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ABSTRACT

Almost all collegiate programs in Computer Science offer an introductory course

in programming primarily devoted to communicating the foundational principles of

software design and development. The ACM designates this introduction to computer

programming course for first-year students as CS1, during which methodologies for

solving problems within a discrete computational context are presented. Logical

thinking is highlighted, guided primarily by a sequential approach to algorithm de-

velopment and made manifest by typically using the latest, commercially successful

programming language.

In response to the most recent developments in accessible multicore computers, in-

structors of these introductory classes may wish to include training on how to design

workable parallel code. Novel issues arise when programming concurrent applica-

tions which can make teaching these concepts to beginning programmers a seemingly

formidable task. Student comprehension of design strategies related to parallel sys-

tems should be monitored to ensure an effective classroom experience.

This research investigated the feasibility of integrating parallel computing concepts

into the first-year CS classroom. To quantitatively assess student comprehension

of parallel computing, an experimental educational study using a two-factor mixed

group design was conducted to evaluate two instructional interventions in addition

to a control group: (1) topic lecture only, and (2) topic lecture with laboratory work

using a software visualization Parallel Analysis Tool (PAT) specifically designed for

this project. A new evaluation instrument developed for this study, the Perceptions of

Parallelism Survey (PoPS), was used to measure student learning regarding parallel

systems.



The results from this educational study show a statistically significant main effect

among the repeated measures, implying that student comprehension levels of parallel

concepts as measured by the PoPS improve immediately after the delivery of any

initial three-week CS1 level module when compared with student comprehension lev-

els just prior to starting the course. Survey results measured during the ninth week

of the course reveal that performance levels remained high compared to pre-course

performance scores. A second result produced by this study reveals no statistically

significant interaction effect between the intervention method and student perfor-

mance as measured by the evaluation instrument over three separate testing periods.

However, visual inspection of survey score trends and the low p-value generated by the

interaction analysis (0.062) indicate that further studies may verify improved concept

retention levels for the lecture w/PAT group.
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CHAPTER 1

INTRODUCTION

The research and development effort described in this dissertation expands both

the experimental knowledge base and available classroom resources that support in-

vestigations into three important areas of Computer Science:

1. Pedagogical Techniques - An educational study was performed to assess the

viability of two separate instructional strategies for introducing core skill sets

that reinforce parallel thinking early in the Computer Science curriculum.

2. Content Inventory - A unique, original evaluation instrument was designed to

effectively measure student thinking and perspectives regarding parallel system

analysis and design.

3. Instructional Tool Development - A novel software visualization tool was created

for the classroom to help connect students with the special challenges associated

with conceptualizing parallel programs and identifying concurrency in code.

For this work, the three areas of exploration described above form an interde-

pendent whole in that the survey listed in (2) is the evaluation instrument used to

generate metrics in the educational study described in (1), and the visualization tool

noted in (3) represents one mode of intervention employed in this study.

1.1 Overview

An experimental educational study was performed (Chapter 3) involving three sep-

arate CS1-level classes during the 2009-2010 academic year at Weber State University.
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The subjects in the study were undergraduates enrolled in the CS1400 Fundamen-

tals of Programming course offered by the Computer Science department, where the

author/experimenter holds a full-time faculty position.

The experimental method was a two-factor mixed group design in which the class-

room intervention mode (control, lecture only, and lecture with visualization tool) is

the independent variable, and student comprehension of parallel programming con-

cepts as measured by a customized assessment is the response variable. The same

assessment was administered three separate times during the course (Weeks 1, 3,

and 9) to each intervention group, providing the repeated non-independent factor

in the research method. A summary diagram of the experimental study is given in

Figure 1.1.

In preparation for the study, a completely new evaluation instrument called the

Perceptions of Parallelism Survey (PoPS) was developed to serve as the formative,

customized assessment of student comprehension about parallel concepts (Chapter

4). The PoPS was modeled after the Force Content Inventory (FCI) used for many

years in undergraduate Physics education.

Students were given 60 minutes to complete the PoPS, which includes two parts

composed of 1) 30 multiple-choice questions and 2) one extensive design essay ques-

tion. The multiple-choice questions are grouped together into eight separate tasks,

each of which targets specific parallel design fundamentals as listed in Table 1.1. The

table also provides an overview of the situation/context of each task. Although each

problem setting in the PoPS may not represent an everyday occurrence, the intent of

the PoPS is to couch questions in a real-world context, allowing the student to rapidly

grasp the gist and scope of the problem statement. The PoPS was designed with the

beginning CS1 student in mind such that no prior specific programming knowledge

was required in order to complete the survey.

To support the intervention level that utilizes an instructional software tool in
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addition to traditional lecture, a novel visualization environment geared toward real-

time parallel program analysis was written in Java and specially created for this study

(Chapter 5). At the visual interface level, this Parallel Analysis Tool (PAT) displays

editable Java source code and generates a corresponding UML Activity diagram [26],

an artifact used frequently in software engineering. More importantly, the PAT pro-

vides students an experimental environment in which immediate feedback in the form

of real-time measurements of program speedup help to improve the student’s ability

to recognize optimal locations for introducing concurrency into code.

All components of the research project described above were developed, managed,

and implemented by the author. The three course sections involved in the experi-

mental study were all taught by the author, including in-class administration of the

evaluation instrument to the student participants. Despite the oversight of a single

individual in the experimental setup, materials, and operation, the results are entirely

objective. The PoPS multiple choice questions were graded electronically using stan-

dard spreadsheet functions provided by SPSS. To achieve integrated reliability and

unbiased scores for the written design question responses, two graders other than the

instructor independently evaluated these submissions.

The results of this experiment verify a statistically significant main effect such that

student comprehension levels regarding parallel programming concepts as measured

by the PoPS improve after the delivery of any CS1 three-week course module when

compared with corresponding comprehension levels just prior to the three-week course

module (Chapter 6). Specifically, the comparison of PoPS scores between Week 3

and Week 1 test administrations yields a p-value < 0.001, and the comparison of

PoPS scores between Week 9 and Week 1 test administrations yields a p-Value =

0.011. Figure 1.2 gives the average scores grouped by the test administration repeated

measure.

Although the interaction effect between the instructional intervention mode and
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the repeated measures did not show statistical significance, the resulting p-value of

0.062 generated by this analysis came very close to the research hypothesis significance

level α of 0.05. This outcome encourages at least a visual inspection of the score trends

exhibited by each group, as depicted in Figure 1.3.

Pairwise comparisons of these data indicate no significant change in the Lecture

Only scores across the three test administrations. However, as revealed in Figure 1.3,

significant changes exist between the following three pairs: 1) the pretest and posttest

of the Control group, 2) the pretest and posttest of the Lecture w/PAT group, and

3) the pretest and recap-test of the Lecture w/PAT group.

Nonparametric analysis of the written essay design question confirms the para-

metric results. Namely, a main effect analysis using a Friedman test performed on

the repeated measures aggregated from all intervention groups indicates a statistically

significant improvement in scores from pretest to posttest. The rise in scores from

pretest to recap-test generated a p-value of 0.067.

The low p-value produced by the parametric analysis of the interaction effect

suggests that some dependency on instructional intervention technique may be dis-

covered in future work (Chapter 7). The future investigations stimulated by this

research project include: 1) a duplicate study to confirm or disprove the results re-

ported here, 2) similar experiments in which the parallel module length and parallel

module delivery time within the course is adjusted, 3) a long-term longitudinal study

of the student subjects participating in this research, 4) evolution and refinement of

the Perceptions of Parallelism Survey into a widely-accepted Parallel Content Inven-

tory, and 5) expansion of the classroom usage and functional features of the Parallel

Analysis Tool software.
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1.2 Motivation

Integrated circuit manufacturers like Intel, AMD, and IBM are currently produc-

ing multicore chips for commodity computational devices. Current advertising cam-

paigns for desktops and laptops emphasize their multiprocessing features. Smaller

hand-held and embedded machines also benefit from this technology.

Research in multicore computer architectures continues to move forward, though

many challenging issues still remain [16][19][41]. Davis [20] constructed a top ten list

of the key problems confronting multicore development; programming methodology

was listed as the number one issue. Although the paucity of tools and environments

customized for parallel application development presents a challenge for software en-

gineers attempting to produce reliable and efficient parallel programs, it is generally

recognized that most programmers do not have the necessary background in concur-

rency design to fully utilize the current multicore architectures [24].

Coincident with the increased accessibility of multiprocessor platforms is the

emerging realization from educators in computer science that “teaching concurrent

programming is hard” [8]. There are various factors that contribute to this obser-

vation such as the complexity of the topic, the background of the students, and the

course sequence of the curriculum. In many CS programs, parallel and distributed

computing topics are offered as part of advanced courses at the Junior/Senior level.

Textbooks on parallel programming typically target the experienced developer. This

late exposure to concurrency may exacerbate the instructional challenge since upper

level students tend to focus on tools and solutions (programming constructs/system

primitives) rather than the conceptual underpinnings of robust parallel design. In

addition, Junior/Senior undergraduates may be somewhat entrenched in sequential

ways of thinking as they approach novel parallel programming design problems.

A potential alternative approach proposed by this research is to provide instruc-

tion on parallelism early in the undergraduate curriculum, emphasizing conceptual
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design rather than implementation issues. Beginning CS students exhibit a sufficient

degree of openness and flexibility to fresh ideas prior to adopting specific strategies

for tackling program design. The short and long term impact of this early-stage in-

struction can be monitored using an assessment tool discussed in this dissertation and

developed specifically for this purpose: the Perceptions of Parallelism Survey (PoPS).

As mentioned in the prior section, the PoPS was modeled after the Force Content

Inventory (FCI) used for many years in undergraduate Physics education [33].

Classroom interventions used to clarify computational parallelism for the novice

CS student can take many forms. This research focuses on two possible and gener-

ally accepted methods of instructing this topic: (1) traditional lecture emphasizing

fundamental principles of parallel systems and software design, and (2) traditional

lecture coupled with an interactive visualization tool in which the student can exper-

iment with the real-time effects of parallelization on working programs. It should be

emphasized early that the intent of this research is not to prove the superiority of

one teaching method over the other, nor to confirm the position that more interven-

tion modes (e.g., lecture plus software tool as described in (2) above) are necessarily

better.

This research targets the question of whether any intervention highlighting parallel

computation will enhance student understanding of this important topic at the first-

year stage of CS education. Essentially, can the “high-level” conceptual areas of

this important subject matter be grasped, processed, and retained by beginning CS

students? If one or both of the proposed teaching interventions prove ineffective in

reaching students, the question still remains open as to whether a more refined or

alternative pedagogical approach would be more productive in communicating parallel

concepts to first-year CS students.

Since the CS1 course in most computer science curricula represents the student’s

first exposure to useful programming strategies, instructors are currently confronted
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with reconciling the ubiquitous multicore platforms with the skill set of budding

software developers. The role of the application developer in the context of the

multicore environment is far from settled, but three points can be stated with some

certainty:

1. Parallel and High Performance Computing (HPC) as implemented on modern

supercomputing platforms is not new, going back to vector computer systems

in the latter half of the 1970s [21].

2. The relevance of concurrency is growing, a recent trend recognized in the ACM

CS2008 Curriculum Update, which states “the increased emphasis on concur-

rency will not be a passing fashion but rather it represents a fundamental shift

towards greater attention to concurrency matters” [15].

3. Many computer science programs have traditionally viewed parallel program-

ming as an advanced topic best suited for either graduate students or Senior-

level undergraduate students.

To provide focus and perspective on the third point above, Pacheco noted in his

1997 book that “most colleges and universities introduce parallel programming in

upper-division classes on computer architectures or algorithms” [55]. Yet Wilkinson

and Allen asserted that selected topics from the first part of their 2005 textbook

helped to introduce their “first-year students to parallel programming” [71]. This

research is motivated by the growing accessibility of concurrent systems and the

associated questions of how and when it is most effective for computer science faculty

to teach the principles of parallel design and programming, and whether this new

pedagogical approach fosters the student’s ability to design proper concurrent code

solutions later in her academic career.
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1.3 Research Objectives

This research presents an educational study to examine the efficacy of introducing

fundamental skills that reinforce parallel thinking early in the Computer Science cur-

riculum. As part of this study, a customized evaluation instrument has been designed

to measure student comprehension of parallel concepts, and a novel software visual-

ization tool has been created to provide students immediate performance feedback

regarding decisions related to parallelizing specific sections of code.

In summary, the core research components include:

1. Design and administration of an educational study using a two-factor mixed de-

sign in which the classroom intervention mode (control, lecture only, and lecture

with visualization tool) is the independent variable, and student comprehension

of parallel programming concepts as measured through customized assessments

is the repeated measure.

2. Development of an assessment instrument used to monitor the short and long

term impact of the early-stage instruction on student comprehension of paral-

lel concepts. High-level understanding of core parallel computation topics are

emphasized in the design of this Perceptions of Parallelism Survey (PoPS).

3. Design and implementation of a new software Parallel Analysis Tool (PAT) to

assist CS1 undergraduates to better visualize and understand concepts related

to parallel programming.

CS1 as defined by the ACM is an introduction to computer programming course

offered to first-year CS students. The primary objective of the class is to sharpen the

problem solving skills of prospective developers using software engineering strategies

and programming tools. The class is centered mostly on refining and shaping the

thinking of these new students rather than stressing detailed computational mecha-
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nisms. During this class, important foundational computing issues such as modular-

ization and basic code structure can be addressed from a high conceptual viewpoint.

This research targets students in the early stages of the CS program because

the distinctive learning context of the CS1 class gives the instructor an opportunity

to present a variety of ideas before any particular one is adopted by the student.

Specifically, the student can more readily absorb the perspectives related to parallel

thinking before getting “locked in” to a consistently sequential mode of software

analysis.

The assumption that students embarking on a CS program will be more open

to learning about “parallel thinking” than advanced students who may be in some

sense entrenched in previously adopted sequential programming strategies elicits the

question of how best to expose beginning CS students to the increasingly important

concepts of parallel programming design and implementation. Traditional lecture

and/or instructional technology offers some alternatives for presenting these concepts

in class.

The two classroom interventions utilized in this project support the main research

question, “What pedagogical approach introduced in a CS1 undergraduate

classroom produces measurable student comprehension of parallel pro-

gramming concepts?” The work presented here will also help to answer a broader

question, “How can undergraduate programs in Computer Science im-

prove or modify the curriculum to produce better programmers of parallel

platforms?”

1.4 Organization

Chapter 1 - Introduction provides an overview of the research project and a sum-

mary of the key results. The current technology and pedagogical challenges related

to parallel computation are discussed. The motivation for pursuing the educational
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research described in this dissertation is discussed and a summary of the research

objectives is listed.

Chapter 2 - Background and Rationale briefly introduces the prevalent strategies

traditionally used to teach parallel concepts in the undergraduate classroom, empha-

sizing both curriculum and instructional technologies, such as software visual analysis

tools. Technology-specific topics typically included in upper-level parallel program-

ming undergraduate courses are examined in relation to the concepts more suitable

for a lower-level CS1 course on parallel system design and utilization. A rationale for

introducing parallel thinking early in the undergraduate program is presented within

the context of where parallelism resides in the current standard CS curriculum.

Chapter 3 - Experimental Educational Study gives a detailed description of the

motivation, design, and primary components of the experimental educational study.

The specifics regarding hypothesis, participants, setting, two factor mixed design, and

measurement instrument are discussed. The two interventions employed in this study

are highlighted, including information on course content and delivery methods.

Chapter 4 - Evaluation Instrument describes the origins and development of the

Perceptions of Parallelism Survey (PoPS), designed to provide metrics on student

performance for the experimental educational study. The parallel concepts targeted

by each task within the PoPS are covered in detail.

Chapter 5 - Classroom Interventions to Promote Parallel Thinking provides

detailed information about the two primary interventions employed in the experimen-

tal educational study described in Chapter 3. The instructional interventions used

during classroom presentation of the three-week module on parallel computing are

outlined. This chapter also presents the detailed design and implementation of the

visual tool intervention used in this study called the Parallel Analysis Tool (PAT).

Concepts related to recognizing concurrency are revisited in light of the PAT real-

time measurements of program speedup. The purpose and operation of the PAT are
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investigated.

Chapter 6 - Results furnishes a description and presentation of the experimental

study data. Statistical techniques are applied in order to discern trends in the infor-

mation acquired from the administration of the evaluation instrument. These results

are examined to make accurate assessments of student comprehension levels of key

parallel concepts for the purpose of evaluating the intervention strategies utilized in

the experimental study.

Chapter 7 - Conclusions provides an analysis of the educational study results, pri-

marily focusing on information gathered from the study that might be used to benefit

further research into pedagogical approaches and appropriate curriculum placement

for courses presenting parallel concepts to CS undergraduates. This chapter also sum-

marizes the research presented in this dissertation, situates this work in the context

of computer science education, and suggests future extensions to this research.

Figure 1.1: Two-Factor Mixed-Group Design
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Figure 1.2: Repeated Measure Means
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Figure 1.3: Profile Plot (Test vs Experimental Group)
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Table 1.1: PoPS Concept Coverage and Scenarios

Task Parallel Concepts Scenario/Setting

I
Serial vs. Parallel Computa-
tion/Temporal Dependency

Sequence of Arithmetic Opera-
tions

II
Multitasking/ Context Switch-
ing

Student texting while attend-
ing lecture

III
Resource Management/ Effi-
ciency

Check out books from library

IV Monte Carlo Simulation/ Time
vs. CPU Tradeoff

Darts thrown at a collection of
dartboards

V Master-Worker Configuation/
Communication

Alphabetizing individual words

VI
Mandelbrot example/ Load
Balancing

Waiting in line for antique ap-
praisal

VII
Lateral communication/ Data
Decomposition

Card game

VIII Application of Amdahl/
Gustafson Laws

Theoretical ball delivery mech-
anism

Design
Question

Grouping Tasks/ Ordering
Tasks

Crime Lab Photo Recognition
System



CHAPTER 2

BACKGROUND AND RATIONALE

Since the middle of the 20th century, dedicated research groups and computer

companies have been actively investigating the design and realization of proprietary

parallel computing solutions. However, it was the early 1990s that marked the intro-

duction of parallelization into mainstream computing strategies, and it has only been

fairly recent that the prevalence of multi-processor platforms has compelled software

developers to ultimately confront the potential and prospects of “parallel thinking”.

The Sourcebook of Parallel Computing states that “the Center for Research on

Parallel Computation (CRPC) was founded in 1989 with the goal of making parallel

programming easy enough so that it would be accessible to ordinary scientists” [21].

One would assume this statement excludes computer scientists from that group since

it is application and system developers who are charged with inventing the tools and

devising programming strategies that will allow high-performance multicore architec-

tures to be fully utilized by the “ordinary scientist,” even as these hardware platforms

rapidly evolve in an effort to breathe life into Moore’s law.

Advances in networking have allowed inexpensive computer clusters to emerge

in small laboratories [37], and scientists from all disciplines are often buried in vol-

umes of raw information while data-starved CPUs idle away on recently purchased

or constructed parallel systems. The science of parallel computation envisioned by

CRPC will be realized not only when message passing, I/O interfaces, and parallel

algorithm libraries are standardized, but also when software application developers

hone a sharper sense for recognizing the benefits and tradeoffs of concurrency to the



16

point in which parallel thinking becomes second nature. Acquiring this skill set is no

different than learning and applying Edsger Dijkstra’s “divide and conquer” strategy

to modularizing programs [18], an approach commonly taught in the first year of a

computer science program and which all professional programmers are expected to

know.

This chapter explores when instruction on parallel computing typically occurs

in the current CS curriculum and some of the core concepts highlighted in these

courses. This discussion provides the context for proposing areas of parallel design

that might be suitable for a lower-level CS1 course on the topic. The instructional

tools that support advanced investigations of parallel programming are contrasted

with analysis tools that might best serve first year undergraduates. Throughout, a

rationale for introducing parallel thinking early in the CS undergraduate program

is developed with the objective of answering to some degree the following question:

At what points during an undergraduate program will students most readily accept,

absorb, and critically assess the techniques particular to parallel design?

2.1 Parallelism and the CS Curriculum

Most collegiate programs in Computer Science offer an introductory course in

programming, primarily devoted to communicating the foundational principles of

software design and development. This first-year course typically presents widely

accepted software development methodologies for solving problems within a discrete

computational context. Logical thinking is highlighted, guided primarily by a sequen-

tial approach to algorithm development and, in most cases, illustrated and put into

practice by using the latest, commercially successful programming language.

At this early stage of the CS curriculum, students are arguably very receptive

to instruction about diverse analysis and design methods, despite their limited ca-

pabilities in the area of implementation. In the programming fundamentals course,
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the first notions about problem solving and algorithmic thinking within a computer

science context begin to take root, with little interference from any highly developed

coding biases or habits that typically accompany the thinking of seasoned program-

mers. In response to the most recent developments in accessible multicore computers,

instructors of these introductory classes may wish to include some broad discussion

and training about how to design workable parallel code to effectively utilize the

processing power of these newer architectures. Various strategies exist for integrat-

ing concurrency into the CS1 course, including a high-level event-driven program-

ming approach to threads and object interaction [12] [66], data parallelism [23], and

background timers [60]. A decade ago, a specialized course examining the inherent

challenges of concurrency like deadlock and mutual exclusion was proposed for high

school students [5].

The immediate response of some CS faculty to this early undergraduate exposure

to parallel concepts may be predominantly guided by the current conception that

parallel programming is inherently difficult and requires extensive knowledge of sys-

tem level primitives, specialized library routines, or dedicated parallel programming

languages. Indeed, teaching concurrency to Junior/Senior level students can often be

a formidable task simply because launching a workable concurrent program demands

a solid background in computing fundamentals. Yaodong Bi admits as much in his

observation: “Concurrency and inter-thread (and inter-process) synchronization have

become an integral part of today’s computing sciences curriculum. However, teaching

concurrency and inter-thread synchronization is difficult” [8].

Table 2.1 shows the course titles and descriptions of parallel computing classes

offered by five major CS programs and the associated pre-requisites needed to enroll

in these courses. Table 2.1 is illustrative of the level of expertise required for the

student to gain some exposure to parallel computing, either from an architectural

perspective, through application development, or from some combination of the two.
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A search of the MIT course list using the keyword parallel uncovered only the course

listed in Table 2.1. Note that MIT’s 6.046J is an algorithms class that includes parallel

computing as one of many advanced topics. In addition, as denoted by the course

description, parallel computing may not even be covered, a decision assumed to be

at the instructor’s discretion. Still, some basic prerequisites concerning Introductory

algorithms and Discrete Math are required before the undergraduate is allowed to

take this course.

Stanford offers a basic undergraduate course in the software systems area dedi-

cated to understanding and working with parallel platforms, with a direct acknowledg-

ment in the course description that “most new computer architectures are parallel.”

The course provides a comprehensive treatment of the topic, and warns of “significant

parallel programming assignments.” No specific parallel language is mentioned, but

with references to SPMD and message passing, one can assume that some variation

of MPI used in conjunction with C/C++ will constitute the development API. The

core conceptual underpinnings of parallelism is addressed in topics such as locality,

implicit vs. explicit parallelism, and shared vs. non-shared memory. Most of the

other areas of study listed in the course description are tilted heavily toward imple-

mentation issues and require some solid CS background from the enrolled student, as

revealed explicitly by the extensive list of prerequisites.

CMU provides an upper division elective course combining both the hardware and

software considerations involved in developing parallel solutions. As with Stanford’s

parallel computing course, synchronization mechanisms and threads are listed as an

important topic of discussion. As indicated by the prerequisite list, CMU students

must still have a foundation in programming prior to enrolling in this course. UC

Berkeley places a significant emphasis on the hardware components of parallel pro-

cessors, requiring students to be well established in the area of computer architecture,

to the extent that a Graduate level course on this topic is a prerequisite.
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The University of Utah’s initial undergraduate treatment of parallel computing

is through the 3000-level Computer Organization class. The emphasis is clearly on

the architecture of parallel machines and how these contrast to or overlap with other

hardware configurations. Some programming skills and background foundation in

computer systems are required, and, as with the MIT algorithms course, several pre-

requisites exist that prepare the student to better appreciate parallel architectures.

The remaining two offerings at the University of Utah are graduate level courses,

which essentially presupposes student attendees relatively well versed in the CS disci-

pline. The Formal Methods class utilizes parallel processor memory models primarily

as a system design example to which the student may apply predicate calculus and

state enumeration techniques. The Parallel Computing and High Performance Com-

puting class provides the most overt, dedicated treatment of the subject, albeit with

relatively experienced students who have a vested interest in the topic. The Univer-

sity of Utah also offers a special topics class that may periodically delve into parallel

computing topics.

A prevalent theme that emerges when reviewing this small sample of course offer-

ings on parallel computation is the marked interdependence between hardware and

software issues. None of the classes above dedicated solely to parallel systems could

be neatly categorized either as a purely software or as a purely hardware course.

The title of CMU’s upper division course, “Parallel Computer Architecture and Pro-

gramming,” concisely expresses this reality. A reasonable conclusion to be drawn is

that proper academic treatment of parallel computing needs to include discussion of

both underlying architecture and program development. In the pedagogical approach

to parallel systems, as in real life, hardware leads software and architecture drives

algorithms.

Despite the fact that for many years software developers have been relatively free

to ignore substantial improvements in computer hardware, from the fabrication tech-
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nologies up through the mid-80s to the architectural advances since that time [31],

this liberty is now being tempered by the increased accessibility of parallel platforms.

Programmers can no longer write platform-agnostic code, insulated by virtual ma-

chines or API standards. A parallel mode of thinking necessarily requires cognizance

of the target machine, primarily in the number of processors available and the hard-

ware configuration of those processors.

Conversely, low-level techniques used to exploit parallelism in microprocessors are

not directly applicable to writing robust parallel programs. This stark distinction

is expressed best by Hennessy and Patterson [31]: “. . . the important qualitative

distinction is that [thread-level] parallelism is identified at a high level by the software

system and that the threads consist of hundreds to millions of instructions that may

be executed in parallel. In contrast, instruction-level parallelism (ILP) is identified

primarily by the hardware, although with software help in some cases, and is found

and exploited one instruction at a time” (p. 530).

A good example of this disparity in development strategies is the widely-accepted

philosophy in computer design to make the common case fast. Whenever possible,

the system designer should target frequent cases for performance improvement. This

approach does not necessarily apply in all situations when deciding which high-level

programming statements should be distributed among a bank of parallel processors.

Specifically, initializing memory locations in an array is a fairly common occurrence

in programming circles. Yet, because of the intrinsic overhead of establishing and

utilizing thread-level parallelism, there would be significant diminishing returns if

these extremely fast initialization statements were executed in parallel.

Given the prior discussion, it would appear that the depth of knowledge required

of students to grasp the intricacies of parallel computing would preclude this topic

from being addressed in an introductory CS programming course. In fact, this re-

search study is part of an effort to determine if this initial course is the optimum
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venue to promote an appreciation for architectural resources and allow students the

opportunity to contemplate the benefits and drawbacks of parallelizing code within

this context. Instead of tacitly supporting an implicit divide between hardware and

software considerations, the introductory programming course can be an occasion for

the instructor to forge a connection between these two sides of CS that is absolutely

essential for understanding proper parallel design.

2.2 Tools for Parallel Instruction

Regardless of student expertise, educators in Computer Science generally agree

that teaching concurrency can be difficult. As described above, in many CS programs,

parallel and distributed computing topics are offered as part of advanced courses at the

undergraduate upper division or graduate level. Textbooks on parallel programming

typically assume some experience with programming and/or computer systems.

Concerted efforts have been made since the late 1990’s to integrate parallel com-

puting topics in the undergraduate CS curriculum [1][42][54]. Concurrency is often

taught in conjunction with distributed computing, and undergraduate students en-

rolled in this kind of course are typically in their final year of study and are expected

to have some “previous exposure to classical concurrency issues at the operating sys-

tem level and basic knowledge of computer networks” [17]. The implication is that

students are not equipped to comprehend or correctly manage parallel processes until

sufficiently conversant with system level software.

To assist in the instruction of parallel concepts, various visual tools such as those

described by Stasko [65], Kurtz [43], Carr [13], and Bi [8] have been used to investi-

gate the behavior of threads and processes in running programs. However, these tools

are designed primarily for classes beyond CS1, not for the beginning student. Carr

states, “There are few pedagogical tools for teaching threaded programming” [13].

Indeed, threads currently represent the de facto primitive for programmers delving
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into parallel application code, and, as a consequence, either relegate instruction on

concurrency to the latter stages of the CS undergraduate program or awkwardly im-

pose specialized modules about threaded programming techniques into courses early

in the curriculum.

In this section, two of the visual tools mentioned above will be evaluated in terms

of their efficacy in teaching parallel (multithreading) concepts and their appropriate

placement within the standard CS curriculum. Although admittedly not an exhaus-

tive analysis of all available research or commercial tools focused on parallelism, this

discussion does address two examples that are strongly representative of the state of

instructional technology that currently supports the teaching of concurrency. These

discussions will also shed light on the assertion that such tools necessarily target stu-

dents with some background in computing systems and programming, and therefore

are not suitable for novice students just beginning a CS program.

In their paper “A Visual Tool for Teaching Multithreading in Java,” Yaodong Bi

and John Beidler describe a visual software tool that pictorially represents thread be-

havior in a running Java program [8]. They suggest that allowing students to visually

observe executing threads will further their understanding of concurrent mechanisms.

Graphically charting the progress of underlying threads or processes certainly offers

a perspective which can bolster student comprehension of thread behavior and inter-

action. This point of view is supported by 1) the recognition that students exhibit

mixtures of different learning styles (e.g. visual, kinesthetic, and auditory) and 2) the

general acceptance of the UML standard, which effectively provides visual diagrams

as a means of grasping complex software engineering design strategies.

Indeed, Bi refers to displaying thread execution “like a UML sequence diagram.”

The element of time inherent in multithreaded program execution would logically lead

to drawing vertical timelines, but the similarity to the UML sequence diagrams ends

here. The UML sequence diagrams depict the interaction of objects during the execu-
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tion of one or more use case scenarios, with object lifelines representing the evolution

of each participating object. Threads and semaphores may be considered objects,

but primarily as low-level implementation constructs. Therefore, it would be more

accurate to refer to the visual display of this tool as a “thread timing and interaction

diagram.” However, the proposition that relevant modeling diagrams from a software

engineering context, specifically the UML, can be used to support analysis of a pro-

gram’s concurrent behavior is a worthwhile consideration when designing visual tools.

Coupling code with a corresponding diagram clearly outlining the program structure

and purpose within the same view can significantly assist the learning process.

The paper describes the classical producer/consumer problem using terminology

related to low-level concurrency and programming primitives, e.g., semaphores, mu-

texes, threads, deadlock, runnable state, and synchronization. The tool’s reliance on

such concepts would require students utilizing the tool to be initially instructed on

the meaning of and interplay among these constructs; otherwise, the tool’s pedagog-

ical value diminishes. One statement from the paper is especially telling about the

assumed expertise level of the student user: “To help students in understanding the

execution of multithreading programs, the system visually displays for each thread

the information related to the creation and termination, the state changes, name

changes and priority changes, and the inter-thread synchronization.”

The graphical display, shown in Figure 2.1 depicts the producer/consumer example

given in the paper. The figure offers the student a low-level perspective of thread

communication, with the producer thread represented by the right hand vertical line

and the consumer thread depicted by the left hand vertical line. The ability to

replay events of interest in slow motion can assist the instructor in providing real-

world evidence of the consequences and impact of employing multiple threads in

code, and allow the student to see the program unfold. As a result, the student

will better appreciate the code in the producer and consumer implementations. This
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experience of threads-in-action would also hopefully solidify the students conceptual

understanding of why threads even exist, which is the first hurdle to overcome when

instructing upper division undergraduates about parallel processing.

Apart from the operation or functional features of the tool, Figure 2.1 provides a

fairly typical view of the standard thread monitoring interface densely packed with

information. The color coding of the numerous events and states listed in the graph

legend, coupled with the small-font annotations (e.g., semaAcquireCompleted@27854 )

require some very focused parsing from the student/learner in order to make sense of

the considerable amount of information contained in a single screenshot. The degree

of intuition and immediate data recognition a student achieves with this brand of

thread visualization is highly dependent on the student’s familiarity with the concept

and behavior of threads. In fact, the authors of this tool have recently proposed a

“threads early” approach by introducing dedicated modules about Java threads into

their CS 2 and CS 3 courses at the University of Scranton, presumably to sufficiently

prepare students for assignments utilizing this visual software [9].

Once the displayed information is deciphered, students can gain a deeper appre-

ciation and understanding of thread states, how these states are interdependent, and

the allocation of CPU cycles during the execution of a program. Students will also

have an opportunity to investigate more fully the role of mutexes and semaphores in

the execution of the program. Overall, the tool provides sufficient flexibility to be

able to dissect and examine the various parts of a standard multithreading example

and could be used not only in a CS 2/CS 3 course supplemented by a detailed treat-

ment of Java threads as proposed by the authors, but also in a course on Operating

Systems.

The pedagogical value of the tool is compromised, however, by the non-deterministic

nature of multithreaded programs. For example, if the instructor wanted to illustrate

deadlock using the tool, it is not clear how this situation could be purposefully gener-
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ated, other than by rewriting the source code incorporating significant sleep periods

or other artificial delays to essentially “force” a deadlock. Even after applying these

manual strategies at causing a deadlock, there is still the finite probability that the

program will avoid the deadlock because of slight system variations.

Figure 2.2 reveals how including one additional concurrency primitive, a mutex

represented by the center vertical timeline, can increase the complexity and adversely

affect the overall readability of the visual interface.

As the number of threads and synchronization objects increase, the instructional

value of the visualization will most likely decrease due primarily to the increasing

number of timing bars displayed on the graphical interface. Figures 2.1 and 2.2 reveal

that the labeling of events, although informative regarding target object and time of

occurrence, can potentially clutter the main display if there are more than a few

thread or synchronization objects of interest. The predisposition toward information

overload is fairly common among visual multithreading instructional and analysis

tools, though not often discussed.

Providing user options to toggle labeling text or select specific threads on the

main display, although not described in the paper, would help alleviate this prob-

lem. At the CS2 and CS3 level of instruction, a simplified interface will have more

overall educational impact given the fundamental complexity of multithreading. Uti-

lizing straightforward multithreading scenarios is sufficient in helping beginning CS

students understand the essential concepts. Also, it should be noted that increasing

the number of observed threads and synchronization objects may negatively affect

the performance of the tool depending on the memory and CPU capabilities of the

underlying system. As with most graphical systems, increased load may degrade

response times to user input or information retrieval and display.

In 2003, Steve Carr, et al. designed a multiplatform pedagogical tool for mul-

tithreaded programming named ThreadMentor [13]. Similar to the visual tool just
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described, ThreadMentor provides a visualization system giving detailed information

about every thread and every synchronization primitive employed during execution

of a multithreaded program. Unlike Bi’s software tool, this system is targeted for

students in an Operating Systems or Concurrent Programming course.

In the early part of the paper describing ThreadMentor, Carr makes some gen-

eral, but germane observations about parallelism using threads: “(1) multithreaded

programming requires a new mindset; (2) the behavior of a multithreaded program

is dynamic, making debugging very difficult; (3) proper synchronization is more diffi-

cult than anticipated; and (4) programming interfaces are usually more complex than

necessary, causing students to spend time in learning the system details rather than

the fundamentals.” In the remainder of the paper, Carr proceeds to tackle each of

these challenges head-on by proposing a “coherent and unified environment” which

captures the dynamic behavior of a threaded program and allows for event playback

so students might better grasp the intricacies of synchronization primitives.

One of the key points expressed by both Carr and Bi is that their respective visual

systems do not require instrumenting the original program with extra statements or

directives. The philosophy is to allow the code to execute “as is,” unencumbered by

additional bindings to the monitoring tool which might interfere with the behavior or

performance of the program. This perspective suggests an analogue in the often cited

observer effect in physics, in which the act of observation is recognized to have some

altering influence on generated experimental results. Indeed, for pedagogical reasons

alone, it is beneficial for student comprehension of thread mechanics or parallel behav-

ior if additional programming commands unrelated to the code’s original objectives

are avoided. In the case of a CS1 level student learning a new programming lan-

guage, it is especially critical that only native statements from that language occupy

the learner’s attention, even when parallel analysis is being applied to the codebase

by a software tool either dynamically behind the scenes or offline to a storage location
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in order to be replayed later.

Consequently, the designers of ThreadMentor attempted to insulate students from

the system details related to multithreading by employing a class library that uses

textbook syntax. Although ThreadMentor supports C/C++, the small sample code

in Figure 2.3 shows the use of a Thread class implementation, which closely models

the approach employed in Java. Indeed, many of the methods defined for this Thread

class mirror those in the Java Thread class, e.g., Begin() instead of start().

This effort to minimize possible distractions to the student’s learning due to un-

necessary system level constructs is noteworthy. If the code used in the visual tool

corresponds closely with textbook examples, then the narratives in the book and the

presentations in the classroom more readily reinforce the course objectives. A possible

approach would be to use straightforward, unobtrusive code annotations that trigger

appropriate parallel processing and analysis from the supporting visual software tool.

Carr draws an important distinction between thread visualization systems devel-

oped for debugging and performance purposes and those pedagogical tools designed

to clearly illustrate low-level thread behavior and interaction. At the time of publica-

tion, Carr claims in his paper that “ThreadMentor is perhaps the only comprehensive

pedagogical system available for teaching and learning multithreaded programming.”

Commercial thread debuggers like Borland’s older Optimizeit system presupposes

that the user is knowledgeable about thread structure and mechanics. Pedagogical

tools do not have the advantage of a user experienced in system level concepts, and

must provide an interface that not only reports thread actions but also packages the

information so that it can be rapidly understood with a reasonable learning curve.

As an addendum to Carr’s comment above, it is also difficult to find multithreaded

pedagogical tools whose instructional impact has been measured using an educational

study, as is proposed in this research.

Whereas Bi’s monitoring tool only provides offline analysis of thread interactions
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after the target program has executed, ThreadMentor is designed to also generate

information on-the-fly during code execution. However, this attempt at real-time

analysis comes with measurable communication delays incurred because of the porta-

bility of the class library and the asynchronous message queue latencies between the

class library and the visualization system. The instructional benefits obtained by

allowing students to observe threading behavior as it happens are marginal when

compared to the effort required to design a dynamic visual tool truly synchronized

with underlying system activities.

Offline analysis (studying thread interactions after execution has completed) is

more than sufficient to achieve a thorough understanding of thread behavior for that

executing process. Even if the target application has already completed, nothing is

lost in program analysis if students are given the capacity to “see” the code’s specific

instructions in a graphical representation and, if necessary, to immediately replay

the program execution in slow motion. Classroom examples of multithreading tend

to have short run times, so students will not have an inordinate wait to view the

results of the program execution. In addition, offline investigations of multithreaded

code sufficiently compartmentalizes the program development cycle from the visual-

ization/analysis step. Since the conceptual demands required of these two important

activities are distinctly different, this offline strategy encourages the student to focus

on each task with the appropriate mindset. For example, a student receiving a run-

time error while immersed in observing the details of thread/mutex communications

will be abruptly diverted from the analysis activity and, as a result, will ultimately

need to refocus her efforts back on the program development and logic. One sig-

nificant drawback to offline analysis is that a forced halt of the program would be

required to view data in the case of deadlock.

ThreadMentor’s visualization system is event-driven. Figure 2.4 shows Thread-

Mentor’s main window when the visualization system is activated by a user pro-
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gram. For a currently running program, the student/user can essentially drill down

to more detailed levels of information about the supported synchronization primitives

listed on buttons along the right-hand side of the main window. These primitives

include mutex locks, semaphores, monitors, readers-writers locks, barriers, and syn-

chronous/asynchronous channels. For example, selecting Semaphore will show in the

large white display area all semaphores created so far in the executing program. The

student can then select a specific semaphore from the list to obtain more detailed

information about that primitive.

The lower right portion of the main window allows the user to control the execu-

tion speed of the running program, to pause and resume that program, and to step

through the thread management and synchronization activities. Actual visualizations

of thread lifecycles are furnished by the thread management functions in the lower

left of the main window.

Figure 2.5 shows a snapshot of the Thread Status window while a qucksort pro-

gram is executing. Threads are assigned symbolic names by the user and the current

state of each thread is indicated using an appropriate icon. Note that the current vi-

sualization indicates the lowest-level threads are currently executing and performing

the required partitioning activities associated with the quicksort algorithm.

Figure 2.6 shows the execution history of all participating threads. Colors along

the history bar are used to indicate the thread state, either running, joining, or blocked

by a synchronization primitive. Tags along the history bar represent synchronization

events. Clicking a tag produces the source code location in which the synchronization

primitive originates. Carr claims that this view is “perhaps the most commonly used

ThreadMentor window because, for every thread, it provides the state, the relative

time of execution and description of a synchronization event with history bar tags,

and a link between a tag and the corresponding source statement.”

This last feature is especially important since student programmers must develop
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skills that help them relate the effects of their program statement choices on the

hidden world of thread management and parallel processes. Debugging parallel code

is made difficult by the relative disconnect between high-level statements and the

associated threading events. Students should have at least a first-order notion of the

consequences of source directives for the primary purpose of parsing out execution

scenarios realized at the system level. However, this modest level of student profi-

ciency in developing multithreaded programs cannot prevent the occasional deadlock

or unpredictable result. Indeed, even with the insight provided by these visual tools,

constructing 100% reliable thread-safe programs is a difficult venture primarily be-

cause of the inherently nondeterministic nature of thread primitives.

A comprehensive and compelling argument regarding the inadequacies of threads

as the core primitive for developing parallel code was put forth by Edward Lee in his

May 2006 article, “The Problem with Threads” [45]. Indeed, either because of the

predominant textbook content on the subject or simply the lack of alternative models,

an association has been forged in the minds of many computer science faculty that

teaching parallel/distributed design must include a thorough treatment of threads

and threading mechanisms. In the middle part of this past decade, software engi-

neers forced to contemplate how to fully harness the performance potential emerging

from multicore platforms turned reflexively to the only programming tool ostensibly

available. This prevailing bias for threads and the associated cautionary tone that

developers should place a high priority on polishing their multithreading skills are

concisely captured in the following quotation from a May 2005 software periodical

article on the subject: “It’s clear that the future of all desktop software development

is threaded. So, if the advent of hyper-threading didn’t get you to think about using

threads in your client applications, this is surely the right time to dip your toe into

programming for parallel processing” [10].

This unfortunate implicit connection between parallel computing and threads
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leads to unnecessarily telescoping a fairly broad topic to the minutiae of system level

implementation. An equally important consideration is that threads may not even be

the best tool for development of parallel programs. The real utility of the thread con-

cept can be traced to OS design and improved hardware implementations. Threads

motivated the development of a more flexible Unix kernel [67] and more efficient execu-

tion techniques in processor design, most notably extending superscalar performance

into fine-grained temporal multithreading and simultaneous multithreading [70].

Threads, with their associated contention and synchronization concerns, present a

fairly complex picture of parallel coding to the beginning CS1 programmer. Although

tools which support visualization of multithreaded program execution and the various

synchronization objects and monitors may be of great benefit to the Junior/Senior

CS student, there is a finite likelihood that first year CS student programmers would

become overwhelmed and possibly discouraged by this level of detail. Lee has stated

outright that because of the inherent unreliability of thread behavior between pro-

gram executions, the thread model may not be best for parallel application design:

“Threads are seriously flawed as a computation model because they are wildly non-

deterministic.” Lee issues a broader indictment regarding designing multithreaded

code: “A folk definition of insanity is to do the same thing over and over again and

expect the results to be different. By this definition, we in fact require that program-

mers of multithreaded systems be insane.” An alternative to parallelization through

threading is the current investigation into transactional memory (TM), which aims to

make the programming model simpler, freeing the developer from lock management

tasks [11][62]. Sun’s recent Rock processor offers TM support.

After essentially dismantling the utility of threads in creating parallel programs,

Lee proposes that the answer to this unruly nondeterministic problem is to focus

programming language development on coordination languages that introduce new

syntax orthogonal to the more widely established programming languages. Unlike
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threads-style programming, which attempts to corral a wildly nondeterministic in-

teraction mechanism, coordination languages would afford the programmer the op-

portunity to initially model deterministic processes and then judiciously and explic-

itly introduce nondeterminism only where needed. Examples in his article include a

rendezvous-based coordination language with a visual syntax. Lee envisions a visual

style of programming emphasizing process coordination overlaying the more finely-

grained computation expressed in more conventional languages. The acceptance of a

visual environment, he states, is made possible by programmer endorsement of the

“UML–properly viewed as a family of languages, each with a visual syntax–[which] is

routinely combined with C++ and Java.” The final word on threads is best expressed

by Lee: “They must be relegated to the engine room of computing, to be suffered

only by expert technology providers.”

2.3 Early Exposure to Parallel Concepts

The previous section details the applicability and popularity of rendering specific

thread behavior and general parallel functionality in a graphic visual environment.

This is a key discovery derived from past research and development that should not be

cast aside when considering instructional strategies for teaching parallel concepts to

CS1-level undergraduates. The subject of what constitutes an appropriate course in

parallelism and the classroom tools that promote learning on this topic is still up for

debate. The current educational challenge is best summarized by David Patterson’s

observation: “I wake up almost every day shocked that the hardware industry has bet

its future that we will finally solve one of the hardest problems computer science has

ever faced, which is figuring out how to make it easy to write parallel programs that

run correctly. . . .We don’t even know for sure what we should be teaching ,

but we know we should be changing what we’re teaching”[56].

The CS2008 Curriculum update recommends a Parallel Computation class that
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cuts across several advanced courses and is a suitable prerequisite to a capstone

project class focusing on creating a complex parallel system [15]. Alternatively, if a

treatment of parallel concepts were moved to the very beginning of a student’s CS pro-

gram, then the content and delivery of that course or module requires careful thought

and planning. Novel issues arise when programming concurrent applications which

can make teaching these concepts to beginning programmers a seemingly formidable

task. The instructional challenge is to make parallel code design principles not only

accessible, but comprehensible to students at the very beginning of their Computer

Science education.

As mentioned in Section 2.1, various strategies have been devised to integrate

concurrency into a CS1 course. One such approach implemented at Williams College

and later at Pomona College by Bruce, Danyluk, and Murtaugh emphasizes a high-

level event-driven programming treatment of threads and object interaction [12]. This

course introduces Java event-driven programming on the first day of class and makes

extensive use of graphics and animations. Libraries are provided to shield beginning

students from a few unfamiliar aspects of the Java language such as exceptions. Us-

ing these libraries, students are writing programs that create and execute separate

processes by the fourth week of the term.

Students then begin to work on a simple version of the FroggerTMgame, in which

a player uses mouse clicks to safely guide a frog across a four-lane highway. The

car, frog, and lane objects are each controlled by separate threads, which the authors

claim is a natural fit with the student’s intuition about independent interactive en-

tities. Conversely, Bruce et al. state, “If we avoid introducing concurrency early, we

force students to learn to sequentialize naturally concurrent processes” [12]. Thread

usage and implementation becomes more prevalent as the course progresses, neces-

sitated by the emphasis on the Java programming concurrency model. Apart from

the immediate visual rewards obtained through this game development approach,
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beginning CS1 students are not positioned to fully appreciate the complexities and

non-determinism inherent in threads.

The success of instructing concurrency concepts at this introductory level was

measured informally by asking students to rank the lab activities on educational

value, difficulty, and fun using a scale of 1 to 5. Laboratory projects involving con-

currency were rated higher in all three categories than other projects, with noticeable

differences in the ratings for difficulty and fun.

Over 10 years ago, Lynn Andrea Stein from MIT suggested that CS1 instruction

should more diligently adhere to the “computation as interaction” model represented

by real-world software implementations like spreadsheets, video games, and web ap-

plications. She noted that “we teach our students a single-thread-of-control static

problem-solving view of the role of the computer program: computation as calcu-

lation” [66]. The author’s focus is on establishing interaction patterns rooted in

concurrency as the next level of abstraction beyond traditional functions and objects.

Stein contends that providing students an appreciation for interacting processes

at the CS1 level pays dividends later in the curriculum: “For example, an operating

systems course no longer needs to teach both the idea of concurrency and the mech-

anisms by which it is implemented; students will have been living in a concurrent

computational world from the very beginning.”

Like Bruce’s approach described above, Stein’s CS1 course relies on a GUI frame-

work that allows students to visualize the behavior of their Java code. In the begin-

ning of the course, students write an entity to control one end of a virtual seesaw. As

their knowledge base of Java functionality is expanded, students are guided through

a program emphasizing the internal structure of a computational entity, how entities

are tied together, and ultimately culminating in a treatment of a variety of canonical

architectures for distributed systems including RMI.

For both pedagogical approaches, concurrency concepts are interwoven through-
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out the entire course in conjunction with learning a programming language. Stein

targets a more high-level system interaction model whereas Bruce focuses more on the

low-level thread mechanisms that underlie concurrent behavior. Stein’s assessment

of student learning is limited to observations like “course evaluations have been posi-

tive,” and “students going on to subsequent course work report that their experience

with this material was extremely helpful.”

A constructivist view of learning theory asserts that students will either assimilate

or accommodate new concepts based on their past experiences. Prior knowledge is

typically structured according to working models or “thinking” frameworks. Bain

states that if instructors do not provide meaningful frameworks to students, they

will attempt to form their own (with uncertain results) [4]. In conjunction with col-

leagues, the author has investigated various manifestations of “thinking” frameworks

that infuse computer science, namely mathematical, abstract, and computational

thinking.[50] These frameworks are motivated by commentary from computer scien-

tists that attempt to distinguish the discipline’s theoretical and design strategies from

the programming task, and are built on previous research investigating different ways

to teach discrete mathematics to CS students [51][52].

The question of where to place the topic of parallelism within a CS curriculum

naturally leads to identifying at what points during an undergraduate program stu-

dents are most ready to accept, absorb, and critically assess the techniques particular

to parallel design and development. As students progress toward the baccalaureate

degree, it is reasonable to assume that strategies related to solving problems in the

discipline are gradually culled and solidified. Assisting the student in establishing an

effective set of tools is the intended outcome of all academic departments, and results

in the core skill set that allows the graduating student to embark on a professional

career.

Specifically, students in upper level CS courses have adopted ways of abstracting,
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modeling, and implementing programming solutions from requirement documents

based primarily on the methodologies taught in their initial fundamentals classes.

CS1 as defined by the ACM is an introduction to computer programming course

offered to first-year CS students. Different models exist for the early introductory

courses (e.g., imperative first, objects first) [14], but the primary objective of the CS1

class is to sharpen the problem solving skills of prospective developers using software

engineering strategies and program design tools. The class is centered mostly on re-

fining and shaping the thinking of these new students rather than stressing detailed

computational mechanisms. During this class, important foundational computing is-

sues such as modularization and basic code structure can be addressed from a high

conceptual viewpoint. The ACM Computer Science Curriculum 2008 recommenda-

tions do not list concurrency as a core topic within the Programming Fundamentals

(PF) knowledge area. A six-hour core unit on concurrency does appear under the

Operating Systems knowledge area, primarily directed at managing resources at the

system level [15].

The author’s personal experience in teaching undergraduate CS1 courses has fos-

tered the belief that students in this initial class are especially suited to not only

understanding, but also adopting the design principles associated with developing

programs for parallel platforms. Admittedly, the CS1 class is not the best time for

a detailed exposition and analysis of the various primitives and mechanisms that

support parallel program execution, but an overview that helps students appreciate

simultaneous processes at an early stage in their education will most certainly pay

dividends when they later confront program development tasks for the increasingly

prevalent multicore architectures.

The CS1 class effectively guides students on how to think about a computational

problem and how to abstract the essential elements of the problem. Although mapping

these concepts to code represents a secondary goal, this process allows the student
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to confirm whether her models can be realized through the power of programming

tools. Given that fundamental perspectives about programming paradigms are being

molded at this early phase of the CS curriculum, it is reasonable to assume that

students just beginning a computer science program will be more open to learning

about “parallel thinking” than advanced students who are in some sense entrenched

in previously adopted sequential or object-oriented programming strategies.

The distinctive learning context of the CS1 class gives the instructor an oppor-

tunity to present a variety of ideas before any particular one is summarily adopted

or rejected by the student. Specifically, the student can more readily absorb the

perspectives related to parallel thinking before getting locked in to some other mode

of software analysis. At this unique juncture in the CS curriculum, more emphasis

should be placed on high concepts particular to parallelism rather than concurrency

implementation mechanisms, so that beginning CS undergraduates who might lack

background in operating systems, networks, or advanced programming constructs are

not disadvantaged.

The discussion of when the minds of CS undergraduates are ready for parallelism

remains theoretical until a valid and reliable assessment tool is developed that con-

sistently measures a student’s grasp of fundamental patterns of parallel design. In a

series of papers, Mattson, Sanders, and Massingill have developed a pattern language

for parallel programming, in which one of the benefits is to “disseminate the experi-

ence of experts by providing a catalog of good solutions to important problems, an

expanded vocabulary, and a methodology for the design of parallel programs.” The

pattern language described in the Mattson, et al., publications provides a roadmap

for conceptualizing and implementing parallel programs. The target audience for this

language, as with most pattern collections, is primarily the code designer/developer.

The authors confirm this focus by stating that this pattern language is intended

to “guide the programmer through the entire process of developing a parallel pro-
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gram.” [6] Most notable in this particular pattern language is the first design space,

Finding Concurrency, which is “concerned with structuring the problem to expose

exploitable concurrency. The designer working at this level focuses on high-level algo-

rithmic issues and reasons about the problem to expose potential concurrency” [47].

From the above descriptions, it would appear that the ability to reason, abstract,

and conceptualize parallelism is the crucial initial step in devising workable solutions

to concurrency problems. In fact, Mattson, et al. claim that identifying exploitable

concurrency is an acquired and improvable skill such that experienced parallel de-

signers may ultimately be able to move directly to the second design space. It’s also

interesting to note that the authors address process/thread management only in their

fourth and final design space, Implementation Mechanisms.

A student learning about parallel programming for the first time can benefit from

the categorizations and strategies described in the Finding Concurrency design space,

and, to a more limited extent, the Algorithm Structure design space. Determining

how to exploit concurrency is one of the key goals of parallel programming. Most

textbooks on parallel programming address the partitioning and grouping process in

one of the early chapters [34][57][71], so the Decomposition and Dependency Analysis

patterns in the Finding Concurrency design space help to structure the discovery

process for a student new to parallel software development. In fact, the authors state

in their 2000 paper that the patterns in the Finding Concurrency design space “form

the starting point for novice parallel programmers” [7]. In the same paper, they

reiterate the instructional nature of the Finding Concurrency design space by noting

one of its main functions is to “help the programmer select an appropriate pattern

in the Algorithm Structure design space.” Immediately following, they state that

“experienced designers” might already know how to make this selection.

An especially powerful pattern that instructors can emphasize during class dis-

cussions is that of Design Evaluation, described in detail in the 2000 paper. The
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intent of the pattern clearly establishes the iterative nature of the design phase: “In

this pattern, we evaluate the design so far, and decide whether to revisit the design

or move on to the next design space.” This iterative approach may already be fa-

miliar to students with backgrounds in Object-Oriented or even Structured analysis

and design. To help guide students in evaluating the initial parallel program design,

this pattern provides metrics based on suitability, quality, and preparation. A set of

specific questions are proffered in this pattern, which can help the students gener-

ate enough detailed evidence to critically evaluate their design as well as stimulate

classroom discussion about what constitutes good parallel program analysis.

The value of theAlgorithm Structure design space in education is primarily through

its elaboration of some classic parallel programming problems and solutions. In the

1999 paper, the authors present three mature patterns: EmbarrassinglyParallel, Sep-

arableDependencies, and GeometricDecomposition. In an introductory parallel pro-

gramming class, students can begin to appreciate these patterns almost immediately

either through class discussion or, based on the coding skills of the students, some

fairly simple programming assignments. For example, the EmbarrassinglyParallel

pattern requires no special techniques to effect parallelization, and a programming

example like an affine transformation of individual pixels in a bitmap can be used to

illustrate the pattern.

Although the pattern language does provide support for the educational process

through the Finding Concurrency design space and some fundamental patterns in the

Algorithm Structure design space, there is a substantial preliminary analysis assumed

by the language that most students will need significant time to foster and hone. The

core questions of this initial analysis are repeated in several of the papers: 1) is the

problem sufficiently large; 2) are results sufficiently significant; 3) are key features and

data elements within the problem well understood; and, most importantly, 4) which

parts of the problem are most computationally intensive? Overall, before embarking
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on a parallel programming project, students must be able to determine whether the

computational demands of the algorithm justify pursuing a parallel solution. This

insight points toward a crucial rule of conduct in software engineering quality assur-

ance, that of doing the right thing rather than simply doing things right. Therefore,

instructors would need to devote sufficient time to these issues to ensure that students

are prepared to appropriately apply the pattern language for parallel programming.

One of the ways in which students can be trained in the process of parallel thinking

is through the use of analysis tools. As suggested at the beginning of this section, the

hands-on nature of visual analysis tools can play an important role in conveying key

concepts about parallel design to the student. Computationally intensive portions

of the code can be identified using a tool that provides a rough measure comparing

computation time with communication time. The tool should reinforce the skills rep-

resentative of the Finding Concurrency design space by helping the student identify

which code sections are good candidate of parallelization. Immediate experimental

feedback on running programs will either confirm or refute the student’s choice. The

tool could also provide a sense of the scalability of the application, since parallel pro-

grams should be able to reliably handle growing data sets. Here, as with education,

the pattern language can inform the design and development of these tools.

At a minimum, a parallel analysis/design tool should have an awareness of the re-

sources currently available on a specific platform, primarily the number of processing

elements. Because of this implicit connection with runtime architecture, the design

space that would offer the best guidelines for developing this tool would be Algorithm

Structure. This design space focuses on major organizing principles. A tool that

allows for the identification and visualization of tasks, datasets and computational

resources would be enormously helpful to a programmer attempting to design a par-

allel algorithm. Similar to designing organizational charts or processes for business,

a drag-and-drop tool capability would allow a developer to experiment with different
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configurations of program elements, along with the potential for feedback to assist in

optimizing the design.

The Algorithm Structure design space also addresses data flow considerations,

which can be suitably represented in graphics/icon format. Both the pipeline and

event-based coordination pattern lend themselves to pictorial representations or ar-

chitectures, which can be more easily understood and assessed when compared with

simply scanning source code. In iterative fashion, these visual configurations can

enlighten and refine the task grouping, task ordering, and data sharing activities con-

tained in the Finding Concurrency design space, allowing experienced designers who

have initially skipped these initial patterns to refine and update their design.

Currently, the Weber State CS department (where the author holds a faculty

position) does not expose students to concurrency issues until upper division courses

(3000 level and above). Two such courses that have been taught by the author

include (1) CS3100 Operating Systems in which low-level multithreaded constructs

like mutexes, semaphores, and critical sections are presented and (2) CS3230 Java

Programming in which approximately one week is devoted to how Java supports

concurrency through the Thread class and the synchronized keyword. This approach

to instructing parallel concepts appears to be standard operating procedure for most

CS programs as discussed earlier in this chapter. Instead of expanding the scope

of multithreading in upper division courses, or creating an entirely new Senior-level

course on concurrent/distributed processing, this research effort maintains that the

existing treatment of parallel computing concepts later in the curriculum can have

more impact and value if appropriate seeds about parallel program design are planted

in the minds of students during the initial CS1 programming fundamentals class.
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Figure 2.3: Using the Thread Class in ThreadMentor

Figure 2.4: ThreadMentor’s Main Window



45

Figure 2.5: ThreadMentor’s Thread Status Window

Figure 2.6: ThreadMentor’s History Graph Window
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Table 2.1: Example Courses on Parallel Computing

MIT:
6.046J Design and Analysis of Algorithms Techniques for the design and analysis of efficient

algorithms, emphasizing methods useful in practice. Topics include sorting; search trees, heaps, and

hashing; divide-and-conquer; dynamic programming; greedy algorithms; amortized analysis; graph

algorithms; and shortest paths. Advanced topics may include network flow; computational geometry;

number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.

Pre-reqs:

6.006 Introduction to Algorithms

6.042 Mathematics for Computer Science

6.01 Introduction to EECS I

Stanford University:
CS149 Parallel Computing Course is an introduction to parallelism and parallel programming.

Most new computer architectures are parallel; programming these machines requires knowledge of

the basic issues of and techniques for writing parallel software. Topics: varieties of parallelism in

current hardware (e.g., fast networks, multicore, accelerators such as GPUs, vector instruction sets),

importance of locality, implicit vs. explicit parallelism, shared vs. non-shared memory, synchro-

nization mechanisms (locking, atomicity, transactions, barriers), and parallel programming models

(threads, data parallel/streaming, futures, SPMD, message passing, SIMT, transactions, and nested

parallelism). Significant parallel programming assignments will be given as homework.

Pre-reqs:

CS140 Operating Systems and Systems Programming

CS110 Principles of Computer Systems

CS107 Programming Paradigms

CS106A Programming Methodology

CS106B Programming Abstractions

CS103 Discrete Mathematics for Computer Science

Carnegie Mellon University:
15-418 Parallel Computer Architecture and Programming The fundamental principles and
engineering tradeoffs involved in designing modern parallel computers, as well as the programming
techniques to effectively utilize these machines. Topics include naming shared data, synchronizing
threads, and the latency and bandwidth associated with communication. Case studies on shared-
memory, message-passing, data-parallel and dataflow machines will be used to illustrate these tech-
niques and tradeoffs. Programming assignments will be performed on one or more commercial
multiprocessors, and there will be a significant course project.

Pre-reqs:
15-213 Introduction to Computer Systems
15-123 Effective Programming in C and UNIX
15-110 Introduction to Programming
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Table 2.1 continued

UC Berkeley:
258 Parallel Processors In-depth study of the design, engineering, and evaluation of modern

parallel computers. Fundamental design: naming, synchronization, latency, and bandwidth. Archi-

tectural evolution and technological driving forces. Parallel programming models, communication

primitives, programming and compilation techniques, multiprogramming workloads and methodol-

ogy for quantitative evaluation. Latency avoidance through replication in small-scale and large-scale

shared memory designs; cache-coherency, protocols, directories, and memory consistency models.

Message passing: protocols, storage management, and deadlock. Efficient network interface, pro-

tection, events, active messages, and coprocessors in large-scale designs. Latency tolerance through

prefetching, multithreading, dynamic instruction scheduling, and software techniques. Network de-

sign: topology, packaging, k-ary n-cubes, performance under contention. Synchronization: global

operations, mutual exclusion, and events. Alternative architectures: dataflow, SIMD, systolic arrays

Pre-reqs:

252 Graduate Computer Architecture

152 Computer Architecture and Engineering

61C Machine Structures

61B Data Structures and Programming Methodology

61A The Structure and Interpretation of Computer Programs

University of Utah:
3810 Computer Organization An in-depth study of computer architecture and design, including
topics such as RISC and CISC instruction set architectures, CPU organizations, pipelining, memory
systems, input/output, and parallel machines. Emphasis is placed on performance measures and
compilation issues.

Pre-reqs:
2420 Introduction to Computer Science II
1410 Introduction to Computer Science I
1010 Introduction to Unix

6110 Formal Methods for System Design Study of methods for formally specifying and ver-
ifying computing systems. Specific techniques include explicit state enumeration, implicit state
enumeration, automated decision procedures for first-order logic, and automated theorem proving.
Examples selected from the areas of superscalar CPU design, parallel processor memory mod-
els, and synchronization and coordination protocols.

Graduate Level Course

6230 Parallel Computing and High Performance Computing Overview of parallel comput-
ing; processors, communications topologies and languages. Use of workstation network as parallel
computers. Design of parallel programs: data composition, load balancing, communications and syn-
chronization. Distributed memory and shared memory programming modules; MPI, PVM, threads.
Performance models and practical performance analysis. Case studies of parallel applications.

Graduate Level Course



CHAPTER 3

EXPERIMENTAL EDUCATIONAL STUDY

This chapter describes the experimental method employed in the educational

study that was carried out as a core part of this research. The fundamental research

questions targeted by this study are enumerated, establishing the proper context for

an examination of results in Chapter 6.

The experimental setting, student subjects, and representative participant popula-

tion are addressed. Relevant information about the “laboratory” for this experiment,

the CS1400 Fundamentals of Programming course, is provided. Institutional Review

Board approval for this study was granted from both the University of Utah and

Weber State University.

The chapter details the two-factor mixed-group research design utilized in this

study, in which the classroom intervention mode (control, lecture only, and lecture

with PAT visualization tool) is the independent variable, and student comprehension

of parallel programming concepts as measured by the customized PoPS assessment

is the response variable. The same assessment was administered three separate times

during the CS1400 course (Weeks 1, 3, and 9) to each intervention group, providing

the repeated non-independent factor in the research method.

Survey administration procedure is covered, and the grading of both the multiple

choice and written design questions is explained. Both the parametric and nonpara-

metric statistical tests applied to the survey scores are discussed, as well as the method

employed in generating and interpreting the results of the experimental study. This

chapter essentially provides a profile of the overall structure and detailed components



49

of the experimental educational study employed in this research.

3.1 Problem Statement

The objective of this study is to quantify the impact of two distinct modes of

CS1-level classroom interventions on student comprehension of parallel computing

concepts.

3.2 Research Hypotheses

The specific instructional interventions used in this study are categorized as 1)

None (Control), 2) Lecture Only, and 3) Lecture with PAT software analysis tool.

Each of these is described in more detail in Chapter 5. Given the application of these

two levels of intervention across independent groups of students and the repeated

measure factor within a given group, the main research objective stated in Section

1.2 can be resolved further into the following research hypotheses:

1. With significance level α = 0.05, CS1 students exposed to a three-week “lecture-

only” course module on parallel design concepts will exhibit statistically signif-

icant comprehension levels about this subject matter after the delivery of the

course module when compared to students exposed to traditional CS1-level top-

ics during the same time period.

2. With significance level α = 0.05, CS1 students exposed to a three-week “lecture

with software visual tool” course module on parallel design concepts will exhibit

statistically significant comprehension levels about this subject matter after the

delivery of the course module when compared to students exposed to traditional

CS1-level topics during the same time period.

3. If there is no detectable interaction between the experimental factors, then with

significance level α = 0.05, CS1 students will exhibit statistically significant
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comprehension levels about this subject matter after the delivery of any CS1

three-week course module when compared to comprehension levels just prior to

the three-week course module.

For each hypothesis above, comprehension levels are measured by a valid test in-

strument described in Chapter 4. The third hypothesis tests for the repeated measure

main effect, and is only applicable if there is no factor interaction. The statistical

analysis used in this study follows the conventional approach of quantifying the prob-

ability of a Type I error, i.e. incorrectly rejecting the associated null hypotheses.

The choice to focus analysis on rejecting the null hypotheses is suggested by Drew, et

al.[22]: “For statistical testing and problem distillation purposes, the null hypothesis

works very well and is probably used more frequently by practicing researchers than

the directional hypothesis.”

3.3 Research Design

The educational study employs a two-factor mixed group design with two exper-

imental variables. Figure 3.1 provides the core structure of the research design. As

shown in the figure, the interventions listed horizontally represent the independent

group measure and the longitudinal testing within groups along the vertical axis rep-

resents the repeated measure. The three levels along each factor result in a total of

nine conditions or treatments. The response variable for each condition is the survey

score obtained from each student in the designated population using the test instru-

ment administered on the day indicated in the figure. The diagram also shows the

number of surveys collected for each treatment.

The horizontal axis in the figure denotes the comparison among groups across

content delivery techniques: A1) the class section exposed to presentation of parallel

concepts with the support of the PAT visual analysis tool, A2) the class section

exposed only to presentation of parallel concepts, and A3) the control group that
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receives only traditional CS1 instruction. For Groups A1 and A2 above, identical

learning objectives involving similar depth and breadth of topic content are defined.

The instructional intervention for Groups A1 and A2 also includes a single homework

assignment that exercises the student’s ability to find concurrency. The key difference

between these two levels is that Group A1 students have hands-on access to the

PAT visual analysis tool for in-class demonstrations of parallel program behavior

and for solving problems in the homework assignment. Consequently, the homework

assignment for Group A1 is designed differently than the homework assignment for

Group A2: the Group A1 exercises direct students to use the PAT to analyze the effects

of parallelizing specific program sections, whereas the Group A2 exercises instruct

students to analyze code for possible parallelization from a strictly theoretical context.

The participant population for this study can be generally characterized as first-

year/second-year undergraduates attending a CS1-level course at a university that

awards primarily baccalaureate degrees. The actual subjects in this study were stu-

dents enrolled in three different 15-week sections of the Fundamentals of Programming

(CS1400) course offered at Weber State University in Ogden, Utah. The CS1400 class

is a requirement for both the AAS and BS computer science degrees. The following

is the course description for CS1400 as it appeared in the 2009-2010 Weber State

University catalog:

CS SI1400. Fundamentals of Programming (4)
This course covers basic operating system operation and components of the development environ-
ment. The majority of the course covers basic problem solving and program design of a software
application using a selected language. Topics presented and discussed depending on selected language
include: thinking logically to solve problems, working with input/output devices, compilation and
library use, structured programming and modularity concepts, conditional and iterative structures
including recursion, data types and structures, and pointers. Prerequisite: CS 1030.

The class information based on research intervention is given in Table 3.1. Al-

though the selection process for this study’s participants cannot be strictly charac-

terized as random sampling, the inherently indiscriminate nature of university course
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registration provides the sampling mechanism that assigns students to the indepen-

dent groups. The size of the groups was sufficiently similar that the researcher as-

sumed orthogonality for the experiment [61]. Prior to enrolling in the classes listed

in Table 3.1, students were not aware that course content would either include a

discussion of parallel concepts (in the case of Groups A1 and A2) or involve an eval-

uation instrument. On attending the first day of class, students were informed of

the activities related to the study and directed to the appropriate IRB information.

No students reported dropping or transferring from the classes because of the experi-

mental study; any subsequent drops or transfers were due to reasons unrelated to the

study. The enrollment values listed in Table 3.1 reflect the “stable” roster numbers

typically recorded three weeks after the term begins. All reported results were ac-

quired from students enrolled in the class on the day the evaluation instrument was

administered. As with any class session, some individuals in the class may not have

been present on the day of a test evaluation.

Given these considerations, this research assumes the participant pool is represen-

tative of the population described above, and that any variation among participants

related to age, occupation, gender, or socioeconomic level did not significantly influ-

ence the outcome of the study. Although participants in this study are in a sense

“self-selected,” the factors influencing the self-selection process are related to the

normal course enrollment process (e.g., time-of-day, course conflicts) and are entirely

orthogonal to the target objectives of the study. The research also assumes that all

participants enrolled in this CS1-level course possess equivalent computing expertise

and technical capability. This assumption is strengthened by the department policy

that allows students to place out of the CS1400 class and earn credit by taking an

advanced standing examination prior to enrolling in the course. As a result, it is

assumed that only those students who truly require the instruction offered by the

CS1 class will enroll. Finally, it is assumed that participants have no extensive prior
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experience with parallel computing, which is bolstered by the signature introductory

nature of the CS1 class.

The information in Table 3.2 gives some limited profile of the participant demo-

graphics by class. Figure 3.1 shows the study sample sizes for a given treatment

range from 19 for Condition A2B3 to 31 for Condition A1B1. This range edges across

the n = 30 inflection point, typically considered the dividing line distinguishing be-

tween large and small samples [63]. Intuitively, larger samples generally provide more

information about the target population than do smaller samples. Given that only

one sample size in this study exceeds the 30 sample threshold, the test results for

each treatment are assumed to satisfy the requirements of small sample analysis: 1)

all nine treatment population probability distributions are normal, 2) the nine treat-

ment population variances are equal, and 3) test scores obtained for each treatment

represent random, independent samples.

Since “control is the essential element in sound experimental design,”[22] this

study attempts to minimize any potentially counterproductive classroom variations

and influences among the three independent test groups A1, A2, and A3 that can be

reasonably curtailed. Instruction to all groups is administered by the same teacher

to remove any potential differences in knowledge-base or instructor effectiveness than

can exist between two different teachers. To maintain initial uniformity among the

experimental and control groups, the study intervention was conducted in the first

three weeks of the class. This will minimize the phenomenon that typically occurs late

in the term by which students acclimate to teaching methods, solidify opinions about

teacher effectiveness, and generally adjust motivation levels based on nonacademic

factors unrelated to course content.

As regards test instrument administration, the vertical axis in Figure 3.1 repre-

sents the repeated measure experimental variable defined by three successive eval-

uation conditions named Pretest, posttest, and Recap-test. The term PoPS in the
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figure refers to the Perceptions of Parallelism Survey (PoPS) instrument specially

designed for this study and described in more detail in the next chapter. The PoPS

is a formative assessment instrument to determine student comprehension and reten-

tion of parallel programming concepts at each level of the repeated measure factor.

This study is quantitative in the sense that numerical results from the assessment

instrument will be used as the criterion measure (the dependent variable).

On the dates listed in the figure for each treatment, the PoPS written exam was

administered to each student in that group. Students are given no more than one

hour to finish the assessment. Incomplete exams are accepted. The survey tests the

knowledge-based, reasoning, and problem-solving capabilities of the students as they

relate to comprehension of parallel programming design concepts. The PoPS survey

targets the student’s grasp of high-level concepts and thinking, and requires abstrac-

tion of the course material delivered through assignments and class time participation

during the initial three week period dedicated to parallel programming topics.

The PoPS survey includes two parts composed of 1) 30 multiple-choice questions

and 2) one design “essay” question. Each part will be graded separately. The sin-

gle answer multiple-choice questions help remove the possibility of unintentional bias

which can sometimes occur when correcting essay-type questions, whereas the design

question will provide some measure of the student’s deductive reasoning and exposi-

tion abilities. The multiple-choice questions impart high reliability to the assessment

instrument, similar to a collection of math problems whose measure “would be very

likely to show consistency across different times and observers”[22]. Regarding va-

lidity, the assessment questions will target the learning objectives clearly outlined

for the instructional portion of the study. Given that students in the experimental

groups will be exposed to identical content as dictated by those objectives and all stu-

dents will be assessed under relatively similar conditions in both time and place, the

instrument attains a sufficient level of validity in measuring student comprehension.
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As mentioned above, the criterion measure (response variable) is the individual

numerical results of the graded exams. A grade for the multiple choice exam ques-

tions is assigned by the instructor using a straightforward right/wrong correction

scheme; the resulting measurement is the number of questions answered correctly by

the student.

A numerical value is applied to the design (essay) question using a six-point Likert

scale. Assessments of the written design question focus on the following areas of

aptitude: 1) the overall readability of the student’s response, 2) the level of reasoning

applied by the student, and 3) the student’s mastery of key concepts. The purpose

of the design “essay” question is to provide additional support for the conclusions

derived from the analysis of the multiple-choice part, and to furnish explicit written

examples of the student’s expertise in parallel programming design.

To achieve integrated reliability, two objective graders other than the instructor

independently evaluated all the submitted design question responses. The graders

did a blind evaluation of each design question, with no knowledge of the identity of

the student. The instructor invested sufficient time with each grader to explain the

required design question response, and to train each grader according to the assess-

ment rubric (Figure 3.2) and correction sheet (Figure 3.3) specifically constructed

to ensure systematic evaluation of the design question. The “chart” referenced in

Figure 3.2 is the correction sheet of Figure 3.3.

Because the two graders did not exchange communication or influence each other’s

student subject ratings, a Mann-Whitney U Test is applied across the two separate

independent sets of scores from each grader to determine if they are statistically

different. If no difference is indicated, then a single score will be calculated for every

design question response by taking the average of the two scores from each grader.

Because of the assumption stated above that that the numerical test results from

the multiple-choice portion of the assessment instrument derive from an underlying
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normal probability distribution with equal variance for each condition (treatment

group) given in Figure 3.1, a parametric two-way ANOVA for mixed comparisons test

can be used for data analysis. This experiment is a complete 3 x 3 factorial design since

samples exist for all nine possible factor-level combinations. The two-way ANOVA

will provide information about the probability of an interaction effect between the two

experimental factors. For the situation in which there is no statistically significant

factor interaction, the differences in the mean levels of the mutually independent main

effects (the choice of intervention instructional method and the repeated measure) can

then be investigated An F test will be used to ascertain the validity of the research

hypotheses listed in Section 3.2.

Since no assumptions can be made about the underlying probabilities of the design

question scores, nonparametric tests are used for statistical analysis of these measures.

Specifically, a Kruskal-Wallis test can be applied for comparisons between the exper-

imental and control groups, and a Friedman matched group test can be applied to

the repeated measures within each group. Consistency between the parametric and

nonparametric analysis will strengthen inductive conclusions derived from the study.
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Figure 3.1: Two-Factor Mixed-Group Design

Figure 3.2: Design Question Grading Rubric
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Figure 3.3: Design Question Grading Chart
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Table 3.1: Experimental Study Independent Groups
Intervention Group Course Time Enrolled Students
Lecture w/Visual Tool Spring 2010: MW 9:30-11:30 31
Lecture Only Fall 2009: TR 11:30-1:30 22
Control Fall 2009: MW 9:30-11:30 27

Table 3.2: Student Subject Majors and Gender
Student Major Gender

Intervention Group CS CNS Eng GS Other Male Female
Lecture w/Visual Tool 21 0 3 4 3 25 6
Lecture Only 14 2 4 1 1 20 2
Control 18 1 3 1 4 23 4

CS = Computer Science
CNS = Computer and Network Security
Eng = Computer and Electronics Engineering Technology or Pre-Engineering
GS = General Studies



CHAPTER 4

EVALUATION INSTRUMENT

Student comprehension of parallel design concepts is measured using a Perceptions

of Parallelism Survey (PoPS) specifically developed for this research study by the

author. The survey focuses on monitoring a student’s high-level reasoning strategies

about finding concurrency in familiar situations rather than testing the student’s

detailed knowledge of terminology, taxonomies, and implementation mechanisms used

in classifying and creating parallel programs and systems. The PoPS is modeled after

the Force Content Inventory (FCI) used for many years in undergraduate Physics

education.

4.1 Parallel Concept Inventory

To inform and clarify the discussion on parallel computing instruction, an assess-

ment tool that consistently measures a student’s grasp of fundamental patterns of

parallel design is needed. Section 2.3 introduced a series of papers by Mattson, et

al. about developing a pattern language for parallel programming and highlighted

the relation between the first two design spaces and the effort to provide instruction

on parallel concepts early in the CS curriculum [47]. Recall that the first design

space, Finding Concurrency, is “concerned with structuring the problem to expose

exploitable concurrency.” CS1-level instruction of parallelism and the subsequent

assessment of a student’s comprehension of parallel design should target this foun-

dational skill. Sharpening the student’s intellectual awareness to identify potential
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concurrency wherever it might exist is the vital first step in developing complex par-

allel computing systems.

Undergraduates beginning a program in computer science may enter with under-

developed or outright erroneous intuitions about how parallelism works. Indeed, the

ideas on parallelism they bring with them may be flawed and may potentially hinder

their ability to design proper concurrent code solutions later in their academic careers.

Misperceptions of vital core concepts are not unique to computer science students.

Efforts by educational researchers and faculty in Physics have been focused for many

years on the flawed concepts that students bring with them to the first-year course

on Newtonian mechanics. Halloun and Hestenes examined the “common sense beliefs

of students” about basic physical phenomena, and how some of these conceptions, no

matter how incompatible they may be with established scientific theory, are not easily

discarded by students even after a full course in which these notions are explicitly

disproved through in-class demonstrations [29][30].

Physics students drew conclusions about physical movement predominantly from

a mixture of flawed Aristotelian and Impetus theories, and some correct Newtonian

conceptions. The extent to which students adhere to inaccurate views of the physical

world is illustrated in the account by the psychologist Michael McCloskey [49], whose

1980 experiment showed that strongly held intuitive models are not always correct.

A group of undergraduates were shown a picture of a thin curved metal tube and

were then asked about the resulting trajectory of a metal ball shot through the tube.

Of the students who studied no physics, 49% thought the ball would continue along

a curved path as suggested by the curvature of the tube, thus displaying adherence

to the medieval impetus theory formalized by Jean Buridan in the 14th century. As

explained by Halloun and Hestenes, impetus theory proposes “that when an object

is thrown, the active agent imparts to the object a certain immaterial motive power

which sustains the body’s motion until it has been dissipated due to resistance by the
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medium” [30]. More notable is that 19% of the students with college-level physics pre-

dicted a curved path for the ball. For whatever reason, student concepts of motion as

interpreted through direct experience with the physical world did not provide enough

convincing evidence to displace the erroneous impetus theory from their thinking.

Concern for these strongly-held but incorrect student perceptions led Hestenes,

Wells, and Swackhamer to develop the Force Content Inventory (FCI), an assessment

instrument intended to “provide a clear, detailed picture of the problem of common-

sense misconceptions in introductory physics” [33]. In contrast to the extensively

researched design of the FCI over many years, the development of a validated com-

puter science concept inventory that measures a CS1 student’s grasp of fundamental

programming concepts is still in its very early stages [69]. Whereas the substance

and matter of the FCI has been examined by a vast number of content experts and

refined through many iterations of the assessment, the definition of the knowledge

base a CS1 student should possess remains an open research question, and the proper

evaluation of this knowledge is hampered by the rapidly changing programming lan-

guages and paradigms utilized in the CS1 classroom. One such change is the emerging

importance of concurrent computation.

Whereas instructors in Physics are confronted with a lifetime of student exposure

to motion and force, Computer Science faculty do not necessarily have to contend

with a vast student experiential history in parallel processes. However, the recent

explosion of electronic communication devices may easily blur the conceptual line

between classical single CPU multitasking and true simultaneous processes. Given the

recent introduction of multicore and many-core computing and the popular definition

of multitasking as the performance of multiple tasks at the same time, it is vital that

future CS graduates be able to readily distinguish single CPU multitasking from true

simultaneous processes, and to take a proper accounting of computational resources

in order to correctly assess and identify actual levels of concurrency in computing
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systems.

One notable popular misconception that beginning CS students bring to the class-

room is that multitasking can be accomplished without the cost of protracted execu-

tion time, possible deteriorating performance, and context switching. Research has

confirmed the myth of performing demanding cognitive tasks simultaneously [59].

The brain can be a useful instructional metaphor when discussing parallel processing

systems with single or multiple CPUs, but only if students appreciate the inherent

limitations of computational devices.

The motivation behind the design and development of the Perceptions of Par-

allelism Survey (PoPS) springs from the same general objectives and intentions as

articulated for the FCI: measure and address student misconceptions about paral-

lelism early in the educational process and encourage the proper perspectives about

concurrency that will serve each student throughout her career in computer science.

Parallelism is a concept well worth monitoring given the growing demand for software

developers who appropriately exercise “parallel thinking.”

4.2 Perceptions of Parallelism Survey (PoPS)

Similar to practitioners in other disciplines, computer scientists must cultivate

and refine a core set of essential skills. Problem solving is regarded as a mainstay

in computer science education and is often highlighted during the CS1-level course.

Kramer addresses the question whether a CS student’s ability to apply the powers

of abstraction can be linked to success in producing elegant computational models

and designs [39]. In the same article, Kramer asks if abstraction is teachable and

measurable, and explicitly calls for tests that “examine different forms of abstraction,

different levels of abstraction, and different purposes for those abstractions.” In this

way, effective means for teaching abstraction, whether by updating course content or

labs, can be identified and utilized.
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Parallel design is a specific area that relies heavily on abstraction. The models and

systems that support concurrency cannot necessarily be seen and felt. A student may

be shown a cluster of several networked computers or a sophisticated rack-mounted

tightly-coupled physical collection of parallel processors, but capitalizing on the in-

herent computational power and speed of that computing system requires that the

student possess some command of abstract concepts. A student’s intuition about

parallelism, much like a student’s ideas about the concept of force in the physical

world, may not be intrinsically sufficient or correct.

The Perceptions of Parallelism Survey (complete listing in Appendix A) provides

an instrument for measuring a student’s abstraction of parallel processes. The current

version of the survey targets fundamental design patterns closely allied with the task of

finding concurrency. The questions in the survey do not rely on a student’s extensive

knowledge of detailed implementation mechanisms, which are typically learned in

an advanced course on parallel and distributed computing. Instead, problems are

posed such that important patterns and practices in parallel design are reworked

into commonplace scenarios using everyday objects that all students can immediately

recognize. These objects include dartboards, waiting lines, books, and playing cards.

Use of familiar objects and situations removes obstacles to student comprehension

typically associated with CS-specific concepts or technical jargon. The situations and

scenarios performed in each survey task are also familiar; examples include checking

out a library book, performing addition, and appraising antiques.

In identifying general student misconceptions about programming, Kaczmarczyk

cites students who inadvertently apply real world semantic understanding to code

abstractions [36]. The PoPS attempts to narrow this divide between common stu-

dent experiences and computational strategy, thereby allowing the student to focus

primarily on the parallel characteristics intrinsic in the PoPS scenario. Although each

problem setting in the PoPS may not represent an everyday occurrence, the intent
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of the PoPS is to couch questions in a real-world context, allowing the student to

rapidly grasp the gist and scope of the problem statement.

The PoPS includes two parts composed of 1) 30 multiple-choice questions and

2) one extensive design essay question. The multiple-choice questions are grouped

together into eight separate tasks, each of which targets specific parallel design fun-

damentals as listed in Table 1.1. The table also provides an overview of the situa-

tion/context of each task.

Though the overall length of the PoPS (see Appendix A) and the associated

sustained focus required from the student subjects may initially appear too demanding

for a standard 60 minute content assessment, the design and structure of the survey

was influenced by three primary factors related to the author’s objectives, experiences,

and observations:

1. The PoPS closely followed the test format of the Force Content Inventory (FCI)

used in Physics. There were 30 questions on the FCI, with similar depth and

detail. When I (the author) first took the FCI, I thought that it required an

inordinate amount of time to complete. But after taking the same test a second

and third time, I was able to more efficiently grasp the concepts and finished

the test within a reasonable amount of time. Since the PoPS is administered to

the same groups three separate times, I ultimately latched onto the idea that

the survey really needed to stretch the students initially so that improvements

in concept comprehension could be more readily noticed and measured.

The other extreme would be to give a more manageable, “easier” test. But

the main concern here is to avoid the ceiling effect, the situation in which

many students do well on the initial test, thereby leaving very little room for

measurable improvement in the subsequent repeated trials.

2. In length and content, the PoPS is about 110% of what my students typically
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get on a midterm or final. Anecdotally, I have designed exams for Weber State

students that I thought should take a full 60 minutes, and about 85% of them

walk out of the examination room before 35 minutes have elapsed. (I am still

amazed at this, but less so as time goes on.) I have observed that only a very few

students take the fully allotted test time or go back to review their answers. So,

although the ideal hope is that students carefully think through each question,

the reality is that they answer primarily through “intuition”, which is fine since

the PoPS attempts to probe the student’s conceptual grounding.

3. This point is related to item 2 above. The primary intent of each survey question

is that a student’s correct answer arises from a combination of correct intuition

and applied conceptual thinking. I believe each question forces the student

to do a little computational work even if they think they “know” the answer

immediately. This necessarily will lengthen the exam because they will probably

need to put a pencil to paper to compute optimum times, do some addition, or

sketch some rough task management/organization diagram.

The principal features of the PoPS overall construction and design include:

1. Questions of moderate difficulty and length that require a modest level of cal-

culation. Because students will be retested with the PoPS several times (see

Chapter 3), the problems should challenge the students initially so that improve-

ments in the comprehension of parallel concepts can be more readily monitored.

Conversely, a survey with relatively easy, quick-response questions may result

in many students doing extremely well on the initial test, thereby leaving little

room for measurable improvement in the repeated trials. Ideally, a student’s

correct answer should arise from a combination of accurate intuition and applied

conceptual thinking. Students may think they know the answer immediately,

but each question by design forces the student to do a little computational work
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to verify these initial hunches.

2. An emphasis on processing time. One of the primary measures of parallel com-

putation is speedup, a performance analysis metric initially formulated by Am-

dahl [2], then expanded on using alternate scalability concepts by Gustafson,

Barsis, Singh, Hennessy, and Gupta [71]. For early undergraduates, one of the

most easily recognizable benefits of parallel solutions is that, for a given problem,

processing time should be decreased when compared with the serial solution.

These students may initially embrace the idealist view of linear speedup: by

simply applying p processors to an existing sequential program, the run time is

reduced by a factor of p. The diminishing returns afforded by this philosophy

are addressed in the PoPS questions, which require students to reckon with the

time cost of communication, and the limitation of Amdahl’s Law. Numerous

small and possibly duplicate problems that can be rapidly calculated may not

be good candidates for parallelization. The calculations mentioned in feature 1

above are primarily devoted to determining the duration of processes, and how

these values may be positively or negatively influenced by the addition of more

processing elements (PEs).

3. Architectural considerations. Parallelism is not strictly an issue of correct or

efficient programming. An awareness of underlying architecture is necessary for

the software developer to write effective parallel programs. Both scaling and

speedup have an architectural as well as an algorithmic component. As sug-

gested in feature 2, CS1 students can develop an immediate appreciation for

this interplay between hardware and software by carefully considering why a

sequential program does not simply run p times faster on a machine with p pro-

cessors. Sivasubramaniam aptly describes interaction overhead, a component

of parallel architectures that degrades linear speedup, as involving communi-
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cation issues like contention, latency, synchronization, resource management,

and cache effects [64]. The PoPS questions consistently examine the computa-

tion/communication tradeoffs inherent in all parallel configurations.

Following is an overview of more specific patterns in parallel thinking targeted by

the PoPS:

4.2.1 Serial/Parallel Computation

To find concurrency within a series of operations, students should be able to

identify those steps that must be performed in sequence, and those steps that exhibit

the potential to be run in parallel. Executing a binary addition operation on two

separate pairs of independent operands is a straightforward example of calculations

that can be made concurrent.

4.2.2 Temporal Dependencies

Even within tasks that can execute concurrently, there may be constraints placed

on the order in which a series of steps occurs. Calculating the time evolution in a

3-D N-body problem illustrates a temporal or sequential dependency.

4.2.3 Multitasking and Context Switching

Students should gain an appreciation for the classical conceptualization of multi-

tasking, which implies thread/process swapping on a single CPU. This contrasts with

pure parallelism, in which processing elements are dedicated exclusively to a single

task. Real-world parallel computations typically involve a combination of these two

strategies.

4.2.4 Resource Management/Synchronization

Efficiently managing a program’s assets is critical in order to attain the highest

performance from a parallel problem. Proper communication among computational



69

units must be confronted and resolved. A subclass of resource management is data

sharing, involving both global information and exchange of task-local data.

4.2.5 Understanding Amdahl’s Law

The motivation here is not to present CS1 students with an exhaustive exploration

of the origins of constant problem size scaling, nor to simply have them plug numbers

into a formula to derive hypothetical speedup values. The key idea to recognize is

that simply throwing more processors at a parallel problem does not constitute a

viable strategy. In fact, performance may actually deteriorate, and a regard for other

scalability concerns (i.e., Gustafson’s Law) should be integrated into the student’s

thinking.

4.2.6 Master/Worker Configuration and Delegation

Different processor topologies can be employed in solving parallel problems, and

students must recognize that only a select few of these types of problems can be

solved by a collection of independent processors in an embarrassingly parallel way.

Here again, issues of communication surface as well as the likelihood that for some

problems one processor may be dedicated only to delegating tasks and possibly to a

single reduction operation.

4.2.7 Load Balancing

The seminal example of the influence of load balancing on the efficiency of parallel

computation is the generation of the fractal image of the Mandelbrot Set. The central

part of the image that contains members of the set requires substantially more com-

putation than the top or bottom portions. If the student applies data decomposition

in a conventional way by simply dividing the image calculation into evenly-sized hor-

izontal sections, then program performance is compromised. Students must consider

proper types of fixed or dynamic scheduling in order to achieve sufficient levels of
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load balancing.

4.3 Survey Task Objectives

To provide some additional perspective on the scope and intent of each PoPS task,

this section provides detailed descriptions highlighting the survey task objectives.

As revealed by a quick scan of the PoPS, a student’s full understanding of each

task scenario does not demand an extensive background in mathematics, software

development, or networking. Refer to Appendix A for the specific task problem and

associated questions.

4.3.1 Task I - Arithmetic Operation Sequence

This task is a straightforward exercise in recognizing data dependencies within a

series of arithmetic calculations and applying the appropriate sequential constraints

on these operations. From the problem description, instruction III exhibits a Read

after Write (RAW) true dependency. The data hazard arises if access to the contents

of variable c in instruction III is performed before instruction I saves its results to the

same memory location. Instruction II exhibits no data dependencies with the other

two instructions.

This task requires students to detect the limitations of parallelization embedded

in the execution of these arithmetic operations, ignoring the effects of the overhead

of establishing parallel processes. Question 1 verifies the student’s basic knowledge

of serial computation, and Question 2 examines the student’s ability to identify con-

current sections of code.

4.3.2 Task II - Multitasking

This task challenges the student’s tacit acceptance of the popular notion of mul-

titasking, and illustrates the concept by using a common example derived from the

student’s direct experience with the traditional classroom environment. As described
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in Section 4.1, students typically do not attribute a cost to performing several tasks

at the same time, and may have misplaced ideas regarding the semantic difference

between multitasking and simultaneous processes.

This task requires students to recognize that cognitive and computational mul-

titasking requires the overhead of context switching. Pure parallelization assumes

more than one dedicated processing element with no interaction among those ele-

ments. Question 3 demonstrates the nondeterminism of preemptive scheduling on a

single CPU system, and Question 4 turns the spotlight on the efficiency drawbacks

of multitasking among activities that demand focused attention.

4.3.3 Task III - Resource Management

Often software developers are confronted with limited resources, and sharing those

resources requires specialized programming strategies like thread synchronization.

Fundamentally, this task explores the appropriate mapping of processes to processing

elements (PEs), and the effect of selecting specific mappings on system performance.

In the task description persons represent processes, and the library book check-out

machines denote our resources, the processing elements. As with all other PoPS tasks,

computational efficiency is strictly a function of time.

Question 5 emphasizes the compromise in performance if the number of threads

does not necessarily equal the number of PEs. None of the options for this question

allow for the optimum situation of one thread per processor, so the student must

reconcile this mapping mismatch to determine the solution that exhibits the best

performance. Question 6 introduces the communication cost of distributing tasks

among the PEs, with a special focus on how best to initiate and execute parallel

processes. When compared with scenario (C), the slight modification introduced in

scenario (D) increases the fraction of time spent on sequential operations, and negates

the effort to capitalize on the efficiency of parallel computation. Scenario (D) is the
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focus in Question 7, which essentially confirms that only a purely sequential single

CPU computational strategy would have worse performance than scenario (D).

4.3.4 Task IV - Monte Carlo Simulation

This task is a recasting of a Monte Carlo Simulation using a setting and situa-

tion which should be familiar to all students. The topology of distributed, parallel

computing units is highlighted as well as the reduction pattern and communication

considerations. All requisite information is presented in the problem such that any

individual with a mild inclination toward things technical would be able to grasp the

problem, apply some reasoning, and settle upon an answer to each of the questions

accompanying the task within a reasonable amount of time.

As suggested by the list of different costs for performing a single experiment, the

task spotlights the ever-present tradeoffs that pervade all designs of parallel systems.

The associated questions encourage the student to weigh the pros and cons of different

choices related to materials, computation, and communication, effectively performing

a kind of cost minimization analysis on the fly. Question 8 ensures the student can

identify the true cost of quasi-simultaneous transmissions. Question 9 focuses on pure

calculation cost without direct reference to FLOPS. Question 10 allows the student

to exercise abstraction in order to reinforce the fundamental idea that one thread per

processing unit is the optimum, assuming access to an unlimited number of processors

and no hardware cost.

For Questions 11 and 12, material cost is now a consideration and equated with

computation cost to simplify calculations and bring the CPU/Time tradeoff issue to

the forefront. The intent with this question is that students can intuitively discern

a “middle ground” solution when confronted with a specific hardware cost, rather

than favoring either extreme of purchasing large quantities of expensive processors

or falling back to the less efficient single CPU approach. Question 13 focuses solely
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on the hardware cost, and relies on the simple deduction that procuring the fewest

processors leads to minimizing this metric. Question 14 challenges the student’s

notions regarding the overall effect on task distribution and computation time when

applying one more processor to a parallel computing problem. This question requires

some implicit understanding of barrier synchronization.

4.3.5 Task V - Master-Worker Configuration and Communication

The objective of this task is to examine the student’s understanding of the com-

munication cost incurred by interacting parallel processes. The problem is for five

persons to alphabetize sixty words, with each word printed on a separate card. De-

tails about the time cost for information exchange between processors (represented

as persons) is provided. The reduction time to condense alphabetized sub-stacks is

also given as significantly less than the time required to perform initial sorting on a

set of un-alphabetized cards.

This task challenges the student to recognize the most efficient system config-

uration, and addresses essential concepts of parallel design such as master/worker

topology, communication, delegation, process integration, sequential dependencies,

algorithm design, and reduction. Students are confronted with the shared-memory

issues that arise when two or more threads attempt to perform a single operation.

Question 15 emphasizes the importance of maximizing computation time and

minimizing communication time in parallel process design. Students should recognize

the drawbacks of scenarios that propose an inordinate amount of idle processing

cycles. Question 16 employs a simple visualization of a communication strategy using

directed graph notation, a diagrammatic representation of network configuration and

process flow that CS1 student’s will learn about in a subsequent Discrete Math course.

Question 17 attempts to solidify the liabilities of exchanging information in parallel

computing by increasing the communication cost six-fold. Students should identify
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that the scenario with the most stack exchanges will absorb the biggest performance

hit because of the increased communication cost.

Question 18 highlights the synchronization penalties incurred when P processors

attempt to sort the same set of N items simultaneously. This is reflected in the prob-

lem as two or more (P ) persons alphabetizing the same stack of N cards, and the

overall cost of this strategy is expressed as a time cost of P ∗N . Students are encour-

aged to limit task sharing when delegating the individual activities that constitute a

parallel computing problem, and to assign raw input data set components to single

processors whenever possible. Question 19 revisits the drawbacks of communication

cost in the context of shared tasks.

4.3.6 Task VI - Mandelbrot Example

One of the classic examples of applying parallel techniques to image processing is

generating the Mandelbrot Set, a fractal object published by an IBM mathematician

of the same name in 1977 [46]. The Mandelbrot Set is a set of points in two dimen-

sional space defined as follows: for each point (x, y), compute a sequence of points

(ai, bi), such that:

a0 = 0

b0 = 0

ai+1 = a2i − b2i + x

bi+1 = 2aibi + y

In Figure 4.1 points in the Mandelbrot Set are black. Points not in the Mandel-

brot set are often rendered as a range of colors. The point (x, y) is a member of the

Mandelbrot Set if the magnitude of each point in the sequence (ai, bi) remains finite,

where i = 1, 2, 3, . . .. If the magnitude of the sequence of points (ai, bi) tends toward
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infinity, then the originating point (x, y) is not a member of the Mandelbrot Set.

Computer programs that calculate membership of the Mandelbrot Set must rely on

the proof that if the magnitude of the point (ai, bi) in a sequence ever exceeds 2, then

that sequence will inevitably head towards infinity. Given the above, the algorithm

for determining if point (x, y) is a member of the Mandelbrot Set can be expressed

as follows:

Initially assume that (x, y) is in the Mandelbrot Set

for i = 1 to N

calculate (ai, bi)

if( magnitude of (ai, bi) > 2)

then (x, y) is not in the Mandelbrot Set

end for

Other than the fact that calculations of adjacent points are independent, the strat-

egy listed above illustrates the key feature of Mandelbrot Set processing highlighted

by this PoPS task: identifying a point in the Mandelbrot Set is more computationally

intensive than identifying a point outside the Mandelbrot Set. Essentially, to get the

best performance from a parallel solution, proper delegation of data items and load

balancing must be taken into consideration. As revealed in Figure 4.1, a processor

operating on a horizontal band of points from the middle of the figure will require

significantly more computation time than a processor operating on a horizontal band

of points taken from either the top or bottom of the figure.

This PoPS task replicates this computational challenge by initially placing all

of the time-intensive antique appraisals in one of three queues, and by introducing

the oversight of a floor manager in assigning patrons to specific queues based on

the order of arrival. Question 20 depicts the primary load balancing problem for
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the student’s consideration. Question 21 examines delegation strategies when only

one computationally intensive task needs to be processed. Question 22 introduces

overhead associated with task delegation and communication and asks the student to

account for this influence on performance. Question 23 examines the student’s ability

to judiciously allocate tasks to processors using basic load balancing strategies.

4.3.7 Task VII - Lateral Communication

This task is predicated on finite difference equation approximations typically em-

ployed in scientific computing to model and measure physical processes. A common

example often translated to a parallel algorithm is the one-dimensional diffusion equa-

tion:

∂θ

∂t
= κ

∂2θ

∂x2

If θ represents temperature and κ is interpreted as thermal diffusivity, then the above

second order partial differential equation becomes the heat equation which describes

the variation of temperature along a single spatial axis over time. Discretized parallel

computing implementations of this type of differential equation rely on the sharing

of information between adjacent points in space, as illustrated by this C++ function

constructed by Karniadakis and Kirby[38] that incorporates a central finite difference

scheme with an Euler-forward time integration scheme:

void Diffusion_EF_CentralDifference( int N, double DN,

double *uold, double *unew)

{

for(int i = 1; i < N-1; i++)

unew[i] = uold[i] + DN * (uold[i+1] - 2.0*uold[i] + uold[i-1]);

return;

}
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Note in this function that for each time step, the computation of location unew[i]

depends on previous values of not only the target point, but also the two flanking

points. Realizations of this code on message passing parallel platforms require that

each processing node send and receive information to and from neighboring nodes.

The card game described in this PoPS task highlights the required information

exchange and time expenditures when performing lateral communication. Time steps

are represented by a single round of the card game, and the structure of the game

simulates the initial value and boundary value problems that constrain the solutions

to scientific models: each player is dealt a single card to start the first round and

players at both ends of the linear seating arrangement are influenced by only one

neighboring player. The order in which an internal node retrieves information about

its adjacent nodes is set down explicitly in order to approximate the synchronization

of send/receive commands typical of a message passing paradigm.

Question 24 tests the student’s baseline knowledge of the game rules and the mini-

mum time required for a node (player) to gather information from its adjoining nodes

in order to determine its current value. Question 25 simply switches the send/receive

order of the middle nodes, and consequently reduces the communication time required

to establish a winner of the game. Question 26 demonstrates the contrast in efficiency

between the two-way request/response “pull” strategy employed by the previous two

questions and an alternative one-way scattering “push” strategy represented by the

sharing action of adjoining players. Question 27 verifies the students understanding

of the communication cost of the “push” approach described in the previous question

for a single iteration (round) of information exchange.

4.3.8 Task VIII - Application of Amdahl/Gustafson Laws

Amdahl’s Law is founded on the assumption that the computational problem

to be solved is of fixed size and the scalability of his parallel analysis amounted to
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applying more processors to this problem. However, Amdahl maintained that a finite

percentage of the original problem could not be parallelized, which resulted in his

generally pessimistic conclusions about the increase in speedup as a function of the

number of processors [2].

John Gustafson countered with his own assumptions, stating that as the number

of processors increased, real-world analysts would naturally wish to process problems

of larger size. Essentially, the problem size selected frequently depends on the number

of available processors. Gustafson maintained that the execution time should be fixed

and that “it is the parallel or vector part of a program that scales with the problem

size” [27].

The objective of this PoPS task is to focus the student’s attention on both poten-

tial benefits of parallelization, speedup and problem size. Often the primary emphasis

when initially exploring parallel concepts is to design faster programs. However, the

goal of many parallel computing applications is to provide more accurate results,

which can be realized by processing a larger quantity of higher-resolution data using

more processing elements. Using a theoretical ball delivery mechanism to demon-

strate the advantages of scaling up problem size, this PoPS task represents processors

as output tubes and data items as balls.

Question 28 tests the student’s basic understanding of the delivery mechanism

and how the functionality of the mechanism translates to execution time. Question

29 examines the student’s ability to recognize the optimum number of processors for

the given problem size. Question 30 illustrates the fixed execution time constraint

with a given number of processors, and asks students to scale up the problem size in

order to take full advantage of the “computational” power of the delivery mechanism.



79

4.3.9 Design Question - Grouping and Ordering Tasks

The design “essay” question examines the student’s ability to organize a series of

tasks both sequentially in time and distributed among a fixed number of processing

elements. The structure of the solution adheres to agenda parallelism, in which there

is an series of tasks which must be performed and which may exhibit sequential

dependencies [37]. The student is also asked to recognize and describe a reduction

step, in which a global maximum must be computed to generate the final result.

The context of the problem is to determine the identity of a thief using archived

photographs from a crime lab. Students must devise the most efficient strategy to

analyze 1000 photos using 250 available processors. The definition and delegation of

tasks follow this basic outline:

- Task 1: Compare robber photograph with potential suspect photograph and com-

pute “similarity” score. All 250 processors can be used, resulting in 4 compar-

isons per processor.

- Task 2: Locally compare the 4 resulting similarity scores on each of the 250 proces-

sors, and output the highest (maximum) score. (This minimizes communication

overhead.)

- Task 3: Each of 249 processors sends its maximum score output to the remaining

processor, which compares its local maximum with those from the other pro-

cessors, producing a high score from all 1000 comparisons and the most likely

suspect.

A diagram depicting the above processing strategy is given in Appendix B.

4.4 Survey Role in Educational Study

The PoPS should be considered a formative rather than a summative assessment,

and should be employed repetitively as a diagnostic test of student comprehension



80

of parallel design concepts. The intent of the PoPS is not only to help students

progress in the growing field of parallel computing, but also to modify and validate

instructional timeliness and pedagogical techniques related to this important topic.

Chapter 2 addresses the challenge of identifying at which points during a CS

education it is best to present students with the ideas and foundation of “parallel-

thinking.” An instrument like the PoPS can provide one measure as to whether the

minds of students in the early stages of a CS program are receptive to concepts in

parallelism. Monitoring survey scores of a CS1 class both before and after the presen-

tation of a module on parallel computing would provide some baseline information

as to whether core concepts were fully absorbed and understood by the attending

students. In the extreme theoretical case, an individual could take the PoPS, be

exposed to a few minutes clarification on specific aspects of parallelism, and then

immediately retake the PoPS. The performance improvement or reduction between

the two administrations of the test would reveal something of the effectiveness of the

intervening instruction.

The PoPS is the assessment instrument used in the two-factor mixed design ed-

ucational study of CS1-level undergraduates described in Chapter 3. The PoPS will

help answer the research question about the appropriateness of presenting material

about parallelism to an introductory CS class.

The validity of PoPS as an instrument for assessing a fundamental level of com-

petency in parallel design has been discussed in detail in the previous section. The

tasks and questions included in PoPS elicit information about student perceptions

and beliefs on parallel behavior and student aptitude on finding concurrency. Since

PoPS is a new assessment instrument, the reliability of the survey is purely descrip-

tive and based primarily on the consistency inherent in multiple-choice tests. Like

mathematics tests, the PoPS multiple-choice questions have only one answer and are

likely to show consistency across the different test times and students. Integrated re-
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liability for the design question is achieved by utilizing two separate objective graders

and comparing their scores for consistency.

Figure 4.1: The Mandelbrot Set



CHAPTER 5

CLASSROOM INTERVENTIONS TO PROMOTE

PARALLEL THINKING

The experimental educational study described in Chapter 3 employed two primary

methods for introducing parallel design concepts to beginning CS1-level students. As

indicated by the levels applied to the independent groups along the horizontal axis in

Figure 3.1, separate sections of the CS1400 Fundamentals of Programming class were

exposed to:

1. A three week module of lecture/presentations of parallel concepts and hands-on

programming exercises applying those concepts using a software visual Parallel

Analysis Tool (PAT) especially designed and written by the author for CS1-level

instruction (level A1).

2. A three week module of lecture/presentations of parallel concepts with written

exercises suitable for CS1-level undergraduates (level A2).

3. No instruction about parallel concepts. Traditional initial three week CS1-level

instruction involving sequential analysis and design (the control group A3).

This chapter delineates the module content and elucidates the pedagogical strat-

egy utilized in this study. Regarding the overall educational study, the module was

not designed such that questions on the PoPS were directly addressed in the class-

room discussions. The intent of the module design was to furnish students pertinent

information about parallel design so that these newly acquired skills and knowledge
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could translate to better performance on the PoPS. The forthcoming discussion can

be essentially categorized into two fundamental classroom interventions as outlined

in the above list: 1) instructional intervention, and 2) visual analysis tool (PAT)

intervention.

5.1 Instructional Intervention

The module on parallel computing was scheduled as the initial topic of investiga-

tion in the CS1400 Fundamentals of Programming CS1-level class, spanning roughly

the first three weeks of the semester. Because CS1400 is an introductory class, upon

entering the classroom students were assumed to have no significant expertise in par-

allel systems, computer architecture, or programming. Students did have some broad

exposure to computing concepts through the CS0 prerequisite course Foundations of

Computer Science, but certainly not enough to claim sufficient mastery of any single

area in software development or computational systems.

With such limited student experience, the module was necessarily designed to

target the core conceptual underpinnings of parallel computation. Any technical

terminology was carefully explained as it was introduced. The module content had to

be relatively easy to understand by the beginning student without extensive discussion

or examples, and the topics clearly had to be restricted in scope. Nonetheless, a

relatively substantial foundation about parallel computing could be established in

this short amount of time. The objectives of this parallel concepts module can be

concisely summarized as shown in Figure 5.1.

In an attempt to connect with the diverse learning styles of CS1 students, in-

structor presentation of the module content relied not only on oral or written de-

scriptions of parallel concepts, but also on explicit visualizations of parallel design

using primarily the Activity diagram from the UML and a new, original Processor-

Time (P-T) diagram created by the author to be described later. A single textbook
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was not required for this module. Instead, specific introductory chapters were used

from Quinn’s Parallel Programming in C with MPI and OpenMP (Chapter 1)[57]

and Kaminsky’s Building Parallel Programs (Chapters 1-3)[37]. The selected read-

ings from these texts provided sufficient overview and descriptive explanations of

parallel systems while avoiding any detailed investigation of computational strategies

or mathematical performance measures too advanced for the novice CS1 student.

The weekly lesson plan and topic sequence for the parallel concepts module are

given in Table 5.1. Immediately following are additional summary explanations of

how some of the more substantial topics listed in the table were presented within the

context of the CS1 parallel concepts module.

5.1.1 Multicore Concepts/Parallel Computing

Moore’s Law is initially presented with special emphasis on how it significantly

drives the cultural expectations of computer performance over time. A brief history of

processor architecture is provided in order to show that a noteworthy inflection point

Iproc occurred in the early-80’s with regards to computing speed. Prior to Iproc im-

provements in processing performance were dependent on the physics and chemistry of

integrated circuit technology whereas after Iproc it was advances in microarchitecture

on recently developed microprocessors that provided the innovations for increasing

performance. A subset of these optimization efforts included finding parallelism in

the way low level instructions are managed and manipulated.

The objective of this discussion is to cultivate student appreciation of how paral-

lel processing was, until recently, conveniently hidden from the mainstream software

developer amid the intricacies of hardware implementations that capitalized on in-

struction level parallelism (ILP). In the current multicore and many-core era, pro-

grammers must be minimally aware of the number of available processing elements

on the development machine, a sentiment embodied in the classroom discussion of
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this topic by the expressions “Hardware drives software,” and “Architecture defines

the algorithm.”

In addition, the role of numerical simulation as a replacement for physical experi-

mentation within the scientific method is discussed. Some investigations are just too

complex, expensive, or outright impossible to perform in real-world laboratories. Ex-

amples of applications that can benefit from parallel programming are presented, such

as weather forecasting, protein sequence matching, and planet/star cluster formation

simulations.

5.1.2 Dependencies in Real-World and Computational Problems

Dependencies are emphasized early in this treatment of parallel computing. The

capacity to apply parallelism to computational problems is constrained by depen-

dencies among related activities. The student’s aptitude in recognizing dependencies

helps her succeed in the equally important task of finding concurrency. The funda-

mental question posed by students engaged in parallel thinking is: “Which operations

can be executed simultaneously?”

Students are acquainted with the fact that this question represents a fairly com-

mon cognitive experience, one which they have applied and developed many times

prior to enrolling in a Fundamentals of Programming class. The popular Fox-Goose-

Grain puzzle is proffered as a prime example of how dependencies heavily influence

the solutions to real-world problems.

A farmer owns a single boat and needs to deliver his fox, goose, and sack of grain

intact from one side of a river to the other side. The farmer can only carry one of the

three in his boat during a trip across the river. However, if the fox and goose are left

alone, the fox will eat the goose. If the goose and the sack of grain are left isolated,

the goose will eat the sack of grain. During the class discussion of the solution of this

classic puzzle, the dependencies existing among the different characters and objects
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in the scenario are highlighted.

Immediately following this discussion, students are asked to design an algorithm

for finding the maximum of two test score averages, each calculated from two sep-

arate, independent student populations. The objective is to have students not only

recoginze the sequential dependency that exists between the averaging and reduc-

tion (maximum) operations, but also discover that the two independent averaging

calculations can be done concurrently.

5.1.3 Parallel Architectures and Configurations

This topic discussion begins with the basic design of the von Neumann archi-

tecture, and shows briefly how CPUs can be duplicated to construct a symmetric

multiprocessor (SMP) configuration within a single computing machine. Given a

description of the SMP environment, CS1 students are able to easily make the in-

tellectual leap necessary to abstract the basic organization of the current multicore

architecture, in which two or more CPUs (cores) can be integrated on a single chip.

Students are instructed that SMP and cache memory are two architectural features

that influence the construction of high-level programs, reinforcing the interdependence

of hardware and software.

Four principal parallel computing architectures are addressed:

1. SMP, the foundation for multicore configurations described above.

2. Clusters, a collection of separate processor nodes interconnected using Ethernet

for commodity clusters like Beowulf, or InfiniBand/Myrinet for dedicated rack-

mounted servers.

3. Hybrid, a cluster in which the processor nodes are SMP machines

4. Grid, a highly distributed network of independent machines working on isolated

computations. Examples include SETI@home and the Great Internet Mersenne
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Prime Search (GIMPS)

The Grid configuration listed above helps to introduce the concept of embarrass-

ingly parallel problems in which communication or interaction between computing

nodes is effectively absent.

5.1.4 Speedup as a Performance Measure

Quinn [57] supplies the following expression for speedup:

ψ(n, p) ≤ σ(n) + φ(n)

σ(n) + φ(n)/p+ κ(n, p)
(5.1)

CS1 student focus and motivation would most likely experience a sudden and dramatic

decline on viewing this mathematical description of an important performance metric

of parallel programs. Extracting the essential qualitative meaning of speedup from

the above formula is the challenge for the CS1 instructor.

Kaminsky’s [37] diagrammatic description of speedup, shown in Figure 5.2, is

more suitable for the beginning CS student. A rudimentary Gantt chart indicates

the time required for a computation to be executed on a single processor. Positioned

immediately below the first chart, a second Gantt chart shows the time required if

four processors are applied to this massively (embarrassingly) parallel problem. In

this second chart, the student views four bars, each a quarter of the length of the bar

drawn in the first chart. Consequently, this straightforward visualization of execution

time makes explicit the conceptual definition of speedup:

Speedup =
SequentialExecutionT ime

ParallelExecutionT ime
(5.2)

Students are forewarned that real-world parallel computing is not necessarily as

clean-cut as the preceding example, but speedup is often the initial main motivation

for seeking a parallel solution to a sequential problem. In conjunction with the specific
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scenario just described, students are subsequently asked about the case in which the

amount of data to be processed is increased correspondingly by four. The bars in

the parallel Gantt chart can be extended to the same length as the single bar in the

sequential Gantt chart, illustrating the main message that, using the parallel strategy,

four times the information can be processed when compared with the sequential,

single CPU solution. This exposition illuminates the different perspective afforded

by Gustafson’s Law, in which the size of the problem should be scaled to match the

available computational capacity.

5.1.5 Dependencies Exhibited in Code

Small pseudocode examples taken directly from Quinn [57] are used to highlight

two key examples of dependencies relative to program construction: for-loop par-

allelism and task parallelism. Given the CS1 student’s relative inexperience with

program design and syntax, the intent is not to provide an exhaustive treatment of

all potential occurrences of dependencies among program statements, but to demon-

strate a few obvious cases where dependencies can affect program development pri-

marily so that students can ground the ongoing theoretical discussion to actual code

implementation.

An example of a fully parallelizable for-loop is presented:

for i ← 0 to 99 do

a[i] = b[i] + c[i]

endfor

The statement within the body of the above for-loop can be safely distributed among

100 dedicated processors without concern for data synchronization issues. Students

are then confronted with:

a[0] ← c[0]

for i ← 1 to 99 do
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a[i] = a[i-1] + c[i]

endfor

The above illustrates a data dependency between subsequent executions of the state-

ment in the body of the loop. This simple example serves to bring home the important

point that proper application of parallelization requires sharpening one’s ability to

detect and analyze possible dependencies within code.

The issue of data dependency remains at the forefront in an example used to

demonstrate how parallelization efforts should always consider the correct execution

order of a sequence of tasks:

(1) a ← 2

(2) b ← 3

(3) m ← (a + b)/2

(4) s ← (a2 + b2)/2

(5) v ← s - m2

Instructions (1) and (2) may be performed concurrently, followed by the simulta-

neous execution of instructions (3) and (4), which can then be followed by instruction

(5). By analyzing this code section in this way, students are engaged in applying the

technique of out-of-order execution so often used in computer architecture design to

exploit instruction level parallelism.

Despite the fact that applying parallelization strategies to arithmetic tasks of ex-

tremely short duration may prove counterproductive in actual practice, the objective

of the above examples is for students to recognize the tradeoffs between concurrency

and data dependencies within the context of computational requirements.

5.1.6 Activity Diagrams

Representing the flow of a parallel program in diagrammatic form is critical for

beginning CS1 students attempting to model concurrency. As mentioned above, stu-
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dents bring various learning styles into the classroom, and Activity diagrams provide

visualizations of parallel concepts that will appeal to a sizable fraction of those stu-

dents. Beyond the pedagogical benefits, the Activity diagram is an established tool

within the Unified Modeling Language (UML), often used in industry and academia

to express software engineering design and specification.

Fowler’s book on the UML provides a detailed description of the Activity dia-

gram [26]. The primary advantage of the Activity diagram and the main reason

it is included in the parallel concepts module is that it has the capacity to model

concurrent behavior. Typical flow charts can sufficiently represent standard control

structures, but come up short when attempting to depict parallel operations. The

Activity diagram includes both a fork and join synchronization bar which effectively

define barriers around concurrent activities. The standard description of a join spec-

ifies that all flows going into the join must reach it before processing may continue.

The Activity diagram helps the student explicitly visualize the sequential and parallel

portions of an executing program.

The parallel concepts module initially presents Activity diagrams as a tool for

representing real-world situations in which parallelism could potentially arise. When

describing the popular conception of “human” multitasking, the Attending Class

Activity diagram in Figure 5.3 is proposed as a representation of how students may

view the multitasking experience. The accuracy of this model is examined with re-

spect to the current research on human cognitive limitations in performing focused

tasks simultaneously. Are the three tasks flanked by the the fork and join bars in Fig-

ure 5.3 being performed concurrently? This question stimulates classroom discussion

regarding the difference between multitasking and pure concurrent processes, and also

compels the students and instructor to clearly define how parallelism is represented

in an Activity diagram.
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5.1.7 Multitasking and Context Switching

The importance of this topic relative to exploring parallel concepts at the CS1

level has been discussed both in the prior subsection about Activity diagrams and

more extensively in Section 4.1.

5.1.8 Data Parallelism, Functional Parallelism, and Pipelining

The subject matter in Week 3 assimilates the material from the prior two weeks

by emphasizing the design, structure, and interpretation of parallel programs. The

previous coverage of dependency analysis and the visualizations provided by Activity

Diagrams dovetail to help clarify the concepts of data parallelism and functional

parallelism. Figures 5.4a and 5.4b depict the basic structure of data parallelism and

functional parallelism, respectively. A, B, C, D, and E in the figures are considered

separate activities.

Data parallelism denotes the same operation performed on different data con-

currently, similar to the fundamental computing strategy of vector processors and

GPUs. Functional parallelism shows simultaneous execution of different operations

on different data. Through these representations, students begin to recognize the im-

portant and necessary parallel programming task of appropriately partitioning data

to processing elements.

Pipelining presents a unique challenge within the context of parallel program

structure because Activity diagram representations of this processing strategy are not

particularly good at indicating potential parallelism. In fact, despite the assembly

line approach in which each stage is working on a particular part of the problem

simultaneously, pipelining exhibits a conventional sequential flow when depicted by

an Activity diagram as shown in Figure 5.5.

The data mapping is not obvious for this pipelining scenario. However, introducing

this variant of parallel computation offers the student an alternative perspective on
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the data dependency example given earlier:

a[0] ← c[0]

for i ← 1 to 99 do

a[i] = a[i-1] + c[i]

endfor

If the above for-loop is unrolled, the following sequence of statements emerges:

a[0] ← c[0]

a[1] ← a[0] + c[1]

a[2] ← a[1] + c[2]

a[3] ← a[2] + c[3]

...

Now if K independent data sets of size 100 (each represented by a different c

array) need to be processed, the benefits of the pipeline computation scheme become

evident. Each individual statement in the unrolled loop still maps to an activity, but

the data mapping now cuts across each corresponding element of the K input data

sets.

For convenience, students are introduced to a shorthand notation which can sim-

plify Activity diagram representations of data parallelism. As shown in Figure 5.6,

a collection of simultaneous data parallel operations can be condensed to a single

activity of the same name, and the input transition to the activity is annotated with

the number of active parallel processors.

5.1.9 Parallel Program Structure

Parallel computing configurations are categorized in various ways, and the most

noteworthy is the original classification known as Flynn’s taxonomy [25]. Although

this classification scheme is widely accepted, it has limited value for the CS1 level
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student, who may be somewhat baffled by abstractions like data and instruction

streams.

Flynn’s approach focused primarily on parallel computing architecture and or-

ganization, but functionality is also implied through his systematic groupings. The

von Neumann machine, represented as SISD in Flynn’s classification, is essentially

restricted to sequential processing. The other three categories (SIMD, MISD, and

MIMD) constitute the different variations of parallel design and functionality. In-

stead of memorizing a pedantic, intellectually remote template for parallel machines,

beginning students in parallel computing will more likely be stimulated by descrip-

tions of parallel configurations in which real-world problems are being addressed.

Kaminsky introduces three ways to structure a parallel program, which he calls

patterns, based primarily on computational objectives: result parallelism, agenda par-

allelism, and specialist parallelism [37]. As with any classification scheme of parallel

design or architecture, the boundaries among the different groupings are not necessar-

ily well defined or clear cut. However, these patterns can be immediately connected

to practical problems, thereby drawing students more readily into strategies related

to parallel thinking.

Problems that employ result parallelism include pixel generation for computer

images, and N-body calculations like deriving the physical positions of planets or stars

under both Newtonian and relativistic influences. Agenda parallelism typically targets

a single result, so an example of this kind of pattern includes searching a massive

DNA and protein sequence database for similarities to an input query sequence. The

task appropriation and associated data scattering and gathering that characterizes

the master-worker pattern utilized often in cluster configurations can be introduced

when an agenda parallel problem has many more tasks than processors. The specialist

pattern aligns nicely with the pipelining solution described earlier.

Conceptualizing these modes of parallelism and connecting them with case stud-
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ies ultimately help students establish the intellectual foundation needed to formulate

solutions to the problems posed by the Perceptions of Parallelism Survey (PoPS) eval-

uation instrument discussed in Chapter 4. In fact, the student’s success in responding

to the PoPS design “essay” question scenario relies solely on their understanding of

agenda parallelism, dependencies, and reduction.

5.1.10 Mapping Parallel Problems to Activity Diagrams

This topic is integrated into the discussions on Activity diagrams, data parallelism,

functional parallelism, and pipelining in the previous subsections.

5.1.11 Modeling Performance Using the Processor-Time Diagram

In the spirit of providing compact, information-dense visual renderings of the ef-

ficiency of parallel computing solutions, the author created and experimented with

a novel format for representing parallel computation time and communication time.

This new Processor-Time (P-T) diagram depicts the individual processors (or pro-

cesses) involved in a parallel computation, along with the explicit interactions that

occur among the processing elements during the execution of the parallel program.

The Processor-Time diagram is a variation on the UML Sequence diagram in

which the objects displayed horizontally across the top of a Sequence diagram are

replaced by processing elements, and the message arrows represent some form of in-

formation exchange between two of those processing elements. Also, the angle of the

message arrow with respect to the lifeline of the processing element sending the mes-

sage departs from ninety degrees in proportion to the overhead of the communication.

For example, a message arrow perpendicular to the lifeline of the sending processor

denotes virtually instant communication (zero overhead). Unlike Sequence diagrams,

P-T diagrams have only one type of message, since their primary purpose is to give

the viewer a relative sense of the time investment involved in communication. Similar

to Sequence diagrams, time in P-T diagrams progresses vertically along lifelines from
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top to bottom.

Figure 5.7 shows how a P-T diagram models the time evolution of the Attend-

ing Class multitasking activities depicted in Figure 5.3. Note that single nodes

(dots) represent the processes, which are labeled as “Listen,” “Surf,” and “Text.”

In the diagram, lifelines are the vertical dotted lines. Effectively, any node drawn

along a lifeline indicates that some kind of computational processing is being per-

formed. As mentioned above, communication between processes is depicted using

a solid, single-headed arrow directed from the sending node to the receiving node.

Communication within P-T diagrams is an umbrella term which comprises any type

of non-computational event, including latency, transmission time, barrier delays, load

balancing tasks, synchronization, etc. In the P-T diagram of Figure 5.7, the com-

munication arrows represent context switches, an overhead that adds to the overall

execution time of the collection of multitasked activities.

The principal benefit of the P-T diagram is its capacity to provide the student

a comprehensive snapshot of parallel program performance. Students can apply an

immediate visual interpretation to a given P-T diagram based on the rule that more

efficient parallel programs are rendered in P-T format as generally “shallower” and

“wider.”

Note that the length or duration of the vertical time axis is made shorter or

“shallower” if computation eclipses communication in the parallel program imple-

mentation due to the relatively small size of the computation symbol (dot) as plotted

on a lifeline when contrasted with the communication symbol (arrow). A “wider”

P-T diagram implies that all available processors are being used in some capacity to

solve the programming problem. This full utilization of processors, however, may be

offset by increased communication activity. One of the chief purposes of the P-T is to

illustrate in diagrammatic form these tradeoffs that arise in parallel design between

processor usage and communication overhead.
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For example, the extreme case of an embarrassingly parallel problem using five

processors is illustrated by the P-T diagram in Figure 5.8. The diagram depicts the

ideal situation in which independent processing units are performing simultaneous

computations with no interaction. The diagram ignores communication overhead

associated with initial task or data distribution to participating nodes, as well as any

gathering or reduction operation on the results generated by the processing nodes.

The P-T representation reveals that the entire processor pool is being utilized (the

“wide” criterion) and all execution time is devoted to computation (the “shallow”

criterion).

Compare the embarrassingly parallel instance with the P-T representation in Fig-

ure 5.9 of a parallel program that utilizes only two of five processing elements and

involves three distinct communication operations between the two participating pro-

cessors. The representation in Figure 5.9 is noticeably narrower and deeper in terms of

P-T criteria. Thus, with a single glance, CS1 students can use P-T diagrams to make

rough assessments regarding parallel program performance, which will help build stu-

dent confidence in assigning qualitative labels to different parallel designs and also

encourage students to pursue a more detailed analysis of the parallel programming

strategy portrayed by the P-T diagram.

The instructional intervention described so far also includes a homework assign-

ment that hones the student’s ability to identify potential concurrency within code.

The excerpts of the assignment listed in Appendix D combine the student’s first ex-

posure to Java language features with the broad concepts of parallel design discussed

in class. Students are requested to go through the steps in the program development

cycle using code whose performance may be improved through proper application of

parallelization. For-loop parallelization and data dependencies are both highlighted

in these exercises. Students are asked to simply annotate those portions of the code

that they believe may benefit from parallel design strategies.
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5.2 The Parallel Analysis Tool (PAT)

The current landscape of software pedagogical tools for parallel computing was

explored at length in Chapter 2. Visual analysis software predominantly targets the

time capture and rendering of multithreaded activities, highlighting the interaction

among various synchronization objects (e.g., mutexes) and simultaneously executing

threads. To be effective in the classroom environment, these tools presuppose some

background in system-level thread mechanisms and primitives. Consequently, this

type of instructional software is best suited for students in mid-level or advanced

classes in the CS curriculum.

As mentioned in Chapter 2, threading concepts may be introduced at the CS2-

level as proposed by Bi and Beidler[9] or from a high-level applied programming

perspective at the CS1-level as suggested by Bruce, Danyluk, and Murtaugh [12].

However, presenting the low-level thread model to beginning CS1 students would

most likely prove distracting and confusing since the rudimentary idea of a “process”

in the context of programming has not yet been firmly established in the mind of the

student taking Fundamentals of Programming. In addition, the indispensability of

threads in the discussion of high-level parallel concepts has yet to be determined since

different and possibly better methods of expressing concurrency may be developed as

discussed by Edward Lee [45]. To program parallel systems, recall that Lee proposed

a novel coordination language with a visual syntax layered above and orthogonal to

an established programming language providing mundane, low-level functionality.

This section discusses the development and operation of an original pedagogical

visual software tool created by the author and specifically designed for CS1 level

instruction.
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5.2.1 Design

It should be stated outright that the primary intent of developing this visual tool

in the context of this project was to provide an additional classroom intervention

dimension to the educational study. The use of instructional multimedia or soft-

ware is commonplace and widely accepted in teaching environments [40][48][53]. The

pedagogical principles driving the design and development of the visual analysis tool

described in this study were published in an earlier paper by the author [58]. This

research does not seek to prove the superiority of a software tool over traditional

instruction in increasing student comprehension of parallel concepts. Because the

course of interest in this study emphasizes computer programming, the visual tool

simply offers an alternative hands-on approach for students to observe and experiment

with the practical effects of applying concurrency to actual running code.

Regarding software tools in the classroom, the author subscribes to the utilitarian

philosophy expressed succinctly by Hestenes, et al. that “technology by itself cannot

improve instruction” [33], and by Jaron Lanier that “the value of a tool is its usefulness

in accomplishing a task” [44].

The main objective of the design effort was to distill core information about par-

allel program design and performance into a compact visual interface format imme-

diately intelligible to the CS1 student. A single CS1 appropriate performance metric

that imparted the most information about the quality of the concurrency effort was

sought.

Various measures can be used to evaluate parallel programs [57][71]. When com-

paring sequential and parallel performance for a single application or kernel, the

number of primary interest is often the speedup factor S(p, n), defined earlier in

Equation 5.2 as the ratio of sequential execution time to parallel execution time. The

variable p is the number of processors, n is a measure of the “size” of the program, and

it is assumed that the “best” sequential algorithm is used for this relative analysis.
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When scalability is factored in, the speedup computation assumes different forms

depending on constraints such as constant problem size, constant parallel execution

time, or memory availability. Although speedup is a useful measure which encourages

the student programmer to increase the percentage of viable parallelizable code wher-

ever possible, it abstracts away critical program design issues that are valid topics of

study for CS1 students.

Developing parallel programs requires a working knowledge of both architecture

and algorithms. As stated by Janssen and Nielsen [35], practitioners of parallel pro-

gram design and implementation must consider the “major obstacles to achieving

linear speedups. . . such as communication overhead and load imbalance.” Sivasubra-

maniam [64] aptly describes the difference between linear speedup and real execution

time as the sum of algorithmic overhead and interaction overhead. CS1 students

would be well served by a performance metric or expression which opens discussion

about both algorithmic overhead issues (inherently serial code, balanced task man-

agement) and interaction overhead (contention, latency, synchronization, resource

management, and cache effects.)

A measure more suitable to the student and pedagogical needs of the CS1 class-

room is the computation/communication ratio which will be referred to as the parallel

quotient (PQ):

PQ(p, n) =
tcomp(p, n)

tcomm(p, n)
(5.3)

It can be assumed that PQ is roughly proportional to speedup since increased commu-

nication overhead will tend to degrade speedup whereas increasing the time dedicated

to computation will tend to improve speedup.

PQ(p, n) ∝ S(p, n) (5.4)

Note that PQ and the speedup factor are both functions of p and n. The execu-
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tion time of a parallel program is the sum of tcomp and tcomm, with the first factor

heavily dependent on algorithmic overhead and the second factor heavily dependent

on interaction overhead.

The PQ number can be viewed as a measure of the quality of the parallelization

effort. A high PQ would suggest that parallelization is generally effective and es-

sentially the right course of action. A low PQ suggests possible diminishing returns

through parallelization. CS1 students could benefit from the summary feedback pro-

vided by a single metric, which promptly conveys the pros or cons of a particular

parallel design strategy without miring the student in detailed analysis. Essentially,

code parallelization choices which increase the PQ are reinforced.

A PQ number could be determined not only for an entire application, but also for

select sections of code. One of the challenges confronting the student programmer

is identifying which parts of the code are good candidates for parallelization. By

monitoring PQ values for code sections that possess inherent parallelization such as

loops, the student will gain familiarity and confidence with the paradigm of parallel

thinking.

If required, there will be ample time to introduce the student to threading concepts

and detailed synchronization mechanisms such as semaphores and mutexes later in

the CS program. The reductionist PQ analysis described here seeks to expose the

CS1 student to important high level parallel design concepts at a crucial time in their

programming careers, possibly circumventing adoption of a rigid approach in which

only sequential thinking is applied to computing problems.

The challenge facing the CS1 student is one of recognition: given a programming

model and underlying parallel architecture, which sections of code are good concur-

rency candidates? Any tool assisting students at this level of analysis should foster

this recognition skill, reinforcing the student’s parallelization choices with straight-

forward feedback measures. The PQ number described earlier offers a simple scalar



101

measurement that is generated by the Parallel Analysis Tool. The PAT provides the

student a visualization format motivated by the UML Activity diagrams typically

employed in software engineering.

Activity diagrams were discussed in detail in Section 5.1. In brief, the Activity

diagram provides a “flow-chart” perspective of a computational process, with the

important addition of synchronization bars that join or fork several actions. This

visual notation helps to solidify the student’s conceptualization of a set of parallel

processes, and terms such as “fork” and “join” could potentially open discussion about

more detailed topics related to processes and threads. Also, as suggested earlier, since

it is commonly accepted that a student’s primary learning modality falls into one of

three categories – auditory, visual, kinesthetic – the visual component of the PAT

will enhance the student’s comprehension of parallel code behavior.

As a representative example adapted from Kaminsky [37] and used throughout

the remainder of this discussion, CS1 students in this study are asked to model the

basic flow of a program that determines if an integer is prime using the trial division

algorithm. In the first version of this program listed in Figure 5.10, this prime test

routine will be applied sequentially to a series of eight very large prime numbers,

resulting in a relatively lengthy execution time (≈5.8 secs on a 2.59 GHz dual quad-

core AMD Opteron server with 15.9 GB of RAM). Figure 5.11 shows the associated

Activity diagram in which the labels for each activity correspond to the commented

sections in the main method of the program.

Students examining the code example in Figure 5.10 may identify the loop that

performs the prime test as a good candidate for concurrency since a significant amount

of computation time is devoted to determining if a given number is prime. Similarly,

students may regard the array initialization section as a reasonable place to apply

parallelization because each separate statement within that section is performed in-

dependently. The PAT is designed to allow CS1 students to rapidly investigate the
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validity of their parallel design decisions by using empirical execution times of both

the sequential and parallel versions of the program to calculate experimental speedup

and thus generate a feedback PQ value.

5.2.2 Operation

The PAT is fundamentally a source code translator and execution environment

written in Java. The PAT converts a Java sequential program with specialized anno-

tations into a Java parallel program that utilizes the openly available Parallel Java

Library developed at the Rochester Institute of Technology by Alan Kaminsky. Par-

allel Java is described as an API and middleware for parallel programming in 100%

Java on SMP parallel computers, cluster parallel computers, and hybrid SMP cluster

parallel computers. As of this writing, the Parallel Java API can be downloaded from

http://www.cs.rit.edu/∼ark/pj.shtml.

The startup screen shown in Figure 5.12 and the functional diagram illustrated in

Figure 5.13 provide a comprehensive portrait of the component parts and features of

the PAT design.

On startup, the PAT detects the number of available processors on the host plat-

form and displays that value just underneath the title bar. This vital piece of in-

formation makes the user/student aware of the primary parameter of the underlying

parallel architecture and provides important context for subsequent analysis in which

program performance is measured as a function of the number of processors appro-

priated for the parallel computation.

The three user option functions located in the lower-left section of the PAT user

interface are listed down the left hand side of Figure 5.13. The Update Activity

Diagram function simply updates the current activity diagram in the Process View

pane of the PAT. As mentioned earlier, the activity labels are obtained from the

comments preceding each code section in the main method. The PAT provides basic
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Java compile and run capabilities, generating program results in the Output Pane

of the user interface. If specific code sections are marked by the programmer for

parallelization (to be described below), the PAT Compile & Run option performs a

translation of all these program sections to valid Parallel Java source code prior to

compiling and executing this auto-generated parallel program.

The Perform Parallel Analysis option activates the core functional capability of

the PAT, resulting in the calculation and display of PQ values. Before outlining how

the PAT conducts parallel analysis, the technique by which the programmer identifies

parallel code sections will be described. A straightforward annotation mechanism is

used to indicate code sections to be translated to Parallel Java. This approach is

motivated by the tagging strategies and metadata facility used in languages like Java

and C#, and to some extent the pragmas that drive parallel compilation in OpenMP.

Figure 5.14 gives an example of the annotation structure recognized by the PAT.

In this example, the prime number test loop from Figure 5.10 is selected by the

programmer as a viable candidate for parallelization. Within the comment line that

immediately precedes the loop, a P=8 notation is prepended to the comment as

shown in Figure 5.14. The meaning of this additional text is straightforward for the

CS1 student: use a total of eight processors to parallelize the for-loop immediately

following the annotated comment line. In general, the specialized PAT annotation

that triggers translation of code sections to Parallel Java is P = n where n is the

number of processors to be employed during parallel execution of the code section.

Currently, the PAT supports two types of code structures that respond to the

parallel annotation: 1) for-loop, and 2) sequence of statements delimited by curly

braces. Future versions of the software can extend the translation capabilities such

that other programmatic parallelizations (translations) can be realized, but the two

code sections listed above were more than sufficient to allow CS1 students ample

opportunities to experiment with and understand proper application of parallel con-
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cepts in the context of working programs. Syntactic constraints regarding the proper

placement of the annotated comment line with respect to the targeted parallel code

section did not impede student progress when using the tool. Informative error mes-

sages that guide students in diagnosing annotation problems are an integral part of

the PAT.

Returning to the Perform Parallel Analysis function depicted in Figure 5.13, the

Java regular expression routines are used to parse the original source code for occur-

rences of parallel section annotations. If no annotations exist in the program, then an

appropriate “No Parallel Sections Defined” message is displayed in the Output Pane.

If one or more parallel sections are indicated, then the PAT performs the following

steps for each individual section:

1. Translate Target Code Section to Parallel Java: Using parsing routines

and the scaffolding provided by static code fragments, the PAT assembles Paral-

lel Java source using the original source code and the number of processors spec-

ified in the parallel annotation as input. Figure 5.15 lists the Parallel Java code

generated after PAT source translation of the code section given in Figure 5.14.

Refer to Kaminsky for detailed descriptions of the Parallel Java library [37].

Note that a team of eight threads is created and activated, with each thread

assigned to a single execution of the program statements defined by the run

method. If the original for loop had specified sixteen iterations rather than

eight, then each of the eight threads would be assigned two tasks, which would

be reflected in code as a change in the upper limit of the Parallel Java for loop

from one to two: for(int k = 0; k < 2; k++).

2. Compile and Run Sequential Program: Prior to executing the original se-

quential program, the PAT instruments the source code with two timing state-

ments in order to calculate an execution time estimate for the program. Fig-
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ure 5.16 shows the resulting sequential code after injecting timing commands

both immediately before and after the code section of Figure 5.14. These state-

ments utilize the Java nanosecond timer to provide a measure of the overall

execution time of this code section. For this study, the accuracy of the nanosec-

ond timer was verified in separate tests on the server hosting the PAT. The

sequential execution time acquired by the PAT is used in the calculation of the

PQ value.

3. Compile and Run Parallel Program: Note that the parallel code section in

Figure 5.15 is flanked with timing statements similar to those in the sequential

code in Figure 5.16. These statements utilize the Java nanosecond timer to

provide a measure of the overall execution time of this parallel section. The

parallel execution time acquired by the PAT is used in the calculation of the

PQ value.

4. Calculate the PQ Value: Given both the sequential execution time and

parallel execution of the code section of interest, a PQ value (speedup) can be

calculated for this section using Equation 5.2.

After the previous steps are performed for each individually annotated code sec-

tion, the PAT activity diagram in the Process View is updated with the calculated

PQ value as shown in Figure 5.17. In this way, students can receive timely feedback

on the quality of the parallelization effort using the PQ performance metric described

earlier. To reinforce the classroom discussion about modeling parallel processes, note

the activity diagram corresponding to the parallel section is updated using an appro-

priate join, fork, and the short hand notation depicted in Figure 5.6 indicating that

eight processors have been recruited for the execution of this code section.

The CS1 students enrolled in the PAT w/Lecture class sessions of the educational

study were assigned programming exercises which focused on performing experiments
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with the PAT software. For a given code section, students were asked to adjust

the number of processors and note the effect on the resulting PQ value. Through

analysis of these recorded data, students were to recommend the optimum number of

processors to use for the specific target code section running on the class host server.

By emphasizing the broad interplay of both software and hardware in the empirical

results, this exercise reinforces the importance of considering both algorithm and

architecture in parallel design.

In a second exercise, students are confronted with the reality that parallelizing

certain sections of code may yield disappointing results. Students must analyze the

situation in which a parallel strategy is applied to a collection of very fast initializa-

tion statements. In this case, the time investment for thread setup and overhead

significantly overwhelms any nominal performance gains attained by parallelizing

statements with extremely short execution times. The parallel design sections of

this assignment are included in Appendix F.

Figure 5.18 shows a sample output generated from PAT analysis when students

parallelize code sections with short execution times (initialization statements) and

long execution times (calculating prime tests). The contrast in the magnitude of the

PQ number communicates the important message that indiscriminate use of concur-

rency is a viable concern when designing parallel programs. The extremely low PQ

value that results when parallelizing eight very fast initialization statements among

eight processors illustrates the subtle distinctions the student must make when prac-

ticing the art of finding concurrency in code.
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Students will achieve both a comprehensive and analytical understanding
of:

• Fundamental parallel architectures and configurations

• Speedup: the single most intuitive performance measure of paral-
lelism

• Parallel program design and structure

• How to recognize concurrency within code

Figure 5.1: Objectives of Parallel Concepts Module

From KAMINSKY. Building Parallel Programs, 1E.

c©2010 South-Western, a part of Cengage Learning, Inc.

Reproduced by permission. www.cengage.com/permissions

Figure 5.2: Speedup Diagram
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Figure 5.3: Attending Class Activity Diagram

Figure 5.4: Data and Functional Parallelism
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Figure 5.5: Activity Diagram Representation of Pipeline

Figure 5.6: Shorthand Representation of Data Parallelism
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Figure 5.7: P-T Diagram of Multitasking

Figure 5.8: P-T Diagram of Embarrassingly Parallel Program
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Figure 5.9: P-T Diagram of Inefficient Parallel Program
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public class ParallelTest {

static int n = 8; // Number of input values

static long[] inputValues = new long[n];

public static void main(String args[]) {

long t1 = System.currentTimeMillis();

/* Set Input Values */

inputValues[0] = 1000000000000037L;

inputValues[1] = 1000000000000091L;

inputValues[2] = 1000000000000159L;

inputValues[3] = 1000000000000187L;

inputValues[4] = 1000000000000223L;

inputValues[5] = 1000000000000241L;

inputValues[6] = 1000000000000249L;

inputValues[7] = 1000000000000259L;

/* Test for Prime */

for(int i = 0; i < n; i++)

{

isPrime(inputValues[i]);

}

/* Display program duration */

long t2 = System.currentTimeMillis();

System.out.println("Running Time:" + (t2-t1) + " msecs");

}

private static boolean isPrime(long x)

{

if( x % 2 == 0) return false;

long p = 3;

long psqr = p*p;

while(psqr <= x)

{

if( x % p == 0 ) return false;

p += 2;

psqr = p*p;

}

return true;

}

}

Figure 5.10: Prime Test Sequential Program (adapted from Kaminsky, 2010)
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Figure 5.11: Activity Diagram for Prime Test Sequential Program
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Figure 5.13: PAT Functional Diagram

User Actions Processing Output , 
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/* P=8 Test for Prime */

for(int i = 0; i < n; i++)

{

isPrime(inputValues[i]);

}

Figure 5.14: PAT Annotation to Define Parallel Code Sections

// Begin program timing

SeqStartTime8061 = System.nanoTime();

/* P=8 Test for Prime */

new ParallelTeam(8).execute (new ParallelRegion()

{

public void run()

{

int index = getThreadIndex();

for(int k = 0; k < 1; k++) {

int i = k * 8 + index;

isPrime(inputValues[i]);

}

}

});

// End program timing

SeqStartTime8062= System.nanoTime();

Figure 5.15: PAT Translation of Prime Test Code Section to Parallel Java

// Begin program timing

SeqStartTime8061 = System.nanoTime();

/* P=8 Test for Prime */

for(int i = 0; i < n; i++)

{

isPrime(inputValues[i]);

}

// End program timing

SeqStartTime8062= System.nanoTime();

Figure 5.16: PAT Code Section Instrumentation with Timing Statements
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Figure 5.17: PAT after Parallel Analysis
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Figure 5.18: PAT after Parallelizing Initialization Statements
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Table 5.1: Parallel Concepts Module Weekly Topic Coverage

Week 1

• Multicore Concepts/Parallel Computing

• Top 500: http://www.top500.org/

• Dependencies in real-world and computational problems

Week 2

• Parallel Architectures and Configurations

• Speedup as a Performance Measure

• Dependencies exhibited in code: For-loop Parallelism &
Parallelism among a Sequence of Tasks

• Activity Diagrams

• Multitasking and Context Switching

Week 3

• Data Parallelism, Functional Parallelism, & Pipelining

• Parallel Program Structure: Result, Agenda, & Specialist
Patterns

• Mapping Parallel Problems to Activity Diagrams

• Modeling Performance using The Processor-Time Diagram

• The prospects for a widely accepted Parallel Programming
Language



CHAPTER 6

DATA ANALYSIS AND RESULTS

Details regarding the research methodology employed in this educational study are

given in Chapter 3. This chapter examines the results of statistical analyses applied to

data gathered by administering the PoPS evaluation instrument to student subjects.

As described in Chapter 4, the PoPS measures a student’s comprehension of concepts

related to parallel design and his/her overall capacity to recognize concurrency.

The results of this experimental study verify a statistically significant main effect

such that student comprehension levels regarding parallel programming concepts as

measured by the PoPS improve after the delivery of any CS1 three-week course module

when compared with corresponding comprehension levels just prior to the three-week

course module. Specifically, the comparison of PoPS scores between Week 3 and Week

1 test administrations yields a p-value < 0.001, and the comparison of PoPS scores

between Week 9 and Week 1 test administrations yields a p-Value = 0.011.

Although the interaction effect between the instructional intervention mode and

the repeated measures did not show statistical significance, the resulting p-value of

0.062 generated by this analysis came very close to the research hypothesis significance

level α of 0.05.

Nonparametric analysis of the written essay design question confirms the para-

metric results. Namely, a main effect analysis using a Friedman test performed on

the repeated measures aggregated from all intervention groups indicates a statistically

significant improvement in scores from pretest to posttest. The rise in scores from

pretest to recap-test generated a p-value of 0.067.
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Figure 3.1 summarizes the research design: a 3 x 3 two-factor mixed-group ap-

proach in which the independent (between-subject) factor is defined by the instruc-

tional intervention and the repeated (within-subject) factor is defined by the time

that the PoPS was administered to the student participants during the instructional

process. The response variables were the total number of the PoPS 30 multiple-choice

questions answered correctly for the parametric analysis, and the 1 to 6 Likert ratings

assigned by two independent graders for the nonparametric analysis.

The surveys were given to students enrolled in three separate CS1400 Fundamen-

tals of Programming classes during the Fall 2009 and Spring 2010 terms at Weber

State University in Ogden, Utah. For the repeated measure, pretest occurred on the

first scheduled day of the CS1400 class, posttest occurred during Week 3 after the

initial parallel concepts module had been delivered, and the recap (retention) test

occurred during Week 9. Students recorded their responses to the PoPS on a stan-

dardized paper answer sheet listed in Appendix C. Student names were requested but

not required, and the anonymity of students was maintained during the correction of

the design “essay” question by the study’s two independent graders. The collective

results from all surveys exhibited no prominent ceiling effect (measurement of student

performance is limited by the survey maximum score) or floor effect (survey diffculty

is too high such that most student subjects exhibit extremely poor performance). As

a result, standard statistical tests that compared the data’s central tendencies could

be utilized.

No correlates (covariates) that could potentially affect the experimental outcome

were identified for this study. Given the normal distribution of scholastic aptitude

found in a typical medium-sized (15-40 students) introductory college classroom, it

was assumed that each between-subject group started from an equivalent knowledge

base, with no prior computational or instructional experience that may favor one

independent group over any other with regard to general computer science skill sets
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and, more importantly, to parallel design. This assumption was borne out by the fact

that none of the study participants claimed any prior exposure to formal treatments

about parallel concepts in computing.

The Statistical Package for Social Scientists (SPSS) was utilized to perform the

necessary data analysis. The PoPS scores were allotted to each appropriate treatment

in the 3 x 3 mixed-group design in order to derive appropriate descriptive statistics

and mixed model analysis of variance (ANOVA). The differences in the mean values

among the various treatments will indicate the degree of interaction between the

experimental factors and/or any main effects. The repeated measure was the only

main effect of interest since a comparison of the intervention groups independent of

the PoPS administration time would not yield any useful information for this study.

For the analysis of Likert ratings generated by grading the PoPS design question, a

Friedman test that compares three matched groups is applied within subjects along

the repeated measure, and a Kruskal-Wallis test comparing three or more unmatched

groups is applied between subjects along the intervention factor.

6.1 Null Hypotheses

Per traditional nondirectional hypothesis testing, the research hypotheses stated

in section 3.2 can be recast into the following null hypotheses:

NH1: With significance level α = 0.05, CS1 students exposed to a three-week “lecture-

only” course module on parallel design concepts will exhibit no statistically

significant comprehension levels about this subject matter after the delivery of

the course module when compared to students exposed to traditional CS1-level

topics during the same time period.

NH2: With significance level α = 0.05, CS1 students exposed to a three-week “lecture

with software visual tool” course module on parallel design concepts will ex-

hibit no statistically significant comprehension levels about this subject matter
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after the delivery of the course module when compared to students exposed to

traditional CS1-level topics during the same time period.

NH3: If there is no detectable interaction between the experimental factors, then with

significance level α = 0.05, CS1 students will exhibit no statistically significant

comprehension levels about this subject matter after the delivery of any CS1

three-week course module when compared to comprehension levels just prior to

the three-week course module.

The first two null hypotheses (NH1, NH2) posit a significant interaction effect

among the two factors in the research design, essentially stating that the student sub-

jects will show a different pattern of comprehension over time depending on which

independent group of the between-subjects intervention factor they are associated

with. The third null hypothesis (NH3) is considered if there is no significant inter-

action effect, at which point the repeated measures of all groups are evaluated over

time.

6.2 Parametric Data Analysis

The response variable for the parametric data analysis was the student’s number

of correct answers from the 30 total multiple-choice question portion of the PoPS.

In order to apply a mixed model ANOVA to these data, specific requirements and

assumptions should be satisfied. These include:

Req. 1: The repeated measure variable should be interval level and the between-subject

factor should be any level that defines groups.

Req. 2: The total number of subjects for a given repeated measure should be 10 plus the

number of time periods making up the within-subject factor, and the minimum

number in each cell should be 5 [68].



124

Req. 3: The response (dependent) variable is normally distributed in the population

being sampled.

Req. 4: The homogeneity of variance for the between-subject factor.

Req. 5: The sphericity for the within-subject repeated measure.

Each of these requirements will be addressed below coincident with the presen-

tation of experimental results. The significance level applied to the diagnostic tests

described below (α=0.01) will be more conservative than the significance level applied

to the research hypotheses (α=0.05).

Req. 1: As mentioned above, the response variable is identical to a standard test

grade, which can be characterized not only as a valid interval variable, but as a ratio

variable in which a zero indicates the absence of correct answers. The between-subject

intervention factor is a mutually exclusive nominal (categorical) variable.

Req. 2: Descriptive statistics about the data set as generated by SPSS can be

illuminating, as well as the survey numbers listed in the research design diagram of

Figure 3.1. Table 6.1 shows the number of survey sample data for each treatment in

this experimental study.

The descriptive statistics generated by SPSS shown in Table 6.2 verify the data

sample count and provide an overview of the central tendency behavior of the data

sets. Note these statistics are for the raw data; no missing data have been replaced

to balance the repeated measures. The information contained in these charts clearly

indicates that Req. 2 above is satisfied in that the number of cases for a given repeated

measure exceeds the minimum threshold of 13, and the number of cases for any given

treatment exceeds 5.

A visualization of the magnitude differences between treatment means is furnished

by Figure 6.1, which shows a bar chart of the calculated averages. An initial obser-

vation made from this figure is that the relative upward trend in the Lecture/PAT
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group average from posttest to recap-test differs in direction from the downward

trends exhibited by the averages of the other two intervention groups from posttest

to recap-test.

Another rendering of the data that provides insight into the distribution of the

survey scores is given in Figure 6.2, which shows the average values and range of each

treatment. A visual inspection of this figure reveals that most of the average values

(marked by circles) are skewed slightly lower than the middle point of the range lines,

indicating a denser concentration of scores in the lower part of the designated range.

For the Control group, the highest score was achieved by the same student subject

for the pretest (16) and recap-test (20). For the Control group posttest, this student

performed just one point below the high score of 19. For the Lecture Only group,

the highest score was achieved by the same student subject for the pretest (22) and

posttest (22). For the Lecture Only group recap-test, this student was not present.

For the Lecture/PAT group, a different student registered the highest score for each

of the repeated measures. The student in the Lecture/PAT group who scored highest

for the posttest exhibited the following performance trend: pretest (14), posttest (26),

recap-test (23).

Req. 3: A two factor mixed model ANOVA is a parametric analysis that relies

on the assumption that the survey scores are normally distributed in the popula-

tion being sampled. The distribution of the dependent variable can be estimated for

each of the repeated measures. Normality can be substantiated if both the Skewness

and Kurtosis statistical criteria fall within the range from -1.0 to 1.0. SPSS gener-

ated the descriptive statistics shown in Table 6.3 for the raw data (no missing data

replacements) grouped by repeated measure.

The Skewness and Kurtosis distributions give statistics that are within the appro-

priate range for all three repeated measures. Therefore, the analysis does not violate

the assumption of normality. Skewness measures the degree and direction of asym-
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metry in the distribution, and Kurtosis is a measure of the “heaviness” of the tails

of the distribution. The Valid N (listwise) value of 59 indicates the total number of

student subject cases in which scores were recorded for all three tests. The mean and

maximum statistic in Table 6.3 also exhibit a characteristic increase from pretest to

posttest and decrease from posttest to recap-test. However, the recap-test mean and

maximum values do not return to pretest levels.

For subsequent analysis, missing data are replaced by the median for the specific

treatment in order to maintain orthogonality and provide a balanced data set for the

within-subjects repeated factor. Table 6.4 shows the number of missing survey data

for each treatment.

Req. 4: For a given repeated factor, the variance of survey scores for each of the

independent intervention groups should be equal (homogeneity of variance). Essen-

tially, all the errors (residuals) for a repeated measure must come from the same

normal distribution. This is a basic requirement of a simple ANOVA but is also

applied to the between-subjects factor in a mixed model ANOVA. Levene’s test for

homogeneity of variances is used to investigate this homoscedasticity property. SPSS

generated the data shown in Table 6.5.

The significance column (p-value) in Table 6.5 reveals, for each repeated measure,

that the probability associated with Levene’s test for equality of error variances among

the intervention groups is greater than the alpha for the diagnostic tests (0.01).

Req. 5: Sphericity means that the variances of the repeated measures are all equal,

and the correlations among the repeated measures are all equal. This assumption is

needed to allow for comparing the variances among the repeated measures. Violation

of this assumption will require a Greenhouse-Geisser adjustment when evaluating

interaction or main effects. Mauchly’s test of sphericity is used to investigate data

compliance to this property. SPSS generated the data shown in Table 6.6. The

significance column (p-value) in Table 6.6 reveals that the probability associated
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with Mauchly’s test for sphericity (0.036) is slightly greater than the alpha for the

diagnostic tests (0.01), so sphericity may be assumed.

Subsequent to addressing the above requirements for a two-factor mixed model

ANOVA, the potential interaction effect can be analyzed. Specifically, is the evolution

of survey scores from pretest to recap-test significantly different when comparing the

Control, Lecture only, and Lecture w/PAT groups? To answer this question, SPSS

generates the relevant data shown in Table 6.7.

Since sphericity can be assumed, the first row for the Test*group source provides

the p-value of interest (0.062). Although the reported p-value is very close to the

research hypothesis α of 0.05, there is not sufficient evidence from these survey data

to reject the null hypothesis. When comparing the Control, Lecture only, and Lecture

w/PAT groups, there is no statistically significant difference in the time evolution of

the survey test scores.

Although a general interaction effect has not been established, Table 6.8 breaks

down the pairwise estimated marginal means comparisons corrected using a Bonfer-

roni adjustment for each test within an intervention group. For a given intervention

group, the Bonferroni confidence interval adjustment holds the cumulative error rate

of the multiple pairwise tests to the specified α=0.05. The figure shows that, for each

intervention group, all differences between the repeated measures can be considered

minimal except for 1) the pretest and posttest of the Control group, 2) the pretest

and posttest of the Lecture w/PAT group, and 3) the pretest and recap-test of the

Lecture w/PAT group.

Finally, Figure 6.3 shows the profile plot of the estimated marginal means for each

experimental treatment. For the Test axis labels, ‘1’ represents pretest, ‘2’ represents

posttest, and ‘3’ represents recap-test. The significant pairwise differences listed in

Table 6.8 can be seen in the graph, as well as the cross-over that occurs between

the Lecture Only and Lecture w/PAT plotlines between the posttest and recap-test.
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However, the patterns of change for the three groups were not sufficiently significant

to register an interaction effect.

In the absence of a statistically significant interaction effect, an investigation of the

main effects can be pursued. The research (null) hypotheses stated in Section 6.1 do

not target the between-subjects factor main effect, primarily because comparing test

subject survey scores based only on intervention group membership does not provide

useful information about the time dependent impact of CS1 instruction on student

comprehension of parallel concepts. “Flattening” the data to the intervention group

main effect will merely indicate the relative performance of these groups independent

of the test times, and no conjectures have been made in this study regarding between-

group variations.

Since the primary focus of the study is to monitor student performance based

on times in which the test instrument was administered during the CS1 course, the

main effect of interest is the repeated measure. Are there significant differences in

survey scores across the different testing periods independent of the type of classroom

intervention? The Test source top section of Table 6.7 provides statistics on the

within-subject main effect. Because sphericity can be assumed as mentioned earlier,

the first row of the Test source section gives p < 0.001 for F(2, 162) = 10.783.

Consequently, there was a significant main effect among the repeated measures.

Ignoring the intervention method, survey scores were significantly different depending

on when the test instrument was administered. Figure 6.4 and the data in the asso-

ciated Table 6.9 reveal the estimated marginal means for each of the testing factors

used in this study.

To shed more light on the relative magnitudes among the three levels, Table 6.10

displays the pairwise comparisons for the repeated measure main effect. The table

shows a statistically significant difference between the survey scores for 1) the pretest

and posttest (p < 0.001) and 2) the pretest and recap-test (p = 0.011). No statistically
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significant difference exists between the posttest and the recap-test.

6.3 Nonparametric Data Analysis

In addition to thirty multiple choice questions, the PoPS contained a design “es-

say” question that students answered by submitting a handwritten solution and dia-

gram. The design question is at the end (Part IX) of the PoPS listed in Appendix

A, and the processing strategy for solving the design question is given in Appendix

B. As the research study methodology in Chapter 3 states, the design question as-

sessment was performed by two independent graders using a six-point Likert scale.

Each student submission was given a separate rating by the two graders based on

the evaluation rubric in Figure 3.2. If the student submitted some written response

or design sketch minimally related to the design question content and objectives, the

grade awarded was an integer within the Likert scale. If no response was submitted,

the student design question was given a zero. Graders were not made aware of student

identities.

Since no assumptions can be made about the underlying probabilities of the de-

sign question scores, nonparametric tests are used for statistical analysis of these

measures. Specifically, a Kruskal-Wallis test can be applied for comparisons between

the experimental and control groups, and a Friedman matched group test can be

applied to the repeated measures within each group.

To obtain a single design question score for each student response, a Mann-

Whitney U Test was applied across the two separate sets of ratings from each grader

to determine if they are statistically different. The Mann-Whitney U Test is the rele-

vant nonparametric test because the two graders did not consult about the evaluation

process not did they influence each other’s student subject ratings. If no difference

between the score sets was indicated, then a single score will be derived for each

design question response by taking the average of the two scores from each grader.
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The fundamental requirement for all nonparametric tests to be discussed in this

section is that the dependent variable must be ordinally scaled at a minimum. By

definition, the Likert scale used to assess the design question in this study is an

ordinal measure. A total of 192 design question responses were evaluated by each of

the two graders. Submissions in which there was no response were excluded from this

analysis. Table 6.11 gives the results of the Mann-Whitney U Test comparing the

score sets from the two graders. The p-value of 0.488 strongly suggests that there is

no statistically significant difference between the Likert ratings assigned by the two

graders. Thus, to perform subsequent between-group and within-group comparisons

of the design question ratings, an individual student response will be assigned the

average of each score given by the two graders.

Both the nonparametric and parametric analysis have the same number of missing

scores, as shown in Table 6.4. Similar to the strategy used for the mixed ANOVA

processing described earlier, the within-subject data sets for nonparametric tests were

balanced by substituting the appropriate treatment median for missing scores. In

addition, some student subjects did not submit an answer for the design question,

either because of disinterest or lack of time. Whatever the underlying reason, the

graders were instructed to assign a zero to an unanswered design question to indicate

“nonresponse” (no data). For this nonparametric data analysis, nonresponse data was

treated like missing data, with median substitution applied as described above. This

approach permits a matched-groups analysis to be performed on the within-subject

data.

Table 6.12 provides the number of unanswered design questions as well as the

number of missing responses per treatment for the complete within-subject balanced

data set. Table 6.13 gives the median and high score recorded for each treatment.

The median for all design question scores in this study was 2.0. For the Control

group, three different students achieved the highest score across the repeated test
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measures. The student who received the posttest high score was given the follow-

ing design question ratings: pretest(2.0), posttest(5.0), and recap-test(3.5). For the

Lecture Only group, the same student received the high score for the pretest (4.0)

and posttest (4.0), but was not present to take the recap-test. Similarly, for the

Lecture/PAT group the student who received the high score for the pretest (4.0) and

posttest (5.0) was not present to take the recap-test.

For nonparametric hypothesis testing, the median serves as the best indicator of

central tendency in a skewed dataset as long as there is no more than one distinct

identifiable mode. Figure 6.5 provides the design question score frequencies of the

raw data (missing and nonresponse substitutions excluded) grouped by the repeated

test measure. The histogram shows that the scores exhibit a unimodal distribution

skewed toward the low end of the Likert range used for this study. The mode (2.0)

is equivalent to the overall median. The figure also shows that all of the maximum

scores (5.0) were achieved either during the posttest(2 cases) or recap-test(1 case).

A different grouping across the raw data design question score frequencies is shown

in Figure 6.6. In this chart, scores are grouped by intervention. A quick visual

inspection of Figure 6.6 reveals that the shape of the score distributions for each

intervention group appear to be roughly equivalent.

A nonparametric analysis was performed on design question data acquired from

each treatment of the 3x3 mixed (repeated measure) research design described in

Section 3.3. Substitutions for missing and nonresponse data were implemented as

described above. The Kruskal-Wallis test was used for between-subjects analysis and

the Friedman test for three or more matched groups was used for within-subject

analysis. Unlike the two-factor mixed ANOVA test, no interaction effect can be

ascertained from nonparametric tests.

Therefore, the analysis involves 1) three separate Kruskal-Wallis tests, one for

each row of the design shown in Figure 3.1; 2) three separate Friedman tests, one
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for each column of the design shown in Figure 3.1; and 3) a single Friedman test to

analyze the repeated measure main effect. As with the parametric tests, an analysis

of the intervention group main effect will provide no useful information relevant to

the research hypotheses of this study.

The results obtained by performing a Kruskal-Wallis test across intervention

groups for each of the three repeated measures is shown in Table 6.14. The table

reveals that statistically significant differences exist (at α = 0.05) among the inter-

vention groups at the pretest (p-value = 0.026) and recap-test (p-value = 0.035) levels.

The p-value for the posttest group (0.065) is close to the α significance value, but

there is not sufficient evidence to reject the null hypothesis (no significant differences

in ranks) at the posttest level.

Further analysis was performed on the survey scores for the pretest and recap-test

levels to determine which of the three intervention groups exhibited significant dif-

ferences in mean rank. For the pretest and recap-test levels, separate Mann-Whitney

U tests were applied to each pair combination of the intervention groups, resulting

in a total of three Mann-Whitney U tests for the repeated measure group under in-

vestigation. The output from these pairwise tests confirmed the relative differences

implied by the Mean Rank column generated by the Kruskal-Wallis test.

Table 6.15 provides a summary of the comparative analysis of the between-subjects

survey scores. For the recap-test, the p-value for the Mann-Whitney U test performed

between the Lecture Only and Lecture w/PAT groups was 0.070 with the higher mean

rank belonging to the Lecture Only group.

The results obtained by performing a within-subject matched group Friedman

test across the repeated measures for each of the three intervention groups is shown

in Table 6.16. The table reveals that statistically significant differences exist (at

α = 0.05) among the repeated measures for all of the intervention groups.

Further analysis was performed on the survey scores for each intervention group



133

to determine the pattern of performance change over time. For each intervention

level, separate Wilcoxon tests were applied to each pair combination of the repeated

measures, resulting in a total of three Wilcoxon pairwise tests for the intervention

group of interest. Table 6.17 shows the results.

Significant differences are detected for the Control group pretest/posttest pair, the

Control group pretest/recap-test pair, and the Lecture Only group pretest/posttest

pair. For each of these pairs, the pretest logged a significantly greater number of

lower scores over all pairwise comparisons.

Finally, a Friedman test including all repeated measures from the three interven-

tion groups was performed. This test investigated the pattern of performance change

over time independent of the type of intervention. The Friedman test results and the

associated pairwise Wilcoxon results are given in Table 6.18.

The Friedman test indicates a significant difference (p < 0.001) in the repeated

measures if all experimental matched data are considered. The test confirms a main

effect supported by the Wilcoxon results, in which the posttest design question scores

exceed the pretest design question scores by a statistically significant margin (p =

0.001). Also, the 0.067 p-value for the recap-test/pretest score comparisons is close

to the significant α value of 0.05. Table 6.19 provides more details generated by this

Wilcoxon pairwise analysis and confirms the directionality of the results for each of

the paired score data sets.
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Figure 6.3: Profile Plot (Test vs Experimental Group)
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Figure 6.4: Repeated Measure Means

Figure 6.5: Histogram of Design Question Scores by Test
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Figure 6.6: Histogram of Design Question Scores by Intervention
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Table 6.1: Experimental Study Survey Cases

Intervention Measure
Control Lecture Only Lecture/PAT

Pre Test 25 20 31
Post Test 25 21 29
Recap Test 23 19 27

Table 6.2: Descriptive Statistics for each Experimental Treatment (Total Correct)
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Table 6.4: Number of Missing Surveys

Intervention Measure
Control Lecture Only Lecture/PAT

Pre Test 2 of 27 4 of 24 2 of 33
Post Test 2 of 27 3 of 24 4 of 33
Recap Test 4 of 27 5 of 24 6 of 33

Table 6.5: Levene’s Test of Equality
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Table 6.8: Pairwise Test Comparisons per Intervention Group

Table 6.9: Repeated Measure Means
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Table 6.10: Main Effect Pairwise Test Comparisons

Table 6.11: Mann-Whitney U Test between Evaluator Scores
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Table 6.12: Missing and Unanswered Design Questions

Intervention Measure
Control Lecture Only Lecture/PAT

miss unansw total miss unansw total miss unansw total

Pre Test 2 5 27 4 1 24 2 8 33
Post Test 2 2 27 3 0 24 4 4 33
Recap Test 4 2 27 5 4 24 6 2 33

Table 6.13: Design Question Median and High Scores

Intervention Measure
Control Lecture Only Lecture/PAT

Median High Median High Median High

Pre Test 1.5 4.5 1.5 4.0 2.0 4.0
Post Test 2.0 5.0 2.5 4.0 2.0 5.0
Recap Test 2.0 4.5 2.0 5.0 1.5 4.0
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Table 6.14: Kruskal-Wallis Test Results per Repeated Measure
Ranks 

T,,' r" N Mean Rank 
Pre-Test Score Control 27 36.93 

l ecture Only 24 36.90 

l ecture wlPAT 33 51.14 

Total 84 

Test StatlstlcS··b 

Pre-Test 
Score 

Pre-Test Group Chi-Square 7.317 

df 2 

Asymp. Sig. .026 

a. Kruskal Wallis Test 

b. Grouping Variable: 
Test Group 

Ranks 

N Mean Rank 
Post-Test Score Control 27 41.33 

lecture Only 24 51.44 

lecture wlPAT 33 36.95 

Total 84 

Test Statistics··b 

Post-Test 

Post-Test Group Chi-Square 
Score 

5.480 

df 2 

As}mp. Sig. .065 

a. Kruskal Wa llis Test 

b. Grouping Variable: 
Test Group 

Ranks 

T. ,r,,, N fv'ean Rank 
Recap-Test Score Control 27 49.28 

lecture Only 24 46.13 

lecture wlPAT 33 34.32 

Total 84 

Test Statistics··b 

Recap-Test 
Score 

Recap-Test Group Chi-Square 6.686 

Of 2 

As~p.Si9· .035 

a. Kruskal Wallis Test 

b. Grouping Variable: 
Test Group 



148

Table 6.15: Relative Differences in Mean Rank

Intervention Measure
Control Lecture Only Lecture/PAT

Compared To Lect Lect/PAT Contr Lect/PAT Contr Lect

Pre Test None Lower None Lower Higher Higher
Post Test None None None None None None
Recap Test None Higher None None Lower None
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Table 6.17: Wilcoxon Pairwise Test Results per Intervention Group
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Table 6.19: Wilcoxon Repeated Measure Main Effect Details



CHAPTER 7

CONCLUSIONS

A student participant in this study walked up to me after class and mentioned that

he had been speaking with a friend who had a CS degree about the inclusion of parallel

concepts in our CS1 course. His friend responded, “Why are they teaching parallel

programming in an introductory CS class?” The perception that parallel computing

most naturally belongs in the later stages of the CS curriculum is generally accepted

by many within the discipline.

The research reported here represents an initial empirical step toward answering

the “why” question put forth above by directly addressing the “how” or methodol-

ogy question. Specifically, which pedagogical strategies will most efficiently introduce

beginning CS students to parallel thinking such that these students will realize a

significant, long-term benefit throughout their academic and professional careers?

The evaluation instrument, visualization software tool, and data analysis presented

in this dissertation provide some of the requisite groundwork to inform the discus-

sion regarding the proper instruction and placement of parallel concepts in the CS

program.

The Perceptions of Parallelism Survey (PoPS) was developed specifically for this

study by the author and represents a first version of an evaluation instrument which

provides the foundation for the development of a full-fledged parallel concept inven-

tory. Assessment instrument development for any academic topic is a lengthy, exact-

ing process as set down in the standard educational test development guidelines [3].

To account for the CS-specific issue of programming language independence, Tew and
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Guzdial [69] injected an additional step into the traditional test instrument develop-

ment process:

1. Define Conceptual Content

2. Expert Review of Test Specification

3. Build Test Bank of Questions

4. Verify Language Independence

5. Pilot Questions

6. Establish Validity

7. Establish Reliability

The first step in assessment development may be driven by input from content

experts, topical outlines from widely adopted texts on the subject matter of inter-

est, or student misconceptions as was the case for the Force Concept Inventory used

in Physics [33]. It is generally recognized that a validated and reliable concept in-

ventory within the computer sciences is several years away, though efforts toward

developing a CS1 Computing Fundamentals and Digital Logic assessment are just

beginning [32][36][69]. What students should really know about these topics remains

an open research question.

The purpose and definition of the PoPS utilized in this study (step 1 above)

was to provide a measure of a student’s grasp of concepts related to parallel design.

As described in Chapter 4, the main topic categories targeted by the PoPS was

compiled from the author’s exposure to parallel programming projects, his experience

in teaching the topic, and his reading and analysis of various textbooks about parallel

computation. To a limited extent, the PoPS accomplishes steps 3 and 4 above,

since an experimental test bank of questions was developed with no ties to a specific



155

programming language. Each of the PoPS questions was framed in a real-world

context to provide some degree of familiarity for the CS1 student; no prior experience

in programming was required.

Extensive validity/reliability requirements were not demonstrated, nor was a com-

prehensive review of test specification and pilot questions from a diverse panel of

subject matter experts (steps 2, 5, 6 and 7) fully undertaken in the development of

the PoPS. Consequently, no claim is being made that the PoPS used in this study

represents a rigorously developed content inventory in the traditional sense. Valid-

ity of the test questions can be enhanced using a “think-aloud” approach, in which

students are asked to verbally express what they are thinking about when solving

the assessment problems. This strategy would help to clarify student misconceptions

about parallel thinking and would help identify and refine poorly constructed ques-

tions in which the student knew the core concept but misunderstood the question or

the answer choices. Similarly, reliability can be established using split-half testing,

in which the test instrument is divided into two equivalent tests and administered to

the same students at one to two week intervals. Correlations performed between the

two separate test scores provides a consistency measure for the test. Finally, whereas

most formal content inventories are designed for a test time of 30 minutes, the PoPS

in this study was administered over a one hour period.

Notwithstanding the disparities described above, this early version of the PoPS

proved an effective assessment tool for the modest scope of this investigation. The

PoPS avoided both a ceiling and floor effect, in which important information about

student comprehension is lost because the assessment is either too easy or too hard.

The scores generated by the PoPS followed a normal distribution as discussed in

Chapter 6 and confirmed by Table 6.3, thereby supporting the subsequent parametric

data analysis. In addition, except for the design essay question, the multiple choice

format of the PoPS eliminated any potential grading bias, allowed for more efficient
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administration/scoring, and has been shown, when properly constructed, to provide

the same information about conceptual knowledge as short answer or open response

questions [28].

The Parallel Analysis Tool (PAT) described in Chapter 5 offered a unique varia-

tion on the traditional development environment used in introductory programming

classrooms. The primary intention of this software tool was to cultivate and hone

the student’s ability to find concurrency directly within Java source code. Student

users could also experiment with parallel performance in real time by directly uti-

lizing multicore resources in the underlying platform. Students were able to specify

the number of processors to be recruited for a parallel task, and were able to rapidly

assess the quality of their concurrency strategies through a speedup metric called

the PQ value. By transforming specific code sections from sequential to parallel and

examining the influence on overall program performance, students were able to ex-

perience firsthand a shared-memory model process called incremental parallelization,

by which a sequential program is converted into a viable parallel program one block

of code at a time.

The PAT provided translation of traditional Java code to Parallel Java code [37]

through straightforward comment annotations, thereby insulating students from the

complexities of parallel programming primitives, threads, and other low-level imple-

mentation details that might distract the student from fully exploring and experienc-

ing the Finding Concurrency parallel programming design pattern [47]. In addition,

the PAT generates a corrresponding UML Activity Diagram of the main program

steps, offering the student a visualization of the source code design including appro-

priate forks and joins to indicate parallel sections.

Some typical pedagogical software tools that supplement instruction of parallel

concepts were described in detail in Chapter 2. Most of these visualization environ-

ments are geared toward advanced level courses in multithreading, though there are
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a few instances in which thread-centric tools have been designed for CS2 (data struc-

tures) courses [8]. Much more rare are investigations into teaching concurrency at

the CS1 level. Though these classroom strategies may involve libraries that simplify

the development of graphics and animations, the underlying objective is to expose

students to the implementation of threads [12].

In contrast, the PAT draws the student’s focus away from threads toward a more

high-level conceptual view of concurrency. As suggested by Edward Lee, despite the

de facto inclusion of thread primitives in many popular programming languages, and

their seemingly broad acceptance by working programmers, threads may not be the

best concurrency mechanism for designing and developing parallel applications [45].

In fact, Lee proposes a more visually oriented form of coding parallel programs closely

allied with the representations proffered by the UML.

The PAT was designed with this potential future direction of parallel program-

ming in mind. CS1 students do not necessarily need to know how concurrency is

implemented, but they most certainly will need to build an awareness of “why par-

allelism?” and “where parallelism?” The scope of the “where” question is broad,

embracing both the architecture of the computing device and the proper location of

parallelism in code. Understanding these aspects of software design is an integral

part of becoming a successful parallel programmer.

The PAT as currently constructed can be expanded, both in usage and function-

ality. Students in this particular study were exposed to the tool at the start of the

CS1 course for a relatively short three-week period. Exercises requested that students

work with pre-existing code rather than develop their own. The opportunity for stu-

dents to experiment with the PAT was limited, which could easily be remedied by

extending the module on parallel programming by one to two weeks, or using the PAT

toward the end of the course when student programming proficiency has significantly

improved.
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Regarding specific program structure analysis, at present the PAT targets two

types of parallel code constructs: for-loop parallelism, and explicit task (functional)

parallelism. These two programming structures encompass a wide variety of poten-

tial entry points in which parallelism may be introduced into code. The PAT can

be enhanced to also include shared task lists or other resources, and to allow for

the identification of critical sections. The migration of the PAT to message passing

systems has yet to be explored.

The PAT was introduced into this research to provide another distinct level of

classroom intervention, apart from the traditional lecture/homework strategy em-

ployed in most educational experimental studies. Software tools are an integral and

expected part of the CS student experience, and thus the PAT fit naturally as a can-

didate for instructional enhancement in this study. However, no a priori assumptions

were made in this work about the effectiveness and impact of the PAT in communicat-

ing key parallel concepts to CS1 students. The results of the experimental educational

study were designed to offer some hard evidence regarding the future development

and use of the PAT.

7.1 Statistical Inferences

The parametric results reported in Section 6.2 support the following conclusions

about the research and associated null hypotheses for this study:

Concl. 1: With significance level α = 0.05, there is insufficient evidence (p-value = 0.062)

to reject the null hypothesis that CS1 students exposed to a three-week “lecture-

only” course module on parallel design concepts will exhibit no statistically

significant comprehension levels about this subject matter after the delivery of

the course module when compared to students exposed to traditional CS1-level

topics during the same time period.

Concl. 2: With significance level α = 0.05, there is insufficient evidence (p-value = 0.062)
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to reject the null hypothesis that CS1 students exposed to a three-week “lecture

with software visual tool” course module on parallel design concepts will exhibit

no statistically significant comprehension levels about this subject matter af-

ter the delivery of the course module when compared to students exposed to

traditional CS1-level topics during the same time period.

Concl. 3: If there is no detectable interaction between the experimental factors, then with

significance level α = 0.05, there is sufficient evidence (p < 0.001 and p=0.011)

to reject the null hypothesis that CS1 students will exhibit no statistically

significant comprehension levels about this subject matter after the delivery of

any CS1 three-week course module when compared to comprehension levels just

prior to the three-week course module.

The first two conclusions address the interaction effect between the intervention

strategy and repeated test measures. The third conclusion resolves the main effect

exhibited by the repeated test measures. The nonparametric results discussed in

Section 6.3 support Conclusions 1 and 3, with some qualifications to be clarified

shortly regarding Conclusion 2.

Although the parametric analysis revealed no statistically significant interaction

effect between the two factors, the relatively low p-value (0.062) suggests some quali-

tative differences may be observed, which is borne out by the pairwise comparisons in

Table 6.8 and the estimated marginal means profile plot in Figure 6.3. These figures

offer some insights into the evolution of survey scores for each intevention group.

Between the pretest and posttest, Figure 6.3 displays a distinct increase or “bump”

for each intervention group. In fact, the pairwise comparisons register statistically sig-

nificant pretest/posttest changes in survey scores for both the Control group (p=0.003)

and the Lecture w/PAT group (p=0.017). Between the posttest and recap-test, only

the scores for the Lecture w/PAT maintain an upward trend, verified by the associated

statistically significant pretest/recap-test pairwise comparison (p=0.002).
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A true absence of interaction would typically imply that the Lecture w/PAT scores

would decrease modestly between posttest and recap-test similar to the other two

interventions. However, students in the Lecture w/PAT group at least qualitatively

demonstrate a slightly improved performance in the recap-test when compared to

the posttest. The magnitude of the Lecture w/PAT mean increase (0.515) is less

than the magnitudes of the mean decreases of the other two interventions (0.704

and 1.333), but the difference in directionality is noteworthy. The almost two point

posttest/recap-test swing between the Lecture and Lecture w/PAT groups is made

evident by the crossing plotlines in Figure 6.3. A visual nonstatistical analysis of this

figure would seem to suggest that students in the Lecture w/PAT group appeared to

retain information about parallel concepts at the nine-week mark slightly better than

the student subjects in the other two groups. Only by duplicating this study would

this assertion be verified.

The main within-subject effect was much more pronounced and was confirmed

statistically (see Conclusion 3 above). The repeated measure means independent

of intervention shown in Figure 6.4 and the pairwise comparisons in Table 6.10 both

support the existence of a pretest/posttest “bump” in all scores described earlier. For

the main effect, there is a statistically significant difference between pretest/posttest

(p < 0.001) and pretest/recap-test (p = 0.011). Assuming the PoPS evaluation

instrument accurately measures student comprehension of parallel design concepts,

these results indicate that any mode of CS1 instruction improves a student’s powers

of parallel thinking, both immediately after the module has been delivered and six

weeks beyond that.

Given that the interventions in this study were introduced during the initial three

weeks of the CS1 course, it is possible that all three content deliveries and instruc-

tional strategies for this first module benefited somewhat by a general “bump” in

student focus and attitude that may naturally occur between day 1 and day 6 of
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any given class. In addition, since the same assessment is administered for all three

repeated measures, students may acquire a familiarity with survey questions and for-

mat that could lead to improved test-taking efficiency and performance. However, in

the absence of any studies correlating a general improvement in student performance

with course week, Conclusion 3 above regarding CS1 specific instruction must remain

as stated. Further studies that introduce the parallel module at different times during

the semester would help to determine if this influence were real and measurable.

In Table 7.1, the 30 multiple choice question results were grouped by PoPS task

to determine if students noticeably improved in any specific areas of parallel design.

Recall that the targeted skills and concept coverage for each PoPS task are listed in

Table 1.1. First note that from posttest to recap-test, the Lecture/PAT group student

subject performance improved in six (Tasks I-VI) of eight areas, whereas the Control

group (Tasks III, VI, VIII) and Lecture Only group (Tasks I, V, VIII) each improved

in only three areas. This supports the upward inflection in the Lecture w/PAT plotline

from posttest to pretest shown in Figure 6.4 and discussed earlier. Also, the Lecture

Only/Post Test value for Task I (76.2%) may be considered anomalous since 16 out

of 21 students received full credit for all questions in the task whereas the remaining

5 students received no credit for any question in the task. No other entry in Table 7.1

exhibited that type of bimodal behavior.

From pretest to posttest, substantial improvements occurred for Task II (Total

increase = 29.2%), Task VI (Total increase = 10.5%), and Task VIII ((Total increase

= 8.2%). The lecture portion of the instructional intervention specifically highlighted

the main learning points covered by Task II, which dealt with the formal definition

and conceptualization of multitasking in a single processor environment. The notable

increase from pretest to posttest in each intervention group implies a marked correc-

tion to an initial student misconception about the proper meaning of multitasking

and the computational cost of a context switch.



162

For Task II, although the Control group shows an increase from a very low pretest

performance, note that the posttest score for the Control group is in the neighborhood

of the pretest scores for the other two experimental groups, whose corresponding

posttest scores exhibit an appreciable absolute success rate (83.3% and 69%). This

points toward the conclusion that the students in the Lecture and Lecture w/PAT

groups gained appropriate knowledge of multitasking concepts through the materials

presented in the module on parallel concepts.

Task VI emphasizes proper load balancing, specifically within the context of a

Master/Worker configuration in which jobs of various computation length are dele-

gated to selected processors. Through this example, students are given a sequence of

jobs and charged with determining the best distribution policy to minimize computa-

tion cost. The Control group demonstrated a substantial 18% performance increase

in this task from pretest to posttest, whereas the Lecture/PAT group performance

increased by 8.7%. Absolute posttest performance levels for each of the groups were

confined to a narrow range (45.2% to 48%). Although Master-Worker patterns were

addressed briefly in the materials provided to the Lecture Only and Lecture w/PAT

groups, no direct example of load balancing was presented or assigned. Since each

group had developed a short Java program by the time of the posttest, the improve-

ment among all three groups for this task may be attributed to a heightened sense

of the time dimension in computation, namely, some programs will take noticeably

more time depending on the computational requirements.

Task VIII provided a physical model of Amdahl’s and Gustafson’s Laws, propos-

ing problems of both fixed and scalable size. Students must recognize that simply

adding an arbitrary number of processors to a parallel solution may not always be the

correct approach. Conversely, when given a specific number of processors, students

should consider increasing the problem size to match the corresponding computational

power of the system. As with Task VI, there were pretest to posttest performance
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increases for all three groups, with the highest belonging to the Lecture Only group

(12.1%). Presentations for the Lecture Only and Lecture w/PAT group emphasized

the common case in scientific computing whereby larger systems typically invite and

accommodate proportionately larger input data sets. Weather forecasting and remote

sensing were used as examples.

For both Task VI and Task VIII, applying a “think-aloud” approach while students

answered the survey questions would be illuminating, especially to define more clearly

the fundamental concepts employed by the Control group student subjects as they

were reasoning through the problem and arriving at a solution. It may be discovered

that the basic problem solving capabilities of all student participants had improved

enough over the three week period to account for the performance increase for these

specific tasks.

The nonparametric analysis of the single PoPS written design question directly

supports Conclusions 1 and 3 above. The results from the Kruskal-Wallis between-

subjects tests and the associated pairwise Mann-Whitney U tests indicate statisti-

cally significant differences in the following design question Likert ratings: 1) Control

pretest vs. Lect/PAT pretest, 2) Lecture Only pretest vs. Lect/PAT pretest, and

3) Control recap-test vs. Lecture/PAT recap-test. Detailed results are reported in

Table 6.14 and Table 6.15 shows the relative differences in mean rank among the

treatments. A concise snapshot comparing the design question performance levels

for each treatment is given in Figure 7.1, which plots the calculated medians from

Table 6.13.

Conclusion 1 is supported by the nonparametric analysis since there are no signif-

icant differences between the Control and Lecture Only group for any of the repeated

measures. Conclusion 3 is strengthened by the repeated measure main effect anal-

ysis using the Friedman test and associated pairwise Wilcoxon tests as reported in

Table 6.18. These tests indicate a significant difference (p < 0.001) among the re-
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peated measures if matched data from all three intervention groups are combined.

Further investigation reveals the statistically significant difference (p=0.001) between

the posttest and pretest scores, verifying an associated “bump” in design question

student performance independent of the classroom intervention. The 0.067 p-value

between the recap-test scores and pretest scores is close to the 0.05 significance level,

indicating that student scores at the nine-week mark in the course were still noticeably

better than pretest scores.

Figure 7.1 presents an interesting symmetry in the median scores for the Control

group and Lecture/PAT group. The Control median rises from 1.5 to 2.0 between

pretest and posttest, and then remains at 2.0 for the recap-test. Conversely, the

Lecture/PAT group stays consistent at 2.0 for both the pretest and posttest, and

then drops to 1.5 for the recap-test. This decrease in the Lecture/PAT group median

from posttest to recap-test in the nonparametric analysis counters the upward trend

between posttest and recap-test for the same group in the parametric analysis as

shown in the estimated marginal mean profile plot of Figure 6.4. This would indicate

that at the retention level, the multiple choice section of the PoPS and the design

question section of the PoPS are each monitoring fundamentally different student

aptitudes about parallel concepts.

The overall shape of the Lecture/PAT performance curve in Figure 7.1 also con-

founds any support for Conclusion 2 that may have been derived from the nonpara-

metric analysis. In fact, the relative measures given in Table 6.15 show that, at

the retention level, performance of students in the Lecture/PAT group is worse than

student performance in the Control group. Student interest or motivation in taking

the survey during Week 9 could be postulated as a factor in the Lecture/PAT score

decrease, but this study does not attempt to monitor these influences. If a correlation

is assumed between collective student interest and the number of unanswered design

questions, then the data from Table 6.12 reveal that for the retention test, student
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subjects in the Lecture/PAT group (2 unanswered out of 33) demonstrated equiva-

lent “motivation” to take the survey as the Control group (2 unanswered out of 27).

Additional data regarding the long-term influence of the Lecture/PAT intervention

on student perceptions of parallelism are necessary to clarify this result.

7.2 Future Work

This research acquired preliminary data and performed a detailed statistical anal-

ysis to determine the effect of specific CS1 classroom interventions on student com-

prehension of concepts related to parallel computing. Because of the recent rapid

emergence of multicore, many-core, and other parallel architectures, it is vital that

computer science education establish training regimens in the area of concurrent

systems appropriate to the needs of the student community and industry partners.

Studies such as the one described here will help inform computer science curriculum

designers, instructors, and administrators about proper parallel programming course

content and placement within a given baccalaureate program.

Future investigations into this important area may benefit from the following

enhancements to this study:

1. Establish the validity and reliability of the Perceptions of Parallelism Survey

(PoPS) evaluation instrument according to the American standard educational

test development guidelines as described earlier in this chapter. Take appropri-

ate measures to evolve the current PoPS into a widely accepted Parallel Concept

Inventory that is useful to a broad spectrum of computer science programs, from

large research universities to small liberal arts colleges.

2. Related to the previous item, specifically apply the “think-aloud” approach

while students answer the PoPS questions to more clearly define the fundamen-

tal concepts employed by student subjects as they reason through the problem
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and arrive at a solution. This strategy will open a window into student parallel

thinking and allow for the refinement of PoPS questions to better target student

misconceptions.

3. Expand the usage and functionality of the Parallel Analysis Tool (PAT) designed

specficially for this research. Allow students to work more extensively with

the tool, either through an additional assignment or in-class demonstrations.

Enhance the PAT to help students identify shared resources and critical sections.

4. Perform a duplicate study to confirm or disprove the results generated by the

current investigation. The parametric analysis for this study came very close to

establishing a statistically significant interaction effect between the independent

and repeated measure factors. In addition, the relatively low design question

recap-test score for the Lecture/PAT group can be verified.

5. Perform similar studies in which the parallel module length and location within

the course is modified. A CS1 course which can accommodate a longer treatment

of this topic may reveal different posttest and retention test performance from

the student subjects. Also, test results may be influenced by the placement of

the module within the course. Student comprehension levels might be different

in response to a parallel module occurring during the last three weeks of the

course when compared to the same module occurring during the first three

weeks of the course, as was done in this study.

6. Evaluate the current written design question for future versions of the PoPS.

This may involve eliminating the design question, increasing the overall number

of “essay” type questions, or refining the current design question to target a

more specific student aptitude in parallel design.

7. When evaluating student performance, provide separate, independent admin-
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istration times for the multiple choice section and the design question section.

Determine if the placement of the single design question at the end of the current

PoPS has any influence on student motivation and performance.

8. Implement a long-term longitudinal study of the student subjects participat-

ing in this research. As students progress through upper-division and capstone

courses in the CS program, administer the PoPS periodically to monitor each

student’s comprehension of key parallel computing concepts. Tracking the evo-

lution of PoPS performance levels throughout a student’s educational career

supports the accurate assessment of overall student retention of parallel con-

cepts and assists in the development of an appropriate parallel programming

curriculum.

Figure 7.1: Design Question Medians
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Table 7.1: Student Subject Performance by Task (% Correct)
Pretest Posttest Recap-Test

Task I
Control 82.0% 86.0% 80.4%
Lecture Only 90.0% 76.2% 86.8%
Lecture/PAT 75.8% 82.8% 88.9%
Total 81.6% 82.0% 85.5%

Task II
Control 26.0% 54.0% 34.8%
Lecture Only 52.5% 83.3% 73.7%
Lecture/PAT 40.3% 69.0% 70.4%
Total 38.8% 68.0% 59.4%

Task III
Control 57.3% 53.3% 56.5%
Lecture Only 61.7% 61.9% 50.9%
Lecture/PAT 43.0% 43.7% 45.7%
Total 52.6% 52.0% 50.7%

Task IV
Control 30.3% 38.3% 37.3%
Lecture Only 40.7% 44.9% 40.6%
Lecture/PAT 35.5% 37.4% 43.4%
Total 35.2% 39.8% 40.6%

Task V
Control 33.6% 40.0% 33.9%
Lecture Only 35.0% 40.0% 41.1%
Lecture/PAT 36.8% 42.8% 45.9%
Total 35.3% 41.1% 40.6%

Task VI
Control 30.0% 48.0% 51.1%
Lecture Only 41.3% 45.2% 36.8%
Lecture/PAT 38.7% 47.4% 48.1%
Total 36.5% 47.0% 46.0%

Task VII
Control 31.0% 34.0% 32.6%
Lecture Only 40.0% 31.0% 23.7%
Lecture/PAT 30.6% 39.7% 33.3%
Total 33.2% 35.3% 30.4%

Task VIII
Control 38.7% 46.7% 47.8%
Lecture Only 45.0% 57.1% 57.9%
Lecture/PAT 46.2% 51.7% 49.4%
Total 43.4% 51.6% 51.2%
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Perceptions of Parallelism Survey

The Perceptions of Parallelism Survey (PoPS) is a multiple-choice "test" designed to assess 
student understanding of the most basic concepts associated with parallel processes. The PoPS 
attempts to measure both student recognition and analysis skills in the design and execution of 
scenarios that may involve simultaneous actions which are often duplicated and repetitive.



Perceptions of Parallelism Survey

Please:
Do not write anything on this questionnaire.
Mark your answers clearly on the Answer Sheet 
provided. Give only one answer per item.
Do not skip any question.
Avoid guessing. Your answers should reflect what you   personally think.

On the Answer Sheet:
Fill in your name and section (course number and meeting time).

Plan to finish this questionnaire in 60 minutes.

Thank you for your cooperation.



(I) USE THE STATEMENT BELOW TO ANSWER THE NEXT TWO QUESTIONS (1 
and 2).

A computer must calculate the three arithmetic statements given below. Assume a, b, c, d, e, f, 
i, j are all integers. The time required to calculate each individual statement is 1 nsec. 

(I) c = a + b;
(II) d = e + f;
(III) j = i - c;
1. Assume one processing unit is available to perform the computation. What is the minimum 

amount of time required to calculate all three statements?
(A) 1 nsec
(B) 2 nsec
(C) 3 nsec
(D) 4 nsec
(E) 6 nsec 

2. Assume two processing units are available to perform the computation. What is the 
minimum amount of time required to calculate all three statements? 
(A) 1 nsec
(B) 2 nsec
(C) 3 nsec
(D) 4 nsec
(E) 6 nsec



(II) USE THE STATEMENT BELOW TO ANSWER THE NEXT TWO QUESTIONS (3 
and 4).

While attending a lecture in a classroom equipped with computers at each seat, you decide to 
browse the Internet.  The lecture topic is important so you periodically take notes while still 
viewing the browser. You discover a website with information you would like to pass to a 
friend, so you now decide to “multitask” the following:

(I)    texting your friend on your cell phone 
(II)  clicking to and viewing a new website
(III) listening to the lecture and taking notes

3. Choose the best description of how you are actually performing the three tasks.
(A) Tasks I, II, and III are being executed simultaneously
(B) Switching occurs among the tasks in the following order with no delay between tasks: 

Task I, Task II, Task III, Task I, Task II, Task III, Task I, Task II, Task III, … 
(C) Switching occurs among the tasks in no particular order with no delay between tasks.
(D) Switching occurs among the tasks in the following order with a measurable delay 

between tasks: Task I, Task II, Task III, Task I, Task II, Task III, Task I, Task II, Task 
III, …

(E) Switching occurs among the tasks in no particular order with a measurable delay 
between tasks.

4. Choose the best description of the time benefits or deficits of multitasking.
(A)It takes more time to complete the three tasks using multitasking when compared to 

focusing on and completing each individual task in succession.
(B) It takes less time to complete the three tasks using multitasking when compared to 

focusing on and completing each individual task in succession.
(C) It takes the same time to complete the three tasks using multitasking when compared to 

focusing on and completing each individual task in succession.
(D)It takes the same time to complete the three tasks using multitasking when compared to 

focusing on and completing each individual task in succession. However, for six or 
more tasks, multitasking would save time.

(E) It takes more time to complete the three tasks using multitasking when compared to 
focusing on and completing each individual task in succession. However, for six or 
more tasks, multitasking would save time.



(III) USE THE STATEMENT AND FIGURE BELOW TO ANSWER THE NEXT 
THREE QUESTIONS (5, 6, and 7).

You would like to check out five books from the library. There are currently three automated 
check-out machines available as shown in the accompanying figure. To operate the check-out 
machine, the book is placed on the machine and a “start” button is pressed, at which point the 
process is automated. After 10 seconds elapses, the book has been successfully checked-out. 
The machine can be left unattended after initiating the check-out process, but the book must 
remain on the machine during the entire 10 second period. Assume it takes 0 seconds to 
initiate the check-out process.

5. If one person is allowed to use only a single machine, which of the following changes to the 
above resources would allow you to take the least time to check out the five books?
(A)A fourth check-out machine becomes available. 
(B) A fourth check-out machine becomes available, and three friends show up and check 

out one book each. 
(C) Only two machines are now available, but four friends show up and check out one book 

each.
(D)A fourth and fifth check-out machine becomes available, and two friends show up and

check out one book each. 
(E) No changes. 

6. In the figure, assume it takes 5 seconds to travel the distance d between each check-out 
station.  Also assume there is a 2 second delay between checking out successive books at a 
single station. You are located at check-out station 1. Which strategy requires the least time
for you to check out three books (Book One, Book Two, and Book Three)?

(A)Check out Book One at Station 1; move to Station 2; check out Book Two at Station 2; 
move to Station 3; check out Book Three at Station 3. 

(B) Check out Book One at Station 1; move to Station 2; check out Books Two and Three 
at Station 2. 

(C) Start check out process for Book One at Station 1; move to Station 2;  start check out 
process for Book Two at Station 2; move to Station 3; start check out process for Book 
Three at Station 3; move to Station 1; retrieve Book One; move to Station 2; retrieve 
Book Two; move to Station 3; retrieve Book Three. 



(D)Start check out process for Book One at Station 1; move to Station 2;  start check out 
process for Book Two at Station 2; move to Station 3; check out Book Three at Station 
3; move to Station 1; retrieve Book One; move to Station 2; retrieve Book Two 

(E) Check out all three books from check-out station 1 

7. What modification(s) in scenario (D) in question 6 would increase the time it takes to check 
out three books (Book One, Book Two, and Book Three) when compared with the original 
scenario? Actions indicated with strikethroughs are not performed; bold, italicized actions 
have been added.

(A)Start check out process for Check out Book One at Station 1; move to Station 2;  start 
check out process for Book Two at Station 2; move to Station 3; check out Book Three 
at Station 3; move to Station 1; retrieve Book One; move to Station 2; retrieve Book 
Two

(B) Start check out process for Book One at Station 1; move to Station 2;  start check out 
process for Book Two at Station 2; move to Station 3; check out Book Three at Station 
3; move to Station 1; retrieve Book One; move to Station 2; retrieve Book Two move
to Station 2; retrieve Book Two; move to Station 1; retrieve Book One

(C) Start check out process for Check out Book One at Station 1; move to Station 2;  Start 
check out process for Check out Book Two at Station 2; move to Station 3; check out 
Book Three at Station 3; move to Station 1; retrieve Book One; move to Station 2; 
retrieve Book Two

(D)Start check out process for Book One at Station 1; move to Station 2;  Start check out 
process for Book Two at Station 2; move to Station 3; check out Book Three at Station 
3; move to Station 1; retrieve Book One; move to Station 2; retrieve Book Two; move
to Station 3; check out Book Three at Station 3

(E) Start check out process for Book One at Station 1; move to Station 2;  start check out 
process for Book Two at Station 2; move to Station 3; check out Book Three at Station 
3; move to Station 2;  start check out process for Book Two at Station 2; move to 
Station 1; retrieve Book One; move to Station 2; retrieve Book Two



(IV) USE THE STATEMENT AND FIGURE BELOW TO ANSWER THE NEXT 
SEVEN QUESTIONS (8 through 14).
The accompanying figure depicts a configuration for counting the number of darts thrown 
within a specific target region on N dartboards. Attached to the back of each dartboard is a 
counter which keeps track of the number of “hits” and “misses” for that dartboard.  The 
individual hits/misses count from each dartboard is then routed to a central processor which 
sums the total number of hits and misses and provides a final value equal to hits/(hits+misses).

The location of each dart thrown at any individual dartboard is considered to be randomly 
generated with probability evenly distributed across the face of the dartboard. Darts must be 
thrown successively at a single dartboard; they cannot be thrown simultaneously at a single 
dartboard. Assume the time required to throw a single dart is fixed. An experiment is defined 
as throwing a total of 500 darts at a total of N dartboards.

Analysts have determined that the overall cost of performing a single experiment can be 
attributed to the following:

(I) N, the total number of dartboards
(II) T, the time required to throw the darts
(III) C, the communication time between the individual counters and the central 

processor
(IV) R, the reduction time required for the central processor to compute the final value.



8. Which of the following statements is the most accurate when describing C, the 
communication time cost for a given experiment?

(A) C will be the minimum time it takes any dartboard counter to send its hits/misses total 
to the central processor

(B) C will be the maximum time it takes any dartboard counter to send its hits/misses total 
to the central processor

(C) C will be the sum of all the times it takes each dartboard counter to send its hits/misses 
total to the central processor

(D) C will be the average of all the times it takes any dartboard counter to send its 
hits/misses total to the central processor

(E) C will be the median of all the times it takes any dartboard counter to send its 
hits/misses total to the central processor

9. Which of the following statements is the most accurate when describing R, the reduction 
time cost for a given experiment?

(A)R increases as C increases
(B) R increases as C decreases
(C) R increases as N increases
(D)R increases as N decreases
(E) R increases as N stays constant but the number of darts increases

10. Assume the costs N, C, and R are negligible. Indicate the best strategy to minimize T given 
an experiment of 500 darts.

(A)Use one dartboard – 500 darts/board (N = 1)
(B) Use ten dartboards – 50 darts/board (N = 10)
(C) Use fifty dartboards – 10 darts/board (N = 50)
(D)Use five hundred dartboards – 1 dart/board (N = 500)
(E) Use one thousand dartboards – 0.5 darts/board (N = 1000)

11. Assume the costs C and R are negligible, and assume that each dartboard has a cost 
equivalent to throwing five darts in succession. Which of the following choices has the least
overall cost for an experiment of 500 darts?

(A)Use one dartboard – 500 darts/board (N = 1) 
(B) Use ten dartboards – 50 darts/board (N = 10) 
(C) Use fifty dartboards – 10 darts/board (N = 50) 
(D)Use two hundred fifty dartboards – 2 darts/board (N = 250) 
(E) Use five hundred dartboards – 1 dart/board (N = 500) 

12. Assume the costs C and R are negligible, and assume that each dartboard has a cost 
equivalent to throwing two darts in succession. Which of the following choices has the least
overall cost for an experiment of 500 darts?

(A)Use one dartboard – 500 darts/board (N = 1) 
(B) Use ten dartboards – 50 darts/board (N = 10) 



(C) Use fifty dartboards – 10 darts/board (N = 50) 
(D)Use two hundred fifty dartboards – 2 darts/board (N = 250) 
(E) Use five hundred dartboards – 1 dart/board (N = 500) 

13. Assume the costs T, C, and R are negligible. Indicate the best strategy to minimize N given 
an experiment of 500 darts.

(A)Use one dartboard – 500 darts/board 
(B) Use ten dartboards – 50 darts/board 
(C) Use fifty dartboards – 10 darts/board 
(D)Use five hundred dartboards – 1 dart/board 
(E) Use one thousand dartboards – 0.5 darts/board 

14. You perform an experiment of 500 darts with the number of dartboards N = 40.  For a 
second subsequent experiment of 500 darts, you are provided with an additional dartboard 
such that N = 41. How does the cost T vary from the first experiment to the second 
experiment?

(A)T doubles
(B) T increases slightly but does not double
(C) T stays the same
(D)T decreases slightly but is not halved
(E) T is halved



(V) USE THE STATEMENT BELOW TO ANSWER THE NEXT FIVE 
QUESTIONS (15 through 19).

An experimental setup involves 5 persons (Ann, Beth, Carl, Dee, and Ed) and a stack of 
60 cards, with each card containing a single word in capital letters. The persons are 
asked to arrange the cards in alphabetical order. Assume it takes a single individual N 
seconds to sort N cards. An exchange occurs if one person passes a single stack of one or 
more cards to another person.

For example, two separate exchanges have taken place if Ann passes a three card stack to 
Beth, and then passes a ten card stack to Beth. One exchange takes place if Ann passes a 
single thirteen card stack to Beth.

Assume an exchange requires 2 seconds, independent of the size of the stack being 
transferred.

Finally, assume if a person in the experiment receives K separate alphabetized stacks, it 
requires only K seconds to produce a correctly sorted single stack.

15. Which strategy offers the most time-efficient approach?

(A) Ann sorts all 60 cards while the others observe. 
(B) Ann, Beth, Carl, and Dee sort 15 cards each. After sorting, each of the four 

passes his/her sorted stack to Ed (1 exchange/person). Ed then does a final sort 
on the 4 stacks. 

(C) Ann sorts 30 cards and Beth sorts 30 cards while the others observe. After 
sorting, Beth passes her stack to Ann in a single exchange. Ann does a final sort 
on the 2 stacks. 

(D) Ann, Beth, Carl, Dee, and Ed sort 12 cards each. After sorting, Ann passes her 
stack to Beth in a single exchange. Beth sorts the two stacks. After sorting, Beth 
passes her resulting stack to Carl in a single exchange. Carl sorts the two stacks. 
After sorting, Carl passes his resulting stack to Dee. Dee sorts the two stacks. 
After sorting, Dee passes his resulting stack to Ed. Ed does the final sort on the 
two stacks. 

(E) Ann, Beth, Carl, and Dee sort 15 cards each. After sorting, Ann passes her 
sorted stack to Carl, and Beth passes her sorted stack to Dee. Both Carl and Dee 
perform sorts on their two stacks. After sorting, Carl and Dee each pass his 
sorted stack to Ed (1 exchange/person). Ed then does a final sort on the 2 stacks. 



16. Choose which strategy in Question 15 is best represented by the graph below? Dots 
indicate persons and arrows indicate a stack exchange.

(A)Strategy A.
(B) Strategy B.
(C) Strategy C.
(D)Strategy D.
(E) Strategy E.

17. Assume an exchange now requires 12 seconds. Which strategy in Question 15 offers 
the least time-efficient approach?

(A)Strategy A. 
(B) Strategy B. 
(C) Strategy C. 
(D)Strategy D. 
(E) Strategy E. 

18. Assume that if P persons work together to sort N cards, the communication investment 
is such that it takes P*N seconds to perform the sort. Similarly, if P persons work 
together to sort K separate alphabetized stacks, it requires P*K seconds to produce a 
correctly sorted single stack. Assume an exchange takes 2 seconds as originally stated. 
Which strategy offers the most time-efficient approach?

(A) Ann sorts all 60 cards while the others observe. 
(B) Ann, Beth, Carl, and Dee sort 15 cards each. After sorting, each of the four 

passes his/her sorted stack to Ed (1 exchange/person). All 5 persons then work 
together on a final sort of the 4 stacks. 

(C) Ann and Carl sort 30 cards together while Beth and Dee sort 30 cards 
together. After sorting, Beth/Dee pass their stack to Ann/Carl in a single 
exchange. Ann and Carl together perform a final sort on the 2 stacks. 

(D) Ann, Beth, Carl, Dee, and Ed sort 12 cards each. After sorting, Ann passes her 
stack to Beth in a single exchange. Ann and Beth work together to sort the two 
stacks. After sorting, Ann/Beth passes their resulting stack to Carl in a single 
exchange. Carl sorts the two stacks. After sorting, Carl passes his resulting 



stack to Dee. Carl and Dee work together to sort the two stacks. After sorting, 
Carl/Dee passes their resulting stack to Ed. Ed does the final sort on the two 
stacks.

(E) Ann and Carl sort 30 cards together while Beth and Dee sort 30 cards 
together. After sorting, Beth/Dee pass their stack to Ed and Ann/Carl pass 
their stack to Ed. All 5 persons then work together on a final sort of the 2 
stacks.

19. Assume an exchange now requires 12 seconds. Which strategy in Question 18 offers 
the least time-efficient approach?

(A)Strategy A. 
(B) Strategy B. 
(C) Strategy C. 
(D)Strategy D. 
(E) Strategy E. 



(VI) USE THE STATEMENT AND FIGURE BELOW TO ANSWER THE NEXT 
FOUR QUESTIONS (20 through 23).

Three antique experts are seated at separate locations within a convention hall as 
shown in the diagram below. When they arrive, individuals who wish to get their 
single item appraised are asked by the floor manager to stand in one of the three lines 
associated with each station. Individuals are not allowed to jump lines. Floor 
managers are not able to accurately appraise items.

Items are categorized by the experts as valuable (V) or sentimental (S).  Valuable 
antiques require exactly 1 minute of appraisal time to determine their worth.  
Sentimental antiques require exactly 10 seconds of appraisal time to be recognized as 
having no monetary value. Individuals in the figure are represented as squares 
containing either the letter ‘V’ or ‘S’ depending on the type of item they wish to be 
appraised.

20. Given 18 individuals arranged in the three lines as shown in the figure, what is the 
amount of time required to complete appraisals of all 18 items?

(A)1 minute
(B) 2 minutes
(C) 6 minutes
(D)7 minutes
(E) 8 minutes



21. Instead of sending an individual immediately to a specific line on arrival, the floor 
manager can ask all individuals to wait in a single ‘holding’ line ( the dotted line in 
the figure) until an appraiser station is open, at which time the manager could choose 
to send one or more individuals in the ‘holding’ line to the open appraiser station. 

Given 6 individuals arriving in order from left to right as shown above, which of the 
following strategies requires the least amount of time to complete appraisals of all 6 
items?

(A) Use a holding line. Send one individual at a time to an open appraiser station.
(B) Use a holding line. Send two individuals at a time to an open appraiser station.
(C) Use a holding line. Send three individuals at a time to an open appraiser station. 
(D) Use no holding line. Randomly divide the group into three lines of two 

individuals each. 
(E) Use no holding line. Put all individuals in a single line. 

22. Assume that 10 seconds are required for the floor manager to send one or more 
individuals from the ‘holding’ line to an open appraiser station. Zero seconds are 
required when no holding line is used, and individuals can line up at appraisal stations 
immediately. Given 6 individuals arriving in order from left to right as described in 
Question 21 above, which strategy in Question 21 requires the least amount of time to 
complete appraisals of all 6 items?

(A)Strategy A. 
(B) Strategy B. 
(C) Strategy C. 
(D)Strategy D. 
(E) Strategy E. 



23. Assume zero seconds are required for the floor manager to send one or more 
individuals from the ‘holding’ line to an open appraiser station. Given 12 individuals 
arriving in order from left to right as shown above, which of the following strategies 
requires the most amount of time to complete appraisals of all 12 items?

(A)Use a holding line. Send one individual at a time to an open appraiser station. 
(B) Use a holding line. Send two individuals at a time to an open appraiser station.
(C) Use a holding line. Send three individuals at a time to an open appraiser 

station.
(D)Use a holding line. Send four individuals at a time to an open appraiser station. 
(E) Use a holding line. Send six individuals at a time to an open appraiser station.



(VII) USE THE STATEMENT AND FIGURE BELOW TO ANSWER THE NEXT 
FOUR QUESTIONS (24 through 27).

A card game involves a deck of 52 cards in which half are black and half are 
white. As shown in the figure below, a single card is dealt face-up to each of five 
players to start the game, and all the players sit next to each other across from the 
dealer. The game proceeds as a series of rounds.

For a given round, each player looks at the card(s) of the player(s) seated next to 
him/her.  If the player’s card is black and at least one of his/her adjacent players has a 
white card, then the player’s black card must be exchanged for a white card from the 
deck. A player with a white card simply keeps the card. Successive rounds are played 
until only one person holds a black card. That person is declared the winner.

Note that the players on the end (“end” Players 1, and 5) only have one player 
seated next to them. All remaining players (“middle” Players 2, 3, and 4) each have 
two players seated next to them. These “middle” players must first check the left 
adjacent player’s card followed by the right adjacent player’s card. 



24.  Assume that it takes each player 3 seconds to check the card of a person seated next 
to him/her. Given the starting hand as shown in the figure, indicate the future winner 
of the game and the time required to complete the game.

(A)Player 1, 3 seconds
(B) Player 1, 6 seconds
(C) Player 2, 6 seconds
(D)Player 5, 3 seconds
(E) Player 5, 6 seconds

25.  Assume that it takes each player 3 seconds to check the card of a person seated next 
to him/her, and “middle” players now check adjacent player’s cards right-to-left, 
rather than left-to-right. Given the starting hand as shown in the figure, indicate the 
future winner of the game and the time required to complete the game.

(A)Player 1, 3 seconds
(B) Player 1, 6 seconds
(C) Player 2, 6 seconds
(D)Player 5, 3 seconds
(E) Player 5, 6 seconds

26.  Assume that each “middle” player is dealt 3 cards of the same color, and each “end” 
player is dealt 2 cards of the same color.  When the dealer shouts “SHARE,” a 
round is performed in which each player gives one of his/her cards to an adjacent 
player, a transfer that takes 2 seconds.  Note that “end” players share only one card, 
whereas “middle” players share two cards left-to-right. Players can now use the 
copy of the adjacent player’s card to determine their card for the next round.

Given the starting hand as shown in the figure, indicate the time required to complete 
the game.

(A)2 seconds
(B) 4 seconds
(C) 6 seconds
(D)8 seconds
(E) 10 seconds

27.  Assume a 100 player game in which only one of the 98 “middle” players can win. 
Using the “SHARE” round rules described in Question 26, indicate the time 
required to perform a single round. 

(A)2 seconds
(B) 4 seconds
(C) 50 seconds
(D)98 seconds
(E) 100 seconds



(VIII) USE THE STATEMENT AND FIGURE BELOW TO ANSWER THE NEXT 
THREE QUESTIONS (28 through 30).

The figure below depicts a system comprising a theoretical delivery mechanism, 
one input tube, and N output tubes.  A certain number of balls are placed into the 
input tube one at a time. The figure shows 5 balls in the input tube.  The diameter of 
each tube is just slightly larger than the diameter of an individual ball.

The delivery mechanism is designed such that it takes 0 seconds to evenly 
distribute (as best as possible) the input balls among the output tubes. For example, 
for 5 input balls and 5 output tubes, the mechanism would place one ball in each 
output tube. However, for 5 input balls and 4 output tubes, the mechanism would 
place 2 balls in one of the output tubes and one ball in each of the remaining tubes. 

For any given tube, either input or output, it takes K seconds for K balls to travel 
through the tube.   In the figure, 5 seconds are required for the 5 balls to travel 
through the input tube.

28.   As shown in the figure, assume 5 balls are delivered to the input tube.  Assume the 
number of output tubes N is 3.  How long will it take all balls to traverse through the 
system?

(A)3 seconds
(B) 4 seconds
(C) 5 seconds



(D)6 seconds
(E) 7 seconds

29.  Given the initial configuration described in question 28, indicate the smallest change 
to the system that will minimize the amount of time it takes the balls to traverse 
through the system.

(A)Remove 1 output tube.
(B) Add 1 output tube.
(C) Add 2 output tubes.
(D)Add 5 output tubes.
(E) Add 20 output tubes.

30.  Assume the number of output tubes N is 50, and we are required to run the system 
using no more than 102 seconds. What is the maximum number of balls that can be 
input to the system?

(A)5 balls
(B) 20 balls
(C) 50 balls
(D)80 balls
(E) 100 balls

(IX) PROVIDE A BRIEF NARRATIVE DESCRIPTION AND DIAGRAM OF A 
PARALLEL PROCESSING STRATEGY THAT OPTIMIZES SYSTEM 
PERFORMANCE TO SOLVE THE FOLLOWING PROBLEM. 

A criminal lab has recently received a grainy photograph of an individual who 
recently robbed a bank.  The police believe the culprit is a repeat offender.

The lab database currently has 1000 photographs of suspects not currently 
incarcerated who have committed this type of robbery in the past. The lab has image 
processing software that can compare the photograph of the robber with the 
photograph of a potential suspect and produce what is called a “similarity score.” The 
higher the similarity score, the more likely the suspect is the robber. Because of photo 
conditioning and resolution requirements, computing a single comparison takes 
approximately 15 seconds.

The lab computer system has 250 available processors. Police are requesting the 
most likely suspect based on the lab’s analysis. 
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Perceptions of Parallelism Survey
Version 1

(8/12/09)

Answer Sheet

Name: ____________________________

Section: __________________________

1. ___
2. ___
3. ___
4. ___
5. ___

6. ___
7. ___
8. ___
9. ___
10. ___

11. ___
12. ___
13. ___
14. ___
15. ___

16. ___
17. ___
18. ___
19. ___
20. ___

21. ___
22. ___
23. ___
24. ___
25. ___

26. ___
27. ___
28. ___
29. ___
30. ___

FOR THE PROBLEM DESCRIBED IN TASK (IX), USE THE SPACE BELOW AND 
THE ATTACHED BLANK SHEET TO PROVIDE A BRIEF NARRATIVE 
DESCRIPTION AND DIAGRAM OF A PARALLEL PROCESSING STRATEGY THAT 
OPTIMIZES SYSTEM PERFORMANCE 
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CS 1400
Fundamentals of Programming

Spring Semester 2010

INDIVIDUAL ASSIGNMENT #1

Exercise 2: Java Language Features

Coding Exercise and Recognizing Concurrency

Here is an example of a class, called Integrator.  This will illustrate the behavior of 
for-loops, method calls, and some of the arithmetic operators.  The program uses the 
trapezoidal rule to calculate the area under the curve 2)( xxf �   from 0�x to 2�x . The 
details of the implemented algorithm are not important right now, but your ability to enter 
the code using correct syntax and formatting is important.

Enter this class into your Java development environment exactly as shown below 
including the comments. Compile and run the program. 

public class Integrator {

   static int n = 1000000; // number of trapezoids
   static double[] results = new double[n];

   public static void main(String args[]) {

     /* Initialize starting Time */
     long t1 = System.currentTimeMillis();

    /* Compute Individual Trapezoid Areas */
     for(int i = 0; i < n; i++)
       results[i] = computeArea(i);

     double totalArea = 0.0;
     /* Sum up all Areas */
     for(int i = 0; i < n; i++)
       totalArea += results[i];

     /* Print out the Area. Total Area = ???? */
     System.out.println("Area = " + totalArea);

     /* Display program duration. Duration = ???? */
     long t2 = System.currentTimeMillis();



     System.out.println("Running Time:" + (t2-t1) + " 
msecs");
}

  // Uses trapezoid formula
  private static double computeArea(int section)
   {

double height = 2.0/n;
double leftXValue = section * height;
double rightXValue = (section + 1) * height;
double leftSide = leftXValue * leftXValue;

     double rightSide = rightXValue * rightXValue; 
double area = 0.5 * (leftSide + rightSide) * height;

return area;
   }
}

Note that the + operator can be used inside the argument to println(), to construct a 
string from several different components at run-time.

Also note the different steps in the algorithm as indicated by each of the comments 
delimited by /*…*/ in the main method. These annotations give clear descriptions of the 
individual task performed at each step, and provide a prominent illustration of the
importance of code comments in helping other developers understand the purpose and 
execution of a program. 

Now think about which, if any, of these individual tasks could be run more efficiently on 
a parallel computer. Our goal would be to reduce the time required to execute the 
program while still generating the correct result for the computed area. Consider only the 
five “commented” steps denoted in the main method.

Do the following:

��  In the source code, replace the two ???? items with the Total Area and Duration
values generated by the program. 
�  Indicate any steps that could potentially run faster on a parallel computer by 
placing the term “P=n” at the beginning of the comment associated with that step , 
where n is a number indicating the optimum number of processors. This term should 
be enclosed by the opening comment delimiter so that the program will still compile.
� Submit the source code of Integrator.java for this exercise.



Exercise 3: Writing a Java Application

Java applications run “standalone:, without a driver program.  A Java application consists 
of one or more classes, and can be as large or as small as needed.  A class is frequently 
created for the sole purpose of encapsulating the main() method, necessary for the 
application to begin.  Any class may contain the main() method, but there can be only 
one in a Java application.  One common programming technique to handle this is to 
create a “jumping-off” class that contains the main() method, as well as any specialized 
initialization or termination routines for the application.

The signature for the main() method always looks like this:
public static void main (String args[]) {  }

The public keyword means it’s available to the Java interpreter; the static keyword
means there is only one occurrence of this function; the void keyword means it doesn’t 
return a value. args [] is the array of strings passed as arguments to the application 
[analogous to the argv [] array in C and C++]. args [] could be given another 
name – there is nothing special about “args”.   However, the first value in the array, 
args [0], is the first argument to the program, NOT the program name, as it would be 
in C or C++. 

Since args is an array, it has a length member, indicating the number of values 
passed.  You must test the value of args.length to see that your application receives 
an appropriate number of arguments.  Java won’t do it for you.

Coding Exercise and Recognizing Concurrency

Create a Java program called AddArguments.java that accepts exactly four command 
line arguments. Within the code, construct one Java statement that will add the first two 
arguments, and a second Java statement that will add the last two arguments.  Then 
construct a third Java statement that will sum the two previous results. The program 
should display this final value as follows:

Final Sum: value

where value represents the sum of all four arguments.

Sample Session:

java AddArguments 8 5 3 2
Final Sum: 18

Hint: To convert from a Java String to an int datatype, use the method 
Integer.parseInt().



Do the following:

��  In the source code, comment the steps in the main method as shown in the previous 
exercise.
�  Indicate any steps  that could potentially run faster on a parallel computer by 
placing the term “P=n” at the beginning of the comment associated with that step , 
where n is a number indicating the optimum number of processors. This term should 
be enclosed by the opening comment delimiter so that the program will still compile.
� Submit the source code of AddArguments.java for this exercise.



APPENDIX E

CS1-LEVEL QUIZ QUESTIONS ON PARALLEL CONCEPTS



Q. The running time of a program on a single CPU computer is 100 seconds, and the 
running time of the same program on a parallel computer is 25 seconds. What is the 
speedup value?

100

25

4

0.25

Q. All of the current top 500 fastest computers are single CPU systems

. True

False

Q. Indicate which kinds of complex problems can be solved using parallel computing.
Choose all that apply

. Computational Fluid Dynamics

Cosmology: Star Cluster Simulation

Climate Modeling

Protein Sequence Matching

Q. What step is added to the classical scientific method when employing 
computational systems?

Observation

Physical Experimentation

Numerical Simulation

Theory

Q. What is the primary benefit of parallel computing when applied to a computational 
problem of fixed size?

Reduce data storage

Reduce computation time

Reduce communication time

Reduce system cost

Q. Which parallel computer architecture is best suited for problems where each 
processor produces results that are used by some or all of the other processors?

SMP

Cluster



Hybrid

Grid

Q.

The above blue arrow points to which component of the Activity Diagram?

transition

activity

fork

stop

join

Q.



Based on the above Activity Diagram, which of the following statements is true?

The "Cook Spaghetti" and "Mix Carbonara Sauce" activities must be performed 
in sequence.

The "Cook Spaghetti" and "Mix Carbonara Sauce" activities may be 
performed in parallel.

The "Cook Spaghetti" and "Mix Carbonara Sauce" activities take exactly the 
same time.

The "Cook Spaghetti" and "Mix Carbonara Sauce" activities must be performed 
simultaneously.

Q.

for(int i = 0; i < 100; i++) 
{

a[i] = b[i] + c[i]; 
}

In the above Java code, assume a, b, and c are each integer arrays of size 100. Which 
of the following statements is true?

The statement in the body of the for-loop is not parallelizable.

The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 10.

The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 100.

The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 1000.



Q.

int total = 0; 
for(int i = 0; i < 100; i++) 
{
total = total + a[i]; 
}

In the above Java code, assume a is an integer array of size 100. Which of the 
following statements is true?

The statement in the body of the for-loop is not parallelizable.

The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 10.

The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 100

. The statement in the body of the for-loop is parallelizable, and the optimum 
number of processors is 1000.

Q.

(1) int a = 2; 
(2) int b = 3; 
(3) double m = (a+b)/2.0; 
(4) double s = (a*a + b*b)/2.0; 
(5) double v = s - (m*m); 

Given the above Java statements, which of the following is true?
Choose all that apply.

Statements (1) and (2) can be executed concurrently.

Statements (2) and (3) can be executed concurrently.

Statements (2) and (4) can be executed concurrently.

Statements (3) and (4) can be executed concurrently.

Statements (4) and (5) can be executed concurrently.

Q. Multitasking is the simultaneous performance of two or more tasks on a single 
CPU.

True

False

Q. A context switch, used to manage multiple processes on a single CPU, takes 0 
seconds of processing time.

True



False

Q.

The above diagram is a representation of:

Data Parallelism

Functional Parallelism

Pipelining

Q.

Given the above diagram, which of the following statements is true?
Choose all that apply.

A sequential dependency exists between activity B and activity C

A sequential dependency exists between activity C and activity D

A sequential dependency exists between activity A and activity C



A sequential dependency exists between activity D and activity E

A sequential dependency exists between activity A and activity E

Q.

The above diagram is a representation of: 

Data Parallelism

Functional Parallelism

Pipelining

Q. Indicate the easiest, quickest, least expensive, and most popular approach to 
programming parallel computers.

Extend an existing compiler

Extend an existing language

Add a new parallel language layer on top of an existing sequential language

Define a totally new parallel language and compiler system

Q. What is the primary obstacle to successfully introducing a new parallel 
programming language?

Inventing new syntax

Providing a new runtime system

Developers' resistance to learning a new language

Providing a new compiler
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CS 1400
Fundamentals of Programming

Spring Semester 2010

INDIVIDUAL ASSIGNMENT #1

Important Note: To complete Exercises 2 & 3, the Parallel Analysis Tool (PAT) may be 
accessed as follows:

A. From a CS laboratory computer:
1. Use Remote Desktop Connection to log in to hermes.cs.weber.edu

or 137.190.19.26 using your CS username and password.
2. Click on the Parallel Analysis Tool (PAT) icon on the desktop.

B. From an external computer:
1. Use Remote Desktop Connection to log in to 

athena.cs.weber.edu:53243 using your CS username and password.
2. Now use Remote Desktop Connection from athena to log in to 

hermes.cs.weber.edu or 137.190.19.26 using your CS username and 
password.

3. Click the Parallel Analysis Tool (PAT) icon on the desktop.

Exercise 2: Java Language Features

Coding Exercise and Recognizing Concurrency

For this exercise, you will submit the completed answer sheet given on the next page and 
a single screenshot to be described later.

Below is an example of a class that performs numerical integration.  This will illustrate 
the behavior of for-loops, method calls, and some of the arithmetic operators.  The 
program uses the trapezoidal rule to calculate the area under the curve 2)( xxf �   from 

0�x to 2�x . The details of the implemented algorithm are not important right now, but 
your ability to enter the code using correct syntax and formatting is important.



Exercise 2
Answer Sheet

Step I:

Total Area:    ___________________

Running Time: _________________

Step II:

Total Area Running Time PQ Value

P=2

P=4

P=8

P=16

P=32

Summary Question: Based on the information in the table above, what is the optimum 
number of processors to use when parallelizing the computation of individual trapezoid 
areas? _____

Explain your reasoning.

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



Step I: Using the Parallel Analysis Tool (PAT), enter this class into the Program Editor 
panel exactly as shown below including the comments. Compile and run the program. 

public class ParallelTest {

   static int n = 1048576; // number of trapezoids
   static double[] results = new double[n];

   public static void main(String args[]) {

     /* Initialize starting Time */
     long t1 = System.currentTimeMillis();

     /* Compute Individual Trapezoid Areas */
     for(int i = 0; i < n; i++) {
       results[i] = computeArea(i);

}

     double totalArea = 0.0;
     /* Sum up all Areas */
     for(int i = 0; i < n; i++) {
       totalArea += results[i];

}

     /* Print out the Area */
     System.out.println("Area = " + totalArea);

     /* Display program duration */
     long t2 = System.currentTimeMillis();
     System.out.println("Running Time:" + (t2-t1) + " msecs");  
}

  // Uses modified trapezoid formula
  private static double computeArea(int section)
   {

int numSegments = 500;
double height = 2.0/n;
double leftXValue = section * height;
double rightXValue = (section + 1) * height;
double leftSide = (leftXValue * leftXValue)/numSegments;

     double rightSide = (rightXValue * rightXValue)/numSegments; 
double area = 0.0;
for(int i = 0; i < numSegments; i++) {

area += 0.5 * (leftSide + rightSide) * height;
     }

return area;
   }
}



Note that the + operator can be used inside the argument to println(), to construct a 
string from several different components at run-time.

Do the following:

��  In the Step I section of the Exercise 2 Answer Sheet, enter the reported values for 
Area and Running Time. The Running Time value should be labeled appropriately.

Note the different steps in the algorithm as indicated by each of the comments delimited
by /*…*/ in the main method. These annotations give clear descriptions of the individual 
task performed at each step, and provide a prominent illustration of the importance of 
code comments in helping other developers understand the purpose and execution of a 
program. In the PAT, these comments provide activity labels in the associated activity 
diagram displayed in the right-hand pane.

Now think about which, if any, of these individual tasks could be run more efficiently on 
a parallel computer. Our goal would be to reduce the time required to execute the 
program while still generating the correct result for the computed area. We will now 
consider two of the five specific “commented” steps denoted in the main method.

Step II: Using the Parallel Analysis Tool (PAT), click on the Update Activity Diagram
button. The right hand Process View should now reflect the sequential order of the 
program tasks as indicated by the code comments. 

Now we will observe the real-time effect of parallelizing the portion of code that 
computes the large number of tiny area sections in our integrator.  Locate the following 
comment in the PAT Program Editor:

/* Compute Individual Trapezoid Areas */

Add the following annotation indicated in bold so that the comment looks exactly as 
shown here:

/* P=2 Compute Individual Trapezoid Areas */

The “P=2” term above indicates that the collection of calculations associated with the 
subsequent for-loop will be divided among two processors and these two resulting groups 
of calculations will be executed in parallel. In general, “P=n” means that n processors
will be used to parallelize the for-loop.

Click the Compile & Run button and note the results for Area and Running Time.

Do the following:

�  In the Exercise 2 Answer Sheet, record the reported values for Area and Running 
Time in the “P=2” row of the Step II section table. Label the Running Time.



Now click the Perform Parallel Analysis button and wait for the “Done!” message to 
appear in the Output Window at the bottom of the PAT. Observe the updated activity 
diagram in the Process View pane. Note the special annotation attached to the incoming 
transition arrow of the “Compute Individual Trapezoid Areas” activity icon indicating 
that two processors were used to perform this activity. The “Compute Individual 
Trapezoid Areas” activity icon should now also contain a PQ value displayed in blue.

The PQ value measures the quality of parallelizing the targeted section of code. Ideally, 
the PQ value should be equal to the number of processors n used in the parallelization 
effort, but a PQ value no less than n-1 is still very good.

Very small, fractional PQ values indicate the cost of parallelizing the section of code is 
too high, and thus the use of multiple processors should be avoided. Under these 
conditions, it actually requires more time to run the targeted section of code in parallel 
than it would to run the section of code sequentially. 

Do the following:

��  In the Exercise 2 Answer Sheet, record the reported PQ value in the “P=2” row of 
the Step II section table.
�  Repeat the actions described in Step II above to fill in the remaining entries of the 
table in the Step II section of the Exercise 2 Answer Sheet. To obtain a reliable PQ
value, you may need to perform several parallel analyses for a given number of 
processors to arrive at a stable value.
�  Answer the Summary Question on the Exercise 2 Answer Sheet
�  Submit one screenshot of the PAT console after performing the Parallel Analysis 
for P=32.  Make sure the PQ value for the “Compute Individual Trapezoid Areas” 
activity can be seen in the Process View Pane.
�  Submit the Exercise 2 Answer Sheet.



Exercise 3: Java Program Structure

Java applications run “standalone:, without a driver program.  A Java application consists 
of one or more classes, and can be as large or as small as needed.  A class is frequently 
created for the sole purpose of encapsulating the main() method, necessary for the 
application to begin.  Any class may contain the main() method, but there can be only 
one in a Java application.  One common programming technique to handle this is to 
create a “jumping-off” class that contains the main() method, as well as any specialized 
initialization or termination routines for the application.

The signature for the main() method always looks like this:

public static void main (String args[]) {  }

The public keyword means it’s available to the Java interpreter; the static keyword
means that this function is accessible at the class level; the void keyword means it 
doesn’t return a value. args [] is the array of strings passed as arguments to the 
application [analogous to the argv [] array in C and C++]. args [] could be 
given another name – there is nothing special about “args”.   However, the first value in 
the array, args [0], is the first argument to the program, NOT the program name, as 
it would be in C or C++. 

Since args is an array, it has a length member, indicating the number of values 
passed.  You must test the value of args.length to see that your application receives 
an appropriate number of arguments.  Java won’t do it for you.

Coding Exercise and Recognizing Concurrency

For this exercise, you will submit the completed answer sheet given on the next page and 
a single screenshot to be described later.

Here we will create a Java program that utilizes some of the arithmetic operators 
described above in a specific sequence. Since these operations will be applied to variables 
within our program, we must first perform proper initialization of these variables.

Note that in order to obtain proper analysis from the PAT, the set of initialization 
statements and the set of arithmetic operation statements are each contained in a single 
Java block, which is delimited by curly braces.



Exercise 3
Answer Sheet

Step I:

Result:    ___________________

Step II:

Parallel Initialization

Result:    ___________________

PQ Value:    ___________________

Step III:

Parallel Arithmetic Operations

Result:    ___________________

PQ Value:    ___________________

Summary Questions:

Does Parallel Initialization in Step II change the program result? Yes ____  No____

Based on the Step II results, would you choose to parallelize variable initialization? 
Yes____No____

Explain your reasoning.

________________________________________________________________________

________________________________________________________________________

Do Parallel Arithmetic Operations in Step III change the program result? 
Yes ____  No____

Based on the Step III results, would you choose to parallelize arithmetic operations? 
Yes____No____

Explain your reasoning.

________________________________________________________________________

________________________________________________________________________



Step I: Using the Parallel Analysis Tool (PAT), enter this class into the Program Editor 
panel exactly as shown below including the comments. Compile and run the program. 

public class ParallelTest {

   static int zero, one, two, three, four, five, six, seven;
   static int resultOne, resultTwo, resultThree, resultFour;
  static int resultFive, resultSix, resultSeven, resultEight;

   public static void main(String args[]) {

     /* P=1 Initialize Variables */
     {

zero = 0;
one = 1;
two = 2;
three = 3;
four = 4;
five = 5;
six = 6;
seven = 7;

}

    /* P=1 Perform Arithmetic Operations */
     {

resultOne = zero + one;
resultTwo = three - two;
resultThree = three + zero;
resultFour = (resultThree * resultTwo) – resultOne;
resultFive = four * five;
resultSix = six + seven;
resultSeven = resultFive – resultSix;
resultEight = resultFour * resultSeven;

}

     /* Print out the Result */
     System.out.println("Result = " + resultEight);

}
}

Do the following:

��  In the Step I section of the Exercise 3 Answer Sheet, enter the reported Result 
value.



Step II: Using the Parallel Analysis Tool (PAT), click on the Update Activity Diagram
button. The right hand Process View should now reflect the sequential order of the 
program tasks as indicated by the code comments. 

Now we will observe the effect of parallelizing the initialization statements on the 
generated result.

In the PAT Program Editor, change the number of processors in the “Initialize Variables”
code section from 1 to 8.  In other words update the “Initialize Variables” comment as 
follows:

/* P=8 Initialize Variables */

This change will cause each individual statement in the block immediately following the 
comment to execute on a separate processor.  Since there are 8 statements within the 
initialization block and we are specifying 8 processors, then each statement will be run 
simultaneously on a dedicated processor. 

Click the Compile & Run button and note the result value produced by the program.

Do the following:

��  In the Step II section of the Exercise 3 Answer Sheet, enter the reported Result 
value.

Now click the Perform Parallel Analysis button and wait for the “Done!” message to 
appear in the Output Window at the bottom of the PAT. Observe the updated activity 
diagram in the Process View pane. The “Initialize Variables” activity icon should now 
contain a PQ value displayed in blue.

Do the following:

�  In the Step II section of the Exercise 3 Answer Sheet, enter the reported PQ value.

Step III:  Now we will observe the effect of parallelizing the arithmetic operations on the 
generated result.

In the PAT Program Editor, change the number of processors in the “Perform Arithmetic 
Operations” code section from 1 to 8.  In other words update the “Perform Arithmetic 
Operations” comment as follows:

/* P=8 Perform Arithmetic Operations */

As with the initialization statements described in Step II, this change will cause each 
individual statement in the block immediately following the comment to execute on a 
separate processor.  Since there are 8 statements within the arithmetic operation block 



and we are specifying 8 processors, then each statement will be run simultaneously on a 
dedicated processor. 

Click the Compile & Run button and note the result value produced by the program.

Do the following:

��  In the Step III section of the Exercise 3 Answer Sheet, enter the reported Result 
value.

Now click the Perform Parallel Analysis button and wait for the “Done!” message to 
appear in the Output Window at the bottom of the PAT. Observe the updated activity 
diagram in the Process View pane. The “Perform Arithmetic Operations” activity icon 
should now contain a PQ value displayed in blue.

Do the following:

�  In the Step III section of the Exercise 3 Answer Sheet, enter the reported PQ value.
�  Answer the Summary Questions on the Exercise 3 Answer Sheet
�  Submit one screenshot of the PAT console after performing Step III above.  Make 
sure the PQ values for both the “Intialize Variables” and the “Perform Arithmetic 
Operations” activities can be seen in the Process View Pane.
�  Submit the Exercise 3 Answer Sheet.
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