
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 205

C ove ring C o n d itio n s and A lg o r ith m s fo r the

Synthesis o f Speed- Independent C ircu its

Peter A. Beerel, Member, IEEE, Chris J. Myers, Member, IEEE, and Teresa H. Meng, Senior Member, IEEE

Abstract— This paper presents theory and algorithms for the
synthesis of standard C-implementations of speed-independent
circuits. These implementations are block-level circuits which may
consist of atomic gates to perform complex functions in order
to ensure hazard freedom. First, we present Boolean covering
conditions that guarantee that the standard C-implementations
operate correctly. Then, we present two algorithms that produce
optimal solutions to the covering problem. The first algorithm
is always applicable, but does not complete on large circuits.
The second algorithm, motivated by our observation that our
covering problem can often be solved with a single cube, finds the
optimal single-cube solution when such a solution exists. When
applicable, the second algorithm is dramatically more efficient
than the first, more general algorithm. We present results for
benchmark specifications which indicate that our single-cube
algorithm is applicable on most benchmark circuits and reduces
run times by over an order of magnitude. The block-level circuits
generated by our algorithms are a good starting point for tools
that perform technology mapping to obtain gate-level speed-
independent circuits.

Index Terms— Asynchronous circuits, automatic synthesis,
speed independence, standard C-implementation.

I. INTRODUCTION

AS COMPETITIVE asynchronous chips gain attention
[16], [43], [45], asynchronous design is increasingly

being considered as a practical and efficient design alternative.
Asynchronous designs do not require a global clock for syn­
chronization. Instead, synchronization is event driven in that
transitions on wires act to request the start of a computation
and acknowledge its completion. By removing the global
clock, asynchronous circuits have the advantages of absence
of problems related to clock skew, freedom from designing
for worst case delay, and automatic power-down of unused
circuitry.

Speed-independent circuits are an attractive subclass of
asynchronous circuits because they can tolerate delay varia­
tions resulting from variations in IC processing, temperature,
and voltage. More precisely, these circuits work correctly re­
gardless of the delays of individual gates, while assuming zero
wire delays [36]. As a result, achieving speed independence

Manuscript received December 12, 1994; revised August 15, 1997. This
work was supported in part by ARPA Contract DABT63-91-K-0002, and
by the Center for Integrated Systems, Stanford University. This paper was
recommended by Associate Editor R. Camposano.

P. A. Beerel is with the Department of Electrical Engineering—Systems,
University of Southern California, Los Angeles, CA 90089-2562 USA.

C. J. Myers is with the Department of Electrical Engineering, University
of Utah, Salt Lake City, UT 84112 USA.

T. H. Meng is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA.

Publisher Item Identifier S 0278-0070(98)03082-6.

avoids the need for many timing assumptions and delay lines
that can sometimes increase circuit area and delay and/or
reduce circuit reliability. This insensitivity to variation in gate
delays implies that speed-independent systems are also modu­
lar in that components within a speed-independent system can
be replaced by faster components without needing to redesign
any other part of the system. Moreover, speed-independent
circuits can exhibit more concurrency than fundamental mode
circuits [48], [39], [44] which require that inputs change only
after the entire circuit is guaranteed to be stable. Speed-
independent circuits can also be easily verified [3], [14],
and have a testability advantage— they are self-checking with
respect to a broad class of multiple output stuck-at faults [2].

Traditionally, the synthesis of speed-independent circuits
either required completion sensing networks or encoded inputs
and outputs [1] which lead to slow and area-inefficient designs.
More recently, researchers proposed using complex gates in
which every specified output signal was implemented with a
single, possibly very complicated, atomic gate [10], [34]. The
reliability of such complex-gate circuits, however, can be low
because unmodeled glitches (i.e., runt voltage pulses or haz­

ards) within the complex gates may cause circuit malfunction.
This lack of reliability is especially problematic in standard­
cell and programmable gate-array implementations in which
complex gates are usually implemented with a collection of
standard logic cells. A more reliable approach is to synthesize
gate-level implementations comprised of only basic limited
fan-in gates that can be easily incorporated into standard-cell
and gate-array libraries. Synthesizing limited fan-in basic-gate
implementations, however, is challenging primarily because
naive decompositions of complex or high-fan-in gates can
often introduce hazards into the circuits.

Martin and Burns faced similar problems when they used
complex gates to synthesize quasi-delay-insensitive circuits, a
family of circuits closely related to speed-independent circuits
which are insensitive to delays on gates and an identified
subset of the wires (referred to as nonisochronic forks).
To address this problem, they add state variables to the
specification in such a way as to simplify all complex gates
until all gates are small and exist in the gate library or
can be reliably generated using a module generator [31].
Unfortunately, the addition of state variables often requires
user intervention, and some circuits require specialized gates
which may not be suited for gate-array and standard-cell
implementations. Nevertheless, this semiautomated method
has been used to build many large custom designs including a
16 bit quasi-delay-insensitive microprocessor [32], [43].

Kishinevsky and Varshavsky proved that a gate-level speed-
independent implementation can always be found for a limited

0278-0070/98$10.00 © 1998 IEEE

206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

class of specifications [47, Ch. 5]. They considered distributive

specifications of autonomous circuits [35] which have no
inputs. They proved that all such specifications can be im­
plemented speed-independently using two-input NAND gates.
Their goal, however, was theoretical in nature, and did not
include practical considerations such as speed and area. As a
result, their algorithm produces large, complex circuits because
it unnecessarily adds many state variables to avoid hazards.
In addition, since their circuits do not model inputs, their
algorithm is restricted to circuits that do not exhibit conditional
behavior modeled by input (environmental) choice.

Since then, there have been several works on synthesizing
speed-independent circuits from specifications with choice.
First, in a preliminary version of this work [4], we de­
veloped an algorithm to generate unlimited fan-in block-
level speed-independent circuits from state graph (SG) spec­
ifications that can model input choice. Subsequently, Lin
and Lin developed an algorithm transforming a free-choice
signal transition graph (STG) [10] into an unlimited fan-
in block-level speed-independent circuit [29]. In addition,
Kondratyev et al. proposed a similar synthesis algorithm to our
previous work [23]. The theory in [23] is ambiguous, allowing
some hazardous circuits to be synthesized. Fortunately, this
ambiguity can be resolved with an amendment [24], making
their theory essentially equivalent to our results presented in
[4]. Our original theory and algorithms provide the starting
point for further extensions and improvements to both the
synthesis of block-level implementations [21], [25] and the
more recent works on the technology mapping of block-level
implementations into gate-level realizations [12], [22].

This paper describes this underlying theory, and presents
algorithms for the block-level synthesis algorithm—the gen­
eration of a standard C-implementation. We show that this
synthesis problem can be solved using a binate covering

algorithm. The binate covering algorithm, however, is NP
complete. Consequently, straightforward explicit-state imple­
mentations of the algorithm do not complete when applied to
large circuits. This motivates the development of our single­

cube binate covering algorithm which has significantly lower
complexity than the general algorithm, but targets only a
subclass of circuits. We present run-time results of the resulting
block-level circuits for numerous benchmark specifications,
including those given in Berkeley’s tool SIS [42]. The results
show that the single-cube binate algorithm is applicable on
most benchmark circuits, and reduces run times by over an
order of magnitude on circuits. In fact, for some large circuits,
only the single-cube algorithm can successfully complete.

II. Background

This section describes our state graph (SG) specification
model, the standard C-implementation block-level architec­
ture, and our definition of a correct implementation of a given
specification.

A. State Graph

We specify circuits with a state graph (SG) which can be
derived from one of many higher level languages, including
signal transition graphs [10] and CSP [38]. An SG is modeled
by a tuple (/ , O. 'I'. F. s0, A), where I is a set of input signals,

State = (a j^ c l t)

Fig. 1. SG with input choice (motivated by the example in [12, Fig. 3(d)].
The example has inputs {a, 6, d) and outputs {o).

O is a set of output signals, '!> is a set of states, I ’ C <I> x '!> is a
set of state transitions, s0 is the initial state, and A is a labeling
function for states. When not ambiguous, we may refer to a
state by its label. The union of input and output signals is
denoted ASpec, and is called the set of external signals.

The labeling function A labels each state s e $ with a
bitvector over the external signals, i.e., A(s) e B A '- , where
B = {0,1}. The value of a signal u e A spec in a state
s, denoted s(u), is the value of u in the label of s, i.e.,
A(s)(u). The function bitcomp(s,u) returns the label formed
from s by complementing the bit corresponding to u. For
example, for the state s labeled [0000] in the SG in Fig. 1,

A state graph must be strongly connected, and each ordered
pair (s, s ') e T must differ in exactly one signal, i.e., A (.s') =
bitcomp(s,u) for some u e A Spec- When a state transition
(s, s ') e T and s' = bitcomp(s:u), the notation s A s ' may
be used. A signal u e A Spec is enabled in state s [denoted
enabled(u, s)] if u can change in state s, that is, if there exists
an s' e $ such that s A s' holds.

An SG has complete state coding (CSC) [10] if, for every
pair of states s and s' in $ that have the same label (A(s) =

A (s ')) , s and s' have the same output signals enabled, i.e.,

Vm e O [enabled(u, s) o enabled(u, s')].

Complete state coding is a necessary property for an SG to
be implementable as a speed-independent circuit [10]. This
property is necessary to ensure that derivation of the next-state
logic for the output signals is possible. Adding state variables
can transform an arbitrary SG into one that satisfies complete
state coding [11], [19], [21], [27], [46]. We assume that such
state assignments have been accomplished, and we deal only
with state graphs that have the complete state coding property.

A signal u is disabled by a signal o, o / «, in a state s if u is
enabled in state s and not enabled in s' where s A s '. An SG
is determinate speed independent if, in every state transition in
the SG, output signals may not disable any signals (no output
choice), i.e.,

V s,s' e $ Vn e O V ue i u O

[[s A s ' A k / d A enabled(u, s)] => enabled(u, s')]

BEEREL et al:. SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 207

and input signals may not disable output signals, but may
disable other input signals (input choice), i.e.,

Vs, s' e $ Vn e I Wu e O

[[s A s' A enabled(u, s)] => enabled(u, s ')] .

Notice that determinate speed-independent SG’s can express
a variety of behaviors, including OR causality, but not arbi­
tration (output choice).

This paper only deals with the synthesis of circuits
from determinate speed-independent SG’s. To handle speed-
independent SG’s that are not determinate (i.e., have output
choice), we must design the logic associated with the output
signals exhibiting output choice manually (using some type of
arbiter), relabel these output signals as inputs, and then, using
the automated methodology described in this paper, synthesize
the logic associated with the remaining output signals.

The SG in Fig. 1 is determinate speed independent. For­
mally, this SG is modeled by (I, O, T, s0, A) where I =

{(a,b,d}, O = {c}, and s0 = [0000], There are nine states
in the set of states '!> including states [0000] and [0100],
There are ten transitions in the set of transitions T including

transitions illustrate the input choice between a and b since,
when a fires, b is disabled, and when b fires, a is disabled.

B. Folding the SG

An SG has unique state coding (USC) [10] if every state
in the state graph has a unique label. Unlike complete state
coding, unique state coding is not a necessary condition for
synthesis. In this paper, however, we assume that the SG has
unique state coding because this makes the concepts in this
paper much easier to formalize and prove. Fortunately, an SG
with complete state coding can be transformed into an SG with
unique state coding by folding states with the same label into
a single state. More precisely, to fold states, take every pair of
states s and s' with the same label, remove s' from the set of
states 4', and replace s' with s in every place that s' appears
in T. Also, if s0 = s', reassign s0 to s. Notice that the SG
depicted in Fig. 1 already has unique state coding, and thus
does not require folding.

Note also that any specified sequence of state labels (or
equivalently, signal transitions) in the unfolded state graph
is present in the folded state graph. Thus, intuitively, if any
implementation operates properly for a folded state graph,
it will operate properly for the unfolded state graph. We
formalize this notion of operate properly only for folded state
graphs because the unique state coding property makes the
formal definition significantly simpler (see Section II-D).

C. The Standard C-Implementation

A circuit implementation is a tuple (/ , O, N , E, F), where
I is the set of input signals, O is the set of output signals, N

is the set of internal signals, E is a set of connections between
signals, and F is a set of gate functions. The union of inputs,
outputs, and internal signals is denoted AImpi, and is also
called the set of circuit signals. Each edge e e E represents
a connection between circuit signals. An edge e is directed,
connecting a source signal to a sink signal. The set of fan-ins
of u, denoted FI(u), is all sources of edges that have u as

(a)

(b)
Fig. 2. (a) Standard C-implementation of output for specification depicted
in Fig. 1. (b) Standard C-implementation framework for an output signal.

its sink. If u is an internal or output signal, FI(u) is the set
of inputs to the gate-driving signal u. II' u is an input, on the
other hand, FI(u) = 0.

We define an implementation state to model a snapshot in
time of all circuit signals. An implementation state is either
a bit vector over -l[nipi, i.e., q e or the special
value gran that models the failure state of an implementation
entered after the occurrence of a hazard. An implementation
state of the circuit shown in Fig. 2(a) is a Boolean vector that
gives values to the state variables [abode gh\. For example, in
q = [1110001], a, 6, c, and h are at a logic high, while d, e, and
g are at a logic low. Each gate output signal u has an associated
Boolean function / e F of arity \FI(u)\ + 1. We refer to (q)

as the internal evaluation of u in q. For q e BAlmpl, it depends
on the values of circuit signals in implementation state q, and
is defined to be f u (q(u), q(vi), ■■■, q(vr)), where FI(u) =

{vi,---,vr }. For example, the function corresponding to
signal g is f g = OR(e,d) and, in state q = [1110001],
j.jiq) = 0. For q = gfaii, on the other hand, we say that
f u(q) is unknown.

The theory and algorithms developed in this paper pertain
to a restricted class of circuits whose structure is based on the
standard C-implementation. In this framework, each output
is driven by a signal network that consists of one two-input
Muller C-element, two networks of combinational logic, as
shown in Fig. 2(b). The Muller C-element has a noninverted
input from the set network Su and an inverted input from
the reset network R u. Its next state equation is f u(q) =

O) • <?(«) + q(Su) ■ q{Ru)- In other words,
when Su is high and R u is low, the signal u is driven high.
When Su is low and R u is high, u is driven low. Otherwise,
the signal u retains its old value.

To design these circuits, the state graph is first partitioned
into a collection of excitation regions. An excitation region is
a maximally connected set of states in which the output signal
is both enabled and at a constant value. Excitation regions are

208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

divided into two types, depending on the value of the output
signal in the excitation region. If the value is 0, the excitation
region is a set region since, in all excitation region states, the
output signal is enabled to rise; otherwise, the excitation region
is a reset region. Both set and reset regions for a signal u are
indexed with the variable k, and the /cth set region of signal u

is denoted ER(u } . k). Similarly, the /cth reset region is denoted
E R (u i,k). For example, there are two set excitation regions
for the signal c in Fig. 1. The first, denoted ER(c], 1), is the
set of states {[0100]}, and the second, denoted ER(c | , 2), is
the set of states {[1101]}.

For each excitation region ER(u*, k), one region network
is built which implements a cover of the excitation region
denoted C(u*,k). It is important to emphasize that, in this
paper, we assume that the cover is implemented with an
atomic gate which may be complex and have unlimited
fan-in. As illustrated in Fig. 2(b), multiple set region networks
are merged into the set network using a discrete OR gate.
When only one set region network is needed, the OR gate is
omitted. Reset networks are constructed in a similar fashion.
The fact that some region networks may be implemented
with a complex gate (i.e., an arbitrary “block” of logic that
is assumed to be internally hazard free) is the reason that we
say our synthesis algorithm produces block-level circuits. The
focus of this paper is to provide theory and algorithms to
derive the cover of the region networks that ensures that the
block-level circuits are hazard free.

It is important to emphasize that the synthesized block-level
circuits can be optimized. Further decomposition and logic
optimization are typically done to obtain improved circuits that
can be mapped into given gate libraries. The decomposition
and optimization techniques involved, however, are outside the
scope of this paper (for more details see, e.g., [2], [9], [22]).

Important to finding the covers of region networks is the
notion of a quiescent region. A maximally connected set of
states in which an output signal u is not enabled is called
a quiescent region of u. For each signal u in a determinate
speed-independent SG, there exists at most one of its quiescent
regions directly reachable from a given excitation region of u,

but a quiescent region may be entered from multiple excitation
regions of u. The quiescent region associated with the /cth
excitation region is denoted QR(u*, k). For example, the set
regions ER(c | , 1) and ER(c],2) in Fig. 1 share the same
quiescent region QR(c]', 1) = QR(c]', 2) = {[1111], [1110],

Fig. 2(a) depicts a standard C-implementation of the output
c for the SG shown in Fig. 1. The cover of the first set region
ER(c 1.1) is derived to be abc, and is implemented with the
complex gate AND-N-l-3(a,b,c). The cover of the second
set region ER(c | , 2) is derived to be d, and is implemented
with a wire connected to the input d. The deriviation of
region network covers is the focus of this paper. In particular,
we develop a covering problem for each excitation region
whose solutions constitute a hazard-free circuit (Section III),
and provide efficient techniques for finding optimal covering
solutions (Section IV).

Formally, the circuit is modeled by (I, O, N. E , F), where
I = {a,b,d}, O = {c}. The internal signals N = {e,g,h}.

The set of edges E include (a, e), (b, e), and (c, e), which cor­
respond to the fan-ins of e. The functions / e F that we asso­

ciate with each internal signal are f e = AND-N-l(a, b, c), f g =

OR(d, e), f h = INV(b), and f c = C-ELEMENT-N-l (h, g). The
circuit signals a, b, and d are input signals, and thus have no
associated gate function; their behavior is derived from the
specification. Notice that the inverter bubbles are included in
the complex gate function. For example, the complex gate
AND-N-1-3 is an AND gate whose first and third inputs are
inverted.

D. Definition of Correctness

Informally, a correct speed-independent circuit is one whose
behavior satisfies a given specification under all combinations
of gate delays. We formalize this notion of satisfies with a
definition of correctness of speed-independent circuits that
is comprised of two parts: complex-gate equivalence which
primarily deals with functional correctness, and hazard free­
dom which primarily deals with behavioral correctness, i.e.,
transient behavior.

1) Complex-Gate Equivalence: Intuitively, a circuit is
complex-gate equivalent to its specification when, ignoring

hazards, the circuit adheres to the specification. To model the
notion of ignoring hazards, we analyze the implementation
states in which all internal signals have settled and any
transient hazards (glitches) have died down. We first define
the notions of enabled, projection, and settled.

An internal signal is enabled in an implementation state
q if w’s value does not equal /„(<?). For example, in state
q = [1110001], the internal signal g is enabled to fall because

An implementation state q projects onto the specification
state s, denoted s = proj(ASpec)(q), iff s(u) = q(u) for all u

in A Spec- Because we restrict ourselves to specification SG’s
that satisfy USC, there exists at most one specification state
which satisfies this property. Continuing with our example,
implementation state [1110001] projects onto the specification
state labeled [1110], If no specification state satisfies this
definition, we say q projects onto a special specification state
referred to as sunknown. Such an implementation state can exist
if, due to some bug in the circuit, an output signal fires when,
according the specification, it is not supposed to fire. This is
made more clear in the next section.

For each specification state s e <I>, there exists an im­
plementation state extend(s), called an implementation-state

extension, that projects onto s and in which no internal
signals are enabled. More specifically, the value of signal
u in extend(s) is called its settled value, and is denoted
extend(s)(u). The values of extend(s)(u) are unique, and
can be easily derived from the structure of the standard
C-implementation. Consider, first, the settled value of the
output u of a region network in extend(s). It equals one if and
only if s is in the cover of the region network. The settled value
of the output of the OR gate in a signal network in extend(s)

equals the Boolean sum of the settled values of all region
networks that are inputs to the OR gate. As an example, for
the specification state [1110], extend(s) = [1110000] because
[1110000] projects onto [1110] and because, in [1110000], all
of the internal signals e, g, and h are not enabled.

For each specification state s, the value that an output (or
internal) signal is driven to in s is called the external evalu­

ation of the signal in s, denoted ext.eval(s)(u). The external

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 209

Fig. 3. Implementation SG describing the behavior of the circuit depicted in Fig. 2(a) in the environment described by the specification SG depicted in Fig. 1.

evaluation of an output u in state s equals the local evaluation
of u in the implementation-state extension of s. For example,
the external evaluation of c in state [1110], ext-eval([1110])(c),

equals f c(extend([1110]) = / c([1110000]) = 1.
A circuit is complex-gate equivalent to its specification

when the external evaluation of all outputs agrees with the
specification, that is, if the external evaluation of each output
differs from its current value in exactly those specification
states in which it is enabled, i.e.,

Vs e $
Vw e o [[ext.eval(s)(u) ^ s(w)] o enabled(u, s)\. (1)

In our example circuit, the only specification states in which
s(c) ^ ext-eval(s)(c) are [0010], [0110], and [1101], Since
these are exactly the states in which c is enabled, the circuit
is complex-gate equivalent to the specification.

Note that complex-gate equivalence is similar to the notion
of completeness with respect to specification introduced by
Ebergen [15] in that both ensure that the circuit can exhibit
any specified behavior given the appropriate input choices and
gate delays.

2) Hazard-Freedom: If each output is built using a single
atomic complex gate, then complex-gate equivalence is the
only correctness criterion needed since, under these conditions,
there are no hazards. However, this paper deals with block-
level circuits which contain internal signals in which hazards
can occur as a result of the added delay modeled within the
circuit. Hence, the second part of our notion of correctness is
hazard freedom.

Hazard freedom is a safety property of the actual behavior
of a circuit implementation in a particular environment. The
circuit and implementation's joint behavior is modeled using
an implementation state graph. An implementation state graph
is defined by (Q ,R ,q 0), where Q is the set of reachable
implementation states, R is a state transition relation, and q0

is the initial state. As an example, the implementation state
graph of our example circuit is depicted in Fig. 3.

The initial state of the implementation q0 is defined to be the
implementation-state extension of the initial specification state
s0 [i.e., g0 = extend(s0)]. For example, since s0 = [0000] in
our example circuit, q0 = [0000001], This model is based on
the assumption that, after circuit power-up, the environment
holds the external signals fixed until all internal signals have
time to settle.

The transition relation R includes one transition for every
enabled signal in every implementation state. In Section II-
D l), we defined that an internal signal is enabled if f u(q) /
q(u). Here, we extend this definition to inputs and outputs.
For outputs, we use the same criterion, i.e., an output u is
enabled in q if f u(q) ^ q(u). For an input u, on the other
hand, u is enabled if u is enabled in proj(q)(ASpec), the
specification state on to which q projects. For example, in
state q = [1110010], a is enabled to fall since the input signal
a is enabled to fall in [1110] (the specification state q projects
onto). We also dictate that no signal is enabled in both the
failure state gran and the special specification state ^unknown-

The destination states of these state transitions depend upon
whether or not the transition is hazard free. A transition
associated with an enabled signal v in nonfailure state q is
defined to be hazard free on u if the firing of v does not
disable u. That is, hazard-free(u, q, v) holds exactly when

[.enabled(u,q) => enabled(u,bitcomp(v,q))].

Note that we apply this definition only to internal and output
signals, not to inputs which are allowed to disable other
inputs. The state the circuit enters when an enabled signal fires
depends on whether the transition causes a hazard on any gate
output u (internal signal or output). If the firing of the signal
causes a hazard at any gate output, then the state entered is
defined to be the failure state ®aa. Otherwise, the destination

210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

state of the transition is bitcomp(v,q). For example, there is
a transition associated with g in state q = [1110010] since g

is enabled in this state. The transition is hazard free on all
signals since the only signal that does not maintain its enabled
status during the transition is g itself.

Implementation state transitions in R are denoted by q A q',

similar to specification state transitions. Thus, the transition
described in the above paragraph is denoted [1110010]
[1110000]. In addition, if the signal that changes, v, is not
relevant, the notation q —> q' may be used. This model assumes
that any internal hazard in a speed-independent circuit can
propagate to an output, and hence cause a circuit malfunction.
This assumption has been proven true for a large class of
circuits [6]. For other circuits where this theory has not been
proven, the assumption is conservative in that no hazardous
circuit is considered hazard free.

The set of reachable states of an implementation SG,
denoted Q, can be recursively defined as follows:

extend(so) e Q; [3<? e Q [g - > </]] => [q1 e Q\.

Intuitively, a circuit is hazard free if no signal transition is
ever disabled. We formalize this by saying that a circuit is
hazard free if the failure state is not reachable, i.e.,

fe ii &.Q- (2)

Since the implementation state graph of our example circuit
does not contain gfaii, it is hazard free. Notice that hazard
freedom by itself is not a sufficient check for correctness
because circuits that do not behave as specified may still be
hazard free.

III. Correct Covers: Theory

To ensure hazard freedom of the block-level implementa­
tion, the covers of the region function must satisfy certain cor­

rect cover constraints. This section develops these constraints,
and proves that they guarantee our criteria for correctness:
complex-gate equivalence and hazard freedom.

A. Correct Cover Conditions

A cover is a correct cover if it satisfies two conditions. First,
it must satisfy the covering constraint which says that the
reachable states in the cover must include the entire excitation
region, but must not include any states outside the union of
the excitation and associated quiescent region, i.e.,

ER(u*, k) C [C(u*, k) fl <&] C [ER(u*, k) U QR(u*, k)]. (3)

Second, it must satisfy the entrance constraint which says that
a correct cover must only be entered through excitation region
states, i.e.,

[s C(u*, k) A s' <E C(u*, k) A (s, s') 6 T]
=> s' E ER(u*, k). (4)

The covering constraint guarantees that the circuit is
complex-gate equivalent to the specification. Together, the
constraints guarantee that each region function is only allowed
to turn on when it is actively trying to fire u. This guarantees
that every transition of the region functions, the OR gates,

Reachable states of cover

Inputs = {a, b} gtate = (a lT cc f)
Outputs = {c,d}

(a)

(b)
Fig. 4. (a) Cover violating the entrance constraint for a set excitation region
of the signal . (b) Corresponding hazardous logic implementation.

and the C element is hazard free. It guarantees that no two
inputs to the OR gates are simultaneously one, avoiding what
has traditionally been called a delay hazard [1].

To illustrate the importance of the entrance constraint in
correct covers, consider the cover and corresponding standard
C-implementation for the output signal c shown in Fig. 4.

reachable states [0101] and [0111]) fails to satisfy the entrance
constraint since the state [0110] (which is in the cover) can be
reached from the state [1110] (which is not in the cover) and
the state [0110] is not in the excitation region. As a result, the
corresponding region function AND-N-l(a, b) can turn on and
off without the AND gate firing. This can cause a glitch at the
output of the AND gate which makes the circuit hazardous, as
shown in Fig. 4(b). Specifically, AND-N-l(a, b) can exhibit a
runt positive pulse when the circuit goes through the sequence
of states [1110] —> [0110] — [0010] which is highlighted in
Fig. 4(a). Consequently, the circuit is hazardous, and therefore
not correct.

From a formal perspective, the existence of the hazard
means that the implementation state graph describing the joint
behavior of the circuit and its specification contains the failure
state . Indeed, the portion of the implementation state
graph depicted in Fig. 5 contains many transitions to the failure
state. For example, the transition b~ from state [0110000]
is hazardous because it disables e+ , thereby creating the
possibility of the runt pulse described in the above paragraph.
Because of this hazard, the transition b~ from [0110000] leads
to the failure state (as illustrated in Fig. 5).

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 211

Fig. 5. Portion of the implementation state graph of the hazardous circuit depicted in Fig. 4.

B. Proof that Correct Covers Lead to Correct Circuits

This section presents a proof that our correct covers are
sufficient to ensure that a standard C-implementation is a
correct circuit. First, we prove that correct covers ensure that
standard C-implementations are complex-gate equivalent to
their specification, and then we prove hazard freedom.

Lemma 1.1: If, for all outputs u e O, all region
function covers C(u*,k) are correct, then the standard
C-implementation is complex-gate equivalent to its specifi­
cation.

Proof: We prove the result using case analysis on the
location of s. There are four possible cases.

Case 1: s is in a set region ER(u],k). Then, by the
covering condition, s is in some set cover and is not in any
reset cover. Thus, using the definition of settled value, we
conclude that extend(s)(Su) = 1 and extend(s)(Ru) = 0.
From the next-state equation of the C-element, we conclude
that f u(extend(s)) = 1. Consequently, using the definition
of external evaluation, we conclude that ext-eval(s)(u) = 1.
Since s e ER(u]',k) implies that s(u) = 0, we conclude
that ext.eval(s)(u) ^ -s(u) holds. Since s € ER(u],k), u is
enabled in s. Combining the last two conclusions, we have
that [ext.eval(s)(u) ^ s(u)] o enabled(u,s) holds, and thus
complex-gate equivalence is satisfied [see (1)].

Case 2: s is in a set quiescent region QR(u }. k). Then,
by the covering condition, s is not in any reset cover. Thus,
using the definition of settled value, extend(s)(Ru) = 0. Since

extend(s)(u) = s(u) = 1, we conclude f u(extend(s)) =
1. Since f u(extend(s)) = 1, using the definition of exter­
nal evaluation, we can also conclude that ext-eval(s)(u) =

1. Putting the last two conclusions together, we have that
ext.eval(s)(u) ^ s(u) does not hold. Since s € QR(u],k),

u is not enabled in s. These last two conclusions mean that
[.ext.eval(s)(u) ^ s(-u)] o enabled(u, s) holds, and thus that
complex-gate equivalence is satisfied [see (1)].

Case 3: s is in a reset region E R (u i,k). Then, by the
covering condition, s is in some reset cover, and is not in any
set cover. Therefore, extend(s)(Su) = 0 and extend(s)(Ru) =

1. Thus, f u(extend(s)) = 0. Similar to Case 1, we can
conclude that complex-gate equivalence is satisfied.

Case 4: s is in a reset quiescent region QR(u j , k). Then,
by the covering condition, s is not in any set cover. Thus,
extend(s)(Su) = 0. Since extend(s)(u) = s(u) = 0, we
conclude f u(extend(s)) = 0. Similar to Case 2, we can
conclude that complex-gate equivalence is satisfied. □

To show hazard freedom, we first show that the covers in a
set (reset) network are one-hot encoded.

Lemma 1.2: If all covers C(u*,k) for the set (reset) re­
gions of an output signal u are correct, then their pairwise
intersections do not contain any states

Proof: (By contraposition) We show that if the pairwise
intersections of two covers contain a state s £ '!>. (lie
covers must not be not correct. Assume that there exist two
set (reset) covers C (u* ,i) and C (u * ,j) whose intersection

212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

contains a specification state s. Since excitation regions must
be disjoint, we can conclude from the covering constraint that
s e QR(u*, i) n QR(u*,j). We do case analysis on s to show
that, in all cases, the entrance constraint is violated, and thus
the covers are not correct.

Case 1: There exists a path of states p contained in
C (u* ,i) that originates from a state s* £ ER(u*,i) and ends
at state s. Because of the covering constraint (3), we know
E R (u * ,i)n C (u * ,j) = 0. Consequently, since s* e ER(u*,i),

we conclude that s* ^ C (u * ,j) . Summarizing, we know that
the path p starts in the state -s, which is not in C (u * ,j) and
ends in the state s which is in C (u * ,j) . Thus, the path p must
enter C (u * ,j) . Let the state in which p enters C (u * ,j) be
referred to as s'. We know that s' cannot be in ER(u*,j)

because s' e p, p is contained in C(u*,i), and, by the
covering constraint, ER(u*,j) n C (u* ,i) = 0. Consequently,
by the covering constraint, we can conclude that s' must be in
QR(u*,j). This violates the entrance constraint [see (4)].

Case 2: There does not exist a path of states p contained
in C(u*,i) that originates from a state .s, e ER(u*,i) and
ends at state s. For this case, let L be the subset of states
in C(u*,i) n QR(u*,i) that are not reachable via paths that
are contained in C(u*, i) and originate from ER(u*, i). Notice
that L represents a subset of all quiescent region states through
which the cover can be entered. In particular, it contains
the subset of states that are not enterable through paths
that originate from ER(u*,i). Because the SG is strongly
connected, there must exist some state s' e L that is directly
reachable from a state s" that is outside L. Since s" £

C(u*,i), s' violates the entrance constraint [see (4)]. □

Traditionally, hazard freedom (sometimes called speed inde­
pendence) is guaranteed when the transition of an output signal
acknowledges that the circuit is stable and capable of accepting
new inputs [35], [30]. To formalize this notion, we introduce
the notions of a request path and its acknowledgment. Let
p = g1; q2, ■ ■ •, qn be a path of implementation states. Path p

is called a request path for signal v if f v(qj) = f v(qk) = b

for all n > j , k > 1. In all of these states, v is being
driven to the value b. We say that the request path p is a
maximal request path of v if p can be entered from and exited
to states with a different internal evaluation of v. Thus, for
the path p to be maximal, there must exist state transitions
go qi and qn -> qn+1 for which f v(q0) ± fv(qi) and
fv(qn) 7̂ fv(qn+1). We say that a request path p for signal
v is acknowledged by a transition of an output signal u if
it contains a state q, from which there exists a transition
qi A qj such that qj(v) = f v(qi). Thus, if a request path
for v is acknowledged, the signal v is guaranteed to reach its
internal evaluation, and thus not be disabled. For example, in
the implementation state graph of the hazard-free circuit, the

request path for h for the following reasons. First, for all
q e p, fh(q) = 1, and thus p is a request path for h to

we have go —> gi and fh(qo) = 0 / fh(qi)- Third, by
letting qn = [0000001] and qn+1 = [0100001], we have
q„ -> qn+1 and fh(qn+1) = 0 ^ fh(qn). The last two facts
mean that the request path is maximal. Moreover, this maximal
request path is acknowledged by the output signal c since

The proof that our correct cover conditions lead to hazard-
free implementations can be reduced to showing that all
maximal request paths are acknowledged. An important part
of this proof relies on the definition of the reachable im­
plementation states Q and, in particular, the initial state
q0. Recall that g0 is defined such that, in it, no internal
signals are enabled. This is an important assumption since
the choice of the initial state can introduce hazards in an
otherwise hazard-free circuit. For example, consider a standard
C-implementation that satisfies the correct cover conditions.
Consider an alternative definition of Q which would initialize
the circuit in an implementation state q'0 in which in an OR gate
of a signal network is enabled to rise because the output of a
region network is one but enabled to fall. Then, there is a race
between the region network falling and the OR gate rising. If
the region network falls first, the OR gate is disabled. We say
that such a state is not externally aligned since, in it, an internal
signal is at its external evaluation and also enabled. It can be
shown that if any reachable state is not externally aligned, the
circuit is hazardous [2], Our definition of g0 ensures that g0
is externally aligned (because, in it, no internal signals are
enabled).

Lemma 1.3: If, for all outputs u e O, all region network
covers C(u*, k) are correct, then all maximal request paths for
all signals in the signal network of u are acknowledged by u,

and all of the implementation's reachable states are externally
aligned.

Proof: (Sketch, by induction on the set of reachable
states)

Base Case: q0 is hazard free because it does not equal
gfaii. It is externally aligned because, by definition, in it, no
internal signals are enabled.

Inductive Hypothesis: Consider the set of reachable
states OJ reachable from the initial state go in at most N
state transitions. Any maximal request path for a signal v in
this set is acknowledged by the firing of some output u. In
addition, all of these reachable states are externally aligned.

Inductive Step: We first show that any state transition
from the states in ()' is hazard free, and that every new state
reached is also externally aligned.

Consider a state q e Q '. We show that every internal and
output signal v is not disabled in any state transition from q
using case analysis.

Case 1: Let v be the output of the /cth set (reset) region
network for a signal u, and assume v is enabled to fall in q.
If q is not the last state in a maximal request path p for v, it
cannot be disabled. If, on the other hand, g is the last state
of a maximal request path p for v, then, by the definition of
maximal, a transition from g to q' must be possible where
fv(q’) = 1- This means that s' e C(u]',k) (s' e C(ui,k)),
where s' = proj(ASpec)(q'). Using the entrance constraint (4),
we can deduce that s' e ER(u T, k) (s' e ER(u j , k)). Before
the excitation region is entered, however, the output signal u

must fall (rise). The only way u can fall (rise) is if v falls and
the OR gate in the set (reset) network falls. After falling, v

is not enabled until the circuit enters state s'. Thus, v cannot
be enabled in q, a contradiction. Consequently, v cannot be
disabled in any state transition from q.

Case 2: Let v be the output of the OR gate in a set (reset)
signal network that is enabled to fall in q. If q is not the last

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 213

state in a maximal request path for v, it cannot be disabled.
Consider next the case where q is the last state of a maximal
request path p for v. In this case, because all states in p are
externally aligned (by the inductive hypothesis), all states in
the path project onto specification states not contained in any
cover because, otherwise, the OR gate would be enabled and at
its external evaluation (logic 1), violating external alignment.
Consequently, the path must contain a transition in which u
rises (falls). As in Case 1, this means that v cannot be enabled
in q, and thus cannot be disabled.

Case 3: Let v be the output of the /dh set (reset) region
network for a signal u, and let v be enabled to rise. Then q

must be part of a maximal request path for v to rise. Request
paths for the network to rise project onto states s e C(u*, k).
The request path must extend until reaching a state that
projects onto s' C(u*, k). Because of the covering constraint
(3), this means that v is enabled to rise until after u rises
(falls). Lemma 1.2 guarantees that, in all states in C(u*,j),
the region network is the only network enabled high. Since u

cannot rise (fall) unless one set (reset) region network rises
and the associated OR gate rises, we conclude that u firing
acknowledges the rising request paths of the region network.
Consequently, v cannot be enabled in q, and thus cannot be
disabled.

Case 4: Let v be the output of the OR gate in a set (reset)
signal network that is enabled to rise. As in Case 2, q must
be part of a request path containing only externally aligned
states. All such paths project onto states in the cover
for some j . The region network will be enabled high until
the circuit leaves the cover which, because of the covering
constraint (3), can only happen after u rises (falls). Since
u cannot rise (fall) unless the OR gate rises, we conclude
that u firing acknowledges the rising request paths of the
region network, the OR gate is acknowledged. Consequently,
u cannot be enabled in q, and thus cannot be disabled.

Case 5: Let v = u and let v be enabled to rise (fall) in
q. Similar to Cases 2 and 4, q must be part of maximal request
path in which u rises and (falls), and this path must contain
u firing. Consequently, u acknowledges the request path, and
cannot be disabled.

We now show that the next state entered is externally aligned
by doing case analysis on the internal signals of the circuit.

Case 1: Region network outputs: Because no region net­
work output is disabled, we can conclude that changes of
inputs change a region network’s internal evaluation only
when the region network is settled. In addition, region net­
works only fire in the direction of their settled value. Thus,
region networks in the next state entered must be externally
aligned.

Case 2: OR gate outputs: Because the inputs to the OR
gate are one-hot encoded and are hazard free, they fire only
when the OR gate is settled. In addition, the OR gate fires only
in the direction of its settled value. Thus, the OR gate output
in the next state is always externally aligned. □

It may be useful to note that the hazardous state graph has
many maximal request paths that are not acknowledged. For
example, a (short) maximal request path for e is [0110000]. It
can be entered by a falling from [1110000], enabling e to rise.
It can be exited by b falling, thereby disabling e and driving
the circuit into the failure state

From the above results, we now prove our final theorem.
Theorem 1: If, for all outputs u £ O, all region net­

work covers C(u*,k) are correct, then the standard C-
implementation is correct.

Proof: We have proven complex-gate equivalence in
Lemma 1.1 and hazard freedom in Lemma 1.3. □

C. Completeness of the Theory

It is important to realize that the cover that includes only
excitation region states is always a correct cover, meaning
that a correct cover always exists. More formally, we have
the following.

Theorem 2: For all excitation regions ER(u*, k) in a deter­
minate SG satisfying USC, a correct cover exists.

Proof: The cover C(u*,k) = ER(u*,k) satisfies both
the covering and entrance constraints. □

Thus, for example, the cover abed is a correct cover for
the excitation region ER(c} . 1) because it includes only the
states in ER(c}', 1), i.e., the one state [0100], The goal of our
synthesis algorithms described in the next section is to find
correct covers which have the lowest cost such as defined
below.

IV. ALGORITHMS

This section presents algorithms to solve the above cover­
ing problem to obtain an optimal region function for each
excitation region. In general, a cover is implemented with
a set of cubes. A cube is a set of literals which are either
an external signal or its complement. First, we present a
general algorithm that finds an implementation for each region
function composed of the minimal number of cubes. It is often
the case, however, that a region function can be implemented
using only a single cube. For this case, we have developed
a substantially more efficient algorithm which finds a single­
cube implementation for each region function composed of
the minimal number of literals.

While standard logic minimization techniques exist to find
optimal covers [7], they do not guarantee hazard-free logic. In
particular, they are not suited to solve our more constrained
covering problem. To guarantee hazard-free logic, we must
include the notion of an entrance constraint which requires
that a correct cover can be entered only through excitation
region states. The entrance constraint ensures that if a state in
the quiescent region is covered, then each of its predecessor
states must also be covered. This implication leads to a binate

covering problem [18].

A. General Algorithm

The goal of the general algorithm is to find an optimal
sum-of-products function for each region function that satisfies
our definition of a correct cover. The sum-of-products cover
consists of a disjunction of implicants. An implicant of an
excitation region is a cube that may be part of a correct cover.
In other words, a cube c is an implicant of an excitation region
ER(u*, k) if the set of reachable states covered by c is a subset
of the states in the union of the excitation region and associated
quiescent region, i.e.,

[c f l$] C [ER(u*, k) U QR(u*, k)].

214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 6. Karnaugh map illustration of the covering problem for ER(c f, 1).
The sole excitation region state [0100] is labeled “1.” The unreachable states

and the quiescent region states
[1111], [1110], [0110] are labeled “-.” All other states are labeled with
“0.” In addition, the Karnaugh map is annotated with arrows that describe
possible transitions into the quiescent region states. Two candidate implicants
are illustrated, and , the former of which is prime.

A prime implicant of an excitation region is an implicant which
is not contained by any other implicant of the excitation region.
A sum-of-products cover is optimal if there exists no other
cover with fewer implicants.

To capture the entrance constraint, each implicant c is said
to have a corresponding set of implied states [denoted /5(c)],
An implied state of a cube c is a state that is not covered
by the implicant, but due to the entrance constraint, must
be covered if the implicant is to be part of the cover. More
precisely, a state s is an implied state of an implicant c for
the excitation region ER(u*, k) if it is not covered by c, and
s is a predecessor of a state that is both covered by c and not
in the excitation region, i.e.,

/5(c) = {s | s c A 3 s/[(s/ 6 c)

It is important to note that an implicant may have implied
states that are outside the excitation and quiescent regions and
cannot be covered by any correct cover. If this implicant is
the only prime implicant which covers some excitation region
state, then the covering problem would need to be solved using
some nonprime implicant.

For this reason, we introduce the notion of candidate

implicants. An implicant is a candidate implicant if there exists
no other implicant which properly contains it and has a subset
of the implied states. In other words, c is a candidate implicant
if there does not exist an implicant d that satisfies the following
two conditions:

d D c

IS(d) C /5(c).

Notice that prime implicants are always candidate implicants,
but that a candidate implicant need not be prime.

As an example, consider the Karnaugh map depicted in
Fig. 6 describing the covering problem for ER(c], 1). The
figure identifies two implicants ab and abc, the former of which
is prime. Because the implicant abc contains no quiescent
region states, it has no implied states. Because ab contains
the quiescent region state [0110] which can be entered from
[1110], it has [1110] as an implied state, abc is a candidate
implicant because the only implicant that is larger than it is
ab, and ab does not have a subset of its implied states.

To find an optimal cover, we now prove that it is sufficient
to examine covers that consist of only candidate implicants.

Theorem 3: An optimal correct cover of a region function
always exists that consists of only candidate implicants.

Proof: Consider the set of optimal covers that contain
noncandidate implicants. If this set of covers is empty, the
set of all covers of the region function, which must include
the optimal cover, must consist only of candidate implicants
(thereby proving the theorem statement). Otherwise, let C be
the cover in this set that has the least number of literals. Let c
be a noncandidate implicant in C. By definition of candidate
implicants, there must exist some other implicant d which
properly contains c and has a subset of implied state. Let C'
be the cover formed from C in which d replaces c. C' is a
correct cover because C is a correct cover, d D c, and d has
a subset of the implied states of c. Since C' has fewer literals
than C and C has the least number of literals of all covers
containing a noncandidate implicant, C' must consist only of
candidate implicants. □

Our covering problem is then formulated by creating a
binary function in conjunctive (product-of-sums) form of
candidate implicants to be satisfied with minimum cost. The
binary function is defined over a set of Boolean variables /,,
one for each candidate implicant <■,. The variable /, is TRUE

if the cube c* is included in the cover and FALSE otherwise.
A conjunctive function over these variables is constructed of
two types of disjunctive clauses. This function is TRUE when
the included cubes make up a correct cover.

First, a covering clause is included for each state s in the
excitation region. Each clause consists of a disjunction of
candidate implicants that cover s, i.e.,

To satisfy the covering clause for each state s in ER(u*, k),

at least one k must be set to TRUE. This means that one
cube that covers s must be included in the cover. It follows
that the set of covering clauses for an excitation region
guarantees that all excitation region states are covered. Since
all candidate implicants are guaranteed not to include states
outside the excitation and associated quiescent region, the
cover is guaranteed to satisfy the covering constraint.

Second, for each candidate implicant c*, a closure clause is
included for each of its implied states s e IS(ci). Each closure
clause represents an implication that states that if the Boolean
variable associated with the cube c., is true, then the implied
state s must be covered. To fit into a conjunctive form, the
implication is translated to the equivalent disjunction, i.e.,

h V \f Ij
j:secj

A closure clause guarantees that if c* is in the cover, some
other cube must also be selected that covers the implied state
s. These conditions together ensure that the cover satisfies the
entrance constraint.

When both parts of the conjunctive function are satisfied,
the corresponding cover is correct. Our goal is to find an
assignment of Boolean variables that satisfies the function
with the minimum cost. The cost function that we minimize
is the number of implicants, although the number of literals

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 215

can also be used. Since the implication introduces negated
variables into the satisfiability product-of-sums framework, our
optimization problem is a binate covering problem.

We now present an algorithm to find a cover using the
minimum number of candidate implicants. First, the algorithm
finds the prime implicants for each region function. Second,
it uses this set to find all of the candidate implicants. Then,
it solves the binate covering problem represented here as a
covering and closure table (or CC table) [17], using traditional
reduction and branching techniques.

In order to find the set of prime implicants, our algorithm
partitions the Boolean space into three sets, the on set, the off
set, and the don't-care set. The on set is composed of every
state in the excitation region. The don’t-care set is composed
of every state in the associated quiescent region as well as
every unreachable state. The off set is composed of every
other reachable state. The prime implicants are found using
standard techniques [7]. For the ER{c]. 1 j region, six prime
implicants are found: ab, ac, bc, ad, bd, and cd.

Next, the algorithm expands the set of prime implicants
to include all candidate implicants as described in [17]. The
algorithm seeds the list of candidate implicants with the prime
implicants, sorted by the number of literals in the implicant.
Beginning with the candidate prime with the fewest number of
literals, the algorithm considers all implicants extended with
a literal not already used in the prime. If any new implicant
satisfies the conditions given above, then the algorithm inserts
it into the list. Each subsequent implicant is considered in
order until no new candidate implicants can be added. For the
ER(c t , 1) example, two new candidate implicants are found:
abc is found by extending db with the literal c, and abc is
found by extending ac with the literal h.

To solve the binate covering problem, a CC table is con­
structed to represent the conjunctive function described above.
The table has one row for each candidate implicant and
one column for each clause. The columns are divided into
a covering section and a closure section, corresponding to
covering and closure clauses. In the covering section, for each
excitation region state s, a column exists containing a cross
(x) in every row corresponding to a candidate implicant that
covers s. In the closure section, for each implied state s of
each candidate implicant , a column exists containing a
dot (o) in the row corresponding to c, and a cross in each
row corresponding to a candidate implicant <:, that covers the
implied state s.

As an example, the CC table for the excitation region
ER(c 1.1) in our example is depicted in Table I. The first
column in the closure section is labeled with the state transition
[1110] A [0110], Since [0110] is an implied state of the
candidate implicant ab, the row corresponding to ab contains
a circle. In addition, the column has crosses in the rows
corresponding to the two candidate implicants that cover the
implied states, ac and bc. Notice also that the table has
three columns associated with the transition [1101] A [1111]
corresponding to the three candidate implicants for which
[1101] is an implied state. These columns have no crosses
in them because no candidate implicant exists which covers

The CC table is solved using the reduction rules described
in [17], which are listed here for convenience.

TABLE I
The CC Table for General Covering of ER(c f , 1)

CC Table
('overing Closure

[0100] [iu o]A
[0110]

[uo i] A
[i n i]

[u o i]A
[m i]

[iio i]A
[m i]

ab X o

abc X

ac X o

abc

be­ X o

ad

Id

cd o

Rule 1: (Select essential rows) If a column contains only
a single cross and blanks elsewhere, then the row with the
cross must be selected. The row is deleted together with all
columns in which it has crosses.

Rule 2: (Remove columns with only dots) If a column has
only a single dot and blanks elsewhere, the row with the dot
must be deleted together with all columns in which it has dots.

Rule 3: (Remove dominating columns) A column Cj dom­
inates a column Ci if it has all of the crosses and dots of C ,.

If Cj dominates C,, then Cj is deleted.
Rule 4: (Remove dominated rows) A row R, dominates a

row R j if it: a) has all of the crosses of R j, and b) for every
column Cp in which II, has a dot, either R j has a dot in
Cp or there exists a column Cq in which R j has a dot, such
that, disregarding the entries in rows R, and R j, Cp dominates
Cq. If Ri dominates R j, then R j is deleted together with all
columns in which it has dots.

Rule 5: (Remove rows with only dots) If a row only has
dots, then the row is deleted together with all columns in which
it has dots.

It is important to note that when applying Rule 4, two
rows may mutually dominate each other. To break this tie,
our algorithm removes the row corresponding to the implicant
composed of the larger number of literals.

The table is completely solved when all columns are elim­
inated, and the resulting cover is the set of essential rows
selected by Rule 1. In our limited experience, these reduction
rules are usually sufficient to solve the table. For some
cases, however, the reduction rules do not reduce the table
completely, leaving a cyclic table. To solve the cyclic table,
we use traditional branching techniques [33] in which case
splitting is recursively performed on the inclusion of one of the
remaining candidate implicants. The first time case splitting is
applied, it replaces the original table with two new tables, one
corresponding to including the chosen implicant in the cover,
and one corresponding to not including the chosen implicant.
Both tables are reduced using the above reduction rules, and
case splitting is recursively applied on any remaining cyclic
tables. In the worst case, this process generates an exponential
number of tables, each of which may correspond to a possible
covering solution. The process terminates by choosing the
solution with the lowest cost. Since this exact procedure can

216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

sometimes be computationally impractical, our implementation
includes a heuristic alternative in which it terminates after
finding one solution.

The reduction steps solve the table depicted in Table I
as follows. First, the rows ac, be, and cd along with the
three columns associated with the implied state [1111] can be
removed by Rule 2. Then, ab, abc, ad, and bd are dominated
by row abc, and can be removed along with the column
(ab, [0110]) by Rule 4. The remaining candidate implicant abc

is essential, and is picked by Rule 1, solving the table. Note
that in this case, the table can only be solved by selecting an
implicant that is not prime.

This example motivates one optimization. Prime implicants
that cover only unreachable states need not be considered in
the generation of the candidate implicants since such candidate
implicants are never part of an optimal cover. This opti­
mization can make the initial CC table significantly smaller.
For example, the prime implicants bd and ad only cover
unreachable states. Since these implicants or any implicants
contained in these implicants do not cover any excitation or
quiescent region state, the rows in the table corresponding
to these implicants have no crosses. Thus, these implicants
cannot be an effective part of a cover, and can instead be
ignored (i.e., never generated).

B. Single-Cube Algorithm

The above binate covering formulation is often more general
than needed since many region functions can be implemented
with a single-cube cover. In this section, we present a more
efficient algorithm which finds an optimal single-cube cover,
if one exists. Here, a single-cube cover is optimal if it has the
least number of literals among all single-cube covers. This
algorithm is derived from an algorithm used to synthesize
complex-gate timed circuits [37] by adding the necessary
closure constraints needed to handle gate-level hazards.

For a single-cube cover to hazard-freely implement a region
function, all literals in the cube must correspond to signals that
are persistent, i.e., constant throughout the excitation region
(this is a slightly more general definition than the one in
[10]). Otherwise, the single-cube cover would not cover all
excitation region states. When a single-cube cover exists, an
excitation region ER(u*, k) can be sufficiently approximated
using an enabled cube which is the supercube of the states
in the excitation region, denoted EC(u*, k), defined on each
signal v as follows:

TABLE II
Enabled Cubes and Trigger Cubes for Our
Example, Where Cube Vector Is (a, b, c, d)

EC(u*, k)(v) =

if Vs € ER(u*, k) [s(i>) = 0]
if Vs £ ER(u*, k) [s(v) = 1]
otherwise.

ER(u*, k) can also be represented with a cube called a trigger

cube, denoted TC(u*, k), defined as follows for each signal v:

TC(u*, k)(v) =

's'(v), if 3 s ,s '[(s A s ')
A (s ^ ER(u*, k))
A (s ' £ ER(u*, k))]

„X, otherwise.

If a signal is 0 or 1 in the enabled cube, it can be used in the
cube implementing the region. A cube, such as the enabled
cube, implicitly represents a set of states in the obvious way.
The set of states implicitly represented by the enabled cube is
always a superset of the set of excitation region states.

Each single-cube cover in the implementation is composed
of trigger signals and context signals. For a given excitation
region, a trigger signal is a signal whose firing can cause
the circuit to enter the excitation region, while any nontrigger
signal which is stable in the excitation region can be a context
signal. The set of trigger signals for an excitation region

The intuition behind the single-cube algorithm is that we start
with a trigger cube and introduce the minimal context signals
necessary to ensure that the cube satisfies the covering and
entrance constraints.

It is easy to show that, in order for a single-cube cover
to satisfy the covering constraint, it must contain all of its
trigger signals. Since only persistent signals can be included
in a single-cube cover, a necessary condition for a single-cube
cover to exist is that all trigger signals be persistent. In other
words, for a given excitation region ER(u*, k), the trigger cube
should contain the enabled cube [i.e., TC(u*, k) 2 EC(u*, &)].

The enabled cubes and trigger cubes are easily found with
a single pass through the state graph. The enabled cubes and
trigger cubes corresponding to all of the excitation regions in
our example are shown in Table II. Notice that every trigger
signal is persistent, and our algorithm proceeds to find the
optimal single-cube cover.

The goal of the single-cube algorithm is to find a cube
C(u*,k) where EC(u*,k) C C(u*,k) C TC(u*,k) such
that it satisfies the covering and entrance constraints and is
maximal. Our algorithm starts with a cube consisting only of
the trigger signals. If this cover contains no violations, i.e.,
states that violate either the covering or entrance constraint,
we are done. This, however, is often not the case, and
context signals must be added to the cube to remove any
violating states. For each violation detected, the procedure
determines the choices of context signals which would exclude
the violating state. Finding the smallest set of context signals
to resolve all violations is a covering problem. Due to the
implication in the entrance constraint, inclusion of certain
context signals may introduce additional violations which must
be resolved. Therefore, the covering problem is again binate.

To solve this binate covering problem, we again create a CC
table [17] for each region. There is a row in the CC table for
each context signal, and there is a column for each violation
and each violation that could potentially arise from the choice
of a context signal. An entry in the table contains a cross (x)
if the context signal resolves the violation. An entry in the
table contains a dot (o) if the inclusion of the context signal
would require the violation to be resolved.

To construct the table for a given excitation region
ER(u*, k), the algorithm first finds all states in the initial
cover which violate the covering constraint. In other words,

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 217

TABLE III
The CC Table for Single-Cube Covering of ER(c f , 1)

When a trigger signal is not persistent or when the CC
table construction fails, we can use the more general algorithm
described above to find a multicube cover. Alternatively, we
can change the specification by constraining concurrency [34]
or by adding state variables [23], [47], [5] such that a single­
cube cover can be found. We note that these alternatives may
not be possible without changing the interface behavior of the

circuit (i.e., without constraining an input signal).

a violation exists if a state s is (implicitly) contained by
TC(u*, k) . but is not in the excitation or associated quiescent
region. If a violation exists, the algorithm adds a new column
to the table with a cross in each row corresponding to a
context signal v that would exclude the violating state [i.e.,
EC(u*,k)(v) = s(v)].

The next step in the table construction is to find all state
transitions which violate the entrance constraint in the initial
cover or may violate it due to a context signal choice. For
any state transition s A s', this is possible when s' is
in the quiescent region [i.e., s' e QR(u*, &)], s' is in the
initial cover [i.e., s' e TC(u*, /-:) |, and v excludes s [i.e.,
EC(u*,k)(v) = s(v)]. For each entrance violation detected,
the algorithm adds a new column to the table again with a
cross in each row corresponding to a context signal that would
exclude the violating state. If the signal v in the state transition
is a context signal, the state s' only needs to be excluded if v

is included in the cover. This implication is represented with
a dot being placed in the row corresponding to the signal v.

In a single pass through the state graph, all of the CC tables
can be constructed. Returning to our example, the CC table
for the excitation region ER(r \. 1) is given in Table III. For
this excitation region, the enabled cube is [0100] and b is its
only trigger signal. The covering section includes states [1100],
and [1101] because all other states are either in the excitation
or quiescent region or are excluded by the trigger signal b.

There are two closure columns. The first, corresponding to the
transition [1110] A [0110], indicates that if a is included, then
state [0110] must be excluded. The only context signal that
excludes this state is c. The second closure column corresponds
to the transition [1111] [1110], and is formed similarly.
Note that the transition [1101] A [1111] does not have a
column since EC(c], l)(c) = 0 which does not exclude state

When the construction of the CC table is successful, the
table is solved using essentially the same reduction algorithm
used in the general case outlined above. In this case, however,
ties that occur in Rule 4 are resolved by choosing the rule
that provides symmetry between different regions of the same
signal. This symmetry can often be exploited later during logic
optimizations. Returning to our example, the table is solved
as follows. First, row a is chosen since it is an essential row
(Rule 1), removing it as well as columns [1100], [1101], and
[1111] [1110] from the table. Since this removes a dot
in column [1110] A [0110], this column is covered next. To
accomplish this, row c is chosen since it is an essential row
(Rule 1), removing the column [1110] A [0110] solving the
table. The resulting correct cover consists of the single cube
abc. Notice that, as expected, this is the same result found by
the general algorithm.

C. Complexity Comparison

Although both the single-cube and general algorithm have
exponential complexity with respect to the size of their tables,
the complexity of the single-cube algorithm is much less than
that of the general algorithm for two reasons.

First, the general algorithm must compute all prime and
candidate prime implicants which are not needed in the single­
cube algorithm. In particular, the number of prime implicants
can be as many as 3n/n [13] where n is the number of signals.
To find the candidate implicants, it is necessary to expand
each “don’t care” with a “0” and a “ 1” and check to see if
it is a new candidate implicant. The check requires that the
potential candidate implicant is checked against each larger
candidate implicant. The complexity of this test, therefore, is

Second, the sizes of the binate covering tables which must
be solved are substantially larger in the general algorithm
than in the single-cube algorithm. For the general algorithm,
there needs to be one row for each candidate implicant (i.e.,
0(3n/n) rows) and one column for each excitation region
state and for each implied state of a candidate implicant (i.e.,
0 (|$ | + 1$| x 3" / / ') columns). For the single-cube algorithm,
there needs to be one row only for each potential context
signal (i.e., 0(n) rows) and a column for each violating state
and state transition (i.e., 0(|<E>| + |T|) columns). Thus, the CC
tables for the general algorithm can be exponentially larger
than in the single-cube algorithm. This can lead to dramatic
differences in run time since the worst case complexity of
solving the binate covering problem is exponential in the size
of the table.

D. Run-Time Comparison

Both the general and single-cube covering algorithms de­
scribed in this paper have been automated within the CAD
tool ATACS using the well-known reduction and branching
techniques [17]. The algorithms were tested on a large bench­
mark of circuits from academia and industry [26], [41]. The
run-time results for both algorithms are shown in Table IV.
The experiments were performed on a SPARCstation 20 with
128 Mbytes of physical memory and 256 Mbytes of virtual
memory.

When applicable, the single-cube algorithm is consistently
an order of magnitude faster. In two examples, the general
algorithm took several hours to find the candidate primes, and
exhausted the memory when it attempted to build the CC
tables. In a third case, we terminated the general algorithm
after it ran for more than 24 h. There is no single-cube solution
in four of the 27 circuits. For each of these circuits, the single­
cube algorithm determined in a matter of microseconds that
no single-cube cover exists. Fortunately, in these four cases,

218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

TABLE IV
Experimental Results for Speed-Independent Benchmarks

Examples i$ i |r|
Sing

Lits

le-cube

Time

General

Lits|Time

CPU

ratio

2demux 3200 12178 60 13.0 space n/a

ebergen 18 22 18 0.05 18 0.77 15

etlatch 93 206 infeasible 21 3.04 n/a

false 12 16 infeasible 7 0.38 n/a

5fifo 2704 8304 70 29.0 time n/a

full 16 24 8 0.04 8 0.38 10
hazard 12 14 10 0.04 10 0.36 9

hybridf 80 168 16 0.12 16 2.58 22
master-read 2108 7103 35 7.23 space n/a

mp-forward-pkt 22 28 18 0.05 18 0.97 19

nak-pa 58 120 22 0.12 22 5.67 47

nowick 20 24 21 0.04 21 0.86 22
pe-rcv-ifc 54 76 78 0.21 78 6.96 33

pe-send-ifc 110 213 93 0.25 95 17.49 70

ram-read-sbuf 39 58 23 0.08 23 2.05 26

rim 12 13 9 0.04 9 0.55 14

rpdft 22 22 19 0.04 19 0.54 14

sbuf-ram-write 64 114 24 0.14 24 5.97 43

sbuf-read-ctl 19 22 15 0.05 15 0.90 18

sbuf-send-ctl 27 32 33 0.06 33 1.79 30

sbuf-send-pkt2 26 34 27 0.06 27 1.24 21
trimos-send 336 888 infeasible 36 147.2 n/a

vbe4a 20 28 8 0.04 8 0.57 14

vbe5b 24 38 12 0.04 12 0.61 15

vbe5c 24 38 10 0.04 10 0.62 16

vbelOb 256 736 32 0.43 32 3.08 7

xyz 8 10 infeasible 10 0.50 n/a

the general algorithm could be used to find a cover. Thus,
during synthesis, we always attempt to run the single-cube
algorithm first. Only when it fails do we apply the more general
algorithm.

The literal count in all but one example is the same for the
two algorithms. This one discrepancy is due to the fact that
the reduction rules for the general algorithm are optimized for
the number of cubes and not the number of literals. Note that
we could easily extend the general algorithm to optimize the
number of literals by casting it as a weighted binate covering
problem at the cost of additional complexity. Since a difference
in literal count occurred only in one example, our experimental
results suggest that this extension is not critical, and that the
added complexity may not be justified.

We may be able to speed up solving the binate covering
problems by employing newer, more efficient algorithms [20],
[28], [40]. But since these algorithms do not change the in­
herent differences in the complexity of the covering problems,
we expect that similar differences in run-time would exist.

V. Conclusion

We have presented new covering conditions and algorithms
needed in the synthesis of standard C implementations of
speed-independent circuits. We have developed correctness
conditions based on the ideas of complex-gate equivalence and
hazard freedom. We have proven that our covering conditions
guarantee that the circuits produced are both complex-gate
equivalent and hazard free. We formulated our synthesis
problem as a binate covering problem, and we described a
general algorithm to solve this covering problem. Finally, we
developed an efficient covering algorithm to find single-cube

covers. We demonstrated that this algorithm is applicable in
most of the standard benchmarks, and it can yield synthesis
results over one order of magnitude faster. In addition, our
results showed that the single-cube algorithm could complete
on a number of circuits that were too large for the general
algorithm to handle.

References

[1] D. B. Armstrong, A. D. Friedman, and P. R. Menon, “Design of
asynchronous circuits assuming unbounded gate delays,” IEEE Trans.
Comput., vol. C-18, pp. 1110-1120, Dec. 1969.

[2] P. A. Beerel, “CAD tools for the synthesis, verification, and testability
of robust asynchronous circuits,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, Aug. 1994.

[3] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng, “Sufficient conditions
for correct gate-level speed-independent circuits,” in Proc. Int. Symp.
Advanced Res. in Asynchronous Circuits and Syst., Nov. 1994.

[4] P. A. Beerel and T. H.-Y. Meng, “Automatic gate-level synthesis of
speed-independent circuits,” in IEEE ICCAD Dig. Tech. Papers, 1992,
pp. 581-586.

[5] , “Gate-level synthesis of speed-independent asynchronous con­
trol circuits,” in collection of papers of the ACM Int. Workshop Timing
Issues in the Specification of and Synthesis of Digital Syst., 1992.

[6] , “Semi-modularity and testability of speed-independent circuits,”
Ibtegr, VLSI J., vol. 13, pp. 301-322, Sept. 1992.

[7] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Nor-
well, MA: Kluwer, 1984.

[8] R. K. Brayton and F. Somenzi, “An exact minimizer for Boolean
relations,” in Int. Conf. Computer-Aided Design, IEEE Comput. Soc.
Press, 1989, pp. 316-320.

[9] S. M. Burns, “General conditions for the decomposition of state holding
elements,” in Proc. Int. Symp. Advanced Res. in Asynchronous Circuits
and Syst., IEEE Comput. Soc. Press, Mar. 1996.

[10] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, Mass. Inst. Technol., Cambridge,
1987.

[11] , “Synthesis of hazard-free control circuits from asynchronous
finite state machine specifications,” J. VLSI Signal Processing, vol. 7,
pp. 61-84, Feb. 1994.

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, “Technology mapping of speed-independent circuits based
on combinational decomposition and resynthesis,” in Proc. European
Design and Test Conf., 1997.

[13] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[14] D. L. Dill, “Trace theory for automatic hierarchical verification of
speed-independent circuits,” ACM Distinguished Dissertations, 1989.

[15] J. C. Ebergen, “A verifier for network decompositions of command-
based specifications,” in Proc. 26th Annu. HICSS, IEEE Comput. Soc.
Press, 1993, pp. 310-318.

[16] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods, “A
micropipelined ArM,” in VLSI’93, 1993.

[17] A. Grasselli and F. Luccio, “A method for minimizing the number
of internal states in incompletely specified sequential networks,” IEEE
Trans. Electron. Comput., pp. 350-359, June 1965.

[18] , “Some covering problems in switching theory,” in Network and
Switching Theory, G. Biorci, Ed. New York: Academic, 1966.

[19] J. Gu and R. Puri, “Asynchronous circuit synthesis with Boolean sat­
isfiability,” IEEE Trans. Computer-Aided Design, vol. 14, pp. 961-973,
Aug. 1995.

[20] S. Jeong and F. Somenzi, “A new algorithm for the binate covering
problem and its application to the minimization of Boolean relations,”
in IEEE ICCAD Dig. Tech. Papers, pp. 417-420, 1992.

[21] S. T. Jung, U. S. Park, J. S. Kim, and C. S. Jhon, “Automatic synthesis
of gate-level speed-independent control circuits from signal transition
graphs,” in Proc. Int. Symp. Circuits Syst., 1995, pp. 1411-1414.

[22] A. Kondratyev, M. Kishinevsky, J. Cortadella, L. Lavagno, and A.
Yakovlev, “Technology mapping for speed-independent circuits: De­
composition and resynthesis,” in Proc. Int. Symp. Advanced Res. in
Asynchronous Circuits Systems, IEEE Comput. Soc. Press, Apr. 1997.

[23] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A.
Yakovlev, “Basic gate implementation of speed-independendent cir­
cuits,” in Proc. ACM/IEEE Design Automation Conf., June 1994, pp.
56-62,

[24] _ private communication, July 1993.

BEEREL et al.: SYNTHESIS OF SPEED-INDEPENDENT CIRCUITS 219

[25] A. Kondratyev, M. Kishinevsky, and A. Yakovlev, “On hazard-free
implementation of speed-independent circuits,” in Proc. Asian South
Pacific Design Automation Conf., 1995, pp. 241-248.

[26] L. Lavagno, “Synthesis and testing of bounded wire delay asynchronous
circuits from signal transition graphs,” Ph.D. dissertation, Univ. Cali­
fornia, Berkeley, 1992.

[27] L. Lavagno, C. Moon, R. Brayton, and A. Sangiovanni-Vincentelli,
“Solving the state assignment problem for signal transition graphs,” in
Proc. ACM/IEEE Design Automation Conf., IEEE Comput. Soc. Press,
June 1992, pp. 568-572.

[28] B. Lin, O. Coudert, and J. C. Madre, “Symbolic prime generation
for multiple-value functions,” in Proc. ACM/IEEE Design Automation
Conf., June 1990, pp. 40-44.

[29] K.-J. Lin, J.-W. Kuo, and C.-S. Lin, “Direct synthesis of hazard-free
asynchronous circuits from STG’s based on lock relation and MG-
decomposition approach,” in Proc. European Design and Test Conf.
(EDAC-ETC-EuroASIC), IEEE Comput. Soc. Press, 1994, pp. 178-183.

[30] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive VLSI circuits,” in UT Year of Programming Institute
on Concurrent Programming, C. A. R. Hoare, Ed. Reading, MA:
Addison-Wesley, 1990.

[31] _ private communication, Oct. 1994.
[32] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus,

“The design of an asynchronous microprocessor,” in Decennial Caltech
Conf. VLSI, 1989, pp. 226-234.

[33] E. J. McCluskey, Logic Design Principles with Emphasis on Testable
Semicustom Circuits. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[34] T. H.-Y. Meng, R. W. Brodersen, and D. G. Messershmitt, “Automatic
synthesis of asynchronous circuits from high-level specifications,” IEEE
Trans. Computer-Aided Design, vol. 8, pp. 1185-1205, Nov. 1989.

[35] R. E. Miller, Switching Theory, Volume II: Sequential Circuits and
Machines. New York: Wiley, 1965.

[36] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in
Proc. Int. Symp. Theory of Switching, 1959, pp. 204-243.

[37] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous
circuits,” IEEE Trans. VLSI Syst., vol. 1, pp. 106-119, June 1993.

[38] C. J. Myers, “Computer-aided synthesis and verification of gate-level
timed circuits,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ.,
Oct. 1995.

[39] S. M. Nowick, “Automatic synthesis of burst-mode asynchronous con­
trollers,” Ph.D. dissertation, Dep. Comput. Sci., Stanford Univ., 1993.

[40] J. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, “Exact and heuristic al­
gorithms for the minimization of incompletely specified state machines,”
IEEE Trans. Computer-Aided Design, pp. 167-177, Feb. 1994.

[41] O. Roig, J. Cortadella, and E. Pastor, “Hierarchical gate-level verifica­
tion of speed-independent circuits,” in Asynchronous Design Method­
ologies, IEEE Comput. Soc. Press, May 1995, pp. 129-137.

[42] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Tech. Rep.
UCB/ERL M92/41, Univ. California, Berkeley, May 1992.

[43] J. A. Tierno, A. J. Martin, D. Borkovic, and T. K. Lee, “A 100-MIPS
GaAs asynchronous microprocessor,” IEEE Design Test Comput., vol.
11, no. 2, pp. 43-49, 1994.

[44] S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, 1969 (reissued by R. E. Krieger, Malabar, 1983).

[45] C. H. (Kees) van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
and F. Saeijs, “A fully-asynchronous low-power error corrector for the
digital compact cassette player,” in IEEE Int. Solid-State Circuits Conf.,
1994.

[46] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man, “A generalized
state assignment theory for transformations on signal transition graphs,”
in Proc. Int. Conf. Computer-Aided Design (ICCAD), IEEE Comput.
Soc. Press, Nov. 1992, pp. 112-117.

[47] V. I. Varshavky, Ed., Self-Timed Control of Concurrent Processes.
Dordrecht, The Netherlands: Kluwer, 1990.

[48] K. Y. Yun and D. L. Dill, “Automatic synthesis of 3D asynchronous
state machines,” in Proc. Int. Conf. Computer-Aided Design (ICCAD),
IEEE Comput. Soc. Press, Nov. 1992, pp. 576-580.

Peter A. Beerel (S’88-M’95) received the B.S.E.
degree in electrical engineering from Princeton Uni­
versity, Princeton, NJ, in 1989, and the M.S. and
Ph.D. degrees in electrical engineering from Stan­
ford University, Stanford, CA, in 1991 and 1994,
respectively.

Since 1994, he has been an Assistant Professor
in the Electrical Engineering—Systems Department,
University of Southern California, Los Angeles. His
research interests include computer-aided design of
asynchronous and mixed asynchronous/synchronous

VLSI systems, as well as formal verification of communication protocols.
Dr. Beerel is a cowinner of the Charles E. Molnar award for two papers

presented in ASYNC’97 that best bridged theory and practice of asynchronous
system design. He is a recipient of an NSF Career Award and a 1995 Zumberge
Fellow. He has also been a primary consultant for the Intel Corporation
on their Asynchronous Instruction Decoder Project. He was a member of
the Technical Program Committee of the Second Working Conference on
Asynchronous Design Methodologies, the 1995 ACM International Workshop
on Timing Issues in the Specification and Synthesis of Digital Systems
(TAU’95), and the Third International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC’97). He was also the Program
Cochair for ASYNC’98.

Chris J. Myers (S’91-M’96) received the B.S.
degree in electrical engineering and Chinese history
in 1991 from the California Institute of Technology,
Pasadena, and the M.S.E.E. and Ph.D. degrees from
Stanford University, Stanford, CA, in 1993 and
1995, respectively.

He has been an Assistant Professor in the De­
partment of Electrical Engineering, University of
Utah, Salt Lake City, since 1995. His current re­
search interests are innovative architectures for high
performance and low power, algorithms for the

computer-aided analysis and design of real-time concurrent systems, formal
verification, and asynchronous circuit design.

Dr. Myers received an NSF CAREER award in 1996. He was recently
awarded a Center for Asynchronous Circuit and System Design by the State
of Utah, for which he serves as Director.

Teresa H. Meng (M’82-SM’93) received the B.S.
degree from National Taiwan University, Taipei,
Taiwan, R.O.C., in 1983, and the M.S. and Ph.D.
degrees from the University of California, Berkeley,
in 1984 and 1988, respectively.

She joined the faculty of the Electrical Engineer­
ing Department at Stanford University, Stanford,
CA, in 1988, where she is an Associate Professor.
Her current research activities include low-power
circuit design, wireless communication, and portable
DSP systems.

Dr. Meng received the IEEE Signal Processing Society’s Paper Award in
1989, the 1989 NSF Presidential Young Investigator Award, the 1989 ONR
Young Investigator Award, a 1989 IBM Faculty Development Award, and the
1988 Eli Jury Award from U.C. Berkeley for recognition of excellence in
systems research. She was Coprogram Chair of the 1992 Application Specific
Array Processor Conference and of the 1993 HOTCHIP Symposium. She
also served as General Chair of the 1996 IEEE Workshop on VLSI Signal
Processing.

