
D y n a m i c a l l y A l l o c a t i n g P r o c e s s o r R e s o u r c e s b e t w e e n N e a r b y a n d D i s t a n t I L P *

Rajeev Balasubramonian1, Sandhya Dwarkadas1, and David H. Albonesi*
1 Department of Computer Science

* Department of Electrical and Computer Engineering
University of Rochester

Abstract

Modern superscalar processors use wide instruction is
sue widths and out-of-order execution in order to increase
instruction-level parallelism (ILP). Because instructions
must be committed in order so as to guarantee precise
exceptions, increasing ILP implies increasing the sizes of
structures such as the register file, issue queue, and reorder
buffer. Simultaneously, cycle time constraints limit the sizes
of these structures, resulting in conflicting design require
ments.

In this paper, we present a novel microarchitecture de
signed to overcome the limitations o f a register file size dic
tated by cycle time constraints. Available registers are dy
namically allocated between the primary program thread
and a future thread. The future thread executes instructions
when the primary thread is limited by resource availability.
The future thread is not constrained by in-order commit re
quirements. It is therefore able to examine a much larger
instruction window and jump far ahead to execute ready in
structions. Results are communicated back to the primary
thread by warming up the register file, instruction cache,
data cache, and instruction reuse buffer, and by resolving
branch mispredicts early. The proposed microarchitecture
is able to get an overall speedup of 1.17 over the base pro
cessor fo r our benchmark set, with speedups of up to 1.64.

1 Introduction

Dynamic superscalar processors perform register renam
ing and out of order issue in hardware to extract greater
instruction-level parallelism (ILP) from existing programs.
A significant performance limitation in such processors is
the lack of forward progress in the midst of long latency
operations (e.g., cache misses). When this happens, it
would ideally be most beneficial to execute other inde
pendent performance degrading instructions (long-latency

*This work was supported in part by NSF grants CDA-9401142, ETA-
997288 1, CCR-9702466, CCR-9701915, CCR-9811929, CCR-9988361,
and CCR-9705594; by DARPA/TTO under AFRL contract F29601-00-K-
0182; and by an external research grant from DEC/Corapaq.

loads, branch mispredicts). However, to find such indepen
dent instructions, the processor would have to examine a
sufficiently large instruction window.

This problem cannot be solved by simply increasing the
number of in-flight instructions, as it would require larger
register files and reorder buffers that may impact critical
timing paths. The register file, in particular, can often de
termine the cycle time and several approaches that attempt
to balance latency and IPC have been proposed. The Alpha
21264 implements a clustered register file [14] in an attempt
to reduce average latency. Similarly, register file caches
have also been proposed [7] in order to access a smaller
subset of registers in a single cycle. Both of these tech
niques, however, cause IPC degradation when compared to
a single monolithic register file of the same size. A multi
cycle register file has its own problems - design complexity
in pipelining a RAM structure, having two levels of bypass
(which is one of the critical factors in determining cycle
time [7, 21]), and reduced IPC because of longer branch
mispredict penalties and increased register lifetimes. These
problems are only exacerbated in an SMT processor, where
the register file resources have to be shared by multiple
threads. Further, as we move to smaller process technolo
gies, the dominating effect of long wire delays will make
it even more prohibitive to implement large register files in
wide-issue machines [1 2 , 2 1].

The fundamental reason why the register file size has
such a large impact on the size of the instruction window,
and hence performance, is that instructions can be renamed
and dispatched only when there are free registers available.
Registers are freed only when instructions commit, and in
structions are committed in order. A single instruction that
takes a long time to complete could stall the commit stage,
thereby holding up all the registers and not allowing subse
quent instructions to dispatch. During this period, the out-
of-order execution core can only look at a restricted win
dow of instructions to extract ILP. As the processor-memory
gap increases, there will be an increasing number of long-
latency loads, causing dispatch to frequently stall as it runs
out of physical registers. Thus, there is a need for new ap
proaches that allow for forward progress to be made without

1

increasing the complexity of critical hardware structures.
In this paper, we present a novel architecture that uses the

limited number of physical registers to dynamically trade
nearby with distant ILP, while still maintaining precise ex
ceptions and program correctness. The front-end can sup
port fetch from two threads, the second of which is dynam
ically spawned by the hardware rather than being statically
created by the program. Initially, the only thread to run is
the main (primary) program. The secondary (future) thread
consists only of a program counter and register state. Out
of the available rename registers, we dynamically reserve a
certain number for the future thread, according to the pro
gram’s current needs to exploit far-flung ILP. Once the pri
mary thread runs out of its allocated registers, it stalls, and
the future thread gets triggered and starts off from where
the primary left off. This future thread cannot change the
program state, i.e., it cannot write to memory or update the
primary thread’s registers. It uses the remaining registers to
rename and dispatch its instructions.

In order to allow the future thread to make progress be
yond the instructions to which these registers are allocated,
we relax the constraints on when its registers are released
back into the free list. First, a register is released as soon
as all its consumers have read its value, i.e., we make the
optimistic assumption that there will be no branch mispre
dicts or exceptions raised. The future thread cannot change
the state of the primary thread — it serves the purpose of
potentially warming up the register file, data and instruction
caches, and resolving mispredicted branches early. Second,
in order to avoid consuming future thread resources that pre
vent other independent instructions from executing, we also
add a timeout mechanism to remove instructions that wait
for operands in the issue queue for too long. This frees up
registers and issue queue slots so that other productive de
pendence chains can make progress, thereby allowing the
future thread to get far ahead of the primary. When the pri
mary thread ceases to be stalled, it dispatches its subsequent
instructions all over again, but makes speedier progress as
its loads have been prefetched and its branches have been
correctly predicted. The use of an Instruction Reuse Buffer
(IRB) [29] could speed up the execution even more as some
of these instructions would not have to be re-executed.

Thus, we rob the main program thread of some of its
resources and allocate them to this opportunistic ‘helper’
thread that seeks independent instructions that are more dis
tant. The benefit of such an approach would depend on the
nature of the program, and we present a mechanism that
dynamically performs this allocation of resources between
the primary and future threads. As a result, in situations
where the future thread degrades performance, the proces
sor can always revert back to an organization like the base
case, where all resources belong to the primary thread. Our
simulation results indicate that relative to the base simu

lated architecture, performance is improved by an average
of 17% with the dynamic helper thread.

The rest of this paper is organized as follows. We start by
describing the proposed architecture in Section 2. In Sec
tion 3, we quantitatively evaluate its performance. Section 4
discusses related work, and we conclude in Section 5.

2 Proposed Mieroarehiteeture

2.1 The Base Processor

In a typical processor (outlined in Figure 1), the proces
sor front-end performs branch prediction, fetches instruc
tions from the instruction or trace cache, and deposits them
in the instruction fetch queue (IFQ). The IFQ holds the
fetched instructions until they get renamed and dispatched
into the issue queue. In the dispatch stage, the logical reg
isters are mapped to the processor’s pool of physical reg
isters. The rename table keeps track of logical to physical
register mappings and is used to rename instructions before
putting them into the issue queue. The destination register
is mapped to a new physical register that is picked out of the
free list (the list of registers not presently in use). The map
ping is also entered into the re-order buffer (ROB), which
keeps track of register mappings for all instructions that
have been dispatched, but not committed. The issue queue
checks for register dependences and also has a store queue
that ensures that loads are issued only when there can be no
conflict from an earlier store. As instructions become ready
and issue, they free up their issue queue entry. A branch
stack within the rename table checkpoints the mappings at
every branch, so they can be reinstated in the event of a
branch misprediction. The structure just described closely
resembles the R10000 [35] and the Alpha 21264 [14].

Instructions are issued from the issue queue when their
register and memory dependences are satisfied, and they are
committed from the ROB in program order as they com
plete. Consider the following example:

O r ig in a l code
1x1 <- . . .

. . . <- 1x1
b ra n c h t o x
l r 9 <- l r 3
l r 7 <- . . .

Renamed code
p r l5 <- . . .
. . . <- p r l5
b ra n c h to x
p r3 1 <- p r l9
p r43 <- . . .

X: X:
<- l r 7 <- p r !5

At dispatch, the first write to logical register 7 (lr7) causes
it to get mapped to physical register 15 (prl5). This is fol
lowed by an instruction that reads lr7. The branch is then
predicted to be not taken and the next instructions to be dis
patched are a write to lr9 and a write to Ir7. At this point,
lr7 gets mapped to pr43 and subsequent users of lr7 will

I-CACHE

RENAME PHYSICAL

ISSUE Q

Figure 1. The base processor structure

now read from pr43. Even if the instruction that reads prl5
has completed, prl5 cannot be released back into the free
list unless the write to pr43 has committed. There are two
reasons for this: (i) if the write to pr31 raises an exception,
to reflect an accurate register file state, lr7 should show the
value held in prl5, (ii) if the branch was mispredicted, we
would need to jump to x, where the read from lr7 would
actually refer to prl5. Hence, prl5 remains live until all in
structions prior to the write to pr43 are known to not raise
an exception and have all their branches resolved.

In the example shown above, if the write to pr31 was
a load that missed in the L2 , it could occupy the head of
the ROB for potentially a hundred cycles. If the processor
has 24 rename registers, only up to 23 more instructions
that write to registers can be dispatched in this period. This
severely limits the ability of the processor to extract ILP.

2.2 Adding the Future Thread
The goal of the proposed architecture is to circumvent

the in-order commit process in order to exploit any potential
far-flung ILP in addition to nearby ILP. We begin with an
overview of the proposed microarchitecture, followed by a
more detailed description of the various operations.

As an illustrative example, we begin with a base proces
sor that has 32 int and 32 fp logical registers, and 72 int
and 72 fp physical registers (i.e., there are 40 int and 40
fp rename registers). In the future thread architecture, the
front-end, comprising the IFQ and the register rename ta
ble, is replicated (Figure 2). While the primary thread is
not stalled, the future thread does not dispatch instructions,
but it updates its rename table to reflect the new mappings
in the primary thread. Of the 40 integer rename registers,
1 2 (for example) are reserved for the future instructions.
When the primary thread runs out of registers and stalls,
the future thread continues to make progress. It uses its
allocated physical registers to dispatch subsequent instruc
tions. These registers are then freed according to two cri
teria. Registers are reused as soon as there is no use for
them (assuming no mispredicts and exceptions). In addi
tion, if an instruction waits too long in the issue queue, it
gets timed out and its register is reused. Instructions wait

ing in the issue queue for this register are also removed.
Application of these two criteria is possible because the
primary thread will re-execute these instructions in order
to ensure in-order commit and program correctness. Thus,
registers reserved for the future thread can be reused much
more quickly, potentially allowing the thread to execute far
ahead of the primary, enabling prefetching of data into the
cache, early branch prediction, and value reuse. The future
thread does not engage in any speculation apart from spec
ulating across branches. It respects register and memory
dependences while issuing instructions.

2.2.1 Additional hardware structures
The three main additional structures are the future IFQ, the
future rename table, and the Preg Status Table.

There are two program counters, one for the primary
thread, and one for the future. These are identical at first,
and fetched instructions are placed in each IFQ. Every cy
cle, instructions can potentially be renamed by both threads
and dispatched into the issue queue. If the same instruction
is being handled by both threads, the future thread will not
dispatch it. The mapping corresponding to that instruction
in the primary rename table is copied into the future rename
table.

Each dynamic instruction is assigned a sequence num
ber (this is a counter that wraps around when full and is
large enough to ensure that all in-flight sequence numbers
are unique — possibly 10 bits long). Sequence numbers are
rolled back on a branch mispredict. These sequence num
bers make it possible to relate the primary instructions to
their future counterparts.

When the primary thread runs out of physical registers,
it stalls. The future thread continues, using the remaining
physical registers to map subsequent instructions. For each
instruction that is dispatched by the future thread, an entry
is added to the Preg Status Table. This is a small CAM
structure, the size of the number of registers reserved for
the future thread (1 2 entries, in this example, for int and fp
each), that keeps track of the current physical registers in
use within the future thread. The other fields in this struc
ture are: (i) Seqnum, the sequence number corresponding to

PHYSICAL

Figure 2. The architecture supporting the future thread (components belonging to the future thread are shaded).

the instruction that has the physical register as destination,
(ii) Users, indicating how many more consumers of that reg
ister still remain in the pipeline, (iii) Overwrite, indicating
that the corresponding logical register has been remapped
by a subsequent instruction, (iv) Timeout, set to a particular
value (30 in our case) at the time of dispatch, and decre
mented every cycle if the instruction has still not been is
sued. The Users field is incremented every time an instruc
tion is dispatched that sources that physical register. It is
correspondingly decremented when that instruction issues.

While it has been logically described as one structure,
the Preg Status Table can be broken up into a number of
small CAM structures. The most complex of these would be
the users field which would need as many as 16 ports (corre
sponding to two operands for each of four instructions being
renamed and four instructions being issued). This structure
would be smaller than a rename table that has as many ports,
much larger fields per entry, and more entries.
2.2.2 Timeout and register reuse
To help the future thread use its register resources more effi
ciently, we eagerly free up registers using the timeout mech
anism and the register reuse criteria.

The rationale for the timeout can be illustrated by Fig
ure 3. It shows a histogram of the number of instructions
that wait in the issue queue for a given period of time. The
particular example is that of a 20 million instruction win
dow from the program perimeter, and is typical of most
memory-intensive programs. It can be seen that instructions
are made ready within the first few cycles of their dispatch,
or after about 20 cycles, or after about 100 cycles. These
correspond roughly to the LI, L2, and memory latencies.
The timeout heuristic models the fact that the non-readiness

of an instruction in the first 30 cycles implies that it is wait
ing on a memory access and is likely to not be woken up for
another 70 cycles. Hence, we time it out and allow its reg
ister and issue queue entry to be used by other instructions.

Registers get put back into the free list as soon as their
overwrite bit is set and the number of users becomes zero.
Likewise, when the timeout counter becomes zero, the reg
ister is put back in the free list, its mappings in the rename
table (if still active) and the Preg Status Table are removed,
and the instruction is removed from the issue queue. In or
der to ensure the correct execution of instructions, in the
next cycle, the tag of this timed out register is broadcast
through the issue queue and all instructions that source it,
time themselves out. This not only frees up the issue queue
slot but also ensures that the instructions do not wake them
selves up when the same register tag (corresponding to the
completion of a later instruction) is broadcast as ready. The
process is repeated for the newly timed out instructions. Fu
ture instructions dependent on this value will not be dis
patched due to the invalid entry in the rename table. This
operation could take a few cycles depending on the length
of the dependence chain in the issue queue. To reduce hard
ware overhead, we could impose the restriction that future
instructions only occupy certain issue queue slots, thereby
having this associative logic for a subset of the issue queue.
While dispatching a prim ary instruction, if the issue queue
is full, one of the future instructions is explicitly timed out
to make room for it. This ‘stealing’ of issue queue slots
ensures that priority is always given to the prim ary thread.
2.2.3 Redispatching an instruction in the primary
When the instruction at the head of the ROB completes, the
prim ary thread can start making progress again as registers

Figure 3. Histogram showing waiting time in the
issue queue for a portion of the program perimeter.
The X axis shows the time spent waiting in the
issue queue, and the Y axis shows the number of
instructions that waited for that period.

get put in the free list. Instructions are fetched again from
the 1-cache into the IFQ and then dispatched. While dis
patching an instruction, the Preg Status Table and future re
name table are looked up. The future rename table keeps
track of the sequence number for the last instruction that
mapped the logical register within the future thread, while
the Preg Status Table includes the sequence number of the
instruction writing the physical register. The current in
struction's sequence number is used to associatively look up
the Preg Status Table. If a physical register mapping still ex
ists for that instruction in the future thread, the same physi
cal register is used to map the instruction in the prim ary as
well. The corresponding physical register entry is removed
from the Preg Status Table, as the register is no longer sub
ject to the rules of th c future thread. The future instructions
that source this register need not update their operand tags.
Also, the instruction need not be dispatched again into the
issue queue, as the earlier dispatch will suffice to produce
a result in that physical register. If a result already exists
in the physical register, thc future thread helps speed up the
prim ary thread even more. This phenomenon is referred
to as natural reuse. If a physical register mapping for that
instruction does not exist in the Preg Status Table (the reg
ister has already been timed out or reused) and if there is a
match with the sequence number associated with thc future
rename table's logical register entry, the future rename table
is updated to reflect the mapping in the prim ary table.

2.2.4 Recovery after a branch mispredict

Once triggered, only the future thread accesses the branch
predictor. It conveys its predictions to the prim ary thread

through a FIFO queue. These predictions in the queue are
updated when resolved by the future thread, so that the p ri
mary thread need not go along the mispredicted path.

When the future thread detects a mispredict, it check
points back to the state at the mispredict. However, some
values may be lost (as the register might have been reused),
thereby disallowing dispatch of instructions along some de
pendence chains.

As mentioned, the future rename table tracks the se
quence number corresponding to the logical register map
ping. A conventional rename table checkpoints its mapping
at every branch. For the future thread, the mappings that
might have been true at the time of checkpointing need not
be true when the checkpoint is reinstated - instructions prior
to the branch may have timed out, had their registers reused,
or been re-dispatched as part of the prim ary thread. Hence,
instead of checkpointing the mapping, we checkpoint the
sequence number for the mapping. In addition, the Preg
Status Table also checkpoints its overwrite bit. While rein
stating the checkpoint, the sequence number is inspected to
figure out where the correct mapping can be found. If the
sequence number is less than the last sequence number en
countered by the prim ary thread, then it means that the p ri
mary rename table has the correct mapping for that register.
If the sequence number is greater, it means that the register,
if still valid, should be part of the future thread and have a
mapping in the Preg Status Table. In the subsequent cycles,
these mappings are copied back into the future rename table
so that it reflects an accurate state, and the overwrite bit is
recovered. If the prim ary thread detects a mispredict, the
future thread starts from scratch after copying the contents
of the prim ary rename table.

A conventional rename table checkpoints 7-bit values
(the physical register tag), while the future rename table
checkpoints the sequence number (a 9-10 bit value). While
this implies a longer access time for the rename table, the
results in [21] indicate that the rename table is not on the
critical path for the technology parameters examined.

Given that the rename tables have a limited number of
read and write ports, copying as many as 64 mappings
could take a number of cycles. To reduce these copies,
we could checkpoint the actual mapping instead of the se
quence number when it is known that the mapping cannot
change1. Hence, in this case, by checkpointing the map
ping, a copy need not be made at the time of mispredict
recovery. Even with this change, it is still possible that the
recovery could add a few cycles to the mispredict penalty
for the future thread. We simulated the effect of an extra
four cycle penalty and noticed only marginal slowdowns for

1 For example, if the sequence number indicates that the instruction
that set this mapping has been dispatched in the primary thread, then it
is known that this mapping will still be true w'hen the branch mispredict is
discovered.

the programs with high mispredict rates. Given the oppor
tunistic nature of the future thread, its mispredict penalty
does not play a major role in affecting performance.

2.2.5 Exploiting the IRB
In the microarchitecture described thus far. instructions may
get executed by both the primary and future threads. An
instruction reuse buffer (IRB) could be used to minimize
this redundancy2. An implementation scheme like S n or
S n+d [29] could be easily used with minimal modification.
In our simulations, we use the S n scheme because of its
simplicity. In this scheme, the reuse buffer keeps track of
the program counter, the operand names (register addresses)
for an instruction, and the result value it produced when it
was last invoked. During dispatch, if a program counter
match is found in the IRB and the result value is valid, an
instruction can bypass the issue and execute stages of the
pipeline. Each instruction creates an entry in the IRB at the
time of dispatch, and updates the result value at the time of
completion. When an instruction dispatches, it also invali
dates all the entries in the IRB that source the same logical
register as its destination. Similarly, a store invalidates all
loads in the IRB that have the same source address.

To support the future thread, two modifications need to
be made to the IRB. Primary instructions cannot create IRB
entries once the future thread is triggered (these entries may
be invalid because the future thread may have dispatched
instructions that have modified the operands, which the pri
mary has no way of knowing). In addition, the entries in
the IRB also keep track of the sequence number for the fu
ture instruction that produced them. The primary thread can
reuse valid results in the IRB as long as these results were
produced by instructions with sequence numbers less than
or equal to that of the instruction being dispatched. This
ensures that the contents of the logical registers that are the
operands is the same as that used to generate the result.

2.2.6 Dynamic partitioning of registers
The allocation of physical registers between the primary
and future threads need not be set at design time. In fact, a
number of programs that do not have distant ILP would be
better off using their registers to exploit nearby ILP rather
than have the future thread throw those results away to ad
vance further. We include a mechanism that dynamically
accomplishes this partitioning on the fly. The number of
registers allocated to each thread is controlled by stalling
the thread’s dispatch as soon as it has consumed its allotted
registers. A counter keeps track of the registers allotted to
and freed by each thread. A register, set at run-time, speci
fies the maximum allowed counter value.

We use a simple interval-based mechanism [2] that mon
itors the program over regular intervals to decide what con-

2A n IRB in a conventional m icroarchitecture exploits value locality by
not re-executing instructions if they have the sam e operand values.

F etch queue size 16
B ranch predictor com b, o f b im odal and 2-level gshare;

bim odal size 2048;
Level 1 1024 entries, h isto ry 10;

Level2 4096 entries (global);
C om bining p redictor size 1024;

R A S size 32; B TB 2048 sets, 2-w ay
B ranch m ispredict penalty 9 cycles

Fetch , dispatch, issue. 4
and com m it w idth
Issue queue size 20 (int), 15 (fp)

L I I and D -cache 64K B 2-way, 2 cycles
L 2 unified cache 1,5M B 6-way, 15 cycles

TLB 128 entries, 8KB page size
M em ory latency 70 cycles fo r the first chunk

M em ory ports 2 (interleaved)
In teger A L U s/m ult-d iv 4/2

FP A L U s/m ult-d iv 2/1

Table 1. Simplescalar simulator parameters

figuration to use in the next interval. After every 100K in
struction interval, we examine a set of hardware counters
that track the number of branches and the number of LI
cache misses. If there is a significant change in either of
these compared to those in the last interval, we assume a
change in program phase. Every new program phase is ac
companied by an exploration process. For the subsequent
intervals, the program is run with various register partitions,
and the IPC for each interval is recorded. At the end of this
short exploration process, the partition that worked best is
used until the next phase change is detected. This process
of recording IPCs and picking the best configuration is eas
ily done in hardware with simple logic, or in software by
low-overhead interrupt handlers (like that used for software
TLB refill). Some programs do not show consistent behav
ior across 1 0 0 K instruction intervals and spend most of their
time in the exploration phase. If such a scenario is detected,
we shut off the exploration process and resort to the register
partitioning that was picked most frequently. More details
about the interval-based mechanism can be found in [3].

3 Results

3.1 M ethodology

We used Simplescalar-3.0 [4] for the Alpha AXP instruc
tion set to simulate a dynamically scheduled 4-wide super
scalar. The simulation parameters are listed in Table 1.

The simulator has been modified to model the memory
hierarchy in great detail (including interleaved access, bus
and port contention, writeback buffers). We also model a
physical register file and an issue queue that is smaller than
the ROB size. (In Simplescalar. the issue queues and the
ROB constitute one single unified structure called the Reg
ister Update Unit (RUU).) These are further divided into
separate integer and floating-point structures.

Our base processor has parameters resembling the Alpha

B enchm ark Inpu t
dataset

S im ulation
w indow (instrs)

IPC o f the
base case

em 3d (O lden) 20000 nodes,
arity 20

500M -525M 0.51

m st (O lden) 256 nodes 9M -14M 0.44
perim eter (O lden) 32K x32K 1515-1540M 0.39

art (SPEC 2k) re f 500M -550M 0.96
sw im (SPE C 2k) re f 1000M -1025M 0.73
lucas (SPEC 2k) re f 2000M -2050M 1.03

sp (N A S) A 2500M -2550M 0.98
bt (N A S) A 3200M -3250M 0.71

go (SPEC 95) re f 1000M -1025M 1.29
com press (S PE C 95) re f 2000M -2025M 1.53

Table 2. Benchmark description

21264 [14], We use 72 integer3 (int) and 72 floating-point
(fp) physical registers (corresponding to 40 rename regis
ters, int and fp, each) and integer and fp issue queues of
20 and 15 entries, respectively. We use a sufficiently large
ROB as it is a relatively simple structure and is likely to not
be on the critical path. Dispatch gets stalled as soon as ei
ther the registers or the issue queue entries get used up, so
the ROB occupancy rarely exceeds 80 entries, which is the
ROB size in the 21264. Our goal is to demonstrate potential
improvements on an existing processor model. In addition,
we present results with and without a small 16-entry fully-
associative IRB with the S n implementation scheme.

We ran our simulations on 10 programs from SPEC2000,
SPEC95, the NAS Parallel Benchmark [8], and the Olden
suite [23], Eight of these are memory-intensive and suffer
the most from the problem of a single long latency instruc
tion holding up the commit stage. We have also included
two non-memory-intensive programs (go, compress) from
SPEC95 INT, to illustrate the effect of the future thread on
this class of applications. To reduce simulation time, we
studied cache miss rate traces to identify program warm
up phases and smaller instruction windows that were rep
resentative of the program behavior4. The programs were
also run for 1 M instructions in detail to warm up the var
ious structures before measuring performance. Details on
the benchmark are listed in Table 2. The programs were
compiled with Compaq’s cc, f77, and f90 compilers for the
Alpha 21164 at the highest optimization level.

3.2 Analysis
We first show the performance with a future thread when

there is a fixed allocation of registers between the primary
m d future threads. This motivates the use of dynamic allo
cation, which we then use throughout the rest of the paper.
The improvement is attributed to the various features of the
future thread and we then look at the effect of various pa
rameters like the IRB, issue queue, and register file size.

''The A lpha has 80 integer registers. We use 72 fo r uniform ity.
4Since each iteration in b t is very long, we used a sm aller w indow than

was representative o f the w hole program . However, the results were selec
tively verified to be indicative o f the perform ance over longer w indows.

3.2.1 Dynamic partitioning of registers

Figure 4 shows speedups with the future thread for vari
ous fixed allocations of registers between the primary and
future threads. For all figures, the IPCs have been normal
ized with respect to an identical base case that has no future
thread (i.e., all rename registers are allocated to the primary
thread). Of these various static organizations, the 28:: 12
allocation that reserves 28 registers for the primary thread
has the best overall speedup (when comparing the harmonic
mean (HM) of IPCs). However, we see that different allo
cations do well for different programs. This depends on
whether the program has distant or nearby ILP and whether
the number of registers reserved for the future thread are
enough to allow it to advance far enough to exploit this dis
tant ILP. The highest speedups for lucas and mst are seen
by reserving only eight registers for the primary thread, but
this is the worst allocation for a number of programs that
also have nearby ILP. This motivates the need for a dynamic
scheme that picks the right allocation on the fly, depending
on program requirements. The last bar in Figure 4 shows
that the overall speedup of 1.17 with the interval-based dy
namic scheme far exceeds the speedup of 1 .1 1 possible with
the best static organization. The only program that experi
ences a large number of phase changes is art as it does not
have consistent behavior across 1 0 0 K instruction intervals.
Hence, after a number of initial exploration phases, it re
mains fixed at the organization that was picked most often.
All subsequent results assume the use of the dynamic allo
cation of registers between the primary and future threads.

3.2.2 Effects of prefetch, branch resolution, and reuse

Table 3 shows various statistics that help us explain the be
havior of the future thread. In Figures 5 and 6 , we attempt
to isolate the contributions of the various components to the
performance of the future thread. In Figure 5, the first bar
(prefetch only) shows a future thread implementation that
just runs ahead along predicted paths to warm up the data
and instruction caches, while ignoring the outcome of all
branch instructions. In this scenario, branch mispredicts are
discovered only when the primary thread re-executes the
branch instruction. The second bar shows an implementa
tion where the future thread also resolves branch mispre
dicts early and initiates recovery. The third bar represents a
model that adds an IRB. We see that a significant portion of
the improvement is due to the prefetch effect, with the over
all speedup being 1.12. Table 3 shows that there is a sharp
drop in the number of long latency loads seen by the pri
mary thread. The number of loads per committed instruc
tion that see a latency of more than 40 cycles falls by almost
a factor of two and is even reduced to zero in the case of lu
cas. For lucas, the dynamic scheme allocates most rename
registers to the future thread and this enables it to advance
as far as the next loop iteration, thereby fetching the data

No
rm

ali
ze

d
IP

Cs

1 . 8

1 .7

1 . 6

1 .5

1 .4

1 .3

1 . 2

1 . 1

1

0 . 9

0 . 8

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

0 . 2

F ig u re 4. P e rfo rm a n c e of th e fu tu re th r e a d fo r v a r io u s f ixed re g is te r a l lo c a tio n s b e tw e e n th e prim ary a n d fu ture
th r e a d . F o r e x a m p le , ‘8 ::3 2 ’ r e p r e s e n ts a n a llo c a tio n w h e re 8 re n a m e r e g is te r s a re r e s e rv e d fo r th e prim ary
th r e a d a n d th e rem a in in g 32 a re r e s e rv e d fo r th e fu ture. T h e la s t b a r s h o w s p e r fo rm a n c e w ith th e in te rv a l-b a se d
s c h e m e th a t d y n a m ic a lly p ic k s th e b e s t a l lo c a tio n . IP C s h a v e b e e n n o rm a liz e d w ith r e s p e c t to a b a s e c a s e th a t
h a s n o fu ture th r e a d a n d u s e s all 40 re n a m e re g is te r s fo r th e primary.

em3d mst peri art swim lucas sp bt S° comp
Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03
Num eager reg

release
0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06

N um natural reuse 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16
Avg dist between

oldest and youngest
instrs (base. future)

71. 136 25. 115 51. 114 63. 131 67. 123 31. 183 75. 128 47. 75 19. 19 39. 49

Num loads issued by
primary thread that
take more than 40

cycles (base, future)

0.12. 0.05 0.02. 0.02 0.11. 0.05 0.02. 0.01 0.04. 0.04 0.05. 0 0.03. 0.02 0.05. 0.04 0 .0 0 .0

Num future
instrs issued

0.7 0.2 1.4 0.8 0.8 0.6 0.6 0.9 0.2 0.4

Branch direction
prediction rate
(rounded off)

959? 97% 94% 98% 99% 989? 89% 98% 809? 93%

% o f mispreds
detected by

future instrs

889? 09?. 59% 42% 74% 99% 73% 689? 49?. 3%

IRB hit rate for
primary thread

20% 5% 10% 35% m 0% 59? 14% 22% 16%

T ab le 3. V a rio u s s t a t i s t i c s p e r ta in in g to th e fu ture th r e a d (w ith a d y n a m ic a llo c a tio n of re g is te r s) a n d th e b a s e
c a s e w ith n o fu ture th r e a d (m o s t n u m b e rs a re n o rm a liz e d to th e n u m b e r o f c o m m itte d in s tru c t io n s , fo r ex a m p le ,
N um tim e o u ts is th e n u m b e r o f t im e o u ts p e r c o m m itte d in s tru c tio n) .

S 8 : : 3 2
□ 1 6 : : 2 4

| ------- --□ 2 4 : : 1 6
| ____ ____________________________________ E3 2 8 : : 1 2
| E l 3 2 : : 8

a | | M d y n a m i c

e m 3 d m s t p e r i a r t s w i m l u c a s s p b t g o c o m p H M

1.8
1.7
1.6
1.5
1.4

« 1-3
£ 1.2
T3 1-1

| ° ‘9 3 0.8
Z 0.7

0.6
0.5
0.4
0.3
0.2

em3d mst peri art swim lucas sp bt go comp HM

_ □ only prefetch
_ □ prefetch+br_recovery

■ prefetch-fbrjec-i-IRB

1.8
1.7
1.6
1.5
1.4

„1 .3
g 1.2
TJ 1.1
= 1
1 ° ‘9 S 0.8
Z 0.7

0.6
0.5
0.4
0.3
0.2

em3d mst peri art swim lucas sp bt go comp HM

■ dynamic
□ no eager reg-release
□ no timeout
Sno natural reuse

F ig u re 5. Future th r e a d p e rfo rm a n c e b ro k e n d ow n
a s p re fe tc h , e a rly b ra n c h reco v ery , a n d re u s e .

long before the prim ary thread starts that iteration.
When the fu ture thread is allowed to initiate early branch

recovery, we see significant improvements for the programs
with high branch mispredict rates. This results in an addi
tional improvement of 5%, 24%, and 13% in em3d, perim e
ter, and sp. On the other hand, we see a big drop in per
formance for swim. When the future thread initiates early
branch recovery, it tries to restore a valid register state. Be
cause of the eager release of registers, some values remain
lost, disallowing progress along those dependence chains.
This sets off a chain reaction, where the future thread runs
much further ahead but is unable to execute any of the in
structions. It can be productive again only when the prim ary
thread catches up, which occurs when the prim ary discovers
a branch mispredict (for a branch not executed by the future)
and squashes all subsequent instructions. Swim is a loop-
based floating-point code and has a low branch mispredict
rate. As a result, the fu ture thread may have to wait a veiy
long time before it has valid register mappings. This effect
is also somewhat seen for bt. This negative effect of early
branch recovery can be easily eliminated by not attempting
it for programs with high branch prediction accuracies. Our
simulations do not assume the use of such a scheme.

Finally, by adding the IRB we see an additional over
all improvement of 5%. A number of instructions that have
been dispatched by the fu ture thread need not be re-executed
when seen by the prim ary thread. The last row in Table 3
shows that up to 35% of these instructions can obtain their
result from the IRB. This IRB hit rate improves slightly
when we use larger IRBs. Using a 128-entry IRB, we see
additional improvements of 8 % and 7% in mst and bt, re
sulting in an additional 1 % overall improvement.

3.2.3 Breakdown of contributions
Three major design components enable the future thread to
advance ahead of the prim ary. From Table 3, it can be seen
that the average distance between the oldest and youngest

F ig u re 6. C o n tr ib u tio n s o f th e f e a tu re s o f Vne future
th r e a d . T h e left b a r h a s all f e a tu re s tu rn e d o n . T he
o th e r b a r s s h o w s p e e d u p s w h e n e a c h is d is a b le d .

instruction within the processor increases greatly because
of the future thread. This number represents the size of the
in-flight instruction window. The largest window seen by
the base processor is only 75 instructions (in the case of
sp), but the future thread can look in a much larger window
(as large as 183 in the case of lucas) because of the eager re
lease of registers and the timeout. Both of these often come
into play as evidenced by the statistics in the first two rows
of Table 3. In addition, Table 3 demonstrates that a sig
nificant number of instructions need not be re-executed by
the prim aiy thread if their mapping still exists in the future,
which we describe as natural reuse.

Figure 6 quantifies the contributions of these three com
ponents by disabling them one at a time. It can be seen that
eager register release accounts for most of the speedup in
em 3d and perimeter, while timeout helps greatly in perim e
ter and lucas. For lucas, the primary bottleneck is the issue
queue. The use of the timeout makes it possible to reduce
contention for the issue queue, thereby not stalling dispatch.
Similarly, by allowing natural reuse, we prevent the re
dispatch of instructions into the issue queue, thus alleviating
the bottleneck again. Thus, the combination of the timeout
mechanism and the natural reuse allows the future thread to
advance far enough to do an effective job prefetching. Elim
inating eager register release results in an improvement for
swim because an early recovery from a branch mispredict
by the future thread now results in no lost values, thereby
eliminating the problem alluded to earlier. We see almost
no improvements for non-memory-intensive programs like
go and compress5 as they rarely run out of registers, thereby
not triggering the future thread.

3.2.4 Effect of various processor parameters
M st is a memory-intensive program that does not show

5Compress has a high LI miss rate, but a low L2 miss rate, and the
in-flight window in the base processor is Large enough to hide L2 Latencies.

em3d mst peri art swim lucas sp bt go comp HM em3d mst peri art swim lucas sp bt go comp HM

F ig u re 7. S p e e d u p s w ith th e fu ture th r e a d fo r th e
A lp h a-lik e m o d e l (left), a n d a m o d e l th a t h a s id e n
tic a l p a ra m e te r s e x c e p t fo r a la rg e r i s s u e q u e u e .

much improvement as it has little nearby ILP, causing in
structions to wait in the issue queue, thus stalling dispatch.
For the other programs, by using the fu ture thread, the reg
ister tile is removed as the bottleneck to dispatch. Hence,
stalls are often caused by the small size of the issue queue.
We next evaluate the fu ture thread for a processor model
that has larger int and fp issue queues of 30 entries each.
The larger issue queues resulted in no improvement for the
base case, but they enabled the fu ture thread to advance even
further, resulting in an overall speedup of 1.21 (Figure 7).

Finally, we study the effect of different register tile sizes.
Figure 8 shows speedups with the fu ture thread for proces
sor models that have physical register tile sizes ranging from
56 to 80 registers (int and fp, each). Each bar uses the corre
sponding base case to compute speedups. Two effects come
into play here. Using a smaller register tile makes it more
of a bottleneck, increasing the potential benefit of the fu
ture thread. However, with a smaller register tile, the fu ture
thread will also be limited in its ability to look ahead, reduc
ing the prefetch effect. Depending on which effect domi
nates, we see different behaviors for the different programs.
Hence, a clear trend is not seen in the overall speedup num
bers. It must be pointed out that the raw IPC for a 56-
register base case augmented with the fu ture thread (0.72
IPC) is better than the raw IPC for a 72-register base case
without the fu ture thread (0.71 IPC). While the IPCs are
comparable, the former processor model is likely to have a
faster clock speed.

4 Related Work
Dundas and Mudge [10] introduced a scheme for halting

the main instruction stream on a cache miss, and running
ahead to prefetch data. However, this was only applicable
to an in-order machine with no ILP support.

The idea of forming multiple threads that execute distant

F ig u re 8. S p e e d u p s w ith th e fu ture th r e a d fo r p ro
c e s s o r m o d e ls w ith d if fe re n t r e g is te r file s iz e s .

instructions has been exploited in a number of approaches,
such as Multiscalar [30], Trace processors [25], DMT [1],
and TLDS [31]. These are hardware intensive solutions as
they assume the presence of a separate processing unit or a
Simultaneous Multithreaded (SMT [33]) base to execute the
threads. They require significant hardware to store results
and to transfer register values between threads to free up
dependences. They are also highly speculative in nature, as
these threads might lie much further ahead in the program
control flow.

Zilles and Sohi [36] characterize problem instructions
(cache misses, branches) and the instructions that lead to
them. They point out that a smaller subset of the program
code can be pre-executed so that the main instruction stream
rarely encounters cache misses or branch mispredicts. They
assume an underlying implementation that can pre-execute
these slices. Roth and Sohi [28] talk about such an imple
mentation that can pre-execute certain dependence chains.
They use profiling to generate these slices and annotate the
code to trigger them at appropriate points. These threads
use physical registers to store their results and they are inte
grated into the main program thread when it catches up.

There have also been a couple of attempts at improving
branch resolution by pre-execution [11,27], where the slice
determining the branch is duplicated and made to run in a
separate window. Farcy et al [11] notice regularity in the
branch condition computations and use value prediction to
accelerate the second thread.

Simultaneous Subordinate Microthreading (SSMT) [5]
and Assisted Execution [9] are schemes where custom
generated threads are invoked within the hardware by cer
tain events. These threads perform very simple specific
tasks and cannot be automatically generated.

A related concept is AR-SMT [24] and SRT [22], that
run two copies of the same program on an SMT proces
sor and compare results from both threads. Their goal is

to detect transient faults in a chip, rather than to enhance
performance. An extension of this is the Slipstream proces
sor [32], where the thread running ahead is a shortened ver
sion of the original program (dynamically created by detect
ing and eliminating ineffectual pieces of the program), and
the trailing thread is the full program that verifies the correct
working of the leading thread. The two programs together
can ran faster than the single original program because the
leading thread communicates values and branch outcomes
to the trailing thread as (often correct) predictions.

Cruz et al [7] present a multi-banked register file, with
the banks having different speeds. While this degrades IPC,
it enables a faster clock. Other work [17, 34] proposes im
proving register utilization by allocating registers when in
structions complete. The relaxed conditions for releasing
registers into the free list have been proposed before [18] in
the context of processors with imprecise exceptions.

The primary advantage of the future thread is its
prefetching effect. A number of hardware [6 , 13, 26] and
software prefetching [16, 19] schemes have been proposed.
Most of these schemes can do a better job of prefetching as
they exploit some higher-level program information (reg
ularity of accesses). This regularity can be determined at
compile time or as strides or load-value dependences in
hardware. This lack of high-level information prevents us
from doing a very effective job of prefetching. We, how
ever, do a more exact job as we respect dependences and
actually compute load addresses (rather than use heuristics
like most hardware prefetch schemes). We also use dy
namic branch prediction to follow the probable control-flow
path, instead of greedily prefetching [16] along all possible
paths. This prevents us from fetching useless lines into the
cache (unless we are on the wrong branch path). Hence,
our techniques are also applicable to irregular codes with
unpredictable control flow and unpredictable data accesses.
Luk [15] addresses a similar problem in the context of an
SMT processor by using the compiler to help pre-execute
these codes. Some of the prefetch schemes can also be com
bined with the future thread to yield greater speedups. For
example, adding the future thread to a base case that has a
stride prefetcher results in significant speedups [3],

A software approach to tackling the problem of a sin
gle cache miss holding up the ROB is described by Pai and
Adve [20], They present a compiler algorithm that restruc
tures code so that cache misses are clustered, thereby in
creasing the memory parallelism while the ROB is stalled.

5 Conclusions
We have designed and evaluated a microarchitecture that

dynamically allocates a portion of the processor’s physical
resources to a future thread in order to exploit distant ILP
in addition to nearby ILP. Long latency instructions tend
to stall the commit phase of a traditional superscalar archi

tecture on reaching the head of the re-order buffer. Subse
quent instructions use up the available physical registers, af
ter which the dispatch stage stalls. In our proposed microar
chitecture, part of the physical registers are allocated for
the main program and once they are consumed, the future
thread gets triggered and makes forward progress. It ea
gerly releases registers and times out instructions that wait
too long in order to opportunistically advance far beyond
what the primary thread is capable of. It thus improves per
formance by resolving branch mispredicts early, by warm
ing up the data and instruction caches, the instruction reuse
buffer, and by reusing register mappings and values. In ad
dition, an interval-based scheme is used to allocate the op
timal number of registers to the future thread.

Our evaluation on some of the more memory-intensive
benchmarks show very promising speedups of up to 1.64.
The overall improvement on our benchmark suite is 17%.
The contributions come mainly from prefetching, with sig
nificant contributions from early branch recovery in the pro
grams limited by poor branch prediction accuracies. The
use of a small 16-entry IRB accounts for 5% of this im
provement. The dynamic allocation of registers plays a ma
jor role in tuning the hardware to the ILP requirements of
each program phase. The use of a larger issue queue allows
the future thread to achieve an overall speedup of 1 .2 1 .

References

[1] H. Akkary and M. Driscoll. A Dynamic Multithread
ing Processor. In Proceedings o f MICRO-31, pages
226-236,1998.

[2] R. Balasubramonian, D. Albonesi, A. Buyukto-
sunoglu, and S. Dwarkadas. Memory Hierarchy Re
configuration for Energy and Performance in General-
Purpose Processor Architectures. In Proceedings o f
MICRO-33, pages 245-257, Dec 2000.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi.
Dynamically Allocating Processor Resources between
Nearby and Distant ILP. Technical Report 743, Uni
versity of Rochester, Apr 2001.

[4] D. Burger and T. Austin. The Simplescalar Toolset,
Version 2.0. Technical Report TR-97-1342, University
of Wisconsin-Madison, June 1997.

[5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and
Y. Patt. Simultaneous Subordinate Microthreading
(SSMT). In Proceedings o f ISCA, 1999.

[6] T. Chen and J. Baer. Effective Hardware Based
Data Prefetching for High Performance Processors.
IEEE Transactions on Computers, 44(5):609-623,
May 1995.

[7] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham.
Multiple-Banked Register File Architectures. In Pro
ceedings o f the 27th ISCA, pages 316-325,2000.

[8] D. Bailey, et al. The NAS Parallel Benchmarks. Tech
nical Report TR RNR-94-007, NASA Ames Research
Center, March 1994.

[9] M. Dubois and Y. H. Song. Assisted Execution. Tech
nical Report CENG 98-25, EE-Systems, University of
Southern California, Oct 1998.

[10] J. Dundas and T. Mudge. Improving Data Cache
Performance by Pre-executing Instructions Under a
Cache Miss. In Proceedings o f ICS, 1997.

[11] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow
Analysis of Branch Mispredictions and Its Application
to Early Resolution of Branch Outcomes. In Proceed
ings o f MICRO-31, pages 59-68,1998.

[12] K. Farkas, N. Jouppi, and P. Chow. Register File Con
siderations in Dynamically Scheduled Processors. In
Proceedings o f HPCA, 1996.

[13] N. Jouppi. Improving Direct-Mapped Cache Perfor
mance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers. In Proceedings o f ISCA,
1990.

[14] R. Kessler. The Alpha 21264 Microprocessor. IEEE
Micro, 19(2), March/April 1999.

[15] C.-K. Luk. Tolerating Memory Latency through
Software-Controlled Pre-Execution in Simultaneous
Multithreading Processors. In Proceedings o f the 28th
ISCA, 2001.

[16] C.-K. Luk and T. Mowry. Compiler-based Prefetch
ing for Recursive Data Structures. In Proceedings o f
ASPLOS VII, pages 222-233,1996.

[17] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez,
and V. Vinals. Delaying Physical Register Allocation
through Virtual-Physical Registers. In Proceedings o f
MICRO-32, pages 186-192, Nov 1999.

[18] M. Moudgill, K. Pingali, and S. Vassiliadis. Register
Renaming and Dynamic Speculation: an Alternative
Approach. In Proceedings o f MICRO, 1993.

[19] T. Mowry, M. Lam, and A. Gupta. Design and Eval
uation of a Compiler Algorithm for Prefetching. In
Proceedings o f ASPLOS-V, pages 62-73, 1992.

[20] V. Pai and S. Adve. Code Transformations to Improve
Memory Parallelism. In Proceedings o f MICRO-32,
pages 147-155,1999.

[21] S. Palacharla, N. Jouppi, and J. Smith. Complexity-
Effective Superscalar Processors. In Proceedings o f
ISCA, pages 206-218,1997.

[22] S. Reinhardt and S. Mukherjee. Transient Fault Detec
tion via Simultaneous Multithreading. In Proceedings
of the 27th ISCA, pages 25-36,2000.

[23] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren.
Supporting Dynamic Data Structures on Distributed
Memory Machines. ACM Transactions on Program
ming Languages and Systems, Mar 1995.

[24] E. Rotenberg. AR-SMT: A Microarchitectural Ap
proach to Fault Tolerance in Microprocessors. In Pro
ceedings o f FTCS, 1999.

[25] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith.
Trace Processors. In Proceedings o f MICRO-30,1997.

[26] A. Roth, A. Moshovos, and G. Sohi. Dependence
Based Prefetching for Linked Data Structures. In Pro
ceedings o f ASPLOS VIII. pages 115-126,1998.

[27] A. Roth, A. Moshovos, and G. Sohi. Improving Vir
tual Function Call Target Prediction via Dependence-
based Pre-computation. In Proceedings o f ICS, 1999.

[28] A. Roth and G. Sohi. Speculative Data-Driven Multi
threading. In Proceedings o f HPCA-7, 2001.

[29] A. Sodani and G. Sohi. Dynamic Instruction Reuse.
In Proceedings o f ISCA, pages 194-205, 1997.

[30] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar
Processors. In Proceedings o f ISCA, 1995.

[31] J. Steffan and T. Mowry. The Potential for Us
ing Thread Level Data-Speculation to Facilitate Au
tomatic Parallelization. In Proceedings o f HPCA 4,
1998.

[32] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip
stream Processors: Improving both Performance and
Fault Tolerance. In Proceedings o f ASPLOS-IX, 2000.

[33] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
Proceedings o f ISCA, pages 392-403,1995.

[34] S. Wallace and N. Bagherzadeh. A Scalable Register
File Architecture for Dynamically Scheduled Proces
sors. In Proceedings o f PACT, Oct 1996.

[35] K. Yeager. The MIPS R10000 Superscalar Micropro
cessor. IEEE Micro, 16(2), April 1996.

[36] C. Zilles and G. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In Pro
ceedings o f ISCA, pages 172-181,2000.

