
CHARACTERISTICS OF

A FUNCTIONAL PROGRAMMING LANGUAGE

by

Chr. Gram* and E. I. Organick

UUCS-80-103
JULY 1980

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112
U. S. A.

ABSTRACT

A programming language kernel is presented where an algorithm is a
function defined through a functional expression. The only data
structure introduced is an object that may be an atom or a sequence of
objects. A number of functional forms are defined, with a notation
close to ordinary mathematical notation, and their usage is
demonstrated through several examples. The language allows a high
degree of parallelism in an underlying interpreting machine.

CONTENTS: 1. Introduction 1

This work was supported in part by the Danish Natural Science Research
Council and by a Fellowship Grant from Burroughs Corporation.

* On leave from Dept. of Computer Science, Technical University of
Denmark, DK-2800 Lyngby, Denmark.

2. Basics
3. Basic Functional Forms
4. Basic Primitive Functions
5. Derived Primitive Functions
6. Derived Functional Forms
7. Semantics of D-trees and Parameters
8. Examples
9. References

2

6

1 1

15
16
28
37
46

Doc.no UUCS-80-103
Date: 1980-07-01
Author: Chr. Gram

E.I. Organick

of

A FUNCTIONAL PROGRAMMING LANGUAGE

CHARACTERISTICS

1.0 INTRODUCTION.

This report is a preliminary presentation of a Functional Programming
Language. It presents the kernel of the language, sufficiently
powerful to allow the user to express any sequential algorithm, but it
does not define input or output facilities, nor does it indicate the
linking to a user's environment such as a file system or a library.

The work is heavily inspired by R.S.Barton and a number of the
semantic concepts and notations used are his or emanated through
discussions with him and his collaborator, B.J.Clark. Another source
has been the paper by J.Backus on functional programming [Backus 78],
and some of his notation is also followed. The important
contributions of J.McCarthy, K.Iverson, and P.J.Landin on most of the
work in the area of applicative programming are also acknowledged.

Backus distinguishes between Functional Programming (FP) systems and
Formal Functional Programming (FFP) systems. An FP system is a
'closed' applicative system consisting of a set of primitive
functions, a fixed set of functional forms, and a set of basic
definitions; its expressive power is determined through the choice of
functional forms (i.e., combining rules). In an FFP system new
functional forms may be created by use of the so-called
metacomposition rule and an Apply-function; this is a very strong
facility, but a Pandora's box, that in essence yields unlimited
expressive power. We believe that this is not needed, and one purpose
of this report is to demonstrate that with a carefully chosen set of
primitives and functional forms, an FP system is sufficiently 'rich'.
It allows you to develop and design algorithms in a well-structured
way and it encourages top-down design, as the examples will show.

Functional Programming Page 2

2.0 BASICS.

Any algorithm will be written as a functional expression, applying to
one object (the argument) and producing one object (the result). When
applied to an input object - the given data - it produces an output
object - the desired result. Since any function and expression in the
language maps one object into one other object, the objects must be
able to 'carry' data structures. This is obtained through the
following definition of objects : An object is one of

a) an atom, denoting one of the primitive objects under
consideration. They comprise at least the logical values
{true,false} and (a suitable subset of) N, the integers;
depending on the applications wanted, the atoms may also
include real and/or complex numbers, character sets, and
other sets.
A special atom denoted $ is the nil atom or the 'no value'
atom (for all kinds of atoms).

b) 'undefined'. Any function applied to the undefined object
yields the result 'undefined'. (The role of 'undefined'
is explained more detailed in an accompanying paper [Gram,
Organick c].)

c) a finite, ordered sequence <x1 , x2 , . ..,xn> whose elements
are objects. A sequence may be the empty sequence,
denoted <>, and it may contain 'undefined' as well as
other sequences among its elements.

Clearly the set of atoms determine the set of objects under conside­
ration. The recursive definition b) allows an object to be a sequence
of sequences of ..., thereby allowing representation of any finite
data structure.

In [Backus 78] the nil atom $ and the empty sequence <> are considered
one and the same object. The distinction between these was suggested
to us by Paul Black [Black 80]. It is adopted here because it
clarifies the contrasting roles of atoms and sequences, and because
some of the basic function definitions can be made slightly more
general.

For the time being we consider a function to be applied just once, to
one argument object producing one result object. This is not in
conflict with an implementation model where every function is
repeatedly applied to a stream of input objects, until the stream is
exhausted. But it simplifies the description in the following to
consider one application at a time.

3

<algorithm> ::= <functional expression> ! <function def>

<function def> :: =

<fct.name> { (<parameter list>) } = <functional expression>
{ wher e

<function def> ,

i <function def> } ____ ___

The syntactical form of an algorithm is

<fct.name> ::= <identifier>
<parameter list> <param> { , <parameter list> }
<param> ::= <identifier>

where anything enclosed in {} is optional. The possible forms of
<functional expression> will be defined below. As is seen, a
<function def> may contain definitions of subfunctions, thus allowing
algorithms to have a hierarchical structure. The frame containing the
definition of a function and subfunctions is called a definition-tree
(or a d-tree) because definitions exhibit a tree-like structure, as
explained later.

A function definition may be prefixed by a <well-formed-condition>,
which is a logical predicate expression, in which case, the function
is only defined when this expression evaluates to true when applied to
the input object.

In the definition of a functional form or a primitive function a
choice must be made as to when it is defined and when it should yield
'undefined'. We have chosen to leave as few cases as possible
undefined, i.e., to maximize the domains of functions and functional
forms. This makes the language easier to use (more 'user-friendly'),
as long as the syntactically correct programs form a reasonable
algebraic system where transformation rules may be set up, allowing
equivalence proofs and manual or automatic transformation of a program
into more 'convenient' or more 'efficient' forms.

Within the same abstract syntax and semantics one may choose different
concrete syntactic representations of algorithms. In mathematics
there is a tradition to choose terse notations, with one letter names
and little or no 'syntactical sugar', whereas the tendency in data
processing is to use a more verbose, 'natural English' style
notations, together with 'long', mnemotechnic identifiers. It is not
clear what is more readable and teachable in general, and the question
has to be given careful consideration before finally deciding on a
specific language representation and teaching style. In this report
we have chosen to use a semi-verbose notation when introducing the
concepts, but a number of examples are shown both in that notation and
in much more terse, redundancy free style (the two styles being
semantically equivalent), to give the reader the possibility to judge
for himself.

Functional Programming Page 4

Also, one may take issue with a number of smaller design choices we
have made in this report. They reflect our preferred style of
programming at this time but could easily be changed without changing
the basic spirit of the language. B.Barton and B.Clark stress the
importance of building on pure mathematical ideas and models and not
leaning on constructs that are inherited from present programming
languages. Yet, to be able to write down explicit example algorithms
we have violated these principles to some extent, and more
specifically we deviate from the Barton/Clark notation on the
following points:

1. We number the elements of a sequence 1,2,... instead of
0 , 1 , . . .

2. We use [] for construction and () for general
grouping/delimiting instead of using () in all cases.

3. We use an explicit symbol & for composition instead of
letting it be implicit in the juxtaposition of functions.

4. We present two syntax styles which we call verbose and terse
styles, respectively, considering them equivalent and equally
suitable. In Barton/Clark notation only the terse style is
used, this style being more closely related to conventional
mathematical notation and more directly manipulable by
functional algebra.

5. Our definitions of the primitive functions (head, tail, ...)
are more lenient in some special cases (like evaluation of
head of an atom).

6. Our suggestion for the binding priorities of the functions
and operators is slightly different from the Barton/Clark
model.

A preliminary example is given here to show how a very simple function
definition appears. The algorithm to solve the linear equation

a x + b = 0
may be given as

LINEQ(a, b) _= if a = 0 then [false, $] ;
[true , -b/a]

where the meaning is: The function LINEQ takes as its argument a
sequence of two real numbers the first of which is denoted a, the
second b. The algorithm depends on a; if a=0 the result of applying
the function is a sequence with two elements <false,$>, and otherwise
the result is a 2-element sequence containing true and the value of
the solution. In the more terse notation the same function definition
would be

lineq(a,b) j= ((F,$) , (T,-b/a))
a /= 0

Functional Programming Page 5

where the logical predicate subscript expression selects the first or
the second pair depending on whether the predicate is false or true.

Most of the functional forms and the primitives are described using
the notation

<fct.name or form> : Cinput object> — > Coutput object>

meaning: When the function is applied to the Cinput object> it gives
Coutput object> as result. We write explicitly all the cases of
arguments for which the function is well defined as well as some of
the 'undefined' cases. In all other cases the output object is the
’undefined' object. Some of the definitions are more 'lenient' than
those found in [Backus 78]. Fewer cases are left undefined because it
is considered an advantage that the domain of each function is as
large as possible.

The use of parameters and subfunctions in function definitions is
introduced in section 4.1 and discussed more thoroughly in section
7.2.

Functional Programming Page 6

3.0 BASIC FUNCTIONAL FORMS.

The most important part of the language is the set of rules for how
functions may be combined to form new functions. These combination
rules are called Functional Forms and they determine the expressive
power of the language; the primitive functions are the building
blocks but the Functional Forms define 'directions' and 'dimensions'
of the space in which new functions may be built.

A functional form is an expression containing some function names (and
in some cases object names) which are parameters of the expression.
It denotes a new function class where the parameters may be replaced
by any functional expressions (or objects) to select an instance from
the new function class.

We distinguish between basic and derived functional forms in the sense
that the derived forms can be defined in terms of the basic forms.
Hence the derived forms do not - strictly speaking - add to the
expressive power of the language but they are believed to express
rather fundamental and often needed operations, and thereby the proper
choice may have great importance in the programming activity as well
as for the programming style to be used. In most cases it is shown
how a derived form may be defined in terms of the basic forms (and
earlier introduced derived forms). There is a certain amount of
arbitrariness in the choice of which functional forms are considered
as basic and which as derived; you may turn 'upside down' the
definitions of some of the derived forms and get definitions of some
of the basic forms instead. The choice presented here should be
considered a first approximation, and further study may lead to a
different classification of the functional forms.

The distinction between basic and derived forms is purely
logical-mathematical and bears no significance regarding the
implementation. In an actual machine one may choose to implement some
or all the functional forms as built into the underlying interpreter
structure.

We introduce four basic functional forms:

3.1 Composition.

F & G : x --> F : (G : x)

where F and G are any functional expressions while x is an arbitrary
object. The result is 'undefined' if G:x yields 'undefined'. This
form expresses composition of functions as used in mathematics, and it
is read left to right ("F is composed with G"). However evaluation is
from right to left. That is, first apply G to the argument and then
apply F to the result of that. Figure 1 is a graphical flow-graph
(process chart) illustration of composition, demonstrating the
sequencing nature of composition.

Functional Programming Page 7

F

Fig. 1 Functional composition: F & G

Composition is associative, i.e.

F & (G & H) = (F & G) & H

but not commutative (in general, F&G is different from G&F).

In the terse notation we may choose to express composition of
functions just by juxtaposition of their names, ommitting the &
character when its presence can be inferred from the context.
Composition may also be written as application of a parametered
function, and in section 7.2 we sometimes shall write

F & G

F & [G, H]
as
as

F(G)
F (G , H)

3.2 Construction.

[F1, F2, ..., Fn] : x — > <F1:x, F2:x , ..., Fn:x>

where F1,F2,...,Fn are n arbitrary functional expressions (n>=1) and x
any object. This form is used to build new objects from 'parts and
pieces' or to change the structure of an object. Note that if any of
the functional expressions F1,F2,...,Fn yields 'undefined' when
applied to the argument, the constructed sequence contains undefined
element(s). Thus

[head, tail] : a --> < a , 'undefined' > (a an atom)

because tail:a is undefined. Figure 2 is a graphical illustration of
construction demonstrating the concurrent, parallel nature of
construction as each of the functions apply to the same argument.

F *

H *

Fig. 2. Construction: [F, G, H]

Examples of the usage of construction are:

To find the length of a sequence and keep it together with the
sequence we construct a new 2-element sequence:

Functional Programming Page 8

[id, len] : <x1 , x2 , . . . , xn> — > < <x1 , x2 , . . . , xn> , n > .

To delete x1 and update the length accordingly, we may apply the
construction (where J denotes the constant function with value 1)

[tail & id , id - J_]
1 2

to the above result yielding the new result

< < x 2 , . . . , xn> , n - 1 > .

The entire operation could also be expressed at once with one
functional expression as a composition of the two constructions

[tail & id , id - j_] & [id, len] .
1 2

The construction [head,tail] imposes a structure on a sequence:
Applied to a sequence <x1 , x2 , . . . , xn> it gives as result the 2-element
sequence

< x1 , <x2, . ..,xn> > .

To create a more 'symmetric' splitting into a sequence consisting of
<x1> and <x2,...,xn> (which in a certain sense is the inverse of
concatenation) we must construct

[[head] , tail] .

In the terse notation we use only one set of parentheses and hence
construction will be written as (F1,F2,...,Fn) .

3.3 Condition (or Functional Selection).

The syntactical form of a condition is

if p then F ; G

where F, G are arbitrary functional expressions while p must be a
functional expression that evaluates to true or false when applied to
the argument x. The result of applying the condition to an argument

i f p then F ; G : x --> { F:x if p:x = true,
{ G:x if p:x = false

The value is undefined if p:x is undefined, or if the actually applied
branch (either F or G) yields 'undefined' when applied to x.

The semicolon is chosen instead of 'else' because conditional

Functional Programming Page 9

expressions often are nested, as in the following example:

if then (if q then G ; (if r then H ; J))

and using ’else' would make this look very clumsy. Parentheses may be
omitted when no ambiguity arises. Thus the above nested structure may
also be written as:

(i_f p then F
i f q then G
if r then H J)

and represents a 4-way branch (a ’case’-expression) where the branch
taken depends on p,q, and r; the last function J represents the
'else* case and is used if p, q, and r all give false when applied to
the argument. Similarly, the expression

if then (if

is equivalent to

if p then if

then

then

F ; G) ; H

F ; G

Fig. 3. Condition: i_f p then F ; G

Figure 3 shows a graphical representation of the conditional form with
two branches, the upper branch representing the operative flow path
when p applied to the argument is true.

In the terse notation the condition i_f p then F ;G

(G , F)

is written

This may be considered a special case of the more general functional
selection

(F1 , F2 , Fn)
K

where K is a functional expression such that K:x is an integer (or
even a sequence of several integers) defining which of the functional
expressions F1,F2,...,Fn is (are) selected. This will be discussed
further in a following section.

Functional Programming Page 10

3.4 Constant.

A constant function with value y is denoted y where y may be any
object (including $ and <>). When this function is applied to an
object the result is y:

y : x — > y for any object x not undefined
y : ’undefined' — > ’undefined’

Constant functions are used to introduce constants and initial values
into objects. Thus, for instance,

(id + 2) : <x1, x2, ..., xn>
1

which is the infix form of + (i<̂ ,2) : <x 1 , x2 , . . . , xn> , means:

apply id̂ to the object to get x1 (it must be a number)
apply 2 to the object to get the value 2
apply + to the sequence of previous two results

to get the atom whose value is x1+2.

In functional expressions every name symbol denotes a function and
never an object or a value. Hence no ambiguity arises from writing
the constant function y as just y, and we shall - in most cases - use
the latter notation.- This means that when an object name or a
constant value appears in a functional expression, it denotes the
corresponding constant function, but in an object it denotes 'itself'.
Therefore, in the above example we will allow the notation

id + 2 , meaning id + 2 .
1 1

Fig. 4. Constant function: y

Functional Programming Page 11

4.0 BASIC PRIMITIVE FUNCTIONS.

In order to manipulate objects we need a set of ’primitives’,
functions that perform the fundamental types of mappings needed.
These primitive functions are then used to build more elaborate
functions.

A primitive function belongs to one of the following types:

- selector-function, that takes a sequence as argument and delivers a
part of it . The result is an object consisting of one or
some of the elements in the input sequence and may be an
atom or a new sequence.

- constructor-function, that maps a sequence on to a sequence of the
same elements in different order or with a different
structure, such as concatenating or merging subsequences.

- operator-function, that performs any other mapping, such as an
arithmetic or logical operation. Many of the operators are
dyadic and take as argument a sequence of two atoms of some
type and outputs an atom of the same type. There are of
course also relational operators, for which the result is
always an atom of type logical.

The set of primitive functions must not be considered as the ultimate
answer to the question, which primitive functions should be included
in an implementation. Rather it is a ’minimal’ working set which may
be expanded in different ’directions’ depending on the application
wanted.

4 . 1 Selector Primitives.

Some selector primitives map a sequence into one of its elements,
others map a sequence into a sequence consisting of some of the
original elements.

select first element:

head : <x1,x2, ...,xn> — > x1
head : <x1> --> x1
head : <> — > ’undefined’
head : a --> a (a any atom)

If the element x1 is itself a sequence, the result is this sequence,
and the repeated application of head, written as:

head & head
applied to the argument will deliver the first element of x1 as the
result.

F u n c t i o n a l P r o g r a mm i n g P age 12

select i-th element:

id : < x 1 , . . . , x i , . . . xn> — > xi
i

id : <> — > 'undefined'
i

id : a --> a (a an atom)
1

where i is an integer constant the value of which satisfies
1 i input sequence length. Hence

head id^

If the argument x is a sequence of sequences, a repeated application
of selectors such as

id; & i d ;

(read from right to left like functional composition in mathematics)
selects the j-th element from the i-th element xi . We shall also use
the notation

id: - = id- & id'
- J v

id* . i = idu & id; & id.'
1>A>< - k J >

analogous to the use of indices in usual matrix and tensor notation.
How to select a 'variable' element or subsequences of several elements
from a sequence is discussed in the section "Derived Functional
F orms".

In a parameter list of a function definition (see below) we will use
arbitrary (mnemotechnic) identifiers to denote id̂ , id,,, etc. Thus
the function definition

newfct(a, b, last) =
Cfunctional expression with a, b, and last>

is equivalent to the definition

newfct = <functional expression with all occurrences of
a, b, and last replaced by id̂ , id ̂ , id^ > .

select tail:

tail : <x1,x2, ...,xn> — > <x2, ...,xn>
tail : <x1> --> <>
tail : <> --> 'undefined'
tail : a — > 'undefined' (a an atom)

F „ n c t i o n a l P r o g r a mm i n g P a ge 13

The result of tail is always a sequence, not an atom, and hence

tail:<x1,x2> — > <x2> while id^ :<x1,x2> — > x2

and if x2 is itself a sequence <y1,...,yk>, the result of tail:<x1,x2>
is <<y1,...,yk>>. tail should never be applied to an atom, as it
results in ’undefined*.

identity:

id : x — > x (for any x)

This primitive is used (and needed) when a new object is constructed
by adding data to an existing object: The functional construction

[id , FF] : x

where FF is some function, creates the result object <x, FF:x>.

4.2 Constructor Primitives.

A constructor primitive maps a sequence on to a new sequence with the
same elements in a different order and/or with a different structure.

Concatenate sequences:

concat : <<x1,...,xp> , <y1 , .
concat : < <x1,...,xp> , <> >
concat : <<x1,...,xp> , a >
concat : < a , b >

.,yk>> — >

— >

(a and b

< x1,..,xp,y1,..yk>
<x1,...,xp>
<x1 , .. . ,xp,a>
< a , b >

are atoms or ’undefined’)

(plus the obvious ’symmetric’ definitions obtained by interchanging
first and second part of the argument). concat is a dyadic operator,
i.e., the argument must be a sequence of length 2, and in cases where
no ambiguity arises we shall also use the infix notation for this
f unction

x concat y concat : <x , y>

The concatenation function is a generalization of several of the
primitive functions introduced in [Backus 78] except for some special
cases. In an accompanying paper [Gram, Organick 80c] is shown how
Backus’ append, reverse, and rotate functions may be defined in terms
of the concat function.

Concatenation is used to construct lists and to string together
objects into ’sets’ without deepening the hierarchical structure. It
is also a tool to get rid of superfluous sub-structure (’extra
parentheses’) when creating new objects by functional construction, as
demonstrated in some of the examples.

Functional Programming Page 14

Delete nil elements:

compress <x1 ,

compress
compress

a
<$, $, $>

xn> --> the sequence containing all
non-nil elements of the
argument (in the same order
as they appear in the
argument)

--> a (a any atom)
--> <>

In certain algorithms (e.g., some binary tree operations) it is useful
to work with an object containing 'extra' nil elements in certain
positions. The compress function may then be used to get rid of the
dummy elements at a later stage.

4 . 3 Operator Primitives.

The operator primitives are mostly monadic and dyadic functions
delivering a number valued or a logical valued atom as the result. A
basic set might be (where x,y are number valued atoms, n,m are integer
valued atoms, and z,v are logical valued atoms, and none of them are
$, the nil atom):

Arithmetic operators:
+ <x ,
— <x ,
* <x ,
/ <x ,
* * <x ,
div <n ,
rem <n ,
abs X

len <a 1
1 en <>
1 en a

y>
y>
y>
y>
y>
m>

m>

— > x + y
— > x - y
--> x * y
— > x / y
— > x ** y (exponentiation)
— > n div m (integer division)
--> n rem m (integer remainder)

--> absolute value of x
ak> — > k (number of elements in sequence)

--> 0

--> 'undefined' (a any atom)

Logical operators:
and
or
not

<z, v> -->
<z, v> ->
z -->

z and v
z or v
negation of z

Comparison operators (a, b are atoms, not $, belonging to a type
with an ordering, and x,y are
arbitrary objects (not 'undefined')):

a<b and analogous for < = , > = , >
x=y and analogous for /= (not equal),
true if x is an atom, otherwise false
true if y is a number valued atom,

< : <a, b> — >
: < x , y> — >

atom : x -->
number : y -->

otherwise false.

For the arithmetic operators we shall not specify whether the domain
is the integer, the real, the complex numbers, or some other set of
numbers. That depends on the application areas and different

Functional Programming Page 15

implementations may implement different number domains. But the usual
laws of arithmetic must hold (with good approximation).

For all the dyadic operators - i.e., all the above except length, not,
atom, and number - we shall also allow and use the infix notation and
parentheses as in ordinary mathematical notation. That means that we
shall write arithmetic and logical expressions in standard
mathematical form when no ambiguity arises. (+ and - may here also
appear as unary operators meaning £+... and 0 -... as usual.) Note
that in an expression with several operators with the same priority
(see section 7.1) the order of evaluation is right to left (as in the
indexed reduction form, section 6.4). Thus, e.g., a - b - c means
a - (b - c) .

5.0 DERIVED PRIMITIVE FUNCTIONS.

A number of other functions may be defined depending on the type of
applications wanted. E.g., in numerical calculations a number of
standard mathematical functions may be implemented as primitives, or
they may be defined through <function definitions>. The square root
of a real number may serve as an example here:

r sqrt(a) = END & ITERATION & START

where

START = [a , 1] ,

ITERATION(a , x) =
while abs((a-x *x)/a) >

[a , (x
1 0**(-8) do
+ a/x) / 2] J

END = id
L _ 2 J

with the interpretation: The sqrt function takes as argument a single
number denoted a, and the evaluation consists of the three steps
START, ITERATION, and END in this order (functional composition, right
to left). The first step START constructs the 2-element sequence
<a,1>. The second step is an iteration that takes as input a sequence
<a,x* > and produces the result <a,x^+^> with the next approximant
xw+< (using the Newton iteration scheme); the iteration continues
until the relative error is <= 10**(-8). The original value a must be
'carried through' (i.e., made repeatedly available during) the
iteration because it is used in every iteration step, but in the final
step END it is deleted by selecting the resulting x as the only
output.

Functional Programming Page 16

6.0 DERIVED FUNCTIONAL FORMS.

In this section we introduce functional forms for iteration and
arbitrary selection from a construction, as well as a class of indexed
reduction forms. The latter is a generalization of the
sigma-summation used in everyday mathematics.

6.1 Dynamic Iteration.

Repeated application (composition) may be written as

while p do F

where p and F are functional expressions. The semantics of this form
is repeated application of F

F & F & ... & F
where the number of iterations is determined by p: As long as p
applied to the current argument is true, F is applied to the current
argument, yielding the next argument.

The dynamic iteration while p do F is equivalent to the recursive
function definition

WHILE = if p then WHILE & F ; id

and thus derivable from the basic forms composition and condition. It
is defined when the functional expressions p and F satisfy the
conditions: (i) The result object of F must be compatible with (i.e.,
exhibit a similar structure as) the input object because it is used as
argument for the following iteration of F. (ii) p must evaluate to
true or false when applied to an argument of F or a result for F.

An example of the use of the while-form is found in the square root
function defined earlier.

If wanted, it would be easy to introduce a form 'repeat F until q'
form with semantics as the similar construct in Pascal, and it can be
defined recursively through

REPEAT = (if q then id ; REPEAT) & F .

The reason for not introducing it here is simply that it is not used
in the examples shown.

F u n c t i o n a l P r o g r a mm i n g P a g e 17

In the terse notation we shall write the dynamic iteration as

P*
F

where the star indicates repetition of F and repeated application of p
until p:x=false (the star is chosen because of a certain similarity
with the Kleene star).

6.2 Fixed Iteration

A fixed number of repetitions (n) of a functional expression F (a
'for'-loop) is - both in terse and in verbose notation - written as:

N
F

where N and F are functional expressions, with the semantics: First N
is applied to the argument and must evaluate to a non-negative integer
n; then F is applied n times (composition as above). If n=0 the
iteration is the identity function, in close analogy with ordinary
algebra where x° = 1 , x being any variable. Here also the result object
of F must have the same form as the input object. As an example, if
< x 1 , x2 , x3 , . . • , xn> is a sequence of length>_3, then

2

tail

gives as result the sequence <x3,...,xn>.

The fixed iteration may be defined in terms of the dynamic iteration
and is thus also expressible in terms of the basic functional forms:
N

F is equivalent to the functional expression:

if N < 0 then 'undefined' :

(id & (while id >0 do [F & id , id - 1]) & [id , N])
1 2 1 2

Note the semantic difference between the two iteration forms: In
dynamic iteration the 'conditional' p is repeatedly applied to the new
argument, while in fixed iteration N is applied only once to the
original argument. .

Functional Programming Page 18

6.3 General Selection

So as to extract very general substructures from a composite object,
we introduce a functional form that allows selection of a much more
flexible nature than do the primitive selector functions. The
notation is introduced in an informal way, after which we offer a more
precise description, where the functional form is defined in a
step-wise manner, beginning with the simplest case and gradually
increasing the complexity.

Informally, let A be a construction of functions A = [F1,F2,...,Fn]
and let I be a function which when applied to the argument yields an
integer i. Then

A selects the function F

to be applied to the argument.
If K is a construction [K1,K2,
integers (k1,k2,...,kp), then

selects the functions
K

,Kp] which yields

[F , ... , F]
k 1 kp

a sequence of

to be applied (as a construction) to the argument.
Now, let A be a construction of constructions from which we want to
select one or more functions. This is accomplished by double
indexing, written as

A meaning: select the J-th function from
I,J the I-th construction of A,

and similarly for triple indexing, etc.
To extract more general substructures from '2-dimensional'
constructions we extend the multiple index notation to indices that
are themselves constructions:

[11 , 1 2] , J

means

means

[A
11 , J 12 , J

[A

]

]
I , [J 1 , J 2] I , J 1 I , J2

and finally, if both indices are constructions:

A means
[11 ,12],[J1 ,J2]

[[A ,A] , [A , A]]
1 1 , J1 1 1 , J2 1 2 , J1 1 2 , J2

T h u s A ^ v,
J., J

is understood to mean the set of A-functions selected by

all pairs of I-s and J-s, with a 'matrix-structure' similar to that of
A. The notation is like the indexing of vectors and matrices as used
in mathematics, and it may indeed also be used here to select elements
from sequences: If the argument x is a sequence <x1 , x2 , . . . , xn> and A

Functional Programming Page 19

is a mnemonic for the identity function, then

A :x means select one or more elements from x
I

and if x is a matrix (a sequence of rows each of which is a sequence):

x = < < x 1 1 , . . . , x 1 n> , <x 2 1 , . . . , x 2 n> , . . . , <xm1 , . . . x m n > >

then A :x similarly selects one or more elements from the matrix.

The more formal definition of General Selection is done below in 8
steps. Let A, I, J, and K denote functional expressions, and let x
denote an object such that:

A : x is a sequence, say of length lx.
I : x is an integer i, 1 _<i_< 1 x .
K : x is a sequence of integers in the interval 1<k<lx.

We first define selection of one element:

(1) A : x — > the i-th element of A:x.
I If A:x is an atom and I:x=1 ,

the result is A:x .

Remark: Formally speaking, the functional expressions A and I are
applied to the same argument, x, before the selection is performed.
But in an efficient implementation it may be preferred to postpone
application of A until the 'select-value' I:x is known. If A=id and I
is a constant function, the definition coincides with the primitive
selector function.

The new form may be defined in terms of the previously introduced
functional forms:

^*7 = SELECT & CUTOFF & APPLYINIT ^
I

where
APPLYINIT = [A , I] ,

CUTOFF =_ while id^ > 0 ck> [tail & id^ , id^- 1] ,

SELECT _= head & id̂

Let A:x be the sequence <a1 ,a2, . . .,alx>, and let K:x be the sequence
of integers <k1,k2 , . . .,kp> , all between 1 and lx. We then define

(2) A : x — > <a ,a ,...,a >
K k1 k2 kp

As a very special example, if A:x is an atom and all the k-s are equal
to 1, then the form (2) constructs a sequence with p copies of the
same atom. The definition may also be written (a little sloppy)

F„nctional Programming Page 20

A : x = [A , A , ... , A] : x
K k1 k2 kp

Definition (2) easily generalizes to the case where K is a
construction whose components yield integers when applied to the
argument. Hence

(3) A = [A ,A , . . .]
[I,J ,. . .] I J

where I:x, J:x,... each yields an integer or a sequence of integers
such that the elements on the right hand side are defined through (1)
and (2) .

Note that with this definition we distinguish between

A and A = [A]
I [I] I

the second expression being a construction with the first function as
its only element.

Now let A:x be a sequence of sequences (a 'matrix’):

< <a 11,...,a 1n>,<a21,...,a2n>, . . . ,<ami,...,amn> >

and let I:x=i and J:x=j. Then multiple indexing - selection of a
matrix element - is defined as

(4) A : x --> the j-th element of
I,J the i-th element of A:x

Double indexing may be defined in terms of single indexing (using
definition (1)) as follows:

A = (id,,) & [(id^) ,id3] & [A , I , J]
I,J idz id2

or, a little sloppy, using parentheses:

A = (A)
I , J I J

where it is understood that A, I, and J all must be applied to the
argument x before selection takes place.

Definition (4) is used to select a single element from a
matrix-structured object. Selection of a set of elements is done by a
generalization of (4). If K:x is the sequence <k1,...,kp>, then

(5) A = [A , ... , A]
I , K i , k 1 i , kp

A = [A , . . . , A]
K, J k 1 , j kp, j

F u n c t i o n a l P r o g ra m mi n g Page 21

If application of both index functions yield integer sequences, the
selection rule is: Apply (5) as above, ’expanding' the index
functions in order from left to right, and an index function yielding
an integer sequence gives rise to a construction in the result. Thus,
if L :x=<l1,...,lq>, then

(6) A = C A > A , ... , A]
K , L k1,L k2,L kp,L

= [[A ,...,A] , . . . , [A , ...,A]]
k1 ,11 k1,lq kp,H kp,lq

such that the index pair K,L implies forming all the individual
integer pairs ki,lj (somewhat like a cross product) and use these as
single element selectors. Note that by the ordering and sequence
structuring used in (6), we preserve the matrix structure from the
object A:x, and if, e.g., K and L yields all the indices of A:x,

K:x = <1,2,...,n> and L:x = <1,2,...,m>
then the functional form (6) is the identity function. If A:x is a
'multi-dimensional' object, selection may be done using a multiple
index expression, e.g.,

(7) A
K,I,L

Constructions occurring among the indices are 'expanded' left to
right, such that if I, K, and L are defined as above, the meaning of
(7) is:

(7a) A = A
K ,I ,L [k1, . . . , kp] , I , L

= [A , . . . , A]
k 1,I ,L kp,I ,L

= [A , . . . , A]
k 1,i,L kp , i , L

= [A , ... , A]
k1,i,[H,...,lq] kp , i , [11 , . . . , lq]

= [[A , ...,A] , . . . , [A , . . .]]
k 1 , i , 11 k1,i,lq kp,i,11

Thus, in a sense, the comma in multiple indexing works as a
right-associative cross product operator on indexsequences.

Selection of one or more rows from a matrix is now easily done by
applying a form like

A
I

F u n c t i o n a l P r o g ra m mi n g P a ge 22

Selection of a column requires a construction like

A : x
[1 , 2 , . . . , n] ,J

where n is the number of rows in A:x. The sequence of all row index
values may be constructed by concatenating the integers 1,2,...,n and
this may be expressed as

(concat/ (i)
^ ----1=1

using the indexed reduction form defined below. But since it is a
useful construction in many applications, we introduce for this
purpose a star index notation meaning 'all index values':

(8) * : x — > <1,2,...,N> where N is the number of
rows if * is used as index 1,
columns - * - - - - 2, etc.

in the object to which this
subscript expression is
applied.

* : a — > 'undefined' (a an atom).

With this definition the following holds:

A = A
* ~

A = A
I , * " I

A :x — > the column(s) selected by J:x

(Strictly speaking, this definition holds only if x and A:x has the
same structure - same number of rows etc. - but this will be the case
in most applications.)

6.4 Indexed Reduction.

In mathematics, notations like

__ n 100
A and p(k)

i=1 i k=1

are used as short-hands for repeated application of a dyadic,
associative operator to a sequence of operands all of the same type.

Functional Programming Page 23

A similar notation is introduced here, very much resembling the
reduction operator in APL. Let OP be an operator, A(i) some
functional expression depending on an undefined integer, 'dummy'
variable i, and let 11, 12 be two 'index' functional expressions.
Then the functional form which we shall call indexed reduction is
written as below, with the meaning indicated by the right hand side:

(9) © < A(i)) : x --> A(i1) :x © A(i1 + 1) : x © . . . © A(i2) : x
i = I1

More precisely, the entities occurring here must satisfy the
conditions:

1. OP must be a dyadic function, the result of which is of the
same type as its two operands (as, e.g., several of the
arithmetic and logical operators, as well as the
concatenation primitive).

2. 11 and 12 are functional expressions that evaluate to
integers i1 and i2, 0<i1<i2, when applied to the argument x.

3. A(i) is a functional expression, in which i denotes a
constant function, such that A(i):x is defined for all i in
the interval i1<i£i2, and A(i):x must all be objects of
OP-operand type.

Logically (but not necessarily so in a real implementation), the
application of indexed reduction proceeds as follows:

1. Evaluate I1:x --> i1 and I2:x --> i2.

2. Evaluate A(i1):x-->x1, A(i1+1):x-->x2,

3. Evaluate the result as x1 (OF̂ x2 (0F>) . . .
left order.

In the most common applications of this functional form, the function
OP is one of the operators: addition, multiplication, or
concatenation, and we shall in some of the examples below use the
notations

for indexed reduction with +

T T - - - - *

(0 - - - - concat, equivalent to the
construction of a sequence from its single elements.

When the reduction is to be applied for all members of a certain set
(e.g., all elements in a sequence), a star notation is used:

. . . , A (i 2) :x— >xp .

© xp in right to

F u n c t i o n a l P r o g r a m m i n g P a ge 24

#

(10) @ (A(i)) : x --> A (1) : x @ A (2) : x @ . . . @ A(N) : x
i= 1

where N is the last integer in sequence for which A(i):x is defined
and gives an object of OP-operand type. (N must be finite.)

Nested application of a reduction is often useful, especially in
matrix manipulation. Since A(i) in the above definition may be any
functional expression, it can be a reduction form itself. Hence an
expression such as

(11) 7 " (y * (A * A)) = T'" (B(i))
^ i = 1 ^ = 1 i n-j ^ i=1

can be interpreted according to the given rules:

1. In the outer form, 11=1 and I2=n. Hence we must evaluate

B (1) : x = (A, *Ah *):x
j = 1

2

B (2):x = ^ (kj *A *):x

_| n
B(n):x = ^ (A *A K ■)) : x

^ j = 1 *

and then add together all these values.

2. In each of the inner forms, 11=1 and 12 = some number i.
Hence we must evaluate

(A t * A r W > :x

(A* *Ah.z):x

‘(Ai *An-C):x

and add together all these values to get B(i):x.

The parentheses in (11) may be a help for reading and understanding
the expression, but they are not required in this case. No ambiguity
arises if the parentheses are left out because of the rule of
syntactic scanning left to right and evaluation right to left (see
"Functional Definitions"). Hence, exactly the same result is obtained
from the expression without parentheses:

F u n c t i o n a l P r o g r a mm i n g Pa ge 25

The indexed reduction form is derivable from the forms and primitives
introduced earlier. If OP is addition, e.g., the form may be defined
as follows (using the terse notation for dynamic iteration):

12 N

(A) = RESULT & SUMMATION & INITSUM
i = 11 i & CONSTRUCTSEQ & APPLYINIT

where
APPLYINIT =[*<>, id , 11 , 12] ,

(id, <idy) *
CONSTRUCTSEQ = (id. concat A , id-, id-, id -1) J 7

~ 1 i d ^ « 1 »

INITSUM = [0 , id4] ,

SUMMATION _= (id^+ head & id-, tail & id^)
(idz /= <>)*

^ RESULT_________= id^

7.0 FUNCTIONAL DEFINITIONS.

7 . 1 Functional Expr essions.

Using the primitive functions and the functional forms as building
elements, algorithms defining new functions are expressed by combining
the elements in functional expressions. A functional expression is
one of the following:

1. A primitive function.

2. A functional form.

3. A <fct.name>, i.e., the name of a function defined elsewhere
in the current context (see scope rules as defined below).
The function may be applied with or without parameters.

Since a functional form may contain functional expressions, the
definition above is recursive and allows construction of arbitrarily
complex functional expressions. Parentheses are used to express
grouping when necessary, i.e., whenever the built-in priorities of the
functions and operators don't suffice. The following list is a
preliminary suggestion for the built-in binding priorities, from the
highest to the lowest:

(highest) index selection F and condition F
G p

N p*
iteration F and F

composition F & G

dyadic operators (when written in infix form):
* *

* / mod rem
+ -

< < = > > / =

and
or

(lowest) concat

The construction form groups like ordinary parentheses
and has thus - in a sense - the highest priority. A similar rule
holds for iteration and index expressions: any subscript or
super script is implicitly taken to be surrounded by parentheses and is
evaluated per se, before being applied to the 'radicand' expression.

F u n c t i o n a l P r o g ra m mi n g P a g e 27

As an illustration of these rules, the expression

P and Q*
[D concat E , A + B & C]

q I,J

is equivalent to the fully parenthesised expression

(P and Q)*
[(D concat (E)) , (A + (B & (C)))]

q I,J

[Note: In Barton/Clark notation, iteration (functional
exponentiation) is considered to be more binding than selection.
Thus,

N N
(a) F means the ith component of F , as does

i
N

(b) F , whereas
i
N

(c) F means the Nth iterate of F .]
i i

If condition is written in the verbose form, the above rules imply
that, say,

if p then F ; G & H = (if p then F ; G) & H

Whenever confusion may arise as to the extent of a conditional
expression, parentheses should be used to bracket it.

As an example of the use of the functional expressions, consider the
problem of finding the maximum element in a sequence of real numbers
<a1,a2, . . .,an> . The definition-tree for the function MAX below

gives as its result a 2-element sequence with the maximum element and
its index in the form:

< max a , index of max a > .

F n o t i o n a l P r o g r a m m i n g Page 28

MAX(A) = RESULT & LINSEARCH & INITIALIZE

where

INITIALIZE = [A, i--

--
I

> 1__
__
_
l

no i __
__
_

i

rLINSEARCH(A,max,I) =

[A , if A > max
I 1

N-1
then [A ,I] ; max , 1+1]

I
where

N = length(A)

RESULT = id
2

Here the first line defines the MAX function as a functional
expression, being the composition of three functions defined in the
next lines of the d-tree. The single parameter A is here just a
mnemotechnic for id. The subfunction INITIALIZE is defined through
its functional expression as a construction of three objects, of which
the middle one itself is a construction. The parametered subfunction
LINSEARCH is defined as a d-tree because it again has a subfunction N;
LINSEARCH works on a 3-tuple and performs the linear search by
performing N-1 constructions of the same form as made by INITIALIZE:
A is kept unchanged, the index I is increased by 1 per iteration, and
the middle element max is updated whenever a larger element is found.
Finally, RESULT is defined by a very simple functional expression
being just the selector id , delivering the latest <Ai,i> as the
r esult.

7.2 Semantics Of D-trees And Parameters.

In this section we shall gain understanding of the syntax and
semantics of algorithms expressed as tree-structured (hierarchic)
function definitions. From the BNF syntax in Section 2, we see that,
in keeping with conventional mathematical notation, a d-tree is a
function consisting of a main function (definition), followed by a set
of mutually independent subfunctions (definitions), each having,
recursively, a similar structure.

Examples will be given in the terse notation; parentheses will be
used both for bracketing parameter lists and for denoting
constructions.

One should keep in mind three key rules: ,

1. The text of a definition is to be read (scanned) top-down
(line-by-line), with each line read from left to right.

F.nctional Programming Page 29

2. Functional expressions within definitions are to be
understood (evaluated) primarily from right to left. If any
expression extends beyond one line, then it is evaluated
bottom-up (line-by-line).

3. The argument of a d-tree is the argument of its root
f unction.

These three rules will help you to understand the use and scopes of
parameters and subfunctions within a function definition, as defined
below. Subfunctions (sub d-trees), which are introduced under the
where mark, similar to usual mathematical notation, are applied to
carry out application of the root function to its argument. In the
sequel, we shall mainly/exclusively deal with main functions with
parameter s.

Preliminary concepts needed to understand d-tree semantics

Several examples will help make more precise the points just made.

Example 1

f(w,x,y) _= (g(w,x), h (w , y))
where ’

— g(u,v) ^ u + v ,
h (a , b) = a * b

d-tree skeleton
f

This d-tree is applied to an argument being a sequence of three
objects represented, respectively, by parameters w, x, and y. The
functional expression for f consists of the construction of two
mutually independent functions, g and h. Parameters of g and h, in
the definitions under where, are matched, via the usual rules of
positional correspondence, with their corresponding arguments in the
application on the first line. Thus, for g,
the substitution is: fw — > u 'i

\x --> v j, and for h ,
the substitution is: fw — > a'j

ty — > b J.

Since g and h are each to be applied to argument structures dependent
on the argument structure of f, the application of g and of h must be
deferred until their respective arguments have been produced from that
of f. In general, application of any subfunction that is defined with
parameters takes place only after the argument structure of the main
function is properly mapped to the desired argument structure for the
subf unction.

In the context of f being applied to its argument,
g(w,x) is a shorthand for g & (id. , id^)

and
h(w,y) is likewise a way to express h & (id^, id^).

Now suppose the argument of f is the sequence <5, 6, 7>; then,
application of the constructions (w,x) and (w,y) to the argument of f

Functional Programming Page 30

yields <5,6> and <5,7>, respectively. The subfunctions g and h are
then applied to these new arguments, eventually forming the result,
< 1 1 ,3 5 >, as the process (or data flow) diagram below suggests.

<1 1>

<11,35>
<35>

<5 , 6>

<5 ,7>

id.,

id.

idi

id.

<5 , 6 , 7>

In this diagram we have elected to suppress the details for

<-- 1 g |<--- and <---1 h |c---, which in this case may be simply

replaced by <-- 1 + |c--- and <---1 * ---, respectively.

The right hand sides of the definitions of g and h were originally
given as infix expressions. But, as said in section 4.3, we shall
allow syntactical alternatives, such as

rg(u,v) = +(u,vvn
Ch(a ,b) = *(a ,b)3

or, even more
succinctly,

r g (u , v) = +')
}h(a,b) = * J

In our first example, we have illustrated the case where the main
function refers to (invokes) subfunctions whose arguments are derived
by functional composition from the main function. We might even say
this is the usual relationship between a main function and its
subfunctions. Such subfunctions must be evaluated (applied) each time
they are referenced.

Another case arises where the argument of the main function,
that of a subfunction are the same, as in the next example.

f , and

Example 2

f(w ,x ,y) = (g, g, h)

where

g = w + x
h = w * y

d-tree skeleton
f

In an application of this d-tree to the argument, <5,6,7>, for
instance, it is sufficient to evaluate the right hand sides of g and h
only once, by evaluating g and h prior to evaluating the right hand
side of f. Here, because g and h have no parameters, they depend
directly on the argument of f. This is characteristic of what we
shall denote as parameterless subfunctions.

The meaning of a d-tree is independent of the order in which its
parameterles subfunctions (if any) are evaluated (applied to the
d-tree's argument). Therefore, there is no loss of conceptual
generality if, in some underlying implementation, it is convenient to
evaluate each parameterless subfunction before the root function's

Functional Programming Page 31

right hand side is evaluated.

Of course, it is possible to draw a process diagram to suggest how an
underlying implementation may evaluate f, such as:

r - 0 - (id; id2)

(id, id2)

(id. id3)

but it cannot be regarded as necessarily the best way to achieve the
result. Other interpretations, mathematically equivalent, come to
mind, such as: .

concat

(id, id,,)

(id1? id3)

Depending on the relative speeds of executing selections,
constructions, and concatenations in the underlying machine, one
alternative may be preferred to another.

A reference to a parameter less subfunction may not be followed by a
list of arguments. On the other hand, a reference to a parametered
function, k, ordinarily includes an argument list that conforms to the
(formal) parameter list of k. Thus, examples 3, 5, 6, 8, and 9 are
all mathematically equivalent. But, their interpretations in our
frame of reference differ as follows:

Example 3 has the interpretation given in 4. Examples 5 and 6 have
the identical interpretation given in 7. Here [f] and [g] are composed,
respectively, with the "filters" [F| and [s] to transform p's argument to
those of f and g. Examples 8 and 9 have the identical interpretation
given in 10. Here, [f] and [g] are composed with the identical filters,
(r , s)j , because in this case f and g each require arguments that
happen to be identical copies of p's argument. (In this example set,
we have assumed that sqr is a primitive squaring function, i.e.,

id -i—
sqr f“»— = “*~ * *-

id *—
.)

Example 3

p (r , s) = f ♦ g 1
where

f = sqr(r) + 1 ,
g = sqr(s)/3

Functional Programming Page 32

Example 4

E}*-

where

Example 5

Example 6

Example 7

sqr

p(r ,s) _= f (r) + g(s)
where

f (a) j= sqr(a) + 1,
g(c) = sqr(c)/3

p(r , s) _= f (r) + g(s)
where

f(r) _= sqr(r) + 1,
g(s) = sqr(s)/3

Cl
sqr «— r

— + * —
1 m----------- "* ’

where

r f

sqr <+

Example 8

P (r , s) ^ f (r , s) + g (r , s)
where

f (a ,b) _= sqr(a) + 1,
g(c , d) = sqr(d)/3

Functional Programming Page 33

Example 9

p(r,s) = f(r,s) + g(r,s)
where

f (r , s) = sqr (r) + 1 ,
g(r , s) = sqr(s)/3

Example 10

When the actual argument of a parametered subfunction, g, is the
result of a composition, the argument list for g is implicit, as seen
in Example 11.

Example 11

P(u,v) = A & B & C (u , v)
wher e

C (r , s) = (sqr(r) , cube(s)) ,
B(a,b) = a + b ,

= sqr(x)
i

A (x)

Thus if P is applied to <3,4>, the implicit argument list for the
reference to B will be <9,64>, because C(3,4) = (sqr(3) ,cube(4)) =
<9,64>. In turn, the implicit argument list for A- is 73, which is the
result of applying B to <9,64>. Incidentally, in this case even the
argument list for C may be omitted since it comprises the entire
argument list for P. In other words, there would be no change in the
meaning of P if it were defined as in Example 12.

Example 12

P(u,v) = A & B & C
where

C(r ,s) _= (sqr(r), cube(s)),
B (a , b) = a + b,
A (x) = sqr(x)

Rules for Evaluation of a D-tree

We are now ready to offer an informal definition for the semantics of
d-trees, including the use of recursive definitions.

Functional Programming Page 34

(1) Application of a d-tree implies (is achieved by)
its root function.

application of

(2) A step preliminary to evaluation of the right hand side expression
of the root function is the evaluation of each parameterless
subfunction — applied to the argument of the d-tree. This leads to
the constraint that a parameter less subfunction, g, may not appear on
the lefthand side of a composition, such as g & h. Execution of h
would necessarily produce a new context for g which will in general
differ from that of the containing d-tree.

Example 13a

P(u,v) = g & h(u-1 , v+1)
where

h(a , b) = a * b ,
g _= u + v

illegal

Example 13b

& (h(u-1,v+1) ,5)P (u , v) =
where

h (a , b) = a * b ,
g . = u + v

illegal

To see why 13a is illegal, note that computing P(3,4) could lead to an
attempt to apply g to the argument, h(2,5) = 10. This leads to an
attempt to apply g in the context, 10, which is not even conformable
with (u,v) let alone equal to <3,4>, the required context. Another
way to see the illegality of 13a (and also of 13b) is to notice the
ambiguity involved. One would get a different result when evaluating
P(3,4) if g is applied as the first step in the application of P,
rather than in the last step. Thus, in Example 13b the two possible
values for P(3,4) would be 7 and 15.

(The order in which parameterless subfunctions are evaluated is
inconsequential, and they may be performed concurrently, if the
underlying computing system is so organized.)

(3) Following (2) above, each referenced parametered subfunction is
applied as required in the evaluation of the root function. The
actual parameter list in a reference to a parametered subfunction may
be suppressed (remain implicit, as was seen in Examples 11 and 12
above) when the argument is the result of a preceding function
application (by composition) or when the argument of the subfunction
is the argument of the its d-tree.

(4) To preserve the strict hierarchic intent of the d-tree, no
subfunction may refer to a sibling subfunction. (It may only refer to
its immediate parent of to its own direct offspring.)

(5) Application of a parametered subfunction implies (is achieved by)
the construction of a new argument context (as specified by the formal
parameter list) which is used in evaluating the parametered
subfunction’s right hand side and which temporarily hides the caller’s
argument context. Therefore, parameters that denote objects in
antecedent contexts may not appear on the right hand sides of
parametered subfunction definitions. (No free variables (globals)
allowed.) Hence, the right hand side of a parametered subfunction
definition may not include a reference to the context of the d-tree in

Functional Programming Page 35

the form of a parameter of the root function (unless the root function
parameter has been properly repeated as a parameter of the
subfunction).

The following are, respectively, illegal and legal examples vis a vis
the above constraint.

Example 14a Example 14b

p (u , v) = h (u - 1 , v)

where
h (a , b) = a * b + v

p (u , v) j= h (u - 1 , v)

where

h (a , v) = a * v + v

illegal

Parametered functions must be applied with
composition, as illustrated in Example 15.

legal

care when combined with

Example 15a

f (a , b , c) j= g (a , b) & id3
where

gTx,y) = x + y

or, alternatively,

Example 15b

Example 15c

— (?]— = *

where

— E h - =

/ d3
' J J

g

4 Z K

f (a , b , c) _=
where

& id-

g C x , y) = x + y

where

id4

id.

Composing g(a,b) with id (or g with id) leads to what may be
regarded as an unexpected (or unintended) result. Application of id
tranforms the original argument context of the d-tree to a new one
that may be incompatible with the one required for application of g.
The equivalent process diagram in Example 15c reveals the potential
inconsistency of the definitions in 15a. For example, when the d-tree
is applied to the triple, <3,4,5>, application of id produces 5, which
is then supplied as the argument for the construction, (x,y). Recall
that (x,y) is merely a shorthand for (id* , ida) . Since (x,y) cannot be
applied to 5, the computation must fail at this point. On the other
hand, if the argument of the d-tree were <3, 4, <5, 6> >, the
interpretation of the diagram in Example 15b would lead to the
perfectly reasonable result, 11, which may or may not have been
intended.

This example shows that parametered functions
care when combined with composition.

must be applied with

Functional Programming Page 36

(6) Within the above framework, the following recursive definition
structures are permitted:

(a) A main function or a subfunction may be recursively defined,
(b) Mutual recursion involving a main function and one (or more)

of its parametered subfunctions is permitted, provided, of course, no
subfunction refers directly to a sibling subfunction.

It is easy to see why a parameterless subfunction, g, may not be
defined mutually recursive with its root function, f, for if so, g
could be evaluated first, leading to a first actual application of f
from within the tree, rather than from outside.

(7) The above semantics (1 through 6) are unchanged under the gene­
ralization that each subfuntion of a d-tree's root function may itself
be the root function of a sub d-tree.

Functional Programming Page 37

8.0 EXAMPLES.

8.1 Bui Id ing A Search Tree.

A binary tree may be represented as a 3-element sequence

< tree , left subtree , right subtree >

where the two last items again are binary trees in the shape of
3-element sequences. Hence all branch nodes in the tree have the
above form, while a leaf is represented as

< node , $, $ >

Thus the binary tree

will be represented as

< f , <b, <a , $, $> , <d , $, $>> , <k , $, $> > .

The function, INSERT, defined below inserts a new element as a leaf in
an ordered binary tree. The function takes as its argument an object
of the form <Tree ,x > , where Tree is an ordered binary tree as
above, and x is an element of the same kind as the first element of
each triple in the tree. The result of applying the function is a new
tree-object where x is inserted in a new leaf <x,$,$>.

INSERT is defined as a recursive function, and the idea behind the
algorithm is to search down the tree until a $-node is found; then
this node is replaced by the new leaf <x,$,$>. In the first version,
INSERT is a parameterless function:

INSERT =

if Tree
17 ROOT

= $ then
> x then

[X ,

[ROOT,
[ROOT,

$, $] ;

INSERT & [LEFT,x] , RIGHT] ;

LEFT, INSERT & [RIGHT,x]]

where

Tree =

X

id^ ,

id2 ,

ROOT =
V

LEFT = id,̂ 2. ’ RIGHT ~ i d ^

Instead of giving the structure of the argument indirectly through the
subfunction definitions of Tree and x, this may be displayed more
clearly by use of parameters:

Functional Programming Page 38

I N S E R T (Tree , x) ~
if Tree = $ then T x , $, $] ;
T T ROOT > x then [ROOT, I N S E R T (L E F T ,x), RIGHT] ;

[ROOT, LEFT, I N S E R T (R I G H T ,x)]

where
ROOT j: T re e ^ , LEFT _= T r e e ^ , R IGHT _= T r e e ^

or, without using subfunctions at all:

r I N S E R T (Tree , x) = ^
if Tree = $ then [x , $, $] ;
T T Tree^ > x then [Tree^ , I N S E R T (T r e e ^ ,x), Tree3] ;

_̂___________________________[Tree,j , Tr eeg , INSERT (Tree^ , x)] y

The three definitions are equivalent, and none of them check whether
the new element x already exists in the tree. If this check is done,
the result must convey the information about success or failure, hence
we change the wanted result to be:

< the new tree , true > or < the old tree , false >

Reporting of the success or failure at the deepest level of the
recursion may be done as follows (corresponding to the second version
a b o v e) :

INSERT(Tree , x) =
if Tree = $ then T [x, $, $] , true] ;
T T ROOT = x then [Tree , false] ;

But the next part of the definition must be changed in order to 'carry
back' the logical value through the recursion levels as the second
element of the result. First, note that each of the two constructions
in the conditional if ROOT>x ... no longer gives a tree object as
result but a s t r u c t u r e ~ T i k e :

< root , <tree, logical value> , tree > ,

and this must be rearranged into:

< <root, tree, tree> , logical value > .

At every level of recursion, the result of INSERT must have this
structure. To perform these transformations, the subfunctions
TRANSFORML and TRANSFORMR may be introduced, and we thus get the
complete definition of INSERT as follows:

F nctional Programming Page 39

y— "
I N S E R T (Tree , x)

if Tree = $ then
if ROOT = x then
if ROOT > x then

TRANSFORML &
TRANSFORMR &

~[[x, $, $] , true] ;
[Tree , false] ;

[ROOT , I N S E R T (L E F T ,x) , RIGHT] ;
[ROOT , LEFT , I N S E R T (R I G H T ,x)]

where
ROOT = Tree , LEFT = Tree , RIGHT = Tr ee ,

1 2 3

TRANSFORML(Node, L, R) = [[Node, L , R] , L] ,
1 2

TRANSFORMR(Node, L, R) = [[Node, L, R] , R 1
1 2 J

If sibling subfunctions, such as TRANSFORML, ROOT, LEFT, and RIGHT,
might refer to each other, the definition of TRANSFORML could also be
written as

TRANSFORML = [[ROOT, LEFT,, , RIGHT] , L E F T ^]

and corre spondingly for TRANSFORMR.

8.2 I t e r a tive Solution Of Linear Equations (Jacobi M e t h o d).

Let A be an m-row by n-column positive definite matrix of reals, and
let B be an m-element sequence (vector) of reals. The Jacobi function
(defined below) returns an m-element vector, X, which is an
approximate solution of the equation

A * X = B.

The result returned is the kth iterate (k>0) of X, given the zeroth
iterate, X O , and subject to the constraint that k may not exceed
MAXITER, an upper bound on the allowed number of iterations. If
convergence proceeeds as expected, the kth iterate of X will be the
first iterate for which the Euclidean norm of X, j -X. is less than the
given tolerance, T O L : +

Functional Programming Page 40

J a c o b i (A,B,X0,TOL,MAXITER) = J (n e x t x (A , B , X 0) ,X 0 ,M A X I T E R ,A ,B ,T O L)

where

J(XNEW,XOLD,MAXITER,A,B,TOL) =
pred(XNEW,XOLD)*

((nextx(A,B,XNEW),XNEW,MAXITER-1,A,B,TOL))
1

where

len(XNEW)
pr ed (X N E W , X O L D) = ^ 7 sqr(XNEW - XOLD) > TOL and MAXITER > 0

i= 1 i i
M i - 1 N

nextx(A,B,X) = (£ (B - A *X . - 2 Z . A *X)/A
i = 1 i J = 1 i , J J j = i + 1 i , j j i,i

where
M =_ len (A) ,
N "= len (head (A))

~ J

M iTi N
nextx(A,B,X) = £ (B - ^ A *X - A *X)/A

i = 1 i J = 1 i ,j J j = i + 1 i ,J J i,i
where

M _= len (A) ,
N = l e n (h e a d (A))

(An alternative condition for convergence of the Jacobi method is that,
the matrix A exhibits diagonal dominance and that the system system of
equations defined by A and B is irreducible.)

[Syntactical note:
To make long iterative forms, such as the one for J above, more easy
to read, we are free to drop from the iterated expression, parameters
which do not change under repeated composition and which would
otherwise appear at the right end of that form. Thus we may rewrite
the definition of J as:

J(XNEW,XOLD,MAXITER,A,B,TOL) =
pred(XNEW,XOLD)*

((n e x t x (A , B , X N E W) ,X N E W , M A X I T E R - 1))
1

End syntactical note.]

The application of functions which also check the conformability of
input arguments A and B, and which possibly also make more substantive
checks, such as to determine if A is positive definite, may be
preferred. For example, Pre-Jacobi, defined below, checks the
dimensionalit ies of A and B for conformability, and if conformable,
applies Jacobi, supplying a zero vector as the starting vector, X 0 ,
and the number 100 as the value for MAX-ITER in the application of
Jacobi. Pre-Jacobi returns a two-tuple of the form:

(false, $) or (true, <result of Jacobi>).

Functional Programming Page 41

P r e - J a c o b i (A ,B ,T O L) _=
len(A)

((false, $), (true, Jacobi(A,B, 0,T O L , 100))
i = 0 l e n (A)= l e n (B)

The possibility for exploiting parallel execution when calculating the
components of an iterate is expressed in the definition of nextx.
The indexed concatenation means that the components of X^+ .̂ are formed
by a construction, and elements in a construction may be evaluated in
parallel (if the underlying machine has processing elements that may
be used for this purpose.)

In a related method (G a u s s - S e i d e l) , which has the same sufficient
conditions for convergence of the iteration, elements of are
computed in sequence so that each newly calculated component of X)c4.(
immediately enters into the calculation of the next Xk+< component.
This method converges faster and may hence be more attractive than
Jacobi when it is known that the potential for parallelism cannot be
e x p l o i t e d .

8.3 B inary Search

Let A be an ordered vector of numbers - say, increasing -
< a 1 , a2 , . . . , an> , and let ’key* denote the number whose place (index)
in the vector is wanted. The argument to the search function is

< A , key >

and the result should be

< A , i , true >
< A 0 false >

if ai = key,
if the search fails.

The method used is to construct a pair of indices <low,high> such that
A(low) _< key < A(high) and continue ’halving the g a p’ until low=high.
Thus the firs^ step is a construction where the initial index pair is
c r e a t e d :

(1) B I N S E A R C H (A , Key) = & FIRST
wher e

FIRST [A , [1, l e n (A)] , Key]

Functional Programming Page 42

Next step is an iteration performed on this FIRST construction,
consisting of A, an interval, and Key. The quantities A and Key are
kept unchanged and the interval (initially [1,len(A)]) is repeatedly
halved: In each cycle the midpoint M is found and the left or the
right half selected in accordance with the test Key < A(M) :

(2) I T E R A T E (A , (LOW, HIGH), Key) =

[A, if Key<A then [LOW,M] ; [M + 1 ,H I G H] , Key]
M ______________ ______________

(L O W < H I G H)*

where

M (LOW + HIGH) div 2

This iteration is guaranteed to terminate with LOW=HIGH because the
interval under consideration becomes strictly shorter for each
iteration step: As long as the difference between HIGH and LOW is 2
or more, M satisfies the strict inequalities LOW < M <HIGH; when
HIGH=L0W+1 the next M becomes M=LOW and thus the next interval, either
[LOW,M] or [M+1,HIGH], has the length 0, and that will cause the
iteration to stop.

The iteration delivers a result of the form
< A , < i n d e x ,index> , key >

and it now remains to test for success or failure and select the
result object:

(3) R E S U L T (A , (11 ,12), Key) =

if A = Key then [A
11

[A

, H ,

0

true] ;

, f a l s e]

Thus the binary search algorithm is assembled by putting (1), (2), and
(3) together:

(4) r B I N S E A R C H (A , Key) = RESULT & ITERATE & FIRST

wher e

FIRST = [A , [1, l e n (A)] , Key] ,

I T E R A T E (A , (LOW,HIGH), Key) = { as in (2) above } >

RESULT (A
V

(11 , 12) , Key) = { a s in (3) above } J

Functional Programming Page 43

8 .4 Linear R e g r e s s i o n .

Let X = < x 1,x2 , . . . ,xn> , Y = < y 1 ,y 2 ,...,yn> be two vectors which
provide corresponding pairs of data (say, measurements) xi,yi. We
want to define a function performing linear regression on these data,
calculating the standard statistical quantities

slope and intercept of regression line A, B
standard deviation STDDEV
correlation coefficient CORR
F-ratio F

The formulae for these quantities may be found in any statistical
handbook, and a complete Fortran program (1 page long) can be seen in
R.L.Nolan: "Fortran IV Computing and Applications", section 15.1.

The LINREGR function takes the sequence <X,Y> as input and returns
a sequence of the above 5 quantities:

F nctional Programming Page 44

L I N R E G R (X , Y) = COMPUT_F & COMPUT_CORR & COMPUT_STDDEV &
COMPUT_A_B & COMPUT_D & REDUCE_DATA &

________________ COMPUT N__ .
where

COMPUT N = [X ,Y , l e n (X)], — append N to <X,Y>

R E D U C E _ D A T A (X ,Y ,N) = [SUMX, SUMY, SUMX2, S U M Y 2 , SUMXY, N],
where

N N N
SUMX = 2 7 X , SUMY = 2 Y » SUMX2 = 2 7 (X *X) ,

i= 1 i
N

SUMY2 = 2] (Y *Y),
i=1 i i

1 = 1 i i = 1 i i
N

SUMXY = 2 7 (X *Y) ,
i = 1 i i

-- form basic 6-tuple of
-- intermediate values

'COMPUT D (SUMX , SUMY, S U M X 2 , S U M Y 2 , S U M X Y , N) =
[SUMX, SUMY, S U M X 2, SUMY2 , SUMXY, N, D] ,

where
D = N* S U M X , 2 - SUMX *SUMX ,

V -------------
- - append D to tuple J

C O M P U T _ A _ B (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D) =
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B]

wher e
— A- =~(SUMX2*SUMY - S U M X * S U M X Y)/ D ,
B = (N*SUMXY - SUMX*SUMY)/D,

-- append A and B to tuple

C O M P U T _ S T D D E V (SU M X , SUMY, S U M X 2 , SUMY2, SUMXY, N, D, A, B) =
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, S T D D E V],

where
STDDEV = s q r t (((SUMY2 - A*SUMY) - B * S U M X Y) / (N-1)),

___— append STDDEV to tuple

C O M P U T _ C O R R (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV) =
[SUMX, SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV,

C O R R] ,
wher e
~CORR = B*B*D/(N*SUMY2 - SUMY - SUMY),
t___— append CORR to tuple___

C O M P U T _ F (S U M X , SUMY, S U M X 2 , S U M Y 2 , SUMXY, N, D, A, B, STDDEV, CORR)
= [A, B, STDDEV, CORR, F] ,

wher e
F~T-B*(SUMXY - S U M X * S U M Y / N)/CORR

-- form final 5-tuple

In order for this function to work properly it must be applied to an
argument consisting of two vectors, of the same length, of real
numbers. This condition may be expressed as a well-formed condition
on the argument (X,Y):

Functional Programming Page 45

w f - c o n d i t i o n :

/ —
len(X) = len(Y) and randy (number(X) and number(Y))

^ i : 1 i i

If wanted this condition could also be incorporated into the function
definition itself, making the right-hand side a conditional expression
yielding the result undefined if the condition is not fulfilled.

8.5 Numerical Integration

In a general applicable integration algorithm for (approximate)
calculation of

fb F (x) dx
a

the user must be given the possibility to supply his own algorithm for
the calculation of function values F(x) , and the integration
algorithm must supply the 'skeleton' of the numerical integration.

Let us illustrate this by giving an algorithm for the trapezoidal
integration scheme (with N sub-intervals)

b __ N-1

F(x) dx = (F (a) + 2 * 2 - i F(xi) + * (b - a) /2/n
i=1

I N T E G R A L (a , b , N) = >
_ _ N - 1

(F (a) + 2_1 F ^a + i*dx) + F(b)) * dx/2
i= 1

wher e
dx = (b - a)/N ,

F(x) = user-supplied
— , . J

The user must 'plug in' a functional expression that, when given a
number valued object x, computes the corresponding function value
F(x) .

If the functional language is implemented in an environment with
's u b r o u t i n e 'l i b r a r i e s , a special notation - a 'naming facility' -
should be introduced to allow linking a pre-coded algorithm for F(x)
to the INTEGRAL algorithm.

Functional Programming Page 46

9.0 REFERENCES.

[Backus 78] J.Backus: "Can Programming be Liberated from the von
Neumann Style? A Functional Style and its Algebra of Programs".
CACM 21,8 (Aug. 1978), 613-641.

[Black 80] P.E.Black: "An Alternative to the '$' Object in Functional
Programming Language", private c o m m u n . , May 1980.

[Gram, Organick 80c] C h r . Gram, E .I . O r g a n i c k : "Algebra of the Easy
Functional Programming Language", Tech. Report ???????,
Department of Computer Science, Univ. of Utah, Salt Lake City
(July 1980) .

[Iverson 62] K.E.Iverson: "A Programming Language". J. Wiley, New
York (1962) .

[Landin 64] P.J.Landin: "The Mechanical Evaluation of Expressions".
Comp. J. 6,4 (1964), 308-320.

