
Cause Reduction for Quick Testing

Alex Groce,∗ Amin Alipour,∗ Chaoqiang Zhang,∗ Yang Chen,† and John Regehr,†
∗School of Electrical Engineering and Computer Science

Oregon State University {grocea,zhangch,alipourm}@onid.orst.edu
†School of Computing

University of Utah

{chenyang,regehr}@cs.utah.edu

Abstract—In random testing, it is often desirable to produce
a “quick test” — an extremely inexpensive test suite that can
serve as a frequently applied regression and allow the benefits
of random testing to be obtained even in very slow or over-
subscribed test environments. Delta debugging is an algorithm
that, given a failing test case, produces a smaller test case
that also fails, and typically executes much more quickly. Delta
debugging of random tests can produce effective regression suites
for previously detected faults, but such suites often have little
power for detecting new faults, and in some cases provide poor
code coverage. This paper proposes extending delta debugging
by simplifying tests with respect to code coverage, an instance
of a generalization of delta debugging we call cause reduction.
We show that test suites reduced in this fashion can provide
very effective quick tests for real-world programs. For Mozilla’s
SpiderMonkey JavaScript engine, the reduced suite is more
effective for finding software faults, even if its reduced runtime
is not considered. The effectiveness of a reduction-based quick
test persists through major changes to the software under test.

I. INTRODUCTION

In testing a flash file system implementation that eventually

evolved into the file system for the Mars Science Laboratory

(MSL) project’s Curiosity rover [1], [2], one of the authors

of this paper discovered that, while an overnight sequence of

random tests was effective for shaking out even subtle faults,

random testing was not very effective if only a short time

was available for testing. Each individual random test was a

highly redundant, ineffective use of testing budget. As a basic

sanity check/smoke test before checking a new version of the

file system in, it was much more effective to run a regression

suite built by applying delta debugging [3] to a representative

test case for each fault previously found.

Delta debugging (or delta-minimization) is an algorithm

(called ddmin) for reducing the size of failing test cases. Delta

debugging algorithms have retained a common core since the

original proposal of Hildebrandt and Zeller [4]: use a variation

on binary search to remove individual components of a failing

test case t to produce a new test case t1min satisfying two

properties: (1) t1min fails and (2) removing any component

from t1min results in a test case that does not fail. Such a

test case is called 1-minimal. Because 1-minimal test cases

are potentially much larger than the smallest possible set

of failing components, we say that ddmin reduces the size

of a test case, rather than truly minimizing it. While the

precise details of ddmin and its variants can be complex, the

family of delta debugging algorithms can generally be simply

described. Ignoring caching and the details of an effective

divide-and-conquer strategy for constructing candidate test

cases, ddmin for a base failing test case tb proceeds by iterating

the following two steps until termination:

1) Construct the next candidate simplification of tb, which

we call tc. Terminate if no tc remain (tb is 1-minimal).

2) Execute tc by calling rtest(tc). If rtest returns � (the

test fails) then it is a simplification of tb. Set tb = tc.

In addition to detecting actual regressions of the NASA

code, ddmin-minimized test cases obtained close to 85%

statement coverage in less than a minute, which running new

random tests often required hours to match. Unfortunately,

the delta debugging-based regression was often ineffective for

detecting new faults unrelated to previous bugs. Inspecting

minimized test cases revealed that, while the tests covered

most statements, the tests were extremely focused on corner

cases that had triggered failures, and sometimes missed very

shallow bugs easily detected by a short amount of more new

random testing. While the bug-based regression suite was

effective as a pure regression suite, it was ineffective as a

quick way to find new bugs; on the other hand, running new

random tests was sometimes very slow for detecting either

regressions or new bugs.

The functional programming community has long recog-

nized the value of very quick, if not extremely thorough,

random testing during development, as shown by the wide use

of the QuickCheck tool [5]. QuickCheck is most useful, how-

ever, for data structures and small modules, and works best in

combination with a functional style allowing modular checks

of referentially transparent functions. Even using feedback [6],

[1], swarm testing [7], or other improvements to standard

random testing, it is extremely hard to randomly generate

effective tests for complex systems software such as compilers

[8] and file systems [1], [2] without a large test budget. For

example, even tuned random testers show increasing fault

detection with larger tests, which limits the number of tests

that can be run in a small budget [9], [8]. The value of

the ddmin regressions at NASA, however, suggests a more

tractable problem: given a set of random tests, generate a truly

quick test for complex systems software. Rather than choose a

particular test budget that represents “the” quick test problem,

we propose that quick testing is testing with a budget that is at

most half as large as a full test budget, and typically more than

2014 IEEE International Conference on Software Testing, Verification, and Validation

978-0-7695-5185-2/14 $31.00 © 2014 IEEE

DOI 10.1109/ICST.2014.37

243

an order of magnitude smaller. Discussion with developers and

the authors’ experience suggested two concrete values to use

in evaluating quick test methods. First, tests that take only 30

seconds to run can be considered almost without cost, and

executed after, e.g., every compilation. Second, a 5 minute

budget is too large to invoke with such frequency, but maps

well to short breaks from coding (e.g. the time it takes to get

coffee), and is suitable to use before relatively frequent code

check-ins. The idea of a quick test is inherent in the concept

of test efficiency, defined as coverage/fault detection per unit
time [10], [11], as distinguished from absolute effectiveness,

where large test suites will always tend to win.

The primary, practical, contribution of this paper is a
proposed method for solving the quick test problem, based

on test case reduction with respect to code coverage (and

simple coverage-based test case prioritization). Generalizing

the effect in ddmin from preserving failure to code coverage
properties makes it possible to apply ddmin to improve test

suites containing both failing and successful test cases, by

dramatically reducing runtime while retaining code coverage.

This yields test suites with some of the benefits of the ddmin-

regression discussed above (short runtime) but with better

overall testing effectiveness. We show that retaining statement

coverage can approximate retaining other important effects,

including fault detection and branch coverage. A large case

study based on testing Mozilla’s SpiderMonkey JavaScript

engine uses real faults to show that cause reduction is effective

for improving test efficiency, and that the effectiveness of

reduced test cases persists even across a long period of de-

velopment, without re-running the reduction algorithm. Even

more surprisingly, for the version of SpiderMonkey used to

perform cause reduction and a version of the code from more

than two months later, the reduced suite not only runs almost

four times faster than the original suite, but detects more
distinct faults. A mutation-based analysis of the YAFFS2 flash

file system shows that the effectiveness of cause reduction is

not unique to SpiderMonkey: a statement-coverage reduced

suite for YAFFS2 ran in a little over half the time of the

original suite, but killed over 99% as many mutants, including

6 not killed by the original suite.

The second contribution of this paper is introducing the idea

of cause reduction, which we believe may have applications

beyond improving test suite efficiency.

II. THE QUICK TEST PROBLEM

The quick test problem is: given a set of randomly generated

tests, produce test suites for test budgets that are sufficiently

small that they allow tests to be run frequently during code

development, and that maximize:

1) Code coverage: the most important coverage criterion

is probably statement coverage; Branch and function

coverage are also clearly desirable;

2) Failures: automatic fault localization techniques [12]

often work best in the presence of multiple failing test

cases; more failures also indicate a higher probability of

finding a flaw;

3) Distinct faults detected: finally, the most important eval-

uation metric is the actual number of distinct faults that a

suite detects; it is generally better to produce 4 failures,

each of which exhibits a distinct fault, than to produce

50 failures that exhibit only 2 different faults [13].

It is acceptable for a quick test approach to require sig-

nificant pre-computation and analysis of the testing already

performed if the generated suites remain effective across

significant changes to the tested code without re-computation.

Performing 10 minutes of analysis before each 30 second run

is clearly unacceptable; performing 10 hours of analysis once

to produce quick test suites that remain useful for a period of

months is fine. For quick test purposes, it is also probably

more feasible to build a generally good small suite rather

than perform change analysis on-the-fly to select test cases

that need to be executed [14], [15]; the nature of random

tests, where tests are all statistically similar (as opposed to

human-produced tests which tend to have a goal) means that

in practice selection methods tend to propose running most

stored test cases. In addition compilers and interpreters tend to

pose a difficult problem for change analysis, since optimization

passes rely on deep semantic properties of the test case.
Given the highly parallel nature of random testing, in prin-

ciple arbitrarily many tests could be performed in 5 minutes.

In practice, considerable effort is required to introduce and

maintain cloud or cluster-based testing, and developers often

work offline or can only use local resources due to security or

confidentiality concerns. More critically, a truly small quick

test would enable testing on slow, access-limited hardware

systems; in MSL development, random tests were not per-

formed on flight hardware due to high demand for access to

the limited number of such systems [16], and the slowness of

radiation-hardened processors. A test suite that only requires

30 seconds to 5 minutes of time on a workstation, however,

would be feasible for use on flight testbeds. We expect that the

desire for high quality random tests for slow/limited access

hardware may extend to other embedded systems contexts,

including embedded compiler development. Such cases are

more common than may be obvious: for instance, Android

GUI random testing [17] on actual mobile devices can be

even slower than on already slow emulators, but is critical for

finding device-dependent problems. Quick testing’s model of

expensive pre-computation to obtain highly efficient execution

is a good fit for the challenge of testing on slow and/or over-

subscribed hardware.
In some cases, the quick test problem might be solved

simply by using test-generation techniques that produce short

tests in the first place, e.g. evolutionary/genetic testing ap-

proaches where test size is included in fitness [18], [19], [20],

or bounded exhaustive testing (BET). BET, unfortunately, per-

forms poorly even for file system testing [21] and is very hard

to apply to compiler testing. Recent evolutionary approaches

[19] are more likely to succeed, but to our knowledge have

not been applied to such complex problems as compiler or

interpreter testing, where hand-tuned systems requiring expert

knowledge are typical [8], [22].

244

III. COVERAGE-BASED TEST CASE REDUCTION

Delta debugging is an attractive approach to the quick test

problem, in that it is a highly effective and easy-to-implement

method for reducing redundancy in randomly generated tests.

Unfortunately, traditional delta debugging reduces tests too
much, discarding all behavior not related to the failure. Delta

debugging can be applied to the quick test problem, however,

using a novel generalization. The assumption has always been

that delta debugging is a debugging algorithm, only useful

for reducing failures. However, the best way to understand

ddmin-like algorithms is that they reduce the size of a cause
(e.g. a test case, a thread schedule, etc.) while ensuring that

it still causes some fixed effect (in ddmin, the effect is always

test failure): ddmin is a special-case of cause reduction.1

The core value of delta debugging can be understood in a

simple proposition: given two test cases that achieve the same

purpose, the smaller of the two test cases will typically be

easier to understand, execute more quickly, and so forth. Delta

debugging is valuable because, given two test cases that both
serve the same purpose, we almost always prefer the smaller

of the two. There is no reason why purpose should be limited

to failure. For quick testing, code coverage is a much more

attractive property, in that it also helps detect new faults.

The definitions provided in the core delta debugging paper

[3] are almost unchanged in cause reduction. The one neces-

sary alteration is to replace the function rtest, which “takes

a program run and tests whether it produces the failure” in

Definition 3 [3] with a function reffect such that reffect defines

“failure” of a run as preserving any effect that holds for the

original test case and “success” as not preserving that effect.

An actual failure is a particular instance of an effect to be

preserved. We call this “new” algorithm cause reduction but,

of course, it is almost exactly the same as the original ddmin
algorithm, and most optimizations or variations still apply.

The most interesting consequence of this minor change is

that ddmin is no longer defined only for failing test cases. If

the effect chosen is well-defined for successful test cases, then

ddmin can be applied to reduce the cause (the test case) in that

case also. Are any interesting effects defined for all test cases

important enough to inspire reduction efforts?

A. Coverage as an Effect

A large portion of the literature on software testing is

devoted to precisely such a class of effects: running a test

case always produces the effect of covering certain source

code elements, which can include statements, branches, data-

flow relationships, state predicates, or paths. High coverage

is a common goal of testing, as high coverage correlates

with effective fault detection [23]. Producing small test suites

with high code coverage [11] has long been a major goal of

software testing efforts, inspiring a lengthy literature on how to

minimize a test suite with respect to coverage, how to select

tests from a suite based on coverage, and how to prioritize

1The authors would like to thank Andreas Zeller for suggesting the term
“cause reduction.”

a test suite by coverage [14]. Coverage-based minimization

reduces a suite by removing test cases; using cause reduction,

a suite can also (orthogonally) be reduced by minimizing each

test in the suite (retaining all tests) with the effect being any
chosen coverage criteria. The potential benefit of reduction at

the test level is the same as at the suite level: more efficient

testing, in terms of fault detection or code coverage per unit

of time spent executing tests. Cause reduction with respect to

coverage is a promising approach for building quick tests, as

random tests are likely to be highly reducible.

As described in the introduction, ddmin algorithms proceed

by generating “candidate” tests: tests that are smaller than the

original test case, but may preserve the property of interest,

which in the original algorithm is “this test fails.” When

evaluating the preservation check on a candidate reduced test

case returns � (indicating the test failed) ddmin essentially

starts over, with the candidate test case as the new starting

point for reduction, until no candidates fail. Preservation is

formulated as follows for coverage-based reduction:

reffect(tc, tb) =
{

iff ∀s ∈ c(tb).s ∈ c(tc) �
else �

where tc is the currently proposed smaller test, tb is the

original test case, and c(t) is the set of all coverage entities

executed by t. While it may be confusing that a valid reduction

of the test case returns � we maintain the terminology to

show how little difference there is between generalized cause

reduction and the ddmin algorithm; recall that in ddmin the

point of preservation is to find tests that fail. Returning � in

our context means that the new test has preserved coverage

and can therefore be used as the basis for further reduction

efforts, while � means that the candidate test does not preserve

coverage, and should be discarded (the fate of any successful

test case in the original ddmin algorithm). Note that this

definition allows a test case to be minimized to a test with

better coverage than the original test. In practice, improved

coverage seems rare: if a smaller test that does not preserve the

added coverage can be found, ddmin removes gained coverage.

In principle, any coverage criteria could be used as an effect.

In practice, it is highly unlikely that reducing by extremely

fine-grained coverages such as path or predicate coverages

[23] would produce significant reduction. Moreover, ddmin is a

very expensive algorithm to run when test cases do not reduce

well, since every small reduction produces a new attempt

to establish 1-minimality: small removals tend to result in a

very large computational effort proportional to the reduction.

Additionally, for purposes of a quick test, it seems most

important to concentrate on coverage of coarse entities, such

as statements. Finally, only branch and statement coverage are

widely enough implemented for languages that it is safe to

assume anyone interested in producing a quick test has tools

to support their use. For random testing, which is often carried

out by developers or by security experts, this last condition is

important: lightweight methods that do not require static or

dynamic analysis expertise and are easy to implement from

scratch are more likely to be widely applied [24].

245

TABLE I
SPIDERMONKEY UNLIMITED TEST BUDGET RESULTS

Release Date Suite Size Time(s) ST BR FN #Fail E#F

1.6 12/22/2006 Full 13,323 14,255.068 19,091 14,567 966 1,631 22
1.6 12/22/2006 ST-Min 13,323 3,566.975 19,091 14,562 966 1,631 43
1.6 12/22/2006 DD-Min 1,019 169.594 16,020 10,875 886 1,019 22
1.6 12/22/2006 GE-ST(Full) 168 182.823 19,091 14,135 966 14 5
1.6 12/22/2006 GE-ST(ST-Min) 171 47.738 19,091 14,099 966 14 8

NR 2/24/2007 Full 13,323 9,813.781 22,392 17,725 1,072 8,319 20
NR 2/24/2007 ST-Min 13,323 3,108.798 22,340 17,635 1,070 4,147 36
NR 2/24/2007 DD-Min 1,019 148.402 17,923 12,847 958 166 7
NR 2/24/2007 GE-ST(Full) 168 118.232 21,305 16,234 1,044 116 5
NR 2/24/2007 GE-ST(ST-Min) 171 40.597 21,323 16,257 1,045 64 3

NR 4/24/2007 Full 13,323 16,493.004 22,556 18,047 1,074 189 10
NR 4/24/2007 ST-Min 13,323 3,630.917 22,427 17,830 1,070 196 6

NR 4/24/2007 DD-Min 1,019 150.904 18,032 12,979 961 158 5
NR 4/24/2007 GE-ST(Full) 168 206.033 22,078 17,203 1,064 4 1
NR 4/24/2007 GE-ST(ST-Min) 171 45.278 21,792 16,807 1,058 3 1

1.7 10/19/2007 Full 13,323 14,282.776 22,426 18,130 1,071 528 15
1.7 10/19/2007 ST-Min 13,323 3,401.261 22,315 17,931 1,067 274 10

1.7 10/19/2007 DD-Min 1,019 168.777 18,018 13,151 956 231 12
1.7 10/19/2007 GE-ST(Full) 168 178.313 22,001 17,348 1,061 6 2
1.7 10/19/2007 GE-ST(ST-Min) 171 43.767 21,722 16,924 1,055 5 2

1.8.5 3/31/2011 Full 13,323 4,301.674 21,030 15,854 1,383 11 2
1.8.5 3/31/2011 ST-Min 13,323 2,307.498 20,821 15,582 1,363 3 1

1.8.5 3/31/2011 DD-Min 1,019 152.169 16,710 11,266 1,202 2 1
1.8.5 3/31/2011 GE-ST(Full) 168 51.611 20,233 14,793 1,338 1 1
1.8.5 3/31/2011 GE-ST(ST-Min) 171 28.316 19,839 14,330 1,327 1 1

Legend: ST = Statement Coverage; BR = Branch Coverage; FN = Function Coverage; #Fail = Num. Failing Tests; E#F = Estimated Num. of Distinct Faults
Full = Original Suite; ST-Min = ddmin(Full, ST Cov.); DD-Min = ddmin(Full, Failure); GE-ST = Greedy Selection for ST. Cov

IV. SPIDERMONKEY JAVASCRIPT ENGINE CASE STUDY

SpiderMonkey is the JavaScript Engine for Mozilla, an ex-

tremely widely used, security-critical interpreter/JIT compiler.

SpiderMonkey has been the target of aggressive random testing

for many years now. A single fuzzing tool, jsfunfuzz
[22], is responsible for identifying more than 1,700 previously

unknown bugs in SpiderMonkey [25]. SpiderMonkey is (and

was) very actively developed, with over 6,000 code commits

in the period from 1/06 to 9/11 (nearly 4 commits/day). Spi-

derMonkey is thus ideal for evaluating a quick test approach,

using the last public release of the jsfunfuzz tool, modified

for swarm testing [7]. Figures 1 and 2 show cause reduction

by statement coverage in action. The first figure is a short

test generated by jsfunfuzz; the second is a test case

based on it, produced by ddmin using statement coverage

as effect. These tests both cover the same 9,625 lines code.

While some reductions are easily predictable (e.g. throw
StopIteration), others are highly non-obvious, even to

a developer.

The baseline test suite for SpiderMonkey is a set of 13,323

random tests, produced during 4 hours of testing the 1.6

source release of SpiderMonkey. These tests constitute what

is referred to below as the Full test suite. Running the Full
suite is essentially equivalent to generating new random tests

of SpiderMonkey. A reduced suite with equivalent statement

tryItOut("with((delete __proto__))
{export __parent__;true;}");

tryItOut("while((false for (constructor in false))){}");
tryItOut("throw __noSuchMethod__;");
tryItOut("throw undefined;");
tryItOut("if(<><x><y/></x></>) {null;}else{/x/;/x/g;}");
tryItOut("{yield;export __count__; }");
tryItOut("throw StopIteration;");
tryItOut("throw StopIteration;");
tryItOut(";yield;");

Fig. 1. jsfunfuzz test case before statement coverage reduction

tryItOut("with((delete __proto__))
{export __parent__;true;}");

tryItOut("while((false for (constructor in false))){}");
tryItOut("throw undefined;");
tryItOut("if(<><x><y/></x></>) {null;}else{/x/;/x/g;}");
tryItOut("throw StopIteration;");
tryItOut(";yield;");

Fig. 2. jsfunfuzz test case after statement coverage reduction

coverage, referred to as Min, was produced by performing

cause reduction on every test in Full. The granularity of

minimization was based on the semantic units produced by

jsfunfuzz, with 1,000 such units in each test in Full. A

unit is the code inside each tryItOut call, approximately 1

line of code. After reduction, the average test case size was just

over 122 semantic units, a bit less than an order of magnitude

reduction; while increases in coverage were allowed, in 99%

246

of cases coverage was identical to the original test. The

computational cost of cause reduction was, on contemporary

hardware, similar to the costs of traditional delta debugging

reported in older papers, around 20 minutes per test case

[26]. The entire process completed in less than 4 hours on a

modestly sized heterogeneous cluster (using fewer than 1,000

nodes). The initial plan to also minimize by branch coverage

was abandoned when it became clear that statement-based

minimization tended to almost perfectly preserve total suite

branch coverage. Branch-based minimization was also much

slower and typically reduced test case size by a factor of only

2/3, vs. nearly 10x reduction for statements.

A third suite, referred to as DD-Min (Delta Debugging

Minimized), was produced by taking all 1,631 failing test cases

in Full and reducing them using ddmin with the requirement

that the test case fail and produce the same failure output

as the original test case. After removing numerous duplicate

tests, DD-Min consisted of 1,019 test cases, with an average

size of only 1.86 semantic units (the largest test contained

only 9 units). Reduction in this case only required about 5

minutes per test case. Results below show why DD-Min was

not included in experimental evaluation of quick test methods

(essentially, it provided extremely poor code coverage, leaving

many very shallow bugs potentially uncaught; it also fails to

provide enough tests for a 5 minute budget).

Two additional small suites, GE-ST(Full) and GE-ST(Min)
were produced by applying Chen and Lau’s GE heuristic [27]

for coverage-based suite minimization to the Full and Min
suites. The GE heuristic first selects all test cases that are

essential (i.e., they uniquely cover some coverage entity), then

repeatedly selects the test case that covers the most additional

entities, until the coverage of the minimized suite is equal

to the coverage of the full suite (i.e., an additional greedy

algorithm, seeded with test cases that must be in any solution).

Ties are broken randomly in all cases.

The evaluation measures for suites are: size (in # tests),

statement coverage (ST), branch coverage (BR), function

coverage (FN), number of failing tests (#Fail), and estimated

number of faults (E#F). All coverage measures were deter-

mined by running gcov (which was also used to compute

coverage for reffect). Failures were detected by the various

oracles in jsfunfuzz and, of course, detecting crashes and

timeouts.

Distinct faults detected by each suite were estimated using

a binary search over all source code commits made to the

SpiderMonkey code repository, identifying, for each test case,

a commit such that: (1) the test fails before the commit and

(2) the test succeeds after the commit. With the provision

that we have not performed extensive hand-confirmation of

the results, this is similar to the procedure used to identify

bugs in previous work investigating the problem of ranking test

cases such that tests failing due to different underlying faults

appear early in the ranking [13]. This method is not always

precise. It is, however, uniform and has no obvious problematic

biases. Its greatest weakness is that if two bugs are fixed in the

same check-in, they will be considered to be “one fault”; the

estimates of distinct faults are therefore best viewed as lower
bounds on actual distinct faults. In practice, hand examination

of tests in previous work suggested that the results of this

method are fairly good approximations of the real number of

distinct faults detected by a suite. Some bugs reported may

be faults that developers knew about but gave low priority;

however, more than 80 failures result in memory corruption,

indicating a potential security flaw, and all faults identified

were fixed at some point during SpiderMonkey development.

In order to produce 30 second and 5 minute test suites (the

extremes of the likely quick test budget), it was necessary

to choose subsets of Full and Min. The baseline approach

is to randomly sample a suite, an approach to test case

prioritization used as a baseline in numerous previous test case

prioritization and selection papers [14]. While a large number

of plausible prioritization strategies exist, we restricted our

study to ones that do not require analysis of faults, expensive

mutation testing, deep static analysis, or in fact any tools

other than standard code coverage. As discussed above, we

would like to make our methods as lightweight and generally

applicable as possible. We therefore chose four coverage-based

prioritizations from the literature [14], [28], which we refer to

as ΔST, |ST|, ΔBR, and |BR|. ΔST indicates a suite ordered

by the incremental improvement (Δ) in statement coverage

offered by each test over all previous tests (an additional

greedy algorithm), while |ST| indicates a suite ordered by the

absolute statement coverage of each test case (a pure greedy

algorithm). The first test executed for both ΔST and |ST| will

be the test with the highest total statement coverage. ΔBR and

|BR| are similar, except ordered by different coverage.

Finally, a key question for a quick test method is how

long quick tests remain effective. As code changes, a cause

reduction and prioritization based on tests from an earlier

version of the code will (it seems likely) become obsolete.

Bug fixes and new features (especially optimizations in a

compiler) will cause the same test case to change its coverage,

and over time the basic structure of the code may change;

SpiderMonkey itself offers a particularly striking case of code

change: between release version 1.6 and release version 1.8.5,

the vast majority of the C code-base was re-written in C++.

All experiments were therefore performed not only on Spi-

derMonkey 1.6, the baseline for cause reduction, but applied

to “future” (from the point of view of quick test generation)

versions of the code. The first two versions are internal

source commits, not release versions (NR for non-release),

dating from approximately two months (2/24/2007) and ap-

proximately four months (4/24/2007) after the SpiderMonkey

1.6 release (12/22/2006). When these versions showed that

quick tests retained considerable power, it indicated that a

longer lifetime than we had hoped for might be possible. The

final two versions of SpiderMonkey chosen were therefore

the 1.7 release version (10/19/2007) and the 1.8.5 release

version (3/31/2011). Note that all suites were reduced and

prioritized based on the 1.6 release code; no re-reduction or

re-prioritization was ever applied.

247

TABLE II
SPIDERMONKEY 30S TEST BUDGET MEAN RESULTS

Ver. Suite Size ST BR FN #Fail E#F

1.6 Full(F) 27.1 16,882.1 11,895.4 897.0 2.8 2.8

1.6 F+ΔST 27.6 18,270.5 13,050.1 949.9 4.2 4.0

1.6 F+ΔBR 25.7 18,098.2 13,144.7 936.4 2.8 2.6

1.6 Min(M) 102.2 17,539.4 12,658.6 916.6 12.6 7.1

1.6 M+ΔST 106.9 18,984.7 13,873.6 963.1 12.0 9.0
1.6 M+ΔBR 77.3 18,711.6 13,860.9 958.8 7.3 5.4

2/24 Full(F) 37.8 19,718.0 14,644.9 991.6 23.9 3.1

2/24 F+ΔST 45.1 19,958.0 14,813.9 1,006.0 35.1 3.0

2/24 F+ΔBR 39.4 20,502.2 15,511.6 1,021.8 23.5 4.4

2/24 Min(M) 105.0 20,319.3 15,303.5 1,013.2 32.2 4.0

2/24 M+ΔST 92.9 21,238.1 15,984.8 1,049.1 35.6 2.7

2/24 M+ΔBR 117.2 21,167.2 16,183.9 1,042.0 46.4 5.0

4/24 Full(F) 23.8 20,072.8 15,108.5 999.0 0.6 0.6

4/24 F+ΔST 25.3 21,111.7 15,948.7 1,040.3 2.0 2.0
4/24 F+ΔBR 25.8 21,101.4 16,122.2 1,037.8 2.0 2.0
4/24 Min(M) 100.8 20,485.7 15,564.3 1,016.6 1.6 1.6

4/24 M+ΔST 113.5 21,731.8 16,631.1 1,056.9 2.0 2.0
4/24 M+ΔBR 105.4 21,583.7 16,763.8 1,056.4 3.0 2.0

1.7 Full(F) 27.5 20,061.6 15,288.4 1,002.0 1.4 1.4

1.7 F+ΔST 30.0 21,112.9 16,140.3 1,042.0 4.0 3.0
1.7 F+ΔBR 29.2 21,047.3 16,280.5 1,036.3 2.0 2.0

1.7 Min(M) 103.5 20,416.8 15,675.1 1,015.7 1.8 1.8

1.7 M+ΔST 116.4 21,668.4 16,762.6 1,054.0 4.0 3.0
1.7 M+ΔBR 109.7 21,535.6 16,908.7 1,053.8 4.0 3.0

1.8.5 Full(F) 83.4 19,300.8 13,907.5 1,291.4 0.0 0.0

1.8.5 F+ΔST 98.8 19,876.9 14,430.8 1,320.4 1.0 1.0
1.8.5 F+ΔBR 98.0 19,963.1 14,494.2 1,326.0 1.0 1.0
1.8.5 Min(M) 140.8 19,043.3 13,621.1 1,286.0 0.0 0.0

1.8.5 M+ΔST 179.4 19,848.2 14,338.0 1,325.0 1.0 1.0
1.8.5 M+ΔBR 178.3 19,975.8 14,453.0 1,329.0 1.0 1.0

Legend: ST=Statement Cov.; BR=Branch Cov.; FN=Func. Cov.; #Fail=Num. Failing
Tests; E#F=Est. Num. Distinct Faults; Full/F=Original Suite; Min/M=ddmin(Full,
ST Cov.); ΔST=Inc. ST Cov. Prioritization, ΔBR=Inc. BR Prior.

 16.75

 17

 17.25

 17.5

 17.75

 18

 18.25

 18.5

 18.75

 19

 19.25

 19.5

 19.75

 20

 20.25

 20.5

 20.75

 21

 21.25

 21.5

 21.75

1.6 (12/22/06) 2/24/07 4/24/07 1.7 (10/19/07) 1.8.5 (3/31/11)

1,
00

0
S

ta
te

m
en

ts
 c

ov
er

ed

SpiderMonkey Version

Min 30s (avg)
Full 30s (avg)
Min 5m (avg)
Full 5m (avg)

Fig. 3. ST coverage for 30s and 5m quick tests across SpiderMonkey versions

A. Results: An Effective Quick Test?

Table I provides information on the base test suites across

the five versions of SpiderMonkey studied. Tables II and

III show how each proposed quick test approach performed

on each version, for 30 second and 5 minute test budgets,

respectively. All nondeterministic or time-limited experiments

were repeated 30 times. The differences between minimized

TABLE III
SPIDERMONKEY 5M TEST BUDGET MEAN RESULTS

Ver. Suite Size ST BR FN #Fail E#F

1.6 Full(F) 269.4 17,993.2 13,227.5 933.2 32.6 7.4

1.6 F+ΔST 270.2 19,093.0 14,195.9 966.0 23.0 8.0

1.6 F+ΔBR 272.1 19,064.2 14,504.3 962.0 24.0 9.0

1.6 Min(M) 1,001.2 18,493.2 13,792.4 949.8 121.1 18.8

1.6 M+ΔST 1,088.9 19,093.0 14,298.4 966.0 138.7 22.9
1.6 M+ΔBR 1,093.1 19,091.0 14,563.2 964.0 146.3 20.9

2/24 Full(F) 381.4 21,175.5 16,308.2 1,037.6 237.8 8.3

2/24 F+ΔST 404.5 21,554.0 16,612.1 1,051.0 258.9 7.0

2/24 F+ΔBR 398.7 21,664.2 16,833.1 1,051.0 252.6 8.0

2/24 Min(M) 1,124.9 21,556.8 16,711.3 1,051.1 347.9 10.6

2/24 M+ΔST 1,255.6 21,899.8 17,021.9 1,064.0 383.6 15.0
2/24 M+ΔBR 1,227.7 21,940.0 17,180.0 1,058.1 356.5 12.0

4/24 Full(F) 237.8 21,430.2 16,663.0 1,043.8 7.8 2.7

4/24 F+ΔST 244.7 22,139.0 17,279.3 1,064.0 7.0 2.0

4/24 F+ΔBR 241.2 22,126.8 17,483.3 1,064.0 6.1 3.0

4/24 Min(M) 1,085.6 21,695.8 16,960.1 1,051.4 16.0 2.9

4/24 M+ΔST 1,113.8 22,106.9 17,308.0 1,065.3 18.0 5.0
4/24 M+ΔBR 1,135.1 22,178.0 17,550.5 1,063.0 17.1 3.0

1.7 Full(F) 263.7 21,350.0 16,796.8 1,042.2 10.9 3.6

1.7 F+ΔST 282.1 22,074.0 17,438.1 1,063.0 17.8 4.0

1.7 F+ΔBR 278.6 22,087.5 17,670.1 1,061.0 11.0 5.0

1.7 Min(M) 1,072.9 21,616.9 17,070.0 1,050.4 22.2 4.8

1.7 M+ΔST 1,186.3 22,025.0 17,425.7 1,063.0 26.1 6.0

1.7 M+ΔBR 1,165.8 22,082.3 17,676.6 1,060.0 24.0 7.0

(M) suite and full suite (F) for each method and budget are

statistically significant at a 95% level, under a two-tailed

U-test, with only one exception: the improvement in fault

detection for the non-prioritized suites for the 4/24 version

is not significant. The best results for each suite attribute,

SpiderMonkey version, and test budget combination are shown

in bold (ties are only shown in bold if some approaches did

not perform as well as the best methods). Results for absolute

coverage prioritization are omitted from the table to save

space, as Δ prioritization always performed much better, and

absolute often performed worse than random selection. Results

for version 1.8.5 are also omitted from the 5 minute budget

results as the 30 second results suffice to show that minimized

tests and prioritizations based on version 1.6 are, as expected,

not as useful after 4 additional years of development, though

still sometimes improving on the full suite.

The results are fairly striking. First, a purely failure-based

quick test such as was used at NASA (DD-Min) produces very

poor code coverage (e.g., covering almost 100 fewer functions
than the original suite, and over 3,000 fewer branches). It also

loses fault detection power rapidly, only finding ∼7 distinct

faults on the next version of the code base, while suites based

on all tests can detect ∼20-∼36 faults. Given its extremely

short runtime, retaining such a suite as a pure regression

may be useful, but it cannot be expected to work as a good

quick test. Second, the suites greedily minimized by statement

coverage (GE-ST(Full) and GE-ST(Min)) are very quick, and

potentially useful, but lose a large amount of branch coverage

and do not provide enough tests to fill a 5 minute quick test.

The benefits of suite minimization by statement coverage (or

branch coverage) were represented in the 30 second and 5

minute budget experiments by the Δ prioritizations, which

248

produce the same results, with the exception that for short

budgets tests included because they uniquely cover some entity

are less likely to be included than with random sampling of

the minimized suites.

The most important total suite result is that the cause

reduced Min suite retains (or improves!) many properties of

the Full suite that are not guaranteed to be preserved by our

modified ddmin algorithm. For version 1.6, only 5 branches

are “lost”, and (most strikingly) the number of failing test

cases is unchanged. Most surprisingly, the estimated distinct

fault detection is improved: it has grown from ∼22 faults to

∼43 faults. The difference in results is highly statistically

significant: dividing the test populations into 30 equal-sized

randomly selected test suites for both full and minimized tests

we find that the average minimized suite detects 11.83 distinct

faults on average, while the average full suite only detects 7.6

faults, with a p-value of 5.2 ·10−10 under U-test. It is difficult

to believe that any bias in the fault estimation method produces

this strong an effect. Our best hypothesis as to the cause of

the remarkable failure preservation level is that ddmin tends to

preserve failure because failing test cases have unusually low
coverage in many cases. Since the ddmin algorithm attempts

to minimize test size, this naturally forces it to attempt to

produce reduced tests that also fail; moreover, some failures

execute internal error handling code (many do not, however

— the numerous test cases violating jsfunfuzz semantic

checks, for example). The apparent increased diversity of

faults, however, is surprising and unusual, and suggests that

the use of ddmin as a test mutation-based fuzzing tool might

be a promising area for future research. In retrospect, it is

obvious that ddmin takes as input a test case and generates

a large number of related, but distinct, new test cases — it

is, itself, a test case generation algorithm. It seems safe to say

that the new suite is essentially as good at detecting faults and

covering code, with much better runtime (and therefore better

test efficiency [10]).

Figure 3 graphically exhibits the raw differences in state-

ment coverage for the suites sampled as quick tests, ignoring

the effects of prioritization, with 1 standard-deviation error

bars on points. The power of coverage-based cause reduction

can be seen in Tables II and III by comparing “equivalent”

rows for any version and budget: results for each version

are split so that Full results are the first three rows and the

corresponding prioritization the for Min tests are the next three

rows. For the first three versions tested, it is almost always the

case that for every measure, the reduced suite value is better

than the corresponding full suite value. For 30s budgets this

comparison even holds true for the 1.7 version, nearly a year

later. Moving from 1.6 to 1.7 involves over 1,000 developer

commits and the addition of 10,000+ new lines of code (a

12.5% increase). In reality, it is highly unlikely that developers

would not have a chance to produce a better baseline on more

similar code in a four year period (or, for that matter, in any

one month period). The absolute effect size, as measured by

the lower bound of a 95% confidence interval, is often large –

typically 500+ lines and branches and 10 or more functions,

TABLE IV
YAFFS2 RESULTS

Suite Size Time(s) ST BR FN MUT

Full 4,240 729.032 4,049 1,925 332 616

Min 4,240 402.497 4,049 1,924 332 611

Full(F) 174.4 30.0 4,007.367 1,844.0 332.0 568.3

F+ΔST 372.5 30.0 4,049.0 1,918.0 332.0 594.0

F+ΔBR 356 30.0 4,049.0 1,925.0 332.0 596.0
F+|ST| 112.5 30.0 4,028.0 1,889.0 332.0 589.0

Min(M) 315.8 30.0 4,019.7 1,860.5 332.0 559.0

M+ΔST 514.7 30.0 4,049.0 1,912.0 332.0 571.0

M+ΔBR 500.0 30.0 4,049.0 1,924.0 332.0 575.0

M+|ST| 255.0 30.0 4,028.0 1,879.0 332.0 552.0

Full(F) 1,746.8 300.0 4,044.7 1,916.0 332.0 608.7

F+ΔST 2,027.0 300.0 4,049.0 1,921.0 332.0 601.0

F+ΔBR 2,046.0 300.0 4,049.0 1,925.0 332.0 604.0

F+|ST| 1,416.0 300.0 4,042.0 1,916.0 332.0 611.0
Min(M) 3,156.6 300.0 4,048.1 1,920.0 332.0 607.1

M+ΔST 3,346.0 300.0 4,049.0 1,924.0 332.0 601.0

M+ΔBR 3,330.0 300.0 4,049.0 1,924.0 332.0 605.0

M+|ST| 2,881.7 300.0 4,049.0 1,924.0 332.0 611.0

and in a few cases more than 10 faults.

It is difficult to generalize from one subject, but based on the

SpiderMonkey results, we believe that a good initial quick test

strategy to try for other projects would be to combine cause

reduction by statement coverage with test case prioritization

by either Δ statement or branch coverage. In fact, limitation

of quick tests to very small budgets may not be critical.

Running only 7 minutes of minimized tests on version 1.6

detects an average of twice as many faults as running 30

minutes of full tests and has (of course) indistinguishable

average statement and branch coverage. The difference is

significant with p-value of 2.8·10−7 under a U-test. In general,

for SpiderMonkey versions close to the baseline, running N
minutes of minimized tests, however selected, seems likely to

be much better than running N minutes of full tests. The real

limitation is probably how many minimized tests are available

to run, due to the computational cost of minimizing tests.

V. YAFFS 2.0 FLASH FILE SYSTEM CASE STUDY

YAFFS2 [29] is a popular open-source NAND flash file

system for embedded use; it was the default image format

for early versions of the Android operating system. Lacking a

large set of real faults in YAFFS2, we applied mutation testing

to check our claim that cause reduction not only preserves

source code coverage, but tends to preserve fault detection

and other useful properties of randomly generated test cases.

The evaluation used 1,992 mutants, randomly sampled from

the space of all 15,246 valid YAFFS2 mutants, using the C

mutation software shown to provide a good proxy for fault

detection [30], with a sampling rate (13.1%) above the 10%

threshold suggested in the literature [31]. Sampled mutants

were not guaranteed to be killable by the API calls and

emulation mode tested. Table IV shows how full and quick

test suites for YAFFS2 compared. MUT indicates the number

of mutants killed by a suite. Results for |BR| are omitted,

as absolute prioritization by branch coverage produced an

equivalent suite to absolute prioritization by statement cover-

249

age. Runtime reduction for YAFFS2 was not as high as with

SpiderMonkey tests (1/2 reduction vs. 3/4), due to a smaller

change in test size and higher relative cost of test startup. The

average length of original test cases was 1,004 API calls, while

reduced tests averaged 213.2 calls. The most likely cause of the

smaller reduction is that the YAFFS2 tester uses a feedback [1]

model to reduce irrelevant test operations. Basic retention of

desirable aspects of Full was, however, excellent: only one

branch was “lost”, function coverage was perfectly retained,

and 99.1% as many mutants were killed. The reduced suite

killed 6 mutants not killed by the original suite. We do not

know if mutant scores are good indicators of the ability of

a suite to find, e.g., subtle optimization bugs in compilers.

Mutant kills do seem to be a reliable method for estimating

the ability of a suite to detect many of the shallow bugs a quick

test aims to expose before code is committed or subjected to

more testing. Even with lesser efficiency gains, cause reduction

plus absolute coverage prioritization is by far the best way to

produce a 5 minute quick test, maximizing 5-minute mutant

kills without losing code coverage. All differences in methods

were significant, using a two-tailed U-test (in fact, the highest

p-value was 0.0026).

VI. GCC: THE POTENTIALLY HIGH COST OF REDUCTION

Finally, we attempted to apply cause reduction to test

cases produced by Csmith [8] using the GCC 4.3.0 compiler

(released 3/5/2008), using C-Reduce [32] modified to attempt

only line-level reduction, since we hypothesized that reducing

C programs would be more expensive than reducing Spider-

Monkey or YAFFS2 test cases, which have a simpler structure.

Our hypothesis proved more true than we had anticipated:

after 6 days of execution (on a single machine rather than

a cluster), our reduction produced only 12 reduced test cases!

The primary problem is twofold: first, each run of GCC takes

longer than the corresponding query for SpiderMonkey or

YAFFS2 tests, due to the size and complexity of GCC (tests

are covering 161K+ lines, rather than only about 20K as in

SpiderMonkey) and the inherent start up cost of compiling

even a very small C program. Second, the test cases themselves

are larger — an average of 2,222 reduction units (lines) vs.

about 1,000 for SpiderMonkey and YAFFS — and reduction

fails more often than with the other subjects.

While 12 reduced test cases do not make for a particularly

useful data set, the results for these instances did support

the belief that reduction with respect to statement coverage

preserves interesting properties. First, the 12 test cases selected

all crashed GCC 4.30 (with 5 distinct faults, in this case

confirmed and examined by hand); after reduction, the test

cases were reduced in size by an average of 37.34%, and

all tests still crashed GCC 4.3.0 with the same faults. For

GCC 4.4.0 (released 4/21/2009), no test cases in either suite

caused the compiler to fail, and the reduced tests actually

covered 419 more lines of code when compiled. Turning to

branch coverage, an even more surprising result appears: the

minimized tests cover an additional 1,034 branches on GCC

4.3.0 and an additional 297 on 4.4.0. Function coverage is also

improved in the minimized suite for 4.4.0: 7,692 functions

covered in the 12 minimized tests vs. only 7,664 for the

original suite. Unfortunately the most critical measure, the

gain in test efficiency, was marginal: for GCC 4.3.0, the

total compilation time was 3.23 seconds for the reduced suite

vs. 3.53 seconds for the original suite, though this improved

to 6.35s vs 8.78s when compiling with GCC 4.4.0. Even

a 37.34% size reduction does not produce large runtime

improvement, due to the high cost of starting GCC. However,

the added value of the reduced tests is high enough that we are

(1) rewriting portions of C-Reduce to execute much faster and

(2) planning to devote a large computing budget to minimizing

a high-coverage Csmith-produced suite for the latest versions

of GCC and LLVM. It is unclear if 5 minutes of testing, even

after coverage prioritization, will be a strong regression, but

a stable, more efficient “snapshot” of good random tests for

critical infrastructure compilers will be a valuable contribution

to GCC and LLVM’s already high-quality test suites.

A. Threats to Validity

First, we caution that cause reduction by coverage is in-

tended to be used on the highly redundant, inefficient tests

produced by aggressive random testing. While random testing

is sometimes highly effective for finding subtle flaws in soft-

ware systems, and essential to security-testing, by its nature

it produces test cases open to extreme reduction. It is likely

that human-produced test cases (or test cases from directed

testing that aims to produce short tests) would be not reduce

well enough to make the effort worthwhile. The quick test

problem is formulated specifically for random testing, though

we suspect that the same arguments also hold for model

checking traces produced by SAT or depth-first-search, which

also tend to be long and redundant. The primary threat to

validity is that experimental results are based on one large case

study on a large code base over time, one mutation analysis of

a smaller but also important and widely used program, and a

few indicative tests on a very large system, the GCC compiler.

VII. RELATED WORK

This paper follows previous work on delta debugging [3],

[4], [33] and other methods for reducing failing test cases.

While previous work has attempted to generalize the circum-

stances to which delta debugging can be applied [34], [35],

[36], this paper replaces preserving failure with any chosen

effect. Surveying the full scope of work on failure reduction in

both testing [32], [37] and model checking [38], [39] is beyond

the scope of this paper. The most relevant work considers delta

debugging in random testing [26], [1], [2], [40], which tends

to produce complex, essentially unreadable, failing test cases

[26]. Random test cases are also highly redundant, and the

typical reduction for random test cases in the literature ranges

from 75% to well over an order of magnitude [26], [40],

[1], [32], [13]. Reducing highly-redundant test cases to enable

debugging is an essential enough component of random testing

that some form of automated reduction seems to have been

applied even before the publication of the ddmin algorithm,

250

e.g. in McKeeman’s early work [41], and reduction for

compiler testing is an active research area [32]. Recent work

has shown that reduction has other uses: Chen et. al showed

that reduction was required for using machine learning to rank

failing test cases to help users sort out different underlying

faults in a large set of failures [13].

Second, we propose an orthogonal approach to test suite

minimization, selection and prioritization from that taken in

previous work, which is covered at length in a survey by

Yoo and Harman [14]. Namely, while other approaches have

focused on minimization [42], [43], [44], [27], selection [15]

and prioritization [28], [45], [46] at the granularity of entire

test suites, this paper proposes reducing the size of the test

cases composing the suite, a “finer-grained” approach that

can be combined with previous approaches. Previous work

on suite minimization has shown a tendency of minimization

techniques to lose fault detection effectiveness [47]. While our

experiments are not intended to directly compare cause reduc-

tion and suite-level techniques, we note that for SpiderMonkey,

at the 30 second and 5 minute levels, fault detection was much

better preserved by our approach than by prioritizations based

on suite minimization techniques.

The idea of a quick test proposed here also follows on work

considering not just the effectiveness of a test suite, but its

efficiency: coverage/fault detection per unit time [10], [11].

Finally, as an alternative to minimizing or prioritizing a test

suite, tests can be constructed with brevity as a criteria, as

in evolutionary testing and bounded exhaustive testing [18],

[19], [20], [21]. However, the applications where random

testing is most used tend to be precisely those where “small

by construction” methods have not been shown to be as

successful, possibly for combinatorial reasons.

VIII. CONCLUSIONS AND FUTURE WORK

This paper shows that generalizing the idea of delta debug-

ging from an algorithm to reduce the size of failing test cases

to an algorithm to reduce the size of test cases with respect to

any interesting effect, which we call cause reduction, allows

us to produce quick tests: highly efficient test suites based

on inefficient randomly generated tests. Reducing a test case

with respect to statement coverage not only (obviously) pre-

serves statement and function coverage; it also approximately

preserves branch coverage, test failure, fault detection, and

mutation killing ability, for two realistic case studies (and

a small number of test cases for a third subject, the GCC

compiler). Combining cause reduction by statement coverage

with test case prioritization by additional statement coverage

produced, across 30 second and 5 minute test budgets and

multiple versions of the SpiderMonkey JavaScript engine, an

effective quick test, with better fault detection and coverage

than performing new random tests or prioritizing a previously

produced random test suite. The efficiency and effectiveness

of reduced tests persists across versions of SpiderMonkey and

GCC that are up to a year later in development time, a long

period for such actively developed projects.

In future work we first propose to further investigate the best

strategies for quick tests, across more subjects, to determine

if the results in this paper generalize well. Second, it is clear

from GCC that cause reduction by coverage is too expensive

for some subjects, and the gain in efficiency is relatively

small compared to the extraordinary computational demands

of reduction. Two alternative mitigations come to mind: first,

it is likely that reduction by even coarser coverages, such as

function coverage, will result in much faster reduction (as

more passes will reduce the test case) and better efficiency

gains. Whether cause reduction based on coarse coverage will

preserve other properties of interest is doubtful, but worth

investigating, as statement coverage preserved other properties

much more effectively than we would have guessed. Initial

experiments with function coverage based reduction of Spi-

derMonkey tests showed good preservation of failure and fault

detection, but we did not investigate how well preservation

carried over to future versions of the software yet. A second

mitigation for slow reduction (but not for limited efficiency

gains) is to investigate changing ddmin to fit the case where

expected degree of minimization is much smaller than for

failures, and where the probabilities of being removable for

contiguous portions of a test case are essentially independent,

rather than typically related, which motivates the use of a

binary search in ddmin.

We also propose other uses of cause reduction. While some

applications are relatively similar to coverage-based minimiza-

tion, e.g., reducing tests with respect to peak memory usage,

security privileges, or other testing-based predicates, other

possibilities arise. For example, reduction could be applied

to a program itself, rather than a test. A set of tests (or even

model checking runs) could be used as an effect, reducing

the program with respect to its ability to satisfy all tests or

specifications. If the program can be significantly reduced, it

may suggest a weak test suite, abstraction, or specification.

This approach goes beyond simply examining code coverage

because examining code that is removed despite being covered

by the tests/model checking runs can identify code that is truly

under-specified, rather than just not executed (or dead code).

Cause reduction can also be used to produce “more erroneous”

code when considering “faults” with a quantitative nature.

For example, C++ compilers often produce unreasonably

lengthy error messages for invalid programs using templates,

a problem well known enough and irritating enough to inspire

a contest (http://tgceec.tumblr.com/) for the shortest program

producing the longest error message. Using C-Reduce, we

started with code from LLVM, with an effect designed to

maximize error message length proportional to code length.

C-Reduce eventually produced a small program:

struct x0 struct A<x0(x0(x0(x0(x0(x0(x0(x0(x0(x0(_T1,x0(_T1>
<_T1*, x0(_T1*_T2> binary_function<_T1*, _T2, x0{ }

This produces a very large error message on the latest g++,

and the message doubles in size for each additional (x0.

251

REFERENCES

[1] A. Groce, G. Holzmann, and R. Joshi, “Randomized differential testing
as a prelude to formal verification,” in International Conference on
Software Engineering, 2007, pp. 621–631.

[2] A. Groce, K. Havelund, G. Holzmann, R. Joshi, and R.-G. Xu, “Estab-
lishing flight software reliability: Testing, model checking, constraint-
solving, monitoring and learning,” Annals of Mathematics and Artificial
Intelligence, accepted for publication.

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” Software Engineering, IEEE Transactions on, vol. 28, no. 2, pp.
183–200, 2002.

[4] R. Hildebrandt and A. Zeller, “Simplifying failure-inducing input,” in
International Symposium on Software Testing and Analysis, 2000, pp.
135–145.

[5] K. Claessen and J. Hughes, “QuickCheck: a lightweight tool for random
testing of haskell programs,” in ICFP, 2000, pp. 268–279.

[6] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in International Conference on Software Engi-
neering, 2007, pp. 75–84.

[7] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm testing,”
in International Symposium on Software Testing and Analysis, 2012, pp.
78–88.

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2011, pp. 283–294.

[9] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu, “Random test run
length and effectiveness,” in Automated Software Engineering, 2008, pp.
19–28.

[10] A. Gupta and P. Jalote, “An approach for experimentally evaluating
effectiveness and efficiency of coverage criteria for software testing,”
Journal of Software Tools for Technology Transfer, vol. 10, no. 2, pp.
145–160, 2008.

[11] M. Harder, J. Mellen, and M. D. Ernst, “Improving test suites via
operational abstraction,” in Software Engineering, 2003. Proceedings.
25th International Conference on. IEEE, 2003, pp. 60–71.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique,” in Automated Software Engi-
neering, 2005, pp. 273–282.

[13] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2013, pp. 197–
208.

[14] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp.
67–120, Mar. 2012.

[15] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative study of
coarse- and fine-grained safe regression test-selection techniques,” ACM
Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp. 149–183, 2001.

[16] A. Groce, K. Havelund, and M. Smith, “From scripts to specifications:
The evolution of a flight software testing effort,” in International
Conference on Software Engineering, 2010, pp. 129–138.

[17] Android Developers Blog, “UI/application exerciser monkey,” http://
developer.android.com/tools/help/monkey.html.

[18] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: an evolutionary test
approach for Java,” in IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2010, pp. 185–194.

[19] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 416–419.

[20] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algorithms for
randomized unit testing,” IEEE Transactions on Software Engineering
(TSE), vol. 37, no. 1, pp. 80–94, 2011.

[21] J. Andrews, Y. R. Zhang, and A. Groce, “Comparing automated unit
testing strategies,” Department of Computer Science, University of
Western Ontario, Tech. Rep. 736, December 2010.

[22] J. Ruderman, “Introducing jsfunfuzz,” 2007, http://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz/.

[23] M. Gligoric, A. Groce, C. Zhang, R. Sharma, A. Alipour, and D. Mari-
nov, “Comparing non-adequate test suites using coverage criteria,” in
International Symposium on Software Testing and Analysis, 2013, pp.
302–313.

[24] A. Groce, A. Fern, J. Pinto, T. Bauer, A. Alipour, M. Erwig, and
C. Lopez, “Lightweight automated testing with adaptation-based pro-
gramming,” in IEEE International Symposium on Software Reliability
Engineering, 2012, pp. 161–170.

[25] J. Ruderman, “Mozilla bug 349611,” https://bugzilla.mozilla.org/show\
bug.cgi?id=349611 (A meta-bug containing all bugs found using jsfun-

fuzz.).

[26] Y. Lei and J. H. Andrews, “Minimization of randomized unit test cases,”
in International Symposium on Software Reliability Engineering, 2005,
pp. 267–276.

[27] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimization of
a test suite,” Inf. Process. Lett., vol. 60, no. 3, pp. 135–141, 1996.

[28] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions
on, vol. 27, no. 10, pp. 929–948, 2001.

[29] “Yaffs: A flash file system for embedded use,” http://www.yaffs.net/.

[30] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering, 2005, pp. 402–411.

[31] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei, “Is operator-based
mutant selection superior to random mutant selection?” in International
Conference on Software Engineering, 2010, pp. 435–444.

[32] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for C compiler bugs,” in Conference on Programming
Language Design and Implementation, 2012, pp. 335–346.

[33] A. Zeller, “Yesterday, my program worked. today, it does not. why?”
in ESEC / SIGSOFT Foundations of Software Engineering, 1999, pp.
253–267.

[34] J. Choi and A. Zeller, “Isolating failure-inducing thread schedules,” in
International Symposium on Software Testing and Analysis, 2002, pp.
210–220.

[35] H. Cleve and A. Zeller, “Locating causes of program failures,” in ICSE,
G.-C. Roman, W. G. Griswold, and B. Nuseibeh, Eds. ACM, 2005,
pp. 342–351.

[36] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Foundations of Software Engineering, 2002, pp. 1–10.

[37] G. Misherghi and Z. Su, “Hdd: hierarchical delta debugging,” in Inter-
national Conference on Software engineering, 2006, pp. 142–151.

[38] P. Gastin, P. Moro, and M. Zeitoun, “Minimization of counterexamples
in SPIN,” in In SPIN Workshop on Model Checking of Software.
Springer-Verlag, 2004, pp. 92–108.

[39] A. Groce and D. Kroening, “Making the most of BMC counterexam-
ples,” Electron. Notes Theor. Comput. Sci., vol. 119, no. 2, pp. 67–81,
Mar. 2005.

[40] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer, “Efficient
unit test case minimization,” in International Conference on Automated
Software Engineering, 2007, pp. 417–420.

[41] W. McKeeman, “Differential testing for software,” Digital Technical
Journal of Digital Equipment Corporation, vol. 10(1), pp. 100–107,
1998.

[42] S. McMaster and A. M. Memon, “Call-stack coverage for GUI test suite
reduction,” Software Engineering, IEEE Transactions on, vol. 34, no. 1,
pp. 99–115, 2008.

[43] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size
of coverage-based test sets,” in In Proc. Twelfth Int’l. Conf. Testing
Computer Softw, 1995.

[44] H.-Y. Hsu and A. Orso, “Mints: A general framework and tool for
supporting test-suite minimization,” in Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on. IEEE, 2009, pp.
419–429.

[45] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006
international symposium on Software testing and analysis, ser. ISSTA
’06. New York, NY, USA: ACM, 2006, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1146238.1146240

[46] S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,” Software
Quality Journal, vol. 12, no. 3, pp. 185–210, 2004.

[47] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Journal of Software Testing, Verification,
and Reliability, vol. 12, pp. 219–249, 2007.

252

