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CHAPTER 1: INTRODUCTION 

The design of rigid pavement today focuses on the stress analysis, climate, supporting 

layer and geometric effects. Consequently, less effort has been given to understanding the 

progressive failure of concrete pavements and specifically the crack propagation in the 

concrete materials. All concrete materials are assumed to be equivalent as long as they 

have the same strength; however this assumption is not always true.  A new comparative 

measure for concrete materials is needed for understanding progressive failure of 

concrete slabs.  More detailed information about concrete material, such as its fracture 

properties, is required along with the strength to better quantify crack propagation rates of 

varying concrete mixture proportions and constituents.  

 

Several relatively new rigid pavement design concepts in the United States are two-layer 

paving and ultra-thin whitetopping (UTW).  Field projects provide information on 

constructability and performance under environmental and traffic loading conditions. 

Laboratory research can assist to optimize the concrete material behavior to meet the 

overall pavement performance seen in the field projects.  Characterizing the strength and 

fracture properties of concrete materials will give insight into the potential for early 

fatigue cracking, or in the case of UTW, susceptibility to reflective cracking.  

Furthermore, there is a huge gap in understanding the progressive cracking in concrete 

pavements and thus fracture properties are required if future 3-D modeling is going to be 

completed.  
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The main focus of this thesis is to determine fracture properties of concrete mixtures used 

in three projects – specifically functionally graded concrete materials (FGCM) for two-

lift rigid pavement construction, UTW composite material behavior, and fiber-reinforced 

concrete (FRC) pavements – and the evaluation of mixture design selection to assist 

engineers in optimizing field performance.  Concrete mixture designs from several rigid 

pavement projects were evaluated in the laboratory for their strength and fracture 

properties. The following sections review the current design philosophy of concrete 

pavements, present an argument for use of fracture testing of concrete materials, and 

finally review three relatively new rigid pavement systems.  

 

Current Design Methods 

Rigid pavement design guides have been developed over the years using nomographs, 

tables, and equations to predict the required slab thickness and service life.  Concrete 

pavements must perform multiple functions such as handling the traffic loads, resisting 

thermal and moisture gradients, attenuate noise, and provide adequate skid/wear 

resistance and surface drainage.  The input factors for mechanistic-empirical rigid 

pavement design guides include: slab geometry and support layers, material parameters, 

climatic information, and a variety of traffic characteristics.  The final design is a single, 

monolithic concrete pavement layer that attempts to optimize the required functions for 

which the pavement must perform as far as fatigue, volume stability and functional 

service qualities.  Most rigid pavements are over-designed with thicker slabs and many 
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times with higher concrete strengths than necessary. These conservative designs may not 

be the most economical either.  

 

The main structural performance issue for rigid pavements is either early-age cracking or 

long-term fatigue cracking of the concrete slab.  The initiation of cracking in concrete 

and the flexural load capacity of a concrete slab are related to its tensile strength and 

fracture properties.  More recent design guides include the modulus of rupture (MOR) or 

flexural strength of the concrete to capture the material failure characteristics in bending.  

However, the behavior within the material during cracking is still not included in design 

guides. For concrete pavement systems associated with rehabilitation, it is important to 

understand the concrete behavior with respect to whether cracks are in the slab initially or 

in the supporting layers.  Fracture mechanic tests can be used to measure the fracture 

properties of the material which can characterize the residual strength of a cracked 

concrete structure and can forecast the load carrying capacity of a slab for a given 

concrete material and geometry.  The concrete material can be optimized for maximum 

pavement performance and economy with the knowledge of its fracture properties.  

 

Specific projects were performed to determine the fracture and residual strength behavior 

of concrete mixtures commonly seen in pavement construction.  The theory and testing 

procedure to determine the fracture properties of all the concrete mixtures in this thesis 

are presented in Chapter 2.  The effects of concrete age, mixture proportions and 

constituents for concrete paving mixtures have been specifically investigated; these are 

presented in Chapter 3.  
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Specific Pavement Research Projects 

Two-Layered Paving (or FGCM)  

Two-layered paving projects have been performed in the U.S. and Europe.  They often 

are designed to incorporate the less-desired materials such as recycled concrete aggregate 

in the bottom concrete lift. The characteristics of these lesser quality materials are either 

poor for construction or unknown; thus analysis using these materials and their impact on 

the overall structural performance is important for the implementation in two-layered 

paving projects. Adding fiber-reinforcement can be used in concrete to increase the 

fracture properties (i.e. toughness) of the material.  This report uses mixtures of plain and 

fiber-reinforced concrete to investigate the fracture performance of FGCM through two-

layered single-edge notched beams [SEN(B)].  Background, experimental descriptions 

and results of the FGCM investigation for two-layered paving projects can be found in 

Chapter 4. 

 

Ultra-Thin Whitetopping (UTW) 

UTW refers to a rehabilitation technique of placing a thin concrete overlay on a 

deteriorated hot-mixed asphalt pavement section. The fracture properties the concrete 

mixtures are important for understanding the mechanisms behind the UTW pavement 

performance, especially load carrying capacity, load transfer efficiency at joints, and de-

bonding from the hot-mixed asphalt.  An experimental program was designed to 

determine the fracture properties of UTW concrete mixtures used in the field.  Table 1 

shows field mixtures from IDOT UTW projects; Table 2 shows field mixtures for a 

continuously reinforced project on the Dan Ryan in Chicago, IL and UTW projects in 
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Sao Paulo, Brazil).  A test method was also developed herein to represent the composite 

system (concrete, hot-mixed asphalt, and soil) behavior. Shrinkage specimens were 

sampled since this is the main contributor to de-bonding in field UTW projects.  Chapter 

5 provides the background, experimental set-up, and results of the composite beam 

testing and related material property findings using the UTW mixtures. 

 

Fiber-Reinforced Concrete (FRC) 

One main challenge for materials engineers is specifying fiber reinforcement type and 

amount for use in concrete pavements. A study was performed to understand the impacts 

of fiber type and volume fraction on the toughness properties and flexural strengths 

(modulus of rupture and residual flexural strength properties) of FRC.  Other research 

project results were combined for a greater database of fiber types at different volume 

fractions and their respective properties.  A comparison was also made between available 

testing procedures (American Standards for Testing and Materials and Japan Concrete 

Institute) for flexural strength of FRC mixtures.  The results of these FRC tests can be 

seen in Chapter 6.  
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Table 1 - Selected IDOT mixtures for UTW projects throughout Illinois 
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Table 2 - Concrete Mixture Designs of Field Projects 

 
Express 

Lanes
Local Lanes SP-280

USP campus

lb/yd
3 1894 1887 2013 1734

type 022 CM 07 022 CM 11 Crushed Granite Crushed Granite

lb/yd
3 1258 1230 831 1082

type 029 FMM 20 027 FM 02 Round Quartz Round Quartz

Cement lb/yd
3 435 435 742 802

Water lb/yd
3 230 230 298 340

Silica Fume lb/yd
3 0 0 74 48

GGBF Slag lb/yd
3 110 110 0 0

type
Excel AEA 

(3523-01)

Daravair 

1400
N/A none

fl.oz/yd
3 N/A N/A 3 0

type
Redi-set 

(767-01)
WRDA 82 N/A N/A

fl.oz/yd
3 N/A N/A 43 37

type none none N/A N/A

fl.oz/yd
3 0 0 140 62

w/cm wt ratio 0.42 0.42 0.37 0.40

coarse/fine wt ratio 1.51 1.53 2.42 1.60

% agg wt ratio 80.3% 80.1% 71.9% 70.3%

Fine Aggregate

Superplasticizer

Water Reducer

Air Entrainment

Dan Ryan

Location

Coarse 

Aggregate

Brazil
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CHAPTER 2: CONCRETE FRACTURE TESTING 

Fracture mechanics is a growing field of interest within pavement engineering.  All of the 

research initiatives presented in this thesis utilized fracture mechanics theory and testing 

methods.  Other concrete material properties (such as strength) were also measured for 

further evaluation of the material behavior.  This chapter summarizes the background 

behind using fracture mechanics in concrete pavement material characterization and 

explains the specific testing and analysis procedure used to determine fracture properties 

of the concrete mixtures. 

 

Background 

The current design of rigid pavements relies on hardened concrete properties such as 

compressive, tensile and flexural strengths.  Although these properties have been used 

successfully for years, the existing design inputs do not capture the entire cracking 

behavior of the pavement structure.  By quantifying failure properties of the concrete, a 

better grasp of how the concrete pavement performs throughout its life can be 

ascertained.  Through fracture mechanics, material parameters indicating the initiation 

and growth of cracks and the nominal load capacity of initial cracked structures can be 

derived.  The fracture toughness has been used to describe the rate of crack propagation 

through the concrete.  The use of fracture energy with a cohesive zone model can 

quantify the load capacity of a beam or slab [38] or indicate the ability of a concrete 

material to transfer load across a crack or joint [14]. 



9 

Concrete is often considered a brittle material, which alludes to the possibility of 

analyzing it with linear elastic fracture mechanics. In reality, concrete is a quasi-brittle 

material which exhibits a significant amount of nonlinear behavior especially after the 

peak strength is reached.  Due to the nonlinear behavior, the recommended specimen size 

for testing to obtain size independent concrete material properties would be extremely 

large.  Therefore, size effect considerations are an important issue that must be accounted 

for when testing concrete specimens. Typically, an equivalent elastic crack approach is 

used to account for the observed nonlinearity of the concrete fracture process.  This 

testing and modeling approach allows for the calculation of “size independent 

parameters” using practically sized specimens. 

 

Bazant [5] has performed several studies using concrete and determined that the nominal 

strength (e.g., flexural strength) of a material is dependent on the structural size and 

geometry.  Several reasons for how the size impacts the properties of a material such as 

concrete have been described in his size effect model [5].  The size effects include: 

wall/boundary effect (aggregate size and surface paste), heat and water diffusion rates 

(related to the pore structure), heat generated from hydration, voids or defect probability, 

fracture or energy release rate.  Each of these factors listed either increase or decrease 

strength and fracture properties depending on the size of the test specimen.  Standardized 

fracture test methods using specific specimen geometries that are practical have been 

developed to characterize the fracture properties of concrete materials.  These test 

methods specify the geometric constraints and boundary conditions needed in order to 

produce “size independent” fracture properties. 
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A RILEM procedure was developed by Jenq and Shah [23 and 43] using a single-edge 

notched beam (SEN(B)) to determine the fracture properties of the concrete.  The single-

edge notched beam specimen in configured for three-point bending with the load (P) and 

crack mouth opening displacement (CMOD) being measured.  The specimen and load 

configuration for the SEN(B) test are shown in Figure 1. In order to characterize the 

fracture properties of various paving concretes the SEN(B) specimen configuration was 

utilized. 

 

 
Figure 1 - Single-edge notched beam configuration. 

 

Jenq and Shah developed the Two-Parameter Fracture Model (TPFM) to determine the 

critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODC) 

of a monolithic beam based on an effective elastic crack approach.  The nonlinear 

fracture behavior was accounted for by using linear elastic fracture mechanics equations 

to calculate the effective elastic crack length based on the measured loading and 

unloading compliance of the beam.  Geometric factors were included in the calculations 

to account for the geometry and size of the beams. A span-to-depth ratio (S/d) was 

suggested in the TPFM to be 4; the initial notch depth a0 is 1/3 of the total depth d, and 

the notch width should be less than 5 mm [23].  The total beam dimensions (length x 

b 

a0
d 

P

S



11 

depth x width) chosen were 700 x 150 x 80 mm with a span of 600 mm and an initial 

notch depth of 50 mm.  It was recommended that four replicates of each beam be tested 

[24].  

 

Fracture Testing Procedure 

The Two-Parameter Fracture Model TPB beams were cast in steel molds and a notch was 

saw cut 24 hours before testing using a block saw with a diamond blade.  Prior to testing 

two aluminum knife edges were placed 10 mm apart with a quick-set epoxy.  An 

INSTRON clip gauge measuring opening displacement up to 4 mm range was clipped 

onto the knife edges to measure the crack mouth opening displacement (CMOD). An 11-

kip MTS machine applied the monotonic load to the specimens.  Cyclic compliance 

testing was useful for describing the deformation and crack propagation in a material.  A 

LABVIEW program was developed to remotely control the testing of the concrete 

specimen through the clip gauge readings.   

 

During testing a seating load of 0.05 kN was placed on each specimen followed by a 

constant opening displacement rate of 0.001 mm/sec.   After the load decreased to 95 

percent of the peak load, the data acquisition program automatically unloads the 

specimen over a 10 second period.  The specimen was then again re-loaded and unloaded 

at 95 percent of the second peak load. The program was designed to continue this process 

for n-cycles. A plot of loading and unloading cycles is shown in Figure 2. For the 

majority of the experiments tested in this research, on the 3
rd

 cycle, the opening 
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displacement rate was increased to 0.005 mm/sec and the program manually adjusted to 

not unload (i.e. continue constant displacement control) until the clip gauge went out of 

range or the load reached 0 kN, whichever was first.   

 

 
Figure 2 – Loading and Unloading Cycles for SEN(B) concrete specimen. 

 

Run-out test for FRC 

For some of the concrete materials, such as FRC, the clip gauge generally went out of 

range before the failure of the beam.  Therefore a yo-yo gauge (a string extender linear 

transducer) with a 50 mm range was attached to one side of the beam with epoxy before 

the test (see Figure 3 for a photograph of the yo-yo gauge and clip gauge on the beam). 

The testing procedure for the FRC beams was still the same for the two initial cycles.  A 

desktop computer controlled the test for the first two cycles.  After the first two cycles 

were completed, the control of the test was switched over to a user-defined position 

ramping speed of 1 mm/min vertical machine position control using the 8800 Instron 

controls until failure was reached (determined manually when the load fell below 0.05 
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kN). An additional laptop computer was used for data recording of all cycles and the run-

out beyond the range of the clip gauge.  Figure 4 shows the 8800 Instron control 

machines and computers used.   

 

Yo-yo 
gauge

Clip 
gauge

Loading  
pin

NotchYo-yo 
gauge

Clip 
gauge

Loading  
pin

Notch

 
Figure 3 - Photograph of the single-edge notched beam during testing. 

 

 

 
(a)    (b)    (c) 

Figure 4 - Testing equipment for fracture testing: (a) Instron control tower, (b) 

Instron panels, and (c) data acquisition computers. 



14 

Data Calculation Analysis 

In order to plot the load-CMOD curve for each specimen, the clip gauge and yo-yo gauge 

data were correlated to each other and the change (based on the initial gauge reading) in 

corrected displacement is the CMOD.  Figure 5 shows a schematic of the first and second 

loading cycles of the SEN(B).    

 

Pc

CMODc
P CMODc

e

Ci

P

CMOD

Cu

Pc

CMODc
P CMODc

e

Ci

P

CMOD

Cu

 
Figure 5 – Schematic of loading and unloading cycles of a TPB specimen used to 

compute initial compliance Ci and unloading compliance Cu. 

 

Analysis Inputs 

The initial fracture properties were calculated from the loading and unloading 

compliance, the peak load (Pc), the beam weight, and the initial notch depth.  The beam 

weight was determined by multiplying the beam volume by the fresh concrete unit weight 

of the mixture measured during casting.  The initial notch depth sometimes varied within 
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a specimen due to the rate at which the beams were cut under the saw; a0 was measured 

from the bottom surface of the beam to the top of the rounded notch tip.  

 

The loading compliance (Ci) was calculated as the inverse of the slope from 10% of the 

peak load until 50% of the peak load. This was estimated to be the linear elastic range 

and ignored any initial seating load discontinuities in the curve.  The unloading 

compliance (Cu) was the inverse of slope of the unloading curve.  It was estimated that Cu 

should be calculated between 10% of the peak load and 80% of the peak load on the 

unloading curve. Since the calculation of Cu was dependent on the points chosen on the 

unloading curve other methods to determine of Cu were investigated and presented below.   

 

Compliance Determination 

The definition of loading and unloading compliance is shown in Figure 5.  The 

compliances could be difficult to determine from the load versus CMOD curves since it 

involved some user subjectivity to determine the elastic part of the unloading compliance.  

The initial loading compliance for an elastic material was assumed to be roughly the 

inverse of the material loading stiffness.  However, different methods exist for 

determining the initial slope such as tangent, secant, or chord stiffness.  Computing the 

unloading compliance was even more difficult due to the inherent nonlinear elastic and 

inelastic response of the material during unloading.  Ideally the test should be set up to 

unload immediately after the peak load was reached for the determination of the 

unloading compliance.  Due to uncertainty in when the peak load level has been reached, 

the RILEM method proposed by Jenq and Shah [23] suggested unloading the specimen at 
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95% of the peak load with the assumption that the unloading slope at this load level was 

assumed to be similar to that from the actual peak load.  This unloading technique also 

assumed there is no additional crack propagation from the peak load to the 95% peak 

value, which can lead to an error in the critical crack length calculation.  

 

In order to eliminate operator controlled error, Jensen et al. [21] performed a study that 

implemented a focal point method for computing the unloading compliance.  By 

extrapolating slopes (determined from the unloading curve) from several load/unload 

cycles back to a focal point; the need to unload a beam at 95% of the peak load was no 

longer required.  A diagram of this process can be seen in Figure 6.  In the paper by 

Jensen et al., little information was provided on how the actual compliance values for 

each unloading cycles were determined (tangent, chord, or secant compliance).   

 

 
Figure 6 - Focal point method for compliance determination [from 21]. 
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Computing the critical crack length could be determined by drawing a line between the 

focal point and the peak load and then calculating the unloading compliance.  The critical 

crack length determined using the peak load compliance was always smaller than a 

compliance taken at any load after the peak load had been reached (when the crack has 

propagated beyond the critical length).  Smaller critical crack lengths led to smaller 

critical stress intensity factor, critical crack tip opening displacement, and initial fracture 

energy values.  In other words, Jensen et al. [21] found that the KIC and CTODC values 

determined with the focal point method were consistently reduced by 12% and 38%, 

respectively, compared to just computing the unloading compliance from 10 and 80% of 

the peak load.   

 

A specific feature that was noticed between specimens was that the duration or 

displacement at which the 95% post-peak unloading load was highly variable.  Some 

specimens demonstrated a long gradual softening curve initially after the peak and the 

95% load was not reached until a larger CMOD value; other specimens demonstrated 

almost instantaneous load reduction after the peak and thus the unloading began much 

sooner at smaller CMOD values.  Either a manual unloading response or the focal point 

method may be desired in order to reduce the variability from those specimens which 

exhibit the more gradual post-peak curve. 

 

The variability of the calculated KIC and CTODC values using the focal point method was 

determined to be similar to the traditional TPFM, according to Jensen et al. [21]. For 
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example, the coefficient of variation on KIC with the focal point method was 6.5% and 

was 5.1% for the TPFM; similarly, the coefficient of variation on CTODC was 37.0% 

using the focal point method and 21.0% using the TPFM.  The focal point method was 

developed to supplement the TPFM to allow users to unload at any load level and still 

compute the relevant initial fracture properties.  The focal point method may provide a 

more accurate result on fracture parameters however based on the larger variation 

reported in Jensen et al, it may not be as precise.  For the studies performed in this thesis 

report, the TPFM with unloading from 95 percent of the peak load was used because the 

computer running the test was able to precisely detect the load level for automatic 

unloading at this level of loading.  Due to the lack of improved accuracy for the focal 

point method, the loading and unloading compliances were respectively found by 

manually selecting specific data points along the loading (at 10% and 50% of the peak 

load) and unloading (at 80% and 10% of the peak load) curve as stated in the previous 

section.  

 

Calculation of Initial Fracture Properties 

The two fracture parameters determined through the TPFM were the critical stress 

intensity factor (KIC) and the critical crack tip opening displacement (CTODC) [23 and 

43].  These were computed by first obtaining the critical effective crack length (ac).  By 

equating, the concrete’s modulus of elasticity from the loading and unloading curves (E = 

Ei = Eu) as shown in equations 1a and 1b, the critical effective crack length could be 

determine as follows: 
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where (S) was the span, (d) the depth, (b) the width, (a0) the initial notch depth of the 

beam 0 the initial notch/depth ratio, c the critical notch/depth ratio and g2( ) the 

opening displacement geometric factor for the TPB specimen given by equation 2. 
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Once the ac was computed, then the critical stress intensity factor (KIC) could be 

calculated from the following (equation 3), 

bd
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2

)/(
)/5.0(3  (3) 

where (Pc) was the peak load, W0 was the weight of the specimen, L was the length of the 

specimen and (g1) was the stress intensity factor geometric function for the beam 

specimen defined as follows (equation 4).   
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Finally, the CTODC could be computed using equation 5. 
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By using a thin TPB beam, plane stress was assumed and the critical energy release rate 

(Gf), or also known as the initial fracture energy, was related to KIC and the modulus of 

elasticity, E, by equation 6. 

 

E

K
G IC

f

2

 (6) 

 

Total Fracture Energy 

The testing data from the TPB concrete specimen could also be used to calculate the area 

under the load-CMOD curve which can be related to the concrete total fracture energy 

(GF). Monotonic loading until specimen failure was usually employed instead of a 

cyclical load-unload testing process for determining the total fracture energy. Therefore 

the static cycles of the tested data were manually removed such that an envelope curve 

was drawn using the following: the initial loading data till the peak load, the data from 

the peak load to 95% of the peak load on each cycle, the remaining curve after cycles 

were complete until failure (at 0.05 kN).   

 

According to Hillerborg [19], the total fracture energy (GF) or work of fracture was 

determined as the total energy (Wt), normalized to the fracture area bad )( 0 . The total 

energy (Wt) was calculated using the sum of the area under the load (P) vs. CMOD 
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envelope curve (Wr), and Pw f, where Pw was the equivalent self weight force, and f was 

the CMOD displacement corresponding to the applied load (zero) at failure. The 

equivalent self weight force and total fracture energy were calculated using equations 7 

and 8, respectively. 

 

L
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2

0  (7) 

bad

PW

bad
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)( 00

 (8) 

 

The total fracture energy has more variability, especially compared to the initial fracture 

energy.  Bazant et al. [6] described that much of the scatter in GF calculation comes from: 

1) inherent randomness in the tail end of the load-CMOD curve, 2) uncertainty in 

extrapolating the tail end of the curve to zero load, and 3) difficulty eliminating non-

fracture sources of energy dissipation.   

 

There is little information in the research literature as to the exact cut off criterion for the 

total fracture energy computation as it pertains to fiber-reinforced concrete (FRC) 

materials.  The Hillerborg method was created for computing the fracture energy of plain 

concrete specimens that undergo complete specimen failure.  With plain concrete, the 

area under the load-displacement curve from 0.05 kN to 0.0 kN load at failure is almost 

negligible.  However, for such materials like FRC which have long post-peak curves and 

large displacements, the area under the load-displacement curve depended highly on the 

load to cut-off the area calculation.  If the point of complete failure was determined to be 
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at the same load as the initial seating load, the fracture energy would be drastically lower 

for some FRC mixtures than if the point of failure were determined when the load 

reached a zero value with the testing apparatus.  See Figure 7 for a schematic example of 

the area differences for FRC mixtures.   For the FRC mixtures used in this report, the GF 

was consistently computed as the area under the load-CMOD curve till 0.05 kN load 

(which was the applied load corresponding to the seating load). The Hillerborg method 

may still be a valid for determining the fracture energy.  Clarification should be made for 

future testing to determine whether a load of zero or the initial seating load should be 

used as the cut-off criterion for the total fracture energy. 
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Figure 7 - GF calculation for a straight synthetic FRC specimen. 
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All of the testing for projects presented in the remainder of this thesis utilized the TPB 

specimens for determining fracture properties.  The fracture properties were all calculated 

using the same equations as described earlier, with the exception of a relative fracture 

energy G2mm which is explained in Chapter 4.  These fracture properties were used to 

evaluate the effectiveness of different concrete materials for their post-peak performance. 
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CHAPTER 3: FRACTURE PROPERTIES OF PAVING 

MIXTURES 

 
Laboratory research has been performed in this thesis to understand how age of testing, 

concrete material proportioning and constituent selection affect the concrete fracture 

properties.  Concrete mixtures presented in this chapter were all used in the other 

chapters’ pavement studies or from other researchers.  The predictions of concrete 

fracture properties made by other researchers were also evaluated with the measured data 

presented herein.  

 

Past Studies 

Several researchers have attempted to predict fracture properties with respect to age or 

material properties.  Mindess et al. [35] have reported that the fracture energy did not 

vary with age, compressive strength, or w/cm ratio but instead depended on the strength 

of the coarse aggregate. Bazant and Becq-Giraudon [4] performed a statistical study of 

fracture properties in 2002.  They used a database of fracture and strength properties for 

different specimen types and mixture designs reported in the literature.  An equation was 

developed based on the compressive strength of the concrete f’c, the maximum coarse 

aggregate size da, and the water-cement ratio, to compute the initial fracture energy Gf 

and total fracture energy GF.  Similar equations developed by other researchers were also 

reported in the Bazant and Becq-Giraudon paper but are not included here.  Bazant and 

Becq-Giraudon described and equation to compute the fracture energy of concrete, shown 

here as equations 9a and 9b.  They reported coefficients of variation of 18 and 30 percent 

for the initial fracture energy and total fracture energy, respectively. 
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Zollinger et al. [49] conducted age effect testing (at 1, 7, and 28 days) with Texas 

concrete paving mixtures containing various coarse aggregate sources of crushed 

limestone or river gravel.  The study concluded that the critical stress intensity factor KIC 

and the fracture process zone size increased with the age for each concrete mixture.  The 

brittleness of the concrete (computed as the specimen depth divided by the critical 

effective crack length) was also determined to be greatest at the early ages (before 28 

days). For concrete specimens containing river gravel, the critical stress intensity factor 

was plotted against age, normalized to 28 days, and shown in Figure 8.  An empirical 

formula shown in equation 10 was developed by Zollinger et al. to predict the critical 

stress intensity factor at different ages (t in days) based on a 28-day test (KIC
28

).   
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Figure 8 - Stress intensity factor versus age both normalized at 28 days [from 49]. 

 

Chapter Motivation 

The results in this chapter used the concrete mixture designs primarily from the UTW 

field mixtures (see Table 1) to evaluate the specific influences of age, aggregate type, and 

cement content on the measured fracture properties.  In addition, the equations proposed 

by Bazant and Becq-Giraudon and by Zollinger et al. to determine fracture properties will 

also be evaluated.  A standardized age for testing fracture properties was also determined 

in this chapter for paving mixtures used in Illinois. 

 

Age Effect Studies 

It is well known that conventional concrete hardened properties such as strength and 

elastic modulus increase with age. The material properties of a pavement will vary with 
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time as the concrete continues to hydrate and as climate and traffic loading alters the 

stresses or strains within the concrete. The strength gain and hydration of concrete are 

greatly impacted by factors such as temperature, moisture or relative humidity, geometry 

of the specimen, and microstructure of the concrete.  An age effect study was undertaken 

to verify the evolution of concrete paving mixtures fracture properties for a variety of 

material constituents and proportions. In addition, it was necessary to analyze concrete 

paving mixtures with age independent fracture properties.  Therefore a standard age 

should be determined for further fracture testing of concrete mixtures.   

 

The current study included a wide a variety of mixtures, shown in Table 3, using low and 

high cement contents, a fiber-reinforced concrete mixture, and mixtures containing slag, 

fly ash, or silica fume. The age effect fracture testing analyzed specimens cured from 7 to 

90 days. The Anna and Low Cement mixtures were derived from IDOT ultra-thin 

whitetopping (UTW) field projects for the intersection project at Vienna and Main Streets 

in District 9 and the Piatt County Highway 4 project in District 5 (field mixtures shown in 

Table 1), respectively.  The Parking Lot mixture was sampled directly from a field 

project on the University of Illinois at Urbana-Champaign parking lot E-15.  No air 

entraining agent was added to the Parking Lot mixture in the field according to the ready-

mix supplier.  The Brazil 1 Mixture is based on SP-280 highway mixture proportions 

(shown in Table 2) with an adjustment in the coarse to fine aggregate blending and 

without any water-reducer.  The mixture proportions shown in Table 3 have all been 

normalized to one cubic yard batches of concrete. 
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The same coarse aggregate type and maximum size (25mm) was used for all mixtures in 

this age effect study. Other researchers found the coarse aggregate type and maximum 

size to control the post-peak fracture behavior [4, 35, and 49]; a small research study is 

described later in this chapter to compare coarse aggregate effects.  

 

Table 3 - Age Effect Concrete Mixture Designs 

Anna
Low 

Cement
Parking Lot Dan Ryan Brazil 1

Cement lb/yd
3

774 561 434 447 735

Fly Ash lb/yd
3

0 0 135 0 0

Slag lb/yd
3

0 0 0 113 0

Silica Fume lb/yd
3

0 0 0 0 73

Water lb/yd
3

280 246 222 236 295

Coarse Aggregate lb/yd
3

1851 1924 1929 1939 1761

Fine Aggregate lb/yd
3

1034 1282 1231 1264 1084

Fibers lb/yd
3

0 0 3 0 0

Air Entrainer ml/yd
3

114 83 0 66 271

Water-Reducer ml/yd
3

172 498 770 397 0

Super Plasticizer ml/yd
3

0 0 0 0 2391

0.36 0.44 0.39 0.42 0.37w/cm ratio  

 

All mixtures for the age effect study were tested with the SEN(B), compressive strength, 

split-tensile strength, and elastic modulus at 7, 28 and 90 days with the exception of the 

Parking Lot mixture, which came directly from the field and properties were only 

measured at 7 and 28 days.  All mixtures were tested in with the standard beam flexural 

specimen (ASTM C 78) at the following ages: Low Cement, Dan Ryan and Brazil 1 

mixtures at 28 days; Anna mixture at 14 days; Parking Lot mixture at 7 days.  The Anna 

mixture was tested as part of the composite beam studies (see Chapter 5) and therefore 

also was tested at 14 days for fracture properties.  Two specimen replicates were tested 
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for each hardened property realizing that this would increase the variability in the results 

but it was important to cast all specimens for one age in one batch.  Appendix B lists the 

equipment used, the number of beam molds available, and the capacity of the concrete 

mixer.  

 

Age Effect Results 

The hardened property testing plan of for each mixture and batch at the various ages (7, 

28 or 90 days) is shown in Table 4.  The fresh concrete properties for each concrete batch 

are presented in Table 4. Each batch of the same mixture proportions produced similar 

fresh concrete properties which meant that these batches should produce similar hardened 

properties.   

 

Table 4 - Age Effect Batch Testing Plan and Fresh Properties 

Parking 

Lot

1 2 1 2 1 1 2 1 2

7 28, 90 7, 90 28 7, 28 7, 90 28 7, 90 28

7 28, 90 7, 90 28 7, 28 7, 90 28 7, 90 28

7 28, 90 7, 90 28 7, 28 7, 90 28 7, 90 28

- 28, 90 7, 90 28 7, 28 7, 90 28 7, 90 28

7 28 - 28 - - 28 - 28

2.75 2.50 5.25 5.00 - 1.00 1.50 9.50 9.75

148 147 144 144 - 148 150 129 136

3.8 3.7 6.0 6.3 - 3.7 2.8 13.3 10.3

Unit Weight (lb/ft
3
)

Air Content (%)

Fresh Properties of Each Batch

Anna

test batch

MOR

Slump (in)

TPB

Compression

Split-Tension

Elastic Modulus

Low Cement Dan Ryan Brazil 1

Age tested (day)
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Load versus CMOD curves 

The loads versus CMOD curves for the TPB specimens of each mixture in the age effect 

study are shown in Figures 9 through 11 at 7, 28 and 90 days, respectively. The Brazil 1 

mixture contained a high amount of entrained air which caused the consistently low peak 

load compared to other mixtures.  The post-peak behaviors of all curves, with the 

exception of the FRC (Parking Lot) mixture, were similar.   
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Figure 9 – Load versus CMOD curves for TPB specimen at 7 days. 
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Figure 10 - Load versus CMOD curves for the TPB specimen at 28 days. 
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Figure 11 - Load versus CMOD curves for the TPB specimen at 90 days. 
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The CMOD value at specimen failure decreased with age from about 1 mm to 0.6 mm 

seen in Figures 9 and 11, respectively. This behavior corresponded to an increase in peak 

strength and toughness of the specimens and an opening width reduction with age. The 

reason the CMOD at failure decreased with age was the ITZ became stronger with time 

and therefore the concrete began fracturing through the bulk matrix and aggregates. 

Specimens at 90-days all showed a flat fracture plane through the aggregate and bulk 

matrix, while 7-day specimens showed a tortuous fracture path around the aggregates.   

 

Measured Properties 

A summary of the strengths and fracture properties (averaged from two specimens) of the 

age effect study can be seen in Table 5.  The coefficient of variation (COV) is also 

presented in Table 5 for each measured property. Overall the fracture and strength 

properties increased with specimen age as expected.  A comparison between compressive 

strength to split-tensile strength, peak load and initial fracture energy is shown in Figure 

12.  There were a few discrepancies in strength gain such as Brazil 1 specimens had a 

higher average compressive strength at 28 days and the Low Cement specimens had a 

higher average split-tensile strength at 28 days. For both of these cases, the 28-day 

specimens were cast in a separate batch than the 7- or 90-day specimens which could be 

impacted by the altered air contents or consolidation differences used to cast the 

specimens from each batch. The Brazil 1 mixture had very high air contents and there 

was 3% less air in the 28-day specimens which likely led to the increased compressive 

strength. 
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Table 5 - Age Effect Strength and Fracture Properties 

COV COV COV COV COV

7 5.60 0% 4.17 6% 3.65 12% 4.41 6% 3.65 9%

28 6.46 10% 4.90 5% 5.22 3% 6.17 4% 5.93 0%

90 7.28 5% 5.90 3% - - 7.16 5% 5.26 1%

7 513 33% 360 9% 436 17% 520 0% 338 24%

28 549 15% 536 14% 573 5% 524 3% 508 14%

90 662 4% 512 10% - - 640 8% 541 11%

7 3.46 17% 3.51 14% 2.98 5% 3.27 22% 2.26 0%

28 3.69 10% 2.98 3% 3.94 10% 4.00 9% 3.04 2%

90 4.20 1% 3.95 5% - - 28.23 * 2.63 8%

7 0.023 16% 0.017 30% 0.010 11% 0.016 30% 0.019 16%

28 0.016 13% 0.018 41% 0.015 21% 0.029 13% 0.013 1%

90 0.024 40% 0.022 7% - - 0.025 * 0.023 13%

7 1.07 16% 0.966 15% 0.74 5% 0.93 7% 0.67 8%

28 1.05 1% 0.910 16% 1.14 0% 1.37 1% 0.79 1%

90 1.32 14% 1.21 2% - - 1.42 * 0.78 7%

7 50 32% 43 40% 22 3% 35 10% 28 8%

28 40 7% 34 22% 47 2% 68 2% 32 4%

90 60 32% 54 14% - - 72 * 40 11%

7 83 22% 127 23% 164 19% 99 14% 83 6%

28 115 2% 89 13% 1,140 20% 135 5% 102 11%

90 102 20% 131 12% - - 141 * 92 20%

*  one beam was omitted due to testing errors.

G F  (N/m)

Dan Ryan Brazil 1

CTOD C 

(mm)

Anna Low Cement Parking LotAge 

(day)

P c  (kN)

K IC             

(MPa m
1/2

)

G f  (N/m)

Compressive 

Strength (ksi)

Split-Tensile 

Strength (psi)

 

 

Initial Fracture Properties 

In general, the peak loads obtained in the fracture testing show a similar trend with age as 

the compressive strengths, see Figure 12b. Based on the data in Table 5, little difference 

could be seen in the magnitude of initial fracture property results (Gf, KIC, CTODC) 

between mixtures at any age.  On average for all the mixtures, 75% of the fracture and 

strength properties were realized by 7 days and 85% by 28 days. The initial fracture 

energy of the Parking Lot mixture (containing fiber reinforcement) doubled between 7 

and 28 days. 
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Figure 12 – (a) Split-tensile strength and (b) TPB specimen peak loads and (c) initial 

fracture energies compared to compressive strength. 

 

Total Fracture Energy 

For the un-reinforced concrete mixtures, the total fracture energy did increase with age 

and ranged in values between 83 N/m to 141 N/m.  The total fracture energy of the FRC 

mixture (Parking Lot) increased by almost seven times between 7 and 28 days.  The FRC 

mixture used in the Parking Lot was significantly higher in total fracture energy than 

other un-reinforced concrete mixtures at 28 days. Slight variation in crack propagation 

seen in the load-CMOD curves may produce the variation in total fracture energy seen in 
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Table 5; again porosity caused from air voids or large aggregates found in the fracture 

plane may also contribute to variation in the total fracture energy. 

 

Stress Intensity Factor 

For the mixtures studied in this report, a plot to compare stress intensity factor versus age 

is shown in Figure 13.  The study previously mentioned by Zollinger et al. [49], proposed 

equation 10 be used to determine the critical stress intensity factor at different ages.  This 

trend line (raised to the 0.25 power) fit the river gravel data from the Zollinger et al. 

study shown in Figure 8, but does not match all the mixtures tested in this age effect 

study for the age range of 7 to 90 days. The change in properties after 7 days is much less 

than Zollinger’s model would predict. A shallow trend was plotted against the Zollinger 

et al. trend line in Figure 13 to more accurately match some of the data here; the shallow 

trend line proposed altered equation 10 such that the ratio of (t/28) was raised to a value 

between 0.05 rather than 0.25. It should be noted that Zollinger’s equation was originally 

based on fracture toughness data at 1, 7, 14, 21, and 28 days, which was different than the 

time horizon used in this testing program.  
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Figure 13 - Stress intensity factor verses age for various mixtures. 

 

Sample Preparation and Variability 

Specimens from different batches often demonstrated different fracture properties.  For 

example, the 7-day Anna specimens showed higher initial fracture property results than 

the 28- or 90-day specimens. Opposite of the strength gain seen in the Low Cement 

specimens, the 28-day fracture properties such as Gf, KIC, and GF decreased from the 7-

day results (possibly driven by the increased air voids or some casting issue). The Brazil 

1 mixture 28-day specimens also showed higher KIC, and GF values than at 90-days. 

 

Bazant and Becq-Giraudon determined in a statistical study that the COV for initial and 

total fracture energy were on the order of 18 and 30 percent, respectively [4]. Table 5 

supports previous researcher findings that fracture properties have large COV [4 and 6].  

In fact, the CTODC values had the greatest average COV, followed by Gf and GF.  The 7-

day fracture test results demonstrated high coefficients of variability (see Table 5) for the 
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material properties desired, compared to the 28- and 90-day testing.  These results 

support other research literature findings that fracture properties can have larger 

coefficients of variability, especially at early ages. 

 

Summary 

One of the main goals of the age testing with the TPB specimens was to determine the 

optimum age for fracture testing of concrete materials.  Like strength testing, fracture 

properties increase with age, and therefore some change in properties with time was 

expected.  It was determined that an age such as 28 days would be more appropriate to 

use as a reference time since the coefficient of variability after this point in time was 

relatively lower and little change occurred between 28 and 90 days. 

 

Mixture Proportioning Effects 

The choice in material proportioning can affect some of these properties; for example, 

higher cement contents tend to increase shrinkage within the concrete, although it may 

also aid in increasing the compressive and tensile strength and initial fracture energy of 

the concrete as well. Material type selection can also be important, for example, coarse 

aggregate type, proportion, and maximum size will have an effect on the hardened 

concrete properties and can even have a larger impact on the fracture behavior of the 

concrete pavement. 
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In this research, no specific mixture proportioning factorial was designed to examine the 

optimum mixture design proportions for maximum fracture properties for rigid paving 

mixtures.  However, the various mixtures used in this research were chosen based on 

their diversity in mixture constituents and/or proportioning and the fact that they had 

been used for some type of rigid pavement project in the field. For example, the Anna 

mixture was selected to compare fracture properties with higher cement contents relative 

to lower cement contents (see Table 3 for Anna and Low Cement mixture proportions).  

The Brazil 1 mixture contained silica fume and it was derived from the SP-280 highway 

project (Sao Paulo, Brazil), which required high early strength concrete. The Dan Ryan 

mixture provided an alternative comparison with its use of slag to replace a percentage of 

cement with a similar total cementitious content as the Low Cement mixture.  The 

Parking Lot mixture incorporated fly ash as a supplementary cementitious material and 

included fiber-reinforcement. The following sub-sections describe the mixture 

proportioning effects. 

 

Cement content 

There should be enough cement to cover all of the aggregates or fibers in the mixture and 

to meet the design and opening strength. However, the high cost of cement and the 

hydration products potential to shrink upon drying typically results in specifications to 

minimize the amount of cement in the mixture.  Cementitious contents for these studies 

ranged from approximately 560 to 570 lb/yd
3
 for the Dan Ryan, Low Cement and 

Parking Lot mixtures up to 774 lb/yd
3
 and 808 lb/yd

3
 for the Anna and Brazil 1 mixtures, 

respectively.   
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Based on the results presented in Table 5, the Anna mixture showed higher strengths and 

initial fracture properties than most of the lower cementitious content mixtures (Low 

Cement, Dan Ryan, and Parking Lot mixtures) especially at the 7 day age. A plot of the 

compressive strength and initial fracture energy versus cement content shown in Figure 

14 emphasizes that no correlation was found between these properties. The total fracture 

energy was also unaffected by the cement content.  The impact of cement content and 

shrinkage will be explained in Chapter 5.  The affect of the supplementary cementitious 

materials was not specifically studied, thus no conclusion on their impact on fracture 

properties can be drawn here. 
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Figure 14 - Compressive strength and initial fracture energy versus cement content. 
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Coarse-Fine Aggregate Ratio 

The coarse and fine aggregates could be volumetrically optimized for maximum packing 

density.  Ideally, the maximum packing density was the most economically viable to 

obtain the minimum volume of required cementitious material to fill voids (cement was 

the most expensive component).  This optimized packing density was impacted by the 

gradation curves and aggregate surface texture [35].  For the mixtures examined here, the 

coarse-fine aggregate volume ratio ranged from 1.46 in the Low Cement mixture to 2.00 

in the Brazil 1 mixture (as a note, the original Brazil SP-280 mixture suggested a high 

coarse-fine aggregate volume of roughly 2.37). A value around 1.50 of the coarse-fine 

volume ratio was determined to be a typical optimum value for crushed limestone and 

natural sand available in the laboratory.  The coarse-fine aggregate ratio has been 

determined to affect the amount of interfacial transition zone (fines have more surface 

area and thus produce more ITZ in concrete) and porosity (higher for lower densely 

packed concrete), and as a result alter the strength of a concrete [35].  No specific study 

on the affect of coarse-fine aggregate ratio was performed here; therefore its effect on the 

fracture properties of concrete has not been determined at this time. 

 

Aggregate Type 

The type of coarse aggregate used in concrete affects the workability, strength and crack 

tortuousity [35].  The influence of aggregate type on fracture properties was investigated 

by comparing the crushed limestone used for the majority of mixtures with other 

collected UIUC laboratory data that used recycled concrete aggregate and river gravel.  
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The bulk specific gravity and absorption capacity and gradation curves of these coarse 

aggregates are shown in Table 6 and Figure 15, respectively. For comparison, the 

gradation curve for the natural sand used as a fine aggregate is also provided in Figure 

16.  The physical properties of the fine aggregate sand are also listed in Table 6.  River 

gravel was known to have a high stiffness; a Los Angeles abrasion test value for river 

gravel was 18 signifying its resistance to abrasion compared to 29 for crushed limestone 

[14].  Recycled concrete used as a coarse aggregate or fine aggregate replacement could 

produce concretes with strength and stiffness reductions by as much as 2/3 of a natural 

aggregate and typically have significantly higher absorption capacities [35].   

 

Table 6 - Aggregate Properties 

BSGSSD

Absorption 

Capacity

Natural Sand 2.57 1.79%

Crushed Limestone 2.69 1.36%

River Gravel 2.67 1.60%

Recycled Concrete 2.42 5.27%  

 

The crushed limestone available was gap-graded and did not fall within the limits based 

on IDOT or ASTM standards for coarse aggregates.  The river gravel did have a 

gradation that met IDOT CA11 standards for 3/4 inch maximum aggregate size.  The 

recycled concrete gradation curve, physical properties, and fracture data were determined 

during a separate study by Cervantes et al. [13]. They were investigating the effects on 

concrete fracture properties when using of recycled coarse aggregate as a partial or full 

replacement of crushed limestone coarse aggregate.   
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Figure 15 - Gradation curves for coarse aggregates and corresponding standard 

limits. 
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Figure 16 - Gradation curve for the natural sand and fine aggregate standard limits. 
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Mixture Designs 

The mixture designs are presented in Table 7 for the concrete mixtures containing 

different types of coarse aggregates.  Using the fracture testing procedure described in 

Chapter 2, the fracture properties of each mixture containing different coarse aggregates 

was studied. The Limestone-Recycled Blend contained 50% by volume of crushed 

limestone and 50% by volume of recycled concrete as coarse aggregate. 

 

Load versus CMOD curves 

The load versus CMOD curves for each of these mixtures is shown in Figure 17.  The 

Crushed Limestone 1 mixture was tested at 14 days, the River Gravel mixture was tested 

at 28 days, and the Crushed Limestone 2, Recycled Concrete and Blend mixtures were all 

tested at 7 days.   

 

Table 7 – Concrete Mixture Designs of Different Coarse Aggregates 

Crushed 

Limestone 

1

Crushed 

Limestone 

2

River 

Gravel

Recycled 

Concrete

Limestone-

Recycled 

Blend

lb/yd
3 517 607 493 607 607

lb/yd
3 140 0 134 0 0

lb/yd
3 268 308 255 308 308

Crushed 

Limestone
lb/yd

3 1978 1645 0 0 823

Recycled 

Concrete
lb/yd

3 0 0 0 1508 754

River 

Gravel
lb/yd

3 0 0 1886 0 0

Fine 

Aggregate

Natural 

Sand
lb/yd

3 1004 1360 957 1360 1360

ml/yd
3 306 0 2 0 0

ml/yd
3 687 0 0 0 0

Material Proportions

Type I Cement

Fly Ash

Water

Coarse 

Aggregate

Air Entrainer

Water-Reducer
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Figure 17 – TPB concrete specimen load versus CMOD curves for different coarse 

aggregate types at various testing ages. 

 

Measured Properties 

The concrete fracture properties and strengths are shown in Table 8 for each coarse 

aggregate type.  The River Gravel mixture had the highest strength due to the later testing 

age.  Similarly, the total fracture energy was higher likely due to the later test age, and 

higher elastic modulus of the river gravel compared to other aggregates.  The initial 

fracture energy and CTODC were not significantly higher for the River Gravel mixture 

compared to the other mixtures.  The Crushed Limestone 1 mixture exhibited the greatest 

CTODC value and lowest KIC value at 14 days, which was due to the addition of fly ash 

and high air entrainment content. By comparing the Recycled Concrete and Crushed 

Limestone 2 mixtures at 7 days, the values for strength and initial fracture properties are 

similar.  The total fracture energy for the Recycled Concrete mixture was considerably 
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lower than the Crushed Limestone 2 and Limestone-Recycled Blend mixture due to its 

lower strength.   

 

Table 8 - Average Concrete Strength and Fracture Properties for Different Coarse 

Aggregate Types 

Mixture

Age 

Tested 

(day)

Compressive 

Strength 

(psi)

Split-Tensile 

Strength 

(psi)

K IC             

(MPa m
1/2

)

CTOD C 

(mm)

G f 

(N/m)

G F 

(N/m)

Crushed 

Limestone 1
14 3,283 332 0.86 0.031 43.7 60

Crushed 

Limestone 2
7 4,528 378 1.12 0.019 48.8 86

River Gravel 28 5,232 537 1.10 0.018 39.2 112

Recycled 

Concrete
7 4,030 356 1.09 0.019 43.0 56

Limestone-

Recycled Blend
7 3,328 412 1.03 0.019 43.9 85

 

 

Comparison with Other Coarse Aggregate Studies 

In the previous mentioned study by Zollinger et al. [49], river gravel and crushed 

limestone mixtures were also investigated for early age fracture properties.  The study 

concludes that the stress intensity factor of the limestone concrete increased more rapidly 

with age than the river gravel concrete.  At 1-day age, the crushed limestone as a coarse 

aggregate in concrete was tougher (higher KIC) than the river gravel coarse aggregate 

concrete.  The study mentioned by 28 days KIC of crushed limestone and river gravel 

were roughly the same.  Although the crushed limestone and river gravel mixtures tested 

for this thesis were at different ages, the 7-day Crushed Limestone 2 mixture did show 

the highest KIC value which supports findings by Zollinger.  Also Zollinger et al. stated 

the concrete containing limestone aggregate had a fractured surface which showed the 
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cracks proceeding through the aggregates while the gravel concrete mixture showed very 

few cracks through the gravel.  This fractured surface observation also occurred in the 

testing performed in the research presented herein. 

 

Summary 

The coarse aggregate properties did have a significant factor on the overall fracture 

properties.  Based on the results found here, the quality or strength of the coarse 

aggregate is linked with the strength and fracture properties of the concrete.  With a river 

gravel coarse aggregate in concrete fracture was likely to proceed around the aggregate 

particles through the ITZ thus resulting in lower initial fracture properties compared to 

crushed limestone coarse aggregate in concrete.  Still, the total fracture energy at 28 days 

was greater with the river gravel coarse aggregate mixture than the other coarse aggregate 

types tested at earlier ages. Recycled concrete as a coarse aggregate reduced the overall 

strength and fracture properties of the concrete.  However, with at least 50% replacement 

with crushed limestone aggregate, the recycled concrete coarse aggregate specimens 

resulted in roughly the same fracture properties as the 100% crushed limestone aggregate 

mixture. 

 

Prediction of Fracture Energy 

As mentioned in the background to this Chapter, Bazant and Becq-Giraudon performed a 

statistical study on fracture properties of un-reinforced concrete [4].  Equations 9a and 9b 

were developed to predict fracture properties from compressive strength, maximum 
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aggregate size, aggregate type, and water-cement ratio.  These equations have been 

compared with the test results of all the un-reinforced concrete mixtures containing 

crushed limestone coarse aggregate studied in this thesis, and are shown in Figure 18.   

 

As seen in Figure 18, no correlation was found between the Bazant and Becq-Giraudon 

equations for fracture energies and the actual measured fracture energies of the concrete 

mixtures in this thesis.   One note here is the only inputs of the Bazant and Becq-

Giraudon equation which varied were water-cement ratio and compressive strength.  It is 

suggested that some of the other factors mentioned in this chapter, such as cement 

content, coarse-fine aggregate ratio, or age of testing could be used to supplement the 

existing input variables presented in the existing Bazant and Becq-Giraudon to predict the 

concrete fracture properties.  Since the mixtures tested were not designed to derive a 

predictive equation, there is little confidence that a statistically relevant equation could be 

derived for all the variables used in the testing to predict the concrete fracture properties. 
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Figure 18 - Predicted fracture properties versus measured properties for (a) initial 

fracture energy and (b) total fracture energy. 
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CHAPTER 4: FUNCTIONALLY GRADED CONCRETE 

MATERIALS (FGCM) 

 
The investigation of fracture behavior of functionally graded concrete materials (FGCM) 

for use in rigid pavements is presented in this chapter.  A layered combination of plain 

and fiber-reinforced concretes in different depth locations with respect to a pre-cut notch 

was studied.  The mixtures, configurations, strength and fracture testing results using 

plain concrete and synthetic FRC were computed and presented. A summary of the work 

can be found in Roesler et al. [42]. Additional testing using plain concrete and crimped 

steel FRC configurations were run by Victor Cervantes in the summer of 2005. The 

findings from a finite element analysis of the system, developed by Dr. Glaucio Paulino 

and Kyoungsoo Park [37, 38, and 42], are presented in this chapter.   

 

Background 

A leading problem in the design and performance of concrete pavements today is the 

diminishing availability of high quality materials.  Meanwhile, demands have increased 

on constructing, maintaining, or repairing pavements in order to improve performance 

and extend pavement life.  As good quality materials are reduced, lower quality or even 

recycled materials are often used in replacement because of their availability and cheaper 

cost for initial construction.  The lower quality materials could lead to more distresses in 

the pavement at a shorter pavement life if the properties of the lower quality constituents 

are not better characterized or possibly modified. This concept is clearly understood by 



50 

agencies and researchers who have been studying and developing specifications for the 

use of recycled asphalt pavement.  

 

One solution for this problem is to implement a functionally graded or layered pavement 

system.  Functionally graded materials (FGM) are most commonly used in metals and 

ceramics for high-tech applications.  A FGM consists of steady transitions in material 

microstructure or composition to meet functional requirements and enhance the overall 

composite system performance [42].  This innovative approach can be applied to 

pavement design by using layers of different concrete mixtures at specified depths such 

that the overall structure is cost effective and still has an optimized performance and 

functionality.   

 

A functionally graded concrete material (FGCM) system could be constructed to 

incorporate readily available cheaper and lower quality materials along with other better 

quality materials.  The FGCM structure could be constructed as individual layers of 

concrete placed while the concrete is still plastic to eliminate creating discrete interfaces 

between layers similar to an extrusion method.  Mixture designs for each layer could be 

specified in order to achieve maximize the local concrete layer and global rigid pavement 

system performance. 

 

Two-layered Paving Background 

The concept of paving FGCM in layers has been done in Europe, Michigan, Kansas, and 

other locations in the United States [12] and is typically termed two-layered paving.  The 
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majority of these pavement structures focus on reducing noise and increasing friction by 

implementing a thin textured surface layer of concrete overlying a thicker standard 

concrete mixture.  One of the challenges brought on with two-layered paving in the 

United States relate to construction.  Some of the projects in the United States have seen 

non-uniform thicknesses in the top lift causing early-age distresses [12].  A research 

project by Ravindrarajah and Tam studied the flexural strength and casting delay times 

for 2-layered and 3-layered steel fiber-reinforced concrete (FRC) beams [40].  The 

flexural strength increased with increased FRC layer in the tension zone.  A short delay 

of up to 3 hours between casting of layers did not produce a significant change in flexural 

strength.  Overall, very few research studies have been done to date on testing and 

analyzing the mechanical properties of these layered concrete pavement systems.   

 

FGCM Project Motivation 

Research in this thesis includes a study of the fracture performance of FGCM two-

layered composite beams.  Fiber-reinforcement can be used in concrete to increase the 

fracture properties (i.e. toughness) of the material.  In order to amplify the range of 

fracture behavior, steel and synthetic fiber-reinforced concrete mixtures have been 

investigated compared to plain concrete in various layered combinations.  The beams 

were all tested for initial and total fracture properties.  These properties were 

implemented in a finite element-based model to predict the performance of these FGCM 

by Park [37 and 38].  The results of the FGCM investigations can be found herein. 
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Functionally Graded Materials 

Mixture Designs 

Concrete beams composed of two layers of concrete materials were tested to determine 

the viability of functionally graded concrete materials for rigid pavement systems.  This 

research was initiated to look at the necessary fracture characteristics of two-layer paving 

systems. Several beams were created using a combination of three concrete mixtures: a 

plain concrete (PCC) and two fiber-reinforced concrete (FRCPP and FRCCS).  The mixture 

design of the PCC and FRC mixtures used in the FGCM study are shown in Table 9.  The 

fibers used for this project are “straight synthetic” fibers at a volume fraction of 0.78% or 

12.1 lb/yd
3
 and “crimped steel 1” fibers at 0.5% volume fraction or 65.5 lb/yd

3
. The 

straight synthetic fibers are 40 mm long rectangular cross-section 

polypropylene/polyethylene blended fibers with an aspect ratio of 90 and a tensile 

capacity of 620 MPa. The crimped steel 1 fibers are 50 mm long circular cross-section 

steel fibers, crimped along the length, with an aspect ratio of 50 and a tensile capacity of 

900 MPa.  Further fiber property details can be found in Chapter 6.  A crushed limestone 

coarse aggregate was used with a maximum aggregate size of 19 mm along with natural 

sand and Type I Portland cement.  The mixture proportions came from a previous study 

using 0.48% volume fraction of the same straight synthetic fibers [41]. 
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Table 9 - Mixture Designs for FGCM in lb/yd
3
 

Plain 

Concrete

Straight Synthetic 

FRC

Crimped Steel 

FRC

PCC FRCPP FRCCS

Water 308 308 308

Type I Cement 607 607 607

Coarse Aggregate 1645 1645 1645

Fine Aggregate 1360 1360 1360

Straight Synthetic Fibers 0 12.1 0

Crimped Steel 1 Fibers 0 0 65.5

Material

 

 

FGCM Beam Configurations 

In order to determine the initial fracture properties and total fracture for the concrete in 

the TPB configuration, the two-parameter fracture model (TPFM) and work-of-fracture 

method were used as described in Chapter 2.  The beam configuration for the layered 

beams can be seen in Figure 19.  To incorporate the layer design, the height of each layer 

was determined to be half of the effective cross-sectional area.  The effective cross-

sectional area was computed as d - a0. Because the notch depth a0 was 50 mm of the total 

depth at 150 mm, the resulting effective cross-sectional area was 100 mm.  The height of 

top layer (h1) was computed to be 50 mm and as a result the bottom layer height (h2) was 

100 mm.  See Figure 19 for a schematic of the layer heights. 
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Figure 19 - Three-point bending beam test setup for functionally layered concrete 

specimens. 

 

Four combinations of the PCC and FRC mixtures were used to fill the layers in the TPB 

beam as shown in Figure 20.  As a result full-depth beams of PCC and FRC (Figures 20a 

and 20b, respectively) were considered as part of the testing plan and also aided as a 

control for comparison to the beams with the layered FRC and PCC mixtures (Figures 

20c and 20d, respectively).  Three replicates of each beam configuration were made.  

Two additional beams containing only FRC were cast to acquire the total fracture energy, 

which required a yo-yo gauge for the run-out testing. 
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Plain concrete

Fiber-reinforced 

concrete

ba

c d  

Figure 20 - FGCM beam configurations: a) PCC/PCC, b) FRC/FRC, c) PCC/FRC, 

and d) FRC/PCC. 

 

Batches of each mixture were made on the same day within an hour.  Steel molds were 

filled two-thirds of the depth (h2) with the first mixture and then filled the remaining 

depth (h1) with the second mixture.  Each layer was consolidated into the molds using 

standard rodding techniques [2]. The second layer was consolidated 25 mm into the 

bottom layer allowing a graded zone between the two “homogeneous layers.”  Specimens 

were demolded after 1 day then moist cured.  The notch was saw-cut one day before 

testing.  Further details of the mixing and testing procedures can be reviewed in 

Appendix B.  For the FGCM study, all the specimens were tested at 7 day.   

 

Functionally Graded Material Results 

The average 7-day compressive and split-tensile strengths of the PCC, FRCPP, and FRCCS 

mixtures are shown in Table 10.  The addition of fibers did not affect the compressive 

strength of the plain concrete, but the higher fiber content mixtures resulted in slightly 

increased split tensile strength over plain concrete which typically is seen when fiber 
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contents approach 1 percent [35].   In general the slump is reduced with the addition of 

fibers.  However, with the crimped steel 1 FRC mixture the slump actually was 

significantly higher than expected possibly due to some higher amount of superplasticer 

or water-reducer added to the mixture.   

 

Table 10 - Concrete Mixtures Average Fresh Properties and Strengths 

Property
Plain 

Concrete
FRCPP FRCCS

Slump (in) 7.75 2.30 7.13

Unit Weight (lb/ft
3
) 146 146 148

Air Content (%) 2.68 2.06 2.90

Compressive Strength (psi) 4,799 4,551 3,458

Split-Tensile Strength (psi) 499 612 619  

 

FRCpp Fracture Envelope Curves 

Figure 21 shows the load versus displacement envelope curves for each beam 

configuration containing the straight synthetic FRC and plain concrete.  The full-depth 

FRCpp beam has the greatest post-peak load capacity as expected and the full-depth PCC 

beam is the lowest post-peak load capacity.   
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Figure 21 - Fracture load versus CMOD curves for plain concrete and straight 

synthetic FRC layer configurations. 

 

A cut off criterion was used to compare various mixtures that have a large opening 

displacement capability, like FRC. For this study, a 2mm cut off CMOD was used in 

calculation of a relative fracture energy G2mm (see Chapter 2 for computation of total 

fracture energy GF).  The calculation of the fracture energy at 2mm was selected because 

the maximum desired crack widths for fractured concrete slabs were typically 1 to 2.5 

mm.  The computation for G2mm used the same equation as the total fracture energy 

calculation (equation 8 in Chapter 2) except the area under the curve was only computed 

up to 2 mm crack mouth opening displacement (CMODmax= f = 2 mm).   

 

It was estimated that for some FRC mixtures – generally those with higher volume 

fractions, larger aspect ratios, etc. – the 2mm CMOD cut off was too small to capture any 
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secondary peak in the load-CMOD curves (see Figure 9).  Further discussion about this 

secondary peak behavior in FRC mixtures is explained in Chapter 6.  The 2mm cut off 

fracture energy G2mm was considerably less than the total fracture energy GF obtained and 

there was no direct relation between these values because of the dependency on the fiber 

properties.  However, the G2mm values computed were significant enough based on the 

test results for the specific fiber used here that it was able to provide insight into the 

effectiveness of the fiber when dispersed in concrete.  Even for the two layered beams the 

test results up to 2mm represented significant differences between the various 

configurations and the importance of the fiber-reinforcement location with respect to a 

crack or notch.  

 

Table 11 presents the average Pc, KIC, CTODC, Gf, and G2mm results obtained from 

SEN(B) layered specimens. The FRCpp/FRCpp and PCC/FRCpp specimens had 

significantly better fracture behavior (G2mm increased by 2.9 times) especially after the 

post-peak load as compared to plain concrete (PCC/PCC) as seen in Table 11. Specimens 

with PCC on top and straight synthetic FRC on the bottom (PCC/FRCpp) had a higher 

G2mm than samples with straight synthetic FRC on top and PCC on the bottom (FRCpp/ 

PCC). The addition of straight synthetic fibers to the bottom or top layer improved G2mm 

by 108 and 80 percent, respectively, in comparison to PCC/PCC.   
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Table 11 - FGCM Average Fracture Properties 

Top / bottom 

layer
P c  (kN)

K IC 

(MPa·m
1/2

)

CTOD c 

(mm)
G f  (N/m)

G 2mm 

(N/m)

PCC / PCC
1 3.71 1.01 0.016 38.3 120

FRCpp / FRCpp 3.48 1.03 0.016 37.1 381

PCC / FRCpp 3.71 1.08 0.017 40.5 249

FRCpp / PCC 3.57 0.96 0.016 35.4 216

PCC / PCC
2 3.30 0.93 0.016 33.4 116

FRCcs / FRCcs 2.75 0.84 0.018 29.1 318

PCC / FRCcs 2.50 0.69 0.019 29.3 153

FRCcs / PCC 3.10 0.85 0.014 30.0 389
1
 PCC tested with the other FRCpp configurations

2
 PCC tested with the other FRCcs configurations  

 

FRCcs Envelope Curves 

Figure 22 shows the load versus CMOD curves for the crimped steel 1 FRC and plain 

concrete configurations.  The full-depth FRCcs beam still produced a large residual load 

capacity and fracture energy.  As seen in Table 11, the G2mm for the FRCcs full-depth 

beam increased by 2.7 times the plain concrete full-depth beam. However, the specimens 

with FRCcs in the compression zone of the fracture area (top third) and PCC on the 

bottom actually produced the greatest post-peak load performance.  This is unexpected 

because the full-depth FRCcs specimens in theory should have produced the greatest 

fracture energy. It was noticed after the testing was complete, that very few steel fibers 

actually bridged the fracture plane with the TPB beam size chosen.  At volume fractions 

less than 0.5%, the steel FRC beams have too much variation because of the low number 

of fibers bridging the plane. The load is significantly influenced at these low volume 
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fractions of steel fibers by each individual fiber pulling out of the matrix – hence the 

bumpy envelope curve of the crimped steel beams. 
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Figure 22 – TPB specimen load versus CMOD curves for plain concrete and 

crimped steel FRC layer configurations. 

 

FGCM Fracture Properties 

The use of fibers did not significantly affect the peak load of the specimens, and 

subsequently did not significantly change the calculated KIC, Gf, and CTODC as seen in 

Table 11.  It is important to notice that KIC, CTODC , and Gf were related just to the stage 

of crack initiation instead of crack propagation, which is why the initial fracture 

properties did not differ much since the same concrete constituents and proportions were 

used for both the PCC and FRC specimens. The relative fracture energy at 2mm opening 

(G2mm) was used to describe the post-peak fracture behavior for smaller crack widths.   
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This relative total fracture energy is described later in this chapter.  The full-depth FRC 

mixtures had greater G2mm than the full-depth plain concrete mixtures as expected. 

 

Synthetic versus Steel 

In general, the strength and fracture properties for the straight synthetic FRC 

combinations were higher than for the crimped steel 1 FRC combinations.  The straight 

synthetic FRC beam (full-depth) had greater G2mm than the crimped steel 1 FRC beam. 

For the straight synthetic fiber configurations, the magnitude of the relative fracture 

energy in increasing order was the following: PCC/PCC < FRCpp/PCC < PCC/FRCpp < 

FRCpp/FRCpp. The order of increasing relative fracture energy is different for the 

crimped steel 1 FRC beam configurations: PCC/PCC < PCC/FRCcs < FRCcs/FRCcs < 

FRCcs/PCC. Again note that the FRCcs full-depth beam should have produced the 

largest relative fracture energy.  The straight synthetic fiber appears to have improved 

fracture properties when the fibers are located near the crack tip while the crimped steel 

fiber appears to improve fracture properties when located away from the crack tip.  Also 

the straight synthetic FRC mixtures showed more repeatable results due to the higher 

concentration of fibers bridging the fracture plane compared to the crimped steel FRC 

mixtures. As shown in Chapter 6, the softening curve of concrete containing crimped 

steel fibers has a much larger variability than other fiber types.  

 

The beams with crimped steel FRC on the top (FRCcs/PCC) had a higher G2mm than 

samples with crimped steel FRC on the bottom (PCC/FRCcs).  This behavior was 

different from the straight synthetic FRC configuration. One reason suggested for this 
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effect was the top FRCcs layer created a plastic hinge when the crack intersects the layer, 

which maintains a constant residual load for large CMOD deformations. Again due to the 

low number of fibers bridging the fracture plane, with the FRCcs as the bottom layer, 

very few steel fibers were able to pull out of the matrix and thus the beam behavior was 

quite similar to that of the un-reinforced PCC beams. Also with the synthetic fibers, there 

were significantly a greater number of fibers that actually bridged the fracture plane, 

which increases the frictional pullout load. 

 

Total Fracture Energy 

For modeling the fracture behavior of the FRC, the total fracture energy (GF) of the 

straight synthetic FRC full-depth beams (FRCpp/FRCpp) until complete failure (shown 

in Figure 23) was needed. No full-depth crimped steel 1 FRC beams were tested until 

complete failure.  However, Chapter 6 investigates the TPB fracture behavior of the 

crimped steel 2 FRC, where crimped steel 2 fiber had a semi-circular cross-section and 

shorter length compared to the spherical cross-sectioned crimped steel 1 fiber.  The total 

fracture energy of a full depth FRCpp beam was 3,531 N/m which was 29 times greater 

than the full-depth plain concrete beam. The FRC beams had not broken in half by the 

time the test was ended at a load of 0.05 kN at CMOD readings around 45 mm.   
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Figure 23 - FRC TPB Specimen Load versus CMOD curve carried out to specimen 

fracture (P = 0.05 kN). 

 

Finite Element Analysis  

As complementary part of this FGCM study, a numerical model of the fracture behavior 

of these functionally graded composites was conducted under the direction of Dr. Glaucio 

Paulino and completed by graduate student Kyoungsoo Park at the University of Illinois 

[37 and 38].  This modeling was not done as part of this thesis, but the primary purpose 

of this section was to summarize the numerical findings so that future researchers could 

readily implement the appropriate modeling techniques.   

 

Models to describe the fracture process or tension softening curve of each material must 

be chosen and implemented.  For plain concrete, a bilinear softening curve has been 

found to be sufficient for modeling plain concrete [37, 38, and 42] based on the initial 
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and total fracture energy (Gf and GF) and the tensile strength f’t of the concrete mixture.  

Different models exist to describe the performance of FRC mixtures; a summary of 

several available FRC micromechanical models are provided in Appendix A.  Recent 

work by Park et al. [38] has clearly demonstrated that a bilinear softening model was 

sufficient for plain concrete but this same model could not be used for fiber-reinforced 

concrete materials (see Figure 24). Park et al. [38] have proposed a trilinear softening 

model also in Figure 24, which has reasonably described the fracture behavior of straight 

synthetic FRC materials in the TPB configuration. 

 

The trilinear model developed by Park et al. captures the post-peak fiber bridging 

behavior of the FRC mixture much better.  This trilinear model requires an additional 

parameter to describe the curve which in this case was the final crack width wf.  The 

value for this final crack width is not agreed upon in the literature [42].  Various FRC 

models (see Appendix A) suggest that the final crack width be equal to half the 

embedment length or Lf/2.  However, a value of Lf/4 was suggested by Park et al. [38] to 

capture the entire envelope curve for low volume straight synthetic FRC.  Two values of 

the final crack width, Lf/2 and Lf/4 where chosen for comparison with the results of the 

FRCpp data in the FGCM testing.  As seen in Figure 24, the softening curve using this 

crack width matches the data closely for small crack width openings.  However in order 

to capture the entire fracture curve of the FRC mixture, a maximum crack width of Lf/4 

shows a closer match up to 40mm CMOD for the global response. 
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The FEM cohesive zone model shown in Figure 25 closely matches the beam results of 

the FGCM seen in Figure 21.  The trilinear softening the FRCpp mixture using a final 

crack width of Lf/4 slightly overestimates the envelope curve at small crack opening 

displacements and therefore shows a slightly higher curve for all the layered beams and 

full-depth FRCpp beam.  The global curve seen in Figure 25 for the FRCpp/FRCpp and 

PCC/FRCpp (“FRC on the bottom”) beam configurations shows the same kinking 

behavior at about half of the peak load indicating the onset of the fiber pull-out response 

occurring at the same point in the crack propagation process.  Similarly the FRCpp/PCC 

(“FRC at the top”) and PCC/PCC beam configurations have a low kinking point load 

level, in the global load-CMOD curve, indicating that the fiber pull-out force does not 

impact the global response until larger crack opening widths.  No finite element analysis 

was performed to date to confirm the results from the crimped steel 1 FRC and plain 

concrete configurations due to the high variability of the steel fracture properties for low 

volume fractions. 
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Figure 24 - Simulations of the FRC results using various models (a) up to 4mm 

CMOD and (b) full range of CMOD [from 42].  
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Figure 25 - Simulation using the trilinear softening (wf =Lf/4) model for FGCM 

combinations using FRCpp and plain concrete [from 42]. 
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CHAPTER 5: COMPOSITE BEAM TESTING 

Ultra-thin whitetopping pavements are a rehabilitation technique requiring very thin 

concrete slabs to be cast on distressed hot-mixed asphalt pavement.  An investigation of 

these pavement materials has been made in this chapter, specifically to gain insight into 

the composite section behavior.  The fracture behavior and shrinkage properties of 

several of these mixtures have also been analyzed and presented herein.  

 

Background 

Whitetopping is a rigid pavement rehabilitation consisting of a new concrete pavement 

overlaid on an existing flexible pavement structure. Whitetopping is an alternative 

rehabilitation technique to hot-mix asphalt overlays given there is a minimum asphalt 

concrete thickness for support and sufficient vertical clearance for a concrete overlay.  

These concrete overlay designs are either bonded or unbonded concrete overlays 

depending on the thickness of the concrete slabs.  In general, whitetopping may provide a 

greater cracking resistance, durability, and surface reflectivity relative to hot-mix asphalt 

concrete.  Furthermore, in situations where the hot-mix asphalt pavement shows signs of 

surface distresses, especially rutting, whitetopping is an effective solution rather than a 

hot-mix overlay.   

 

Whitetopping is classified based on the concrete thickness and concrete/hot-mixed 

asphalt bonding condition in the pavement structure.  Conventional whitetopping is 
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designed and constructed as a normal new concrete pavement section except it is placed 

over existing flexible pavement and a negligible bond condition is assumed.  Ultra-thin 

whitetopping (UTW) is designated for whitetopping pavements between thickness of 3 

and 5 inches and a bonded interface between the concrete and asphalt concrete layer.  

Some researchers have refer to UTW projects as “bonded concrete resurfacing of asphalt 

pavements” to distinguish it from other concrete overlay types [36].  Due to high surface 

to volume ratios thin and ultra-thin whitetopping are made with smaller slab sizes.  The 

smaller slab size reduces the moisture and temperature curling and load stresses on the 

concrete pavement.  The slab size, saw-cut timing and bond issues are important design 

parameters that must be addressed during construction of ultra-thin whitetopping 

pavements. Currently no quantitative condition assessment of the existing hot-mix 

asphalt pavement exists and no universal concrete mixture designs required to assure 

adequate performance of these concrete rehabilitation strategies are accepted.  

 

IDOT UTW Projects 

Several concrete mixture designs, thicknesses, and construction techniques have been 

recommended or developed since the 1990s for UTW. The American Concrete Pavement 

Association (ACPA) has been collecting information about UTW projects in the United 

States since 1991 and has developed design guidelines based on field, laboratory and 

analytical studies [20].  Since 1998, Illinois Department of Transportation (IDOT) began 

paving several whitetopping projects in locations throughout the state at intersections and 

mainline roads.  IDOT implemented the whitetopping projects on low and moderate 

traffic volume roads.  A study to develop guidelines for future whitetopping designs was 
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initiated by IDOT.  The study investigated 10 ultra-thin whitetopping projects throughout 

the state of Illinois [47].  The mixture designs of these UTW projects (as of 2005) are 

shown in Table 1.  Several of the pavements have showed significant distresses as early 

as 3 years of service life, while other pavements are currently still in service with little to 

no distresses.  The early and severe distresses may have been caused from several sources 

(mixture design selection, bonding conditions, underlying condition of the existing hot-

mixed asphalt pavement, heavy vehicular traffic, etc).   

 

Global UTW Projects 

UTW has been experimented with in pavement projects around the world.  For example, 

a study in Brazil investigated two UTW projects using high strength concrete [39].  The 

University of São Paulo campus roadway has performed with little distresses, while a 

nearby UTW on SP-280 highway was severely distressed after a short service life.  The 

mixture designs used for two UTW projects in Brazil can be seen in Table 2.   In Taiwan, 

high early strength concrete was used which resulted in alligator type fatigue cracking 

occurring in the UTW section after 2 months of service [33]. 

 

Part of the research objectives was to evaluate more ideal concrete mixtures for UTW 

pavements. Although the Dan Ryan mixture (shown in Table 2) was designed for a 

highly trafficked highway (with express and local lanes for traffic control) near Chicago, 

IL, it was recreated in the laboratory to evaluate the fracture properties.  The Dan Ryan 

mixture also contains low cement content and ground granulated blast furnace slag as a 

supplementary admixture. 
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Motivation 

To understand what mixture design parameters resulted in undesirable performance 

issues seen in certain field projects, a study of the strength and fracture properties of 

various mixture proportions and constituents was undertaken.  The field mixture designs 

listed in Tables 1 and 2 have been repeated or adjusted in order to be reproduced in the 

laboratory at the University of Illinois at Urbana-Champaign.  The primary study 

investigated a selective set of mixtures in a composite beam on an elastic foundation 

system.  The composite beam consisted of concrete cast directly on a notched asphalt 

beam and recorded vertical deflections of the entire section (concrete, asphalt and the 

soil) along with estimated crack opening displacements in the concrete. In addition, 

various material properties including shrinkage, fracture toughness, and fracture energy 

were measured to characterize the behavior of each mixture.   

 

Composite Beam Test 

A comparison some of the IDOT mixture designs used in whitetopping project around the 

state of Illinois [47] were replicated in the laboratory in order to measure both the 

fracture behavior and shrinkage characteristics of the materials.  Strength, fracture, and 

shrinkage properties were used to understand what mixture design parameters may cause 

the undesirable performance issues of the field UTW pavements.  From all of the mixture 

designs of whitetopping projects IDOT has already paved (see Table 1), two of these 

(Schanck Avenue project in Mundelein and the intersection project in Anna) were 

selected for composite beam testing (concrete over cracked hot-mixed asphalt concrete). 
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Schanck Avenue was a fiber-reinforced concrete pavement cast in 2005 with no visible 

distresses to date.  The Anna mixture used higher cement content and was placed in an 

intersection. The Anna test section showed a high frequency of cracking after 3 years of 

service.  

 

Initial Concept 

The concept of testing of a composite beam concept began in spring 2006 as a class 

project at the University of Illinois.  Two students in the course, Tursun [45] and Braham 

[7], worked on the effects of mixture designs changes on composite pavement fracture 

response.  

 

The project by Tursun looked at concrete overlays of hot-mixed asphalt concrete 

(HMAC).  A HMAC beam was mixed and compacted, then cut to the dimensions of 

3x3x15 inches.  In addition, half of the HMAC compacted beams had aluminum foil 

placed vertically in the center of the beam. This foil was removed later to simulate a 

crack in the asphalt pavement.  Concrete beams were also cast separately using 6x6x21 

inch molds and later cut to the following beam dimensions: 3x3x15 inches.  The 

composite beam was tested on a rubber pad of roughly 1 inch thickness.  The test setup 

for this initial composite testing of a concrete overlay on asphalt can be seen in Figure 26. 

An 11-kip MTS machine applied the load while an LVDT measured the vertical 

deflection of the concrete beam at midspan.  Plain and fiber-reinforced concrete mixtures 

were used for the original work.   
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This study by Tursun found that higher peak loads (by 1.5 to 1.65 times) resulted when 

the HMAC beams were un-notched compared to the notched beams.  No significant 

change in peak load was seen between the plain and FRC samples.   The plain concrete 

samples showed a significant drop in load by about 80%, while the FRC samples only 

dropped by 50 to 60% in load after the beams cracked. 

 

 
Figure 26 - Initial composite (concrete on asphalt) beam test setup [from 45]. 

 

The preliminary research by Braham [7] conducted a similar test to the previous setup but 

consisted of two concrete beams separated by one inch of HMAC as shown in Figure 27.  

The concrete beams were cast using wooden molds and then cut to the dimensions of 2.5 

inches x 4 inches x 15 inches.  The lower concrete layer was saw-cut in half for all 

specimens to simulate a joint at midspan of the specimen.  The HMAC was mixed and 

compacted directly onto the concrete beam.  The top concrete beam was then placed 

unbonded on the asphalt/concrete composite beam.  The whole composite section was 

again tested on a rubber pad with an 11-kip MTS machine. Steel knife-edges were 

epoxied to the concrete at the bottom crack location. A 4mm range clip gauge was placed 

across this location to measure the crack opening width of the bottom layer concrete (see 
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Figure 27).  The vertical displacement of the whole composite section (concrete, asphalt, 

and rubber pad) was measured using a midspan LVDT as seen in Figure 27. 

 

 
Figure 27 - Initial composite (concrete on concrete) test setup [from 7]. 

 

The study by Braham concluded that the peak loads remained roughly consistent between 

each specimen tested.  Polymer-modified asphalt as an interlayer between the concrete 

beams did not show significant changes to the load, but did slightly increase the CMOD 

readings upon cracking.  When FRC was used instead of plain concrete, the load 

reduction after cracking was significantly less and CMOD values upon cracking were 

also increased. 

 

Revised Concept 

Results from the initial concept showed the concrete and asphalt mixture both can impact 

the overall load versus vertical deflection curves.  An initial finite element model of this 

test configuration by graduate research assistant Kyoungsoo Park proved to be difficult 

mostly because of the nonlinear response offered by the rubber pad.  Another challenge 

that needed to be addressed was due to the bonding between the concrete and asphalt 
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layers.  Because no mechanical or chemical means were used to bond the top concrete 

layer to the hot-mix asphalt interlayer, the concrete layer would immediately slip and lift 

off from the underlying hot-mix asphalt layer during testing. This behavior resulted in 

high contact stresses near the midspan of the beam.  

 

A new test setup concept was developed which replaced the rubber pad with a clay soil 

box of known properties.  To simplify the test, composite beams similar to Tursun’s 

project were made, except the concrete would be cast directly onto the HMAC layer.  The 

HMAC would all come from one source to avoid variability in materials. A 1-year old 

asphalt pavement slab that was compacted with regular construction equipment was used 

to cut-out the required beam sizes.  The concrete was cast directly onto the HMAC layer 

to avoid any initial slippage and lift off issues caused from the bending of the beam.  The 

concrete mixture designs used for the surface layer were replicates of UTW field projects 

funded by IDOT.   

 

Soil box 

A soil box was manufactured using 2x4 wood for support and lined with ¾-inch plywood 

on the inside. The inner dimensions of the box were 12 inches high, 8 inches wide, and 

20 inches long.  A schematic and photo of the soil box along with a photo of soil 

compaction are shown in Figure 28.   

 

The box was painted on the inside, and two layers of a black plastic sheeting of 3 mils 

were stapled to the frame; these were used to make the plywood more water-resistant in 
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case of leakage.  Roughly an inch of the bottom was filled uniformly with ¾-inch size 

recycled concrete which would serve as a water-table basin.  A double-layer of burlap 

was placed at the bottom to separate the water table from the soil.  In addition to the 

water table, two small PVC pipes were added at opposite corners of the box to provide a 

location to add water directly to the water table basin.  The 10-inch layer of clay was 

constructed using trowels, rods, and hand compaction.  The Mexico clay (from Missouri) 

was made assuming an optimal compacted density of 114 lb/ft
3
 at optimum moisture of 

15%.  This clay was used in a previous project at the University of Illinois [41].  A thin 

layer of sand was added to the top to maintain a level surface and to hold in moisture.   

 

Clay

Sand

PVC Pipe for 

Water

Burlap

¾ inch Aggregate
Water Table

b)

c)

a)

Clay

Sand

PVC Pipe for 

Water

Burlap

¾ inch Aggregate
Water Table

b)

c)

a)

 
Figure 28 - a) Schematic of the soil box components for composite testing, b) the top 

of the soil box and c) compaction of the soil in the box. 

 

Further compaction (seen in Figure 28c) was made using plywood across the top surface 

and a metal bar to distribute the load from an 11-kip MTS actuator in the Newmark Civil 

Engineering Laboratory.  Repetitive loads were manually added to compact the clay, each 

time the soil condensed vertically and then rebound due to the clay’s elastic response. 
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Note the peak loads reached during the composite beam testing was unknown at the time 

of the soil compaction; a maximum load of 8 lb was applied during the compaction 

efforts. 

 

Ultra-thin Whitetopping Mixtures 

A total of seven composite beam mixtures were created in the lab, these are shown in 

Table 12. The Schanck Avenue mixture (4 lb/yd
3
 of fibers) shown in Table 1, and three 

mixtures similar to Schanck Avenue – plain concrete without fibers, plain concrete with 

gravel instead of crushed limestone coarse aggregate, and a mixture with a higher volume 

fraction of fibers (6 lb/yd
3
) – were created.  The Anna mixture was from Table 1 and the 

Dan Ryan and Brazil 2 mixtures were adjusted from Table 2.  Note a different mixture 

design called Brazil 1 was used in Chapter 3.  The final concrete mixture proportions are 

shown in Table 12 for the composite UTW testing and generally follow the concrete 

mixture used in the field [47]. All weights shown in Table 12 have been re-adjusted so 

the total batch volume is 1 yd
3
.  It was expected that the Schanck Avenue mixture 

containing 6 lb/yd
3
 would demonstrate the most favorable fracture behavior. In contrast, 

the fracture behavior of Anna mixture was hypothesized to not perform as well due to the 

early age distresses on the field sections. 

 

The Schanck Plain, Schanck 4 lb, and Anna specimens were tested at 14 days (testing age 

chosen because fracture properties were predicted to be more stable after 7 days).  The 

Schanck 6 lb, Schanck Gravel, Dan Ryan, and Brazil 2 specimens were tested at 28 days.   

In addition to the composite beam tests, the compressive strength, split-tensile strength, 
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elastic modulus, flexural strength, residual strength, free shrinkage, and fracture 

properties were also tested. The results of these tests are presented in the following 

sections.  

 

Table 12 - UTW Mixture Designs for Composite Beam Testing 

Plain 4 lb 6 lb Gravel

Cement lb/yd
3

517 518 522 493 774 447 748

Fly Ash lb/yd
3

140 141 142 134 0 0 0

Slag lb/yd
3

0 0 0 0 0 113 0

Silica Fume lb/yd
3

0 0 0 0 0 0 75

Water lb/yd
3

268 268 271 255 280 236 288

Coarse Aggregate lb/yd
3

1978 1982 2000 1886 1851 1939 1926

Fine Aggregate lb/yd
3

1004 1006 1015 957 1034 1264 940

Fibers lb/yd
3

0 4 6 0 0 0 0

Air Entrainer ml/yd
3

306 77 77 73 114 66 169

Water-Reducer ml/yd
3

458 459 0 0 687 397 0

Super Plasticizer ml/yd
3

0 0 463 0 0 0 917

0.41 0.41 0.41 0.41 0.36 0.42 0.35

Dan 

Ryan
Brazil 2

w/cm ratio

Schanck Ave
Anna

 

 

Fresh and Hardened Properties 

 Table 13 shows the measured fresh and hardened concrete properties of the UTW 

mixtures.  The Anna mixture was also used in the age effect study of Chapter 3, so the 

corresponding 28 day results are also shown here for comparison.  The compressive 

strength of Schanck Plain mixture was lower than the others.  This was the result of the 

higher air content in the mixture design.  The large air entrainer dosage was cut back to 

reduce the air content for the remaining Schanck mixtures.  The slumps of the Schanck 6 

lb FRC and Brazil 2 mixtures were extremely low even with the addition of 

superplasticizer. Due to the rounded, smooth gravel in the Schanck Gravel mixture, no 

water reducer or superplasticizer was used, which still resulted in a 9-inch slump.  The 
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Anna and Brazil 2 mixtures showed similar 28-day compressive strengths due to their 

similar cement contents and w/cm ratios.  The Schanck 6 lb FRC mixture had a relatively 

high compressive strength.  The Schanck Gravel mixture had a very high elastic modulus 

of 7,023 ksi after 28 days, which could be attributed to the higher elastic modulus of the 

gravel coarse aggregates. 

 

Table 13 - UTW Fresh Properties and Strengths 

 

 

Composite Beam Testing 

The composite beams were centered on the top of the soil in the box and several gauges 

were attached as shown in Figure 29.  An angle bracket located at the top center of the 

concrete beam and knife edges spaced 10 mm apart located at the bottom of the concrete 

layer were mounted with epoxy prior to testing.  For space consideration, the angle 

bracket and knife edges were affixed on opposite sides of the composite beam.  

 

The first LVDT (1-inch range) was rigidly attached to the frame of the machine and 

measured the total vertical deflection of the composite beam (concrete, asphalt, and soil). 

A second LVDT (0.1 inch range) was attached to an aluminum frame and measured 

Plain 4 lb 6 lb Gravel

Slump (in) 5.00 4.75 1.00 9.00 4.00 1.00

Unit Weight (lb/ft
3
) 134 143 144 148 143 146

Air Content (%) 10.3 5.3 4.4 2.6 6.7 2.6

Age (days) 14 14 28 28 14 28 28 28

Compressive Strength (psi) 3,283 5,054 5,752 5,232 4,905 6,461 5,362 6,618

Split-Tensile Strength (psi) 332 553 590 537 579 549 557 533

Elastic Modulus (ksi) 3,276 4,565 4,832 7,023 4,451 4,608 4,607 4,331

Fresh Propeties

Brazil 2Anna
Schanck Dan 

Ryan

Hardened Properties

146

4.6

3.25
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vertical deflection between the frame and the angle bracket. This vertical midspan 

deformation measured only the concrete beam deflection relative to the ends of the 

concrete layer. The aluminum frame was pinned 1-inch from the ends of the beam and 

2.5 inches from the top of the beam as seen in Figure 29. An INSTRON clip gauge (4 

mm range) was placed between the knife edges to give an estimate of the crack tip 

opening displacement for any cracks that would initiate at the bottom of the concrete 

layer.  The composite beam was center-loaded using an 11-kip MTS servo-hydraulic 

actuator with the stroke position gauge being set at 0.5 mm per minute. An 8800 

INSTRON digital controller was used to program the loading commands and LABVIEW 

was employed to record the vertical load, two LVDT measurements, a clip gauge, and the 

stroke position. 

 

LVDT 1: Total Midspan

Deflection (Concrete, AC, soil)

LVDT 2: Midspan Deflection 

Relative to Neutral Axis

Clip Gauge: Estimated Crack 

Opening Displacement

 
Figure 29 - Composite beam test setup. 
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Composite Beam Results  

Load versus Vertical Stroke Curves 

The vertical deflection (stroke) and the crack opening displacements measured for each 

beam are presented here, shown in Figures 30 and 31. The results from the LVDT 

measuring the total vertical deflection did not always work properly (particularly with the 

4 lb Schanck beams) due to problems with the rigid connection; a comparison between 

the stroke and LVDT to measure vertical deflection is shown in Figure 32.  In general, 

the vertical deflection from the actuator stroke was expected to have some extraneous 

deformations and should not be considered the true total deflection. 

 

The composite beams made from the same concrete mixture were tested on separate days 

and therefore the change in soil characteristics from compaction fluctuated between the 

two specimens.  As seen in Figure 30, the 1
st
 beam generated larger vertical deflections as 

the soil compacted compared to the 2
nd

 beam (Figure 31).  It appeared that when the soil 

moisture was lower (cracks occurred in the clay), the difference between the 1
st
 and 2

nd
 

beam tested was lower and the magnitude of the vertical deflection was lower; the Anna, 

Dan Ryan and Brazil 2 mixtures were tested with the soil in a drier condition.  
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Figure 30 – Vertical deflections (stroke) for 1

st
 composite beam specimen. 

 

0

2

4

6

8

10

12

0 5 10 15 20 25

Actuator Vertical Position (mm)

L
o
ad

 (
k
N

)

clip gage touched 

surrounding soil box

crack through 

the asphalt 

2nd beams tested

Plain Schanck

4 lb Schanck

6 lb Schanck

Gravel Schanck

Anna

Dan Ryan

Brazil 2

 
Figure 31 - Vertical deflections (stroke) for 2

nd
 composite beam specimen. 
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Figure 32 - Vertical position comparison between machine stroke and LVDT values. 

 

Load versus COD curves 

The results of the estimated crack opening displacement (COD) were plotted versus load 

for the Schanck Avenue and all other concrete mixtures in Figures 33 and 34, 

respectively.   The load versus COD curves was similar between the two composite beam 

specimens tested for each concrete mixture.   

 

The additional LVDT used to measure the midspan deflection with respect to the neutral 

axis of the concrete and asphalt composite beam has similar results as the clip gauge 

measuring the crack opening displacement above the notch tip; this comparison plot is 

shown in Figure 35.    The magnitude along the x-axis (the midspan deflection relative to 

the neutral axis) in the plot was slightly higher than the COD values; however the load 
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levels are all the same. Only the 4 lb Schanck specimen gauges followed different 

correlations between the LVDT and the clip gauge.   
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Figure 33 - Load versus crack opening displacement curves for Schanck Avenue 

composite beam specimens. 
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Figure 34 - Load versus crack opening displacement curves for non-reinforced 

composite beam specimens. 
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Figure 35 - COD from clip gauge versus the neutral axis vertical deflection LVDT. 
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Recall, the overall objective of the composite beam test was to determine the effect of the 

concrete mixture on the peak load capacity and residual load capacity after cracking. The 

first peak load occurred with the sign of a macrocrack through the concrete layer above 

the asphalt crack.  The load dropped off immediately as a plastic hinge was formed. The 

majority of the post peak load behavior was associated with the soil reaction with very 

limited beam bending and significant compression of the beam into the soil.  For this 

research, the testing was halted once it was clear that the soil was contributing most of 

the energy from the test after the concrete had fractured.   

 

Composite Testing Results 

The stroke vertical deflection and COD values at the peak and minimum load (after the 

drop), and the load drop percentage are shown in Table 14 for all the concrete mixtures. 

A schematic of the composite beam loading is shown in Figure 36 with key definitions of 

the load versus deflection curve.  The load drop was calculated as follows in equation 11. 

The Peak/Min Load ratio was found by dividing the peak load by the minimum load 

immediately after cracking.   

 

Peak

MinPeak

P

PP )(
Drop Load %  (11) 
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Table 14 – Average Composite Beam Specimen Results 

 @ Peak  @ Min  @ Peak  @ Min

Schanck Plain 14 5.5 2.9 0.020 0.68 9.1 9.1 1.9 48%

Schanck 4 lb 14 6.9 4.9 0.027 0.57 10.0 10.2 1.4 29%

Schanck 6 lb 28 9.8 5.7 0.027 0.72 14.7 14.8 1.7 42%

Schanck Gravel 28 9.0 3.9 0.039 1.06 13.1 13.2 2.3 56%

Anna 14 8.5 3.9 0.017 0.88 7.3 7.4 2.2 54%

Dan Ryan 28 8.4 4.2 0.025 0.75 5.9 6.1 2.0 50%

Brazil 2 28 10.8 5.8 0.017 0.54 5.9 6.1 2.3 47%

Peak/Min 

Load  

Ratio

% 

Load 
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COD (mm)
Machine Position 

(mm)
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Figure 36 - Example of composite beam specimen result. 
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Peak Load 

The peak load for the Brazil 2 mixture was the highest while the smallest peak load, came 

from the Plain Schanck mixture. These corresponding peak composite loads were 

reflected in the compressive strength of the concrete. Brazil 2 mixture had the highest 

compressive strength in contrast the Plain Schanck mixture had the lowest compressive 

strength due to its high air content. Similarly, the Anna and 6 lb Schanck mixtures 

showed higher peak loads which match their higher compressive strengths.  One thing to 

note here is the age of testing for these specimens; all of the specimens tested at 28 days 

showed higher peak loads, while among the 14 day specimens, only the Anna mixture 

demonstrated a high peak load compared to the other mixtures. 

 

Load Drop Percent 

The drop in load was hypothesized as a significant factor to estimate the structural 

integrity of the UTW once a crack does form.  For example, in the field the Anna 

pavement was one with the most cracking within each slab and with cracking appearing 

early on in the pavement life [47].  The magnitude of the load drop can be associated with 

the performance of UTW in the field after some initial cracking has occurred. One 

research project predicted the load carrying capacity of slabs based on the residual 

strength of concrete beams [41]. 

 

Based on the results here, the Anna mixture does show poor results as far as the having a 

54% percentage drop in load capacity after cracking.  The Gravel Schanck mixture has 

the greatest load drop of 56%.  This load drop is likely associated to the fact that these 
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specimens fractured around the aggregates even at 28 days.  On the other hand, the FRC 

mixtures (4 lb Schanck and 6 lb Schanck) have the two lowest load drops at 29% and 

42% respectively.  Some concrete construction issues with the 6 lb Schanck mixture may 

have cause the higher load drop than the 4 lb Schanck mixture. Overall the drop in load 

was not as significant as expected. In addition, the geometry of the test, as previously 

mentioned, impacted the fracture behavior of the composite beams. This behavior was 

attributed to the 2-D nature of this test which does not allow the cracking propagation 

resistance between fibers and plain concrete to be realized.  

 

Composite Beam Testing Issues 

Several issues related to this testing apparatus have occurred.  First of all the geometry 

has been determined to influence the fracture of the beam.  Also the soil condition 

affected the deflection measurements.  Overall, the results did show enough information 

to gain an idea of the facture performance of the composite section.  The actual fracture 

parameters were determined and shown later in this chapter.  

 

All beams fractured in a curved pattern commonly seen in bending tests of beams 

subjected to large scale yielding [1].  Figure 37 shows a fractured composite beam after 

the testing was complete.  This large scale yielding was likely the result of such a small 

fracture area ahead of the notched HMAC specimen and fracture properties would be 

difficult to determine from these specimens as a result.  According to large scale yielding 

theory, this fracture behavior indicates that the stresses near the crack tip depend on the 
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geometry [1].  Fracture properties such as the initial fracture energy and CTODC cannot 

be computed from the test setup without the appropriate geometric correction factors. 

Future modeling of the results requires the each materials’ elastic and visco-elastic 

properties, the concrete fracture properties, and the global responses from the composite 

beam test.  As discussed early, separate TPB specimens were cast and tested to acquire 

the fracture properties of the concrete.  Soil and HMAC material properties have not been 

tested at this time. 

  

The concrete appeared to be well bonded to the HMAC beams based on visual 

observations before, during, and after testing.  Failure was defined when the concrete 

layer was cracked and all LVDTs and the clip gauge were out of range.  

 

 
Figure 37 - Picture of fractured composite beam. 
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Specific issues which occurred during testing are explained next in order to accurately 

understand the load-deformation behavior.  The 2
nd

 beam tested with the Gravel Schanck 

mixture likely has inaccurate results because the edge of the clip gauge mistakenly was 

touching the soil box surrounding the beam.  The clip gauge likely carried some of the 

load from the MTS machine to the soil box frame rather than through the composite 

beam, thus reducing the vertical stroke measurements.  In the 2
nd

 beam from the Brazil 2 

mixture, the concrete crack originated through an alternative crack or weak zone in the 

HMAC beam (see Figure 38) rather than the original pre-existing crack in the HMAC 

beam. 

 

 
Figure 38 – Failure pattern in the second Brazil 2 composite beam specimen. 

 

HMAC Surface Condition 

Field studies on the bond preparation for UTW have so far been inconclusive as to what 

construction technique should be used before placing down concrete on asphalt.  The 

consensus of the UTW literature recommends at least a clean surface; ideally milling and 
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cleaning would provide the optimal bonding condition. Two surface conditions of the 

HMAC beam, clean saw-cut surface and weathered existing top surface, were 

incorporated into the testing. A photo of the HMAC before saw-cutting can be seen in 

Figure 39.  The composite beams with different surface preparations did not separate 

during the test and no correlation was seen in the load versus vertical deflection curves to 

distinguish between the different surface types.  The difference between surface 

conditions in the asphalt was not noticeable in the load versus COD results either.  

Therefore the optimal surface condition of the asphalt could not be determined from this 

testing configuration.   

 

 
Figure 39 - Photo of an upside-down HMAC section prior to saw-cutting into beam 

sizes. 

 

Soil Consolidation 

After each consecutive test, the soil for the composite beam test became more 

consolidated and even showed depressions for locations in which the beam had rotated 

into the soil.  Although the sand layer on top of the clay was consistently leveled off, the 

clay underlying became quite deformed after each consecutive test.  This may have 
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contributed to the variation in load versus displacement curves between specimens and 

this should be considered for future composite beam testing.   

 

Material Properties of Composite Beam Mixtures 

Fracture Results 

The fracture properties (described in Chapter 2) of all the composite beam mixtures were 

also measured to enable future modeling of the results and to compare their behavior 

under different geometry and boundary conditions. The load versus CMOD curves for 

each TPB sample tested is shown in Figures 40 and 41 and their respective fracture 

properties are shown in Table 15. 
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Figure 40 - TPB Specimen load versus CMOD curves for Schanck concrete 

mixtures. 
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Figure 41 - TPB Specimen load versus CMOD curves for non-reinforced concrete 

mixtures. 

 

Table 15 - Fracture Results of UTW Mixtures 

Age 

(days)

Peak 

Load 

(kN)

Calculated 

Elastic 

Modulus 

(GPa)

K IC  (Mpa 

m
1/2

)

CTOD C 

(mm)

G f 

(N/m)

G F 

(N/m)

Plain 14 2.36 17.1 0.86 0.031 43.7 60

4 lb 14 2.35 20.5 0.82 0.025 33.8 1,720

6 lb 28 4.34 27.4 1.33 0.024 65.2 3,550

Gravel 28 3.23 30.7 1.10 0.018 39.2 112

14 3.74 26.3 1.02 0.015 41.2 99

28 3.69 27.6 1.05 0.016 40.0 115

28 3.67 27.8 1.24 0.019 55.7 133

28 3.52 29.7 1.15 0.018 44.3 102Brazil 2

Schanck 

Avenue

Mixture

Anna

Dan Ryan
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Fracture Properties 

The fracture properties were determined for each mixture at their corresponding age as 

the composite beam test.  The higher cement content (Anna and the Brazil 2) mixtures 

had higher compressive strengths (see Table 13) and higher peak loads as seen in Table 

15; this matches the predicted correlation described in Figure 12 from Chapter 3.  For the 

TPB tests performed at 28 days (with the exception of the Gravel Schanck mixture) the 

peak loads ranged from about 3.5 to 4.3 kN, much higher than the 14-day specimens at 

2.4 to 3.7 kN range, and had similar initial fracture properties. The Gravel Schanck 

mixture has the highest elastic modulus, which reduced its initial fracture energy.  The 

Anna mixture demonstrated the lowest initial fracture energies at 14 and 28 days.  The 

Dan Ryan mixture had one of the highest initial and total fracture energies at 28 days. 

 

FRC Results 

The 6 lb Schanck mixture had the greatest peak and post-peak behavior when tested at 28 

days as seen in Figures 40 and 42.  As seen in Table 15, the initial fracture energy and the 

stress intensity factor for the 6 lb Schanck mixture are slightly higher than the Plain 

Schanck due to the later age of testing and the increased compressive and tensile 

strengths. The 4 lb Schanck mixture had roughly the same peak load as the Schanck Plain 

mixture at 14 days; however the post-peak load is considerably higher even out to large 

CMOD values as shown in Figure 42.  The total fracture energies for the 4 lb and 6 lb 

Schanck mixtures were 1,720 N/m and 3,550 N/m, respectively, and both are 

considerably greater than the Plain Schanck total fracture energy at 60 N/m.   
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Figure 42 – TPB Specimen load versus CMOD curves for run-out tests for Schanck 

mixtures. 

 

Concrete Free Shrinkage 

In UTW designs, excessive concrete shrinkage could result in de-bonding between the 

concrete and existing HMAC layer. Higher strength mixtures were typically more 

susceptible to this behavior due to their higher total cementitious content. In order to 

assess the potential for excessive shrinkage, specimens were cast with dimensions of 

3x3x11.25 inches according to ASTM C157-99 [2].  Shrinkage specimens were de-

molded 24 hours after casting, and then stored in a controlled climate room at 50% RH 

and 23 °C.  Shrinkage and mass loss was measured at 1, 2, 3, 7, 14, 28 and approximately 

56 and 90 days after casting for several composite beam mixtures.  Only the Plain 

Schanck, 4 lb Schanck, and Anna mixtures were studied for their shrinkage with time. 
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Shrinkage and mass loss results for these same mixtures are shown in Figures 43 and 44.  

The mass loss of the Plain Schanck specimens was not measured at 24 hours after 

casting.  Since this data point was used to describe the magnitude of shrinkage, the mass 

loss curve was manually extrapolated so that the entire mass loss curve was similar the 4 

lb Schanck mixture.  As seen in Figure 43, the addition of fibers in the 4 lb Schanck 

mixture compared to the Plain Schanck mixture led to a lower free shrinkage in the 

concrete.  Other testing done to measure shrinkage of concrete has determined that the 

shrinkage was reduced by about 0.02% at 28 days with the addition of 0.5% volume 

fraction of polypropylene or steel fibers [27].  The use of higher cement content in the 

Anna mixture showed a greater shrinkage after approximately 14 days and a lower mass 

loss after 2 days.  Since the Anna mixture has a lower water cement ratio of 0.36, some of 

the shrinkage seen here was likely due to autogenous shrinkage [35]; also a smaller 

amount of free water was lost to evaporation, therefore making the mass of the specimen 

roughly the same with time. 
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Figure 43 – Concrete free shrinkage results for the UTW mixtures. 
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Figure 44 - Mass loss results for the UTW mixtures. 
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Summary 

The composite beam test results and TPB fracture properties have similar peak load 

trends when comparing between mixtures.  The greatest peak loads were seen in the 

Brazil 2, 6 lb Schanck, and Gravel Schanck specimens for the composite test; the greatest 

peak loads in the fracture test were with the 6 lb Schanck and 14-day Anna test samples.  

The load drop was lowest with the FRC mixtures which indicated its usefulness in 

providing residual load capacity especially for UTW systems.  There is a rough 

correlation between the peak/min load ratio and the fracture parameters when comparing 

plain and fiber-reinforced concrete.  No trend was found between the load drop and the 

total fracture energy between the plain concrete mixtures. 
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CHAPTER 6: FIBER-REINFORCED CONCRETE (FRC) 

MATERIALS FOR RIGID PAVEMENTS 
 

A variety of fiber types and geometries exist for use in FRC for rigid pavements.  

Currently modulus or rupture (MOR) is determined in a laboratory to describe the 

effectiveness of each fiber type for use in pavement designs.  In this thesis chapter, a 

collection of flexural strength test results for a variety of fiber types and volume fractions 

was compared.  Different standard test methods have been developed over they years to 

incorporate the post-peak performance of FRC in flexural strength.  These methods are 

also compared for each test result in this chapter.   

 

FRC Performance 

Two important issues concerning the use of fiber-reinforcement in concrete pavements 

are what types of fibers should be used and what volume fraction of a particular fiber 

type should be add to the plain concrete mixture.  The objective of this chapter is to 

demonstrate the variability in FRC laboratory testing performance for different fiber 

types and volume fractions. Each fiber type inherently has a different performance that 

must be considered in designing and specifying FRC.   

 

FRC has been the topic in many research projects and utilized to construct many field 

concrete pavements across the country. The key features to using a FRC mixture are the 

increased toughness of the composite and reduced crack widths which can be beneficial 

for improving pavement performance. The addition of structural fibers in concrete has 

been shown to improve slab load carrying capacity [41].  A further benefit of the smaller 
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crack widths seen in FRC pavements could be improved load transfer efficiency at joints 

or cracks over time.   

 

The influence of each type of fiber on the surrounding concrete would be useful to 

quantify.  Several books and numerous journal papers have been published which analyze 

and characterize the micromechanical behavior of fibers in plain concrete [3, 11, and 18].  

Several of the available theories to predict the composite stress-displacement 

relationships in a cracked FRC are explained in greater detail in Appendix A.   

 

Flexural Strength Tests 

The standard modulus of rupture (MOR) test configuration (ASTM C78 [2]) for four-

point bending flexure is still one of the most common field testing and this testing 

configuration was primarily be used to assess the toughness performance of various types 

of fibers and volume fractions of fibers for this chapter.  Figure 45 is a photo of the 

flexure test as it was performed for this study.   

 

A previous standard method, ASTM C 1018, described the MOR and the post-peak 

performance of a fiber-reinforced concrete beam as deflection ratios and indices; this 

method involves more complex calculations and the link between the empirically chosen 

deflection-based indices and field slab performance has been lacking.  The Japan 

Concrete Institute [22] developed JCI-SF4 to calculate the post-peak curve of FRC based 

on the area under the flexural curve for larger deflections.  Following this standard, the 

ASTM C 1609 method was developed and incorporated the load-deflection curve area up 
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to similar large vertical deflections.  The JCI-SF4 and ASTM C 1609 standards are easier 

to calculate and to comprehend and some research indicates improved correlation with 

field performance for different FRC mixtures.  The different standard flexural strength 

methods will be described and compared later in the chapter.  One of the important issues 

for comparing the methods was to determine whether the ASTM C 1609 does an 

adequate job to characterize FRC behavior for different fiber types and volume fractions.   

 

DATALOGGER

INSTRON MOR BEAM

 
Figure 45 - Photo of the equipment and set-up for the 4-point bending MOR test. 

 

The different types of fibers investigated for this study are shown in Table 16.  The 

geometry and material properties are listed according to their manufacturers.  The actual 

manufacturer and brand name for these types of fibers have been omitted. 
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Table 16 - Fiber Properties 
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FRC Beam Flexural Strength Results 

A collection of FRC beam data from various sources have been combined for this 

research.  The concrete mixture proportions for each FRC mixture study are shown in 

Table 17.  It should be recognized that only the fiber type and volume fractions were used 

in this chapter and variations in age tested or mixture proportioning was not investigated.  

The results of the beam testing for different fiber type are broken up below in sections to 

describe the background on the source of the data and their respective load-deflection 

curves for straight synthetic fibers, all synthetic fibers, crimped steel fibers, and hooked 

end steel fibers. 

 

Table 17 - Concrete Proportions for FRC Study (in lb/yd
3
) 

  

Lange and 

Lee (2005) 

Rieder (2002), 

FGCM (Table 9), 

Mate (2007) 

Donovan and 

Strickler 

(2007) 

Schanck Ave 

(Table 1) 

Water 360 308 254 267 

Cement 667 607 605 515 

Class C Fly Ash 0 0 0 140 

Coarse Aggregate 1814 1645 1834 1972 

Fine Aggregate 1008 1360 1318 1001 

 

Straight Synthetic FRC 

A straight synthetic fiber type has been mixed with concrete in volume fractions from 

0.26% to 0.58% for several of the mixtures listed in Table 17.  The flexural load versus 

deflection curves for the straight synthetic FRC specimens can be seen in Figure 46.  The 

4 lb/yd
3
 Schanck Avenue FRC mixture described in Chapters 3 and 5 used 0.26% volume 

fraction of the straight synthetic fibers.  The 0.29% and 0.58% beam specimen results 
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came from a project completed by Lange and Lee [25] to compare the ASTM C1018 

indices of various fiber types and volumes.  The 0.33% and 0.50% FRC specimen results 

(4 beams tested of each volume fraction) were provided by Rieder (2002) based on 

laboratory testing done to link FRC beam and slab results [41]. 
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Figure 46 – Straight synthetic FRC 4-point bending flexure curves. 

 

An increase in volume fraction of the straight synthetic fibers in FRC led to an increase in 

the residual load capacity seen in Figure 46.  The TPB specimen load versus CMOD 

curves for several of these straight synthetic FRC volume fractions are shown in Figure 

47.  Some of the fracture curves seen here came from the mixtures in Chapters 4 and 5. 
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Figure 47 – TPB specimen load versus CMOD curves for straight synthetic FRC 

mixtures. 

 

Synthetic FRC 

Other forms of synthetic fibers exist, such as the crimped and twisted synthetic fibers.  

The flexural load versus deflection curves are shown in Figure 48.  Donovan and 

Strickler [15] provided only one beam test data for the crimped synthetic fiber type 

shown here at 0.40% volume fraction.  The data for two twisted synthetic FRC specimens 

at a different volume fraction (0.3% and 0.5%) were provided by Mate (2007).   
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Figure 48 - Synthetic FRC 4-point bending flexure curves. 

 

Crimped Steel FRC 

Figure 49 shows the flexural load versus displacement curves for both types of crimped 

steel fibers in concrete.  Three specimens for 0.50% crimped steel 1 fiber volume fraction 

FRC specimens was provided by Rieder (2002).  Two specimens with 0.40% crimped 

steel 2 fiber (see Table 16 for fiber properties) volume fraction FRC specimens were 

provided by Donovan and Strickler [15].  One specimen was cast with 0.50% crimped 

steel 2 fiber for this study using the same mixture design as used in the FGCM study (see 

Chapter 4).   
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Figure 49 - Crimped steel FRC 4-point bending flexure curves. 

 

TPB fracture testing was also performed using the 0.50% Crimped Steel 2 fibers in 

concrete.  The full load versus CMOD curves for these samples shown in Figure 50 are 

highly variable.  The load levels seemed to drop drastically when a fiber ruptures or pulls 

out.  One sample increased in load capacity after cracking possibly due to the crimped 

fibers being straightened during testing.  At higher volume fractions, the crimped steel 

fibers in concrete exhibited a more continuous and smooth flexural load versus 

deformation; for volume fractions less than 0.5% the crimped steel fibers tested here 

demonstrate high variability due to the small number of fibers bridging the cracked face 

compared to the total cross-section and due to the early age of testing.   

 



109 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45

CMOD (mm)

L
o
ad

 (
k
N

)

0.5% (66 lb), 7 days

 
Figure 50 – SEN(B) load versus CMOD curves for 0.5% volume fraction of crimped 

steel 2 fibers at 7-days. 

 

The TPB beams had a smaller fracture area than the MOR beams.  With the low volume 

fraction of steel fibers, this resulted in a lower number of fibers bridging the cracked 

surface in the FRC and thus a larger variation in the load-displacement curve.  The actual 

number of fibers bridging the cracked face was not recorded, however it was noticed that 

there was in fact a lower number of steel fibers even on the MOR beam.   

 

Hooked End Steel FRC 

Lange and Lee [25] examined volume fractions of 0.19% and 0.38% of the hooked end 1 

steel FRC and volume fractions of 0.30% and 0.55% of the hooked end 2 steel FRC.  The 

average load versus deflection curve for the Lange and Lee specimens are shown in 
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Figure 51.  An additional volume fraction of 0.35% was tested with three hooked end 1 

steel FRC samples and provided by Rieder (2002).   

 

0

5

10

15

20

25

30

35

40

45

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Deflection (mm)

L
o
ad

 (
k
N

)

.19% Hooked End 1

.30% Hooked End 2

.35% Hooked End 1

.38% Hooked End 1

.55% Hooked End 2

 
Figure 51 - Hooked end FRC 4-point bending flexure curves. 

 

Two similar hooked end fibers were being compared here with the main difference being 

their aspect ratio.  The hooked end 1 fiber had an aspect ratio of 60, while the hooked end 

2 fiber had an aspect ratio of 48.  The FRC specimens containing the lower aspect ratio 

hooked end fibers showed greater residual loads after cracking for similar volume 

fractions.  The higher aspect ratio hooked end fibers for the volume fractions shown here 

up to 0.55% either decreased slightly or maintained a constant load level for at least 3 

mm of midspan deflection.  In other words, for these small volume fractions the hooked 

end fibers produced a relatively constant residual strength for deflections up to 3 mm. 
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Residual Strength Analyses 

For each FRC specimen, the load versus midspan deflection was measured from a four-

point bending beam according to ASTM C 78, ASTM C 1018, ASTM C 1609, and JCI 

standards [2 and 22].  Each standard describes a different analysis technique for 

analyzing the post-peak load (or residual load) versus deflection data.  These techniques 

are described in detail below and the resulting post-peak properties for each FRC 

specimen are computed. 

 

ASTM C 1018 

A standard for analyzing the residual flexural behavior of fiber-reinforced concrete was 

originally developed as ASTM C1018 [2] and consisted of computing the first crack 

flexural strength or MOR, indices, and index ratios at various deflection values.  The load 

at first cracking PA is used to compute the modulus of rupture, or flexural strength of the 

concrete as shown in equation 12, 

2
bd

SP
MOR A  (12) 

where S is the span of the beam, b is the width of the beam, and d is the depth of the 

beam.  A schematic of the load versus deflection curve of the flexural beam test is shown 

in Figure 52.  
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Figure 52 - Schematic of a load versus midspan deflection for the ASTM C 1018 

standard [from 2]. 

 

All deflection values used to compute the indices are based off of a new zero-point 

labeled as 0’ in Figure 52.  This zero-point, 0’, is determined by extending a tangent line 

from the initial loading curve back to a zero load.  The deflection at first cracking in the 

concrete is recorded as  and the area under the load-deflection curve up to  is recorded 

as I0, see equation 13.   

�

00 )(PareaI  (13) 

 

Other indices are determined by computing the area under the load versus deflection 

curve up to some multiple of the first cracking deflection , such as 3 , 5.5  or 10.5 , 

then normalized by I0 (see equations 14a - 14c). 
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Ratios R5,10 and R10,20 are computed as in equation 15a and 15b, respectively, to give an 

estimate of the magnitude and sustainability of the post-peak behavior of the FRC 

mixture. 
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(15a) 

 

(15b) 

 

 

JCI-SF4 

The Japan Concrete Institute SF4 standard [22] was developed for computing flexural 

strength and residual properties of a FRC beam.  The standard requires the load to be 

carried out to a specified deflection based on the span S of the beam.  In the case of a 

6x6x21 inch beam, where the span is 18 inches, the maximum required deflection 

corresponds to S/150 or 0.12 inches (3 mm).  The modulus of rupture is computed similar 

to the previous standard, except the peak load P1 is used in the calculation, see equation 

16. 
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SP
MOR  (16) 

 

Figure 53 shows a schematic of the load versus deflection curve for defining the terms 

used here.  A toughness T150,3 parameter is computed as the area under the curve up to 

3mm, seen in equation 17. This toughness parameter is used to compute the equivalent 

residual strength fe,3 and thus also affects the equivalent residual strength ratio Re,3 (see 

equations 18 and 19).  As a result the equivalent residual strength and residual strength 

ratio incorporate the entire post-peak performance of the FRC up to a deflection of 3 mm 

rather than an instantaneous residual strength and residual strength ratio at a 3 mm 

deflection.  

 

 
Figure 53 - Schematic of the load versus midspan deflection for ASTM C1609 and 

JCI-SF4 standards. 
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ASTM C 1609 

A modification to the original ASTM C 1018 standard for beam toughness was created 

specifically to better describe the post-peak or residual behavior of FRC.  The residual 

post-peak behavior is described primarily with three terms: the residual strength f150,3, the 

toughness T150,3 and the residual strength ratio R150,3 (calculated based on the f150,3 and 

MOR, but not part of the ASTM standard).  Equations 20-21 show the calculations for 

these residual properties. The major difference compared to the JCI method is that the 

load at 3mm, see Figure 53 is used for computing the residual strength f150,3 rather than 

the area up to 3mm. 
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Beam Flexural Toughness Testing Standards Comparison 

Using the ASTM C 1018 standard, the indices and ratios does provided some empirical 

insight on how a mixture performs compared to other mixtures. However, it was unclear 

how to link the ASTM results to FRC slab performance (load capacity and crack width).  

ASTM C 1609 and JCI standards were similar in that they both record residual strength 

values and ratios at 3mm deflection. The main difference being the ASTM standard 

residual strength value was determined solely on the load level resisted by the specimen 

at 3mm while the JCI method was computed as the average load resisted by the specimen 

up to 3mm.  Note for plain (un-reinforced) concrete, the residual properties based on 

ASTM C 1609 were zero; ASTM C 1018 and JCI standards do compute some residual 

values for the un-reinforced concrete samples.  In general, for increasing volume fraction 

of a given fiber, the residual flexural strength, toughness, and residual strength ratio all 

increase.  Averaged flexural properties of the FRC specimens at each volume fraction for 

each fiber type are shown in Table 18.   
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Table 18 – Average Flexural and Residual Properties of FRC 
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A plot of the residual strength ratios based on the JCI method and ASTM C 1609 

calculations is shown in Figure 54.  The JCI standard residual strength ratio was 

generally greater than with the R150,3 value.  For design purposes, if a concrete mixture 

were to be created to meet a minimum residual strength ratio (R150,3), the concrete 

mixture would result in a high volume fraction of fibers than a specification based on the 

JCI standard.  
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Figure 54 - Comparison between the residual strength ratios of ASTM C 1609 and 

JCI-SF4 standards.  

 

Fiber Type and Volume Effects 

Every fiber type will generate a different post-peak performance in a given concrete 

mixture.  Using the same amount of fibers either by mass or volume fraction does not 

produce the same residual strength for different fiber types.  In order for a specification to 
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be created on the amount of fibers to use, the mass or volume fraction should not be used.  

Instead a performance based criteria such as Re,3 or R150,3 should be used. 

 

Several similar residual strength values can be found from Table 18; a Re,3 value of 20% 

was obtained for 4 lb/yd
3
 or 0.26% of the straight synthetic FRC and was estimated to be 

for about 55 lb/yd
3
 or 0.42% of a crimped steel 2 FRC mixture.  In other words a larger 

volume of steel fibers of a certain type are required compared to a certain type of 

synthetic fibers to obtain the same toughness level.    For the same volume fraction, say 

0.50%, the R150,3  for straight synthetic FRC was 32%, twisted synthetic was 25%, 

crimped steel 1 was 24%, crimped steel 2 was 16%, and hooked end 2 was estimated to 

be 45%.  Synthetic FRC had repeatable fracture and flexure performance characteristics 

between samples due to the consistency between batches and at different ages.  Crimped 

steel FRC had the greatest variability in fracture and flexural performance at low volume 

fractions.   

 

The residual strength ratio values are not absolute for each specified fiber type or volume 

fraction. The concrete mixture design also impacted the MOR and residual strength 

properties.  For example, the 0.29% straight synthetic FRC beams had a high MOR value 

and thus reduced residual strength ratios compared to 0.26% volume fraction beams in a 

different concrete mixture.   
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Secondary Peak 

With the volume fractions less than 0.5% (or even lower volume fractions of 0.19% at 28 

days seen in Figure 46) a secondary peak in the residual curve was observed.    The 

mechanism to describe this behavior was predicted to correspond to when all fibers were 

de-bonding from the matrix and beginning to pullout of the matrix.  Some 

micromechanical models described in Appendix A have attempted to incorporate this 

secondary peak in their localized tension softening descriptions.  Further investigation is 

needed to characterize this secondary peak in terms of fiber content, fiber type, the 

number of fibers bridging the fractured surface, and bonding strength with the concrete 

matrix. 

 

Summary 

Seven types of fibers were compared at volume fractions between 0.2% to 0.6% volume 

fractions for their flexural and residual properties.  Equivalent residual strength properties 

were dependent on the fiber type in addition to the volume fraction or mass fraction of 

the fiber in FRC.  The JCI-SF4 or ASTM C 1609 methods were both effective to 

determine the residual properties of these FRC mixtures.  More conservative fiber content 

would be selected in design of FRC if performance-based residual properties were 

determined from the ASTM C 1609 calculations compared to the JCI-SF4 method. 

 



121 

CHAPTER 7: CONCLUSION 

Fracture mechanics testing of concrete mixtures can enhance the performance prediction 

of rigid pavements in the field.  Although strength can be used to estimate the event of a 

crack in concrete, the fracture properties can better describe the rate of crack growth and 

crack widths seen in the pavement.  Various studies were performed, such as a two-layer 

functionally graded concrete beam, a composite hot-mixed asphalt and concrete beam on 

an elastic foundation, and concrete material constituent and proportioning for ultra-thin 

whitetopping, to determine fracture properties and correlate them use in rigid pavement 

designs.  A summary of the conclusions found from each study is listed below. 

 

Various fracture properties of paving mixtures were investigated at different ages and 

with different mixture proportions.  The most significant factors on fracture properties 

were fiber-reinforcement and age effect.  Other factors such as coarse aggregate type 

were also studied in this report. Recycled concrete as a coarse aggregate was found to 

have the lowest initial and total fracture properties.  Specimens of different mixtures were 

tested at ages between 7 and 90 days and a statistical fit was derived to match their 

fracture toughness curve.  A testing age of 28 days or greater was determined to be the 

most reasonable to determine the fracture properties of paving concrete mixtures.  

Current empirical equations presented in the literature (using compressive strength, w/cm 

ratio, aggregate type and size) were insufficient to characterize the fracture energy 

performance of the mixtures studied herein.  
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Four layered configurations of FRC and un-reinforced concrete mixtures in a notched 

beam were tested for their fracture properties. Full-depth FRC beams demonstrated the 

greatest fracture energies as expected.  Beams containing a synthetic FRC layer were 

found to be best at mitigating crack propagation when the fibers were implemented 

nearest to the crack tip.  On the other hand, when crimped steel FRC layers were 

examined the number of fibers bridging the fracture area was too low to produce 

repeatable results.   

   

Composite beams composed of concrete cast onto hot-mixed asphalt were tested on a 

clay subgrade to predict the fracture performances of UTW mixtures found in the field. 

Soil conditions affected the vertical deflection readings of each test.  However, the 

percent load drop after each beam cracked was determined to be effective at 

differentiating the performance between fiber-reinforced concrete and plain concrete 

mixtures used for UTW projects. No significant ranking of plain concrete mixtures was 

seen using the test configuration.  Fracture properties derived from SEN(B) specimens 

alone were misleading as they too did not always correlate to the performance seen in the 

field. Overall, the behavior and performance of UTW systems depend on the combined 

effect of loading, concrete material fracture properties, geometry of the slab, and support 

condition. A 3D fracture model and testing is required to validate the performance of 

each UTW mixture.   

 

A study of 7 types of fibers types at varying volume fractions from 0.2 to 0.6% in 

concrete were examined under flexure testing. ASTM and JCI standards on flexural and 
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residual strengths were compared.  A small collection of MOR and residual properties 

according to different standards was created to aid in estimating the amount of fibers for 

a particular type of fibers would be needed to reach a certain residual strength ratio value. 

All fibers are not equal as far as their impact on residual strength or fracture energy.  A 

residual performance-based specification is recommended for future FRC design. ASTM 

C 1609 provides slightly more conservative FRC design based on residual strength ratio 

values compared to the JCI method.  

 

Future Research 

Overall, the fracture energy determined using the TPFM or the Hillerborg method can be 

a useful property to describe the post-cracked concrete performance.  A test to describe 

the post-cracking behavior should be implemented into current design of rigid pavements.  

Fracture properties can be used in models, such as finite element models, to analyze a 

variety of materials and structural configurations to predict field slab performance.  

Through further correlation between testing and modeling, the post-cracking fracture 

properties can be used to describe the load carrying capacity of slabs and load transfer 

efficiency across joints or cracks.  Design guidelines should incorporate these additional 

material characteristics in order to improve predictions of future rigid pavement 

performance. 
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APPENDIX A: MICROMECHANICAL VIEW OF FIBER-

REINFORCED CONCRETE BEHAVIOR 

 
Fiber-reinforced concrete (FRC) is a composite material composed of discrete fiber 

materials acting as local reinforcement in a concrete matrix.  As a composite, the overall 

material properties change based on the interaction and volume ratio of the fiber relative 

to the matrix.  The major material properties of FRC which are modified from plain 

concrete are: increased tensile strength (particularly for high volume fractions), increased 

toughness, reduced crack widths and crack propagation rates, reduced shrinkage, 

increased fatigue resistance, and impact resistance, increased post-cracking ductility, and 

lower rheological properties [3, 11, and 18].    

 

Fibers may be added for plastic shrinkage cracking, crack width control, toughness, and 

increased slab capacity.  In this research for the structural design of concrete pavements, 

the toughness, crack width and increased slab flexural capacity are key design objectives 

for fibers. Only fibers which can impart significant structural benefit are of interest in this 

research and therefore low modulus fibers used for plastic shrinkage control are not of 

interest. Beam flexural testing of the various structural fiber types can be made to give a 

quantitative measure of the fiber effectiveness by means of the FRC toughness.   
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FRC Design and Construction 

A large variety of fiber materials and geometric properties exist.  By optimizing the 

characteristics of the fiber (material and geometry), an improved performance in the FRC 

material can be obtained as long as the primary properties desired are known 

(workability, compaction, bonding, and toughness). 

 

Material 

The fiber material is chosen to be one with a greater composite flexural strength or 

increased ductility relative to concrete.  The elastic modulus of fibers can be lower than 

the concrete matrix (in the case of cellulose, nylon, organic, and polypropylene fibers) or 

can be higher than the concrete matrix (in the case of glass, steel, and carbon fibers) [18].  

As related to the stiffness of the fiber material, some softer fibers tend to bend or twist 

when mixed with concrete while the stiffer fibers remain in their original shape and 

structure.  This alteration can impact bonding issues, clumping occurrences, and stress 

reduction within the fiber.  

 

Geometry 

The fibers studied here are discrete short fibers; their length and diameter must be 

considered in design.  An aspect ratio is often used which is the length divided by the 

diameter of the fiber.  Fibers can also come in various cross-sectional shapes such as 

circular, square or rectangular.  The effective cross-sectional area of the fiber is 

sometimes required in analyzing the theoretical performance of the composite material.  

Fibers can also come as straight, crimped, twisted, hooked or even hoop shapes.  These 
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geometrical variations highly complicate the theoretical behavior of the composite 

material.  In general most analyses assume the fiber to be a straight rigid member for 

simplification.   

 

Construction 

FRC mixtures have been reported to have reduced workability or slump and can cause 

more difficulty to finish the concrete surface especially for volume fractions at 1 percent 

or greater [3, 11, and 18].  The fibers with larger aspect ratios and higher volume 

fractions may clump and bind up together in the mixture rather than uniformly dispersing. 

Weak zones in the mixture are formed because the clumps have little cement within to 

provide the strength of the bulk paste and outside of the clumps there are more regions of 

concrete unreinforced. The best technique to minimize fiber clumping and enhance fiber 

dispersion is to use a water reducer or super-plasticizer or to increase the effectiveness of 

the cementitious matrix.  This technique is very effective at increasing workability and 

improving the ability to finish the concrete. 

 

Details on Fibers from this Report 

Descriptions on all fiber types investigated in this report can be found in Table 16.  One 

of the primary fiber types studied in this research is a straight synthetic fiber made of a 

polypropylene/ polyethylene blend.  These fibers are initially straight but tend to bend or 

twist after mixing.  The fibers are composed of long extruded fibrillated fiber strands in a 

rectangular cross-section.  The fibers are considered to be a structural fiber because they 

are larger in size, strength, and modulus than those used for plastic shrinkage. These 
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fibers were specifically designed to improve the flexural and ultimate load capacity of 

concrete slabs.  

 

Matrix-Fiber Interaction 

The bond that occurs between the fiber and concrete becomes important when 

determining how the material fails.  The bonding strength between the fiber and matrix 

depends on the strength of the concrete matrix, the age of the concrete, the density of the 

concrete, the geometry of the fiber and the fiber surface characteristics.   

 

Similar to aggregates in concrete, there is an interfacial transition zone along the fiber 

surface that separates the fiber from the bulk concrete material.  This concept has been 

described by Bentur and others [9 - 11] as seen in Figure 55.  According to the images, as 

one looks closer into the microstructure of the fiber interfacial zone, large crystals of 

calcium hydroxide can be seen in the SEM image (Figures 55b, 55c, and 55e) along with 

porous regions between the crystals along the interface.  The problems with the 

interfacial transition zone are a reduced strength region and inconsistent bond strength.   

With a lack of calcium silicate hydrate gel often seen in the bulk cement paste, the 

strength of this region is reduced so cracking is likely to initiate as seen in the Figures 

55a, 55c, 55d, and 55f.  Areas of higher porosity are generally where cracks will 

propagate along or around.   

 

 



132 

 

 
 (e)       (f) 

 

Figure 55 – (a-d) SEM images of the fiber-cement interface [from 10] and (e-f) a 

microstructure schematic of FRC [from 9]. 

 

This interfacial area around the fibers is difficult to quantify even for a micromechanical 

model due to the highly variable material which actually bonds the bulk matrix to the 

fiber surface.  When fibers pull-out of a matrix, it is generally assumed that the porous 
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interfacial area is what breaks and the fibers slip out.  Some theoretical models therefore 

include: static shear strength s to quantify the bonded interface and dynamic shear 

strength d to quantify the friction that occurs between the fiber and the bulk matrix. 

 

A brief study to understand the microstructure of the interface between the fiber and 

concrete matrix was performed [8].  A scanning electron microscope (SEM) was used 

with a secondary electron image of the fracture surface of a fiber-reinforced concrete 

mixture at roughly 1 year old to gain an idea of what these fibers look like after testing.  

These images can be seen in Figures 56 and 57.  

 

 
Figure 56 - Secondary electron image of a straight synthetic fiber in concrete 

matrix. 
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Figure 57 – A straight polypropylene/polyethylene fiber pulled out from the 

concrete matrix. 

 

A crack can be seen in Figure 56 extending along the fiber surface most likely due to the 

presents of the interfacial transition zone.  However, with SEM imaging, specimens are 

often subjected to high vacuums which can cause cracking after the specimen is taken 

from the concrete.  The straight synthetic fibers do bond well with the concrete and the 

fibers typically pull-out of the matrix rather than rupturing.  However, some of the 

straight synthetic fibers seem to shear within the fiber and fray as it pulls out of the 

concrete matrix as seen in Figure 57.  The additional fact that some of the fibers bend 

within the concrete matrix, leads to an increase in pull-out load, and may also lead to the 

fiber shearing.  These factors can alter the fracture properties of a FRC mixture.   Every 

fiber type used in a concrete will demonstrate different fracture and residual strength 

properties that must be understood in order to determine the amount of fibers to use. 

Chapter 6 investigates the differences between fiber type and volume fraction in residual 

properties. 

 



135 

Stress Distribution Theory in FRC Composites 

Some of the earliest studies on the effect of fibers on cement and concrete have been 

performed by Laws, Aveston, Allen, Cox and Krenchel from the 1950s to 1970s [3, 11, 

and 18].  The majority of the early studies looked at steel straight fibers for simplicity in 

analysis.  Direct tension tests were often performed on single fibers across a cracked 

concrete to understand the influence of orientation and length.  Equation A1 for pre-

cracked composite stress c has been developed [3, 11, and 18] and shown below 

 

)1( fmfflc VV
�

 (A1) 

 

where f and m are the fiber and matrix stresses respectively, ✂ and l are orientation and 

length efficiency factors, respectively, and Vf is the fiber volume fraction.  The equation 

assumes there is zero Poisson’s ratio in the fiber and matrix, fibers and the matrix exhibit 

equal amounts of strain ( c = f = m) , and all fibers are aligned in the direction of the 

loading.   

 

Various efficiency factors for the pre-cracked concrete condition are shown in Table 19. 

The 3D orientation factor depends on whether the specimen is constrained in other 

dimensions; because various wall effect issues impact the effective number of fibers 

across the testing plane.   The length of fibers across a plane depends on the original fiber 

length Lf and the critical fiber length Lc.  The modified version of the length orientation 

factors, shown in Table 19, account for any variation in strain between the fiber and 

matrix ( c / f).  The critical fiber length can be determined by the fiber strength f, the 
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cross-sectional area Af, the density , and the shear strength f between the fiber and 

matrix.  Fibers longer than the critical length often have a greater tendency to clump or 

ball and bind. Fibers longer than the critical length often rupture instead of pull-out of the 

matrix. 

 

The statistical distribution of fibers in terms of their orientation and location within a 

specimen can be determined using x-rays for steel fibers.  This technique may be used to 

confirm the number of fibers located in a fracture plane and would be useful to predicting 

the fracture performance especially with low volume fractions of steel FRC.  No testing 

method is known for examining the statistical distribution of synthetic fibers in concrete.  

 

Table 19 – Orientation and Length Efficiency Factors for FRC [after 11] 

 

 

Once cracking occurs in the matrix, the crack widens with increasing load and the 

randomly orientated fibers pull out in the direction of the tensile load.  Sometimes the 

pullout also elastically stretches the fibers.  In addition, for sharp angles of fiber 

unconstrained constrained

1D aligned 1 1

2D random 1/3 3/8

3D random 1/6 1/5

original ( m  = f ) modified

L f < L c
*

L f / ( 2 L c ) L f / ( 2 L c ) * c / f

L f > L c 1- L c / ( 2 L f ) 1 - (L c / ( 2 L f )* c / f )

* L c  = 2 f A f  / (  f )

orientation

length

n ✂

n l
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orientation, the concrete near the crack face may crush or spall under the fiber re-

alignment [26], see Figure 58.  The bending that induces in the fibers from the re-

alignment under tension generates a greater stress within the fiber; the fiber will undergo 

greater strain or stretching.  However once the fiber is re-aligned, the overall composite is 

capable of holding more loads (aligned fibers carry more efficiency for load transfer 

across the matrix). 

 

 
Figure 58 – a) Diagram of a fiber bridging a crack and b)the components of the 

force as the fiber pulls out of the matrix [from 26]. 

 

Fiber Embedment Length 

The embedment length l is the original distance of fiber surrounded by the matrix. In the 

case where the fiber pulls out of the matrix, usually the shorter embedded fiber is what 

pulls out of the matrix first, therefore the shorter embedment length is a concern for 

design.  The value of l can range from 0 to Lf/2 where Lf is the original length of the fiber. 

The average or mean pullout length is Lf/4 for a perfectly aligned fiber [16, 17, and 34].   
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Fiber Rupture 

As the fiber is pulled out of the matrix in tension, the fiber either ruptures or the interface 

between the fiber and matrix fractures (fiber-matrix bond strength reached) and the fiber 

slides out.  Ruptured fibers can occur when fibers are either too long in length or if there 

is a very high volume fraction.  The load carrying capacity analysis can be quite difficult 

for fibers which rupture, especially if they also exhibit some de-bonding.      

 

FRC models 

Over the course of time, researchers have developed mathematical or finite element based 

models to describe and predict the behavior of FRC structures.   Models range from the 

microscale (attempting to characterize each individual fiber and statistically extrapolate 

to a global behavior) to the macro scale of a structural response (simplified models which 

generalize the composite behavior) from the FRC.  Only a few of the more commonly 

used and recognized FRC models are described herein.  These models can be used to 

predict the material behavior for finite element analyses as either bulk material 

performance of specific cohesive zone elements.  

 

Visalvanich and Naaman model 

An empirical based equation relating stress to opening displacement for steel FRC 

subjected to direct tension was made by Visalvanich and Naaman in 1983 [46].  This 

model is a polynomial curve that was determined after testing several volume fractions 

and aspect ratios of a straight steel fiber in mortar.  The shear strength and efficiency 
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factor must be known or estimated to carry out the calculation.  The Visalvanich and 

Naaman stress-displacement relation (equation A2) for FRC is presented below and 

shown in Figure 59, 

 

2

1
2

1
2

1.0)/(
ff

fffVNc
LL

dLV  (A2) 

 

where VN is an efficiency factor for the fiber orientation and embedment length,  is the 

shear strength along the fiber surface, Vf is the volume fraction of the fiber, Lf is the 

length of the fiber, df is the fiber diameter, and  is the opening displacement of the crack.  

This model is an empirically fit curve to the data and only steel fibers were considered.   

 

As seen in Figure 59, the Visalvanich and Naaman model did reasonable well to fit their 

data presented for a range of volume fractions and aspect ratios.  Only a few 

discrepancies can easily be noticed from the comparison between the data and the model 

fit. Results show that the combination of a higher aspect ratios (Lf/df = 83), a 1% volume 

fraction, and a longer fiber length (Lf = 0.5 inches) produced consistently lower stresses 

than computed with the model.  Also, with a 1% volume fraction of fibers, a short aspect 

ratio of 42 and a shorter fiber length of 0.25 inches, the model underpredicts the actual 

measured stresses in the composite material. 
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Figure 59 – Normalized stress versus displacement curve for Viscalvanich & 

Naaman model and corresponding experimental results [after 29]. 

 

Li model 

Several studies by Li and others have attempted to capture the micromechanical behavior 

of single and multiple fibers pulling out of a cement paste matrix [29- 31].  The models 

incorporate various factors which influence the efficiency of a fiber after cracking.  A 

schematic of stress versus crack opening of a tension specimen is shown in Figure 60.   
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Figure 60 – Schematic of Li’s micromechanical model for FRC. 

 

Li’s model [29-31] assumes that before a crack starts the matrix and fiber act elastically 

together.  However due to strain mismatch between the fiber and matrix, a build-up of 

stress preexists in the fiber at the point when the matrix cracks called the pre-stress ps.  

As the crack widens, this pre-stressing in the fiber is relieved as the fiber de-bonds from 

the matrix.  At the point of complete de-bonding, the fiber is no longer experiencing any 

stress from the matrix.  The initial magnitude for the pre-stressing is the pre-cracked 

composite strength can be determined using the efficiency factors in Table 19 and 

equation A1. 

 

If no fiber were to exist, as in the case with plain concrete subjected to direct tension, 

there is still some stress distributed across a crack.  This is due to aggregate interlock 

because cracks that form early on in concrete often form a tortuous path around the larger 

aggregates.  Protruding aggregates can still interact with other surrounding aggregates 

until the crack is too wide for these to interact.  According to Li’s theory [31], the 
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equation for aggregate interlocking was chosen to be an experimentally fit power 

function where cracking initiates at the tensile strength of the concrete matrix.  Figure 61 

shows the experimental data and power-curve fit to data for both high and normal 

strength unreinforced concrete. 

 

 
Figure 61 - Aggregate interlock determination for high and normal strength plain 

concrete [from 31]. 

 

The calculation of fiber bridging stress can be broken up into two equations: before and 

after complete de-bonding has occurred.  The deflection at complete de-bonding 
*
 of all 

fibers in a FRC specimen has been described as the following in equation A3, 
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where  is the shear strength of the bond, Lf is the fiber length,  is the composite 

ratio
mf

ff

EV

EV

)1(
, Vf is the fiber volume fraction, Ef and Em are the elastic moduli for the 

fiber and matrix, respectively, and df is the diameter of the fiber [31].  The equations for 

single fiber bridging load across a crack are written to account for various fiber properties 

such as the bond strength, modulus and diameter of the fiber, plus they incorporate the 

length of the single fiber embedment l and the orientation angle  of the fiber.  The load 

P versus crack opening  can be seen in equation A4 for a single fiber,  
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where 
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f
E

l
2

0

2
 is the crack opening displacement for a single fiber to have complete 

de-bonding (recall for all fibers to de-bond the displacement is *).  The subbing factor f 

has been defined by Li [31] to take into account any bending that the fiber undergoes as it 

pulls out of the cracked face.  This snubbing factor can range anywhere from 0 (for 

complete bending) to 1 (stiff fiber with no bending). From the load equations for a single 

fiber in equation A4, the fiber bridging stresses for multiple fibers can be computed 

through integration as follows (equation A5), 
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where p( ) and p(z) represent the probability densities for fiber orientation and fiber 

length, respectively.  The probability density for orientation has been assumed to be for 
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3D random distribution to be sin  and for length is assumed to have a uniformly random 

distribution at 2/Lf.  The resulting fiber bridging stress function, f, is shown in equation 

A6a with the peak bridging stress ( 0) occurs when all fibers have completely de-bonded 

(
*
) shown in equation A6b. 
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Using the three component models for fiber prestressing, aggregate interlock, and fiber 

bridging stresses, Li summed all these stress components to create a net composite stress 

curve as seen in Figure 60.  These equations have been plotted against test data for 

straight steel fibers (at 2% volume fraction and an aspect ratio of 100) and for straight 

polypropylene fibers (at 1% volume fraction and an aspect ratio of 250) as shown in 

Figure 62a and 62b, respectively.   
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(a) 

 

 
(b) 

Figure 62 - Data and Li’s model stress versus crack opening curve for (a) steel FRC 

and (b) synthetic FRC [from 31]. 

 

The model shows potential for matching laboratory data at least up to 0.3 mm crack 

widths (limit to the tests performed [31]).  The data shown for Li’s tests seem to be quite 

scattered and variable for any type of fiber or concrete strength. In particular, the Li 

model seems to predict the lowest possible data results for the polypropylene FRC as 
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shown in Figure 62b.  The Li model may be acceptable for design as a worst-case 

scenario stress prediction. 

  

The Li model was used in combination with the fiber geometry of the straight synthetic 

fibers in this report and the results are shown in Figure 63. The diameter of the fiber 

determined using the aspect ratio (Lf/df) was found to be 0.444 mm.  Li suggested an 

effective diameter for rectangular cross-sections to be computed using equation A7, 
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where w is the fiber width and tf is the fiber thickness.  For the straight synthetic fibers, 

the effective diameter is computed to be 0.195 mm.  The volume fraction of fibers used 

was roughly 0.8%, the same as the fiber content for the FGCM study in Chapter 4.  The 

snubbing coefficient f used by Li was 0.05 in his 1993 study [31], however in a previous 

study in 1990 [32] Li used 0.702 to describe a polypropylene fiber.  All other parameters 

used as inputs in the Li model were chosen to be the same as the polypropylene inputs 

used in the study by Li [31] 

 

By changing parameters in the Li model, the total fracture area prediction (calculated as 

the area under the stress-crack opening curve) ranged from 190 to 720 N/m for the same 

straight synthetic fiber type.  The higher subbing factor produced a more pronounced 

secondary peak in the micromechanical model; for smaller fiber diameter size used in the 

model, the stress magnitude on the secondary peak increased.  In order for the Li model 

to become more accurate, further research and testing for the properties of each fiber type 

would be needed. 



147 

0

1

2

3

4

0 5 10 15 20

crack opening w (mm)

s
tr

e
s

s
 (

M
P

a
)

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

crack opening w (mm)
s
tr

e
s
s
 (

M
P

a
)

✁a

✁f 

✁ps

✁c

Fiber type

Ef 9.5 GPA

Lf 40 mm

df 0.444 mm

�0 0.8 MPA

a1 0 MPA mm-1

a2 0 MPA mm-2

✂ 6.67 mm

shape func p 1.2 -

w0 0.015 mm

✄mu (normal) 3.7 MPA

Vf 0.00794

Snub coef F 0.05

☎mu 0.00013

Em 30 GPA

GF 190 N/m

polypropylene/polyethylene

 

0

1

2

3

4

0 5 10 15 20

crack opening w (mm)

s
tr

e
s

s
 (

M
P

a
)

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

crack opening w (mm)

s
tr

e
s

s
 (

M
P

a
)

✆a

✆f 

✆ps

✆c
Fiber type

Ef 9.5 GPA

Lf 40 mm

df 0.195 mm

✝0 0.8 MPA

a1 0 MPA mm-1

a2 0 MPA mm-2

✞ 2.93 mm

shape func p 1.2 -

w0 0.015 mm

✟mu (normal) 3.7 MPA

Vf 0.00794

Snub coef F 0.702

✠mu 0.00013

Em 30 GPA

GF 720 N/m

polypropylene/polyethylene

 
Figure 63 - Li's model applied to straight synthetic FRC at (a) df = 0.44mm, f =0.05 

and (b) df = 0.195mm, f = 0.702. 

 

Trilinear Softening Model 

A finite element cohesive zone model developed and presented in Park et al. [38] was 

implemented to fit the data of the functionally layered and full-depth TPB specimens.  

The finite element analysis results are presented in the paper by Roesler et al. [42].  

Separate UEL were used to define the local tension softening model of the plain concrete 

and straight synthetic FRC materials.  A bilinear softening model was used for the plain 

(a)

(b)
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concrete and a trilinear softening model was used for the FRC material.  The parameters 

to determine the shape of these softening curves were based on the average tensile 

strength (average of the plain concrete and straight synthetic FRC mixtures combined), 

the initial fracture energy and total fracture energy of each material respectively 

according to Park [37 and 38].  An addition parameter, the final crack width wf was 

necessary to define the FRC softening behavior.  This value was assumed to be Lf/4 [35 

and 42] where Lf is the length of the fiber.  

 

Discussion 

For concrete pavement design such detailed micromechanical models, such as the Li’s 

model may be too complex for practitioners.  Several of the micromechanical models 

such as the aggregate interlock or the pre-stressing of the fibers have negligible effect on 

the post-peak behavior. Contrary to some of the micromechanical models which attempt 

to match any volume fraction of fibers in FRC, the model proposed by Park et al. 

provides a simplified model that accounts for the lower volume fraction straight synthetic 

FRC mixtures utilized in rigid pavements.    Further models using a bilinear or trilinear 

simplification may be developed to match other fiber types. 
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APPENDIX B: CONCRETE LABORATORY PROCEDURES 

FOR CASTING FRACTURE SPECIMENS 
 

Mixing Procedure 

The mixing was done with a 2.5 cubic foot pan mixer.  The mixing procedure 

consistently followed this strategy: all aggregates, liquid air entrainment agents (if used), 

and half of the water was mixed for 1 minute; cementitious materials, remaining water 

and water reducers were added followed by 3 minutes of mixing; all material was set to 

rest for 3 minutes; any fibers (if used) were added gradually and 1 more minute of mixing 

took place.  Fresh concrete properties such as slump, unit weight and air content were all 

recorded. 

 

Equipment 

All mixtures of concrete were created using the same mixing and compacting equipment 

to reduce variability.  Steel molds were used to create the TPB, MOR, and shrinkage 

concrete specimens. A total of 4 TPB size steel molds of inner dimensions described in 

Chapter 2 were available.  The external geometry of the beams was always consistent 

between each sample.  Note the TPB specimens had an 80 mm width and thus exhibit 

more material and testing variability, especially when utilizing a 25 mm maximum size 

coarse aggregate or 40 mm long fibers. 

 

Wooden molds were used to cast the concrete for the composite beams onto the asphalt 

sections.  The asphalt sections that were saw-cut to the desired beam dimensions had 

some variability in size from human error in cutting the asphalt beams. 
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Batching 

The number of replicate specimens was important to consider when reporting the 

properties of a material.  In the majority of the properties reported in this thesis, the 

number of replicates was anywhere from 2 to 3 specimens.  Existing testing standards 

recommend 4 specimens to be tested to compute fracture properties.  The small number 

of specimens was chosen due to mixing equipment limitations and to limit the between 

batch variability that would be required for large number of specimen replicates.   

 

In the age effect study in Chapter 3, small volumes (batches) for each mixture were 

created at a time due to the limited capacity of the equipment in the laboratory.  Multiple 

batches were often made of the same mixture design in order to obtain all the samples 

needed for the study.  One problem seen with this process is that each batch could be 

slightly different (moisture contents of the aggregates were not measured for each batch 

prepared; values of moisture levels were assumed to be the same as previous batches 

measured) and even sample preparation such as compaction effort may have varied with 

each batch created.  

 

Saw-cutting 

Notches (for the TPB and composite beam specimens) were cut using a diamond blade on 

a mortar saw.  A technical limitation with the saw used to cut the specimens was that the 

blade often bounced in height while samples were pushed past it and notches were noted 

to vary as ±5 mm based on the speed of the cutting.  In order to reduce variation, samples 

were pushed through the machine by the same person and at roughly the same rate.  This 
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variability in notch depth can impact the effective fracture area ahead of the crack and 

thus impact the calculated fracture properties.  To aid in reducing the variability, sample 

notches were measured after sawing operations to determine the actual notch depth a0 

and this measured value was actually used in the equations for computing the fracture 

area (see Chapter 2 for TPFM testing calculations). 

 

Laboratory Tests 

There are material properties that can be tested for prediction of performance other than 

strength, slump and air content.  Many test methods have been developed – most of these 

have become standardized – to describe different aspects of the concrete performance in 

the field.  Some of the standardized testing methods [2, 22, and 23] are:  

 ASTM C 39 (compressive strength) 

 ASTM C 78 (4-point bending flexural strength) 

 ASTM C 138 (unit weight) 

 ASTM C 143 (slump) 

 ASTM C 157 (shrinkage)  

 ASTM C 231 (air content by the pressure method) 

 ASTM C 496 (split-tensile strength) 

 ASTM C 1018, ASTM C 1609 and JCI-SF4 (flexural and residual strengths for 

FRC) 

 TPFM – RILEM method (3-point bending notched concrete fracture) – See 

Chapter 2  
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For each concrete mixture created, the compressive strength and split tensile strength 

were measured of the hardened concrete.  The elastic modulus was measured for the age-

effect study.  All strength and elastic modulus testing was done on 4 inch diameter, 8 inch 

long cylinders.  Flexure and residual strengths were determined using 6 inch x 6 inch x 

21 inch beams. ASTM standards were used for all of these properties [2].  

 


