
A  P a t h - P r e c i s e  A n a l y s i s  f o r  

P r o p e r t y  S y n t h e s i s

Sean MeDirmid and Wilson C. Hsieh 

UUCS-03-027

School of Computing 

University of Utah 

Salt Lake City, UT 84112 USA

December 1, 2003

A b s tr a c t

Recent systems such as SLAM, Metal, and ESP help programmers by automating reason

ing about the correctness of temporal program properties. This paper presents a technique 

called property synthesis, which can be viewed as the inverse of property checking. We 

show that the code for some program properties, such as proper lock acquisition, can be 

automatically inserted rather than automatically verified. Whereas property checking an

alyzes a program to verify that property code was inserted correctly, property synthesis 

analyzes a program to identify where property code should be inserted.

This paper describes a path-sensitive analysis that is precise enough to synthesize property 

code effectively. Unlike other path-sensitive analyses, our intra-procedural path-precise 

analysis can describe behavior that occurs in loops without approximations. This precision 

is achieved by computing analysis results as a set of path machines. Each path machine 

describes assignment behavior of a boolean variable along all paths precisely. This paper 

explains how path machines work, are computed, and are used to synthesize code.
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ABSTRACT

Recent systems such as SLAM [3], Metal [11], and ESP [8] 
help programmers by automating reasoning about the correct
ness of temporal program properties. This paper presents a 
technique called property synthesis, which can be viewed as 
the inverse of property checking. We show that code for some 
program properties, such as proper lock acquisition, can be au
tomatically inserted rather than automatically verified. Whereas 
property checking analyzes a program to verify that property 
code was inserted correctly, property synthesis analyzes a pro
gram to identify where property code should be inserted.

This paper describes a path-sensitive analysis that is precise 
enough to synthesize property code effectively. Unlike other 
path-sensitive analyses, our intra-procedural path-precise anal
ysis can describe behavior that occurs in loops without approx
imations. This precision is achieved by computing analysis re
sults as a set of path machines. Each path machine describes 
assignment behavior of a boolean variable along all paths pre
cisely. This paper explains how path machines work, are com
puted, and are used to synthesize code.
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1. Introduction

Many program verification tools [3, 6, 8, 9,10] have recently 
been designed to help programmers reason about the correct
ness of temporal program properties. Examples of such prop
erties are adherence to synchronization, consistency, and re
source allocation protocols. Many of these properties, such as 
proper lock acquisition, are also ideal candidates for automatic 
synthesis of code. In other words, given a description of where 
locking code should be inserted, compiler analyses can be used

I = 0; j  = 0; k = false; I = 0; J = 0; K = false;

while (true) { while (true) {

if (!hasNext(J )) break; if (!hasNext(J)) break;

J = next (J) ; J = next(J) ;

if (!K) acquire(LK);

Y = process0(J ); Y = process0(J);

if (J > I) if (J > I)

{ I = J; K = Y;} { I = J; K = Y;}

} if (!K) release(LK); }

if (K) process1( I ) ; if (K) process1( I ) ;

if (K) release(LK);

return I ; (a) return I ; (b)

Figure 1: A code fragment (a) and an implementation of a lock acqui
sition property in this code fragment (b).

to insert the code automatically. In this paper we describe prop
erty synthesis, which can be viewed as turning automatic prop
erty checking on its head.

Property synthesis requires a program analysis that is com
parable to a programmer’s “best effort.” As an example, con
sider the code in Figure 1 (a), which is not synchronized. This 
code traverses a list, processes elements, and keeps track of 
the largest element for future processing. Inserting synchro
nization code results in the code in Figure 1 (b). The locking 
property requires that lock lk be held for each element from 
before a process0() call until after a matching processi() 
call. If processi() will not be called for the element, then 
the lock can be released after the process0() call is made. A 
good implementation of this property releases the lock as soon 
as it is known that processi() will not be called on an ele
ment that was already processed. This example demonstrates 
that property synthesis is general enough to handle arbitrary 
looping behavior.

The tricky part about this example are the loop-carried de
pendencies created by assigning I and k. Whenever I and k are 
assigned to j and y, the lock can be released if k happens to 
be false. For property synthesis to be effective, this behavior 
must be identified via analysis. However, we know of no ex
isting analysis that can identify lock release opportunities this 
precisely.

Our technique for property synthesis is performed in three 
steps. The first step automatically adds annotations that setup 
property-specific analysis problems, as well as property-specific 
code whose reachability depends on solutions to these anal
ysis problems. A generic description of these annotations is



expressed in a meta-programming language that is outside the 
scope of this paper: consider it to be similar to AspectJ [13]. 
The second step solves the analysis problems specified in the 
annotated program. In the final step, solutions computed dur
ing analysis are used to determine when property-specific code 
added in the first step is reachable, which results in a modified 
program that implements the property.

This paper describes the analysis step of property synthe
sis, which must compute results with enough precision to im
plement a property effectively. Our analysis technique focuses 
only on examining the scalar boolean assignment behavior of 
a procedure. As noted by Ball and Rajamani, reasoning about 
behavior related to a temporal safety property can be reduced 
to boolean assignment problems that are cheaply and precisely 
analyzed [2]. The annotations in the first step are expressed 
as boolean variables that are assigned in strategic places in the 
program. Our annotations can even express backward analysis 
problems.

We have developed an intra-procedural “path-precise anal
ysis” (PPA) that solves boolean assignment problems. PPA is 
similar to other path-sensitive analyses [5, 8,12,14,15,17] that 
qualify results to distinguish between the behaviors of differ
ent execution paths. Traditional meet-over-all-paths data-flow 
analyses (DFAs) are limited to describing behavior according 
to points in a control-flow graph (CFG). Path-sensitive analyses 
improve the precision of DFA with simple boolean path predi
cates that can distinguish between some paths in a CFG. How
ever, these predicates are not powerful enough to distinguish 
between the different behaviors of multiple looping execution 
paths.

PPA handles looping paths by computing analysis results as a 
set of path machines, which are finite-state machines that each 
describe boolean assignment behavior for one variable. A path 
machine is a state-transition system that can describe arbitrary 
looping execution paths in a procedure. By specifying states 
where boolean variables are true or false, path machine effec
tively describe the control-flow of boolean assignment behav
ior, rather than describing such behavior according to a CFG. 
The worst-case time complexity of PPA is , where is
the number of boolean assignments being analyzed and is the 
level of loop nesting in a procedure.

In this paper, we use proper lock acquisition as the primary 
example of a property that can be synthesized. However, prop
erty synthesis is applicable to other kinds of properties as well. 
Error-handling protocols are properties that require reasoning 
about potential failures that occur between how some data is 
generated and is used. For example, data from user input must 
be validated before it can be used to update a database. Con
sistency protocols are properties that require reasoning about 
when some operation has occurred so some other operation can 
invalidate or update assumptions. For example, repainting of a 
GUI widget must occur after its visible state has been updated. 
Code for both error handling and consistency protocols can be 
addressed by property synthesis.

The rest of this paper is organized as follows. Section 2 
describes the four steps of property synthesis. Section 3 de
scribes an algorithm for path-precise analysis that operates over 
boolean assignment procedures to compute path machines. Sec
tion 4 discusses issues related to property synthesis and path- 
precise analysis. Related work and our conclusions are pre
sented in Sections 5 and 6.

Original Program

Property Description

Annotated
Program

Program + Property Synthesis

Regular 
Boolean 
Program 

Ânalysi
Path Machines

Figure 2: An overview of property synthesis steps.

2. Property Synthesis

Our technique for property synthesis is a multi-step process 
that is illustrated in Figure 2. The annotation step takes a pro
gram and a property description and produces a version of the 
program annotated with property details, which is suitable for 
analysis but not execution. The abstraction step transforms the 
annotated program into a regular boolean program, which only 
describes the annotated program's control flow and boolean as
signment behavior. In the analysis step, the regular boolean 
program is analyzed to compute a model of path machines, 
which precisely describes the boolean assignment behavior of 
the annotated program. Finally, the synthesis step uses the 
model of path machines to transform the annotated program 
into an executable program that implements the property.

2.1 Annotation

Property descriptions consist of two parts: annotations that 
express an analysis problem and property code whose reach
ability depends on a solution to the analysis problem. Anno
tations are added to a program according to a description of 
the property expressed as a set of rules. The rules specify how 
annotations are added according to landmarks that can be iden
tified in a program using a flow-insensitive analysis. For ex
ample, a generic description of the lock acquisition property 
implemented in Figure 1 (a) can be expressed as the following 
two rules:

1. Before procedure process0() is called, the lock lk must 
be acquired if it is not held already;

2. Procedure processi() can be called after a process0() 
call with the same index only if lock lk is held over the 
span of the two calls.

A meta-programming language for expressing property de
scriptions is not described in this paper. Such a language needs 
to associate annotations with easily identified points in the pro
gram, in a manner similar to how advice is added at join points 
in the aspect-oriented programming language AspectJ [13].

Property code added during annotation specifies actions that 
should be performed in certain situations: acquire a lock before 
a call to process0() when the lock is not already held. Sit
uation descriptions can take into account the location in code, 
such as before a process0() call site, or invariants over pro
gram behavior, such as whether a lock is held. Whether an 
invariant is satisfied is determined by testing annotation vari
ables, which are boolean variables tested and assigned for anal
ysis purposes only.

Lock lk can be released when no value used in a process0() 
call can flow to a processi() call. Therefore, annotation vari
ables are needed to track how values flow through the code. 
Adding such annotations to the code in Figure 1 (a) results in

s
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I = 0; J = 0; K = false; 

i f  ( !?USED && LK_H)

{ LK_H=false; release(LK); } 

while (true) {

X = hasNext(J); i f  (!X) break; 

i f  ( . . .)  {LK_H=false;release(LK);}

J = next(J);

i f  (!LK_H) {LK_H=true;acquire(LK); }

Y = process0(J); J_IS = J; 

i f  ( . . .)  {LK_H=false;release(LK);}

Z = I > J;

i f  ( . . .)  {LK_H=false;release(LK);} 

i f  (Z) { I = J; K = Y; I_IS = J_IS;} } 

i f  ( . . .)  {LK_H=false;release(LK);} 

i f  (K) { process1(I); USE = I_ IS ; } 

i f  ( . . .)  {LK_H=false;release(LK);} 

return I;

Figure 3: The code from Figure 1 (a) with lock property annotations. 
Labels for each line are specified on the left.

the code of Figure 3. For illustration purposes, the lines are 
labeled in this code, and the labels will be used to refer to this 
code throughout the synthesis process.

The j_is and I _is variables keep track of elements that are 
used in process0() calls. When process0() is called at line 
Y with the variable j  as an argument, j_is is assigned to j. 
Though j  is not a boolean value in the program, it will later be 
considered as a boolean select value, which will be explained 
in Section 2.2. When the value in j  is assigned to variable I at 
line M, the variable j_is is assigned to i_is to specify that I is 
now an alias of j. The variable use tracks when elements are 
used in a processi() call. The i_is variable is assigned to 
the use variable whenever the processi() call executes.

Figure 3 also shows the lock release and acquire property 
code adding during annotation. The annotation variable lk_h 
tracks whether lock lk is held. At line Q, just before pro- 
cess0() is called, annotation code tests the lk_h variable, ac
quires the lock if it is not held, and sets lk_h to true. Lines RA, 
RB, RC, RD, RE, RF, and other lines not illustrated in Figure 3 
release the lock. Because a lock release might occur anytime 
the specified invariants are satisfied, the code is inserted be
tween every statement of the program. During synthesis, most 
of the lock release code will be eliminated because they are 
never reachable during execution. In Figure 3 the lock release 
condition is expressed at line RA and abbreviated for other lock 
release lines. Lock release occurs when the lock is held (lk_h), 
and when no values used in previous process0() calls can 
be used in future processi() calls. This last condition is ex
pressed as !?use, which is true only if variable use cannot be 
assigned to true in the future. The future operator ? enables 
reasoning about the possibility of an event occurring in the fu
ture via “reachability” relationships, which can be computed by 
a static program analysis.

2.2 Regular Boolean Programs

After a program has been annotated with property details, it

BGN if (L0) L0 = 0, L1 = 1
X if (L1) X = *, L1 = 0, L2 = 1
N if (L2 && X) J = L2 = 0, L3 = 1
Y if (L3) Y = *, J_ J,=SI L3 = 0, L4 = 1
Z if (L4) Z = *, L4 = 0, L5 = 1
V if (L5 && Z)K = Y, SI

H1 = J_IS, L5 = 0, L1 = 1
NOP if (L5 && !Z) L5 = 0, L1 = 1

P if (L2 && K)

X

USE = I_IS, L2 = 0, L6 = 1
NOP if (L2 && !X && !K) L2 = 0, L6 = 1
RT if (L6) L6 = 0;

Figure 4: An RBP of the annotated code in Figure 3; 0 is true, 1 
is false, * is an unknown values, and @ is a select values. Initially 
all variables except L0 are false. Annotation code line labels for each 
instruction are listed on the left.

is abstracted into a regular boolean program (RBP). An RBP 
is similar to a boolean program [2], where the only data type 
is boolean. Unlike a boolean program, an RBP is a set of un
ordered guarded assignments to boolean variables. Each pro
cedure in a program is expressed and analyzed separately in an 
RBP; i.e., RBPs do not support inter-procedural analysis.

The annotated code in Figure 3 is translated into the RBP in 
Figure 4. Variables are added to the RBP to track control flow. 
Following each guard is a set of assignments to boolean expres
sions that can refer to variables and unknown values (*). Un
known values in boolean programs [4] are non-deterministically 
true or false. They express abstracted details about a program's 
behavior that are either unknown statically, or are otherwise 
computationally too complex to be expressed in an RBP; e.g., 
general arithmetic. In Figure 4, unknown values are used to de
scribe the unknown behavior of calls to hasNext() and pro- 
cess0(), and the expression j > i, which are assigned to 
variables X, Y, and Z.

Assignments in RBP instructions can also occur to select val
ues, which are similar to unknown values in that they are non- 
deterministically true or false. However, a select value will be 
true exactly once per instruction it is assigned. Select values are 
used to describe non-boolean values whose identities are sig
nificant even when they are created in loops; e.g., the next() 
result in Figure 3. Values created in a loop can have relation
ships with each other that are not shared across multiple loop 
iterations. For example, the next() result in Figure 3 is related 
to the process0() result created in the same loop iteration. If 
the loop breaks and some next() result is assigned to I, then 
the process0() result from the same iteration is assigned to 
k. Therefore, whether a process1() call is reachable for some 
next() result depends on the process0() result in the same 
iteration being true. To maintain these relationships, a select 
value is true only for some arbitrary loop iteration during anal
ysis, which can then be generalized to all loop iterations. How 
analysis later handles select values is crucial to reasoning about 
behavior in loops, and will be described in depth in Section 2.3.

Guards are the only way to represent control flow in an RBP. 
Control flow of an RBP is very simple and can be described 
with respect to a clock. On every tick of the clock, every in
struction is executed, although the guard for only one instruc
tion is ever satisfied per clock tick. Each instruction is guarded 
by a CFG variable, which corresponds to when the RBP in
struction executes in the annotated code's CFG. In Figure 4, 
all variables prefixed by an l  are CFG variables. Initially, all



CFG variables are false except for L0, which acts as the entry 
point. Each RBP instruction is also associated with a line la
bel from the annotated code, which we use to identify an RBP 
instruction. The last two assignments of each RBP instruction 
in Figure 4, except for instruction RT, assign one CFG variable 
to false and assign another CFG variable to true to implement 
control flow. By incorporating CFG information into an RBP 
through assignment and guards, control-flow analysis is com
bined with assignment analysis. To represent procedure termi
nation, all CFG variables are set to false, which is what occurs 
at instruction RT.

Since an RBP can implement arbitrary non-recursive branch
ing (e.g., gotos), transforming a procedure into an RBP is sim
ple. Using a flat representation of a procedure’s code, such 
as in a register transfer language (RTL), all instruction labels 
are transformed into CFG variables that are always assigned to 
false unless the instruction should execute. All registers or vari
ables in the RTL become variables in the RBP. All boolean ex
pressions that are not formed using logical operators are trans
lated into unknown values. Non-boolean expressions are trans
lated into select values.

RBPs are useful because their analysis semantics can be de
scribed according to a finite state-transition system that pro
cesses strings of unknown values. Using the clock analogy to 
describe RBP behavior, every clock tick is associated with an 
arbitrary boolean value that determines whether an unknown 
value assigned on that clock tick is true or false. These clock 
ticks form the basis of a simple boolean-state transition system. 
The truth values of transitions in an execution path describe 
what assumptions execution paths depend on about unknown 
value behavior, which do not exeactly correspond to branches 
taken.

2.3 Path Machines

A path machine describes boolean variable assignment be
haviors in an RBP through a state-transition system. Intuitively, 
a path machine describes assignment behavior with respect to 
feasible execution paths through the code being analyzed. Path 
machines are computed by analyzing the RBP representation 
of a procedure, and are precise with respect to the RBP. The 
path-precise analysis that computes path machines is described 
in Section 3.

One path machine describes one variable in the RBP. Path 
machines are deterministic binary-transition finite-state machines 
(FSMs) whose accept states specify where in a program’s exe
cution a variable is true and non-accept states specify where a 
variable is false. Path machines support all the basic FSM oper
ations, which correspond to boolean operations over variables 
being described: FSM complement is logical negation, FSM 
union is disjunction, and FSM intersection is conjunction. For 
example, the expression !?use ||lk_h is described by a path 
machine that is formed by complementing the path machines 
for variable ?use, and unioning it with the lk_h path machine. 
Path machines can also be minimized using traditional FSM 
minimization algorithms.

A path machine is shown in Figure 5 that describes the as
signment behavior of variables k. For illustration purposes only, 
if both of the transitions from one state go to the same state, the 
transitions are illustrated as one unlabeled transition. Branch
ing transitions are labeled with + for true or - for false. Also, 
states are labeled according to the RBP instructions whose guard

...........]

Figure 5: A path machine that describes how variable K is assigned 
in Figure 4. States where the variables are true are black background 
with white foreground, and the start state has an extra circle around 
it. States are labeled according the RBP instructions they correspond 
to and are subscripted when labels are duplicated; unlabeled states il
lustrate behavior that continues forever and transition to themselves. 
Dashes abbreviate multiple transitions that do not affect behavior.

Figure 6: Path machines for variables I_IS (a) and ?USE (b), and the 
path machine ?USE (c) after it undergoes select value elimination.

is satisfied, or executes, on the state’s transitions. RBP instruc
tions are labeled according to line labels in the annotated code 
of Figure 3; e.g., the start state is labeled BGN because on the 
first transition the assignments of instruction BGN will be eval
uated. Branching occurs from a state in a path machine when 
path behavior diverges on the basis of an unknown value cre
ated at the state. For example, because the y variable can be 
assigned to k and the path machine tracks K’s value, the un
known value computed at state Yo can change the value of k. 
The k path machine describes how k is initially true and be
comes false after N0 executes. In order for k to go from true 
to false in one loop iteration, the call to hasNext() and eval
uation of i > j  must be true at states Xo and Zq , and a call to 
process0() at state Yo must be false.

The path machines in Figure 6 demonstrate the semantics of 
select values and the future operator ?. A select value is simi
lar to an unknown value except that it accepts exactly one true 
transition per label. In Figure 4, a select value is created at 
instruction M. Any path that passes through states with the M 
label must contain exactly one true transition from one of these 
states. The i_is path machine in Figure 6 (a) describes i_is 
assignment behavior, where i_is is assigned to a select value 
at instruction N. Because state M creates a select value that de
termines whether i_is becomes true, a branch is made. If the 
select value is false, then the path loops through the M state un
til the select value is true. The false transition from state X is 
not part of a feasible path, because then the loop would exit and 
the select value could not be true exactly once. If hasNext() 
never returns true, indicating that the list is empty, then the false 
transition occurs from state X and state X is never reached.



RA

I = 0; j  = 0; k = false; 

i f  (!?USE&&LK H) release(LK); false

X
while (true) {
X = hasNext(); i f  (!X) break;

RB i f  (!?USE&&LK H) release(LK); false
W W = next();

Q i f  (!LK H) acquire(LK); !K
Y Y = process0(W);

RC i f  (!?USE&&LK H) release(LK); !K&& !Y
Z Z = compare(V,W));

RD i f  (!?USE&&LK H) release(LK); !K&&Y&&! Z

V Y;K=J;=IZ)fi

| IK&&IY&&Z

RE i f  (!?USE&&LK H) release(LK); false
P i f  (K) { process1 (I); }

RF i f  (!?USE&&LK H) release(LK); K
RT return V;

Figure 7: Annotated code from Figure 3 without LK_H variable as
signments; the right column specifies under what conditions annotation 
code executes using a boolean expression.

Once the true transition through M is taken and if the evalua
tion of i > j at state Zq is true, then i_is is assigned to true 
at state No. The path can continue through state M . Since a 
true transition for a state with the label M was already consid
ered, only a false transition can be considered from state M . 
If state N is reached, then the select value assigned to i_is at 
that state will always be false.

The visual structure of the i _is path machine in Figure 6 (a) 
shows that i _is is only contiguously true, so only one assign
ment of i _is to one next() result is described. Other assign
ments of i _is to a next() result are false because the select 
value is only true once. As a result, the i _is path machine 
describes when a next() result in an arbitrary iteration is as
signed to variable I, and how long it remains assigned to I in 
successive loop iterations. It does not describe whether i _is is 
assigned to “some” next() result.

The path machine for variable ?use is shown in Figure 6 (b), 
and has a structure similar to the I _is path machine. Variable 
?use is true in states that can reach state P, which calls pro- 
cess1() while i_is is still true. The non-determinism of a 
select value must be eliminated from a path machine before it 
is used for synthesis. A select value is eliminated by unioning 
the behavior of path segments where the select value is assumed 
true into the behavior of path segments where the select value 
is assumed false. Intuitively, the result is a path machine that 
specifies behavior about an expression value for all loop iter
ations, not just an arbitrary iteration. The ?use path machine 
with its select value eliminated is shown in Figure 6 (c). This 
path machine is true when a next() result created in state M 
or M can reach state P with a true process0() result created 
at state Yo or Y2 in the same iteration. Otherwise, the path ma
chine is false and the lock can be released.

2.4 Synthesis

The synthesis step uses path machines to determine when 
property code is reachable during execution. Property code can

Figure 8: The path machine for the LK_H variable (select values elim
inated); Q and R states that correspond to lock release and acquire are 
highlighted, and occur whenever LK_H goes between true and false; 
states with labels M and N are not shown.

be resolved to one of three conclusions: it always executes, 
in which case it is left in the program; it never executes, in 
which case it should be removed from the program; or it exe
cutes conditionally, in which case it is left in the program with 
a dynamic test. Figure 7 lists resolution results for the propery 
code in Figure 3 in its right column. The Q line of lock acquire 
code executes when k is false, the RF line lock release code 
executes when k is true, and the RA, RB, and RE lines of lock 
release code never execute. Lock release code at lines RC and 
RD execute according to expressions over k, y, and z.

Conditions under which annotation code can execute are de
termined by looking at the guard in its controlling i f  test, and 
implementing the guard expression with path machines. Given 
property code located at some label, a path machine that de
scribes its guard behavior, and states in the path machine with 
the same label as the code, the following can occur: the states 
are all true, in which case the code executes unconditionally; 
the states are all false, in which case the code never executes; 
or some of the states are true and some of the states are false, in 
which case code execution is contingent on conditions known 
at run time. For the last case, conditions are never derived from 
annotation variables, which are always removed from the pro
gram. However, they can be derived from original variables or 
new variables added to the code specifically for dynamic test
ing.

Figure 8 illustrates the path machine for the variable lk_h. 
Lock acquisition occurs only in state Q and lock release oc
curs in states RC , RD , RD , and RF . Instruction labels cor
respond to static locations in the CFG, so states can always be 
disambiguated by their labels at run time using CFG informa
tion. However, multiple states with the same label cannot be 
distinguished using the CFG alone. When property code exe
cutes in a state that is identified by an ambiguous label in a path 
machine, it must be guarded to ensure that it executes only in 
the right states. This condition can be computed by tracking 
transitions in a path machine at run time. For example, state 
RC can be disambiguated from states RC and RC by noting 
that if the true transition from Z  is taken, then RC3 will not 
execute until the true transition from state Z4 is taken. This 
expression corresponds to the current value of the k variable, 
where RC3 will not execute unless k is false. State RC3 is only 
entered from the false transition of the Y state, so the expres
sion that guards RC3 is equivalent to !K && !Y. However, be
cause this expression uses multiple variables, it is not feasible



A Z = false; if (L0) Z = 0, L0 = 0, L1 = 1;

while (true) {

B X = !Z; if (L1) X = *, L1 = 0, L2 = 1;

while (true) {

C Y = getY () ; if (L2) Y = *, L2 = 0, L3 = 1;

D if (Y == Z) 

break;

if (L3&&(!Y&&!Z))

L3 = 0, L1 = 1;

E Z=Y&&X; X=Y; 

}}

if (L3&&(Y| |Z) )

Z = Y&&X,X = Y, L3 = 0, L2 = 1;

Figure 9: A code fragment with a two-level nested loop structure and 
its corresponding RBP; line labels are listed in the left column.

to reuse an existing variable to describe it. Instead, new vari
ables and new assignments can be generated automatically to 
track the transitions that determine when the !k && !y region 
of the path machine is entered.

Once path machines are used to resolve the reachability of 
property code, annotation variables are removed from the code. 
For Figure 7, this results in code that is similar to the code of 
Figure 1 (b). However, the solution computed by property syn
thesis is slightly more efficient and less obvious: it can release 
a lock before the i > j expression at line Z is evaluated. This 
replaces the one line of lock release code in the loop of Fig
ure 1 (b) with three lines that enable the lock to be released a 
few instructions sooner.

3. Path-Precise Analysis

Path machines used in property synthesis are computed with 
a path-precise analysis that does not utilize any of the approxi
mations used in a MOP (meet-over-all-paths) data-flow analy
sis. The only time approximation occurs in property synthe
sis is when the annotated code is transformed into an RBP, 
where unknown values approximate behavior that is either un
known or not expressible through boolean assignments. This 
section describes how path machines are computed from arbi
trary RBPs without any loss of precision.

Each variable in an RBP is associated with one path ma
chine. PPA computes path machines by tracing longer and 
longer paths through an RBP. The key insight is that a fix- 
point can eventually be recognized if path machine construc
tion makes compact guesses about paths in the RBP longer than 
they are precise for. In other words, the path machines that are 
precise for paths of length express behavior that is possibly 
wrong for paths of length . When a path machine is re
fined to be more precise for a longer path, states must be reused 
to represent this precision via state recycling before new states 
are created, otherwise a fix-point can never be identified. State 
recycling is similar to FSM minimization, except that equiva
lence between the original and minimized machines is not as 
strong. Instead, state recycling only requires that the resulting 
path machine expresses the same behavior for execution paths 
for which the original path machines is precise.

As an example, consider the code in Figure 9 and a corre
sponding RBP, where a call to getY() is changed into an un
known value. The code contains two loops, where the outer 
loop never breaks, and two loop-carried variables, X and Z. In 
the outer loop, X is always assigned to !z. In the inner loop, 
z is assigned to y && X, where y is computed from getY(),

Figure 10: Intermediate steps (a) through (c) in computing the path 
machine for variable Z in Figure 9, and the final result (d).

as long as y does not equal z . Otherwise the inner loop breaks 
into the outer loop. Though this example does nothing useful, 
its looping behavior is complicated. Real code often exhibits 
looping behavior that is simpler; this example code demon
strates that path-precise analysis is general enough to handle 
arbitrary looping behavior.

Three intermediate steps in computing the path machine for 
variable X in Figure 9 are shown in Figure 10. Figure 10 (a) 
shows what the X path machine looks like after tracing arbitrary 
paths up to length 4. The trace proceeds as follows: instruction 
A is the first instruction to execute, followed by instruction B. 
The next instruction to execute is C, which creates a result that 
determines what instruction executes next. Therefore state C 
branches to two choices, state D (instruction D will execute 
when Y is false), or state E . Following the execution of in
struction D, instruction B will execute again. An existing state 
is recycled in a path when it executes the same instruction and 
has the same truth value as a new state in the path would have. 
Given multiple recycling candidates, a well-defined order that 
takes into account distance from start and the branching struc
ture of the path machine is used to choose a state. A well- 
defined order in choosing recycling candidates is important as 
it ensures no state is skipped when guesses are incorrect. Be
cause X is false at state B , it can be recycled for the transition 
from state D .

Figure 10 (b) shows what the X path machine looks like after 
tracing arbitrary paths up to length 6. State Co is recycled for 
the transition from state E . This transition will be known to 
be incorrect when arbitrary paths of up to length 7 are traced. 
At this time it will be known that the D instruction, not the E 
instruction, succeeds the C instruction on a true transition when 
state E was executed two transitions before. When incorrect 
guesses are identified, path machines must be patched.

Path machine patching finds the next possible guess in the 
path machine that is precise with respect to and recycles the 
most states using a well-defined order. In the case of Figure 10
(b), there is only the one false C state, so a new false C state 
must be created to capture the new path. This occurs in Fig
ure 10 (c) with the new C state to express behavior precise for 
paths of length 7. In general, incorrect guess paths are always 
the result of assignment behavior that occurs only periodically 
in a loop. For example, consider a loop where a periodic as
signment only occurs every four iterations when two counter
like boolean values are both true. Path machines would recy
cle three sets of states through the loop's transition path before 
the incorrect guess was discovered. Patching the path machine 
would require unrolling the existing cycle in the path machine 
three times so that special behavior can be considered in the 
fourth iteration. In Figure 10 (b), periodic behavior is identi
fied on the second iteration, so the incorrect guess is discovered



quickly.
Because incorrect guess paths can cycle for multiple itera

tions before periodic behavior is identified, path machines must 
be annotated with transition precision information to ensure 
that incorrect guesses can be recovered from. Each transition 
must be associated with a precision that specifies how many 
times it is precise in a path before the next transition taken can
not be guaranteed to be as precise. When a state is initially 
recycled from some state, the transition between these states is 
assigned a precision of zero, meaning the next transition is not 
guaranteed to be as precise. As tracing recycles a state multiple 
times in a path, the precision of the transition is incremented. 
Beyond enabling incorrect guess recovery, transition precisions 
are not used for any other purpose.

The Z path machine in Figure 10 (c) still makes an incorrect 
guess on the false transition from state C2 to state Eo, where the 
E instruction is preceded in execution by a false C instruction, 
not a true one. When a trace of path length 8 is performed, the 
path machine is patched to the path machine in Figure 10 (d). 
This path machine is completely precise for any arbitrary length 
path, although the algorithm will only terminate after it traces 
arbitrary paths of length 9 (8 + 1) to discover that the X path 
machine and path machines for other variables have reached 
fixed-points. A path of length 8 has encountered all possible 
states in this RBP. The RBP has four instructions in the loop and 
two loop-carried variables (X and Z). Therefore, a path machine 
could duplicate an instruction at most only four times, which 
results in at most 17 states (including A outside the loop). PPA 
is guaranteed to terminate at or before a path length of 18 (17 
+ 1) for the RBP in Figure 9. Termination occurs at path length
9 because half of the possible states happen to be infeasible or 
redundant. The example in Figure 9 is an extreme case, where 
all variables are dependent on each other.

3.1 Fast PPA

An implementation of PPA simply by direct induction on 
path lengths explores every possible path of increasing lengths 
until a fix-point is computed. This results in a computationally 
inefficient algorithm where the number of paths explored is ex
ponentially related to the number of unknown values in an RBP. 
The basic algorithm is analogous to a naive implementation of 
data-flow analysis (DFA), where a CFG has only one “dirty” 
bit and basic blocks are traversed repeatedly until the dirty bit 
is no longer set. As in a fast DFA algorithm, a fast PPA algo
rithm should focus on computing local fix-point behavior for 
semi-independent sections of the CFG, like inner loops, before 
tracing behavior for successive sections of the CFG. Although 
nodes will have to be processed multiple times, tracing an ex
ponential number of paths can be avoided.

Control-flow in an RBP is implicit in variable assignment, 
so control-flow of an RBP is not known in a graph form un
til PPA is finished. However, a control-flow machine (CFM) 
is constructed and refined during PPA by computing the path 
machines for the RBP’s CFG variables, and it can guide analy
sis. A CFM is analogous to a CFG and is formed by unioning 
the path machines of all CFG variables together. The CFM is 
dependent on every variable used in control-flow tests, so will 
contain the complexity of those variable’s path machines. The 
CFM is not precise until PPA terminates, but even in its im
precise form, it can aid in identifying potential loops to focus 
analysis on. Because the loops PPA is concerned about occur

between states, not between instructions, the CFM will be more 
precise than a CFG in guiding state traversals. In Figure 10 (d), 
the Z path machine actually consists of four sequential inner 
loops and one outer loop. The fast PPA algorithm maintains a 
set of dirty states relative to the CFM. Initially, only the CFM 
start state corresponding to the first evaluated instruction is in 
the dirty set.

On each iteration of the analysis, a state is chosen for pro
cessing from the dirty list based on two criteria. The higher 
priority criterion selects a dirty state based on the current loop 
being processed according to the CFM’s clique structure. The 
dirty state in the same loop with the last processed state will be 
processed before another dirty state. For example, if the CFM 
resembles the path machine in Figure 10 (a), if state C is the 
last state processed, and states D0 and E0 are dirty, then state D0 
will be processed before E . The lower priority criterion selects 
the nearest successor state, based on the CFM, of the previously 
processed state. Otherwise, a dirty state is just chosen at ran
dom. Processing traces all imprecise CFM paths through the 
processed state, patching the path machines according to the 
results of the traces. If any path machine is patched as a re
sult of the trace, states whose evaluation follows the processed 
state in the CFM are added to the dirty list. A fix-point has been 
reached when the dirty list is empty.

3.2 Complexity

The worst-case feasible state space of an RBP is ,
where is the number of instructions and is the number of 
variables in a program. This determines the shortest path that 
can be traced before a fix-point is identified, which is the same 
for the fast or basic PPA algorithm. The worst case assumes 
that all variables are related to each other’s behavior, which 
does not occur often in real programs.

The number of arbitrary paths for a given length is related to 
the number of unknown values in a program. In the basic 
PPA algorithm, an instruction will be explored for each path 
it is in; therefore, the worst-case complexity with respect to 
state processing is . Because of its traversal technique,
the fast PPA algorithm has a worst case time complexity of 

, where is the looping depth in the CFM. Although 
it is possible to contrive programs where approaches the size 
of , loop nesting in the CFM is usually related to loop nesting 
in the CFG. However, it is always possible for loops in the CFG 
to only execute a constant number of times, which means they 
are not loops in the CFM. Alternatively, variables and branches 
may be used in a way that creates loops in the CFM that do not 
exist in the CFG. For the code in Figure 9, the code’s CFM is 
similar to the path machine in Figure 10 (d) indicates a loop 
nesting depth of two, which would also be the looping depth 
in its CFG. Since PPA is not inter-procedural, L is likely to be 
a small number, the exception being loop-intensive scientific 
code.

Each path machine describes behavior for only one variable. 
As a result, PPA avoids the state explosion problem often asso
ciated with constructing state machines that describe program 
behavior. Except for control-flow variables, which are obvi
ously all inter-related, variables are often only loosely related to 
each other. Therefore, their path machines can be smaller and 
can arrive at fix-points faster than a single monolithic state ma
chine that describes all variable assignment behavior together. 
Additionally, this also means PPA will suffer when false depen-



Figure 11: Repeated from Figure 8, the path machines for variables 
I_IS (a) and ?USE (b), and the path machine ?USE (c) after it under
goes select value elimination.

dencies exist between variables because they are reused for un
related purposes. Before PPA is performed, renaming variables 
using a technique such as SSA [7] can potentially improve PPA 
performance by eliminating easily detected false dependencies.

3.3 Future Variables

Future variables are created when the future operator ? is 
applied to a variable. Because of future variables, PPA occurs 
in multiple passes. On each pass, PPA computes path machines 
for a set of variables that are not dependent on variables in later 
passes. Because of this requirement, conventional and future 
variables can never be mutually dependent on each other. Ad
ditionally, future variables are restricted from ever being as
signed to unknown values. Three analysis passes are needed 
to compute path machines for the code in Figure 3, where the 
second pass computes path machines for the ?use expression 
and the third pass computes the path machine for the lk_h vari
able, while the first pass computes paths machines for all other 
variables.

All CFG variables exist in the first pass, so by the second 
pass, which processes future variables, the CFM is already con
structed. Whereas path machines for conventional variables are 
constructed from a start state, path machines for future vari
ables are constructed from a termination state that all paths in 
the CFM conceptually can reach, even if they cycle forever. 
Starting from the termination state, assignments to the variable 
flow backward from their assigning states. An assignment to 
true flows backward, adding states to the true set, until an as
signment to false of the same variable is encountered. After a 
path machine for a future variable is computed, it is identical in 
form and function to path machines of conventional variables.

3.4 Select Values

When the path machines are being constructed, select values 
are treated the same as unknown values that are true exactly 
once. To implement this constraint, all paths that take a true 
transition more than once for the same select value are elimi
nated. Additionally, all paths that take a false transition for a 
select value is eliminated if they do not eventually take a true 
transition for the select value. These criteria are identified dur
ing path machine construction.

Before a path machine is used to synthesize code, the non

determinism of a select value can and must be eliminated. Se
lect value elimination occurs by unioning sections of the path 
machine where the value is true with sections of the path ma
chine where the value is false. Select value elimination is a 
lossy process because it intuitively merges together all behav
ior about the iterations of an expression value created in a loop. 
Therefore, select values are only eliminated when a path ma
chine is directly used to reason about the reachability of some 
property code. Before synthesis, select values enable these cor
relations between values produced in a loop to be maintained 
long enough to derive other path machines that are more pre
cise as a result of the correlations. Consider the path machine 
for variable i _is , which is repeated in Figure 11 (a), and the 
path machine for variable !?use in Figure 11 (b). Because the 
select value is not eliminated from the I _is path machine, the 
structure of the !?use path machine describes cases where the 
process1() call is sometimes unreachable for a value used in 
a process0() call. If the select value was eliminated from the 
i _is path machine, then the process1() call would always 
be indicated as reachable in the !?use path machine as long 
as hasNext was true at least once. However, when the select 
value is eliminated from the !?use path machine, as in Fig
ure 11 (c), the process1() call is sometimes reachable and 
sometimes unreachable. As a result, the path machine identi
fies iterations in the loop where lock lk can be safely released, 
which would not be possible if the select value was eliminated 
from the i _is path machine before the !?use path machine 
was computed.

The select value elimination process first identifies the re
gions in the path machine where the select value transitition is 
true and regions where it is false. For the !?use path machine 
in Figure 11 (b), a beginning false region for the Mselect value 
(representing next call results) starts at state BGN and ends at 
state M . The single true region ranges from state M until state 
M, where another false region exists forever. Behavior that oc
curs in the false regions that surround a true region are unioned 
with the behavior of that true region. For example, in the later 
false region of Figure 11 (b), the transition from state Y is split 
in Figure 11 (c) because !?use will always remain true through 
the next X state when process0() is true.

4. Discussion

In its current form, path-precise analysis is intra-procedural 
because path machines cannot express the unbounded stack be
havior needed to reason about recursion. Enhancing path ma
chines with a stack abstraction would increase their expressive
ness to the power of push-down automata. Such path machines 
would be much more difficult to compute via an analysis. Us
ing the results of these path machines in property synthesis 
would also be problematic, because a stack would need to be 
maintained and inspected at run-time to ensure that code exe
cuted in the correct context.

Our strategy for making PPA inter-procedural involves ab
stracting away the call stack and recursion. Annotations pro
vided by a meta-program or inferred via analysis can mitigate 
the precision lost through abstraction. Annotations can de
scribe a procedure's behavior as a set of boolean assignments, 
which can replace calls to the procedure in an RBP. The same 
strategy can be generalized to reason about other kinds of un
bounded memory constructs, such as arrays, using techniques



like shape analysis [16].
Although we separate our discussion of the annotation and 

abstraction property synthesis steps in Section 2, they are tightly 
inter-related. Annotations are added as boolean variables and 
assignments, which will not be abstracted away during the ab
straction step. Any precision lost during property synthesis 
occurs when expressions are converted into unknown values. 
Annotations can be used to direct the abstraction process by re
placing what would otherwise be a single unknown value with 
more a detailed set of variables, tests, and assignments. For ex
ample, y x and y x evaluate to mutually exclusive con
ditions that can be expressed with one unknown value rather 
than two. Libraries can also express domain-specific relation
ships that can be used to enhance the precision of an abstrac
tion. In addition to enabling the encoding of property-specific 
behavior in a generic way, the annotation language can enable 
encodings that improve precision of the abstraction process.

5. Related Work

Property synthesis follows work in property checking. The 
multiple steps used in property synthesis are similar to those 
used in SLAM [3], a verification method based on iterative 
refinement. In SLAM, a program is annotated, the annotated 
program is abstracted into a boolean program, and the boolean 
program is analyzed to determine whether or not a temporal 
safety property is adhered to in the program. Property synthe
sis uses these same steps even though the technologies used are 
different. An additional step in SLAM, which iteratively re
fines the precision of a boolean program to guide results, is 
not applicable in property synthesis. Property synthesis ab
stracts programs into regular boolean programs that are similar 
to boolean programs created by the tool C2BP [1]. Although 
regular boolean programs are less expressive than boolean pro
grams because they lack a stack abstraction, they are more ap
propriate for program synthesis because they form a simple 
state-transition system that can be inspected during program 
execution.

Property synthesis is supported by a path-precise analysis 
that is most similar to Bebop [2], which model checks boolean 
programs in SLAM. Bebop computes over sets of boolean vari
able behavior for each statement in a boolean program, which is 
similar to how path-precise analysis computes path machines. 
Bebop results are used to reason about the reachability of er
ror states in a program, which is similar to how path machines 
are used to reason about about the invariants under which prop
erty code should execute. Unlike Bebop results, path machines 
are designed specifically to enable the synthesis of code: path 
machines can identify every path in a regular boolean program 
that can reach property code, and can be used to synthesize 
code that recognizes these paths at run-time in the correspond
ing program.

Property simulation is a path-sensitive analysis designed to 
support partial property verification in ESP [8]. Property simu
lation improves precision over traditional DFA by heuristically 
tracking branches in a program when they obviously affect the 
behavior being analyzed. Metal’s xgcc [11] finds bugs using a 
path-sensitive algorithm based on a heuristic that most path are 
executable and data dependencies are simple. Where ESP and 
Metal are designed to be scalable, property synthesis requires 
precision and only processes one procedure at a time. Unlike

the analyses used in both ESP or Metal, path-precise analy
sis can correlate how loop-carried dependencies affect control- 
flow.

Path-sensitive analyses often work by sharpening data-flow 
analysis results with a finite set of path predicates [12]. GSA [18] 
is a variation of SSA that enhances precision by qualifying 
merge nodes with path predicates. Predicated array data-flow 
analysis [15] uses path predicates to enhance both compile
time analysis and to introduce run-time tests that guard safe 
execution of optimized code, which is similar to how path ma
chines are used to derive run-time tests that guard execution of 
property code. Path-precise analysis innovates on these path- 
sensitive analyses by describing paths directly in a transition 
system. As a result, path-precise analysis can disambiguate be
tween paths as they loop, whereas simple path predicates can
not.

An alternative to dealing with loops is to expand the loop 
times to recognize loop-carried dependencies that occur across 
k iterations [14]. However, using the results of this analysis 
can lead to an exponential blow-up in the program. Addition
ally, loop-carried dependency distances may not be constant. 
Path-precise analysis avoids both of these problems with path 
machines. Although the state structure of a path machine may 
be expanded to describe periodic loop behavior, this expansion 
does not carry through to the CFG when the path machine is 
used to synthesize code. Unlike expansion, path machines can 
also be used to identify loop-carried dependencies over an ar
bitrary number of iterations; e.g., path machines can identify a 
loop-carried dependency that occurs until the loop terminates.

6. Conclusions and Future Work

In this paper we have described property synthesis, a mecha
nism for automatically inserting code that achieves some prop
erty into a procedure. The property, such as lock acquisition, is 
described as a program analysis problem, such as determining 
where and when a value is used in a procedure. The correct 
insertion of property code into a program occurs automatically 
when an answer to this analysis problem is provided for the 
program.

We have concentrated on describing the analysis necessary 
to support property synthesis. Because property code depends 
on tracking value use, a precise analysis is necessary. We have 
described PPA, path-precise analysis, which produces a set of 
path machines. The path machines form a finite-state model 
of the procedure being analyzed; i.e., it is based on a boolean 
abstraction of the procedure. Path machines are produced with 
cycles of state transitions, which enables the precise analysis of 
loop behavior. Beyond property synthesis, computing analysis 
results as state machines could also benefit other program anal
ysis domains, such as partial verification of program behavior 
and optimizing programs.

We are implementing this analysis in the context of a meta
programming system that supports property synthesis. We have 
implemented early versions of this analysis for Java programs, 
but we have not yet implemented the version of the analysis 
described in this paper. The meta-programming system pro
vides a language to describe properties. When this language is 
combined with the analysis in this paper, the system will en
able property code to be described at a high level and inserted 
automatically.



Besides lock acquisition, property synthesis can be applied 
to other properties such as error handling and consistency pro
tocols. Property synthesis should be useful for a range of meta
programming tasks. We are currently exploring how property 
synthesis can be used to generate and customize software com
ponents. Also, we are exploring how property synthesis can 
accommodate architectural properties that span multiple proce
dures, such as resource management policies.
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