways, and KOG (30) for 

eukaryotic clusters of orthologs. InterPro and SwissProt hits were used to map gene 

orthology (GO) terms (31). For each genomic locus, the best representative gene model 

was selected based on a combination of protein homology and EST support.  
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Secreted proteins (SPs) and small secreted proteins (SSPs) were annotated using a 

combination of signal peptide (SignalP 3.0 and 4.0) (25, 32) , trans-membrane domain 

(TMHMM 2.0) (33) and protein location (TargetP 1.1) (34) prediction algorithms. To 

compare closely related species, secreted protein predictions were carried out on the 

predicted proteomes of Cqf, Melampsora larici-populina and Puccinia graminis f.sp. 

tritici. SPs and SSPs were then assembled into clusters of homologs using the OrthoMCL 

algorithm (35) following an all-vs.-all blastp search (coverage and identity of at least 

50%, e-value cutoff of 1e-05) with an inflation value set to 1.1. 

Samples for RNA sequencing were collected from both the pine and the oak hosts of 

Cqf. Galls were collected from 5-year-old slash pine trees in October as pycniospores 

were forming and again in April as aeciospores were forming. Galls were freeze-dried for 

one week. Yellow-colored aeciospore (spring) or orange-colored pycniospores (fall) 

hymenial layers were chipped away from the outside of freeze-dried galls using a scalpel. 

Aeciospores were collected by knocking them off the surface of spring-collected pine 

galls. Oak associated tissues included infected oak leaves with attached telial columns, 

telial columns removed from oak leaves and basidiospores collected onto pH 2.0 water 

wetted filters (to prevent germination). Oak leaves and telial columns were stored at 20°C 

and basidiospores were stored in pH 2.0 water, at 4°C for up to 4 days. Pine associated 

tissues were collected in the field, at the University of Florida in Gainesville, Florida. 

Oak associated tissues were collected from greenhouse-inoculated, open-pollinated wild 

northern red oak (Quercus rubra) seedlings at the USDA Forest Service, Resistance 

Screening Center in Asheville, North Carolina.  
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RNA was extracted from the following tissues: aeciospores, basidiospores, telial 

columns, infected oak leaves, and the spring and fall hymenial layers of pine galls. 

Cetyltrimethylammonium bromide (CTAB) buffer was used, with different grinding 

procedures for each tissue. Infected oak leaves were frozen and ground in liquid nitrogen. 

The following tissues were ground in CTAB buffer pre-warmed to 65°C using a 

Geno/Grinder 2000 homogenizer (BT&C 24 Incorporated): 1) Aeciospores were ground 

in 4ml round bottom vials containing ~20mg of spores and a 1.0cm stainless steel ball; 2) 

Basidiospores were ground in 1.5ml Eppendorf tubes containing ~20mb of spores, 

150mg zircon beads, and 12.5mb diatomaceous earth; 3) Telial columns were ground in 

1.5ml Eppendorf tubes containing CTAB buffer and a 1.0cm steel ball. In all cases, 

extracted RNA was treated for 30 minutes at 37°C with RQ1 RNase-free DNase 

(Promega, M6101) and then purified using a Qiagen RNeasy Mini Spin Column.  

RNA for library production and sequencing was analyzed on an Agilent 2100 

Bioanalyzer and only RNA with a minimum RNA integrity score (RIN) of 6.3 was 

selected for sequencing. Libraries were constructed using RNA from the following five 

samples: 1) pycnial hymenial layer, 2) aecial hymenial layer, 3) aeciospores, 4) 

basidiospores, and 5) infected oak leaves with telial columns. Total RNA from these Cqf. 

samples was used to generate five individual, RNASeq libraries. Messenger RNA was 

purified from total RNA using the Absolutely mRNA™ purification kit (Stratagene). The 

isolation procedure was performed twice to ensure the sample was free of rRNA. 

Subsequently, the mRNA samples were chemically fragmented to the size range 200-

250bp using 1x fragmentation solution for 5 minutes at 70°C (RNA Fragmentation 

Reagents, AM8740–Zn, Ambion). First strand cDNA was synthesized using Superscript 
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II Reverse Transcriptase (Invitrogen) and random hexamers. Complementary DNA 

(cDNA) was purified with Ampure SPRI beads. Then the second strand was synthesized 

using a dNTP mix (with dTTP replaced with dUTP), E.coli RNaseH, DNA Ligase, and 

DNA polymerase I for nick translation, resulting in double-stranded cDNA (dscDNA). 

The dscDNA were purified and selected for fragments in the range 200-300bp using a 

double Ampure SPRI bead selection. The dscDNA fragments were then blunt-ended, 

poly-A tailed, and ligated with Truseq adaptors using Illumina DNA Sample Prep Kit 

(Illumina). Adaptor-ligated DNA was purified using Ampure SPRI beads. Then the 

second strand was removed by AmpErase UNG (Applied Biosystems) similar to the 

method described previously (36). Digested cDNA was again cleaned with Ampure SPRI 

beads. Paired-end 76 bp reads were generated by sequencing using an Illumina HiSeq 

instrument.  

Five lanes of Illumina HiSeq data from the individual RNA libraries were groomed 

using FASTQ Groomer v.1.0.4 and subsequently filtered using the Fastx Toolkit Quality 

Filter v1.0.0, first requiring 100% of each read to maintain a quality score of 20, then 

maintaining reads with at least 95% of the bases with quality scores greater than 30 

(www.hannonlab.cshl.edu/fastx_toolkit/index.html). Paired-end reads were mapped to 

the final JGI assembly using Tophat (37). Assembly using the final JGI annotations and 

calculation of transcript abundance was completed using Cufflinks v.0.0.5 (38), allowing 

for no mismatches and intron specifications of 63-1457bp. Duplicate reads (exact 

matches) were removed by Picard v.1.56.0 (http://broadinstitute.github.io/picard/). 

In order to identify variant sites that mapped to the Avr1 genomic region, we 

employed bulk segregant sequencing, which involved a pooling strategy with Illumina 
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sequencing. Briefly, we sequenced DNA extracted from pools of pycnial droplets 

produced on Fr1/fr1 (resistant) pine hosts (i.e., ONLY virulent avr1 alleles) and 

compared this to sequence data obtained from DNA extracted from pycnial droplets 

produced on fr1/fr1 (susceptible) pine hosts (i.e., a mixture of Avr1 and avr1 alleles). 

Variant sites were identified with UnifiedGenotyper from GATK 3.6 and a genomic scan 

for markers associated with Avr1 was performed with pFst from the vcflib suite 

(https://github.com/vcflib/vcflib ). 

Blastn (Blast2.3.0+) and GAP5 (39) were used to align and visually identify the most 

likely position for genetic markers within the Cqf assembly. For SSR markers, either the 

primer sequences or the cloned DNA sequence from which they were developed, were 

queried. Primers had to be found in the correct orientation, within the expected allele size 

range, and flanking the expected simple sequence repeat motif to be considered 

confidently placed. For RAPDs, 8-mers representing the 3’-most end of the original 10-

mer primers were queried. Primer sequences had to be found in the correct orientation 

and within +/- 25 bp of agarose gel-esimated fragment sizes to be considered tentatively 

placed. For AFLPs, each primer-pair combination representing only the enzyme-specific 

nucleotides plus their corresponding selective amplification nucleotides were queried. 

Primer-pair sequences had to be found in the correct orientation and within +/- 3 bp of an 

adjusted sequencer-estimated fragment size (-24bp) to account for core AFLP primer 

nucleotides to be considered tentatively placed. For all marker types, in cases where 

multiple marker candidates were observed within the Cqf assembly, no conclusions could 

be drawn regarding placement. 
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The presence of telomere-like sequences was investigated using the simple sequence 

repeat (TTAGGG)5 and BLAST. To be declared significant, hits had to have 100% 

identity to sequences within the Cqf assembly. Alignments were visually inspected and 

further characterized using GAP5.  

 
Results and Discussion 

 The Cqf draft genome assembly (Croqu 1) totaled 76.6 Mb with 1,198 scaffolds 

(Table 3.1). The Cqf draft genome assembly contained 13,903 predicted genes supported 

by RNA sequence obtained from five developmental stages. This gene set was 84.7% 

complete according to the Benchmarking Universal Single-Copy Orthologs (BUSCO) 

approach and was the smallest among the sequenced rust genomes of Puccinia graminis 

f.sp. tritici (Pgt) and Melampsora larici-populina (Mlp) despite a significant fraction 

(17.6%) composed of transposable elements (Table 3.1) (40, 41).  

To obtain expression evidence during multiple developmental stages of 

compatible interactions, RNA sequences were analyzed from infected leaves, mixed 

teliospores/basidiospores (both telial host collections), fall hymenial layer generating 

pycniospores, spring hymenial layer generating aeciospores, and aeciospores. Transcripts 

were detected for 77.4% of the predicted gene models from the final assembly (at 

>20RPKM) in at least one tissue source and from 54.3% of the gene models in all five 

tissue sources (Table 3S.1). These facts provide experimental support for expression of 

most Cqf genes at multiple stages of development. Cqf transcriptional activity appears 

similarly high to that of Mlp, where evidence of expression for 79.5% of gene models 
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was obtained from at least one stage and 50.2% from all four stages collected from the 

telial host.  

Several trends reported in other rust genomes were observed in Cqf; these include 

large families of small secreted proteins, protein kinases, Major Facilitator Superfamily 

(MFS) proteins, and proteins containing WD40 and zinc-finger domains (40). Similar to 

what was found in Mlp, the nitrate assimilation cluster in Cqf is partially complete. The 

nitrite reductase gene appears to be missing (protein ID 291348 in Laccaria bicolor (L. 

bicolor)). While the nitrate reductase gene is found on scaffold 1 of Cqf (Cqf649896), 

adjacent to this gene is a MFS transporter (Cqf649897) more simiar to a Git1p-related 

permease than to the nitrate/nitritie transporter (protein ID 723812 in L. bicolor) expected 

in the fungal nitrate assimilation cluster. Deficiency in nitrogen assimilation is 

presumably compensated by the capacity to directly assimilate peptides and amino acids, 

as has been suggested for Mlp and Pgt (40). Similar to the other rust fungal genomes, Cqf 

encodes 13 oligopeptide transporter (vs. 23 in Mlp and 21 in Pgt) and 10 amino acid 

permeases (vs. 15 in Mlp and 12 in Pgt). No sulfate reductase gene was detected in Cqf, 

suggesting that it, like other rust fungi, is similarly impaired in sulfur assimilation (40).  

Cqf contained 1140 genes encoding secreted proteins, with 666 of them encoding 

effector-like SSPs (small secreted proteins under 300 amino acids). We compared the 

predicted secretomes of the three sequenced rust pathogens to one another, and found the 

majority of secreted proteins and SSPs to be unique to individual rust species, possibly 

reflecting their rapid evolution (Fig. 2S.1). 

Previously, we identified genetic markers flanking the AVIRULENT TO 

FUSIFORM RUST RESISTANCE 1 (Avr1) locus (12), which is recognized in a gene-for-



	
  

	
  

30	
  

gene manner by the first well-characterized resistance locus in pine, FUSIFORM RUST 

RESISTANCE 1 (Fr1; 1), and is located on Cqf Linkage Group III at 138 cM from the 

origin. Mapping the Avr1 locus was feasible because the mapping population used to 

identify Avr1 was derived from a heterozygous Avr1/avr1 isolate (P2) and segregated in a 

Mendelian fashion. We cloned and sequenced single or low copy fragments containing 

genetic markers linked to Avr1 in the Cqf genetic map. One marker was an amplified 

fragment length polymorphism marker; E13M6 (74 bp and 158 cM from origin), and one 

was a simple sequence repeat marker (DN_058; 80 bp and 113 cM). We searched the 

assembly for the sequence-based genetic markers and detected them in the order 

predicted by the genetic map, on scaffold #20 (Fig. 3.2, Table 3.2). The co-location of 

these three flanking markers, and in the correct order, suggested that the Avr1 locus is 

located within a single scaffold in the draft reference genome.  

Using our unique strategy, outlined above, it is possible to define a genomic 

interval for Avr1 on the Cqf pine aecial host for two reasons. First, the haploid spore type 

present in pycnial drops allows genotyping of meiotic products arising from teliospores 

(produced on oak, the telial host) that recombine prior to infection of the aecial host. 

Second, resistant aecial (pine) hosts act as “filters” against avirulent spores, creating a 

selective sweep near the avirulence locus in the pools. Variable sites were identified from 

Illumina sequence of each bulk, and peak values or probabilistic FST (pFst) occurred over 

the identical genomic interval on scaffold #20 that was also identified using the cloned 

genetic markers (Fig 3.2). Although there was not strong evidence implicating a single 

gene model as Avr1 we confirmed a genomic interval with 36 candidate genes, including 
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5 that contain a secretion signal peptide and do not share sequence similarity with a 

protein of known function (Table 3.3). 

In order to gain some fundamental insight on the Cqf assembly, we focused on the 

localization of genetic markers previously mapped in Cqf isolate P2 which consisted of 

421 markers distributed across 39 linkage groups and 9 pairs (12). The genetic map was 

composed primarily of dominant RAPD and AFLP markers (92%). However, 37 marker 

loci (33 SSRs, 20 cloned RAPDs, and 2 cloned AFLPs) provided an opportunity for 

“confident placement” given their longer query sequence lengths and/or requirement for 

the presence of an expected internal SSR motif. Based on blast, 36 markers were 

identified as a single locus within the Cqf assembly. Given their dominant inheritance, 

lack of intervening sequence information, and standard error associated with fragment 

size estimation, all RAPD and AFLP markers are considered “tentative”. 

Based on SSR and cloned marker sequence data, 19 LGs and one pair were 

confidently associated with 30 Cqf scaffolds (Table 3.3). Given the limited number of 

markers available, most joins were based on only a single marker. However, 3 scaffolds 

contained 2 or more markers and hence could be oriented with respect to their 

corresponding LGs. Considering the RAPD and AFLP sequence data, all 39 LGs and 9 

pairs were tentatively associated with a total 87 scaffolds. A major goal moving forward 

will be to leverage the Cqf assembly and additional sequencing data to develop a much 

larger panel of genetic markers. High density mapping based on a prior information now 

made possible from the Cqf assembly will prove instrumental for both future map-based 

cloning and genome finishing efforts.  
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To gain additional insight on the Cqf assembly, we focused on the localization of 

eukaryotic telomere repeat sequences (42). Using the simple sequence repeat 

(TTAGGG)5, we identified and characterized 17 distinct locations within the Cqf 

assembly. Information about these sequences including scaffold, length, scaffold end, 

scaffold location, and number of repeat motifs is reported in Table 3.4. Fifteen of the 

telomere-like sequences were localized to the ends of scaffolds as would be expected for 

true telomeres. One sequence was found to be centrally located on scaffold 130. 

Curiously, this sequence was found to be immediately adjacent to a long stretch of 

unknown sequence, i.e., N’s. In addition, approximately 1200 bp of sequence was distally 

located to a telomere-like sequence observed on the high end of 230. Similar to scaffold 

130, a stretch of unknown sequence (N’s) was again observed to separate the telomere-

like sequence from the distal sequence. It is possible that these anomalies are due to 

recent double-stranded breakpoints that have yet to be fully degraded/repaired (43), but 

they may also simply represent chimeric artifacts of cloning and library construction. 

Regardless, these 17 scaffolds should prove extremely useful as potential anchor points 

and at least 15 may tentatively be classified as chromosomal ends. Currently, there is no 

karyotype information specifically for Cqf. Assuming that Cqf has at least 17-18 

chromosomes as has been observed for other closely related rust species in the order 

Pucciniales (44–46), additional telomere sequences likely exist, but similarly to other 

sequenced fungal species (47, 48), they simply were not captured in the current assembly. 

The identification and finishing of telomeric regions has often proven to be difficult and 

will require additional targeted mapping, cloning, and sequencing (49).  
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Conclusions 

In this manuscript, we report the sequencing, assembly, and annotation of the Cqf 

genome, and present evidence for expression of gene models at multiple stages of the life 

cycle. We also demonstrate the utility of the Cqf genomic resource by identifying a single 

scaffold containing the avirulence (Avr1) in the pathogen that interacts with the 

corresponding Fr1 resistance gene in the aecial host. Our analysis of the Cqf genome 

identifies candidate effectors that may be conditioning the specific interactions with its 

aecial host, and more generally provides useful genomic resources to explore coevolution 

between heteroecious rust fungi and their host plant species.  
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Figure 3.1 Life cycle of Cronaritum quercuum f.sp. fusiforme (Cqf) 

	
  

	
  
Figure 3.2 Annotation features of the Cronartium quercuum f.sp. fusiforme (Cqf) 
assembly (Croqu 1) a) Genome-wide pFst scores in the Cqf genome, b) pFst scores on the 
scaffold 20 genome. 
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Table 3.1 Assembly and annotation features of Cqf and two other rusts 
	
  

Assembly	
  Features	
   Cqf	
   Mlp	
   Pgt	
  
Scaffold	
  total,	
  Mb	
   76.6	
   101.2	
   88.6	
  
Scaffolds	
   1,198	
   462	
   392	
  
Scaffold	
  N50	
   70	
   27	
   30	
  
Scaffold	
  L50,	
  bp	
   312,582	
   1,146,214	
   964,966	
  
Contigs	
   10,431	
   3,254	
   4,557	
  
Contig	
  N50	
   1,691	
   265	
   556	
  
Contig	
  L50,	
  bp	
   10,112	
   112,315	
   39,497	
  
	
  	
  	
  Repeats,	
  %	
   17.6	
   44.0	
   6.7	
  
Scaffold	
  gaps,	
  %	
   22.7	
   3.4	
   8.0	
  
Annotation	
  Features	
   	
   	
   	
  

Protein	
  coding	
  genes	
   13,903	
   16,694	
   20,534	
  
Protein	
  length,	
  median,	
  aa	
   225	
   306	
   265	
  
Exon	
  length,	
  median,	
  bp	
   160	
   150	
   141	
  
Gene	
  length,	
  median,	
  bp	
   1,198	
   1,396	
   1,329	
  
Transcript	
   length,	
   median,	
  
bp	
  

868	
   1,002	
   860	
  

Intron	
  length,	
  median,	
  bp	
   	
   87	
   81	
   94	
  
Multi-­‐exon	
  genes,	
  %	
   83.5	
   91.2	
   94.2	
  
BUSCO	
   (Complete	
   or	
  
Fragment),	
  %	
  complete	
  

84.7	
   89.2	
   86.4	
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Table 3.2 Association between the recombinational linkage map for Cqf isolate P2 and 
the Croqu1 assembly based on mapped genetic markers and BLAST. 
 
AAC_05 I 208:213.5 47 332043-

332643 
Cqf-55 III 62.1:157.5 11 522780-

522939 
DN_058 III 113.3:157.5 20 461725-

462250 
BB07_750 III 136.7:157.5 20 252929-

254246 
E6M7-481 III 155.8:157.5 20 178998-

179097 
E13M6-92/93 III 157.5:157.5 20 4676-4749 

AAC_38 V 126.8:149.4 163 115236-
115824 

AAC_57 V 58.5:149.9 56 135353-
134530 

GATA-46 VI 1.1:131.4 63 261774-
261538 

AAT_05 VI 102.1:131.4 124 40899-41312 

AAC_28 VI 121:131.4 216 91277-90403 

AAG_13 VIII 0.0:125.7 126 172154-
171854 

Cqf-84 VIII 20.1:125.7 502 3791-3955 

AAG_08 VIII 50.1:125.7 55 335988-
337599 

AAC_84 VIII 67.2:125.7 49 118126-
117153 

GATA_07 VIII 69.5:125.7 49 167845-
169145 

Cqf-83 IX 53.1:125.2 251 37617-37787 

AAC_30 XII 0.0:107.7 131 111067-
111755 

Cqf-78 XIII 61.4:93.4 22 518080-
518223 

DN_133 XIV 52.4:90.6 7 300486-
300883 

Cqf-151 XV 6.0:87.8 1149 253-234 
Cqf-96 XVI 52.2:86.6 237 30465-30641 

Cqf-65 XIX 52.4:78.2 111 41570-41997 
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Table 3.2 Continued 
DN_079 XX 17.8:65.2 267 12286-12619 
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Table 3.3 Gene models on scaffold 20 with corresponding JGI IDs, located between 
Avr1-linked markers E13M6 and BB07.  Functional descriptions are based on domain, 
KOG, and GO classification. Red font indicates secreted. 
 

Protein/
Marker 

ID 

Scaffold 
Position 

Top Hit 
BLASTp 

BLASTp 
Evalue 

Functional 
Description Length 

(aa) 

Secreted 
Protein 
Cluster 

E13M6 4676-
4749 

     

131224 5318-
9986 

Mlp-
hypothetical 

0  1386  

318216 9951-
10850 

No hits -  135  

39727 18739-
22661 

Mlp-
hypothetical 

0 Lipid 
transport and 
metabolism 

1169 
 

 

39717 37567-
38225 

No Hits   144  

104995 41090-
43578 

Mlp-
hypothetical 

8e-62  415  

318408 70702-
73621 

Pgt-
hypothetical 

6e-75  408  

59217 77625-
79309 

Mlp-
hypothetical 

6e-134 RNA 
processing 
and 
modification 

  

104998 79393-
80078 

No hits   123 No 
cluster 

104999 85181-
87979 

Pgt-
hypothetical 

8e-103  477 No 
cluster 

318619 105080-
105438 

No hits   56  

720986 106082-
109629 

Mlp-
hypothetical 

8e-120 Fungal 
transcription 
factor 

778  

105001 115837-
118941 

Mlp-
hypothetical 

0 Aminopeptid
-ase I zinc 
metalloprote-
ase (M18) 

494  

653529 119749-
120131 

No hits   69  

39766 133971-
138495 

Mlp-
hypothetical 

0 Nuclear pore, 
Nup160 
component 

1447  

653531 139251-
143309 

Mlp-
hypothetical 

0 Heat shock 
protein 

939 cluster 
1140   
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Table 3.3 Continued 

Protein/
Marker 

ID 
Scaffold 
Position 

Top Hit 
BLASTp 

BLASTp 
Evalue 

Functional 
Description 

Length 
(aa) 

Secreted 
Protein 
Cluster 

318901 
144284-
144831 

No hits   92 No 
cluster 

318956 
146225-
146629 

No hits   73  

131233 
146710-
147654 

Mlp-
secreted 
protein 

1e-22  174  

89044 
161734-
162311 

hypothetical 
protein 
(Mycobacte
rium 
rhodesiae) 

9e-05 Uncharacter-
ized 
conserved 
protein 

140 cluster 
431 (4 
members, 
1 not 
secreted) 

653534 
164105-
165020 

hypothetical 
protein 
(Puccinia 
striiformis)  

3e-55 
 

Peptidyl-
prolyl cis-
trans- 
isomerase 

125  

89046 
165106-
166229 

No hits   151  

319061 
167417-
168854 

No hits   277  

653538 
173065-
173671 

No hits   73  

59233 
175817-
177261 

Mlp-
secreted 
protein 

2e-33  223 cluster 
292 ( 6 
members, 
2 not 
secreted) 

687776 
190223-
190450 

Mlp-
hypothetical 

9e-14 
 

 76  

720994 
194079-
195314 

Mlp-
secreted 
protein 

8e-90  181 cluster 
292( 6 
members, 
2 not 
secreted) 

39745 
201048-
202489 

Mlp-
hypothetical 

1e-79  370  

89056 
203508-
204096 

No hits   152 
 

 

653547 
204001-
205224 

Pgt-RING 
box protein 

4e-71 Unbiquitin 
ligase 

116  
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Table 3.3 Continued 
Protein/
Marker 
ID	
  

Scaffold 
Position	
  

Top Hit 
BLASTp	
  

BLASTp 
Evalue	
  

Functional 
Description	
  

Length 
(aa)	
  

Secreted 
Protein 
Cluster	
  

39695	
  
213097-
214941	
  

Mlp- G-
protein 
alpha 
subunit	
  

3e-145	
   Fungal G-
protein 
alpha subunit	
  

366	
   	
  

653551	
  
218731-
225157	
  

Myosin 5	
   0	
   Myosin head, 
motor region	
  

1664	
   	
  

39784	
  
227153-
228293	
  

Mlp- G-
protein 
alpha 
subunit	
  

4e-50	
   G-protein 
alpha subunit	
  

237	
   	
  

653554	
   240482-
240834	
  

No hits	
   	
   	
   68	
   	
  

653557	
  
241287-
242771	
  

Mlp-
hypothetical	
  

7e-114	
   Signal 
transduction	
  

200	
   	
  

89063	
  
243491-
244153	
  

Mlp-
hypothetical	
  

3e-09	
   Protein 
binding (zinc 
finger, 
RING-type)	
  

221	
   	
  

59248	
  
253753-
255477	
  

Mlp-
hypothetical	
  

8e-92	
   Protein 
turnover 
(ubiquitin 
ligase, Skp1 
component)	
  

159	
   	
  

BB07	
  
252929-
254246	
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Figure 3S.1 Comparison of secreted protein families between closely related rust fungal 
genomes. 

 
Table 3S.1 Expressed gene transcript support for gene model predictions 
 No. of Tissue Sources with 

Expressed Gene Model 
Gene Count with >20 

Reads/Kb Mapped 
Percentage of 

Transcriptome 
Represented (%) 

5 7549 54.3 
4 983 7.1 
3 742 5.3 
2 691 5.0 
1 802 5.8 
0 3136 22.6 

Total 13901 100 
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CHAPTER 4 
 
 

REFERENCE-FREE COMPARATIVE GENOMICS 
 

AMONG TRICHOMONADS 
 
 
This chapter is a manuscript written by Claudia Marquez, Dwight Kuo, Ellen 

Pritham, Mark Yandell, and myself. Claudia Marquez and Ellen Pritham constructed the 

transposable element library based on the reference genome for Trichomonas vaginalis 

strain G3. Dwight Kuo supplied the PacBio de novo assembly of Trichomonas vaginalis 

strain RP. Daniel Ence performed the genome annotation of both Trichomonas vaginalis 

genome assemblies. Daniel Ence implemented and applied the reference-free 

comparative genomics approach, under the guidance of Ellen Pritham and Mark Yandell. 

This manuscript will be submitted to the Proceedings of the National Academy of 

Sciences in November 2016.  

 
Abstract 

 
The trichomonads are a group of diverse, mostly parasitic eukaryotes, which 

include the agricultural and human pathogens, Tritrichomonas foetus (Tritrich. foetus) 

and Trichomonas vaginalis (T. vaginalis). T. vaginalis is notable for its extremely large 

number of annotated protein coding genes (>75,000) (1, 2). This has led to speculations 

as to its evolutionary significance, and its possible role in causing human disease and 

adaption to parasitic lifestyles. To date, absence of high-quality assemblies for multiple 



	
  

	
  

47	
  

trichomonads due to the difficulties inherent in assembling and annotating these highly 

repetitive genomes have prevented resolving these speculations (3). In response, we have 

re-annotated the T. vaginalis genome using a custom, highly curated repeat library in 

conjunction with the widely used, evidence-driven genome annotation pipeline MAKER 

(4). In annotations of both a previously published reference genome (1) and a de novo 

PacBio-based genome we describe here, this process reduces the number of annotated 

protein-coding genes in T. vaginalis by a third to ~23,000, while retaining the vast 

majority of core cell-metabolic genes. This process also identifies the majority of 

annotated T. vaginalis gene models as belonging to Maverick transposable elements, 

rather than the host genome. We also compare our gene models to WGS and RNASeq 

datasets from other trichomonads, using a reference-free analysis technique, that allowed 

us to carry out comparative analyses using only unassembled reads. These analyses 

demonstrate that the large gene families previously proposed to have arisen during T. 

vaginalis’ adaption to its human host are shared by the seven trichomonad species 

examined here.  

 
Significance Statement 

 
Poorly sampled eukaryotic lineages present numerous challenges for genome 

analysis, including identifying novel transposable elements (TEs), which can hamper 

intra- and interspecific comparisons. One such lineage is the trichomonads, in which only 

one genome (Trichomonas vaginalis G3) has been annotated. Our results indicate that 

>50% of annotated protein-coding genes in T. vaginalis reside in TEs. We also present a 

method for reference-free comparative genomics to identify the core set of genes shared 

by trichomonads. Our method makes use of unassembled WGS and RNAseq data and 
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bypasses the major requirement of comparative genomics, namely a reference genome for 

each species. Our core gene set identifies gene families that may have been expanded in 

the ancestral trichomonad relative to other crown eukaryotes. 

 
Introduction 

 
Genome annotation is problematic for many species that impact human health and 

agriculture due to a lack of genomic resources from themselves and/or closely related 

organisms. In addition, novel transposable elements (TEs) in the genome of interest and a 

lack of gene models for ab initio gene predictors and homology searches (5) also further 

complicate the annotation process.  

The trichomonads stand out as an important but poorly sampled group of 

organisms. These eukaryotic unicellular parasites inhabit a variety of hosts (see Fig. 4.1) 

and are distantly related to other eukaryotes (6). The two best-known species of 

parabasalids are the human pathogen Trichomonas vaginalis (T. vaginalis) and the bovine 

pathogen, Tritrichomonas foetus (Tritrich. foetus), both of which cause significant 

disease and economic loss in humans and livestock (7–9).   

The global human pathogen T. vaginalis was the first genome of the order 

trichomonadida to be annotated (1) and encountered the problems noted above. Although 

the original annotation identified one-third of the T. vaginalis G3 reference assembly as 

repetitive sequence, later reports suggested that an additional one-third of the genome 

was made up of a novel transposable element (TE) family, Maviericks (10), thus casting 

doubt on the functional status of many of the original 60,000 protein coding genes 

reported in the original genome annotation. Even with recent publication of transcriptome 

data for several trichomonad species (11–14), comparative genomics in trichomonads are 
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limited due to the large and repetitive genomes in this group (3, 15). Recent 

developments of long-read technology have been suggested as a way to overcome both 

the size and repetitiveness of genomes in this group (15). 

We present a re-annotation of the T. vaginalis G3 reference assembly as well as 

an annotation of a genome assembly of T. vaginalis strain RP that was sequenced with 

PacBio long-read technology. Our re-annotation used a library of TE consensus 

sequences identified in the T. vaginalis G3 reference assembly in conjunction with the 

widely used genome annotation pipeline, MAKER (16–18). 

We also present a method for reference-free comparative genomics and compare 

the genomes and transcriptomes of 7 trichomonad species. This method applies a kmer-

based approach originally developed for metagenomic analysis, which allows for 

identification of core gene sets to be assembled and annotated without whole genome 

assembly (19). This approach works rapidly and accurately across large phylogenetic 

distances, and requires works directly from unassembled sets of reads. Thus  it 

overcomes one of the major requirements of comparative genomics, namely a reference 

genome for each species to be studied.  

 
Results 

 
We used our custom TE library with the MAKER genome annotation pipeline 

(16–18) to annotate genome assemblies of two strains of T. vaginalis: the T. vaginalis G3 

reference assembly (1) and a de novo assembly of T. vaginalis strain RP made with 

PacBio long-read assembly. This resulted in 25,965 (MAKER G3) and 23,958  (MAKER 

RP) protein coding genes, respectively (see Fig. 4S.1). These updated gene sets are less 

than one-third the size of the 75,000 protein-coding genes in the current trichDB 1.3 (20). 
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The percent of base pairs in the genome annotated to genes was similarly reduced from 

72Mbp (56%) to 35Mbp (27%) (see Fig. 4.2b), while the percent of the genome 

annotated as repetitive elements increased from 39Mbp (30%) to 58Mbp (45%). Even 

more of the RP Pacbio-based assembly was identified as a repetitive element (52%, 

84Mbp) than in the G3 Sanger-based assembly (see Fig. 4.2b). 

Out of the 75,000 genes currently reported by trichDB, 21,194 had a matching 

gene annotated in the MAKER G3 set, as identified by reciprocal best hit (RBH). RBH 

identified 17,396 genes in common between the MAKER RP set and the trichDB gene 

set and similarly 16,592 genes in common between the MAKER G3 and MAKER RP 

sets (p < 0.001). Out of the 54,305 genes from trichDB without a matching MAKER G3 

gene, 28,620 were entirely overlapped by a TE (see Fig. 4.2a). Even though the MAKER 

G3 set is one-third the size of prior estimates, virtually all core metabolic pathways 

present in the trichDB gene set are also present in the MAKER G3 set (see Figs. S4.2a,b).  

The original annotation of the T. vaginalis G3 reference assembly reported 880 

kinase genes (1). Annotation of the trichDB and MAKER G3 gene sets with the kinase 

annotation pipeline, Kinannote (21), identified 936 kinases in the trichDB gene set and 

820 kinases in the MAKER G3 gene set (see Fig. 4S.3, details in Table 4S.1). 

Surprisingly, MAKER RP set identified 442 kinases, which is still expanded relative to 

other microbial kinomes. Thus all T. vaginalis kinome annotation datasets, including our 

own, are expanded relative to most other microbial kinomes (see Fig. 4S.3), and 88% of 

currently annotated kinases are included in the MAKER annotation of the G3 reference 

genome, despite its dramatically reduced gene count (see Fig. 4S.1, Table 4S.1).  
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The original annotation of the G3 reference assembly also reported 463 

‘degradome’ genes. The vast majority of the degradome reported in the trichDB set of 

genes is present in the MAKER results (see Fig. 4S.4; 508 degradome genes in trichDB 

genes, 90% of these (456) are present in the MAKER G3 annotations and 82% (417) are 

present in MAKER RP set). Two families that were noted as expanded in the original 

annotation of T. vaginalis (cysteine peptidase clan CA, family C19 and cysteine peptidase 

clan CA, family C1 or papain-like cysteine peptidases) are also expanded in both the 

MAKER G3 and MAKER RP sets (see Fig. 4S.4).  

Even though the re-annotation of the G3 reference assembly resulted in a gene set 

one-third the size of prior estimates, important classes of genes noted in prior 

publications are maintained. The re-annotation gene set includes a set of meiosis-specific 

genes noted in prior publications (22, 23) (see Table 4S.2). In 2014, it was reported that a 

34kbp region of the T. vaginalis genome constituted a single, large lateral gene transfer 

event (24). This region was confirmed in three different strains of T. from three different 

labs, and thus is likely not a bacterial contamination. This region included 27 consecutive 

genes which had their origin in a close relative of the firmicute bacteria Peptoniphilus 

harei, which varied in their sequence conservation and coding potential. In this region, 14 

out of the 27 genes are present in the MAKER genes. The 13 missing genes were not 

overlapped by any RNAseq or other expressed sequence evidence. Among the genes 

present in this region is the only example of an FtsH peptidase in the genome of T. 

vaginalis (TVAG_243780 in trichDB set, snap_masked-DS113827-processed-gene-0.43 

in MAKER set). Although scaffold DS113827 is broken across several scaffolds in the 
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PacBio-based assembly of strain RP, seven of the genes from scaffold DS113827 are 

present in the MAKER RP set, including the FtsH peptidase. 

Both the trichDB gene annotations and the subset of trichDB gene annotation 

without a matching MAKER gene and not overlapped by a TE contain a preponderance 

of genes with terms related to TE activity. By comparison, the MAKER annotations of 

both the G3 reference and strain RP PacBio assemblies have a much smaller proportion 

of genes with terms related to TE activity (“DNA-binding”, see Fig. 4S.5). 

A preliminary application of our reference-free comparative genomics method to 

data simulated from bacterial genomes indicated that our method can recover 

homologous genes at phylogenetic distances similar to those separating trichomonad 

species even with low coverage data (Table 4S.4, Fig. 4S.6). 

Using the set of MAKER G3 genes that were supported by expression evidence, 

protein homology or possession of a functional domain as reference sequences, we 

classified WGS and RNAseq datasets from strains of T. vaginalis and other trichomonad 

species and recovered gene models from each sample, although the numbers of genes 

recovered and median percent coverage scores were less than for the bacterial simulated 

data. The percent coverage scores and size of the gene sets decreased as the phylogenetic 

distance from the reference species (T. vaginalis G3) increases (see Tables 4.1, 4.2).  

We identified a core set of 21,895 genes present in either the RNAseq or WGS 

sample of each strain of T. vaginalis (see Fig. 4.3). The T. vaginalis core gene set 

obtained with Taxonomer shares 17,677 genes in common with a T. vaginalis core set of 

18,133 genes obtained with a more standard Trinity+rbh method (p < 0.001). Out of the 

820 kinases identified in the MAKER G3 annotation set, 782 were shared between the 
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Taxonomer core gene set and the Trinity+rbh core gene set. The distribution of GO terms 

between the Taxonomer and Trinity+rbh core gene sets is essentially identical (see Table 

4S.5).  

With the Taxonomer-based method, we identified a core set of 2,458 genes 

present in each species of trichomonad included in this study. In comparison, the 

Trinity+rbh method identified a core set of 5,058 genes. The intersection between the sets 

identified by the two methods is comprised of 1,557 genes. The GO terms associated with 

genes shared by both gene sets the trichomonad core gene set includes many basic 

biological functions such as translation, transport, cell cycle, and cell motility. The set of 

core trichomonad genes also included 181 kinase genes (Fig. 4.4, Table 4S.5).  

 
Discussion 

 
The results of our reannotation of the G3 reference assembly highlight the vital 

importance of accurate and thorough masking of transposable elements (TEs) from the 

genome before annotating protein-coding genes (25). They also highlight the difficulty of 

conducting genomic research in regions of the tree of life that lack genomic and 

transcriptomic resources. The fact that the number of annotated genes in this genome was 

reduced to one-third of prior estimates, without losing major metabolic pathways or most 

of the large and expanded kinome, indicates the majority of genes not present in the 

MAKER G3 set were not contributing to T. vaginalis biology in those functions. 

Conversely, the previously annotated genes that were not annotated by MAKER also 

highlight the difficulty of T. vaginalis as an object for a genome annotation. This genome 

harbors many copies of Mavericks, a family of particularly large TEs that can carry 6-22 

open-reading frames (10, 26). The wide variety of GO terms associated with genes 
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overlapping masked regions indicates that these TEs include genes associated with a 

variety of functions not normally associated with TE function.  

The increased amount of sequence masked as TE in the RP PacBio assembly 

indicates that the majority of the increased contiguity in the genome came from 

sequencing and resolving TEs as has been previously suggested (15). Conversely, the 

disagreement in kinase annotation results between the Sanger-based G3 reference 

assembly and the RP PacBio assembly suggests that many kinases were fragmented 

across multiple contigs in the G3 reference assembly and are now collapsed and merged 

in the RP PacBio assembly, highlight the utility of long-read technologies for resolving 

duplicated genes.  

One major issue frustrating trichomonad comparative genomics is the absence of 

high-quality assemblies for multiple trichomonads. Unfortunately, obtaining sufficient 

high-quality DNA, cost, and the difficulties of assembling these highly repetitive 

genomes continue to limit comparative approaches. Trichomonads are hardly alone in 

this regard. In response, we have used an ultrafast read classification engine called 

Taxonomer (19) to identify a core gene set for 7 taxa (Tritrichomonas foetus, Trichomitus 

batrachorum, Tetratrichomons gallinarum, Pentatrichomonas hominis, Trichomonas 

gallinae, Trichomonas tenax, Trichomonas vaginalis). Benchmarks and proof-of-concept 

results for the technique are provided in Flygare and Simmon et al. 2015. The close 

agreement between our method and a more standard Trinity+rbh method in identifying an 

intraspecies (T. vaginalis) core gene set indicates that this method is effective. However, 

the difference in efficacy of our method between the bacterial species used in the proof-

of-concept study and our samples of trichomonad species beyond T. vaginalis suggests 



	
  

	
  

55	
  

that the sensitivity of our method can be improved, and consequently, that the core 

trichomonad gene set identified here represents the lower bounds of the set of genes 

shared by the 7 species used in this study. These gene families (kinases and various 

cysteine peptidase families) have previously been suggested to be important for 

pathogenesis (3). 

 
Summary 

 
By re-annotating the G3 reference assembly of T. vaginalis, we reduced the 

number of protein-coding genes by two-thirds. With the reduced set of genes, we were 

able to approach genomic comparisons for the broader trichomonad group confident that 

we had excluded the vast majority of transposable elements.  

Only about a third of genes are in common between the trichomonad core gene 

sets identified by our method and the Trinity+rbh. This may be due to the large number 

of duplicated genes in the T. vaginalis genome, which we used as our basis of 

comparison for identifying matches, or due to limited sensitivity of our method. That our 

method works directly from short-read sets, instead of requiring annotated draft genome 

or transcriptome assemblies, represents an advantage over existing approaches.  Two 

large classes of genes (kinases and ‘degradome’) are highly represented in the 

trichomonad gene set, suggesting that regardless of host or lifestyle, all trichomonads 

possess expanded suites of these genes.  

 
Materials and Methods 

 
To determine the TE composition of the T. vaginalis G3, we employed four 

computational tools to thoroughly annotate the genome. To identify the repetitive 
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sequence of the T. vaginalis G3 genome, we employed RepeatScout (27).  This program 

identified repeats <50 nucleotides in length and >50% complexity. To reduce redundancy 

and overlaps, sequences were collapsed (assembled) using Sequencher v 5.1 (28) with 

default parameters (58% similarity over 20 nucleotides). As this program does not 

classify these regions as TEs, we then employed REPCLASS (29). 

REPCLASS was used to classify the repeated sequences as possible TEs. Module 

7 was selected to include three classification modules: homology, structure, and target 

site duplication. 

Both the ExPASy translate tool (30) and ORF Finder (31) tools were utilized to 

identify open reading frames (ORFs) within the filtered RepeatScout and REPCLASS 

outputs. The longest ORF (starting with a methionine) was used as a query against the 

protein domain database curated by NCBI. Hits were considered significant if the e-value 

was greater than 0.01. The function of the hypothetical ORF was predicted by homology 

to proteins of known function and by the presence of conserved domains identified 

through a conserved domain database (CDD) search (32). 

To identify the structural components of the repeats, blast searches (primarily 

blastn and tblastn) were conducted using the putative ORFs identified by ExPASy and 

ORF Finder as queries using default parameters and without filtering for simple and 

complex repeats to identify novel TEs. Searches were conducted against various 

GenBank databases including whole genome shotgun reads (WGS), nucleotide collection 

(NR) high throughput genomic sequences (HTGS), genome survey sequences (GSS), and 

expressed sequence tags (EST) databases. Hits were considered significant when the e-

value was <10-4 and were then used as seed queries at the DNA and protein level. 
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Sequences were mined and binned if sequence identity was greater than or equal to 95%. 

Each significant hit was then examined for TE structures (i.e., long terminal 

repeats (LTRs), non-LTRs, terminal inverted repeats (TIRs), and target site duplications 

(TSDs). TIRs were identified by pairwise comparisons taking 3,000 nucleotides upstream 

and downstream of each significant hit using blast. TSDs were identified by aligning 100 

nucleotides upstream and downstream from the TIRs of the elements.  To maximize the 

probability of identifying all probable elements, newly identified elements and putative 

proteins were used as queries using blast against the WGS and NR databases. Two TE 

copies were defined as being members of the same family when they displayed 80% 

pairwise similarity over at least 80% of the nucleotide sequence (33). Majority rule 

consensus sequences were generated for each family with Clustal W2 (34) and 

MacVector 7.2.2 (35). 

Autonomous elements were used as queries using blast to identify related non-

autonomous elements. The non-autonomous elements share the same TIRs but do not 

encode a transposase. 

To illustrate the mobility of TEs, paralogous (empty) sites devoid of the insertion 

were queried against the T. vaginalis G3 genome sequence. Empty sites were identified 

by homology searches using blastn (word size 7, expectancy 1000) (36) with a query 

constructed from the sequences directly flanking the insertion site containing the 

unduplicated target site. The chimeric query sequence (~100 nucleotides) was created by 

extracting the flanking sequence (~50 nucleotides) upstream from the element insertion 

containing the TSD and extracting ~50 nucleotides downstream from the element 

insertion (lacking the TSD). The empty site query then should represent the site before 
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the TE insertion occurred. An empty site was annotated when an alignment was found 

that spanned the chimeric sequence. 

Alignments of the putative ORFs were constructed using Muscle (37) with default 

parameters and phylogenetic trees that were generated with MEGA v. 4 (38) using 

neighbor joining with Poisson correction, allowing for multiple substitutions at sites. 

Consensus sequences for multi-element families can be found in supporting information. 

RepeatMasker (39) was then employed using our TE library to identify all copies of each 

element as well as the TE composition of the T. vaginalis G3 genome. Hits were 

considered significant when sequence identity was greater than 90% over 50% of the 

ORF. 

To determine the age of the elements identified, we used two complementary 

computational analyses including both a molecular clock dependent and independent 

technique. First the divergence from the consensus sequences of each individual TE 

insertion was used as a proxy for age. This approach complemented the nested insertion 

strategy that relies on the simple logic that when TEs are inserted in each other, the 

newest insertion would be the youngest. These age estimates were completed using the 

following script parseRM_GetLandscape_AK.pl available at https://github.com/4ureliek. 

The CAI was used to estimate the codon adaptation of the consensus sequence 

transposase genes encoded by the TE families identified as well as the T. vaginalis house 

keeping genes previously identified by Cornelius et al. 2012 (TVAG_299450, 

TVAG_258340, TVAG_343390, TVAG_054490) (Appendix D). CAI and estimated CAI 

(eCAI) values were generated using the CAICal Server http://genomes.urv.cat/CAIcal/E-

CAI/ (40). Statistical support and correction for G+C composition bias was calculated 
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using the eCAI. Normalized CAI values were obtained by taking the quotient of the CAI 

and eCAI. CAI values larger than the eCAI or expected values can be attributed to 

adaptation (40). Codon usage tables for T. vaginalis and other selected organisms were 

obtained from the Codon Usage Database (41). Organisms were selected based on 

previous literature identifying 152 possible cases of horizontal gene transfer from human 

pathogenic prokaryotes to T. vaginalis (23). 

Trichomonas vaginalis strain RP was obtained from ATCC (30188), and 

cultivated using ATCC PRA-2154 LYI Entamoeba medium, as recommended for axenic 

cultivation of Trichomonas.  The cultures were split and harvested at log phase with 

>95% of cells motile.  Cells were counted with a Neubauer Chamber and harvested in 

eight aliquots of 3 x 107 cells. 

The Qiagen genomic DNA preparation kit for cultured cells was modified for use 

with nuclease rich protozoans, and genomic DNA was purified with Qiagen Q100 anion 

exchange resin. Cells were lysed with sucrose and Triton X at low ionic strength. 

Subsequently, nuclei were then lysed with guanidine, and lysates were poured over the 

anion exchange resin.  The negatively charged DNA backbone binds to the positively 

charged DEAE groups on the surface of the resin, at a low salt concentration.  DNA 

remains tightly bound to the resin over a wide range of salt concentrations.  Impurities 

such as degraded RNA, cellular proteins, and metabolites are removed by a medium-salt 

wash.  Genomic DNA was eluted in a high-salt buffer, and concentrated and desalted by 

isopropanol precipitation at room temperature to minimize co-precipitation of salt.  After 

centrifugation, the DNA pellet was washed with 70% ethanol to remove residual salt and 

to replace the isopropanol with ethanol, which is more volatile and easily removed. 
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Modifications to the extraction protocol included use of DEPC and EDTA, some 

adjusted volumes for the protozoan DNA content, and minimal vortexing and pipetting to 

preserve DNA integrity. 

The DNA was quantified by Picogreen.  Integrity and size distribution were 

identified using the Agilent Tapestation and pulsed-field gel electrophoresis. 

SMRT sequencing on PacBio RSII with the P5C3 chemistry was performed. 

Loading titrations of 0.120 nM, 0.240 nM, 0.360 nM and 0.480 nM on-plate 

concentration were evaluated.  An on-plate concentration of 0.240 nM was selected since 

significant improvements in total reads were not observed at the higher concentrations. 

This on-plate concentration is 2X higher than the standard loading for 20kb libraries and 

is likely due to the long libraries. Based on the PacBio binding calculator and selected on-

plate concentration of 0.240 nM, 2.6 ug of SMRT bell library support a maximum of 100 

SMRT cells. Sequencing of 30 SMRT cells resulted in a post-filtered read coverage of 

82x at an assumed genome size of 170 MB. 

de novo assembly was done using a hierarchical method.  The seed read cutoff for 

pre-assembly was 8000 bp (21x coverage).  Pre-assembly was performed using daligner 

followed by assembly using FALCON for diploid organisms. The final assembly was 

polished using Quiver (42).  Assembly was iterative for a total of 24x and all settings 

converged on the genome size of 163.9 MB.  Less stringent settings led to a significant 

amount of mis-assembly. Very little of the genome (2 Mb, ~1%) is in an alternative 

path.  Because the level of heterozygosity is high, alleles were assembled as separate 

contigs. 
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We annotated both G3 reference assembly (23) and the de novo assembly of strain 

RP of T. vaginalis with MAKER(16–18). In order to match the N50 length (67.59 kbp) 

reported in the original paper, we selected the 17,290 longest scaffolds out of the G3 

reference assembly. This subset of scaffolds is 129 Mbp out of the 176Mbp in the full 

reference assembly. The entire 164 Mbp of the de novo assembly of strain RP was used.  

In order to update the genome annotation of the G3 reference assembly, we used 

the MAKER genome annotation pipeline. We masked both assemblies with the library of 

consensus sequences of transposable elements in the T. vaginalis G3 reference assembly.  

After repeat masking the genome, MAKER used the blast suite of programs to 

align transcript and protein data to the reference assembly. For transcript data, I used T. 

vaginalis transcripts downloaded from dbEST, Trinity-assembled transcriptomes from 

two prior studies of T. vaginalis (13, 14, 43), as well as our own sample of T. vaginalis 

G3 RNA.  Transcriptomes were assembled with Trinity (see RNAseq section below) 

(44). MAKER aligned the transcript evidence with blastn (45).  

The protein sequence data consisted of the three proteomes used in producing the 

original genome annotation (Dictyostelium discoideum, Giardia lamblia, and Entamoeba 

histolytica) in addition to the UniRef90 (46) set of protein sequences. MAKER aligned 

protein sequence data with blastp (45).  

Three ab initio predictors were used to generate gene predictions. Genemark was 

self-trained on the G3 reference assembly (47). Snap (48) and Augustus (49, 50) were 

both trained on the set of conserved proteins identified in the T. vaginalis G3 reference 

genome with CEGMA(51, 52). Given the paucity of introns previously reported in the T. 
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vaginalis genome (23, 53), we adjusted the default settings of MAKER to allow single-

exon alignments of expressed sequence greater than 250bps to be considered as evidence. 

We also evaluated how our set of evidence compared to the gene models publicly 

available in trichDB v1.3.  T. vaginalis gene models were downloaded from trichDB.org 

(20), and provided to MAKER as models.  

Functional annotations (Pfam domain and GO term annotations) for the MAKER 

genes and trichDB models were assigned with InterProScan v. 5.8-49.0 (54).  

MAKER and trichDB genes were assigned to KO (KEGG Orthology) categories 

with the BBH method on the KAAS server (http://www.genome.jp/kaas-bin/kaas_main) 

(55) and visualized with the Interactive Pathways Explorer v2 

(http://pathways.embl.de/iPath2.cgi) (56, 57). 

We used the Kinannote pipeline (21) to identify kinases in our MAKER gene set. 

We obtained an expected number of kinases for each species from a literature search (see 

Fig. 4S.2, Table 4S.3). 

Samples of genomic DNA for six strains of Trich. vaginalis (30235, B7RC2, G3, 

JRSTV41, and T1) were obtained from ATCC. Libraries were prepared for each library 

using the Illumina TruSeq DNA sample prep protocol with custom size selection for 

200bps inserts.  

Samples for an additional four strains of Trich. vaginalis (30238, 50143, and 

t016) as well as three other trichomonad species (Trichomonas tenax, Pentatrichomonas 

hominis, and Tritrichomonas foetus) were obtained from ATCC. DNA libraries were 

prepared from the samples with the Illumina TruSeq Nano DNA Sample Prep protocol.  
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RNA-Seq reads were obtained using Illumina sequencing on Pentatrichomonas 

hominis PhGII, Tetratrichomonas gallinarum M3, Trichomitus batrachorum BUB, 

Trichomonas gallinae GCB, and Trichomonas tenax HS-4 RNA, which were isolated as 

previously described for T. vaginalis (Woehle et al. 2014). The 100bp reads were 

trimmed for low-quality basepairs and adapter sequences with prinseq-lite version 0.20.4 

(58) and fqtrim (http://ccb.jhu.edu/software/fqtrim/). Singleton reads were discarded. 

RNAseq samples of T. vaginalis B7RC2 and G3 were prepared with the Illumina 

TruSeq Stranded prep. procedure, which selects poly-A transcripts out of total RNA and 

sequenced with Illumina HiSeq 125bp paired-end sequencing v4, and cleaned with 

seqyclean (59).  

Previously published datasets of Illumina 100bp paired-end RNAseq reads for 

Tritrichmonas foetus from cat and cow (Tritrich. foetus feline, Tritrich. foetus bovine) 

were obtained from NCBI accession numbers SRX540117 and SRX540971, respectively, 

(12), and trimmed with prinseq-lite and fqtrim as described above.  

RNAseq samples for T. vaginalis strain t016 were obtained from NCBI accession 

numbers SRP036029 and SRP015999 (13, 14), and trimmed with seqyclean (59).  

Quality-cleaned and trimmed RNAseq samples were assembled individually with 

Trinity vs2.0.6 (44). Open-reading frame (ORF) gene models were annotated in the 

Trinity assembled transcripts with Transdecoder vs2.0.1 (60).  

In repurposing Taxonomer (19) from its initial purpose of metagenomics analysis 

to comparative genomics, we first built a classification database from the amino acid 

sequences of the set of MAKER G3 gene sequences supported by either expressed 
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transcripts, protein homology, or a Pfam domain for classification in protein space 

(comparable to blastx).  

Short reads are then classified to the reference sequences in protein space and 

assigned to the reference sequence that maximizes the kmer-weight metric described in 

(19). Reads that were not classified to any reference sequence or were tied for 

classification between multiple references were discarded. The set of reads from a given 

sample that classified to a single reference sequence are then assembled with the velvet 

genome assembler (61).  

The longest contig (e.g., recovered gene model) resulting from the velvet 

assembler was then aligned to the set of reference amino acid sequences with blastx. If 

the original reference sequence to which the reads were classified is among the top 100 

blastx hits, then the “recovered” gene model was considered present in that sample. In 

order to evaluate the classification and assembly results, the percent of the original 

reference amino acid sequence covered by any blast HSP for a recovered gene model was 

recorded; this was termed the “percent coverage” score for a recovered gene model in a 

given sample. The percent coverage scores for an entire sample were summarized in 

cumulative cutoff tables.
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Figure 4.1 Diversity of trichomonad hosts and host-niches. 
Taxonomical relationships of trichomonad species used in this study. Species are 
presented with an illustration of the best-known host, along with a description of the 
trichomonad’s habitat within the host and a statement of its parasitic status. Made 
according to the NCBI taxonomy. Host-parasite assignments made per the following 
sources: (1, 12, 62–66). 
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Figure 4.2 Impact of custom TE library on genome annotation of T. vaginalis. 
Fig. 4.2a) Overlap of trichDB genes by regions identified as TEs by the T. vaginalis-
specific TE library. Fig. 4.2b) Amount of T. vaginalis Genome annotated as a gene 
without evidence support (EST or protein), a gene with evidence support, TE, non-TE 
repetitive sequence, and none of the above. 

	
  

	
  
Figure 4.3 Comparison of gene sets identified by Trinity+RBH or Taxonomer methods.  
Core gene sets within the T. vaginalis strains and within the 7 trichomonad species were 
identified by the Taxonomer-based method and the Trinity+RBH method. Overlap 
between the core gene sets were identified by RBH to MAKER annotated protein-coding 
genes.  
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Figure 4.4 Word cloud of GO terms in Taxonomer trichomonad core gene set.  
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Table 4.1 WGS sample classification results 

Sample 
Percent of Reference Sequence Length Recovered at  

Greater Than or Equal to Cutoff 
 > 99% > 90% > 75% > 50% > 25% > 0% 
Tvag.G3 0.88 0.98 0.98 0.98 0.98 0.98 
Tvag.30235 0.56 0.65 0.66 0.67 0.68 0.69 
Tvag.30238 0.32 0.35 0.37 0.4 0.43 0.45 
Tvag.50143 0.31 0.35 0.37 0.4 0.43 0.45 
Tvag.B7RC2 0.3 0.34 0.36 0.4 0.43 0.45 
Tvag.JRSTV41 0.3 0.34 0.36 0.4 0.43 0.46 
Tvag.t016 0.37 0.52 0.57 0.66 0.72 0.75 
Tvag.T1 0.29 0.33 0.36 0.4 0.43 0.46 
Trich. tenax 0 0 0.01 0.02 0.04 0.05 
Pentatrich. hominis 0 0.01 0.02 0.04 0.07 0.09 
Tritrich. foetus 0 0.01 0.01 0.03 0.06 0.07 

	
  
Table 4.2 RNAseq sample classification results 

Sample Percent of Reference Sequence Recovered at 
Greater Than or Equal to Cutoff 

 > 99% > 90% > 75% > 50% > 25% > 0% 
Tvag.G3 0.12 0.39 0.54 0.64 0.74 0.84 
Tvag.B7RC2 0.13 0.4 0.53 0.64 0.75 0.84 
Trich.tenax 0.01 0.04 0.07 0.15 0.31 0.54 
Trich. gallinae 0.01 0.03 0.06 0.13 0.28 0.5 
Tetratrich. gallinar. 0.0 0.0 0.01 0.03 0.1 0.26 
Pentatrich. hominis 0.0 0.0 0.01 0.03 0.11 0.27 
Tritrich. foetus bovine 0 0 0 0.01 0.04 0.15 
Tritrich. foetus feline 0 0 0 0.01 0.04 0.15 
Trichomit. batrach. 0 0 0.01 0.03 0.1 0.26 
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Figure 4S.1 Evidential support for MAKER and trichDB gene models. 
Evidence support for the gene models of the annotated gene sets (trichDB on G3 
reference assembly, MAKER on G3 reference assembly, and MAKER on RP PacBio-
based assembly) was assessed by overlap of gene models by an expressed sequence 
alignment, protein alignment, or presence of a Pfam protein domain. 
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Figure 4S.2 KEGG metabolic pathways in MAKER vs. trichDB models. 
KEGG assignment of MAKER G3 and trichDB models was done with the KEGG 
Automated Annotation Server (KAAS) and visualized with the Pathways tool on the T. 
vaginalis-specific subset of metabolic pathways. Pathway segments in both MAKER and 
trichDB are colored green; segments in only MAKER are colored blue; segments only in 
trichDB are colored red.  

	
  

	
  
Figure 4S.3 Kinome annotation of annotated microbial genes. 
Kinases genes in annotated gene sets were annotated with Kinannoate and compared to 
previously published estimates of kinases genes for each species.  
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Figure 4S.4 Degradome gene family counts in annotated gene sets. 
Degradome family assignment was done with blast searches using the MEROPS server.  
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Figure 4S.5 Comparison of GO term counts between trichDB, MAKER G3, and MAKER 
RP gene sets. 
GO Terms were mapped to protein domains using InterPro2GO, and then reduced with 
the GO generic slim file with AmiGO’s slimmer tool.  
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Figure 4S.6 Summary of proof-of-concept results with simulated 5X coverage on 
bacterial genes. 
Simulated 5X coverage reads from three species were classified to E.coli.K12 genes 
using a range of kmer lengths. Number of genes recovered and the median percent 
coverage of the reference sequences were assessed with a blastx query of the recovered 
contigs against the Ecoli.K12 reference sequences. 
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Table 4S.1 Summary and sources for kinases   
 
Dataset #Proteins #Kinases 

by 
Kinannote 

#Kinases 
by 
Source 

%Deviation 
from Source 

Source 

T.vaginalis 
(MAKER) 

25,936 820 880 6.82% Carlton et al. 2007 

T.vaginalis 
(trichDB) 

75,499 1,122 880 27.5% Carlton et al. 2007 

Dictyostelium 
discoideum 

12,318 328 285 15.1% http://kinase.com  

Tetrahymena 
thermophila 

26,996 1,193 1,069 5.53% http://kinase.com  

Paramecium 
tetraurelia 

39,519 2,750 2,606 3.64% http://kinase.com 

	
  
Table 4S.2 MAKER equivalents of meiosis-specific genes in trichDB 
 
(query) 
trichDB ID 

(subject)  
MAKER ID 

E-value 

TVAG_4551
80 

snap_masked-DS113894-processed-gene-0.39-mRNA-1 1.30E-114 

TVAG_1517
00 

augustus_masked-DS113425-processed-gene-0.15-mRNA-
1 

5.90E-119 

TVAG_2589
50 

augustus_masked-DS114140-processed-gene-0.1-mRNA-1 1.00E-206 

TVAG_1550
30 

augustus_masked-DS114127-processed-gene-0.4-mRNA-1 1.90E-174 

TVAG_2307
30 

augustus_masked-DS113364-processed-gene-0.18-mRNA-
1 

5.20E-174 

TVAG_4720
00 

augustus_masked-DS114293-processed-gene-0.0-mRNA-1 0 

TVAG_0584
00 

augustus_masked-DS113455-processed-gene-0.4-mRNA-1 3.30E-118 

TVAG_2920
60 

augustus_masked-DS113233-processed-gene-1.10-mRNA-
1 

0 

TVAG_0628
30 

genemark-DS113216-processed-gene-1.38-mRNA-1 1.40E-109 

	
  
Table 4S.3 Reference-free comparative genomics results from bacteria 
 
Sample > 99% > 90% > 75% > 50% > 25% > 0% 
Ecoli.K12 0.88 0.98 0.98 0.98 0.98 0.98 
Shigella 0.56 0.65 0.66 0.67 0.68 0.69 
Salmonella 0.37 0.52 0.57 0.66 0.72 0.75 
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Table 4S.4 Top 7 ‘slimmed’ molecular function GO term counts in the T. vaginalis core 
gene sets 
 
GO Term Trinity+RBH  Taxonomer Common to Both 
Kinase Activity 946 946 946 
Ion Binding 389 389 389 
Peptidase Activity 315 315 315 
Glycosyl 
Transferase Activity 

198 198 198 

Transmembrane 
Transporter Activity 

139 139 139 

Oxidoreductase 
Activity 

110 110 110 

Enzyme Regulator 
Activity 

105 104 104 

 
Table 4S.5 Top 7 ‘slimmed’ molecular function GO term counts in the trichomonad core 
gene sets 
 
GO Term Trinity+RBH  Taxonomer Common to Both 
Kinase Activity 286 316 181 
Ion Binding 99 159 63 
Peptidase Activity 64 124 41 
Glycosyl 
Transferase Activity 

57 61 30 

Transmembrane 
Transporter Activity 

49 48 22 

Oxidoreductase 
Activity 

48 41 20 

Enzyme Regulator 
Activity 

45 40 17 
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CHAPTER 5 
 
 

CONCLUSIONS AND PERSPECTIVES 
 
 

Genome Projects with Non-Model Organisms 
 
 Genome annotation is a process that in large part depends on leveraging resources 

generated from prior research on the organism of interest or closely related species (1). 

This presents problems when the organism is a member of a lineage poorly represented in 

public repositories or is highly diverged from the organisms that are available or both. 

The problems encountered include a lack of knowledge of novel transposable elements 

(TEs) in the genome of interest and a lack of gene models that can be leveraged for ab 

initio gene predictors and homology searches. 

In spite of these problems, many species that impact human health and agriculture 

fall into these categories. For example, the genome of the global human pathogen (2) 

Trichomonas vaginalis (T. vaginalis) was the first genome of its order (trichomonadida) 

to be published (3) and lacked many of the resources available to better sampled lineages. 

Cronartium quercuum f. sp. fusiforme (Cqf) and other congenic species (Cronartium 

rubicola) have a large economic impact, but Cqf is the only genome of its genus to be 

sequenced (4–6). In contrast, the annotation of a new insect genome will benefit from the 

80 other insect genomes and 1.2M genes from those genomes that have already been 

annotated (7).  
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Novel abundant TEs are always a potential pitfall for genome annotation projects. 

Although tools to automate the process of identifying repetitive sequence in a new 

genome do exist (i.e., RepeatModeler, 

http://www.repeatmasker.org/RepeatModeler.html; also see Yandell and Ence, 2012 for a 

list of other tools), a thorough but time-intensive approach, such as was undertaken for 

our T. vaginalis-specific TE library, will achieve a precision and accuracy not possible 

with automated methods. The 2007 genome annotation of T. vaginalis presents an 

extreme example of this problem. The Mavericks family of TEs was not identified until 

after the genome annotation had been published, but made an extensive impact on the 

genome annotation results. Approximately 30,000 annotated protein-coding gene models 

were entirely overlapped by elements from our TE library. In contrast, an automated tool 

such as RepeatModeler appears to have sufficed for the annotation of the small and TE-

rich genome of Cqf, since gene counts for Cqf are within the expected range based on 

genome annotations of other rust fungi (8, 9).  

The genome annotation projects presented in this thesis provide a clear contrast 

between a project that has data resources to leverage and a project that lacks those 

resources. The annotation of Cqf benefited from a thorough RNAseq dataset that sampled 

several lifecycle stages on both its hosts, as well as from leveraging the genome 

annotations of several other rust fungi (8, 9). In contrast, the 2007 genome annotation of 

T. vaginalis did not have complete genomes or transcriptomes from any other 

parabasalid, and had to use the then available resources of the distantly related 

Dictyostelium discoideum, Giardia lamblia, and Entamoeba histolytica. Our annotation 

of the T. vaginalis genome with the updated TE library made use of the same genome 
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annotations used in the 2007 annotations, but also used thorough RNAseq datasets of T. 

vaginalis strain t016 at several time points under different environmental conditions (10–

12). In fact, these recent studies already suggested that many of the protein-coding genes 

annotated in T. vaginalis are not expressed, which our re-annotation study demonstrated.  

 
The Role of Improvements in Sequencing Technology 

and Analysis Methods 
 
 The genome studies in this thesis highlight the role that new sequencing 

technologies like PacBio SMRT sequencing and other long-read technologies can play in 

genomics for non-model organisms (13–16). The de novo assembly of T. vaginalis strain 

RP with PacBio reads is approximately the same size as the Sanger-based G3 reference 

assembly, but has an N50 length two times longer (3). The fact that the long-read based 

assembly appears to have both resolved the long TEs in the T. vaginalis genome and 

merged the kinases in this genome to half their previous number shows how this 

technology has changed views of the biology of this organism. Likewise, future 

publications on the Cqf genome will make use of a PacBio-based assembly of Cqf made 

in order to resolve gaps in the assembly located near the Avr1 identified by our selective 

sweep searchers. 

The development of Illumina short-read sequencing also contributed to both of 

these projects. The RNASeq datasets used in both studies are a relatively recent 

development in genomics. The whole genome sequence (WGS) samples of several 

different T. vaginalis strains are also a relatively recent development over past efforts, 

which relied on PCR assays of a set of validated single-copy genes in the G3 reference 

genome (17).  
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 In addition to new sequencing technologies, advances in sequence analysis allow 

for new and exciting questions to be asked and answered. The MAKER genome 

annotation pipeline (18–20) used for annotating both of the genomes in this thesis 

integrates all the steps of genome annotation (masking of repeats, ab initio gene 

prediction, and nucleotide and protein homology searches). It outputs files that are 

compatible with downstream tools to facilitate visualization and manual curation of gene 

models (1). It also provides annotation edit distance, AED, along with other quality 

control metrics to help human curators of gene models to prioritize their tasks (18, 21). 

All these features allow genome annotation projects to be conducted by scientists in their 

own fields, but with minimal bioinformatics or computation expertise.  

In addition to improvements in genome annotation, the emergence of kmer-based 

methods like Taxonomer and others promise to allow fast and accurate exploration of 

large gene spaces, not only in the metagenomics field often targeted initially, but also in 

comparative genomics studies as was presented for T. vaginalis here (22–27). Although 

each of these methods differ in implementation and performance, in general, kmer-based 

searches in “protein space” allow scientists to complete the equivalent of ten of millions 

of blastx or tblastx searches in a small fraction of the time that the equivalent blast 

searches would take.  

 
Summary and Future Directions 

 
In summary, advances in genome annotation and the emergence of kmer-based 

sequence analysis techniques were both essential to the success of the genome 

annotations projects included in this thesis. The challenges inherent to genome annotation 

projects in phylogenetically distant and understudied organisms were overcome with a 
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combination of expert analysis to identify a new family of TEs and quantify their 

abundance in the T. vaginalis genome and application of new methods and data sources. 

The results from those analyses resolved questions regarding both the TE content of the 

T. vaginalis genome and the number of protein-coding genes in the genome. The 

resolution of those questions allowed for the investigation of comparative genomics 

questions among seven different trichomonad species through the application of an 

ultrafast and accurate kmer-based read classifier tool, Taxonomer (23).  

Future directions to extend on this work include further analysis of candidate Avr1 genes 

as well as candidate Fr1 genes in the loblolly pine genome. Future directions for the 

trichomonad core gene set work include improved parameters to increase sensitivity at 

further phylogenetic distances, as well as examination of genes specific to – or absent 

from – species that inhabit certain taxa, niches, or that are parasitic vs. commensal in 

their hosts.  
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APPENDIX A 
 
 

TRANSPOSABLE ELEMENT ISLANDS FACILITATE 
 

ADAPTATION TO NOVEL ENVIRONMENTS 
 

IN AN INVASIVE SPECIES 
 
 

This appendix is a reprint of a research article coauthored by Lukas Schrader, Jay 

W. Kim, myself, Aleksey Zimin, Antonia Klein, Katharina Wyschetzki, Tobias 

Weicheselgartner, Carsten Kemena, Johannes Stökl, Eva Schultner, Yannick Wurm, 

Christopher D. Smith, Mark Yandell, Jürgen Heinze, Jürgen Gadau, and Jan Oettler and 

is presented here with permissions of the authors and kind permission of Springer Nature.  

I contributed the genome annotations of Cardiocondyla obscurior that formed the 

basis of the genomic research presented in this article. This research article was first 

published in Schrader et al. (2014) Transposable Element Islands Facilitate Adaptation to 

Novel Environments in an Invasive Species. Nature Communications 16(5):1-10. 

Available at: http://www.nature.com/nrg/journal/v13/n5/abs/nrg3174.html.	
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Depletion of genetic variation is detrimental to species
evolution and adaptation1. Low genetic and phenotypic
variation is common in founder populations, where only

one or a few genotypes are isolated from a source population.
Under such conditions, reduced effective population size (Ne)
should decrease selection efficiency and increase genetic drift,
resulting in only weak selection against mildly deleterious alleles
which can thus accumulate2. These effects should be even stronger
in inbreeding species3 and taxa with generally low Ne such as
social insects4. Despite these constraints on adaptive evolution,
many inbred or selfing species thrive and are able to invade novel
habitats. This raises the question of how genetic variation as the
raw material for adaptation is generated in such systems.

Single-nucleotide substitutions are an important factor in
adaptation5 and species diversification6,7. However, other
structural and regulatory units, such as transposable elements
(TEs) and epigenetic modifications, may act as drivers in adaptation
and evolution8. TEs play a particularly vital role in genome
evolution9 and recurringly generate adaptive phenotypes10–13

primarily through (retro-)transposition14, and secondarily
through ectopic recombination and aberrant transposition15.

The invasive, inbreeding ant Cardiocondyla obscurior (Fig. 1)
provides a suitable model to study how species adapt to novel
habitats in spite of constraints imposed by invasion history, life
history or both. Originally from Southeast Asia, C. obscurior has
established populations in warm climates around the globe from
founder populations that presumably consisted of only one or a
few inbred colonies, each with a few reproductive queens and
several dozen sterile workers. In this species, related wingless
males and females (queens) mate within the colony, after which
queens leave the colony with a group of workers to find a new
nest nearby. While greatly reducing the extent of gene flow
between colonies, this behaviour enables sexual reproduction
within the same colony and allows single founder colonies to
rapidly colonize novel habitats. At the same time, the

combination of prolonged inbreeding with severe genetic bottle-
necks strongly reduces Ne in this species. Under such conditions,
genetic drift is predicted to drastically deplete genetic variation,
thus leaving little for selection to act on.

Here we explore the genomes of C. obscurior from two invasive
populations (Brazil BR and Japan JP) to identify signatures of
divergence on a genomic level and to determine how the species
can rapidly adapt to different habitats. We find clear phenotypic
differences between the populations and strong correlation
between accumulations of TEs (‘TE islands’) and genetic
variation. Our results suggest that TE islands might function as
spring wells for genetic diversification in founder populations of
this invasive species. The distinct organization of TE islands, their
gene composition and their regulation by the genome adds
compelling evidence for the role of TEs as players in differentia-
tion, adaptation and speciation.

Results
Phenotypic differences between BR and JP lineages. Colonies
from the two populations contained similar numbers of workers
(Mann–Whitney U-test¼ 778.5, Z¼ " 0.634, P¼ 0.526; BR:
median¼ 28, quartiles 21.75 and 51.25, n¼ 27 colonies; JP:
median¼ 29, quartiles 16 and 47, n¼ 64), but queen number was
higher in Japan (Mann–Whitney U-test¼ 501, Z¼ " 3.084,
Po0.003; BR: 5 queens, quartiles 3, 8; JP: median¼ 10, quartiles 4
and 19). Body sizes of queens and workers from BR were sig-
nificantly smaller than in JP individuals, yet wingless males did
not differ in any of the measured characters (see Supplementary
Information).

In ants, cuticular chemical compounds play a particular
prominent role in kin recognition, which is crucial for species
integrity but on a deeper level also a requirement for the
maintenance of altruism16. Analysis of cuticular compound
extracts from BR and JP workers showed that compound
composition differed significantly between the two lineages
(multivariate analysis of variance: df¼ 2, F¼ 10.33, R2¼ 0.39,
Po0.001) and samples were classified correctly according to
population of origin in 83.3% of cases (Supplementary Table 1;
Supplementary Fig. 1).

The lineages also differed in behaviour, with BR colonies
being significantly more aggressive towards both workers and
queens from their own lineage, while JP colonies more readily
accepted JP workers and queens (PWorkers JPxJP versus BR#
BR¼ 0.000296, PQueens JP# JP versus BR#BR¼ 7.98e" 07,
Supplementary Fig. 2). Confronted with individuals from the
other lineage, BR colonies were as aggressive as in within-
population encounters (PWorkers BR# JP versus BR#BR¼ 0.39,
PQueens BR# JP versus BR#BR¼ 0.94), while JP colonies
were again significantly less aggressive (PWorkers JP#BR
versus BR#BR¼ 0.000131, PQueens BR# JP versus BR#
BR¼ 1.23e" 07). Testing discrimination against workers of
another ant species, Wasmannia auropunctata, evoked
similarly high aggressive responses in both lineages, suggesting
that the BR and JP populations do not generally differ in their
aggressive potential.

The C. obscurior genome is compact and rich in class I TEs.
Using MSR-CA version 1.4, we produced a 187.5-Mb draft
reference genome based on paired-end sequencing of several
hundred diploid females (454 Titanium FLX sequencing) and a
200-bp library made from five haploid males (Illumina
HiSeq2000; Supplementary Table 2), all coming from a single
Brazilian colony. Automatic gene annotation using MAKER
version 2.20 (ref. 17) was supported by 454 RNAseq data of a
normalized library made from a pool of all castes and

Figure 1 | Two workers of C. obscurior and the remains of a fly. Hidden in
small cavities of plants, the inconspicuous colonies of this species are
frequently introduced to new habitats by global commerce. In spite of
strong genetic bottlenecks, even single colonies with few reproductive
individuals suffice to establish stable populations.
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developmental stages. We filtered the assembly for
prokaryotic scaffolds and reduced the initial 11,084 scaffolds
to 1,854 scaffolds, containing all gene models and a total
of 94.8% (177.9 Mb) of the assembled sequence. The
genome can be accessed under antgenomes.org/ and
hymenopteragenome.org.

The final gene set contains 17,552 genes, of which 9,552 genes
have a known protein domain as detected by IPRScan
(www.ebi.ac.uk/interpro/), and falls within the range of recent
estimates for eight other sequenced ant species18–26. Of all genes,
72.5% have an annotation edit distance of less than 0.5, which is
consistent with a well-annotated genome27 (Supplementary
Table 3).

The C. obscurior genome is the smallest so far sequenced ant
genome18–26. Although there is no physical genome size estimate
for C. obscurior, assembled sequences and physical estimates are
tightly correlated in seven ant genomes (LM in R: R2¼ 0.73,
F1, 5¼ 13.7, P¼ 0.014, from ref. 28), suggesting that C. obscurior
has the smallest genome reported so far for an ant species 29.
Overall, the draft genome size of the analysed sequenced ants is
negatively correlated to relative exon content (GLM in R: df¼ 6,
F¼ 150.55, Po0.001) but not to relative intron content (df¼ 5,
F¼ 0.65, P¼ 0.460; Fig. 2), indicative of stabilizing selection on
coding sequence. In contrast, intron size distribution is diverse
between ant genomes and is not correlated with genome size
(Supplementary Fig. 3; Supplementary Table 4).

We used a custom pipeline (see Supplementary Information) to
identify simple repeats, class I retrotransposons and class II DNA
transposons in C. obscurior, seven ant genomes (Acromyrmex
echinatior (Aech), Atta cephalotes (Acep), Solenopsis invicta (Sinv),
Linepithema humile (Lhum), Pogonomyrmex barbatus (Pbar),
Harpegnathos saltator (Hsal), Camponotus floridanus (Cflo)), the
parasitic wasp Nasonia vitripennis (Nvit) and the honeybee Apis
mellifera (Amel). Across the analysed ants, genome size is
significantly correlated with relative simple repeat content (lm,
R2¼ 0.66, F¼ 11.83, P¼ 0.014; Fig. 2) but not with class I and
class II TE content. However, it appears that the larger genomes
contain more relative class II sequence. Relative class I retro-
transposon content was highest in C. obscurior (7.6 Mb, 4.31%,
Supplementary Fig. 4) and in particular, many class I non-LTR
retrotransposons (for example, 14 types of LINEs) and several
types of LTR transposons (Ngaro, Gypsy, DIRS and ERV2), TIR
elements (for example, hAT, MuDR, P) and Helitrons are more
abundant in C. obscurior (Supplementary Table 5).

Genomic signatures of an inbred lifestyle. On the basis of TE
content calculations for 1 and 200 kb sliding windows, we iden-
tified 18 isolated ‘TE islands’ located in ‘LDR’ (low-density
regions) in the C. obscurior genome. These TE islands were
defined as containing TE accumulations in the 95–100% quantile
within scaffolds over 200 kb (87 scaffolds, representing 96.02% or
170.8 Mb of the assembly). In total, TE islands cover 12.78 Mb of

sequence (7.18% of total sequence) and range between 0.19 and
1.46 Mb in size. The TE islands contain 27.54% (4.92 Mb) of the
assembly-wide TE sequence (17.87 Mb), 6.6% of all genes (1,160),
and have reduced exon content (TE islands 87.0 exon bp kb" 1,
LDRs 124.5 exon bp kb" 1). Note that some larger scaffolds
contain more than one TE island.

Retroelements of the superfamilies BEL/Pao, DIRS, LOA/Loa,
Ngaro, R1/R2 and RTE as well as DNA transposons of the
superfamilies Academ, Kolobok-Hydra, Maverick, Merlin, on and
TcMar-Mariner/-Tc1 populate TE islands with significantly
higher copy numbers than other elements (Fisher’s exact test,
false discovery rate o0.05, Fig. 3, Supplementary Table 6).
Furthermore, both class I and class II elements show a length
polymorphism, with elements in TE islands being significantly
longer compared with elements in LDRs (U-tests,
W¼ 109089018, Po2e" 16 for class I and W¼ 152340067,
Po2e" 16 for class II, Fig. 4a, Supplementary Fig. 5).

We also assessed the genome-wide TE distributions for seven
published ant genomes, Amel v4.5 and Nvit v2.0 (Fig. 5).
The smaller ant genomes (Pbar, Lhum and Cflo) and Amel are
similar in TE sequence distribution. In contrast, the larger
genomes (Aech, Acep, Sinv and Hsal) are more variable,
have higher median TE content and a much broader and tailed
TE frequency distribution with longer stretches of high or
low TE content. The genome of C. obscurior is distinct from the
other ant genomes, with low TE content in LDRs but exceptional
clustering with high TE densities in TE islands. The genome
of the inbred wasp N. vitripennis contains regions with up
to 60% TE content that are surrounded by LDRs containing
much less TE sequence (B10%), resembling the pattern
observed in C. obscurior.

TE islands diverge faster than LDRs in the two populations.
We mapped B140 Gb of genomic DNA Illumina reads (B60#
coverage for each population) from pools of 30 (BR) and 26 (JP)
male pupae, respectively, against the reference genome (BWA;
bio-bwa.sourceforge.net) and analysed the local coverage ratio to
detect genetic divergence. Deviations from the mean coverage
ratio (Fig. 6) are in part caused by sequence deletions, insertions
and duplications30. Such variations are particularly frequent in
TE islands (Figs 4b and 6), suggesting accelerated divergence
within islands (median deviation from mean coverage ratio:
0.288 in TE Islands, 0.163 in LDRs; U-test, W¼ 640300902;
Po2e" 16).

We retrieved SNV (single-nucleotide variants) calls using
consensus calls from samtools (samtools.sourceforge.net) and the
GATK (broadinstitute.org/gatk/). Although TE islands only
comprise 7.18% of the genome, they combine 15.59% (86,236
of 553,052) of all SNV calls. Given that we sequenced haploid
males from highly inbred lineages, heterozygous SNVs should be
rare. A large fraction of heterozygous SNVs in both lineages are
within TE islands (62.95% of 62,879 in BR, 50.52% of 98,353 in
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JP), while rates of homozygous calls (Fig. 6) are not increased
(11.88% of 16,277 in BR, 6.91% of 445,316 in JP). High numbers
of false positive heterozygous SNVs calls can arise in duplicated
regions that collapsed into a single locus due to misassemblies31.
Accordingly, such SNVs can be identified by a twofold increase in
coverage and in fact mark diverging duplicated loci within the
same lineage (Fig. 4c).

Genes in TE islands should also show signatures of accelerated
divergence from orthologues if overall sequence evolution is
increased in these regions. Indeed, BLASTp searches against
seven ant proteomes produced significantly lower bit scores for
genes within TE islands when compared with genes in LDRs
(Fig. 4d, U-test, W¼ 120460260, Po2e" 16). In accordance,
SNV annotation revealed higher rates of non-synonymous
substitutions between the BR and JP lineage in TE island genes
(Fig. 4e, U-test, W¼ 923754, Po2e" 16). Surprisingly, however,
on average, TE island genes contained less synonymous SNVs
than LDR genes (LDR 0.67 kb" 1, TE island 0.42 kb" 1, U-test,
W¼ 10743397, Po2e" 16).

Copy number variation within and between TE islands. We
inspected 512 candidate loci (155 in TE islands) of 1 kb length by
plotting the coverage of each lineage relative to SNVs, genes, and
TEs at the respective position, to find genes potentially affected by
deletion or copy number variation events and compiled a list of
89 candidate genes (Supplementary Table 7). Experimental proof-
of-principle was conducted by PCR and Sanger sequencing for
two deletion candidates (Cobs_13563 and Cobs_01070) and by
real-time quantitative PCR for four duplication candidates
(Cobs_13806, Cobs_17872, Cobs_13486, and Cobs_16853)
(Supplementary Fig. 7). A majority of these genes are located in
TE islands (61.8%) and 34 genes show at least weak expression in

BR individuals in RNAseq data (see below). The affected genes
play roles in processes that may be crucial during invasion of
novel habitats, such as chemical perception, learning and insec-
ticide resistance. In particular, four different odorant/gustatory
receptor genes show signs of either multiple exon (Cobs_05921,
Cobs_13418, Cobs_14265) or whole-gene duplication
(Cobs_17892). A gene likely involved in olfactory learning,
Cobs_13711, a homologue to pst32, also shows signs of
duplication. Three genes homologous to fatty acid synthase
(FAS) genes, a key step in cuticular odour production, contain
partial deletions (Cobs_16510, Cobs_14262) or duplications
(Cobs_15866). Furthermore, we found differences in genes
associated with insecticide response (Cobs_00487, a homologue
of nAChRa6 (FBgn0032151) (ref. 33) and Cobs_17834, coding for
a homologue to Cyp4c1 (EFN70878.1) (ref. 34). Other key genes
affected are associated with circadian rhythm (Cobs_17789,
homologue to per (FBgn0003068)), caste determination
(Cobs_01070, with homology to Mrjp1 (gi406090) (ref. 35),
development (Cobs_17755, coding for a homologue of VgR
(Q6X0I2.1) (ref. 36) and aging (Cobs_14758, with homology to
Mth2 (FBgn0045637) (ref. 37).

De novo assembly of B23M Illumina paired-end reads from
the JP lineage that could not be mapped to the BR reference
genome resulted in 17 contigs after filtering with highly
significant BLASTx hits against proteins of other ants, suggesting
that these conserved sequences were lost in the BR lineage instead
of being gained in the JP lineage. According to functional
annotation, among others these contigs code for homologues
involved in development (Vitellogenin-like (XP_003689693))38,
cellular trafficking (Sorting nexin-25 (EGI65030))39, immune
response (Protein Toll (EGI66069))38 and neuronal organization
(Peripheral-type benzodiazepine receptor-associated protein 1
(EFN68490))40 (Supplementary Table 8).
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Gene composition and regulation of TE islands. Increased TE
activity may incur costs to fitness by disrupting gene function.
A two-tailed Gene Ontology (GO) enrichment analysis revealed
that 59 GO terms associated with conserved processes (for
example, cytoskeleton organization, ATP binding, organ mor-
phogenesis) are under-represented in TE islands, while 18 GO
terms are enriched (Supplementary Tables 9 and 10). Four of the
over-represented terms relate to olfactory receptors (ORs;
GO:0004984, GO:0005549, GO:0050911, GO:0007187) and two
terms relate to FAS genes (GO:0005835, GO:0016297). The
remaining 12 terms most likely relate to TE-derived genes.

Gene body CpG depletion as a result of increased CpG to
TpG conversion due to cytosine methylation is a measure for
germline methylation (that is, epigenetic regulation) in past
generations. In TE island genes, the exon-wide median observed/
expected (o/e) CpG ratio is significantly lower than in other genes
(t-test, TE island genes: 1.05, LDR genes: 1.20, Po1e! 16).
However, both sets of genes show strikingly different correlations
of expression and o/e CpG values (Fig. 4f). For LDR genes,
o/e CpG values are high in moderately expressed genes and
low in highly expressed genes. In contrast, in TE islands, weakly
to moderately expressed genes contain less CpG dinucleotides,
while highly expressed genes have higher o/e CpG values.
To further identify traces of differential regulation of TE islands,
we compared the exon o/e CpG values between the lineages
by calculating BR/JP ratios for each exon’s o/e CpG values
and found higher variance in BR/JP ratios in TE islands than in
LDRs (Fig. 4g, F-test, F¼ 0.136, Po2e! 16, ratio of
variances¼ 0.136).

Finally, to assess whether gene expression levels differed
between LDRs and TE islands, we generated B14 and B17 Gb
transcriptomic RNAseq data of seven queens and seven queen-
destined larvae (third larval stage), respectively, from the BR
lineage. We estimated mean normalized expression values for
each gene using DESeq2 (bioconductor.org/packages/release/
bioc/html/DESeq2.html), revealing that expression in TE islands
was much lower than in LDRs (median expression of all LDR
genes¼ 25.45; in TE islands: 0.49; U-test, W¼ 14461310,
Po2e! 16). While larvae and adult queens did not differ in
the expression of LDR genes (median expression in
queens¼ 21.16; in larvae¼ 23, 72; U-test, W¼ 133301709,
P¼ 0.221), TE island genes were more expressed in adult queens
(median expression in queens¼ 0.84; in larvae¼ 0; W¼ 1031038,
Po2e! 16; Fig. 7, see Supplementary Fig. 6 for details on
differential expression between queen and larvae).

Discussion
C. obscurior is a textbook example for successful biological
invasion. Its small size allows for interspecific avoidance, it can
rapidly establish colonies in disturbed habitats, and multiple
generations per year allow for fast adaptation. While variation in
CHCs and body size between the populations point to
adaptations to different environments, higher queen number in
the JP lineage is likely correlated with reduced intraspecific
aggression.

The small genome of C. obscurior differs markedly from the
other analysed ant genomes in TE distribution and over-
abundance of several class I subclasses. Importantly, the genome
contains low frequencies of TEs in LDRs but well-defined islands
with high densities of TEs. In these islands, TEs are on average
longer than in LDRs, suggesting overall higher TE activity41.
Differences in mutation rates and sequence divergence between
LDRs and TE islands reveal distinct evolutionary dynamics acting
within the C. obscurior genome. Moreover, in TE islands, key
genes are removed and the majority of genes is less expressed in
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larvae than adult queens. The non-random distribution of TEs
suggests that intragenomic differences in selection efficiency
against TEs may have further supported the formation of such
locally confined TE accumulations.

Inbreeding can facilitate the accumulation of TEs3 and
repeated exposure to stress induced by novel environmental
conditions can further amplify TE proliferation42. Small Ne is
expected to increase the effects of genetic drift and in turn reduce
selection efficiency against mildly deleterious mutations2. Under
such conditions, local accumulations of TEs might have formed
in genomic regions under relaxed selection. Similarly, a reduction
in Ne in inbred Drosophila leads to a shift in the equilibrium
between TE proliferation and purifying selection against TEs,
thus allowing TEs to accumulate43.

How can we explain extensive proliferation and diversification
of TEs within islands, but purifying selection against TEs in
LDRs? Coalescent effective population size of a genomic region is
positively correlated with its recombination frequency and thus
the local efficiency of selection and mutation rate11. The initial
foundation of TE islands could hence be facilitated in genomic
regions with low recombination frequency, providing a refugium
of relaxed selection for TE insertions. Indeed, elevated rates of
non-synonymous substitutions suggest relaxed selection on TE
island genes. Increased frequency of DNA repair processes as a
consequence of higher DNA transposition frequencies in TE
islands should lead to more errors in DNA replication and double
strand break repair44 in comparison with LDRs. Large-scale
mutations on the other hand, such as exon or gene duplications/

deletions or gene shuffling, can directly be introduced during TE
transposition45. TE islands may frequently produce genetic
novelty and eventually, by chance, but despite high stochastic
drift, adaptive phenotypes, corroborating the view of TEs as
genetic innovators.

The list of genes affected by duplications or deletions contains
a number of candidates that might be key to the divergence of the
lineages. For example, differences in homologues to genes
involved in larval development (for example, Mrjp1) might
explain body-size differences. Two other candidates, Cobs_00487
and Cobs_17834, show homology to genes that are involved in
pesticide resistance against Chlorpyrifos and Imidacloprid
(nAChRa6) and Deltamethrin (Cyp4c) in different invertebrate
species46–49. Imidacloprid treatment of gall wasp infested
Erythrina variegate coral trees of the Japan habitat occurred at
least once the year before collection of the colonies in 2010
(personal communication S. Mikheyev). In the Brazil habitat,
Chlorpyrifos, Deltamethrin and the organophosphate
Monocrotophos have routinely been used over the last 10 years
(personal communication J.H.C. Delabie).

Furthermore, several within-island genes involved in the
production (FAS50) and perception (ORs) of chemical cues
contained deletions or duplications in one of the lineages. These
results suggest that variation in FAS genes may be responsible for
diverging CHC profiles in C. obscurior51, while variation in OR
genes affects olfactory perception. Chemosensory neurons express
highly sensitive ORs52, which are particularly diverse53 and under
strong selection in ants54. Gene loss and duplication in the OR
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gene family has been significantly frequent55 and differences are
assumed to be shaped by adaptive processes in response to a
species’ ecological niche56,57. Intriguingly, the diversification of
OR genes is thought to be largely caused by gene duplications and

interchromosomal transposition58, two mechanisms known to be
by-products of TE activity. While the distinct patterns of kin
recognition and aggressive behaviour in the two lineages of
C. obscurior may in part be explained by TE-mediated variation
in these genes, they also suggest lineage-specific dynamics of the
interaction of phenotype and genome evolution. Reduced
aggression between colonies in the JP lineage should promote
gene flow by exchange of reproductives and thus increase Ne,
heterozygosity, and the efficiency of sexual recombination,
facilitating the spread of novel arising genotypes. Our findings
contrast the view of reduced aggression between colonies of
invasive ants59, but so far it is unclear whether lineage-specific
differences are caused by variation in perception or downstream
neuronal processes.

Mechanisms controlling TEs are as old as prokaryotes9 and in
fact most TEs are epigenetically silenced45,60, through either
methylation, histone modifications61 or RNAi62. Even though
many genes in TE islands are expressed, the overall expression is
significantly lower than in LDRs. In line with previous
correlations on methylation and expression in eusocial
insects63,64, o/e CpG ratios in C. obscurior LDR genes are
negatively correlated with expression. However, TE island genes
do not follow this trend, in that they are weakly expressed while
having low o/e CpG rates. Proximity to TEs can increase gene
body methylation65, which could explain stronger methylation of
TE island genes and thus CpG depletion. Also, relaxed selection
in island genes should in general increase fixation frequency of
base mutations, including CpG to TpG conversions thus
depleting CpG content. Gene expression differences in TE
island genes between larvae and adult queens suggest stronger
regulation of these potentially disruptive genes during the
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sensitive developmental phase. Finally, key regulatory genes are
under-represented in TE islands. These gene set differences
between TE islands and LDRs can either be explained by selection
processes, removing vital genes from linkage to TE islands or by
selective restriction of TE accumulations to genomic regions
devoid of such genes.

The current understanding of TE activity dynamics in genomes is
that periods of relative dormancy are followed by bursts of activity,
often induced by biotic and abiotic stress, such as exposure to novel
habitats. Frequent TE transposition during bursts leads to genomic
rearrangements, thus producing new genetic variants and eventually
even promoting speciation66–69. TE dynamics can also be strongly
affected by mating system3,70–72, and the life history of C. obscurior
likely challenges the genomic integrity resulting in genomic regions
with over 50% TE content. In conclusion, TE dynamics in C.
obscurior seem to have shifted from a serial to a parallel mode,
where a fraction of the genome is reshaped repeatedly in a
continuous burst of TE activity. Strikingly, the inbred parasitoid
wasp N. vitripennis has similar TE frequency patterns suggesting
that similar life history strategies and their consequences on Ne and
drift can lead to convergent genomic organization. TEs represent a
major force in evolution, contributing to the generation of genetic
variation especially in species confronted with hurdles like
inbreeding or repeated bottlenecks. They furthermore seem to
play an important role in the rapid adaption of invasive species to
novel environments, making it particularly crucial to understand
their origin, function and regulation.

Methods
Detailed methods and accompanying Supplementary Tables 11 to 16 are available
as Supplementary Information online.

Organisms. Live colonies of C. obscurior were collected from aborted fruits on
coconut trees (Cocos nucifera) in Brazil (collected in 2009) and from bark cavities
in coral trees (Erythrina sp.) in Japan (collected in 2010). The colonies were
transferred to Regensburg and placed in plastered petri dishes. Food (honey-soaked
shreds of paper; Drosophila or small chunks of Periplaneta americana) and water
were provided every 3 days and colonies were kept in incubators under constant
conditions (12 h 28 !C light/12 h 24 !C dark). All animal treatment guidelines
applicable to ants under international and German law have been followed. Col-
lecting the colonies that form the basis of the laboratory population used in this
study was permitted by the Brazilian Ministry of Science and Technology (RMX
004/02). No other permits were required for this study.

De novo genome assembly. The reference genome is based on one colony that
was kept under strict inbreeding in the lab for four generations before extractions.
Whole DNA was extracted with CTAB. We extracted DNA from B900 ants, which
were pooled to be sequenced with 454 technology. Extracts of 5, 10 and 30 Bra-
zilian males and 26 Japanese males, respectively, were used for Illumina libraries.

We generated 200 and 500 bp insert libraries with Illumina’s TruSeq DNA
sample preparation kits from 5 mg of total DNA. Quality control and library
preparation were carried out by the KFB sequencing centre of the University
Regensburg, sequencing runs were performed by Illumina (Hayward, USA) on a
HiSeq2000. Quality control, library preparation and sequencing of 8 and 20 kb long
paired end libraries (454, Roche) were carried out by Eurofins MWG Operon
(Ebersberg, Germany). Extracted DNA was fragmented into the appropriate
fragment sizes (8 and 20 kb) using the HydroShear DNA Shearing Device
(GeneMachine). Further library preparation was performed according to ‘GS FLX
Titanium Paired End Library Prep 20þ 8 kb Span Method Manual’ before
sequencing on a GS FLX Titanium (Roche).

The de novo genome assembly was created with MSR-CA version 1.4 open
source assembler (University of Maryland genome assembly group at ftp://
ftp.genome.umd.edu/pub/MSR-CA/). The MSR-CA assembler combines a
deBruijn graph strategy with the traditional Overlap-Layout-Consensus employed
by various assembly programmes for Sanger-based projects (Arachne, PCAP,
CABOG). The MSR-CA uses a modified version of CABOG version 6.1 for
contiging and scaffolding. The combined strategy allowed us to natively combine
the short 100 bp Illumina reads and longer 454 reads in a single assembly without
resorting to an approach that would require one to assemble each type of data
separately and then creating a combined assembly.

Mapping. For each lineage, we randomly sampled 140 M 100 bp reads from
libraries generated from 26 (JP) and 30 (BR) male pupae. Raw reads were

parsed through quality filtration and adapter trimming (Trimmomatic v0.22
(usadellab.org/cms/?page=trimmomatic), options: HEADCROP:7
LEADING:28 TRAILING:28 SLIDINGWINDOW:10:10) and mapped against the
BR reference genome with BWA (bio-bwa.sourceforge.net) and Stampy v1.0.21
(www.well.ox.ac.uk/project-stampy).

Variant calling. SNV calling was carried out combining samtools (samtools.
sourceforge.net) and the GATK (www.broadinstitute.org/gatk/) retaining only
those variants called consistently by both tools. The final variant set of 553 052
SNVs and 67,987 InDels was stored in a single VCF file. SNVs were annotated with
SNPeff (snpeff.sourceforge.net) to identify non-synonymous and synonymous
substitutions.

Calculation of sliding windows. One kb windows of different stats (TEs, exons,
SNPs, coverage) were calculated for all scaffolds based on GFF, VCF and SAM files.
For GFF and VCF files, custom bash and perl scripts were used to calculated TE
and exon bases per 1 kb, and variant calls per 1 kb. Coverage per 1 kb was calcu-
lated from SAM files, using samtools’ depth algorithm and custom bash and perl
scripts. Subsequent processing, calculating of 200 kb sliding windows and plotting
of the data was performed with R v3.0.0 (r-project.org).

Gene expression analysis with RNAseq. We extracted whole RNA with the
RNeasy Plus Micro kit (Qiagen). Single end Illumina libraries from amplified RNA
(Ovation RNAseq system V2) were generated following the manufacturers protocol
(Ovation Rapid Multiplexsystem, NuGEN). Sequencing on an Illumina HiSeq1000
at the in-house sequencing centre (KFB, Regensburg, Germany) generated B20M
100 bp reads per sample (Supplementary Table 16). Raw reads were filtered for
adapter contamination (cutadapt, code.google.com/p/cutadapt/), parsed through
quality filtration (Trimmomatic v0.27, options: LEADING:10 TRAILING:10
SLIDING:4:10 MINLEN:15), and mapped against the reference genome using the
tophat2 (v2.0.8, ccb.jhu.edu/software/tophat/index.shtml) and bowtie2 (v2.1.0,
bowtie-bio.sourceforge.net/bowtie2/index.shtml) package (--b2-sensitive mode,
mapping rate B50%). Gene expression analysis was carried out with DESeq2
(bioconductor.org/packages/release/bioc/html/DESeq2.html), based on count
tables produced with HTSeq (www-huber.embl.de/users/anders/HTSeq/doc/over-
view.html) against the Cobs1.4 MAKER annotation (Supplementary Table 16).
Genes were considered to be differentially expressed at a false discovery rate o0.05
and expression values are reported as untransformed base means of read counts per
treatment group, after correcting for library size differences (‘size factor
normalization’).

References
1. Charlesworth, D. & Charlesworth, B. Inbreeding depression and its

evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).
2. Lynch, M. The Origins of Genome Architecture (Sinauer Associates Inc, 2007).
3. Charlesworth, D. & Wright, S. I. Breeding systems and genome evolution. Curr.

Opin. Genet. Dev. 11, 685–690 (2001).
4. Romiguier, J. et al. Population genomics of eusocial insects: the costs of a

vertebrate-like effective population size. J. Evol. Biol. 27, 593–603 (2014).
5. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus

in Drosophila. Nature 351, 652–654 (1991).
6. Lanfear, R., Ho, S. Y. W., Love, D. & Bromham, L. Mutation rate is linked to

diversification in birds. Proc. Natl Acad. Sci. USA 107, 20423–20428 (2010).
7. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).
8. Fontdevila, A. The Dynamic Genome (Oxford Univ. Press, 2011).
9. Fedoroff, N. V. Plant Transposons and Genome Dynamics in Evolution (John

Wiley & Sons, 2013).
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SOCIAL EVOLUTION

Genomic signatures of evolutionary
transitions from solitary to
group living
Karen M. Kapheim,1,2,3*† Hailin Pan,4* Cai Li,4,5 Steven L. Salzberg,6,7 Daniela Puiu,7
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The evolution of eusociality is one of the major transitions in evolution, but the underlying
genomic changes are unknown. We compared the genomes of 10 bee species that vary in
social complexity, representing multiple independent transitions in social evolution, and
report three major findings. First, many important genes show evidence of neutral
evolution as a consequence of relaxed selection with increasing social complexity. Second,
there is no single road map to eusociality; independent evolutionary transitions in sociality
have independent genetic underpinnings. Third, though clearly independent in detail, these
transitions do have similar general features, including an increase in constrained protein
evolution accompanied by increases in the potential for gene regulation and decreases in
diversity and abundance of transposable elements. Eusociality may arise through different
mechanisms each time, but would likely always involve an increase in the complexity of
gene networks.

T
he evolution of eusociality involves changes
in the unit of natural selection, from the
individual to a group (1). Bees evolved
eusociality multiple times and are ex-
tremely socially diverse (2) (Fig. 1), but all

pollinate angiosperms, including many crops
essential to the human diet (3). Simple euso-
ciality may be facultative or obligate, and both
forms are characterized by small colonies with
a reproductive queen and one or more workers
that, due to social and nutritional cues, forego
reproduction to cooperatively care for their
siblings (2). Further evolutionary elaborations
have led to complex eusociality, “superorgan-
isms” with colonies of several thousand individ-
uals, sophisticated modes of communication,
and morphological specializations for division
of labor (4).
Theory predicts that the evolution of simple

eusociality involves increased regulatory flex-
ibility of ancestral gene networks to create
specialized reproductive and nonreproductive
individuals, and the evolution of complex eu-
sociality requires genetic novelty to coordinate
emergent properties of group dynamics (5). To
test these predictions, we analyzed five de novo

and five publicly available draft genome se-
quences of 10 bee species from three families,
representing two independent origins of euso-
ciality in Apidae and Halictidae and two inde-
pendent elaborations of simple to complex
eusociality in two apid tribes [Apini (honeybees)
and Meliponini (stingless bees); Fig. 1]. The draft
genomes were of comparable, high quality (sup-
plementary materials).
We found that the transition from solitary to

group life is associated with an increased capac-
ity for gene regulation. We scanned the promo-
ter regions of 5865 single-copy orthologs among
the 10 species to calculate a motif score [rep-
resenting the number and binding strength of
experimentally characterized transcription factor
binding sites (TFBSs)] for 188 Drosophila mela-
nogaster TFs (6) with at least one ortholog in
each of the 10 bees, and correlated motif score
with social complexity, using phylogenetically in-
dependent contrasts (7). Of 2101 significantly cor-
related motif-gene pairs, 89% were positive and
11% negative, showing that TFs tend to have
increased capacity to regulate genes in eusocial
species of bees, relative to solitary species (Fig. 2A,
supplementary materials).

Further evidence for increased capacity for
gene regulation throughout social evolution is a
positive ranked correlation between social com-
plexity and the number of genes predicted to be
methylated (7) (Spearman’s rho = 0.76, P = 0.01;
phylogenetically corrected Spearman’s rho = 0.64,
P = 0.06; Fig. 2B; bioinformatics predictions val-
idated with bisulfite sequencing data for three
invertebrate species; supplementary materials).
DNA methylation affects gene expression in a va-
riety of ways (8). Thus, this result suggests an ex-
pansion in regulatory capacity with increasingly
sophisticated sociality.
The potential for increased regulatory capacity

was further revealed at the protein-coding level.
Increased social complexity also is associatedwith
rapid evolution of genes involved in coordinating
gene regulation. A Bayesian phylogenetic co-
variance analysis (9) of 5865 single-copy orthologs
identified 162 genes with accelerated evolution
in species with increased social complexity (7)
(additional data table S3). These rapidly evolv-
ing genes were significantly enriched (P < 0.05)
for Gene Ontology (GO) terms related to regu-
lation of transcription, RNA splicing, ribosomal
structure, and regulation of translation (sup-
plementary text and tables S11 and S12). Sim-
ilar results have been reported for bee and ant
species (10–13); our findings reveal the underlying
causes. Approximately two-thirds of these genes
are under stronger directional selection in spe-
cies with increasingly complex eusociality, but
we also detectednonadaptive evolution. One-third
of the rapidly evolving genes are under relaxed
purifying selection in species with complex eu-
sociality, possibly due to reduced effective popu-
lation sizes (14).
We also found an additional 109 genes, signif-

icantly enriched (P < 0.05) for functions related
to protein transport and neurogenesis, which
evolve slower with increased social complexity
(supplementary text, table S13, and additional
data table S3). This includes orthologs of derailed
2 and frizzled, which function as Wnt signaling
receptors in Drosophila synaptogenesis (15), and
rigor mortis, a nuclear receptor involved in hor-
mone signaling (16). A similar pattern of reduced
evolutionary rate has been described for genes
expressed in human and honey bee brains, po-
tentially due to increasing pleiotropic constraint
in complex gene networks (17, 18). Constrained pro-
tein evolution of neural and endocrine-related
genes seems at odds with the evolution of com-
plexity, but this constraint appears to be compen-
sated for, or perhaps driven by, increased capacity
for gene regulation.
We next investigated whether these molecular

evolution patterns involve similar sets of genes
and cis-regulatory elements among the early (fa-
cultative and obligate simple eusociality) and ad-
vanced (complex eusociality) stages of independent
social transitions. We identified lineage-specific
differences in coding sequences and promoter re-
gions of 1526 “social genes” forwhich evolutionary
rate (dN/dS) is faster or slower with increased
social complexity in two independent origins and
two independent elaborations of eusociality (7)
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(Fig. 1). Among these lineage-specific social genes,
we found common patterns of cis-regulatory evo-
lution: gains of TFBSs in the promoters of genes
that evolve slower with increasing social complex-
ity (Fig. 2C and supplementary text). This sug-
gests that a shared feature of both independent
origins and elaborations of eusociality is increas-
ingly constrained protein evolution with increas-
ing potential for novel gene expression patterns.
The TFs responsible for this pattern were dif-
ferent for each social transition, even though our
analysis was limited to highly conserved TFs
(Table 1). Several function in neurogenesis or
neural plasticity, or are prominent regulators of
endocrine-mediated brain gene expression in
honeybees (19, 20).
We found further lineage-specific differences

among the rapidly evolving “social genes” them-
selves. Genes undergoing accelerated evolution
at the origins of eusociality were significantly en-
riched for GO terms related to signal transduc-
tion in bothApidae andHalictidae, but they shared
only six genes (6 out of 354 and 167 genes, re-
spectively; hypergeometric test, P = 0.82; Fig. 2D
and additional data tables S5 and S6). Rapid
evolution of signal transduction pathways may
be a necessary step in all origins of eusociality to
mediate intracellular responses to novel social
and environmental stimuli (10), but selection ap-
pears to have targeted different parts of these
pathways in each independent transition. Caste-
specific expression and other analyses of these
genes are needed to determine their function in
eusociality.
Genes showing signatures of rapid evolution

with the elaborations of complex eusocialitywere
also highly disparate between honeybees and
stingless bees, with only 43 shared genes and no
shared enriched GO terms (43 out of 625 and
512 genes, respectively; hypergeometric test, P =
0.70; Fig. 2D and additional data tables S5 and
S6). In addition, only 2 out of 5865 single-copy

orthologs showed a signature of convergent evo-
lution by fitting a dendrogram based on social
complexity significantly better than the ac-
cepted molecular phylogeny (7) (supplementary
text and fig. S21). Similarly, families of major
royal jelly protein genes, sex-determining genes,
odorant receptors, and genes involved in lipid
metabolism expanded in some, but not all,
lineages of complex eusocial bees (7) (Table 2

and supplementary text). These results suggest
that gene family expansion is associated with
complex eusociality as predicted (5), but in-
volves different genes in each case. Despite
striking convergence of social traits among the
superorganisms (4), the final stages of trans-
formation to this level of biological organiza-
tion do not necessarily involve commonmolecular
pathways.
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Fig. 1. Phylogeny and divergence times (28) of bees selected for genome analysis.We analyzed
two independent origins of simple eusociality from a solitary ancestor, one each in Apidae (white
circle 1) and Halictidae (white circle 2), and two independent elaborations of complex eusociality in
honeybees (gray circle 1) and stingless bees (gray circle 2). Most bees mate once, but honeybees
mate with multiple males. All bees eat pollen and nectar from flowering plants. Species names are
colored according to degree of social complexity: blue: ancestrally solitary; green: facultative simple
eusociality; orange: obligate simple eusociality; red: obligate complex eusociality. The social biology
of E. mexicana is unknown, but is representative of the facultative simple eusocial life history (29).
Numbers in each box are approximate colony size on a log scale. MRCA, most recent common
ancestor; mya, millions of years ago.
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Fig. 2. Genomic signatures of evolutionary transitions from solitary to
group life. (A) Increasing social complexity is associated with increasing
presence of cis-regulatory TFBSs in promoter regions. Each bar represents a
TFBS for which presence correlates significantly with social complexity (blue:
positive; red: negative). (B)Relationshipbetweenpredictednumberofmethylated
genes and social complexity before and after (inset) phylogenetic correction (see
text for statistics). (C) TFBS motifs showing a relationship between social
complexity and evolutionary rate of coding and noncoding sequences in different
lineages. Bar length indicates the number of significant correlations (blue: pos-
itive; red: negative) between eachmotif score and social complexity (fromTable 1)
among genes evolving faster (solid) or slower (hatched) in lineages with different

levels of social complexity [from (D)]. Background shading follows circle shading
in Fig. 1. (D) Number of genes for which evolutionary rate is faster or slower in
lineageswith highercompared to lowersocial complexity. Pie charts represent the
proportion of genes evolving slower (light green) or faster (dark orange) with
increased social complexity.Venn diagram shading follows circle shading in Fig. 1.
(E) Complex eusocial species have a reduced proportion of repetitive DNA com-
pared to other bees (see text for statistics). LTR, long terminal repeat; LINE, long
interspersed element; SINE, short interspersed element; DNA, DNA transposon;
LARD, large retrotransposon derivative;TRIM, terminal repeat retrotransposon in
miniature; MITE, miniature inverted-repeat transposable element; TES, transpos-
able elements.

RESEARCH | REPORTS

 o
n 

O
ct

ob
er

 2
6,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fro
m

 



	
  

	
  

104	
  

The major transitions in evolution involve a
reduction in conflict as the level of natural se-
lection rises from the individual to the group (1).
Extending this to intragenomic conflict may
explain our finding of decreased diversity and
abundance of transposable elements (TEs) with
increasing social complexity (7) (regression after
phylogenetic correction, F = 8.99, adjusted R2 =
0.47, P = 0.017; Fig. 2E, figs. S42 to S44, and sup-
plementary text). This may be a consequence of
increased recombination rates among highly
eusocial insects (21, 22) or because key features of

complex eusociality lead to decreased exposure
to parasites andpathogens that horizontally trans-
mit TEs (4, 23). Eusociality in bees may thus pro-
vide natural immunity against certain types of
intragenomic conflict.
Our results and those in (10–13) support the

prediction that changes in gene regulation are
key features of evolutionary transitions in bio-
logical organization (5). Our results further re-
veal the convergent adaptive and nonadaptive
evolutionary processes common to both the
early and advanced stages of multiple inde-

pendent transitions from solitary to group living.
It is now clear that there are lineage-specific
genetic changes associated with independent
origins of eusociality in bees, and independent
elaborations of eusociality in both bees and
ants. This includes different sets of genes show-
ing caste-biased expression across species (24–26)
and, as we have shown, evolutionary modifica-
tions of TEs, genemethylation, and cis-regulatory
patterns associated with the suite of life-history
traits that define eusociality. This suggests that if
it were possible to “replay life’s tape” (27), eu-
sociality may arise through different mecha-
nisms each time, but would likely always involve
an increase in the complexity of gene networks.
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Table 2. Relative size of select gene families as related to social complexity in bees.

Family Function
Eusocial bees compared

to solitary bees

Differences among bees
Major royal jelly Brood feeding Expanded only in Apis
Sex determination
pathway genes

Sex-specific development
Expanded in some
eusocial lineages

Odorant receptors Olfaction Expanded in complex
eusocial lineages

Lipid metabolism genes
Metabolic processing of

lipids
Expanded in complex

eusocial lineages
Similarities across bees

Biogenic amines receptors,
neuropeptides, GPCRs*

Neural plasticity Similar

Insulin-signaling and
ecdysone pathway genes

Insect development, caste
determination in

honeybees, behavioral
plasticity as adults

Similar

Immunity Infectious disease
protection

Similar

Cytochrome P450
monooxygenase genes

Detoxification Similar

*GPCRs, G protein–coupled receptors.

Table 1.Transcription factors (TFs) and corresponding motifs associated with origins and elabora-
tions of eusociality in bees. [Motif names: Fly Factor Survey (6); supplementary text.]

Motif D. melanogaster TFs
Hypergeometric

test P-value

Solitary to simple eusociality–Apidae
lola_PQ_SOLEXA Lola 0.0047

Solitary to simple eusociality–Halictidae
br_PL_SOLEXA_5 Br 0.0016

Simple eusociality to complex eusociality–honeybees
h_SOLEXA_5 dpn,h 0.0027

Simple eusociality to complex eusociality–stingless bees
Side_SOLEXA_5 E_spl, HLHm3, HLHm5,

HLHm7, HLHmbeta,
HLHmdelta, HLHmgamma, Side 0.0008

usp_SOLEXA EcR,svp,usp 0.0013
CrebA_SOLEXA CrebA 0.0040
CG5180_SOLEXA CG5180 0.0044
tai_Met_SOLEXA_5 Mio_bigmax,tai_Met 0.0045
ttk_PA_SOLEXA_5 Ttk 0.0078
gsb_SOLEXA gsb,Poxn,prd 0.0083
tai_SOLEXA_5 Tai 0.0100
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HUMAN OOCYTES

Error-prone chromosome-mediated
spindle assembly favors chromosome
segregation defects in human oocytes
Zuzana Holubcová,1 Martyn Blayney,2 Kay Elder,2 Melina Schuh1*

Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic
disorders such as Down syndrome. Most aneuploidy results from chromosome segregation
errors during the meiotic divisions of an oocyte, the egg’s progenitor cell. The basis for
particularly error-prone chromosome segregation in human oocytes is not known. We
analyzed meiosis in more than 100 live human oocytes and identified an error-prone
chromosome-mediated spindle assembly mechanism as a major contributor to chromosome
segregation defects. Human oocytes assembled a meiotic spindle independently of either
centrosomes or other microtubule organizing centers. Instead, spindle assembly wasmediated
by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours.
This unusually long spindle assembly period was marked by intrinsic spindle instability and
abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors
and provide a possible explanation for high rates of aneuploidy in human eggs.

M
eiosis in human oocytes is more prone
to chromosome segregation errors than
mitosis (1, 2), meiosis during spermato-
genesis (3, 4), and female meiosis in
other organisms (3, 5). Despite its im-

portance for fertility and human development,
meiosis in human eggs has hardly been studied.
Human oocytes are only available in small num-
bers, warranting single-cell assays capable of
extracting maximal information. Although high-
resolution live-cell microscopy is an ideal method,
oocyte development in the ovary poses chal-
lenges to direct imaging. We therefore estab-
lished an experimental system (6) for ex vivo
high-resolution fluorescencemicroscopy of human
oocytes freshly harvested from women under-
going gonadotropin-stimulated in vitro fertili-
zation cycles. To establish the major stages of
meiosis in this system, we simultaneously moni-
tored microtubules and chromosomes for ~24 to
48 hours (Fig. 1 and movie S1). Similar to the
situation in situ (7), human oocytes matured into
fertilizable eggs over this time course, as judged

by the formation of a polar body. The morpho-
logically identifiable stages (Fig. 1A) at charac-
teristic times after nuclear envelope breakdown
[(NEBD), set to 0 hours] provided a time-resolved
framework for human oocyte meiosis (Fig. 1B).
This reference timelinepost-NEBD isused through-
out this paper.
Before NEBD, chromosomes were highly con-

densed and clustered around the nucleolus. In-
stead of rapidly nucleating microtubules upon
NEBD, human oocytes first formed a chromo-
some aggregate that was largely devoid of mi-
crotubules (Fig. 1A; movie S1; and fig. S1, A and
B). Microtubules were first observed at ~5 hours,
when they started to form a small aster within
the chromosome aggregate. As the microtubule
aster grew, the chromosomes became individu-
alized and oriented on the surface of the aster
with their kinetochores facing inwards. The mi-
crotubule aster then extended into an early bi-
polar spindle that carried the chromosomes on
its surface (Fig. 1A; movie S1; and fig. S1, C to E).
The chromosomes then entered the spindle but
remained distributed throughout the entire spin-
dle volume. Chromosomes first congressed in the
spindle center at ~13 hours but continued to os-
cillate around the spindle equator. Stable chro-
mosome alignment was typically only achieved

close to anaphase onset (Fig. 1, A and B, and
movie S1). Unexpectedly, the spindle volume in-
creased over the entire course of meiosis, up until
anaphase onset (Fig. 1, C and D). The barrel-
shaped spindle formed in this process consisted of
loosely clustered bundles of microtubules and
lacked astral microtubules (movie S2 and fig. S2).
At ~17 hours, the oocytes progressed into anaphase
and eliminated half of the homologous chromo-
somes in a polar body. Nearly a day after NEBD,
the oocytes had formed a bipolar metaphase II
spindle and matured into a fertilizable egg. The
stages and timing of meiosis were highly repro-
ducible among oocytes (Fig. 1, A and B) and could
also be observed in fixed oocytes (fig. S1, A to I).
Importantly, 79.0% of imaged human oocytes ex-
truded a polar body. This indicates that the imag-
ing assays, as well as the methods by which the
oocyteswere obtained and processed, did not have
a prominent effect on meiotic progression.
The surprisingly slow and gradual build-up of

the spindle over 16 hours (Fig. 1, C and D) is in
stark contrast tomitosis, where spindle assembly
takes only ~30 min (8), or meiosis in mouse
oocytes, where it takes 3 to 5 hours (9–11). During
mitosis, two centrosomes ensure the rapid as-
sembly of a spindle. In oocytes of many species,
centrosomes are absent but functionally replaced
by microtubule organizing centers (MTOCs) that
lack centrioles (9, 12). Human oocytes also lack
centrosomes (13–15), but whether acentriolar
MTOCs participate in spindle assembly is unclear
(16–19). We consistently detected pericentrin-
and g-tubulin–positive MTOCs at the spindle
poles of mitotic cells and metaphase I and II
(MI and MII) mouse oocytes, but never at MI
orMII spindles in human oocytes (Fig. 2, A and
B, and fig. S3). Thus, our data suggest that meiotic
spindles in humanoocytes lack detectableMTOCs.
In Xenopus egg extracts, chromosomes can

serve as sites of microtubule nucleation if cen-
trosomes are absent (20). The human oocytes we
imaged also initiatedmicrotubule nucleation in the
region of the chromosome aggregate (78 of 78 live
human oocytes). High-resolution imaging of fixed
human oocytes confirmed thatmicrotubuleswere
first nucleated on chromosomes, emanating pri-
marily from kinetochores (Fig. 2C, movie S3, and
fig. S4). MTOC-nucleated cytoplasmic asters, such
as those seen in chromosomal proximity upon
NEBD inmouse oocytes (9), could not be detected.
Thus, chromosomes, not MTOCs, serve as major
sites of microtubule nucleation in human oocytes.
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