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Abstract— This paper presents theory and algorithms for the 
synthesis of standard C-implementations of speed-independent 
circuits. These implementations are block-level circuits which may 
consist of atomic gates to perform complex functions in order 
to ensure hazard freedom. First, we present Boolean covering 
conditions that guarantee that the standard C-implementations 
operate correctly. Then, we present two algorithms that produce 
optimal solutions to the covering problem. The first algorithm 
is always applicable, but does not complete on large circuits. 
The second algorithm, motivated by our observation that our 
covering problem can often be solved with a single cube, finds the 
optimal single-cube solution when such a solution exists. When 
applicable, the second algorithm is dramatically more efficient 
than the first, more general algorithm. We present results for 
benchmark specifications which indicate that our single-cube 
algorithm is applicable on most benchmark circuits and reduces 
run times by over an order of magnitude. The block-level circuits 
generated by our algorithms are a good starting point for tools 
that perform technology mapping to obtain gate-level speed- 
independent circuits.

Index Terms— Asynchronous circuits, automatic synthesis, 
speed independence, standard C-implementation.

I. INTRODUCTION

AS COMPETITIVE asynchronous chips gain attention
[16], [43], [45], asynchronous design is increasingly 

being considered as a practical and efficient design alternative. 
Asynchronous designs do not require a global clock for syn
chronization. Instead, synchronization is event driven in that 
transitions on wires act to request the start of a computation 
and acknowledge its completion. By removing the global 
clock, asynchronous circuits have the advantages of absence 
of problems related to clock skew, freedom from designing 
for worst case delay, and automatic power-down of unused 
circuitry.

Speed-independent circuits are an attractive subclass of 
asynchronous circuits because they can tolerate delay varia
tions resulting from variations in IC processing, temperature, 
and voltage. More precisely, these circuits work correctly re
gardless of the delays of individual gates, while assuming zero 
wire delays [36]. As a result, achieving speed independence
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avoids the need for many timing assumptions and delay lines 
that can sometimes increase circuit area and delay and/or 
reduce circuit reliability. This insensitivity to variation in gate 
delays implies that speed-independent systems are also modu
lar in that components within a speed-independent system can 
be replaced by faster components without needing to redesign 
any other part of the system. Moreover, speed-independent 
circuits can exhibit more concurrency than fundamental mode 
circuits [48], [39], [44] which require that inputs change only 
after the entire circuit is guaranteed to be stable. Speed- 
independent circuits can also be easily verified [3], [14], 
and have a testability advantage— they are self-checking with 
respect to a broad class of multiple output stuck-at faults [2].

Traditionally, the synthesis of speed-independent circuits 
either required completion sensing networks or encoded inputs 
and outputs [1] which lead to slow and area-inefficient designs. 
More recently, researchers proposed using complex gates in 
which every specified output signal was implemented with a 
single, possibly very complicated, atomic gate [10], [34]. The 
reliability of such complex-gate circuits, however, can be low 
because unmodeled glitches (i.e., runt voltage pulses or haz

ards) within the complex gates may cause circuit malfunction. 
This lack of reliability is especially problematic in standard
cell and programmable gate-array implementations in which 
complex gates are usually implemented with a collection of 
standard logic cells. A more reliable approach is to synthesize 
gate-level implementations comprised of only basic limited 
fan-in gates that can be easily incorporated into standard-cell 
and gate-array libraries. Synthesizing limited fan-in basic-gate 
implementations, however, is challenging primarily because 
naive decompositions of complex or high-fan-in gates can 
often introduce hazards into the circuits.

Martin and Burns faced similar problems when they used 
complex gates to synthesize quasi-delay-insensitive circuits, a 
family of circuits closely related to speed-independent circuits 
which are insensitive to delays on gates and an identified 
subset of the wires (referred to as nonisochronic forks). 
To address this problem, they add state variables to the 
specification in such a way as to simplify all complex gates 
until all gates are small and exist in the gate library or 
can be reliably generated using a module generator [31]. 
Unfortunately, the addition of state variables often requires 
user intervention, and some circuits require specialized gates 
which may not be suited for gate-array and standard-cell 
implementations. Nevertheless, this semiautomated method 
has been used to build many large custom designs including a 
16 bit quasi-delay-insensitive microprocessor [32], [43].

Kishinevsky and Varshavsky proved that a gate-level speed- 
independent implementation can always be found for a limited
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class of specifications [47, Ch. 5]. They considered distributive 

specifications of autonomous circuits [35] which have no 
inputs. They proved that all such specifications can be im
plemented speed-independently using two-input NAND gates. 
Their goal, however, was theoretical in nature, and did not 
include practical considerations such as speed and area. As a 
result, their algorithm produces large, complex circuits because 
it unnecessarily adds many state variables to avoid hazards. 
In addition, since their circuits do not model inputs, their 
algorithm is restricted to circuits that do not exhibit conditional 
behavior modeled by input (environmental) choice.

Since then, there have been several works on synthesizing 
speed-independent circuits from specifications with choice. 
First, in a preliminary version of this work [4], we de
veloped an algorithm to generate unlimited fan-in block- 
level speed-independent circuits from state graph (SG) spec
ifications that can model input choice. Subsequently, Lin 
and Lin developed an algorithm transforming a free-choice 
signal transition graph (STG) [10] into an unlimited fan- 
in block-level speed-independent circuit [29]. In addition, 
Kondratyev et al. proposed a similar synthesis algorithm to our 
previous work [23]. The theory in [23] is ambiguous, allowing 
some hazardous circuits to be synthesized. Fortunately, this 
ambiguity can be resolved with an amendment [24], making 
their theory essentially equivalent to our results presented in 
[4]. Our original theory and algorithms provide the starting 
point for further extensions and improvements to both the 
synthesis of block-level implementations [21], [25] and the 
more recent works on the technology mapping of block-level 
implementations into gate-level realizations [12], [22].

This paper describes this underlying theory, and presents 
algorithms for the block-level synthesis algorithm—the gen
eration of a standard C-implementation. We show that this 
synthesis problem can be solved using a binate covering 

algorithm. The binate covering algorithm, however, is NP 
complete. Consequently, straightforward explicit-state imple
mentations of the algorithm do not complete when applied to 
large circuits. This motivates the development of our single

cube binate covering algorithm which has significantly lower 
complexity than the general algorithm, but targets only a 
subclass of circuits. We present run-time results of the resulting 
block-level circuits for numerous benchmark specifications, 
including those given in Berkeley’s tool SIS [42]. The results 
show that the single-cube binate algorithm is applicable on 
most benchmark circuits, and reduces run times by over an 
order of magnitude on circuits. In fact, for some large circuits, 
only the single-cube algorithm can successfully complete.

II. Background

This section describes our state graph (SG) specification 
model, the standard C-implementation block-level architec
ture, and our definition of a correct implementation of a given 
specification.

A. State Graph

We specify circuits with a state graph (SG) which can be 
derived from one of many higher level languages, including 
signal transition graphs [10] and CSP [38]. An SG is modeled 
by a tuple ( / ,  O. 'I'. F. s0, A), where I  is a set of input signals,

State = (a j^ c l t )

Fig. 1. SG with input choice (motivated by the example in [12, Fig. 3(d)]. 
The example has inputs {a, 6, d) and outputs {o).

O is a set of output signals, '!> is a set of states, I ’ C <I> x '!> is a 
set of state transitions, s0 is the initial state, and A is a labeling 
function for states. When not ambiguous, we may refer to a 
state by its label. The union of input and output signals is 
denoted ASpec, and is called the set of external signals.

The labeling function A labels each state s e  $  with a 
bitvector over the external signals, i.e., A(s) e  B A '- , where 
B  =  {0,1}. The value of a signal u  e  A spec in a state 
s, denoted s(u), is the value of u  in the label of s, i.e., 
A(s)(u). The function bitcomp(s,u) returns the label formed 
from s by complementing the bit corresponding to u. For 
example, for the state s labeled [0000] in the SG in Fig. 1,

A state graph must be strongly connected, and each ordered 
pair (s, s ')  e  T must differ in exactly one signal, i.e., A (.s') =  
bitcomp(s,u) for some u  e  A Spec- When a state transition 
(s, s ')  e  T and s' =  bitcomp(s:u), the notation s A  s ' may 
be used. A signal u  e  A Spec is enabled in state s [denoted 
enabled(u, s)] if u  can change in state s, that is, if there exists 
an s' e  $  such that s A  s' holds.

An SG has complete state coding (CSC) [10] if, for every 
pair of states s and s' in $  that have the same label (A(s) =  

A (s ')) , s and s' have the same output signals enabled, i.e.,

Vm e  O [enabled(u, s) o  enabled(u, s')].

Complete state coding is a necessary property for an SG to 
be implementable as a speed-independent circuit [10]. This 
property is necessary to ensure that derivation of the next-state 
logic for the output signals is possible. Adding state variables 
can transform an arbitrary SG into one that satisfies complete 
state coding [11], [19], [21], [27], [46]. We assume that such 
state assignments have been accomplished, and we deal only 
with state graphs that have the complete state coding property.

A signal u  is disabled by a signal o, o /  «, in a state s if u  is 
enabled in state s and not enabled in s' where s A  s '. An SG 
is determinate speed independent if, in every state transition in 
the SG, output signals may not disable any signals (no output 
choice), i.e.,

V s,s' e  $  Vn e  O V ue  i u O

[ [ s A s ' A k / d A  enabled(u, s)] => enabled(u, s')]
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and input signals may not disable output signals, but may 
disable other input signals (input choice), i.e.,

Vs, s' e  $  Vn e  I  Wu e O

[[s A  s' A enabled(u, s)] => enabled(u, s ') ] .

Notice that determinate speed-independent SG’s can express 
a variety of behaviors, including OR causality, but not arbi
tration (output choice).

This paper only deals with the synthesis of circuits 
from determinate speed-independent SG’s. To handle speed- 
independent SG’s that are not determinate (i.e., have output 
choice), we must design the logic associated with the output 
signals exhibiting output choice manually (using some type of 
arbiter), relabel these output signals as inputs, and then, using 
the automated methodology described in this paper, synthesize 
the logic associated with the remaining output signals.

The SG in Fig. 1 is determinate speed independent. For
mally, this SG is modeled by (I, O, T, s0, A) where I  =  

{(a,b,d}, O  =  {c}, and s0 =  [0000], There are nine states 
in the set of states '!> including states [0000] and [0100], 
There are ten transitions in the set of transitions T including

transitions illustrate the input choice between a and b since, 
when a fires, b is disabled, and when b fires, a is disabled.

B. Folding the SG

An SG has unique state coding (USC) [10] if every state 
in the state graph has a unique label. Unlike complete state 
coding, unique state coding is not a necessary condition for 
synthesis. In this paper, however, we assume that the SG has 
unique state coding because this makes the concepts in this 
paper much easier to formalize and prove. Fortunately, an SG 
with complete state coding can be transformed into an SG with 
unique state coding by folding states with the same label into 
a single state. More precisely, to fold states, take every pair of 
states s and s' with the same label, remove s' from the set of 
states 4', and replace s' with s in every place that s' appears 
in T. Also, if s0 =  s', reassign s0 to s. Notice that the SG 
depicted in Fig. 1 already has unique state coding, and thus 
does not require folding.

Note also that any specified sequence of state labels (or 
equivalently, signal transitions) in the unfolded state graph 
is present in the folded state graph. Thus, intuitively, if any 
implementation operates properly for a folded state graph, 
it will operate properly for the unfolded state graph. We 
formalize this notion of operate properly only for folded state 
graphs because the unique state coding property makes the 
formal definition significantly simpler (see Section II-D).

C. The Standard C-Implementation

A circuit implementation is a tuple ( / ,  O, N , E, F), where 
I  is the set of input signals, O  is the set of output signals, N  

is the set of internal signals, E  is a set of connections between 
signals, and F  is a set of gate functions. The union of inputs, 
outputs, and internal signals is denoted AImpi, and is also 
called the set of circuit signals. Each edge e e  E  represents 
a connection between circuit signals. An edge e is directed, 
connecting a source signal to a sink signal. The set of fan-ins 
of u, denoted FI(u), is all sources of edges that have u  as

(a)

(b)
Fig. 2. (a) Standard C-implementation of output for specification depicted 
in Fig. 1. (b) Standard C-implementation framework for an output signal.

its sink. If u  is an internal or output signal, FI(u) is the set 
of inputs to the gate-driving signal u. II' u is an input, on the 
other hand, FI(u) =  0.

We define an implementation state to model a snapshot in 
time of all circuit signals. An implementation state is either 
a bit vector over -l[nipi, i.e., q e  or the special
value gran that models the failure state of an implementation 
entered after the occurrence of a hazard. An implementation 
state of the circuit shown in Fig. 2(a) is a Boolean vector that 
gives values to the state variables [abode gh\. For example, in 
q =  [1110001], a, 6, c, and h are at a logic high, while d, e, and 
g are at a logic low. Each gate output signal u  has an associated 
Boolean function /  e  F  of arity \FI(u)\ +  1. We refer to (q) 

as the internal evaluation of u  in q. For q e  BAlmpl, it depends 
on the values of circuit signals in implementation state q, and 
is defined to be f u (q(u), q(vi), ■■■, q(vr)), where FI(u) =  

{vi,---,vr }. For example, the function corresponding to 
signal g is f g =  OR(e,d) and, in state q =  [1110001], 
j.jiq) =  0. For q =  gfaii, on the other hand, we say that 
f u(q) is unknown.

The theory and algorithms developed in this paper pertain 
to a restricted class of circuits whose structure is based on the 
standard C-implementation. In this framework, each output 
is driven by a signal network that consists of one two-input 
Muller C-element, two networks of combinational logic, as 
shown in Fig. 2(b). The Muller C-element has a noninverted 
input from the set network Su and an inverted input from 
the reset network R u. Its next state equation is f u(q) =

O )  • <?(«) +  q(Su) ■ q{Ru)- In other words, 
when Su is high and R u is low, the signal u  is driven high. 
When Su is low and R u is high, u  is driven low. Otherwise, 
the signal u  retains its old value.

To design these circuits, the state graph is first partitioned 
into a collection of excitation regions. An excitation region is 
a maximally connected set of states in which the output signal 
is both enabled and at a constant value. Excitation regions are



208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

divided into two types, depending on the value of the output 
signal in the excitation region. If the value is 0, the excitation 
region is a set region since, in all excitation region states, the 
output signal is enabled to rise; otherwise, the excitation region 
is a reset region. Both set and reset regions for a signal u  are 
indexed with the variable k, and the /cth set region of signal u 

is denoted ER(u } . k). Similarly, the /cth reset region is denoted 
E R (u i,k ).  For example, there are two set excitation regions 
for the signal c in Fig. 1. The first, denoted ER(c], 1), is the 
set of states {[0100]}, and the second, denoted ER(c | ,  2), is 
the set of states {[1101]}.

For each excitation region ER(u*, k), one region network 
is built which implements a cover of the excitation region 
denoted C(u*,k). It is important to emphasize that, in this 
paper, we assume that the cover is implemented with an 
atomic gate which may be complex and have unlimited 
fan-in. As illustrated in Fig. 2(b), multiple set region networks 
are merged into the set network using a discrete OR gate. 
When only one set region network is needed, the OR gate is 
omitted. Reset networks are constructed in a similar fashion. 
The fact that some region networks may be implemented 
with a complex gate (i.e., an arbitrary “block” of logic that 
is assumed to be internally hazard free) is the reason that we 
say our synthesis algorithm produces block-level circuits. The 
focus of this paper is to provide theory and algorithms to 
derive the cover of the region networks that ensures that the 
block-level circuits are hazard free.

It is important to emphasize that the synthesized block-level 
circuits can be optimized. Further decomposition and logic 
optimization are typically done to obtain improved circuits that 
can be mapped into given gate libraries. The decomposition 
and optimization techniques involved, however, are outside the 
scope of this paper (for more details see, e.g., [2], [9], [22]).

Important to finding the covers of region networks is the 
notion of a quiescent region. A maximally connected set of 
states in which an output signal u  is not enabled is called 
a quiescent region of u. For each signal u  in a determinate 
speed-independent SG, there exists at most one of its quiescent 
regions directly reachable from a given excitation region of u, 

but a quiescent region may be entered from multiple excitation 
regions of u. The quiescent region associated with the /cth 
excitation region is denoted QR(u*, k). For example, the set 
regions ER(c | ,  1) and ER(c],2) in Fig. 1 share the same 
quiescent region QR(c]', 1) =  QR(c]', 2) =  {[1111], [1110],

Fig. 2(a) depicts a standard C-implementation of the output 
c for the SG shown in Fig. 1. The cover of the first set region 
ER(c 1.1) is derived to be abc, and is implemented with the 
complex gate AND-N-l-3(a,b,c). The cover of the second 
set region ER(c | , 2 )  is derived to be d, and is implemented 
with a wire connected to the input d. The deriviation of 
region network covers is the focus of this paper. In particular, 
we develop a covering problem for each excitation region 
whose solutions constitute a hazard-free circuit (Section III), 
and provide efficient techniques for finding optimal covering 
solutions (Section IV).

Formally, the circuit is modeled by (I, O, N. E , F), where
I  =  {a,b,d}, O  =  {c}. The internal signals N  =  {e,g,h}. 

The set of edges E  include (a, e), (b, e), and (c, e), which cor
respond to the fan-ins of e. The functions /  e  F  that we asso

ciate with each internal signal are f e =  AND-N-l(a, b, c), f g =  

OR(d, e), f h =  INV(b), and f c =  C-ELEMENT-N-l (h, g). The 
circuit signals a, b, and d are input signals, and thus have no 
associated gate function; their behavior is derived from the 
specification. Notice that the inverter bubbles are included in 
the complex gate function. For example, the complex gate 
AND-N-1-3 is an AND gate whose first and third inputs are 
inverted.

D. Definition of Correctness

Informally, a correct speed-independent circuit is one whose 
behavior satisfies a given specification under all combinations 
of gate delays. We formalize this notion of satisfies with a 
definition of correctness of speed-independent circuits that 
is comprised of two parts: complex-gate equivalence which 
primarily deals with functional correctness, and hazard free
dom which primarily deals with behavioral correctness, i.e., 
transient behavior.

1) Complex-Gate Equivalence: Intuitively, a circuit is 
complex-gate equivalent to its specification when, ignoring 

hazards, the circuit adheres to the specification. To model the 
notion of ignoring hazards, we analyze the implementation 
states in which all internal signals have settled and any 
transient hazards (glitches) have died down. We first define 
the notions of enabled, projection, and settled.

An internal signal is enabled in an implementation state 
q if w’s value does not equal /„(<?). For example, in state 
q =  [1110001], the internal signal g is enabled to fall because

An implementation state q projects onto the specification 
state s, denoted s =  proj(ASpec)(q), iff s(u) =  q(u) for all u 

in A Spec- Because we restrict ourselves to specification SG’s 
that satisfy USC, there exists at most one specification state 
which satisfies this property. Continuing with our example, 
implementation state [1110001] projects onto the specification 
state labeled [1110], If no specification state satisfies this 
definition, we say q projects onto a special specification state 
referred to as sunknown. Such an implementation state can exist 
if, due to some bug in the circuit, an output signal fires when, 
according the specification, it is not supposed to fire. This is 
made more clear in the next section.

For each specification state s e  <I>, there exists an im
plementation state extend(s), called an implementation-state 

extension, that projects onto s and in which no internal 
signals are enabled. More specifically, the value of signal 
u  in extend(s) is called its settled value, and is denoted 
extend(s)(u). The values of extend(s)(u) are unique, and 
can be easily derived from the structure of the standard 
C-implementation. Consider, first, the settled value of the 
output u  of a region network in extend(s). It equals one if and 
only if s is in the cover of the region network. The settled value 
of the output of the OR gate in a signal network in extend(s) 

equals the Boolean sum of the settled values of all region 
networks that are inputs to the OR gate. As an example, for 
the specification state [1110], extend(s) =  [1110000] because 
[1110000] projects onto [1110] and because, in [1110000], all 
of the internal signals e, g, and h are not enabled.

For each specification state s, the value that an output (or 
internal) signal is driven to in s is called the external evalu

ation of the signal in s, denoted ext.eval(s)(u). The external
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Fig. 3. Implementation SG describing the behavior of the circuit depicted in Fig. 2(a) in the environment described by the specification SG depicted in Fig. 1.

evaluation of an output u in state s equals the local evaluation 
of u  in the implementation-state extension of s. For example, 
the external evaluation of c in state [1110], ext-eval([1110])(c), 

equals f c(extend([ 1110]) =  / c([1110000]) =  1.
A circuit is complex-gate equivalent to its specification 

when the external evaluation of all outputs agrees with the 
specification, that is, if the external evaluation of each output 
differs from its current value in exactly those specification 
states in which it is enabled, i.e.,

Vs e  $  
Vw e  o [[ext.eval(s)(u) ^  s(w)] o  enabled(u, s)\. (1)

In our example circuit, the only specification states in which 
s(c) ^  ext-eval(s)(c) are [0010], [0110], and [1101], Since 
these are exactly the states in which c is enabled, the circuit 
is complex-gate equivalent to the specification.

Note that complex-gate equivalence is similar to the notion 
of completeness with respect to specification introduced by 
Ebergen [15] in that both ensure that the circuit can exhibit 
any specified behavior given the appropriate input choices and 
gate delays.

2) Hazard-Freedom: If each output is built using a single 
atomic complex gate, then complex-gate equivalence is the 
only correctness criterion needed since, under these conditions, 
there are no hazards. However, this paper deals with block- 
level circuits which contain internal signals in which hazards 
can occur as a result of the added delay modeled within the 
circuit. Hence, the second part of our notion of correctness is 
hazard freedom.

Hazard freedom is a safety property of the actual behavior 
of a circuit implementation in a particular environment. The 
circuit and implementation's joint behavior is modeled using 
an implementation state graph. An implementation state graph 
is defined by (Q ,R ,q 0), where Q  is the set of reachable 
implementation states, R  is a state transition relation, and q0

is the initial state. As an example, the implementation state 
graph of our example circuit is depicted in Fig. 3.

The initial state of the implementation q0 is defined to be the 
implementation-state extension of the initial specification state 
s0 [i.e., g0 =  extend(s0)]. For example, since s0 =  [0000] in 
our example circuit, q0 =  [0000001], This model is based on 
the assumption that, after circuit power-up, the environment 
holds the external signals fixed until all internal signals have 
time to settle.

The transition relation R  includes one transition for every 
enabled signal in every implementation state. In Section II- 
D l), we defined that an internal signal is enabled if f u(q) /  
q(u). Here, we extend this definition to inputs and outputs. 
For outputs, we use the same criterion, i.e., an output u  is 
enabled in q if f u(q) ^  q(u). For an input u, on the other 
hand, u  is enabled if u  is enabled in proj(q)(ASpec), the 
specification state on to which q projects. For example, in 
state q =  [1110010], a is enabled to fall since the input signal 
a is enabled to fall in [1110] (the specification state q projects 
onto). We also dictate that no signal is enabled in both the 
failure state gran and the special specification state ^unknown-

The destination states of these state transitions depend upon 
whether or not the transition is hazard free. A transition 
associated with an enabled signal v in nonfailure state q is 
defined to be hazard free on u  if the firing of v does not 
disable u. That is, hazard-free(u, q, v) holds exactly when

[.enabled(u,q) => enabled(u,bitcomp(v,q))].

Note that we apply this definition only to internal and output 
signals, not to inputs which are allowed to disable other 
inputs. The state the circuit enters when an enabled signal fires 
depends on whether the transition causes a hazard on any gate 
output u  (internal signal or output). If the firing of the signal 
causes a hazard at any gate output, then the state entered is 
defined to be the failure state ®aa. Otherwise, the destination
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state of the transition is bitcomp(v,q). For example, there is 
a transition associated with g in state q =  [1110010] since g 

is enabled in this state. The transition is hazard free on all 
signals since the only signal that does not maintain its enabled 
status during the transition is g itself.

Implementation state transitions in R  are denoted by q A  q', 

similar to specification state transitions. Thus, the transition 
described in the above paragraph is denoted [1110010] 
[1110000]. In addition, if the signal that changes, v, is not 
relevant, the notation q —> q' may be used. This model assumes 
that any internal hazard in a speed-independent circuit can 
propagate to an output, and hence cause a circuit malfunction. 
This assumption has been proven true for a large class of 
circuits [6]. For other circuits where this theory has not been 
proven, the assumption is conservative in that no hazardous 
circuit is considered hazard free.

The set of reachable states of an implementation SG, 
denoted Q, can be recursively defined as follows:

extend(so) e  Q; [3<? e Q [ g - >  </]] => [q1 e  Q\.

Intuitively, a circuit is hazard free if no signal transition is 
ever disabled. We formalize this by saying that a circuit is 
hazard free if the failure state is not reachable, i.e.,

fe ii &.Q- (2)

Since the implementation state graph of our example circuit 
does not contain gfaii, it is hazard free. Notice that hazard 
freedom by itself is not a sufficient check for correctness 
because circuits that do not behave as specified may still be 
hazard free.

III. Correct Covers: Theory

To ensure hazard freedom of the block-level implementa
tion, the covers of the region function must satisfy certain cor

rect cover constraints. This section develops these constraints, 
and proves that they guarantee our criteria for correctness: 
complex-gate equivalence and hazard freedom.

A. Correct Cover Conditions

A cover is a correct cover if it satisfies two conditions. First, 
it must satisfy the covering constraint which says that the 
reachable states in the cover must include the entire excitation 
region, but must not include any states outside the union of 
the excitation and associated quiescent region, i.e.,

ER(u*, k) C [C(u*, k) fl <&] C [ER(u*, k) U QR(u*, k)]. (3)

Second, it must satisfy the entrance constraint which says that 
a correct cover must only be entered through excitation region 
states, i.e.,

[s C(u*, k) A s' <E C(u*, k) A (s, s') 6 T]
=> s' E ER(u*, k). (4)

The covering constraint guarantees that the circuit is 
complex-gate equivalent to the specification. Together, the 
constraints guarantee that each region function is only allowed 
to turn on when it is actively trying to fire u. This guarantees 
that every transition of the region functions, the OR gates,

Reachable states of cover

Inputs = {a, b} gtate = (a lT cc f)
Outputs = {c,d}

(a)

(b)
Fig. 4. (a) Cover violating the entrance constraint for a set excitation region 
of the signal . (b) Corresponding hazardous logic implementation.

and the C element is hazard free. It guarantees that no two 
inputs to the OR gates are simultaneously one, avoiding what 
has traditionally been called a delay hazard [1].

To illustrate the importance of the entrance constraint in 
correct covers, consider the cover and corresponding standard 
C-implementation for the output signal c shown in Fig. 4.

reachable states [0101] and [0111]) fails to satisfy the entrance 
constraint since the state [0110] (which is in the cover) can be 
reached from the state [1110] (which is not in the cover) and 
the state [0110] is not in the excitation region. As a result, the 
corresponding region function AND-N-l(a, b) can turn on and 
off without the AND gate firing. This can cause a glitch at the 
output of the AND gate which makes the circuit hazardous, as 
shown in Fig. 4(b). Specifically, AND-N-l(a, b) can exhibit a 
runt positive pulse when the circuit goes through the sequence 
of states [1110] —> [0110] — [0010] which is highlighted in 
Fig. 4(a). Consequently, the circuit is hazardous, and therefore 
not correct.

From a formal perspective, the existence of the hazard 
means that the implementation state graph describing the joint 
behavior of the circuit and its specification contains the failure 
state . Indeed, the portion of the implementation state 
graph depicted in Fig. 5 contains many transitions to the failure 
state. For example, the transition b~ from state [0110000] 
is hazardous because it disables e+ , thereby creating the 
possibility of the runt pulse described in the above paragraph. 
Because of this hazard, the transition b~ from [0110000] leads 
to the failure state (as illustrated in Fig. 5).
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Fig. 5. Portion of the implementation state graph of the hazardous circuit depicted in Fig. 4.

B. Proof that Correct Covers Lead to Correct Circuits

This section presents a proof that our correct covers are 
sufficient to ensure that a standard C-implementation is a 
correct circuit. First, we prove that correct covers ensure that 
standard C-implementations are complex-gate equivalent to 
their specification, and then we prove hazard freedom.

Lemma 1.1: If, for all outputs u  e  O, all region 
function covers C(u*,k) are correct, then the standard 
C-implementation is complex-gate equivalent to its specifi
cation.

Proof: We prove the result using case analysis on the 
location of s. There are four possible cases.

Case 1: s is in a set region ER(u],k). Then, by the 
covering condition, s is in some set cover and is not in any 
reset cover. Thus, using the definition of settled value, we 
conclude that extend(s)(Su) =  1 and extend(s)(Ru) =  0. 
From the next-state equation of the C-element, we conclude 
that f u(extend(s)) =  1. Consequently, using the definition 
of external evaluation, we conclude that ext-eval(s)(u) =  1. 
Since s e  ER(u]',k) implies that s(u) =  0, we conclude 
that ext.eval(s)(u) ^  -s(u) holds. Since s € ER(u],k), u  is 
enabled in s. Combining the last two conclusions, we have 
that [ext.eval(s)(u) ^  s(u)] o  enabled(u,s) holds, and thus 
complex-gate equivalence is satisfied [see (1)].

Case 2: s is in a set quiescent region QR(u }. k). Then, 
by the covering condition, s is not in any reset cover. Thus, 
using the definition of settled value, extend(s)(Ru) =  0. Since

extend(s)(u) =  s(u) =  1, we conclude f u(extend(s)) =  
1. Since f u(extend(s)) =  1, using the definition of exter
nal evaluation, we can also conclude that ext-eval(s)(u) =  

1. Putting the last two conclusions together, we have that 
ext.eval(s)(u) ^  s(u) does not hold. Since s € QR(u],k), 

u  is not enabled in s. These last two conclusions mean that 
[.ext.eval(s)(u) ^  s(-u)] o  enabled(u, s) holds, and thus that 
complex-gate equivalence is satisfied [see (1)].

Case 3: s is in a reset region E R (u i,k ). Then, by the 
covering condition, s is in some reset cover, and is not in any 
set cover. Therefore, extend(s)(Su) =  0 and extend(s)(Ru) =  

1. Thus, f u(extend(s)) =  0. Similar to Case 1, we can 
conclude that complex-gate equivalence is satisfied.

Case 4: s is in a reset quiescent region QR(u j , k). Then, 
by the covering condition, s is not in any set cover. Thus, 
extend(s)(Su) =  0. Since extend(s)(u) =  s(u) =  0, we 
conclude f u(extend(s)) =  0. Similar to Case 2, we can 
conclude that complex-gate equivalence is satisfied. □

To show hazard freedom, we first show that the covers in a 
set (reset) network are one-hot encoded.

Lemma 1.2: If all covers C(u*,k)  for the set (reset) re
gions of an output signal u  are correct, then their pairwise 
intersections do not contain any states

Proof: (By contraposition) We show that if the pairwise 
intersections of two covers contain a state s £ '!>. (lie 
covers must not be not correct. Assume that there exist two 
set (reset) covers C (u* ,i)  and C (u * ,j)  whose intersection
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contains a specification state s. Since excitation regions must 
be disjoint, we can conclude from the covering constraint that 
s e  QR(u*, i) n  QR(u*,j). We do case analysis on s to show 
that, in all cases, the entrance constraint is violated, and thus 
the covers are not correct.

Case 1: There exists a path of states p contained in 
C (u* ,i)  that originates from a state s* £ ER(u*,i) and ends 
at state s. Because of the covering constraint (3), we know 
E R (u * ,i)n C (u * ,j)  =  0. Consequently, since s* e  ER(u*,i), 

we conclude that s* ^  C (u * ,j) .  Summarizing, we know that 
the path p starts in the state -s, which is not in C (u * ,j)  and 
ends in the state s which is in C (u * ,j) .  Thus, the path p must 
enter C (u * ,j) .  Let the state in which p enters C (u * ,j)  be 
referred to as s'. We know that s' cannot be in ER(u*,j) 

because s' e  p, p is contained in C(u*,i), and, by the 
covering constraint, ER(u*,j)  n  C (u* ,i)  =  0. Consequently, 
by the covering constraint, we can conclude that s' must be in 
QR(u*,j). This violates the entrance constraint [see (4)].

Case 2: There does not exist a path of states p contained 
in C(u*,i) that originates from a state .s, e  ER(u*,i) and 
ends at state s. For this case, let L  be the subset of states 
in C(u*,i) n  QR(u*,i) that are not reachable via paths that 
are contained in C(u*, i) and originate from ER(u*, i). Notice 
that L  represents a subset of all quiescent region states through 
which the cover can be entered. In particular, it contains 
the subset of states that are not enterable through paths 
that originate from ER(u*,i). Because the SG is strongly 
connected, there must exist some state s' e L  that is directly 
reachable from a state s" that is outside L. Since s" £  

C(u*,i), s' violates the entrance constraint [see (4)]. □

Traditionally, hazard freedom (sometimes called speed inde
pendence) is guaranteed when the transition of an output signal 
acknowledges that the circuit is stable and capable of accepting 
new inputs [35], [30]. To formalize this notion, we introduce 
the notions of a request path and its acknowledgment. Let 
p =  g1; q2, ■ ■ •, qn be a path of implementation states. Path p 

is called a request path for signal v if f v(qj) =  f v(qk) =  b 

for all n > j ,  k >  1. In all of these states, v is being 
driven to the value b. We say that the request path p is a 
maximal request path of v if p can be entered from and exited 
to states with a different internal evaluation of v. Thus, for 
the path p to be maximal, there must exist state transitions 
go qi and qn -> qn+1 for which f v(q0) ± fv(qi) and 
fv(qn) 7̂  fv(qn+1). We say that a request path p for signal 
v is acknowledged by a transition of an output signal u  if 
it contains a state q, from which there exists a transition 
qi A  qj such that qj(v) =  f v(qi). Thus, if a request path 
for v is acknowledged, the signal v is guaranteed to reach its 
internal evaluation, and thus not be disabled. For example, in 
the implementation state graph of the hazard-free circuit, the

request path for h for the following reasons. First, for all 
q e  p, fh(q) =  1, and thus p is a request path for h to

we have go —> gi and fh(qo) =  0 /  fh(qi)- Third, by 
letting qn =  [0000001] and qn+1 =  [0100001], we have 
q„ -> qn+1 and fh(qn+1) =  0 ^  fh(qn). The last two facts 
mean that the request path is maximal. Moreover, this maximal 
request path is acknowledged by the output signal c since

The proof that our correct cover conditions lead to hazard- 
free implementations can be reduced to showing that all 
maximal request paths are acknowledged. An important part 
of this proof relies on the definition of the reachable im
plementation states Q  and, in particular, the initial state 
q0. Recall that g0 is defined such that, in it, no internal 
signals are enabled. This is an important assumption since 
the choice of the initial state can introduce hazards in an 
otherwise hazard-free circuit. For example, consider a standard 
C-implementation that satisfies the correct cover conditions. 
Consider an alternative definition of Q  which would initialize 
the circuit in an implementation state q'0 in which in an OR gate 
of a signal network is enabled to rise because the output of a 
region network is one but enabled to fall. Then, there is a race 
between the region network falling and the OR gate rising. If 
the region network falls first, the OR gate is disabled. We say 
that such a state is not externally aligned since, in it, an internal 
signal is at its external evaluation and also enabled. It can be 
shown that if any reachable state is not externally aligned, the 
circuit is hazardous [2], Our definition of g0 ensures that g0 
is externally aligned (because, in it, no internal signals are 
enabled).

Lemma 1.3: If, for all outputs u e O, all region network 
covers C(u*, k) are correct, then all maximal request paths for 
all signals in the signal network of u  are acknowledged by u, 

and all of the implementation's reachable states are externally 
aligned.

Proof: (Sketch, by induction on the set of reachable 
states)

Base Case: q0 is hazard free because it does not equal 
gfaii. It is externally aligned because, by definition, in it, no 
internal signals are enabled.

Inductive Hypothesis: Consider the set of reachable 
states OJ reachable from the initial state go in at most N  
state transitions. Any maximal request path for a signal v in 
this set is acknowledged by the firing of some output u. In 
addition, all of these reachable states are externally aligned.

Inductive Step: We first show that any state transition 
from the states in ()' is hazard free, and that every new state 
reached is also externally aligned.

Consider a state q e  Q '. We show that every internal and 
output signal v is not disabled in any state transition from q 
using case analysis.

Case 1: Let v be the output of the /cth set (reset) region 
network for a signal u, and assume v is enabled to fall in q. 
If q is not the last state in a maximal request path p for v, it 
cannot be disabled. If, on the other hand, g is the last state 
of a maximal request path p for v, then, by the definition of 
maximal, a transition from g to q' must be possible where 
fv(q’) = 1- This means that s' e C(u]',k) (s' e C(ui,k)), 
where s' =  proj(ASpec)(q'). Using the entrance constraint (4), 
we can deduce that s' e ER(u T, k) (s' e ER(u j ,  k)). Before 
the excitation region is entered, however, the output signal u 

must fall (rise). The only way u  can fall (rise) is if v falls and 
the OR gate in the set (reset) network falls. After falling, v 

is not enabled until the circuit enters state s'. Thus, v cannot 
be enabled in q, a contradiction. Consequently, v cannot be 
disabled in any state transition from q.

Case 2: Let v be the output of the OR gate in a set (reset) 
signal network that is enabled to fall in q. If q is not the last
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state in a maximal request path for v, it cannot be disabled. 
Consider next the case where q is the last state of a maximal 
request path p for v. In this case, because all states in p are 
externally aligned (by the inductive hypothesis), all states in 
the path project onto specification states not contained in any 
cover because, otherwise, the OR gate would be enabled and at 
its external evaluation (logic 1), violating external alignment. 
Consequently, the path must contain a transition in which u 
rises (falls). As in Case 1, this means that v cannot be enabled 
in q, and thus cannot be disabled.

Case 3: Let v be the output of the /dh set (reset) region 
network for a signal u, and let v be enabled to rise. Then q 

must be part of a maximal request path for v to rise. Request 
paths for the network to rise project onto states s e  C(u*, k). 
The request path must extend until reaching a state that 
projects onto s' C(u*, k). Because of the covering constraint 
(3), this means that v is enabled to rise until after u rises 
(falls). Lemma 1.2 guarantees that, in all states in C(u*,j),  
the region network is the only network enabled high. Since u 

cannot rise (fall) unless one set (reset) region network rises 
and the associated OR gate rises, we conclude that u  firing 
acknowledges the rising request paths of the region network. 
Consequently, v cannot be enabled in q, and thus cannot be 
disabled.

Case 4: Let v be the output of the OR gate in a set (reset) 
signal network that is enabled to rise. As in Case 2, q must 
be part of a request path containing only externally aligned 
states. All such paths project onto states in the cover 
for some j .  The region network will be enabled high until 
the circuit leaves the cover which, because of the covering 
constraint (3), can only happen after u  rises (falls). Since 
u  cannot rise (fall) unless the OR gate rises, we conclude 
that u firing acknowledges the rising request paths of the 
region network, the OR gate is acknowledged. Consequently, 
u  cannot be enabled in q, and thus cannot be disabled.

Case 5: Let v =  u and let v be enabled to rise (fall) in 
q. Similar to Cases 2 and 4, q must be part of maximal request 
path in which u  rises and (falls), and this path must contain 
u  firing. Consequently, u  acknowledges the request path, and 
cannot be disabled.

We now show that the next state entered is externally aligned 
by doing case analysis on the internal signals of the circuit.

Case 1: Region network outputs: Because no region net
work output is disabled, we can conclude that changes of 
inputs change a region network’s internal evaluation only 
when the region network is settled. In addition, region net
works only fire in the direction of their settled value. Thus, 
region networks in the next state entered must be externally 
aligned.

Case 2: OR gate outputs: Because the inputs to the OR 
gate are one-hot encoded and are hazard free, they fire only 
when the OR gate is settled. In addition, the OR gate fires only 
in the direction of its settled value. Thus, the OR gate output 
in the next state is always externally aligned. □

It may be useful to note that the hazardous state graph has 
many maximal request paths that are not acknowledged. For 
example, a (short) maximal request path for e is [0110000]. It 
can be entered by a falling from [1110000], enabling e to rise. 
It can be exited by b falling, thereby disabling e and driving 
the circuit into the failure state

From the above results, we now prove our final theorem.
Theorem 1: If, for all outputs u  £ O, all region net

work covers C(u*,k)  are correct, then the standard C- 
implementation is correct.

Proof: We have proven complex-gate equivalence in 
Lemma 1.1 and hazard freedom in Lemma 1.3. □

C. Completeness of the Theory

It is important to realize that the cover that includes only 
excitation region states is always a correct cover, meaning 
that a correct cover always exists. More formally, we have 
the following.

Theorem 2: For all excitation regions ER(u*, k) in a deter
minate SG satisfying USC, a correct cover exists.

Proof: The cover C(u*,k) =  ER(u*,k) satisfies both 
the covering and entrance constraints. □

Thus, for example, the cover abed is a correct cover for 
the excitation region ER(c} . 1) because it includes only the 
states in ER(c}', 1), i.e., the one state [0100], The goal of our 
synthesis algorithms described in the next section is to find 
correct covers which have the lowest cost such as defined 
below.

IV. ALGORITHMS

This section presents algorithms to solve the above cover
ing problem to obtain an optimal region function for each 
excitation region. In general, a cover is implemented with 
a set of cubes. A cube is a set of literals which are either 
an external signal or its complement. First, we present a 
general algorithm that finds an implementation for each region 
function composed of the minimal number of cubes. It is often 
the case, however, that a region function can be implemented 
using only a single cube. For this case, we have developed 
a substantially more efficient algorithm which finds a single
cube implementation for each region function composed of 
the minimal number of literals.

While standard logic minimization techniques exist to find 
optimal covers [7], they do not guarantee hazard-free logic. In 
particular, they are not suited to solve our more constrained 
covering problem. To guarantee hazard-free logic, we must 
include the notion of an entrance constraint which requires 
that a correct cover can be entered only through excitation 
region states. The entrance constraint ensures that if a state in 
the quiescent region is covered, then each of its predecessor 
states must also be covered. This implication leads to a binate 

covering problem [18].

A. General Algorithm

The goal of the general algorithm is to find an optimal 
sum-of-products function for each region function that satisfies 
our definition of a correct cover. The sum-of-products cover 
consists of a disjunction of implicants. An implicant of an 
excitation region is a cube that may be part of a correct cover. 
In other words, a cube c is an implicant of an excitation region 
ER(u*, k) if the set of reachable states covered by c is a subset 
of the states in the union of the excitation region and associated 
quiescent region, i.e.,

[c f l$ ]  C [ER(u*, k) U QR(u*, k)].
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Fig. 6. Karnaugh map illustration of the covering problem for ER(c f, 1). 
The sole excitation region state [0100] is labeled “1.” The unreachable states

and the quiescent region states 
[1111], [1110], [0110] are labeled “-.” All other states are labeled with 
“0.” In addition, the Karnaugh map is annotated with arrows that describe 
possible transitions into the quiescent region states. Two candidate implicants 
are illustrated, and , the former of which is prime.

A prime implicant of an excitation region is an implicant which 
is not contained by any other implicant of the excitation region. 
A sum-of-products cover is optimal if there exists no other 
cover with fewer implicants.

To capture the entrance constraint, each implicant c is said 
to have a corresponding set of implied states [denoted /5(c)], 
An implied state of a cube c is a state that is not covered 
by the implicant, but due to the entrance constraint, must 
be covered if the implicant is to be part of the cover. More 
precisely, a state s is an implied state of an implicant c for 
the excitation region ER(u*, k) if it is not covered by c, and 
s is a predecessor of a state that is both covered by c and not 
in the excitation region, i.e.,

/5(c) =  {s | s c A 3 s/[(s/ 6 c)

It is important to note that an implicant may have implied 
states that are outside the excitation and quiescent regions and 
cannot be covered by any correct cover. If this implicant is 
the only prime implicant which covers some excitation region 
state, then the covering problem would need to be solved using 
some nonprime implicant.

For this reason, we introduce the notion of candidate 

implicants. An implicant is a candidate implicant if there exists 
no other implicant which properly contains it and has a subset 
of the implied states. In other words, c is a candidate implicant 
if there does not exist an implicant d  that satisfies the following 
two conditions:

d D c 

IS(d) C /5(c).

Notice that prime implicants are always candidate implicants, 
but that a candidate implicant need not be prime.

As an example, consider the Karnaugh map depicted in 
Fig. 6 describing the covering problem for ER(c], 1). The 
figure identifies two implicants ab and abc, the former of which 
is prime. Because the implicant abc contains no quiescent 
region states, it has no implied states. Because ab contains 
the quiescent region state [0110] which can be entered from 
[1110], it has [1110] as an implied state, abc is a candidate 
implicant because the only implicant that is larger than it is 
ab, and ab does not have a subset of its implied states.

To find an optimal cover, we now prove that it is sufficient 
to examine covers that consist of only candidate implicants.

Theorem 3: An optimal correct cover of a region function 
always exists that consists of only candidate implicants.

Proof: Consider the set of optimal covers that contain 
noncandidate implicants. If this set of covers is empty, the 
set of all covers of the region function, which must include 
the optimal cover, must consist only of candidate implicants 
(thereby proving the theorem statement). Otherwise, let C  be 
the cover in this set that has the least number of literals. Let c 
be a noncandidate implicant in C. By definition of candidate 
implicants, there must exist some other implicant d  which 
properly contains c and has a subset of implied state. Let C' 
be the cover formed from C  in which d  replaces c. C' is a 
correct cover because C  is a correct cover, d  D c, and d  has 
a subset of the implied states of c. Since C' has fewer literals 
than C  and C  has the least number of literals of all covers 
containing a noncandidate implicant, C' must consist only of 
candidate implicants. □

Our covering problem is then formulated by creating a 
binary function in conjunctive (product-of-sums) form of 
candidate implicants to be satisfied with minimum cost. The 
binary function is defined over a set of Boolean variables /,, 
one for each candidate implicant <■,. The variable /, is TRUE 

if the cube c* is included in the cover and FALSE otherwise. 
A conjunctive function over these variables is constructed of 
two types of disjunctive clauses. This function is TRUE when 
the included cubes make up a correct cover.

First, a covering clause is included for each state s in the 
excitation region. Each clause consists of a disjunction of 
candidate implicants that cover s, i.e.,

To satisfy the covering clause for each state s in ER(u*, k), 

at least one k must be set to TRUE. This means that one 
cube that covers s must be included in the cover. It follows 
that the set of covering clauses for an excitation region 
guarantees that all excitation region states are covered. Since 
all candidate implicants are guaranteed not to include states 
outside the excitation and associated quiescent region, the 
cover is guaranteed to satisfy the covering constraint.

Second, for each candidate implicant c*, a closure clause is 
included for each of its implied states s e  IS(ci). Each closure 
clause represents an implication that states that if the Boolean 
variable associated with the cube c., is true, then the implied 
state s must be covered. To fit into a conjunctive form, the 
implication is translated to the equivalent disjunction, i.e.,

h V \f Ij
j:secj

A closure clause guarantees that if c* is in the cover, some 
other cube must also be selected that covers the implied state 
s. These conditions together ensure that the cover satisfies the 
entrance constraint.

When both parts of the conjunctive function are satisfied, 
the corresponding cover is correct. Our goal is to find an 
assignment of Boolean variables that satisfies the function 
with the minimum cost. The cost function that we minimize 
is the number of implicants, although the number of literals
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can also be used. Since the implication introduces negated 
variables into the satisfiability product-of-sums framework, our 
optimization problem is a binate covering problem.

We now present an algorithm to find a cover using the 
minimum number of candidate implicants. First, the algorithm 
finds the prime implicants for each region function. Second, 
it uses this set to find all of the candidate implicants. Then, 
it solves the binate covering problem represented here as a 
covering and closure table (or CC table) [17], using traditional 
reduction and branching techniques.

In order to find the set of prime implicants, our algorithm 
partitions the Boolean space into three sets, the on set, the off 
set, and the don't-care set. The on set is composed of every 
state in the excitation region. The don’t-care set is composed 
of every state in the associated quiescent region as well as 
every unreachable state. The off set is composed of every 
other reachable state. The prime implicants are found using 
standard techniques [7]. For the ER{c ]. 1 j region, six prime 
implicants are found: ab, ac, bc, ad, bd, and cd.

Next, the algorithm expands the set of prime implicants 
to include all candidate implicants as described in [17]. The 
algorithm seeds the list of candidate implicants with the prime 
implicants, sorted by the number of literals in the implicant. 
Beginning with the candidate prime with the fewest number of 
literals, the algorithm considers all implicants extended with 
a literal not already used in the prime. If any new implicant 
satisfies the conditions given above, then the algorithm inserts 
it into the list. Each subsequent implicant is considered in 
order until no new candidate implicants can be added. For the 
ER(c t ,  1) example, two new candidate implicants are found: 
abc is found by extending db with the literal c, and abc is 
found by extending ac with the literal h.

To solve the binate covering problem, a CC table is con
structed to represent the conjunctive function described above. 
The table has one row for each candidate implicant and 
one column for each clause. The columns are divided into 
a covering section and a closure section, corresponding to 
covering and closure clauses. In the covering section, for each 
excitation region state s, a column exists containing a cross 
( x ) in every row corresponding to a candidate implicant that 
covers s. In the closure section, for each implied state s of 
each candidate implicant , a column exists containing a 
dot (o) in the row corresponding to c, and a cross in each 
row corresponding to a candidate implicant <:, that covers the 
implied state s.

As an example, the CC table for the excitation region 
ER(c 1.1) in our example is depicted in Table I. The first 
column in the closure section is labeled with the state transition
[1110] A  [0110], Since [0110] is an implied state of the 
candidate implicant ab, the row corresponding to ab contains 
a circle. In addition, the column has crosses in the rows 
corresponding to the two candidate implicants that cover the 
implied states, ac and bc. Notice also that the table has 
three columns associated with the transition [1101] A  [1111] 
corresponding to the three candidate implicants for which 
[1101] is an implied state. These columns have no crosses 
in them because no candidate implicant exists which covers

The CC table is solved using the reduction rules described 
in [17], which are listed here for convenience.

TABLE I
The CC Table for General Covering of ER(c f , 1) 

CC Table
( 'overing Closure

[0100] [iu o ]A
[0110]

[ uo i ] A
[ i n i ]

[u o i]A
[ m i ]

[iio i]A
[ m i ]

ab X o

abc X

ac X o

abc

be X o

ad

Id

cd o

Rule 1: (Select essential rows) If a column contains only 
a single cross and blanks elsewhere, then the row with the 
cross must be selected. The row is deleted together with all 
columns in which it has crosses.

Rule 2: (Remove columns with only dots) If a column has 
only a single dot and blanks elsewhere, the row with the dot 
must be deleted together with all columns in which it has dots.

Rule 3: (Remove dominating columns) A column Cj dom
inates a column Ci if it has all of the crosses and dots of C ,. 

If Cj dominates C,, then Cj is deleted.
Rule 4: (Remove dominated rows) A row R, dominates a 

row R j  if it: a) has all of the crosses of R j,  and b) for every 
column Cp in which II, has a dot, either R j  has a dot in 
Cp or there exists a column Cq in which R j has a dot, such 
that, disregarding the entries in rows R, and R j, Cp dominates 
Cq. If Ri dominates R j, then R j is deleted together with all 
columns in which it has dots.

Rule 5: (Remove rows with only dots) If a row only has 
dots, then the row is deleted together with all columns in which 
it has dots.

It is important to note that when applying Rule 4, two 
rows may mutually dominate each other. To break this tie, 
our algorithm removes the row corresponding to the implicant 
composed of the larger number of literals.

The table is completely solved when all columns are elim
inated, and the resulting cover is the set of essential rows 
selected by Rule 1. In our limited experience, these reduction 
rules are usually sufficient to solve the table. For some 
cases, however, the reduction rules do not reduce the table 
completely, leaving a cyclic table. To solve the cyclic table, 
we use traditional branching techniques [33] in which case 
splitting is recursively performed on the inclusion of one of the 
remaining candidate implicants. The first time case splitting is 
applied, it replaces the original table with two new tables, one 
corresponding to including the chosen implicant in the cover, 
and one corresponding to not including the chosen implicant. 
Both tables are reduced using the above reduction rules, and 
case splitting is recursively applied on any remaining cyclic 
tables. In the worst case, this process generates an exponential 
number of tables, each of which may correspond to a possible 
covering solution. The process terminates by choosing the 
solution with the lowest cost. Since this exact procedure can
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sometimes be computationally impractical, our implementation 
includes a heuristic alternative in which it terminates after 
finding one solution.

The reduction steps solve the table depicted in Table I 
as follows. First, the rows ac, be, and cd along with the 
three columns associated with the implied state [1111] can be 
removed by Rule 2. Then, ab, abc, ad, and bd are dominated 
by row abc, and can be removed along with the column 
(ab, [0110]) by Rule 4. The remaining candidate implicant abc 

is essential, and is picked by Rule 1, solving the table. Note 
that in this case, the table can only be solved by selecting an 
implicant that is not prime.

This example motivates one optimization. Prime implicants 
that cover only unreachable states need not be considered in 
the generation of the candidate implicants since such candidate 
implicants are never part of an optimal cover. This opti
mization can make the initial CC table significantly smaller. 
For example, the prime implicants bd and ad only cover 
unreachable states. Since these implicants or any implicants 
contained in these implicants do not cover any excitation or 
quiescent region state, the rows in the table corresponding 
to these implicants have no crosses. Thus, these implicants 
cannot be an effective part of a cover, and can instead be 
ignored (i.e., never generated).

B. Single-Cube Algorithm

The above binate covering formulation is often more general 
than needed since many region functions can be implemented 
with a single-cube cover. In this section, we present a more 
efficient algorithm which finds an optimal single-cube cover, 
if one exists. Here, a single-cube cover is optimal if it has the 
least number of literals among all single-cube covers. This 
algorithm is derived from an algorithm used to synthesize 
complex-gate timed circuits [37] by adding the necessary 
closure constraints needed to handle gate-level hazards.

For a single-cube cover to hazard-freely implement a region 
function, all literals in the cube must correspond to signals that 
are persistent, i.e., constant throughout the excitation region 
(this is a slightly more general definition than the one in
[10]). Otherwise, the single-cube cover would not cover all 
excitation region states. When a single-cube cover exists, an 
excitation region ER(u*, k) can be sufficiently approximated 
using an enabled cube which is the supercube of the states 
in the excitation region, denoted EC(u*, k), defined on each 
signal v as follows:

TABLE II
Enabled Cubes and Trigger Cubes for Our 
Example, Where Cube Vector Is (a, b, c, d)

EC(u*, k)(v) =

if Vs € ER(u*, k) [s(i>) =  0] 
if Vs £ ER(u*, k) [s(v) =  1] 
otherwise.

ER(u*, k) can also be represented with a cube called a trigger 

cube, denoted TC(u*, k), defined as follows for each signal v:

TC(u*, k)(v) =

's'(v), if 3 s ,s '[ ( s  A  s ')
A (s ^  ER(u*, k)) 
A (s ' £ ER(u*, k))] 

„X, otherwise.

If a signal is 0 or 1 in the enabled cube, it can be used in the 
cube implementing the region. A cube, such as the enabled 
cube, implicitly represents a set of states in the obvious way. 
The set of states implicitly represented by the enabled cube is 
always a superset of the set of excitation region states.

Each single-cube cover in the implementation is composed 
of trigger signals and context signals. For a given excitation 
region, a trigger signal is a signal whose firing can cause 
the circuit to enter the excitation region, while any nontrigger 
signal which is stable in the excitation region can be a context 
signal. The set of trigger signals for an excitation region

The intuition behind the single-cube algorithm is that we start 
with a trigger cube and introduce the minimal context signals 
necessary to ensure that the cube satisfies the covering and 
entrance constraints.

It is easy to show that, in order for a single-cube cover 
to satisfy the covering constraint, it must contain all of its 
trigger signals. Since only persistent signals can be included 
in a single-cube cover, a necessary condition for a single-cube 
cover to exist is that all trigger signals be persistent. In other 
words, for a given excitation region ER(u*, k), the trigger cube 
should contain the enabled cube [i.e., TC(u*, k) 2  EC(u*, &)].

The enabled cubes and trigger cubes are easily found with 
a single pass through the state graph. The enabled cubes and 
trigger cubes corresponding to all of the excitation regions in 
our example are shown in Table II. Notice that every trigger 
signal is persistent, and our algorithm proceeds to find the 
optimal single-cube cover.

The goal of the single-cube algorithm is to find a cube 
C(u*,k) where EC(u*,k) C C(u*,k)  C TC(u*,k) such 
that it satisfies the covering and entrance constraints and is 
maximal. Our algorithm starts with a cube consisting only of 
the trigger signals. If this cover contains no violations, i.e., 
states that violate either the covering or entrance constraint, 
we are done. This, however, is often not the case, and 
context signals must be added to the cube to remove any 
violating states. For each violation detected, the procedure 
determines the choices of context signals which would exclude 
the violating state. Finding the smallest set of context signals 
to resolve all violations is a covering problem. Due to the 
implication in the entrance constraint, inclusion of certain 
context signals may introduce additional violations which must 
be resolved. Therefore, the covering problem is again binate.

To solve this binate covering problem, we again create a CC 
table [17] for each region. There is a row in the CC table for 
each context signal, and there is a column for each violation 
and each violation that could potentially arise from the choice 
of a context signal. An entry in the table contains a cross ( x ) 
if the context signal resolves the violation. An entry in the 
table contains a dot (o) if the inclusion of the context signal 
would require the violation to be resolved.

To construct the table for a given excitation region 
ER(u*, k), the algorithm first finds all states in the initial 
cover which violate the covering constraint. In other words,
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TABLE III
The CC Table for Single-Cube Covering of ER(c f , 1)

When a trigger signal is not persistent or when the CC 
table construction fails, we can use the more general algorithm 
described above to find a multicube cover. Alternatively, we 
can change the specification by constraining concurrency [34] 
or by adding state variables [23], [47], [5] such that a single
cube cover can be found. We note that these alternatives may 
not be possible without changing the interface behavior of the 

circuit (i.e., without constraining an input signal).

a violation exists if a state s is (implicitly) contained by 
TC(u*, k) . but is not in the excitation or associated quiescent 
region. If a violation exists, the algorithm adds a new column 
to the table with a cross in each row corresponding to a 
context signal v that would exclude the violating state [i.e., 
EC(u*,k)(v) =  s(v)].

The next step in the table construction is to find all state 
transitions which violate the entrance constraint in the initial 
cover or may violate it due to a context signal choice. For 
any state transition s A  s', this is possible when s' is 
in the quiescent region [i.e., s' e  QR(u*, &)], s' is in the 
initial cover [i.e., s' e  TC(u*, /-:) |, and v excludes s [i.e., 
EC(u*,k)(v) =  s(v)]. For each entrance violation detected, 
the algorithm adds a new column to the table again with a 
cross in each row corresponding to a context signal that would 
exclude the violating state. If the signal v in the state transition 
is a context signal, the state s' only needs to be excluded if v 

is included in the cover. This implication is represented with 
a dot being placed in the row corresponding to the signal v.

In a single pass through the state graph, all of the CC tables 
can be constructed. Returning to our example, the CC table 
for the excitation region ER(r \. 1) is given in Table III. For 
this excitation region, the enabled cube is [0100] and b is its 
only trigger signal. The covering section includes states [1100], 
and [1101] because all other states are either in the excitation 
or quiescent region or are excluded by the trigger signal b. 

There are two closure columns. The first, corresponding to the 
transition [1110] A  [0110], indicates that if a is included, then 
state [0110] must be excluded. The only context signal that 
excludes this state is c. The second closure column corresponds 
to the transition [1111] [1110], and is formed similarly. 
Note that the transition [1101] A  [1111] does not have a 
column since EC(c], l)(c ) =  0 which does not exclude state

When the construction of the CC table is successful, the 
table is solved using essentially the same reduction algorithm 
used in the general case outlined above. In this case, however, 
ties that occur in Rule 4 are resolved by choosing the rule 
that provides symmetry between different regions of the same 
signal. This symmetry can often be exploited later during logic 
optimizations. Returning to our example, the table is solved 
as follows. First, row a is chosen since it is an essential row 
(Rule 1), removing it as well as columns [1100], [1101], and
[1111] [1110] from the table. Since this removes a dot 
in column [1110] A  [0110], this column is covered next. To 
accomplish this, row c is chosen since it is an essential row 
(Rule 1), removing the column [1110] A  [0110] solving the 
table. The resulting correct cover consists of the single cube 
abc. Notice that, as expected, this is the same result found by 
the general algorithm.

C. Complexity Comparison

Although both the single-cube and general algorithm have 
exponential complexity with respect to the size of their tables, 
the complexity of the single-cube algorithm is much less than 
that of the general algorithm for two reasons.

First, the general algorithm must compute all prime and 
candidate prime implicants which are not needed in the single
cube algorithm. In particular, the number of prime implicants 
can be as many as 3n/n  [13] where n  is the number of signals. 
To find the candidate implicants, it is necessary to expand 
each “don’t care” with a “0” and a “ 1” and check to see if 
it is a new candidate implicant. The check requires that the 
potential candidate implicant is checked against each larger 
candidate implicant. The complexity of this test, therefore, is

Second, the sizes of the binate covering tables which must 
be solved are substantially larger in the general algorithm 
than in the single-cube algorithm. For the general algorithm, 
there needs to be one row for each candidate implicant (i.e., 
0(3n/n)  rows) and one column for each excitation region 
state and for each implied state of a candidate implicant (i.e., 
0 ( |$ |  + 1$| x 3" / / ' )  columns). For the single-cube algorithm, 
there needs to be one row only for each potential context 
signal (i.e., 0(n )  rows) and a column for each violating state 
and state transition (i.e., 0(|<E>| +  |T|) columns). Thus, the CC 
tables for the general algorithm can be exponentially larger 
than in the single-cube algorithm. This can lead to dramatic 
differences in run time since the worst case complexity of 
solving the binate covering problem is exponential in the size 
of the table.

D. Run-Time Comparison

Both the general and single-cube covering algorithms de
scribed in this paper have been automated within the CAD 
tool ATACS using the well-known reduction and branching 
techniques [17]. The algorithms were tested on a large bench
mark of circuits from academia and industry [26], [41]. The 
run-time results for both algorithms are shown in Table IV. 
The experiments were performed on a SPARCstation 20 with 
128 Mbytes of physical memory and 256 Mbytes of virtual 
memory.

When applicable, the single-cube algorithm is consistently 
an order of magnitude faster. In two examples, the general 
algorithm took several hours to find the candidate primes, and 
exhausted the memory when it attempted to build the CC 
tables. In a third case, we terminated the general algorithm 
after it ran for more than 24 h. There is no single-cube solution 
in four of the 27 circuits. For each of these circuits, the single
cube algorithm determined in a matter of microseconds that 
no single-cube cover exists. Fortunately, in these four cases,
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TABLE IV
Experimental Results for Speed-Independent Benchmarks

Examples i$ i |r|
Sing

Lits

le-cube

Time

General

Lits|Time

CPU

ratio

2demux 3200 12178 60 13.0 space n/a

ebergen 18 22 18 0.05 18 0.77 15

etlatch 93 206 infeasible 21 3.04 n/a

false 12 16 infeasible 7 0.38 n/a

5fifo 2704 8304 70 29.0 time n/a

full 16 24 8 0.04 8 0.38 10
hazard 12 14 10 0.04 10 0.36 9

hybridf 80 168 16 0.12 16 2.58 22
master-read 2108 7103 35 7.23 space n/a

mp-forward-pkt 22 28 18 0.05 18 0.97 19

nak-pa 58 120 22 0.12 22 5.67 47

nowick 20 24 21 0.04 21 0.86 22
pe-rcv-ifc 54 76 78 0.21 78 6.96 33

pe-send-ifc 110 213 93 0.25 95 17.49 70

ram-read-sbuf 39 58 23 0.08 23 2.05 26

rim 12 13 9 0.04 9 0.55 14

rpdft 22 22 19 0.04 19 0.54 14

sbuf-ram-write 64 114 24 0.14 24 5.97 43

sbuf-read-ctl 19 22 15 0.05 15 0.90 18

sbuf-send-ctl 27 32 33 0.06 33 1.79 30

sbuf-send-pkt2 26 34 27 0.06 27 1.24 21
trimos-send 336 888 infeasible 36 147.2 n/a

vbe4a 20 28 8 0.04 8 0.57 14

vbe5b 24 38 12 0.04 12 0.61 15

vbe5c 24 38 10 0.04 10 0.62 16

vbelOb 256 736 32 0.43 32 3.08 7

xyz 8 10 infeasible 10 0.50 n/a

the general algorithm could be used to find a cover. Thus, 
during synthesis, we always attempt to run the single-cube 
algorithm first. Only when it fails do we apply the more general 
algorithm.

The literal count in all but one example is the same for the 
two algorithms. This one discrepancy is due to the fact that 
the reduction rules for the general algorithm are optimized for 
the number of cubes and not the number of literals. Note that 
we could easily extend the general algorithm to optimize the 
number of literals by casting it as a weighted binate covering 
problem at the cost of additional complexity. Since a difference 
in literal count occurred only in one example, our experimental 
results suggest that this extension is not critical, and that the 
added complexity may not be justified.

We may be able to speed up solving the binate covering 
problems by employing newer, more efficient algorithms [20], 
[28], [40]. But since these algorithms do not change the in
herent differences in the complexity of the covering problems, 
we expect that similar differences in run-time would exist.

V. Conclusion

We have presented new covering conditions and algorithms 
needed in the synthesis of standard C implementations of 
speed-independent circuits. We have developed correctness 
conditions based on the ideas of complex-gate equivalence and 
hazard freedom. We have proven that our covering conditions 
guarantee that the circuits produced are both complex-gate 
equivalent and hazard free. We formulated our synthesis 
problem as a binate covering problem, and we described a 
general algorithm to solve this covering problem. Finally, we 
developed an efficient covering algorithm to find single-cube

covers. We demonstrated that this algorithm is applicable in 
most of the standard benchmarks, and it can yield synthesis 
results over one order of magnitude faster. In addition, our 
results showed that the single-cube algorithm could complete 
on a number of circuits that were too large for the general 
algorithm to handle.
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