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ABSTRACT

A programming language kernel is presented where an algorithm is a 
function defined through a functional expression. The only data 
structure introduced is an object that may be an atom or a sequence of 
objects. A number of functional forms are defined, with a notation 
close to ordinary mathematical notation, and their usage is 
demonstrated through several examples. The language allows a high 
degree of parallelism in an underlying interpreting machine.
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A FUNCTIONAL PROGRAMMING LANGUAGE

CHARACTERISTICS

1.0 INTRODUCTION.

This report is a preliminary presentation of a Functional Programming 
Language. It presents the kernel of the language, sufficiently 
powerful to allow the user to express any sequential algorithm, but it 
does not define input or output facilities, nor does it indicate the 
linking to a user's environment such as a file system or a library.

The work is heavily inspired by R.S.Barton and a number of the 
semantic concepts and notations used are his or emanated through 
discussions with him and his collaborator, B.J.Clark. Another source 
has been the paper by J.Backus on functional programming [Backus 78], 
and some of his notation is also followed. The important 
contributions of J.McCarthy, K.Iverson, and P.J.Landin on most of the 
work in the area of applicative programming are also acknowledged.

Backus distinguishes between Functional Programming (FP) systems and 
Formal Functional Programming (FFP) systems. An FP system is a 
'closed' applicative system consisting of a set of primitive 
functions, a fixed set of functional forms, and a set of basic 
definitions; its expressive power is determined through the choice of 
functional forms (i.e., combining rules). In an FFP system new 
functional forms may be created by use of the so-called 
metacomposition rule and an Apply-function; this is a very strong 
facility, but a Pandora's box, that in essence yields unlimited 
expressive power. We believe that this is not needed, and one purpose 
of this report is to demonstrate that with a carefully chosen set of 
primitives and functional forms, an FP system is sufficiently 'rich'. 
It allows you to develop and design algorithms in a well-structured 
way and it encourages top-down design, as the examples will show.
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2.0 BASICS.

Any algorithm will be written as a functional expression, applying to 
one object (the argument) and producing one object (the result). When 
applied to an input object - the given data - it produces an output 
object - the desired result. Since any function and expression in the 
language maps one object into one other object, the objects must be 
able to 'carry' data structures. This is obtained through the 
following definition of objects : An object is one of

a) an atom, denoting one of the primitive objects under 
consideration. They comprise at least the logical values 
{true,false} and (a suitable subset of) N, the integers; 
depending on the applications wanted, the atoms may also 
include real and/or complex numbers, character sets, and 
other sets.
A special atom denoted $ is the nil atom or the 'no value' 
atom (for all kinds of atoms).

b) 'undefined'. Any function applied to the undefined object 
yields the result 'undefined'. (The role of 'undefined' 
is explained more detailed in an accompanying paper [Gram, 
Organick c].)

c) a finite, ordered sequence <x1 , x2 , . ..,xn> whose elements 
are objects. A sequence may be the empty sequence, 
denoted <>, and it may contain 'undefined' as well as 
other sequences among its elements.

Clearly the set of atoms determine the set of objects under conside
ration. The recursive definition b) allows an object to be a sequence 
of sequences of ..., thereby allowing representation of any finite 
data structure.

In [Backus 78] the nil atom $ and the empty sequence <> are considered 
one and the same object. The distinction between these was suggested 
to us by Paul Black [Black 80]. It is adopted here because it 
clarifies the contrasting roles of atoms and sequences, and because 
some of the basic function definitions can be made slightly more 
general.

For the time being we consider a function to be applied just once, to 
one argument object producing one result object. This is not in 
conflict with an implementation model where every function is 
repeatedly applied to a stream of input objects, until the stream is 
exhausted. But it simplifies the description in the following to 
consider one application at a time.
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<algorithm> ::= <functional expression> ! <function def>

<function def> :: =

<fct.name> { (<parameter list>) } = <functional expression> 
{ wher e

<function def> , 

i <function def> } ____  ___

The syntactical form of an algorithm is

<fct.name> ::= <identifier>
<parameter list> <param> { , <parameter list> }
<param> ::= <identifier>

where anything enclosed in {} is optional. The possible forms of 
<functional expression> will be defined below. As is seen, a 
<function def> may contain definitions of subfunctions, thus allowing 
algorithms to have a hierarchical structure. The frame containing the 
definition of a function and subfunctions is called a definition-tree 
(or a d-tree) because definitions exhibit a tree-like structure, as 
explained later.

A function definition may be prefixed by a <well-formed-condition>, 
which is a logical predicate expression, in which case, the function 
is only defined when this expression evaluates to true when applied to 
the input object.

In the definition of a functional form or a primitive function a 
choice must be made as to when it is defined and when it should yield 
'undefined'. We have chosen to leave as few cases as possible 
undefined, i.e., to maximize the domains of functions and functional 
forms. This makes the language easier to use (more 'user-friendly'), 
as long as the syntactically correct programs form a reasonable 
algebraic system where transformation rules may be set up, allowing 
equivalence proofs and manual or automatic transformation of a program 
into more 'convenient' or more 'efficient' forms.

Within the same abstract syntax and semantics one may choose different 
concrete syntactic representations of algorithms. In mathematics 
there is a tradition to choose terse notations, with one letter names 
and little or no 'syntactical sugar', whereas the tendency in data 
processing is to use a more verbose, 'natural English' style 
notations, together with 'long', mnemotechnic identifiers. It is not 
clear what is more readable and teachable in general, and the question 
has to be given careful consideration before finally deciding on a 
specific language representation and teaching style. In this report 
we have chosen to use a semi-verbose notation when introducing the 
concepts, but a number of examples are shown both in that notation and 
in much more terse, redundancy free style (the two styles being 
semantically equivalent), to give the reader the possibility to judge 
for himself.
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Also, one may take issue with a number of smaller design choices we 
have made in this report. They reflect our preferred style of 
programming at this time but could easily be changed without changing 
the basic spirit of the language. B.Barton and B.Clark stress the 
importance of building on pure mathematical ideas and models and not 
leaning on constructs that are inherited from present programming 
languages. Yet, to be able to write down explicit example algorithms 
we have violated these principles to some extent, and more 
specifically we deviate from the Barton/Clark notation on the 
following points:

1. We number the elements of a sequence 1,2,... instead of 
0 , 1 , . . .

2. We use [ ] for construction and ( ) for general 
grouping/delimiting instead of using ( ) in all cases.

3. We use an explicit symbol & for composition instead of 
letting it be implicit in the juxtaposition of functions.

4. We present two syntax styles which we call verbose and terse 
styles, respectively, considering them equivalent and equally 
suitable. In Barton/Clark notation only the terse style is 
used, this style being more closely related to conventional 
mathematical notation and more directly manipulable by 
functional algebra.

5. Our definitions of the primitive functions (head, tail, ...) 
are more lenient in some special cases (like evaluation of 
head of an atom).

6. Our suggestion for the binding priorities of the functions 
and operators is slightly different from the Barton/Clark 
model.

A preliminary example is given here to show how a very simple function 
definition appears. The algorithm to solve the linear equation 

a x + b = 0 
may be given as

LINEQ(a, b) _= if a = 0 then [false, $] ;
[true , -b/a]

where the meaning is: The function LINEQ takes as its argument a 
sequence of two real numbers the first of which is denoted a, the 
second b. The algorithm depends on a; if a=0 the result of applying 
the function is a sequence with two elements <false,$>, and otherwise 
the result is a 2-element sequence containing true and the value of 
the solution. In the more terse notation the same function definition 
would be

lineq(a,b) j= ( (F,$) , (T,-b/a) )
a /= 0
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where the logical predicate subscript expression selects the first or 
the second pair depending on whether the predicate is false or true.

Most of the functional forms and the primitives are described using 
the notation

<fct.name or form> : Cinput object> — > Coutput object>

meaning: When the function is applied to the Cinput object> it gives 
Coutput object> as result. We write explicitly all the cases of 
arguments for which the function is well defined as well as some of 
the 'undefined' cases. In all other cases the output object is the 
’undefined' object. Some of the definitions are more 'lenient' than 
those found in [Backus 78]. Fewer cases are left undefined because it 
is considered an advantage that the domain of each function is as 
large as possible.

The use of parameters and subfunctions in function definitions is 
introduced in section 4.1 and discussed more thoroughly in section 
7.2.
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3.0 BASIC FUNCTIONAL FORMS.

The most important part of the language is the set of rules for how 
functions may be combined to form new functions. These combination 
rules are called Functional Forms and they determine the expressive 
power of the language; the primitive functions are the building 
blocks but the Functional Forms define 'directions' and 'dimensions' 
of the space in which new functions may be built.

A functional form is an expression containing some function names (and 
in some cases object names) which are parameters of the expression. 
It denotes a new function class where the parameters may be replaced 
by any functional expressions (or objects) to select an instance from 
the new function class.

We distinguish between basic and derived functional forms in the sense 
that the derived forms can be defined in terms of the basic forms. 
Hence the derived forms do not - strictly speaking - add to the 
expressive power of the language but they are believed to express 
rather fundamental and often needed operations, and thereby the proper 
choice may have great importance in the programming activity as well 
as for the programming style to be used. In most cases it is shown 
how a derived form may be defined in terms of the basic forms (and 
earlier introduced derived forms). There is a certain amount of 
arbitrariness in the choice of which functional forms are considered 
as basic and which as derived; you may turn 'upside down' the 
definitions of some of the derived forms and get definitions of some 
of the basic forms instead. The choice presented here should be 
considered a first approximation, and further study may lead to a 
different classification of the functional forms.

The distinction between basic and derived forms is purely 
logical-mathematical and bears no significance regarding the 
implementation. In an actual machine one may choose to implement some 
or all the functional forms as built into the underlying interpreter 
structure.

We introduce four basic functional forms:

3.1 Composition.

F & G : x --> F : (G : x)

where F and G are any functional expressions while x is an arbitrary 
object. The result is 'undefined' if G:x yields 'undefined'. This 
form expresses composition of functions as used in mathematics, and it 
is read left to right ("F is composed with G"). However evaluation is 
from right to left. That is, first apply G to the argument and then 
apply F to the result of that. Figure 1 is a graphical flow-graph 
(process chart) illustration of composition, demonstrating the 
sequencing nature of composition.
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F

Fig. 1 Functional composition: F & G

Composition is associative, i.e.

F & (G & H) = (F & G) & H

but not commutative (in general, F&G is different from G&F).

In the terse notation we may choose to express composition of 
functions just by juxtaposition of their names, ommitting the & 
character when its presence can be inferred from the context. 
Composition may also be written as application of a parametered 
function, and in section 7.2 we sometimes shall write

F & G

F & [G, H]
as
as

F(G) 
F ( G ,  H)

3.2 Construction.

[F1, F2, ..., Fn] : x — > <F1:x, F2:x , ..., Fn:x>

where F1,F2,...,Fn are n arbitrary functional expressions (n>=1) and x 
any object. This form is used to build new objects from 'parts and 
pieces' or to change the structure of an object. Note that if any of 
the functional expressions F1,F2,...,Fn yields 'undefined' when 
applied to the argument, the constructed sequence contains undefined 
element(s). Thus

[head, tail] : a --> < a , 'undefined' > (a an atom)

because tail:a is undefined. Figure 2 is a graphical illustration of 
construction demonstrating the concurrent, parallel nature of 
construction as each of the functions apply to the same argument.

F *

H *

Fig. 2. Construction: [F, G, H]

Examples of the usage of construction are:

To find the length of a sequence and keep it together with the 
sequence we construct a new 2-element sequence:
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[id, len] : <x1 , x2 , . . . , xn> — > < <x1 , x2 , . . . , xn> , n > .

To delete x1 and update the length accordingly, we may apply the 
construction (where J denotes the constant function with value 1)

[tail & id , id - J_]
1 2

to the above result yielding the new result

< < x 2 , . . . , xn> , n - 1  > .

The entire operation could also be expressed at once with one 
functional expression as a composition of the two constructions

[tail & id , id - j_] & [id, len] .
1 2

The construction [head,tail] imposes a structure on a sequence: 
Applied to a sequence <x1 , x2 , . . . , xn> it gives as result the 2-element 
sequence

< x1 , <x2, . ..,xn> > .

To create a more 'symmetric' splitting into a sequence consisting of 
<x1> and <x2,...,xn> (which in a certain sense is the inverse of 
concatenation) we must construct

[ [head] , tail ] .

In the terse notation we use only one set of parentheses and hence 
construction will be written as (F1,F2,...,Fn) .

3.3 Condition (or Functional Selection).

The syntactical form of a condition is

if p then F ; G

where F, G are arbitrary functional expressions while p must be a 
functional expression that evaluates to true or false when applied to 
the argument x. The result of applying the condition to an argument

i f p then F ; G : x --> { F:x if p:x = true,
{ G:x if p:x = false

The value is undefined if p:x is undefined, or if the actually applied 
branch (either F or G) yields 'undefined' when applied to x.

The semicolon is chosen instead of 'else' because conditional
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expressions often are nested, as in the following example:

if then (if q then G ; (if r then H ; J))

and using ’else' would make this look very clumsy. Parentheses may be 
omitted when no ambiguity arises. Thus the above nested structure may 
also be written as:

( i_f p then F 
i f q then G 
if r then H J )

and represents a 4-way branch (a ’case’-expression) where the branch 
taken depends on p,q, and r; the last function J represents the 
'else* case and is used if p, q, and r all give false when applied to 
the argument. Similarly, the expression

if then ( if

is equivalent to

if p then if

then

then

F ; G ) ; H

F ; G

Fig. 3. Condition: i_f p then F ; G

Figure 3 shows a graphical representation of the conditional form with 
two branches, the upper branch representing the operative flow path 
when p applied to the argument is true.

In the terse notation the condition i_f p then F ;G

( G , F )

is written

This may be considered a special case of the more general functional 
selection

( F1 , F2 , Fn )
K

where K is a functional expression such that K:x is an integer (or 
even a sequence of several integers) defining which of the functional 
expressions F1,F2,...,Fn is (are) selected. This will be discussed 
further in a following section.
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3.4 Constant.

A constant function with value y is denoted y where y may be any 
object (including $ and <>). When this function is applied to an 
object the result is y:

y : x — > y for any object x not undefined
y : ’undefined' — > ’undefined’

Constant functions are used to introduce constants and initial values 
into objects. Thus, for instance,

(id + 2 )  : <x1, x2, ..., xn>
1

which is the infix form of + (i<̂  ,2 ) : <x 1 , x2 , . . . , xn> , means:

apply id̂  to the object to get x1 (it must be a number) 
apply 2 to the object to get the value 2 
apply + to the sequence of previous two results

to get the atom whose value is x1+2.

In functional expressions every name symbol denotes a function and 
never an object or a value. Hence no ambiguity arises from writing 
the constant function y as just y, and we shall - in most cases - use 
the latter notation.- This means that when an object name or a 
constant value appears in a functional expression, it denotes the 
corresponding constant function, but in an object it denotes 'itself'. 
Therefore, in the above example we will allow the notation

id + 2 , meaning id + 2 .
1 1

Fig. 4. Constant function: y
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4.0 BASIC PRIMITIVE FUNCTIONS.

In order to manipulate objects we need a set of ’primitives’, 
functions that perform the fundamental types of mappings needed. 
These primitive functions are then used to build more elaborate 
functions.

A primitive function belongs to one of the following types:

- selector-function, that takes a sequence as argument and delivers a
part of it . The result is an object consisting of one or 
some of the elements in the input sequence and may be an 
atom or a new sequence.

- constructor-function, that maps a sequence on to a sequence of the
same elements in different order or with a different 
structure, such as concatenating or merging subsequences.

- operator-function, that performs any other mapping, such as an
arithmetic or logical operation. Many of the operators are 
dyadic and take as argument a sequence of two atoms of some 
type and outputs an atom of the same type. There are of 
course also relational operators, for which the result is 
always an atom of type logical.

The set of primitive functions must not be considered as the ultimate 
answer to the question, which primitive functions should be included 
in an implementation. Rather it is a ’minimal’ working set which may 
be expanded in different ’directions’ depending on the application 
wanted.

4 . 1 Selector Primitives.

Some selector primitives map a sequence into one of its elements, 
others map a sequence into a sequence consisting of some of the 
original elements.

select first element:

head : <x1,x2, ...,xn> — > x1
head : <x1> --> x1
head : <> — > ’undefined’
head : a --> a (a any atom)

If the element x1 is itself a sequence, the result is this sequence, 
and the repeated application of head, written as: 

head & head
applied to the argument will deliver the first element of x1 as the 
result.
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select i-th element:

id : < x 1 , . . . , x i , . . . xn> — > xi 
i

id : <> — > 'undefined' 
i

id : a --> a (a an atom)
1

where i is an integer constant the value of which satisfies
1 i input sequence length. Hence

head id^

If the argument x is a sequence of sequences, a repeated application 
of selectors such as

id;  & i d ;

(read from right to left like functional composition in mathematics) 
selects the j-th element from the i-th element xi . We shall also use 
the notation

id: - = id- & id'
- J v

id* . i = idu & id; & id.'
1>A>< - k J >

analogous to the use of indices in usual matrix and tensor notation.
How to select a 'variable' element or subsequences of several elements
from a sequence is discussed in the section "Derived Functional 
F orms".

In a parameter list of a function definition (see below) we will use 
arbitrary (mnemotechnic) identifiers to denote id̂  , id,,, etc. Thus 
the function definition

newfct(a, b, last) =
Cfunctional expression with a, b, and last>

is equivalent to the definition

newfct = <functional expression with all occurrences of
a, b, and last replaced by id̂  , id ̂  , id^ > .

select tail:

tail : <x1,x2, ...,xn> — > <x2, ...,xn>
tail : <x1> --> <>
tail : <> --> 'undefined'
tail : a — > 'undefined' (a an atom)
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The result of tail is always a sequence, not an atom, and hence

tail:<x1,x2> — > <x2> while id^ :<x1,x2> — > x2

and if x2 is itself a sequence <y1,...,yk>, the result of tail:<x1,x2> 
is <<y1,...,yk>>. tail should never be applied to an atom, as it 
results in ’undefined*.

identity:

id : x — > x (for any x)

This primitive is used (and needed) when a new object is constructed 
by adding data to an existing object: The functional construction

[ id , FF ] : x

where FF is some function, creates the result object <x, FF:x>.

4.2 Constructor Primitives.

A constructor primitive maps a sequence on to a new sequence with the 
same elements in a different order and/or with a different structure.

Concatenate sequences:

concat : <<x1,...,xp> , <y1 , .
concat : < <x1,...,xp> , <> >
concat : <<x1,...,xp> , a >
concat : < a , b >

.,yk>> — > 

—  >

(a and b

< x1,..,xp,y1,..yk>
<x1,...,xp>
<x1 , .. . ,xp,a>
< a , b >

are atoms or ’undefined’)

(plus the obvious ’symmetric’ definitions obtained by interchanging 
first and second part of the argument). concat is a dyadic operator, 
i.e., the argument must be a sequence of length 2, and in cases where 
no ambiguity arises we shall also use the infix notation for this 
f unction

x concat y concat : <x , y>

The concatenation function is a generalization of several of the 
primitive functions introduced in [Backus 78] except for some special 
cases. In an accompanying paper [Gram, Organick 80c] is shown how 
Backus’ append, reverse, and rotate functions may be defined in terms 
of the concat function.

Concatenation is used to construct lists and to string together 
objects into ’sets’ without deepening the hierarchical structure. It 
is also a tool to get rid of superfluous sub-structure (’extra 
parentheses’) when creating new objects by functional construction, as 
demonstrated in some of the examples.
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Delete nil elements:

compress <x1 ,

compress
compress

a
<$ , $ , $>

xn> --> the sequence containing all 
non-nil elements of the 
argument (in the same order 
as they appear in the 
argument)

--> a (a any atom)
--> <>

In certain algorithms (e.g., some binary tree operations) it is useful 
to work with an object containing 'extra' nil elements in certain 
positions. The compress function may then be used to get rid of the 
dummy elements at a later stage.

4 . 3 Operator Primitives.

The operator primitives are mostly monadic and dyadic functions 
delivering a number valued or a logical valued atom as the result. A 
basic set might be (where x,y are number valued atoms, n,m are integer 
valued atoms, and z,v are logical valued atoms, and none of them are 
$ , the nil atom):

Arithmetic operators:
+ <x ,
— <x ,
* <x ,
/ <x ,
* * <x ,
div <n ,
rem <n ,
abs X

len <a 1
1 en <>
1 en a

y>
y>
y>
y>
y>
m>

m>

—  > x + y
—  > x - y 
--> x * y
—  > x / y
— > x ** y (exponentiation)
— > n div m (integer division)
--> n rem m (integer remainder)

--> absolute value of x 
ak> — > k (number of elements in sequence) 

--> 0

--> 'undefined' (a any atom)

Logical operators:
and
or
not

<z, v> -->
<z, v> ->
z -->

z and v 
z or v 
negation of z

Comparison operators (a, b are atoms, not $, belonging to a type
with an ordering, and x,y are 
arbitrary objects (not 'undefined')): 

a<b and analogous for < = , > = , >  
x=y and analogous for /= (not equal), 
true if x is an atom, otherwise false 
true if y is a number valued atom,

< : <a, b> — >
: < x , y> — >

atom : x -->
number : y -->

otherwise false.

For the arithmetic operators we shall not specify whether the domain 
is the integer, the real, the complex numbers, or some other set of 
numbers. That depends on the application areas and different
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implementations may implement different number domains. But the usual 
laws of arithmetic must hold (with good approximation).

For all the dyadic operators - i.e., all the above except length, not, 
atom, and number - we shall also allow and use the infix notation and 
parentheses as in ordinary mathematical notation. That means that we 
shall write arithmetic and logical expressions in standard 
mathematical form when no ambiguity arises. (+ and - may here also 
appear as unary operators meaning £+... and 0 -... as usual.) Note 
that in an expression with several operators with the same priority 
(see section 7.1) the order of evaluation is right to left (as in the 
indexed reduction form, section 6.4). Thus, e.g., a - b - c means 
a - (b - c) .

5.0 DERIVED PRIMITIVE FUNCTIONS.

A number of other functions may be defined depending on the type of 
applications wanted. E.g., in numerical calculations a number of 
standard mathematical functions may be implemented as primitives, or 
they may be defined through <function definitions>. The square root 
of a real number may serve as an example here:

r sqrt(a) = END & ITERATION & START

where

START = [ a , 1 ] ,

ITERATION(a , x ) =
while abs((a-x *x)/a) > 

[ a , (x
1 0**(-8) do 
+ a/x) / 2 ] J

END = id
L _  2 J

with the interpretation: The sqrt function takes as argument a single 
number denoted a, and the evaluation consists of the three steps 
START, ITERATION, and END in this order (functional composition, right 
to left). The first step START constructs the 2-element sequence 
<a,1>. The second step is an iteration that takes as input a sequence 
<a,x* > and produces the result <a,x^+^> with the next approximant 
xw+< (using the Newton iteration scheme); the iteration continues 
until the relative error is <= 10**(-8). The original value a must be 
'carried through' (i.e., made repeatedly available during) the 
iteration because it is used in every iteration step, but in the final 
step END it is deleted by selecting the resulting x as the only 
output.
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6.0 DERIVED FUNCTIONAL FORMS.

In this section we introduce functional forms for iteration and 
arbitrary selection from a construction, as well as a class of indexed 
reduction forms. The latter is a generalization of the 
sigma-summation used in everyday mathematics.

6.1 Dynamic Iteration.

Repeated application (composition) may be written as 

while p do F

where p and F are functional expressions. The semantics of this form 
is repeated application of F 

F & F & ... & F
where the number of iterations is determined by p: As long as p 
applied to the current argument is true, F is applied to the current 
argument, yielding the next argument.

The dynamic iteration while p do F is equivalent to the recursive 
function definition

WHILE = if p then WHILE & F ; id

and thus derivable from the basic forms composition and condition. It 
is defined when the functional expressions p and F satisfy the 
conditions: (i) The result object of F must be compatible with (i.e., 
exhibit a similar structure as) the input object because it is used as 
argument for the following iteration of F. (ii) p must evaluate to 
true or false when applied to an argument of F or a result for F.

An example of the use of the while-form is found in the square root 
function defined earlier.

If wanted, it would be easy to introduce a form 'repeat F until q' 
form with semantics as the similar construct in Pascal, and it can be 
defined recursively through

REPEAT = ( if q then id ; REPEAT ) & F .

The reason for not introducing it here is simply that it is not used 
in the examples shown.
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In the terse notation we shall write the dynamic iteration as 

P*
F

where the star indicates repetition of F and repeated application of p 
until p:x=false (the star is chosen because of a certain similarity 
with the Kleene star).

6.2 Fixed Iteration

A fixed number of repetitions (n) of a functional expression F (a 
'for'-loop) is - both in terse and in verbose notation - written as:

N
F

where N and F are functional expressions, with the semantics: First N 
is applied to the argument and must evaluate to a non-negative integer 
n; then F is applied n times (composition as above). If n=0 the 
iteration is the identity function, in close analogy with ordinary 
algebra where x° = 1 , x being any variable. Here also the result object 
of F must have the same form as the input object. As an example, if
< x 1 , x2 , x3 , . . • , xn> is a sequence of length>_3, then

2

tail

gives as result the sequence <x3,...,xn>.

The fixed iteration may be defined in terms of the dynamic iteration 
and is thus also expressible in terms of the basic functional forms:
N

F is equivalent to the functional expression: 

if N < 0 then 'undefined' :

(id & (while id >0 do [F & id , id - 1]) & [id , N] )
1 2 1 2

Note the semantic difference between the two iteration forms: In 
dynamic iteration the 'conditional' p is repeatedly applied to the new 
argument, while in fixed iteration N is applied only once to the 
original argument. .
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6.3 General Selection

So as to extract very general substructures from a composite object, 
we introduce a functional form that allows selection of a much more 
flexible nature than do the primitive selector functions. The 
notation is introduced in an informal way, after which we offer a more 
precise description, where the functional form is defined in a 
step-wise manner, beginning with the simplest case and gradually 
increasing the complexity.

Informally, let A be a construction of functions A = [F1,F2,...,Fn] 
and let I be a function which when applied to the argument yields an 
integer i. Then

A selects the function F

to be applied to the argument. 
If K is a construction [K1,K2, 
integers (k1,k2,...,kp), then

selects the functions
K

,Kp] which yields

[F , ... , F ]
k 1 kp

a sequence of

to be applied (as a construction) to the argument.
Now, let A be a construction of constructions from which we want to 
select one or more functions. This is accomplished by double 
indexing, written as

A meaning: select the J-th function from
I,J the I-th construction of A,

and similarly for triple indexing, etc.
To extract more general substructures from '2-dimensional' 
constructions we extend the multiple index notation to indices that 
are themselves constructions:

[11 , 1 2 ] , J

means

means

[ A
11 , J 12 , J

[ A

]

]
I , [ J 1 , J 2 ] I , J 1 I , J2

and finally, if both indices are constructions:

A means
[11 ,12],[J1 ,J2]

[ [A ,A ] , [A , A ] ]
1 1 , J1 1 1 , J2  1 2 , J1 1 2 , J2

T h u s  A ^  v, 
J., J

is understood to mean the set of A-functions selected by

all pairs of I-s and J-s, with a 'matrix-structure' similar to that of 
A. The notation is like the indexing of vectors and matrices as used 
in mathematics, and it may indeed also be used here to select elements 
from sequences: If the argument x is a sequence <x1 , x2 , . . . , xn> and A
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is a mnemonic for the identity function, then

A :x means select one or more elements from x 
I

and if x is a matrix (a sequence of rows each of which is a sequence):

x = < < x 1 1 , . . . , x 1 n> , <x 2 1 , . . . , x 2 n> , . . .  , <xm1 , . . . x m n >  >

then A :x similarly selects one or more elements from the matrix.

The more formal definition of General Selection is done below in 8 
steps. Let A, I, J, and K denote functional expressions, and let x 
denote an object such that:

A : x is a sequence, say of length lx.
I : x is an integer i, 1 _<i_< 1 x .
K : x is a sequence of integers in the interval 1<k<lx.

We first define selection of one element:

(1) A : x — > the i-th element of A:x.
I If A:x is an atom and I:x=1 ,

the result is A:x .

Remark: Formally speaking, the functional expressions A and I are 
applied to the same argument, x, before the selection is performed. 
But in an efficient implementation it may be preferred to postpone 
application of A until the 'select-value' I:x is known. If A=id and I 
is a constant function, the definition coincides with the primitive 
selector function.

The new form may be defined in terms of the previously introduced 
functional forms:

^*7 = SELECT & CUTOFF & APPLYINIT ^
I

where
APPLYINIT = [ A , I ] ,

CUTOFF =_ while id^ > 0 ck> [ tail & id^ , id^- 1 ] ,

SELECT _= head & id̂

Let A:x be the sequence <a1 ,a2, . . .,alx>, and let K:x be the sequence 
of integers <k1,k2 , . . .,kp> , all between 1 and lx. We then define

(2) A : x  — > <a ,a ,...,a >
K k1 k2 kp

As a very special example, if A:x is an atom and all the k-s are equal
to 1, then the form (2) constructs a sequence with p copies of the
same atom. The definition may also be written (a little sloppy)
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A : x  = [A , A , ... , A ] : x
K k1 k2 kp

Definition (2) easily generalizes to the case where K is a 
construction whose components yield integers when applied to the 
argument. Hence

(3) A = [A ,A , . . . ]
[I,J ,. . . ] I J

where I:x, J:x,... each yields an integer or a sequence of integers 
such that the elements on the right hand side are defined through (1) 
and (2) .

Note that with this definition we distinguish between

A and A = [ A ]
I [I] I

the second expression being a construction with the first function as 
its only element.

Now let A:x be a sequence of sequences (a 'matrix’):

< <a 11,...,a 1n>,<a21,...,a2n>, . . . ,<ami,...,amn> >

and let I:x=i and J:x=j. Then multiple indexing - selection of a 
matrix element - is defined as

(4) A : x --> the j-th element of
I,J the i-th element of A:x

Double indexing may be defined in terms of single indexing (using 
definition (1)) as follows:

A = (id,,) & [ (id^) ,id3 ] & [ A , I , J ]
I,J idz id2

or, a little sloppy, using parentheses:

A = ( A )
I , J I J

where it is understood that A, I, and J all must be applied to the 
argument x before selection takes place.

Definition (4) is used to select a single element from a 
matrix-structured object. Selection of a set of elements is done by a 
generalization of (4). If K:x is the sequence <k1,...,kp>, then

(5) A = [A , ... , A ]
I , K i , k 1 i , kp

A = [ A , . . . , A ]
K, J k 1 , j kp, j
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If application of both index functions yield integer sequences, the 
selection rule is: Apply (5) as above, ’expanding' the index 
functions in order from left to right, and an index function yielding 
an integer sequence gives rise to a construction in the result. Thus, 
if L :x=<l1,...,lq>, then

(6) A = C A > A , ... , A ]
K , L k1,L k2,L kp,L

= [ [A ,...,A ] , . . . , [A , ...,A ] ]
k1 ,11 k1,lq kp,H kp,lq

such that the index pair K,L implies forming all the individual 
integer pairs ki,lj (somewhat like a cross product) and use these as 
single element selectors. Note that by the ordering and sequence 
structuring used in (6), we preserve the matrix structure from the 
object A:x, and if, e.g., K and L yields all the indices of A:x,

K:x = <1,2,...,n> and L:x = <1,2,...,m> 
then the functional form (6) is the identity function. If A:x is a 
'multi-dimensional' object, selection may be done using a multiple 
index expression, e.g.,

(7) A
K,I,L

Constructions occurring among the indices are 'expanded' left to 
right, such that if I, K, and L are defined as above, the meaning of
(7) is:

(7a) A = A
K ,I ,L [k1, . . . , kp] , I , L

= [A , . . .  , A ]
k 1,I ,L kp,I ,L

= [A , . . . , A ]
k 1,i,L kp , i , L

= [A , ... , A ]
k1,i,[H,...,lq] kp , i , [ 11 , . . . , lq]

= [ [A , ...,A ] , . . . ,  [A , . . . ] ]
k 1 , i , 11 k1,i,lq kp,i,11

Thus, in a sense, the comma in multiple indexing works as a 
right-associative cross product operator on indexsequences.

Selection of one or more rows from a matrix is now easily done by 
applying a form like

A
I
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Selection of a column requires a construction like

A : x
[ 1 , 2 , . . . , n ] ,J

where n is the number of rows in A:x. The sequence of all row index 
values may be constructed by concatenating the integers 1,2,...,n and 
this may be expressed as

(concat/ ( i )
^ ----1=1

using the indexed reduction form defined below. But since it is a 
useful construction in many applications, we introduce for this 
purpose a star index notation meaning 'all index values':

(8) * : x — > <1,2,...,N> where N is the number of
rows if * is used as index 1, 
columns - * - - - - 2, etc. 

in the object to which this 
subscript expression is 
applied.

* : a — > 'undefined' (a an atom).

With this definition the following holds:

A = A
* ~

A = A
I , *  "  I

A :x — > the column(s) selected by J:x

(Strictly speaking, this definition holds only if x and A:x has the 
same structure - same number of rows etc. - but this will be the case 
in most applications.)

6.4 Indexed Reduction.

In mathematics, notations like

__ n 100
A and p(k)

i=1 i k=1

are used as short-hands for repeated application of a dyadic, 
associative operator to a sequence of operands all of the same type.
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A similar notation is introduced here, very much resembling the 
reduction operator in APL. Let OP be an operator, A(i) some 
functional expression depending on an undefined integer, 'dummy' 
variable i, and let 11, 12 be two 'index' functional expressions. 
Then the functional form which we shall call indexed reduction is 
written as below, with the meaning indicated by the right hand side:

(9) ©  < A( i) ) : x --> A( i1) :x ©  A( i1 + 1 ) : x ©  . . . ©  A( i2) : x
i = I1

More precisely, the entities occurring here must satisfy the 
conditions:

1. OP must be a dyadic function, the result of which is of the 
same type as its two operands (as, e.g., several of the 
arithmetic and logical operators, as well as the 
concatenation primitive).

2. 11 and 12 are functional expressions that evaluate to 
integers i1 and i2, 0<i1<i2, when applied to the argument x.

3. A(i) is a functional expression, in which i denotes a 
constant function, such that A(i):x is defined for all i in 
the interval i1<i£i2, and A(i):x must all be objects of 
OP-operand type.

Logically (but not necessarily so in a real implementation), the 
application of indexed reduction proceeds as follows:

1. Evaluate I1:x --> i1 and I2:x --> i2.

2. Evaluate A(i1):x-->x1, A(i1+1):x-->x2,

3. Evaluate the result as x1 (OF̂  x2 (0F>) . . . 
left order.

In the most common applications of this functional form, the function
OP is one of the operators: addition, multiplication, or
concatenation, and we shall in some of the examples below use the 
notations

for indexed reduction with +

T T  - - - - *

( 0  - - - - concat, equivalent to the
construction of a sequence from its single elements.

When the reduction is to be applied for all members of a certain set 
(e.g., all elements in a sequence), a star notation is used:

. . . ,  A ( i 2 ) :x— >xp .

©  xp in right to
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#

(10) @  ( A( i) ) : x --> A (1 ) : x @  A ( 2 ) : x @  . . . @  A(N) : x
i= 1

where N is the last integer in sequence for which A(i):x is defined 
and gives an object of OP-operand type. (N must be finite.)

Nested application of a reduction is often useful, especially in 
matrix manipulation. Since A(i) in the above definition may be any 
functional expression, it can be a reduction form itself. Hence an 
expression such as

(11) 7 "  ( y *  (A * A )) = T'" ( B(i) )
^  i = 1 ^  = 1 i n-j ^  i=1

can be interpreted according to the given rules:

1. In the outer form, 11=1 and I2=n. Hence we must evaluate

B (1 ) : x = (A, *Ah * ):x
j = 1

2

B (2):x = ^  ( kj *A * ):x 

_| n
B(n):x = ^  (A *A K ■ )) : x 

^ j  = 1 *

and then add together all these values.

2. In each of the inner forms, 11=1 and 12 = some number i.
Hence we must evaluate

(A t * A r W  > :x  

(A* *Ah.z ):x

‘(Ai *An-C ):x

and add together all these values to get B(i):x.

The parentheses in (11) may be a help for reading and understanding 
the expression, but they are not required in this case. No ambiguity 
arises if the parentheses are left out because of the rule of 
syntactic scanning left to right and evaluation right to left (see 
"Functional Definitions"). Hence, exactly the same result is obtained 
from the expression without parentheses:
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The indexed reduction form is derivable from the forms and primitives 
introduced earlier. If OP is addition, e.g., the form may be defined 
as follows (using the terse notation for dynamic iteration):

12  N 

( A  ) = RESULT & SUMMATION & INITSUM 
i = 11 i & CONSTRUCTSEQ & APPLYINIT

where
APPLYINIT =[*<>, id , 11 , 12 ] ,

( id, <idy ) *
CONSTRUCTSEQ = (id. concat A , id-, id-, id -1) J 7 

~ 1 i d ^  «  1 »

INITSUM = [ 0 , id4 ] ,

SUMMATION _= (id^+ head & id-, tail & id^)
(idz /= <>)*

^ RESULT_________= id^



7.0 FUNCTIONAL DEFINITIONS.

7 . 1 Functional Expr essions.

Using the primitive functions and the functional forms as building 
elements, algorithms defining new functions are expressed by combining 
the elements in functional expressions. A functional expression is 
one of the following:

1. A primitive function.

2. A functional form.

3. A <fct.name>, i.e., the name of a function defined elsewhere 
in the current context (see scope rules as defined below). 
The function may be applied with or without parameters.

Since a functional form may contain functional expressions, the 
definition above is recursive and allows construction of arbitrarily 
complex functional expressions. Parentheses are used to express 
grouping when necessary, i.e., whenever the built-in priorities of the 
functions and operators don't suffice. The following list is a 
preliminary suggestion for the built-in binding priorities, from the 
highest to the lowest:

(highest) index selection F and condition F
G p

N p*
iteration F and F

composition F & G

dyadic operators (when written in infix form):
* *

* / mod rem 
+ -

< < = > > /  =

and
or

(lowest) concat

The construction form groups like ordinary parentheses
and has thus - in a sense - the highest priority. A similar rule 
holds for iteration and index expressions: any subscript or 
super script is implicitly taken to be surrounded by parentheses and is 
evaluated per se, before being applied to the 'radicand' expression.
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As an illustration of these rules, the expression

P and Q*
[ D concat E , A + B & C ]

q I,J

is equivalent to the fully parenthesised expression

(P and Q)*
[ (D concat (E )) , (A + (B & (C ) )) ]

q I,J

[Note: In Barton/Clark notation, iteration (functional
exponentiation) is considered to be more binding than selection. 
Thus,

N N
(a) F means the ith component of F , as does

i
N

(b) F , whereas
i
N

(c) F means the Nth iterate of F .]
i i

If condition is written in the verbose form, the above rules imply 
that, say,

if p then F ; G & H = (if p then F ; G) & H

Whenever confusion may arise as to the extent of a conditional 
expression, parentheses should be used to bracket it.

As an example of the use of the functional expressions, consider the 
problem of finding the maximum element in a sequence of real numbers 
<a1,a2, . . .,an> . The definition-tree for the function MAX below 

gives as its result a 2-element sequence with the maximum element and 
its index in the form:

< max a , index of max a > .
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MAX(A) = RESULT & LINSEARCH & INITIALIZE

where

INITIALIZE = [A, i--
---

---
---

--
I

> 1__
__
_
l

no i __
__
_

i

rLINSEARCH(A,max,I) =

[ A , if A > max 
I 1

N-1
then [A ,I] ; max , 1+1]

I
where

N = length( A )

RESULT = id
2

Here the first line defines the MAX function as a functional 
expression, being the composition of three functions defined in the 
next lines of the d-tree. The single parameter A is here just a 
mnemotechnic for id. The subfunction INITIALIZE is defined through 
its functional expression as a construction of three objects, of which 
the middle one itself is a construction. The parametered subfunction 
LINSEARCH is defined as a d-tree because it again has a subfunction N; 
LINSEARCH works on a 3-tuple and performs the linear search by 
performing N-1 constructions of the same form as made by INITIALIZE: 
A is kept unchanged, the index I is increased by 1 per iteration, and 
the middle element max is updated whenever a larger element is found. 
Finally, RESULT is defined by a very simple functional expression 
being just the selector id , delivering the latest <Ai,i> as the 
r esult.

7.2 Semantics Of D-trees And Parameters.

In this section we shall gain understanding of the syntax and 
semantics of algorithms expressed as tree-structured (hierarchic) 
function definitions. From the BNF syntax in Section 2, we see that, 
in keeping with conventional mathematical notation, a d-tree is a 
function consisting of a main function (definition), followed by a set 
of mutually independent subfunctions (definitions), each having, 
recursively, a similar structure.

Examples will be given in the terse notation; parentheses will be 
used both for bracketing parameter lists and for denoting 
constructions.

One should keep in mind three key rules: ,

1. The text of a definition is to be read (scanned) top-down 
(line-by-line), with each line read from left to right.
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2. Functional expressions within definitions are to be 
understood (evaluated) primarily from right to left. If any 
expression extends beyond one line, then it is evaluated 
bottom-up (line-by-line).

3. The argument of a d-tree is the argument of its root 
f unction.

These three rules will help you to understand the use and scopes of 
parameters and subfunctions within a function definition, as defined 
below. Subfunctions (sub d-trees), which are introduced under the 
where mark, similar to usual mathematical notation, are applied to 
carry out application of the root function to its argument. In the 
sequel, we shall mainly/exclusively deal with main functions with 
parameter s.

Preliminary concepts needed to understand d-tree semantics

Several examples will help make more precise the points just made. 

Example 1

f(w,x,y) _= (g(w,x), h ( w , y)) 
where ’

— g(u,v) ^ u + v , 
h ( a , b) = a * b

d-tree skeleton 
f

This d-tree is applied to an argument being a sequence of three 
objects represented, respectively, by parameters w, x, and y. The 
functional expression for f consists of the construction of two 
mutually independent functions, g and h. Parameters of g and h, in 
the definitions under where, are matched, via the usual rules of 
positional correspondence, with their corresponding arguments in the 
application on the first line. Thus, for g, 
the substitution is: fw — > u 'i

\x --> v j, and for h , 
the substitution is: fw — > a'j

ty — > b J.

Since g and h are each to be applied to argument structures dependent 
on the argument structure of f, the application of g and of h must be 
deferred until their respective arguments have been produced from that 
of f. In general, application of any subfunction that is defined with 
parameters takes place only after the argument structure of the main 
function is properly mapped to the desired argument structure for the 
subf unction.

In the context of f being applied to its argument, 
g(w,x) is a shorthand for g & (id. , id^)

and
h(w,y) is likewise a way to express h & (id^, id^).

Now suppose the argument of f is the sequence <5, 6, 7>; then, 
application of the constructions (w,x) and (w,y) to the argument of f
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yields <5,6> and <5,7>, respectively. The subfunctions g and h are 
then applied to these new arguments, eventually forming the result,
< 1 1 ,3 5 >, as the process (or data flow) diagram below suggests.

<1 1>

<11,35>
<35>

<5 , 6>

<5 ,7>

id.,

id.

idi

id.

<5 , 6 , 7>

In this diagram we have elected to suppress the details for

<-- 1 g |<--- and <---1 h |c---, which in this case may be simply

replaced by <-- 1 + |c--- and <---1 * ---, respectively.

The right hand sides of the definitions of g and h were originally 
given as infix expressions. But, as said in section 4.3, we shall 
allow syntactical alternatives, such as

rg(u,v) = +(u,vvn  
Ch(a ,b) = *(a ,b)3

or, even more 
succinctly,

r g ( u , v ) = +') 
}h(a,b) = * J

In our first example, we have illustrated the case where the main 
function refers to (invokes) subfunctions whose arguments are derived 
by functional composition from the main function. We might even say 
this is the usual relationship between a main function and its 
subfunctions. Such subfunctions must be evaluated (applied) each time 
they are referenced.

Another case arises where the argument of the main function, 
that of a subfunction are the same, as in the next example.

f , and

Example 2

f(w ,x ,y) = (g, g, h) 

where

g = w + x 
h = w * y

d-tree skeleton 
f

In an application of this d-tree to the argument, <5,6,7>, for 
instance, it is sufficient to evaluate the right hand sides of g and h 
only once, by evaluating g and h prior to evaluating the right hand 
side of f. Here, because g and h have no parameters, they depend 
directly on the argument of f. This is characteristic of what we 
shall denote as parameterless subfunctions.

The meaning of a d-tree is independent of the order in which its 
parameterles subfunctions (if any) are evaluated (applied to the 
d-tree's argument). Therefore, there is no loss of conceptual 
generality if, in some underlying implementation, it is convenient to 
evaluate each parameterless subfunction before the root function's
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right hand side is evaluated.

Of course, it is possible to draw a process diagram to suggest how an 
underlying implementation may evaluate f, such as:

r - 0 - ( id; id2)

(id, id2 )

(id. id3)

but it cannot be regarded as necessarily the best way to achieve the 
result. Other interpretations, mathematically equivalent, come to 
mind, such as: .

concat

(id, id,,)

(id1? id3 )

Depending on the relative speeds of executing selections, 
constructions, and concatenations in the underlying machine, one 
alternative may be preferred to another.

A reference to a parameter less subfunction may not be followed by a 
list of arguments. On the other hand, a reference to a parametered 
function, k, ordinarily includes an argument list that conforms to the 
(formal) parameter list of k. Thus, examples 3, 5, 6, 8, and 9 are 
all mathematically equivalent. But, their interpretations in our 
frame of reference differ as follows:

Example 3 has the interpretation given in 4. Examples 5 and 6 have 
the identical interpretation given in 7. Here [f] and [g] are composed, 
respectively, with the "filters" [F| and [s] to transform p's argument to 
those of f and g. Examples 8 and 9 have the identical interpretation 
given in 10. Here, [f] and [g] are composed with the identical filters, 
(r , s)j , because in this case f and g each require arguments that 
happen to be identical copies of p's argument. (In this example set, 
we have assumed that sqr is a primitive squaring function, i.e.,

id -i—
sqr f“»— = “*~ * *-

id *—
. )

Example 3

p ( r , s ) = f ♦ g 1
where 

f = sqr(r ) + 1 ,
g = sqr(s)/3
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Example 4

E}*-

where

Example 5

Example 6

Example 7

sqr

p(r ,s) _= f (r) + g(s) 
where

f (a) j= sqr(a) + 1, 
g(c) = sqr(c)/3

p(r , s) _= f (r ) + g( s) 
where

f(r) _= sqr(r) + 1, 
g(s) = sqr(s)/3

Cl
sqr «— r

— + * —
1 m----------- "* ’

where

r f

sqr <+

Example 8

P ( r , s) ^ f ( r , s ) + g ( r , s) 
where

f (a ,b) _= sqr(a) + 1, 
g(c , d ) = sqr(d)/3
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Example 9

p(r,s) = f(r,s) + g(r,s) 
where

f ( r , s) = sqr (r ) + 1 , 
g(r , s) = sqr(s)/3

Example 10

When the actual argument of a parametered subfunction, g, is the 
result of a composition, the argument list for g is implicit, as seen 
in Example 11.

Example 11

P(u,v) = A & B & C (u , v )
wher e

C ( r , s ) = ( sqr(r) , cube(s) ) ,
B(a,b) = a + b ,

= sqr(x)
i

A (x)

Thus if P is applied to <3,4>, the implicit argument list for the 
reference to B will be <9,64>, because C(3,4) = (sqr(3) ,cube(4)) = 
<9,64>. In turn, the implicit argument list for A- is 73, which is the 
result of applying B to <9,64>. Incidentally, in this case even the 
argument list for C may be omitted since it comprises the entire 
argument list for P. In other words, there would be no change in the 
meaning of P if it were defined as in Example 12.

Example 12

P(u,v) = A & B & C 
where

C(r ,s) _= ( sqr(r), cube(s) ), 
B ( a , b) = a + b,
A (x) = sqr(x)

Rules for Evaluation of a D-tree

We are now ready to offer an informal definition for the semantics of 
d-trees, including the use of recursive definitions.
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(1) Application of a d-tree implies (is achieved by) 
its root function.

application of

(2) A step preliminary to evaluation of the right hand side expression 
of the root function is the evaluation of each parameterless 
subfunction —  applied to the argument of the d-tree. This leads to 
the constraint that a parameter less subfunction, g, may not appear on 
the lefthand side of a composition, such as g & h. Execution of h 
would necessarily produce a new context for g which will in general 
differ from that of the containing d-tree.

Example 13a

P(u,v) = g & h(u-1 , v+1) 
where

h( a , b) = a * b , 
g _= u + v

illegal

Example 13b

& (h(u-1,v+1) ,5)P (u , v ) = 
where

h ( a , b) = a * b , 
g . = u + v

illegal

To see why 13a is illegal, note that computing P(3,4) could lead to an 
attempt to apply g to the argument, h(2,5) = 10. This leads to an 
attempt to apply g in the context, 10, which is not even conformable 
with (u,v) let alone equal to <3,4>, the required context. Another 
way to see the illegality of 13a (and also of 13b) is to notice the 
ambiguity involved. One would get a different result when evaluating 
P(3,4) if g is applied as the first step in the application of P, 
rather than in the last step. Thus, in Example 13b the two possible 
values for P(3,4) would be 7 and 15.

(The order in which parameterless subfunctions are evaluated is 
inconsequential, and they may be performed concurrently, if the 
underlying computing system is so organized.)

(3) Following (2) above, each referenced parametered subfunction is 
applied as required in the evaluation of the root function. The 
actual parameter list in a reference to a parametered subfunction may 
be suppressed (remain implicit, as was seen in Examples 11 and 12 
above) when the argument is the result of a preceding function 
application (by composition) or when the argument of the subfunction 
is the argument of the its d-tree.

(4) To preserve the strict hierarchic intent of the d-tree, no 
subfunction may refer to a sibling subfunction. (It may only refer to 
its immediate parent of to its own direct offspring.)

(5) Application of a parametered subfunction implies (is achieved by) 
the construction of a new argument context (as specified by the formal 
parameter list) which is used in evaluating the parametered 
subfunction’s right hand side and which temporarily hides the caller’s 
argument context. Therefore, parameters that denote objects in 
antecedent contexts may not appear on the right hand sides of 
parametered subfunction definitions. (No free variables (globals) 
allowed.) Hence, the right hand side of a parametered subfunction 
definition may not include a reference to the context of the d-tree in
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the form of a parameter of the root function (unless the root function 
parameter has been properly repeated as a parameter of the 
subfunction).

The following are, respectively, illegal and legal examples vis a vis 
the above constraint.

Example 14a Example 14b

p ( u , v )  = h ( u - 1 , v ) 

where
h ( a , b ) = a * b  + v

p ( u  , v)  j= h ( u - 1 , v )  

where

h ( a , v ) = a * v + v

illegal

Parametered functions must be applied with 
composition, as illustrated in Example 15.

legal

care when combined with

Example 15a

f ( a , b , c) j= g ( a , b) & id3 
where

gTx,y ) = x + y

or, alternatively, 

Example 15b

Example 15c 

— (?]— = *  

where

— E h - =

/ d3
' J J

g

4 Z K

f (a , b , c) _= 
where

& id-

g C x , y) = x + y

where

id4

id.

Composing g(a,b) with id (or g with id ) leads to what may be 
regarded as an unexpected (or unintended) result. Application of id 
tranforms the original argument context of the d-tree to a new one 
that may be incompatible with the one required for application of g. 
The equivalent process diagram in Example 15c reveals the potential 
inconsistency of the definitions in 15a. For example, when the d-tree 
is applied to the triple, <3,4,5>, application of id produces 5, which 
is then supplied as the argument for the construction, (x,y). Recall 
that (x,y) is merely a shorthand for ( id* , ida ) . Since (x,y) cannot be 
applied to 5, the computation must fail at this point. On the other 
hand, if the argument of the d-tree were <3, 4, <5, 6> >, the 
interpretation of the diagram in Example 15b would lead to the 
perfectly reasonable result, 11, which may or may not have been 
intended.

This example shows that parametered functions 
care when combined with composition.

must be applied with
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(6) Within the above framework, the following recursive definition 
structures are permitted:

(a) A main function or a subfunction may be recursively defined,
(b) Mutual recursion involving a main function and one (or more) 

of its parametered subfunctions is permitted, provided, of course, no 
subfunction refers directly to a sibling subfunction.

It is easy to see why a parameterless subfunction, g, may not be 
defined mutually recursive with its root function, f, for if so, g 
could be evaluated first, leading to a first actual application of f 
from within the tree, rather than from outside.

(7) The above semantics (1 through 6) are unchanged under the gene
ralization that each subfuntion of a d-tree's root function may itself 
be the root function of a sub d-tree.
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8.0 EXAMPLES.

8.1 Bui Id ing A Search Tree.

A binary tree may be represented as a 3-element sequence

< tree , left subtree , right subtree >

where the two last items again are binary trees in the shape of 
3-element sequences. Hence all branch nodes in the tree have the 
above form, while a leaf is represented as

< node , $ , $ >

Thus the binary tree

will be represented as

< f , <b, <a , $ , $> , <d , $ , $>> , <k , $ , $> > .

The function, INSERT, defined below inserts a new element as a leaf in 
an ordered binary tree. The function takes as its argument an object 
of the form <Tree ,x > , where Tree is an ordered binary tree as 
above, and x is an element of the same kind as the first element of 
each triple in the tree. The result of applying the function is a new 
tree-object where x is inserted in a new leaf <x,$,$>.

INSERT is defined as a recursive function, and the idea behind the 
algorithm is to search down the tree until a $-node is found; then 
this node is replaced by the new leaf <x,$,$>. In the first version, 
INSERT is a parameterless function:

INSERT = 

if Tree 
17 ROOT

= $ then 
> x then

[ X ,

[ROOT,
[ROOT,

$ , $ ] ;

INSERT & [LEFT,x ] , RIGHT] ; 

LEFT, INSERT & [RIGHT,x ] ]

where

Tree =

X

id^ , 

id2 ,

ROOT =
V

LEFT = id,̂  2. ’ RIGHT ~ i d ^

Instead of giving the structure of the argument indirectly through the 
subfunction definitions of Tree and x, this may be displayed more 
clearly by use of parameters:



Functional Programming Page 38

I N S E R T ( Tree , x ) ~
if Tree = $ then T x , $ , $ ] ;
T T  ROOT > x then [ROOT, I N S E R T (L E F T ,x ), RIGHT] ;

[ROOT, LEFT, I N S E R T (R I G H T ,x )]

where
ROOT j: T re e ^  , LEFT _= T r e e ^  , R IGHT _= T r e e ^

or, without using subfunctions at all:

r I N S E R T ( Tree , x ) = ^
if Tree = $ then [ x , $ , $ ] ;
T T  Tree^ > x then [Tree^ , I N S E R T (T r e e ^ ,x ), Tree3 ] ;

_̂___________________________[Tree,j , Tr eeg , INSERT (Tree^ , x)] y

The three definitions are equivalent, and none of them check whether
the new element x already exists in the tree. If this check is done,
the result must convey the information about success or failure, hence 
we change the wanted result to be:

< the new tree , true > or < the old tree , false >

Reporting of the success or failure at the deepest level of the 
recursion may be done as follows (corresponding to the second version 
a b o v e ) :

INSERT( Tree , x ) =
if Tree = $ then T [x, $, $] , true ] ; 
T T  ROOT = x then [ Tree , false] ;

But the next part of the definition must be changed in order to 'carry 
back' the logical value through the recursion levels as the second
element of the result. First, note that each of the two constructions
in the conditional if ROOT>x ... no longer gives a tree object as 
result but a s t r u c t u r e ~ T i k e :

< root , <tree, logical value> , tree > , 

and this must be rearranged into:

< <root, tree, tree> , logical value > .

At every level of recursion, the result of INSERT must have this 
structure. To perform these transformations, the subfunctions 
TRANSFORML and TRANSFORMR may be introduced, and we thus get the 
complete definition of INSERT as follows:
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y— "
I N S E R T ( Tree , x ) 

if Tree = $ then 
if ROOT = x then 
if ROOT > x then 

TRANSFORML & 
TRANSFORMR &

~[ [x, $, $] , true ] ;
[ Tree , false] ;

[ROOT , I N S E R T ( L E F T ,x ) , RIGHT] ; 
[ROOT , LEFT , I N S E R T (R I G H T ,x )]

where
ROOT = Tree , LEFT = Tree , RIGHT = Tr ee ,

1 2 3

TRANSFORML(Node, L, R) = [ [Node, L , R] , L ] ,
1 2

TRANSFORMR(Node, L, R) = [ [Node, L, R ] , R 1
1 2 J

If sibling subfunctions, such as TRANSFORML, ROOT, LEFT, and RIGHT, 
might refer to each other, the definition of TRANSFORML could also be 
written as

TRANSFORML = [ [ROOT, LEFT,, , RIGHT] , L E F T ^  ] 

and corre spondingly for TRANSFORMR.

8.2 I t e r a tive Solution Of Linear Equations (Jacobi M e t h o d ).

Let A be an m-row by n-column positive definite matrix of reals, and
let B be an m-element sequence (vector) of reals. The Jacobi function
(defined below) returns an m-element vector, X, which is an 
approximate solution of the equation

A * X = B.

The result returned is the kth iterate (k>0) of X, given the zeroth
iterate, X O , and subject to the constraint that k may not exceed
MAXITER, an upper bound on the allowed number of iterations. If
convergence proceeeds as expected, the kth iterate of X will be the
first iterate for which the Euclidean norm of X, j -X. is less than the 
given tolerance, T O L : +
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J a c o b i (A,B,X0,TOL,MAXITER) = J ( n e x t x ( A , B , X 0 ) ,X 0 ,M A X I T E R ,A ,B ,T O L ) 

where

J(XNEW,XOLD,MAXITER,A,B,TOL) =
pred(XNEW,XOLD)*

( (nextx(A,B,XNEW),XNEW,MAXITER-1,A,B,TOL) )
1

where

len(XNEW)
pr ed (X N E W , X O L D ) = ^ 7  sqr(XNEW - XOLD ) > TOL and MAXITER > 0

i= 1 i i
M i - 1 N

nextx(A,B,X) = (£  (B - A *X . - 2 Z .  A *X )/A
i = 1 i J = 1 i , J J j = i + 1 i , j  j i,i

where
M =_ len ( A ) ,
N "= len ( head (A ) )

~  J

M iTi N
nextx(A,B,X) = £  (B  -  ^  A *X - A *X )/A

i = 1 i J = 1 i ,j J j = i + 1 i ,J J i,i
where

M _= len ( A ) ,
N = l e n ( h e a d ( A ) )

(An alternative condition for convergence of the Jacobi method is that, 
the matrix A exhibits diagonal dominance and that the system system of 
equations defined by A and B is irreducible.)

[Syntactical note:
To make long iterative forms, such as the one for J above, more easy 
to read, we are free to drop from the iterated expression, parameters 
which do not change under repeated composition and which would 
otherwise appear at the right end of that form. Thus we may rewrite 
the definition of J as:

J(XNEW,XOLD,MAXITER,A,B,TOL) =
pred(XNEW,XOLD)*

( ( n e x t x ( A , B , X N E W ) ,X N E W , M A X I T E R - 1 ) )
1

End syntactical note.]

The application of functions which also check the conformability of 
input arguments A and B, and which possibly also make more substantive 
checks, such as to determine if A is positive definite, may be 
preferred. For example, Pre-Jacobi, defined below, checks the 
dimensionalit ies of A and B for conformability, and if conformable, 
applies Jacobi, supplying a zero vector as the starting vector, X 0 , 
and the number 100 as the value for MAX-ITER in the application of 
Jacobi. Pre-Jacobi returns a two-tuple of the form:

(false, $) or (true, <result of Jacobi>).
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P r e - J a c o b i (A ,B ,T O L ) _=
len(A)

((false, $), (true, Jacobi(A,B, 0,T O L , 100))
i = 0 l e n (A )= l e n (B)

The possibility for exploiting parallel execution when calculating the 
components of an iterate is expressed in the definition of nextx.
The indexed concatenation means that the components of X^+ .̂ are formed 
by a construction, and elements in a construction may be evaluated in 
parallel (if the underlying machine has processing elements that may 
be used for this purpose.)

In a related method ( G a u s s - S e i d e l ) , which has the same sufficient 
conditions for convergence of the iteration, elements of are
computed in sequence so that each newly calculated component of X)c4.( 
immediately enters into the calculation of the next Xk+< component. 
This method converges faster and may hence be more attractive than 
Jacobi when it is known that the potential for parallelism cannot be 
e x p l o i t e d .

8.3 B inary Search

Let A be an ordered vector of numbers - say, increasing - 
< a 1 , a2 , . . . , an> , and let ’key* denote the number whose place (index) 
in the vector is wanted. The argument to the search function is

< A , key >

and the result should be

< A , i , true >
< A 0 false >

if ai = key, 
if the search fails.

The method used is to construct a pair of indices <low,high> such that 
A(low) _< key < A(high) and continue ’halving the g a p’ until low=high. 
Thus the firs^ step is a construction where the initial index pair is 
c r e a t e d :

(1 ) B I N S E A R C H (A , Key) = & FIRST
wher e

FIRST [ A , [1, l e n (A )] , Key ]
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Next step is an iteration performed on this FIRST construction, 
consisting of A, an interval, and Key. The quantities A and Key are 
kept unchanged and the interval (initially [1,len(A)]) is repeatedly 
halved: In each cycle the midpoint M is found and the left or the 
right half selected in accordance with the test Key < A(M) :

(2) I T E R A T E (A , (LOW, HIGH), Key) =

[A, if Key<A then [LOW,M] ; [ M + 1 ,H I G H ] , Key] 
M ______________ ______________

(L O W < H I G H )*

where

M (LOW + HIGH) div 2

This iteration is guaranteed to terminate with LOW=HIGH because the 
interval under consideration becomes strictly shorter for each 
iteration step: As long as the difference between HIGH and LOW is 2 
or more, M satisfies the strict inequalities LOW < M <HIGH; when 
HIGH=L0W+1 the next M becomes M=LOW and thus the next interval, either 
[LOW,M] or [M+1,HIGH], has the length 0, and that will cause the 
iteration to stop.

The iteration delivers a result of the form
< A , < i n d e x ,index> , key > 

and it now remains to test for success or failure and select the
result object:

(3) R E S U L T (A , (11 ,12), Key) =

if A = Key then [ A 
11

[ A

, H  ,

0

true] ; 

, f a l s e ]

Thus the binary search algorithm is assembled by putting (1), (2), and 
(3) together:

(4) r B I N S E A R C H (A , Key) = RESULT & ITERATE & FIRST

wher e

FIRST = [ A , [1, l e n (A )] , Key ] ,

I T E R A T E (A , (LOW,HIGH), Key) = { as in (2) above } >

RESULT (A
V

(11 , 12 ) , Key) = { a s in (3) above } J
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8 .4 Linear R e g r e s s i o n .

Let X = < x 1,x2 , . . . ,xn> , Y = < y 1 ,y 2 ,...,yn> be two vectors which 
provide corresponding pairs of data (say, measurements) xi,yi. We 
want to define a function performing linear regression on these data, 
calculating the standard statistical quantities 

slope and intercept of regression line A, B 
standard deviation STDDEV
correlation coefficient CORR
F-ratio F

The formulae for these quantities may be found in any statistical 
handbook, and a complete Fortran program (1 page long) can be seen in 
R.L.Nolan: "Fortran IV Computing and Applications", section 15.1.

The LINREGR function takes the sequence <X,Y> as input and returns 
a sequence of the above 5 quantities:
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L I N R E G R (X , Y ) = COMPUT_F & COMPUT_CORR & COMPUT_STDDEV &
COMPUT_A_B & COMPUT_D & REDUCE_DATA &

________________ COMPUT N____________________________________________ .
where

COMPUT N = [X ,Y , l e n (X )], —  append N to <X,Y>

R E D U C E _ D A T A (X ,Y ,N ) = [SUMX, SUMY, SUMX2, S U M Y 2 , SUMXY, N], 
where

N N N
SUMX = 2 7  X , SUMY = 2  Y » SUMX2 = 2 7  (X *X ) ,

i= 1 i 
N

SUMY2 = 2 ]  (Y *Y ), 
i=1 i i

1  = 1 i i = 1 i i
N

SUMXY = 2 7  (X *Y ) ,
i = 1 i i

-- form basic 6-tuple of 
-- intermediate values

'COMPUT D (SUMX , SUMY, S U M X 2 , S U M Y 2 , S U M X Y , N) =
[SUMX, SUMY, S U M X 2, SUMY2 , SUMXY, N, D] ,

where
D = N* S U M X , 2 - SUMX *SUMX ,

V -------------
- - append D to tuple J

C O M P U T _ A _ B (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D) =
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B]

wher e
— A- =~(SUMX2*SUMY - S U M X * S U M X Y )/ D ,
B = (N*SUMXY - SUMX*SUMY)/D,

-- append A and B to tuple

C O M P U T _ S T D D E V (SU M X , SUMY, S U M X 2 , SUMY2, SUMXY, N, D, A, B) =
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, S T D D E V ],

where
STDDEV = s q r t (((SUMY2 - A*SUMY) - B * S U M X Y ) / (N-1)), 

_____________________________________________________—  append STDDEV to tuple

C O M P U T _ C O R R (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV) = 
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV, 

C O R R ] ,
wher e
~CORR = B*B*D/(N*SUMY2 - SUMY - SUMY),
t_____________________________________________________—  append CORR to tuple___

C O M P U T _ F (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV, CORR)
= [A, B, STDDEV, CORR, F ] ,

wher e
F~T-B*(SUMXY - S U M X * S U M Y / N )/CORR

-- form final 5-tuple

In order for this function to work properly it must be applied to an 
argument consisting of two vectors, of the same length, of real 
numbers. This condition may be expressed as a well-formed condition 
on the argument (X,Y):
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w f - c o n d i t i o n :

/ —
len(X) = len(Y) and randy (number(X ) and number(Y ))

^ i : 1  i i

If wanted this condition could also be incorporated into the function 
definition itself, making the right-hand side a conditional expression 
yielding the result undefined if the condition is not fulfilled.

8.5 Numerical Integration

In a general applicable integration algorithm for (approximate) 
calculation of

fb F (x ) dx
a

the user must be given the possibility to supply his own algorithm for 
the calculation of function values F(x) , and the integration 
algorithm must supply the 'skeleton' of the numerical integration.

Let us illustrate this by giving an algorithm for the trapezoidal 
integration scheme (with N sub-intervals)

b __ N-1

F(x) dx = (F (a ) + 2 * 2 - i  F(xi) + * (b - a ) /2/n
i=1

I N T E G R A L ( a , b , N ) = > 
_ _ N  - 1

( F (a ) + 2_1 F ^a + i*dx) + F(b) ) * dx/2 
i= 1

wher e
dx = (b - a)/N ,

F(x) = user-supplied 
— , . J

The user must 'plug in' a functional expression that, when given a 
number valued object x, computes the corresponding function value 
F(x) .

If the functional language is implemented in an environment with 
's u b r o u t i n e 'l i b r a r i e s , a special notation - a 'naming facility' - 
should be introduced to allow linking a pre-coded algorithm for F(x) 
to the INTEGRAL algorithm.
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