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S u m m a r y

Rapid advancement in new semiconductor technologies has created a need for 

the design of existing integrated circuits using these new technologies. These new 

technologies are required to provide improved performance, smaller feature sizes and 

lower costs. The conversion of an integrated circuit from an existing technology to a 

new technology, however, is very difficulty with existing C A D  tools.

In this research, we have concentrated on developing a structured, technology 

independent V L S I  design methodology, with the goal of theoretically quantifying 

technology independence and systematically performing technology transformation. 

W e  have identified the nature of the problems, using techniques developed during 

our past research, within the context of particular semiconductor technologies such 

as C M O S  and G a A s  technologies. -
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1 Introduction

There are two ways to provide more processing power for an architecture, either at 

the system level or at the processor level. A powerful architecture is achievable if the 

capability of a single processor can be extended through massive concurrent execu­

tion. An architecture can also be made more powerful by relying on technological 

improvements to push the processor beyond its current maximum capabilities, e.g., 

small geometry CMOS, fast ECL, GaAs, etc.

Although there are many CAD systems currently being developed, most of them 

are technology (or process) dependent. An enormous amount of effort has been made 

to convert an existing circuit to new technologies in order to take advantage of faster 

circuit speeds, small geometrical sizes and low costs.

The term technology (or process) independence could be defined as existing be­

tween variations in a semiconductor process. For example, the differences which exist 

between 3.0 fi, 2.0 fi, and 1.5 /x CMOS processes. In this research we take a much 

more global view and define technology independence to mean independence between 

major technologies. For example, independence between NMOS, CMOS and GaAs 

technologies. Technology independence provides several important benefits to inte­

grated circuit design: x

• Module library portability —  circuit modules that have been designed in one 

technology can be made available in many different technologies;

• Upgradability —  circuits designed in older, less attractive technologies can be



easily reimplemented in newer technologies that have desirable characteristics 

such as higher speed or lower power consumption;

• Cost-effective prototyping —  prototype circuits can be implemented using the 

least expensive (or fastest turnaround) technology to evaluate functionality and 

then implemented using the desired technology; and

• Tradeoff analysis —  a circuit can be functionally evaluated before decisions that 

depend on the fabrication process are made. It is also possible to obtain relative 

performance data using a relatively inexpensive process.

This research has concentrated on building a structured, technology independent 

VLSI tool so that we will be able to increase architecture computing throughputs 

by taking advantage of the state-of-the-art semiconductor technologies with little or 

no modifications of the existing CAD system [17, 18]. In Section 2, a structured 

VLSI design methodology called Path Programmable Logic (PPL) is introduced. In 

Section 3, logic partitioning strategy and its role to achieve effective technology inde­

pendence, as well as the PPL logic partitioning scheme, axe discussed. Our previous 

and recent work in developing PPL technology independence and technology trans­

formation methodologies for NMOS, CMOS, and GaAs technologies are described in
%

Sections 4 and 5. Finally in Section 6, the conclusions are made.



2 PPL — A Structured VLSI Design Methodology

In has long been realized that to facilitate integrated circuit design, a CAD tool which 

supports different levels of design procedures, ranging from composite layout, through 

schematic and logic design, to sj'mbolic manipulation is necessary. To be useful for 

rapid VLSI design, we must have such a tool which completely operates on a symbolic 

layout level and avoids the lower level details. Research by the VLSI Group at the 

University of Utah during the last several years has resulted in a symbolic, structured, 

and technology independent IC design methodolog}', known as PPL [12, 15].

2 .1  T h e  P r i n c i p l e s  o f  P P L  D e s i g n  M e t h o d o l o g y

PPL is a structured VLSI design technique using a cell matrix methodology where 

cells are placed at arbitrary locations. The cells are connected on all four sides 

and interconnection is accomplished by placing cells next to each other. There are 

elementary cells which perform A N D  and OR  operations for a PLA (Programmable 

Logic Array). The A N D  condition of the input signals are formed on the rows of the 

PPL and the OR  conditions are formed on the columns. Cells in addition to those

needed to perform the sum of products realization of a function are also provided
/

and may be inserted into the grid at arbitrary locations. These include flip-flops, 

inverters, loads, row and column connections, and pass transistors. Consequently 

both combinational and sequential circuits can be easily designed.

Using this methodology, design of a circuit is performed by placing cells which 

can be represented by logical symbols on a grid representing the integrated circuit
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(see Figure 4). When the grid is completely populated, it is both the logic represen­

tation and topological layout of the circuit. The cells have predefined schematic and 

composite representations. They are custom designed to optimize performance and 

size for the chosen integrated circuit process.

The detailed discussion of the PPL logic partitioning strategy will appear in Sec­

tion 3.2.

2 .2  A n  E x a m p l e

The design of PPL circuits can best be understood by examing a simple design ex­

ample, e.g., a binary counter (or divide by 4) circuit design. The counter states 

transitions are given in Figure 1.

This counter circuit can be implemented using PLA design, as shown in Figure 2. 

This circuit consists of three structures: the A N D  plane, the O R  plane, and the state 

variable memory (memory plane). The inputs to the A N D  plane enter on column 

wires and the outputs exit on row wires. The inputs to the OR  plane enter on row 

wires and the outputs exit on column wires. It is assumed that the column signals

Figure 1: The Binary Counter Sequence
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Figure 2: The PLA Implementation of a Binary Counter

will be true when low, i.e., 1 =  low. Each of these three parts is compact in itself, 

but they cannot be merged into a single, coherent structure.

If we now fold the A N D  and O R  planes onto one plane, a better structure which 

is illustrated in Figure 3 can be obtained. Note that the output columns have been 

interspersed with the input columns. The folded planes can now be viewed as a single 

grid, with each location containing either A N D  elements, OR  elements, or memory 

elements as shown by the shaded boxes. This concept was extended to allow arbitrary 

circuits elements to be placed in any grid location of the folded plane.

Bearing this structural difference in mind, examination of the PPL design will 

illustrate its differences from conventional circuit design. In a conventional IC cir­

cuit design, we generally first make a logic design by drawing a circuit schematic, 

then simulate the design (this processes usually repeats itself many times to refine



Figure 3: The PPL Design of a Binary Counter

the original design), finally we layout the composite patterns on a graphical VLSI 

workstation.

In PPL design, we do not have to experience the tedious procedures that were 

encountered in conventional custom design. Instead, the counter sequence in Figure 

1 can immediately be mapped into PPL symbolic layout as shown in Figure 4. Note 

that we have combined rows R2 and i24 into a single row because F 2  is always set 

whenever F 2  and Enable are both 1 , i.e., F 2  toggles regradless of the state of F I.

Note that in PPL design, two distinct operatibns are performed on the layout of 

Figure 3. First, a symbol is assigned to each shaded box. Second, we made all of the 

shaded boxes an integral multiple of a unit cell. In this case, the 1 , 0, R , and S cells 

are unit cells. The flip-flop cell F is composed of 2 x 3 or 6 total unit cells. This 

flip-flop would now be considered to be a ” macro” cell.



iQi

Enable j

R

H

11 ' 

F 1
0 Q

T1

11

11 -
S R

if :

11

F: 2

ii

it

M
S1

R7

V l R6  

"♦2 R5 

R2, R4  

R3 

R1

I
- u

l —, 

1 0 S
1

u
1

1 0 S R
T;" 1 f

1
—i1

u
.—1—

1 R 1 R 1
ii 1

]
1

] ] ] ] R0

CO

“ i i 

C l

“ 1 1  I I  1 1  I '

C2 C3 C4 C5 _

Figure 4: PPL Symbolic Layout for a Binary Counter

In this binary counter example, six PPL cells, i.e., 1 , 0, S (set), R  (reset), I  

(inverter), and F  (flip-flop), are used. For simplicity, we only show the PPL symbols. 

The PPL symbol, the NMOS schematic and the NMOS composite layout of two 

representative PPL cells, i.e., the PPL cell ” 1 ” and cell ”R ” , are shown in Figure 5. 

The logic synthesis including the PPL layout for this binary counter is governed by 

some simple If-Then rules which can be derived directly from the counter sequence 

in Figure 1 . For example, to place PPL cells on the second row (i.e., row Sin Figure 

4) of the PPL layout plane, the two simple If-Then rules which are shown in Figure 6 

are applied. The counter circuit schematic (using NMOS for this example) described 

by PPL symbolic layout is illustrated in Figure 7.
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2 .3  T h e  B a s i c  F e a t u r e s  o f  t h e  P P L  D e s i g n

PPL cells are the key to the performance of VLSI circuits and systems designed using 

the PPL methodology. At the lowest composite layout level, they must meet circuit 

schematic design, various electrical specifications, and multiple topological connection 

requirements. At the higher symbolic logic design level, the cell partition scheme for 

the PPL symbolic cell representation must support a general, rule-based, hierarchical, 

and technology independent IC design methodology. For details of NMOS, CMOS 

and GaAs PPL cell implementations see [5, 6, 7, 8, 13].

Among many unique features of the PPL design methodology, the following as­

pects are of significant importance.

1. L o g ic  Sy n t h e s is  u s in g  PPL.

As shown in the binary counter example given in Section 2.2, xircuit synthesis 

including layout using PPL can be done, in most cases, based on a straightforward 

and common understanding of the given circuit functional specification.

Referring to the above counter design, from the counter sequence in Figure 1, a 

set of PPL design rules for the binary counter can be derived. Two of these PPL 

rules are shown in Figure 6 which represent the counter state transition from counter 

state Qi Q2 =  01 to the next counter state Qi Q 2 =  10. The PPL symbolic counter 

circuit layout can be directly implemented in terms of these rules, as shown in the 

second row in Figure 4.

It is interesting to note that circuit logic synthesis using PPL is a functionally con­
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ceptualized mapping rather than a schematically conceptualized design. For example, 

cell 0 , or cell 1 , senses column logic states and invokes a new row logic state, which 

forms an A N D  term in the PPL circuit and presents a PPL rule in an I f  statement 

(like a noun which represents an object in a rule statement). Similarly, cell S (i.e., 

set), or cell R  (i.e., reset), sets a column logic state according to the current row 

logic state, which produces an O R  term in a PPL circuit and generates a rule in a 

T h en  statement (like a verb which represents an action in a rule statement).

2 . U n iv e r s a l  a n d  F l e x ib l e  IC  B u il d in g  B l o c k s .

The philosophy o f the PPL logic partitioning described in Section 3.2 and in [7]

can be summarized as: ( 1 ) partitioning the circuit logic into the simplest and smallest

blocks so that any general integrated circuit and system can be built hierarchically;

(2 ) maintaining a set o f  necessary functional macro cells so that the redundant efforts

for building those frequently used circuits can be avoided. The simple PPL cells can

be as small as a single transistor or one metal layer connection. The functional macros

in PPL may be as large as a flip-flop or a full adder. Indeed, any circuit or system

block could be used in this scheme as a PPL macro, e.g., a RISC system could be a

macro in the PPL cell data base. Based on the generality and flexibility o f the PPL

design methodology, designers are capable of designing and implementing any VLSI
t

circuit with a high degree o f freedom. They can use simple PPL cells to build any 

desired circuit module which forms part o f a larger architecture.

3 . O n e  St e p , M u l t ip l e  L e v e l  C ir c u it  D e s ig n .

PPL has the unique advantage of giving a simultaneous high-level view o f the



symbolic, the logic, the schematic, the composite layout and the interconnect o f a 

VLSI circuit in a single step. This provides not only the technical background to 

train designers who become familiar with all levels o f the IC circuit design, but also 

frees them from many time-consuming, labor-intensive tasks when constructing a real 

IC architecture. For example, they do not have to be stuck on the low level details of 

composite layout, the extraction o f circuit schematics, design rule checks (D RC), etc.

4 .  T e c h n o l o g y  I n d e p e n d e n c e .

A clever feature of PPL design is its technology independence. For example, by 

symbolically replacing the PPL cells in the technology database, a PPL chip designed 

using an NMOS technology can be easily transferred into chips which will be fabri­

cated using CMOS and/or GaAs technologies, or vise versa. The higher level PPL 

symbolic representation for NMOS, CMOS, and GaAs technologies could remain the 

identical.

5 . U s e r - F r ie n d l y  In t e r a c t i o n .

User-friendly interaction of the PPL system is a direct consequence o f the above 

several features. As will be discussed in Section 2.5, an order or more of magnitude 

reduction in design time (as compared to other semi-custom IC design techniques) 

for integrated circuits can be achieved using the PPL design methodology. '

2 . 4  P P L  D e s i g n  T o o l s

The PPL design system, or PPL design tools, is a specific embodiment o f the PPL IC 

design methodology. There are primarily three software packages in the PPL system,



a structured logic editor Tiler [11 ], a PPL circuit extractor Simpplex [10], and a unit 

delay simulator Simppl [10], which are used alternatively in the design process.

Tiler is a special interactive editor used for designing VLSI circuits using the PPL 

methodology. PPL tiles are inserted into a rectangular grid by typing characters that 

represent the tiles. When Tiler is first started, the user is prompted for the technology 

to be used for designing a PPL circuit. When a technology name is given by the user, 

a technology file is loaded into Tiler.

Simpplex is a PPL circuit extractor (with electrical rules check). The output of 

Simpplex is fed into a PPL circuit simulator.

Simppl is a switch level simulator designed for simulating circuits built using the

PPL methodology. In addition to using a switch-level model, Simppl makes use of

multiple logic-value (six for MOS) to accurately model the operation of soft and

hard nodes, bussing, wired logic, and dynamic logic. There are both soft and hard

values for the true and false logic levels. Since the complete circuit schematics have

been automatically defined when PPL symbols were populated on the entire plane,

simulation by Simppl is straightforward without requiring the extraction o f circuit

schematics for the simulator. ..
/

2 .5  T h e  P r a c t i c a l  A s s e s s m e n t  o f  P P L  D e s i g n  M e t h o d o l o g y

To evaluate the efficiency and effectiveness of the PPL design methodology, some 

statistical data has been accumulated and several benchmark experiments comparing 

the PPL design method with other IC design methodologies for various performance



and sizing figures have been performed during the past several years.

B en ch m a rk  1: During March 1988, three Japanese electrical engineers from Oki 

Data Inc. came to discuss the PPL design methodology. Rentek (a Salt Lake City 

local IC design company) implemented an existing Oki Data circuit which was de­

signed by Oki Data using full custom layout methods. The new chip designed using 

PPL was completed in about 3 ~  4 man-weeks aRd was approximately 1/2 the size 

of the original full custom chip was implemented in about one man-year. 

B en ch m a rk  2 : During the spring of 19SS, the VLSI group at the University o f Utah 

implemented a Haugenhauer Filter using the PPL methodology and CAD tools. This 

filter was initially designed by an agency of the federal government using conventional 

techniques including standard cells and a silicon compiler. These designs resulted in 

chips which were approximately three times as large as that of the PPL design. The 

PPL circuit design was accomplished in a few weeks as compared to several months 

which were required for the design with more conventional techniques.

Figures 8  and 9 show two major comparisons in terms of design time and density 

of the circuits designed using PPL and other design methodologies.

3 Logic Partitioning Strategy and Technology In­
dependence k

Technology independence is generally considered difficult to achieve in integrated 

circuit design. A silicon compiler or a CAD design environment can only be as 

technology independent as the circuit implementation technique it uses. For example,





a silicon compiler written for a CMOS process cannot be easily derived from one for 

an NMOS process [1].

3 .1  L o g i c  P a r t i t i o n i n g ,  C i r c u i t  A b s t r a c t i o n  a n d  D e s i g n  G e n ­

e r a l i t y

A general practice to achieve technology independence in a symbolic layout system 

is to keep the description o f the primitives separate from the code that builds the 

layout. Furthermore, it is desirable that the symbolic layout system program read 

technology fabrication information at execution time to allow designers to update a 

symbolic layout by binding it to a new technology. The primitive descriptions are 

kept in the technology database.

So far there have been several categories of design strategies to implement a tech­

nology independence property into an existing CAD system (unfortunately there have 

been very few publications). We can roughly classify them into low -level te ch n o l­

o g y  in d ep en d en ce  - at the primitive symbolic and stick diagram level, or, h igh- 

level te ch n o lo g y  in d e p en d en ce  - at or beyond the functioned cell and macro level. 

A CAD system implemented with this low-level technology independence simply gen­

erates circuit layout for each primitive symbol (vias, wires, etc.) at the layout level 

in terms o f a given set o f  technology specifications. This category o f design systems 

must manage numerous classes o f information where each class is associated with a 

tremendous amount o f data [16]. Conversely, a CAD system implemented with high- 

level technology independence generates macros which are usually inappropriate for 

the particular application, space-inefficient, and inflexible.
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A representative example of a CAD system with high-level technology indepen­

dence, for example, might be the standard cell design methodology, where functional 

cells and macros at or beyond certain higher circuit design levels are generated for 

different technologies. Functional macros representing the higher level circuits, how­

ever, lack the generality for versatile, area-efficient circuit design. They can only 

construct a circuit at or beyond the level at which the macro was designed. Each mi­

nor modification in the macro circuit schematic design, or in its physical geometrical 

layout, requires the re-generation of a complete new full custom macro. Therefore, 

it is not unusual to see a typical standard cell library that contains several hundred 

complex cells in order to accomplish most circuit designs, and is usually equipped 

with a standard cell module generator for generating the rest of necessary cells. The 

construction of such a CAD system with high-level technology independence usually 

requires a large amount of work, which may actually be equivalent to building an 

entire new system.

In short, a dominant factor which determines the optimum (in terms of design 

abstraction, computing efficiency, and universality for circuit design) technology in­

dependence and technology transformation is the granule size for partitioning the 

circuit logic. The lower level technology independence (fine granule) possesses de­

sign generality but lacks abstraction power for low level physical details, therefore, 

greatly increases computation overhead. In contrast, the higher level technology in­

dependence (coarse granule) possesses excessive high level abstraction and loses 

design generality, therefore, a tremendous amount of effort is required to design new 

macros.
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3 .2  P P L  L o g i c  P a r t i t i o n i n g  S c h e m e

A structured technology independent VLSI design methodology such as PPL is an 

attractive engineering direction in which an appropriate logic partition scheme at 

a p h ysica lly  d istr ib u ted , sim ple log ic  level is used. In what follows next, we 

first describe in general the PPL logic partitioning philosophy with the emphasis on 

solving the following two problems:

1. How can we design a logic partitioning scheme that supports general integrated 

circuit design ?

2. How can we design a logic partitioning scheme that makes less redundant 

integrated circuit design ? .

The PPL logic partitioning philosophy could be informally illustrated by an overview 

of four categories of the leaf PPL cells.

1. T h e  S m a l l e s t  a n d  S im p l e s t  L o g ic  P a r t i t io n s .

In order to generalize a design methodology for a wide range o f integrated circuit 

designs, a logic partitioning scheme which allows the decomposition o f the circuit 

logic into its simplest and most general components is appropriate. The simpler 

each partitioned logic component is, the more general the logic function associated 

with this logic component. A similar analogy can be found in construction of an 

English word. For instance, in order to compose any English words, a partitioned 

character set consisting of 26 simple alpha characters (i.e., a, b, c, ..., x, y, z) are 

necessaiy and sufficient. A cell-set with a collection of the smallest and simplest cells



permits circuit design at or beyond any design levels, ranging from a transistor level, 

to gate level, macro level, circuit level, and system architecture level. Other CAD 

systems which could not support this simple logic partitioning are not able to allow 

the implementation of an intergrated circuit at an arbitrary design level, as discussed 

in Section 3.1.

Several primitive operations in the PPL logic partitioning scheme have been iden­

tified as:

• S ignal Passing: This logic function indicates a signal interconnection where a 

logic value input into and output from this partioned logic component remains 

unchanged. There are two categories o f PPL cells designed for this operation: 

w irin g  cell, e.g., blank cells, and co n n ection  cell, such as &c, * , and $, 

etc (see Figure 10).

• S ignal In version : The PPL design methodology is based on a distributed 

logic system made up of a plane of A N D  gates interleaved with a plane of 

O R  gates. There are two important characteristics in this design approach. 

First, each logic variable of a vertical column bus can act as a stored binary 

variable or perform a logical O R  function o f  the row inputs. When the column 

segment represents a stored variable, the values can be set and reset by the row’s 

logic variable value. Second, each logic value of a row bus is a conjunction or 

product term over the selected column variables; a column input may be either 

the column value or its complement, or there may be no connections from the 

column to that row. These variables are ANDed to form the row value. In a
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Figure 10: Some PPL Connection and Breaking Cells

more general sense, these logic operations can be viewed as signal inversion for 

different permutations o f input and output over vertical and horizontal signal 

busses. They axe partitioned as simple logic components as 1 , 0, S, R , and I, 

etc.

• S ignal B reak ing : Several signal breaking operations, such as = ,

and !, have been identified which allow the multiple logic formulation and the 

insertion of any distinct circuit module at an arbitrary plane position. This 

permits much denser packaging of logic circuits into an array and the execution 

of much more complex functions on a single chip (see Figure 10).

These simple logic components have the flexibility to handle any general integrated 

circuit design. There is, however, a large degree of design redundancy which could
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be introduced when constructing a circuit using simple, primitive logic components. 

The following three categories of logic partitions are aimed at minimizing circuit 

redundancy occurring during circuit design.

2 . T h e  F u n c t io n a l  L o g ic  P a r t i t i o n s .

When implementing the simplest cells to support a general circuit design, a num­

ber of functional logic components, such as flip-flop cells, pullup cells, RAM  cells, and 

pad cells, are created to increase design functionality, productivity, and portability. 

Similar situations can be found in studying the English language. To spell out a 

character ’’ cell” , it is better use the word ’’ cell” directly rather than compose it by 

using simple and primitive characters like ” c,” ” e,” ” 1,” and ” 1” , since this would be 

too redundant.

3 . T h e  P a r a m e t e r i z e d  L o g ic  P a r t i t i o n s .

Those logic components are designed under the same PPL symbol but with dif­

ferent electrical characteristics for the particular application. Pullups components 

(column pullups are represented as symbol ] and row pullups are represented as sym­

bol u in NMOS technology, as shown in Figure 4) are an example of this kind of 

cells where the different sizes of the pullup transistor can be selected by defining a 

modifier.

4 . T h e  L o g ic  P a r t i t io n s  w h ic h  a r e  Im b e d d e d  w i t h  E f f ic ie n t  H a r d ­

w a r e  A l g o r i t h m s .

There are many highly concurrent VLSI computing algorithms and area-efficient 

hardware algorithms which are formulated in a regular (bit-sliced, cell-oriented, or,



mesh and tree structured) laj'out fashion. They can be finally decomposed into a 

number of the relatively individual and simple circuit modules. For example, systolic 

array is such a. category of parallel architecture. This category of cells are used 

to implement those regular and individual functions. Both the parameterized logic 

partitions and the regular cell partitions may have analogies, in the English language, 

such as an affix and the roots o f words.

In summary, each partitioned logic component produced by the PPL logic parti­

tioning scheme is:

• an a b stra cted  P P L  sym b ol, i.e., a simple and general abstraction represent­

ing a building block to construct a circuit.

• a 2 -d im en sion a l, to p o lo g ica lly  d istr ibu ted  log ic  fu n ction . The dis­

tributed logic function can be specified by function (symbol, X-coordinate, Y- 

coordinate). Note that in general a circuit logic schematic, could be partitioned 

although, has not been associated with any topologically spatial dimension or 

spatial information.

• a P P L  ce ll, which can physically and feasibly be implemented based on the 

available semiconductor technologies.

A PPL cell-set is a collection of the PPL cells which is a concrete embodiment of 

PPL logic partitioning strategy. A detailed discussion of the design and implementa­

tion of the PPL cell-set will appear in Section 4.
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3 .3  P P L  T e c h n o l o g y  I n d e p e n d e n c e

The technology independent property in PPL design differs considerably from con­

ventional technology independent implementations which were described above (in 

Section 3.1). As described in Section 3.2, the fundamental logic partition o f primitive 

PPL circuits focuses on structured, single transistors and their connection level, al­

though some complex cells or macros have also been designed and implemented. This 

sm all granule partition scheme provides the background for low -level te ch n o lo g y  

in d ep en d en ce  design and has several unique advantages: (1) The structured nature 

of the VLSI design provides high-level abstraction of low level details, in addition to 

fast design and computational efficiency. (2) Since this partition offers the most gen­

eral (smallest and simplest) building blocks, any circuit design can be accomplished 

using a minimum set o f some 15 to 20 simple, small cells.

Due to its simple and appropriate schematic level logic partition and high level 

symbolic abstraction, the PPL design methodology is able to avoid the manipulation 

of large amounts of information at the lower physical layout level while keeping abreast 

of new technology advancements with a minimum amount work (for redesign o f a 

small number of cells). To update a newer semiconductor technology for PPL circuit 

design requires only the redesign o f this small number o f cells, which usually can be 

completed in one man-week. Therefore, the PPL design methodology can provide 

a broad spectrum of technology independence. Circuits designed using the PPL 

methodology are fundamentally technology independent. The PPL circuit design 

methodology offers a CAD design environment in which tradeoffs based on technology



The technical effectiveness of the PPL technology independence can be seen from 

two aspects:

• T e ch n o lo g y  R ep resen ta tion . At or above the PPL symbolic representation 

level, the same circuit design based on different NMOS, CMOS, or GaAs tech­

nologies appears essentially identical. There are actually very few circuit design 

differences which can be detected.

• T e ch n o lo g y  T ran sform ation . A circuit designed using PPL in one technol­

ogy could be transformed into a similar circuit based on another technology, 

with little or no human interactions.

The original study o f PPL technology independence in circuit design and an earlier 

experiment can be found in [2, 4] which were reported by Gu and Smith in [7]. 

Jacobs also discussed PPL technology independence and many details in [9]. Further 

developments in this direction are described in [4, 14],

4 Design and Implementation of Small Granule, 
Low-Level Technology Independence

Two simple and straightforward strategies for the design and implementation o f the 

small granule, low-level technology independence for PPL design methodology are 

the gen eric P P L  ce ll-set and the te ch n o logy -sp ecific  P P L  ce ll-se t2. To begin

2More detailed discussion of the other methods are in [3].

can be easily considered and handled.
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our discussion, we need the following definition to distinguish our implementation 

strategies.

Definition:

A PPL cell, i.e., an embodiment of a partitioned logic component, is 

a black box consisting of the following 10 -tuples:

1. Symbol
2. Geometrical Structure 

External 3. Appearance
4. Local and Global Connectivity
5. Power Distribution

A  P P L  Cell 
(a black box)

Internal

6. Logic Schematic
7. Electrical Characteristics
8. Internal Connectivity
9. Physical Composite Layout
10. Internal Power Distribution

4 .1  T h e  G e n e r i c  P P L  C e l l - s e t

The ideas for the generic PPL cell-set are simple. When this cell, at the lowest layout 

level, is implemented using different semiconductor (e.g., NMOS, CMOS, and GaAs) 

technologies, a generic version of the cell could be developed. That is, the cell’s (the 

external portion of a black box) higher level symbolic representation, its geometrical 

structure and appearance, its near-neighbor connection and global communication, 

and its power supply (both Vdd and Gnd), might remain identical. Thus, from 

a designer (a user) point of view, a PPL symbol (cell), at the symbolic level, is 

functionally and topologically equivalent in different semiconductor technologies.
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Inside each black box, however, the construction of the same PPL symbol in 

different technologies involve many differences:

• different logic schematics for NMOS, CMOS, and GaAs circuits are chosen.

• different electrical characteristics (e.g., worst-case driving capability, clock 

speed and timing delay, loading effect, etc.) for different technologies are de­

signed and simulated.

• different internal connectivity (cell’s local connection and global communi­

cation patterns) for different technologies are defined.

• different integrated circuit physical com posite rules are implemented.

• different power supply designs (power routing, power layout schemes) are 

used.

Obviously, the internal design and implementation of each PPL symbol is tech­

nology specific, or technology dependent. The generic nature of the high level PPL 

symbolic representation makes those technical and implementation details invisible
*

to the designers. '

The PPL cell-set designed with generic features has flexibility and portability when 

introducing a new semiconductor technology into the existing CAD system without 

modifying and rewriting the available system.
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4 .2  T h e  T e c h n o l o g y  S p e c i f i c  P P L  C e l l - s e t

As a matter of fact, the design and implementation of a generic PPL cell-set is a 

multiple semiconductor technology based constraint optimization problem. Some 

fundamental constraints in PPL generic cell-set implementation may come from logic 

schematic, circuit electrical properties, physical composite layout, cell’s local and 

global connectivity, and many other factors. Since constraint-based optimization is 

NP-complete in nature, an optimal solution for designing a PPL generic cell-set is hard 

to obtain. Therefore, one main drawback of a generic PPL cell-set implementation 

is that different constrains are encountered when competing multiple technologies 

enforce the worst-case penalties in design time, layout area, etc.

We have built several sets of technology specific cells for NMOS, CMOS and GaAs 

technologies3. These technology specific cell sets can be expanded to include a generic 

set. In terms of the definition, the external portion of a PPL cell, for example, its sym­

bolic representation, its appearance (e.g., aspect ratio), local and global connectivity, 

and power routing, might not be the same for different technologies.

The major difference between a technology-specific PPL cell-set and a generic 

PPL cell-set is its performance improvement. The technology-specific PPL cell-set 

is designed and implemented with maximum optimization freedom in terms of the 

specific semiconductor technology used. That is, each cell representing a PPL symbol 

is specially implemented for optimal performance and minimum overhead in their 

schematic design, circuit speed simulation, physical layout, and connection band­

3There are currently two NMOS technologies, four CMOS technologies, and two GaAs technolo­
gies for the PPL cell sets that are available.



width design. Instead of structure and connection equivalence, there might be minor 

technology-specific modifications that are associated with each newer technology in­

troduced. Thus, few corresponding adaptations must then be added into the existing 

CAD tools.

The implementation of a techno logy-specific PPL cell-set achieves much better 

performance figures than the pure generic one by avoiding numerous constraints in 

multiple-technology based cell design.

5 Technology Transformation Among PPL Cir­
cuits

Transforming PPL circuits from one symbolic representation to another can be done 

at several design levels: high-level circuit functional transformation, middle-level cir­

cuit schematic transformation, or low-level circuit structure transformation. Any 

circuit technology transformation for different technologies must produce circuit with 

functional consistency.

The higher level technology transformation involves functional (semantic) trans­

formation and is closely related to the re-generation of an entire new circuit module. 

The low level circuit transformation, on the other hand, is more involved with circuit 

structure (syntactic) sym bolic m apping and therefore more efficient.

The advantage of PPL technology independence is its small-granule based, struc­

tured partitioning scheme which allows direct, low level, structured technology trans­

formations, without rebuilding the new circuit functional modules. A large system
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consisting of simple PPL circuit modules can be automated for technology trans­

formation. Most complex circuits designed using the PPL methodology in MOS or 

GaAs can usually be transformed manually by symbolic manipulations. Both are 

based on low level syntactic, structured technology transformations. Only in some 

unusual cases (where the high-level technology transformation is depend on functional 

redesign) will this be needed.

Deeper level electrical constraints, even under the same PPL symbolic represen­

tation pattern, might not be the same for different semiconductor technologies. In 

addition to structured mapping, symbolic level technology transformation among PPL 

circuits must also comply with the lower level electrical constraints of the new tech­

nology. Fortunately, most of these problems can be handled by built-in technology- 

specific design rules represented as structured placement and mapping rules.

5 .1  T e c h n o l o g y  T r a n s f o r m a t i o n  f o r  G e n e r i c  P P L  C e l l - s e t

By definition, the external portion of the generic PPL cell-set (i.e., its higher level sym­

bolic representation, its geometrical structure and appearance, its near-neighbor con­

nection and communication, and its power supply) might remain identical. Therefore, 

technology transformation among different PPL circuits constructed using generic 

PPL cell-set could simply be done by replacing different cell-sets corresponding to 

different technologies. The symbolic PPL circuit layout representation remains un­

changed during the technology transformation procedure.



5 . 2  T e c h n o l o g y  T r a n s f o r m a t i o n  f o r  T e c h n o l o g y  S p e c i f i c  P P L  

C e l l - s e t

In contrast, technology transformation for the PPL circuits which were designed based 

on technology specific cell-set may require the corresponding changes in the PPL 

symbolic layout representation. The problem, before technology transformation is 

taken, is knowing (usually at the symbolic level) beforehand the portions of the circuit 

which should be modified.

In a 2-dimensional integrated circuit layout plane which may contains thousands 

and millions of circuit components, there must be some common portions (schematic, 

circuit structure, or symbolic representation, etc.) and some singular portions of the 

circuits. One of the auxiliary products resulting in the PPL logic partitioning scheme 

is the separation of the co m m o n  p ro p e rty  (technology independent property) from 

the singu lar p r o p e r ty  (technology dependent property). A technology specific PPL 

cell-set is a combination of both circuit properties. This result is the basis for tech­

nology transformation based on technology specific PPL cell-set. When a circuit is 

transformed from one technology to another technology, its common property usu­

ally remains untouched, the only required changes which should be made are in the 

singular portion of the circuit.

We use the following example, a simple CMOS binary counter PPL design, to 

illustrate what we mean by the common (singular) property, and how to perform 

technology transformation among different technologies. This example corresponds 

to the NMOS binary counter PPL design example described in Section 2.2.
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Figure 1 1 : Symbol and Schematic of Some PPL CMOS Cells

In Figure 1 1 , several CMOS PPL cells are given which are produced from the 

PPL logic partitioning scheme. Instead of decomposition of the circuit logic into a 

small schematic granule as in NMOS and GaAs technologies, a pair of complementary 

transistors are grouped together to form the simplest and smallest logic partition for 

CMOS technology.

Referring back to the NMOS PPL symbolic layout illustration in Figure 4, if we 

drop the row pullups (symbol u on the leftside o f the layout) and column pullups 

(symbol ] on the bottom  of the layout), the NMOS binary counter representation in 

Figure 4 can then becomes a PPL representation o f a CMOS binary counter layout as 

illustrated in Figure 12. The underneath CMOS schematic for the binary counter is 

shown in Figure 13 (short connections and Gnd connections are automatically routed 

by the editor ptogram).



ure 12: PPL Symbolic Layout for a CM OS Binary Counter

Figure 13: Binary Counter Circuit Schematic (CM OS)



In this example, those identical representations of the binary counter (i.e., 1 , 0 , 

R , S, I, and F ) are the common representative properties, and those unique rep­

resentations of pullup loads (i.e., symbol ] and symbol u) and cell’s near-neighbor 

connections are the singular properties in circuit transformation. Technology trans­

formation o f a PPL circuit symbolic representation involves only the static deletion or 

addition o f those singular representations which are associated with a specific semi­

conductor technology. In most cases, these syntactic symbolic mapping can be done 

automatically.

5 .3  A  C a s e  S t u d y  o f  P P L  T e c h n o l o g y  I n d e p e n d e n c e

There is a large number of design and fabrication experiments being done which 

demonstrate the suitability of the PPL methodology to technology independent design 

over the NMOS, CMOS, and GaAs technological spectrum. In what follows next, we 

give one case study based on PPL technology independence. This design example of 

a 4-bit linear feedback shift register has been fabricated using NMOS, CMOS, and 

GaAs technologies.

A representative circuit, a 4-bit LFSR (Linear Feedback Shift Register) (with some 

additional circuit and pad-testing circuitry), was designed by Ran Ginosar (a visiting 

professor from the Technion in Isreal). This test chip based on PPL technology 

independent design was fabricated using NMOS, CMOS, and GaAs technologies, at 

various features. Comparisons between all these test chips were made based on the 

similarity of the design and the resulting performance characteristics.
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Figure 14: A Four Stage Cascadable LFSR Circuit

Linear Feedback Shift Registers consist of a shift register with Exclusive-OR 

(XO R) gates separating each successive bit register. The shift register output is 

fed back to some or all of the X O R  gates. LFSRs are used to generate binary codes 

and sequences. A cascadable LFSR which allows dynamic configuration of the LFSR 

by means of switches is shown in Figure 14. Each switch determines whether the cor­

responding gates generates the X O R  function o f the feedback signal and the previous 

bit, or just passes the previous bit through, ignoring the feedback.

The design is cascadable, since multiple identical units can be chained to produce 

a longer LFSR. The output of the last stage serves as the feedback signal for all 

previous stages. The detailed descriptions of logic design of LFSR can be found in

[14],

The complete GaAs PPL design of the core of the LFSR circuit (i.e., without the
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Figure 16: A PPL Layout of a 4-bit LFSR GaAs Chip

additional circuitry and the I /O  pads) is shown in Figure 15. The PPL designs of 

the LFSR chip (the core circuit with the I /O  pads) in NMOS, CMOS, and GaAs are 

shown in Figures 16, 17, and 18. They differ from each other, and from GaAs design, 

in only minor details which could be easily manipulated in most cases (e.g., deleting 

those static pull-up loads in NMOS or GaAs circuit design produces a corresponding 

CMOS circuit).

The same LSFR chips have been fabricated using NMOS, CMOS, and GaAs pro­

cesses and found functionally correct in recent chip testing.
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Figure 18: A PPL Layout of a 4-bit LFSR CMOS Chip
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5 .4  C r i t i c a l  T e c h n i c a l  I s s u e s  i n  P P L  C i r c u i t  T r a n s f o r m a t i o n

Much of our current research work for technology transformation has concentrated on 

GaAs-based circuits. However we have spent the majority of our efforts on MOS pro­

cesses. The following partial listing illustrates some of the difficulties which we have 

observed that must be overcome when transforming a circuit among different tech­

nologies, in particular from a MOS circuit to a GaAs circuit. Some of our primitive 

ideas and research strategies for the corresponding item in the list are also presented 

below.

( 1 ) Since passive load devices are used in NMOS, the outputs of most NMOS 

gates can be wire-ORed together to form a more complex gate. In conventional 

CMOS design, however, no passive device exist -  explicit gates must be used. In this 

case the NMOS wired-OR gate must be identified, a CMOS equivalent designed, and 

a modified PPL implementation generated. Generating an efficient, modified PPL 

implementation is the principal problem.

In our logic partition scheme, the passive pullup loads are partitioned as a separate 

cell in NMOS PPL symbolic representation, they can be deleted when transforming 

an NMOS circuit to a CMOS circuit [7].

(2) CMOS, being an insulated gate technology, has a large fanin and fanout load on 

each gate, especially when speed is not a problem, since no DC current flows through 

the gate, and stages are isolated from each other for DC characteristics. In GaAs, 

on the other hand, with its Schottky diode gate which becomes forward biased, there 

is a significant DC interaction between the input and output of a stage. Therefore,

40



fanout must be limited to a few gates, regardless of performance requirements.

The implementation o f this requirement when transforming a CMOS circuit to a 

GaAs circuit can be done in a straightforward way by limiting the fanout and fanin 

on each gate. In the worst case, a minor redesign, i.e., split the large fanout into 

several groups would work.

(3) In MOS technologies we often exploit the dynamic charge storage on gates as 

intermediate data registers. In GaAs the gate draws current and therefore dynamic 

data storage is generally prohibited.

In the worst case we could prohibit dynamic logic in CMOS.

(4) Power distribution requirements pose a major difficulty in GaAs circuits. 

Transforming from a MOS circuit to a conventional (non-PPL) GaAs circuit may 

involve a complete redesign o f the floorplan.

Several forms o f a GaAs power distribution meshes in the PPL grid plane have 

been developed which have low inductances and DC resistances. So far this class of 

solutions work well for GaAs circuits running about 300 MHz. This solution can be 

applied to both CMOS and GaAs arrays.

(5) MOS circuit designs allow high level o f flexibility regarding placement and 

routing. GaAs circuits are extremely sensitive to length and relative placement of 

signal wires. Long lines could have serious reflections which may cause circuits to 

malfunction. Again, this may require a redesign for many CAD methodologies.

In PPL, the designer exploits placement locality and maintains control o f wire 

length in all technologies, and as a result PPL designs are more amenable to automatic
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(6 ) In MOS technologies, the most significant reactive impedances are capaci­

tances to the substrate. In GaAs, where inter-layer capacitance and self- and mutual- 

inductances cause major disturbances, we must design modular cells that keep these 

difficulties manageable, so that a PPL array originally designed for MOS can be 

implemented in GaAs.

6 Conclusion

Rapid advancement in semiconductor technology has made integrated circuits de­

signed using older technologies no longer competent. An enormous amount of effort 

has been taken to manually convert an existing circuit to new technologies in order 

to take advantage o f faster speed, small chip size and low cost. Technology indepen­

dent VLSI design is an attractive and useful technique that is capable of increasing 

computing system throughouts by taking advantage of state-of-the-art semiconductor 

technology with little or no modifications to the existing CAD systems.

We have developed a structured, technology independent VLSI design method­

ology based on small granule logic partitioning scheme and low-level technology in­

dependence implementation. Previous and recent research results based on a large 

number of experiments indicate the suitability of the PPL methodology for technol­

ogy independent VLSI design over a wide technological spectrum including NMOS, 

CMOS and GaAs technologies.

Further study and investigation of some open technical problems (in Section 5.4)

porting from M OS to GaAs technologies.



will mature for the building of an advanced technology transform system for MOS 

and GaAs circuits.
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