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Attraction-repulsion transition in the interaction of adatoms and vacancies in

graphene

S. LeBohec, J. Talbot, and E. G. Mishchenko
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA

The interaction of two resonant impurities in graphene has been predicted to have a long-range
character with weaker repulsion when the two adatoms reside on the same sublattice and stronger
attraction when they are on different sublattices. We reveal that this attraction results from a
single energy level. This opens up a possibility of controlling the sign of the impurity interaction
via the adjustment of the chemical potential. For many randomly distributed impurities (adatoms
or vacancies) this may offer a way to achieve a controlled transition from aggregation to dispersion.

PACS numbers: 73.20.-r, 73.20.Hb, 73.22.Pr

I. INTRODUCTION

Good electric conduction of intrinsic graphene1

presents an obstacle for its use in transistor devices. The
modification of graphene properties in a controllable way
is thus strongly desired, including the possibility of open-
ing a gap. The gapless nature of the graphene spectrum,
however, is protected by the equivalence of the two sub-
lattices. This symmetry can be removed in a number
of ways. Bilayer stacking breaks the equivalence of the
sublattices by virtue of tunneling and allows to open
the gap when an interlayer electric bias is applied2–5.
Other possibilities include breaking the symmetry by the
sublattice potential6, by means of the elastic strain7–12,
making finite-width nanoribbons13–15, or inducing strong
spin-orbital coupling16–18. Another avenue is to utilize
chemical doping with atoms or molecules that add or
remove electrons from the conduction band19–21 or fa-
cilitate strong inter-valley scattering22. Properly under-
standing the consequences of the chemical doping makes
it necessary to study the effective interaction between
the dopants. The latter could create a variety of phases
resulting from adatom ordering23–25 with major conse-
quences for the possible applications. Such interaction is
mediated by conduction electrons and is similar to the
classic Casimir effect26 in which virtual photons are re-
sponsible for the coupling. The honeycomb geometry
of graphene, however, adds new features to this phe-
nomenon.

The dependence of the inter-impurity interaction en-
ergy W (R) in conventional metals displays Friedel os-
cillations with the period given by half the Fermi
wavelength27. The amplitude of the oscillations decays
as 1/rD, where D is the dimensionality of the system28.
In extrinsic graphene, in which the Fermi level is shifted
away from the Dirac points (kF 6= 0) Friedel oscillations
are also present but decay faster than expected in two-
dimensions29, ∝ cos(2kFR)/R3, when averaged over the
sublattices (see also Ref. 30).

Additionally, the gapless character of the band spec-
trum of graphene allows to explore31 the “intrinsic” limit
of kF → 0, which does not have an analog in conventional
metals. When two weak on-site potential impurities of
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FIG. 1: Carbon atoms belonging to different sublattices are
labeled with A and B. Two on-site impurities (dark circles)
are placed on graphene (AB-configuration shown). Periodic
boundary conditions are assumed in the armchair (x) and
zigzag (y) directions. The angle φ is counted from the y-axis.

strength U are present the effective interaction depends
on whether they reside on the same or different sublat-
tices. In the former case the interaction is attractive (the
derivation of Eqs. (1)-(2) is presented in the Appendices),

WAA(R) = − 1

16π

U2A2
0

vR3
cos2θAA, (1)

where v is the graphene Dirac velocity and A0 is the area
of a graphene unit cell. The angle θAA(R) = 2πR

3
√
3a

cosφ

depends on both the length of the radius-vector R and
the angle φ it makes with the zigzag direction, see Fig. 1.
In the case of impurities on different sublattices the in-
teraction is stronger and repulsive,

WAB(R) =
3

16π

U2A2
0

vR3
sin2θAB, (2)

where θAB(R) = 2πR
3
√
3a

cosφ + φ. Eqs. (1) and (2) can be

interpreted in terms of the renormalization of the whole
electron energy band in response to the presence of the
impurities.
At distances R < UA0/v, the first Born approxima-

tion breaks down and the infinite series resummation
taking into account multiple electron scattering off im-
purities has to be performed32. The amplitude of mul-
tiple scattering from a single impurity is given by the
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energy-dependent T -matrix, T (E) = U/[1 − UG(0)],
expressed via the electron Green’s function G(0) =
−EA0

πv2 ln(v/a|E|), a being the interatomic spacing. In
the strong impurity limit, R ≪ UA0/v, the interaction
cancels out of the scattering amplitude. This situation of
a resonant impurity can also be realized with an Ander-
son impurity whose localized level is close to the Dirac
point33. Since the strength U can thus not enter the
expression for the effective energy, by dimension, it can
only be given by the ratio v/R. In particular, when both
impurities reside on the same sublattice34:

WAA(R) =
πv cos2θAA

2R ln2(R/a)
. (3)

Notably, the interaction is repulsive, in contrast to the
weak-U limit, Eq. (1). Similarly, the interaction between
impurities residing on different sublattices also reverses
sign,

WAB(R) = −2v| sin θAB|
R ln (R/a)

+
πv sin2θAB

2R ln2(R/a)
, (4)

The first term in Eq. (4), derived in Ref. 34, dominates
(when ln(R/a) ≫ 1) over the second (repulsive) term,
whose derivation is given in Appendix B. Both WAA and
the second term in WAB can be viewed as the perturba-
tive renormalization of the continuous spectrum to the
lowest order in the effective impurity strength Ueff =
T (E) ∼ v2/[EA0 ln(v/a|E|)] ∼ vR/[A0 ln (R/a)], since
the relevant energies are E ∼ v/R. Substituting this
expression in place of U in Eq. (2), we recover the
right estimate of the effect. This is not surprising since,
as explained above, the actual dimensionless parameter
that controls the effective strength of the impurity is
UeffA0/vR ∼ ln−1 (R/a) ≪ 1.
By contrast, the leading attractive term in Eq. (4) is

non-perturbative. We are now going to demonstrate that
a single impurity level is responsible for this contribution
to WAB, and explain that this understanding leads to the
possibility of controlling the sign of the interaction by
adjusting the chemical potential. The sensitivity of the
interaction between two adatom to the chemical potential
has previously been reported on the basis of numerical
studies35, however, the underlying physical mechanism
of the impurity level formation has not been elucidated
nor has it been shown to extend to the case of many
randomly distributed adatoms as is the subject of this
paper.

II. ENERGY LEVELS OF TWO IMPURITIES

We consider a tight-binding model of π-electrons in
graphene interacting with two on-site potential impuri-
ties positioned at r = 0 and r = R, see Fig. 1,

Ĥ = t
∑

rA

∑

i=1,2,3

â†(rA)b̂(rA + ai) + h.c.

+Uâ†(0)â(0) + Ub̂†(R)b̂(R). (5)

The operators â†(b̂†) create electrons on the correspond-
ing sites of the sublattice A(B); the vectors ai connect A-
atoms with their three nearest B-neighbors. The Hamil-
tonian (5) is written for the case of the second impu-
rity residing on the sublattice B (otherwise the opera-

tors b̂ have to be replaced with â in the last term). From
the Hamiltonian (5) in the Fourier representation with

â(rA) =
√

2
N

∑

k â(k)e
ikrA−iEt, we find the following

equations of motion for the electron operators,

Eâ(k) = t(k)b̂(k) +
2U

N

∑

k′

â(k′), (6)

Eb̂(k) = t∗(k)â(k) +
2U

N

∑

k′

b̂(k′)ei(k
′−k)R, (7)

where t(k) = t
∑

i e
ikai and N is the total number of car-

bon atoms. The solution of these equations is straight-
forward and yields the following condition for the energy
spectrum of the two-impurity AB-configuration,

[

1−U
∑

k

A(k, 0)
]2

= U2
∑

k

B(k,R)
∑

k′

B(−k′,R), (8)

where
{

A(k,R)
B(k,R)

}

=
2

N

e−ikR

(E + iη)2 − |t(k)|2
{

E
t(k)

}

,

Similarly, for the AA-configuration,

[

1−U
∑

k

A(k, 0)
]2

= U2
∑

k

A(k,R)
∑

k′

A(−k′,R). (9)

The integrals over the quasimomentum k are taken over
the hexagonal Brillouin zone. In the low energy sector
only the vicinities of the two Dirac points determined
from the condition t(K±) = 0: K± = 2π

3a (1,±1/
√
3) are

important. Up to an irrelevant common phase factor,
t(k) ≈ v(qx ± iqy), where q = k−K±.
AB-configuration. Performing the integrals in Eq. (8)

we obtain the dispersion equation in the form,

(

1 +
UA0E

πv2

[

ln |t/E|+ iπ/2
]

)2

= −U2A2
0

4v4

× sin2 θABE
2

[

H
(1)
1

(

ER

v

)]2

, (10)

where A0 = 3
√
3a2/2 is the area of a unit cell. In the

logarithmic approximation, the Hankel function can be

replaced with its value for small arguments, H
(1)
1 (x) ≈

−2i/(πx), yielding the impurity levels,

EAB =
(±U − Uc)v| sin θAB|
UR[ln (R/a) + iπ/2]

, Uc =
πvR

A0| sin θAB|
. (11)

Due to the overlap with the continuum of propagating
states the levels have finite width, which is small by
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ln−1 (R/a) ≪ 1. Above the “critical” value Uc the higher
of the two levels crosses over the Fermi level µ = 0 and
becomes depopulated. In the limit of U ≫ Uc the two
levels become symmetric with respect to E = 0. When
the chemical potential is µ = 0, the energy of the lower
(filled) level exactly reproduces the leading attraction
term in Eq. (4), if spin degeneracy is taken into account.
It is this “Dirac point crossing” that is responsible for
the attraction in AB case, see Fig. 2 (left).

AB

µ=0

N ~A

µ=0

N  = N v
R

v
Rln(R/a)−

AA

i
a) b)

v
Rln(R/a)

e

FIG. 2: The energy spectrum of graphene with resonant im-
purities. a) Two impurities: in the AB-configuration a single-

impurity level is split into two, ± v| sin θAB |
R ln (R/a)

. For a fixed chemi-

cal potential µ = 0, the upper level is empty, while the depen-
dence of the lower level on the inter-impurity distance repro-
duces the attraction term in Eq. (4); in the AA-configuration
both the splitting and the energies are negligible, the impu-
rity levels stay on the same side of the Dirac point (below the
chemical potential for U > 0). The interaction comes from
the renormalization of the energies of propagating states and
is repulsive, Eq. (3). b) When the number of impurities Ni

scales with the size A of the system the sign of the interac-
tion can change: when µ = 0 the attraction from the negative
energy states dominates; if the number of electrons is fixed in-
stead, Ne = N , the states up to the chemical potential ∼ v/R
are populated, thus negating the effects of the negative energy
states and leading to the repulsion due to the renormalization
of the propagating states.

AA-configuration. The purely repulsive character of
the interaction of two impurities residing on the same
sublattice can be traced to a completely different behav-
ior of the impurity levels. Calculating the integral in the
right hand side of Eq. (9), we obtain an equation simi-

lar to Eq. (10) with the following changes: H
(1)
1 → H

(1)
0

and sin θAB → cos θAA. Since H
(1)
0 is only logarithmically

divergent at small arguments, the solutions with E = 0
are absent. This means that no impurity state can cross
the Dirac point. For large values of U ≫ t, both values
are very close to the E = 0 level, EAA ∼ −t2/U ln (t/U),
and contribute negligibly to the total energy of the sys-
tem, as illustrated in Fig. 2 (center). The interaction
energy in the strong-U limit, thus, is entirely due to the
renormalization of the band spectrum, Eq. (3).

III. ATTRACTION-REPULSION TRANSITION

A. Two AB impurities

The chemical potential µ can be controlled by means
of electrostatics via leads and/or gates. Decreasing µ
below the energy of the lower impurity state, Eq. (11),
or increasing it above the upper level (so that both lev-
els are empty or populated) would negate the effects of
the impurity levels and lead to the disappearance of the
attractive contribution in Eq. (4) rendering the residual
interaction repulsive. Let us emphasize that this sign re-
versal is different from the Friedel oscillations in a doped
graphene. The latter develop when kFR ∼ 1 while in
our case significantly lower changes in the chemical po-
tential are needed, kFR ∼ ln−1(R/a) ≪ 1. We are now
going to show that this effect survives when the number
of impurities scales with the size of the system.

B. Many randomly distributed impurities

When impurities with finite density Ni/A are ran-
domly distributed in the system, the stronger attraction
from AB pairs dominates over the weaker repulsion of
AA and BB pairs34. Our numerical findings also support
this for µ = 0, but with increasing µ, the transition to
the repulsive regime occurs, similarly to the two-impurity
case. In particular, we considered rectangular graphene
samples described by the Hamiltonian (5) with nx × ny

atoms, and36 U = 100t. Periodic boundary conditions
are imposed along both armchair (x) and zigzag (y) di-
rections. The energy spectrum of the sample is found
by the exact diagonalization of the Hamiltonian and the
sum over all filled states is then taken to give the total
energy ENi

in the presence of Ni impurities. The inter-
action energy WNi

is obtained by subtracting the energy
of independent impurities,

WNi
= ENi

− E0 −Ni (E1 − E0) . (12)

The definition (12) is different from that of Ref. 34, where
the term linear in Ni was allowed to be an adjustable
fitting parameter.
While we are in a qualitative agreement with Ref.34 in

case of µ = 0, our numerical results differ significantly
from those reported in Ref. 34 when the number of elec-
trons Ne corresponds to µ 6= 0. Most notably, we obtain
that the sign of WNi

can be reversed if the chemical po-
tential is set sufficiently high, see Fig. 3. This would
occur, for example, if the impurities were placed on an
isolated sheet of graphene so that Ne is kept equal to
the total number of carbon sites N . The sign reversal
can be explained with the help of the same “Dirac point
crossing” picture illustrated in Fig. 2. When Ni resonant
impurities are spread over the system, the same num-
ber of low-energy levels are created. Since impurities are
distributed randomly and uniformly over A and B sites,
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two phenomena occur simultaneously: “AA-type” accu-
mulation just below E = 0 within a narrow energy range
∝ U−1, and the formation of the “AB-type” impurity
bands on both sides of E = 0. The number of states
that cross the E = 0 level is αNi, with (1− 2α)Ni levels
accumulated near E = 0 (for small concentrations Ni/A,
we observe that α ≈ 0.43). We stress that the attraction
of the impurities (WNi

< 0) is solely due to the fact that
those states that crossed the Dirac point remain unfilled
when µ = 0.
To the contrary, if, for example, the number of elec-

trons is kept fixed instead (Ne = N), exactly αNi levels
with positive energies have to be occupied. Occupation
of each impurity state is detrimental to the attraction.
Not all of the impurity states, however, are going to be
occupied as other (propagating) states of similar energies
“compete” for the same 2αNi electrons (taking into ac-
count spin degeneracy). Nevertheless, it is easy to see
that, in the logarithmic approximation, ln (R/a) ≫ 1,
most of the impurity states will be occupied. Indeed, one
would require the linear band to be filled up to the en-

ergy ∼ v
√

αNi

A to accommodate 2αNi electrons. On the

other hand, the characteristic energy scale of the impu-

rity band is smaller, v
R ln−1 (R/a) ∼ v ln−1 (R/a)

√

Ni

A .

In other words, the mean level spacing in the impurity
band is logarithmically smaller than the level spacing of
the propagating states, resulting in the large fraction of
the former being populated when Ne is made equal to the
number of carbon sites N or exceed it, which is the case
when µ is increased further. Fig. 3 provides a numerical
confirmation of these semi-qualitative arguments. Ad-
ditionally, we numerically observe that the ratio of the
number of electrons that need to be removed from the
π-band to the total number of impurity atoms to reach
the attraction to repulsion transition is ∼ 15% rather in-
dependently from the concentration of impurities in the
range from 5% to 35%.

C. Vacancies

Another realization of a resonant impurity limit is the
case of a missing carbon atom. We observe numerically
that modeling such vacancies in terms of zero hoppings
to/from the neighboring sites gives results that are very
close to the model of a strong on-site potential U . An-
other difference is that in a neutral graphene with Ni va-
cancies Ni electrons are missing from the π-band. Since
the number of states “escaped” through the Dirac point is
2αNi (twice the number of levels), which is somewhat less
than Ni, the chemical potential of the neutral graphene
with vacancies is negative (but close to E = 0), resulting
in the attraction of vacancies. This is opposite to the
sign of the interaction in a neutral sample with potential
impurities (where Ne = N). Still, when the interaction
is studied as a function of the chemical potential the two
cases yield virtually indistinguishable results. For this

FIG. 3: The interaction energy WNi
/N per site as a

function of the impurity density Ni/N on a torus-wrapped
(N = 48 × 82) graphene lattice. The lower curve represents
the fixed chemical potential, µ = 0, case. The middle curve
corresponds to Ne = N (number of electrons fixed at doping)
and the top one stands for one extra electron per impurity,
Ne = N +Ni. Each point represent the average of 20 numer-
ical experiments. The standard deviation is smaller than the
points.

reason datasets for vacancies are not shown in Fig. 3.

IV. SUMMARY

The interaction of resonant impurities in graphene dis-
plays a transition in their net interaction from attraction
to repulsion depending on the chemical potential. This
phenomenon is traced to the existence of impurity lev-
els with energies E ∼ ±v/R that appear when impuri-
ties reside on the opposite sublattices. Asymmetric fill-
ing of such states, which occurs for a chemical potential
close to the Dirac point E = 0, favors attraction. With
the change of the chemical potential the interaction be-
comes repulsive as the continuum of propagating states
dominates. This mechanism suggests the possibility of
a transition from aggregation of adatoms to their dis-
persion, which could be advantageous for graphene func-
tionalization. In particular, the possibility of control-
ling the conduction properties of graphene can be envis-
aged, with the metallic phase realized when gap-opening
adatoms are aggregated in a small area of a graphene de-
vice and the semiconducting state occurring when they
are spread uniformly across its entire extent. Similarly, a
“nanobreaker” could be realized with the help of vacan-
cies, whose aggregation will result in the loss of mechan-
ical stability of the graphene sheet.
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Appendix A: Interaction energy of two on-site

impurities

It is convenient to express the interaction energyW (R)
of two on-site impurities placed a distance R away from
each other via the electron Green’s function (found in
Appendix B). We start with the Hamiltonian of the two
impurities:

H = t
∑

r

∑

i=1,2,3

ĉ†(r)ĉ(r+ai)+Uĉ†(0)ĉ(0)+Uĉ†(R)c(R).

(A1)
Here ĉ(r) = â(r) when r belongs to sublattice A and

ĉ(r) = b̂(r) when it belongs to B. The summation over r
in Eq. (A1) is taken over both sublattices, in order to cast
the Hamiltonian (5) in a more compact form. The inter-
action energy is most simply found from the following
identity37,

∂W

∂U
=

〈

∂H

∂U

〉

= −iG(0, 0, t = −0)− iG(R,R, t = −0).

(A2)
Here Green’s function is determined in the usual way,

G(r, r′, t) = −i〈T ĉ(r, t)ĉ†(r′, 0)〉. (A3)

The interaction energy is therefore

W (R) = −2i

U
∫

0

dU
[

G(0, 0, t = −0) + G(R,R, t = −0)
]

,

(A4)
here the factor 2 takes into account spin degeneracy. The
problem is thus reduced to finding the Green’s function
in the presence of two impurities.

Appendix B: Green’s function of the two-impurity

problem

From the equations of motion for the electron operators
i∂ĉ(r, t)/∂t = [ĉ(r, t), H ] the equation for the Green’s

function ĜE(r, r
′) in the energy representation is found:

EGE(r, r
′)− t

∑

i

GE(r+ ai, r
′)− Uδr,0GE(0, r

′)

−Uδr,RGE(R, r′) = δr,r′ . (B1)

We look for a solution of Eq. (B1) in the form,

GE(r, r
′) = GE(r, r

′) +GE(r, 0)A(r
′) +GE(r,R)B(r′),

(B2)
where GE(r, r

′) is the Green’s function of the free elec-
trons in graphene. Substituting Eq. (B2) into the equa-
tion (B1) we find two equations for the functions A(r)
and B(r),

A(r′)− TEGE(0,R)B(r′) = TEGE(0, r
′),

−TEGE(R, 0)A(r′) +B(r′) = TEGE(R, r′), (B3)

here the TE-matrix is introduced,

TE =
U

1− UGE(0, 0)
. (B4)

Solutions of Eqs. (B3) are (argument E dropped for
brevity)

A(r′) = T
G(0, r′) + TG(0,R)G(R, r′)

1− T 2G(0,R)G(R, 0)

B(r′) = T
G(R, r′) + TG(R, 0)G(0, r′)

1− T 2G(0,R)G(R, 0)
. (B5)

Substituting these expressions into Eq. (B2), we obtain

G(0, 0) + G(R,R) = 2G(0, 0) +
2T [G2(0, 0) +G(R, 0)G(0,R)] + 4T 2G(0, 0)G(R, 0)G(0,R)

1− T 2G(0,R)G(R, 0)
. (B6)

It is now convenient to express TE back via U . After sim-
ple algebra, we find that the right-hand side of Eq. (B6)
is equal to

− d

dU
ln
(

[1− UG(0)]2 − U2G(R, 0)G(0,R)
)

.

Finally, substituting this into (A4), subtracting the same
expression when the two impurities are far away from

each other, R → ∞, we obtain

W (R) = 2i

∞
∫

−∞

dE

2π
ln
(

1− T 2
EGE(R, 0)GE(0,R)

)

.

(B7)
It is now convenient to make use of the fact that the
time-ordered Green’s functions do not have singularities
in the first and third quadrants of the complex E-plane,
and rotate the integration path counterclockwise by the
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angle π/2 so that it coincides with the imaginary axis,
E = iω. As a result we obtain,

W (R) = −2

∞
∫

−∞

dω

2π
ln
(

1− T 2(iω)Giω(R, 0)Giω(0,R)
)

.

(B8)

a = a(−1,0)

a = a(1/2,  3/2)

a = a(1/2, −  3/2)3
1

2

K

K

+

−

FIG. 4: Graphene lattice and the first Brillouin zone, K± =
2π
3a

(1,±1/
√
3).

The calculation of the interaction energy is now re-
duced to finding the free electron’s Green’s functions.
The same-sublattice Green’s function,

G(rA, r
′
A, t) = −i〈T â(rA, t)â†(r′A, 0)〉, (B9)

is found with the help of the Fourier representation,

â(rA, t) =

√

2

N

∑

k

∑

β=±1

â(k)eikrA−iβ|t(k)|t, (B10)

where β = 1 stands for the states above the Dirac points
and β = −1 for the states below them. With N being the
number of carbon atoms in the system, the total number
of different quasimomenta states is N/2. The summa-
tion is taken over the hexagonal Brillouin zone. From
Eqs. (B9) and (B10) we find,

Giω(rA, r
′
A) = −A0

∫

d2k

(2π)2
eik(rA−r′

A
) iω

ω2 + |t(k)|2 ,
(B11)

where A0 is the area of a unit cell in a honeycomb lattice

(note that 2
N

∑

k is replaced with A0

∫

d2k
(2π)2 ). For large

distances |rA − r′A| ≫ a only the vicinities of the two
Dirac points are important, k = K± + q, determined
from the condition t(K±) = 0: K± = 2π

3a (1,±1/
√
3). We

thus obtain,

Giω(rA, r
′
A) = −iωA0

(

eiK+(rA−r′
A
) + eiK−(rA−r′

A
)
)

×
∫

d2q

(2π)2
eiq(rA−r′

A
)

ω2 + v2q2

= − iωA0

2πv2

(

eiK+(rA−r′
A
) + eiK−(rA−r′

A
)
)

×K0

( |ω||rA − r′A|
v

)

. (B12)

Obviously, the Green’s function Giω(rB , r
′
B) is given by

the same expression. In particular, for coinciding points,

Giω(0, 0) = − iωA0

πv2
ln

(

t

|ω|

)

. (B13)

To find the function G(rB , r
′
A, t) =

−i〈T b̂(rB , t)â†(r′A, 0)〉, we use the identity

b̂(k) = β t∗(k)
|t(k)| â(k), see Eqs. (5-6) of the paper,

which give

b̂(rB , t) =

√

2

N

∑

k

∑

β=±1

β
t∗(k)

|t(k)| â(k)e
ikrB−iβ|t(k)|t.

(B14)
As a result we arrive at

Giω(rB , r
′
A) = −A0

∫

d2k

(2π)2
eik(rB−r′

A
) t∗(k)

ω2 + |t(k)|2 .
(B15)

Given the choice of the vectors ai as shown in the Fig. 4,
t(k) = t

∑

i e
ikai = t[e−ikxa + 2eikxa/2 cos (

√
3kya/2)].

Again expanding near the two Dirac points, t(k) =
t(K± + q) ≈ ieiπ/3v(qx ± iqy). Upon taking the d2q
integral we obtain,

Giω(rB , r
′
A) = −eiπ/6A0

(

eiK+(rB−r′
A
)+iφ − eiK−(rB−r′

A
)−iφ

)

∞
∫

0

q2dq

2π

vJ1(q|rB − r′A|)
ω2 + v2q2

= −eiπ/6
|ω|A0

2πv2

(

eiK+(rB−r′
A
)+iφ − eiK−(rB−r′

A
)−iφ

)

K1

( |ω||rB − r′A|
v

)

, (B16)

where the angle φ is the one vector r − r′ makes with
the y-axis (zigzag direction). Similarly for G(rA, r

′
B , t) =

−i〈T â(rA, t)b̂†(r′B , 0)〉 we obtain,

Giω(rA, r
′
B) = −A0

∫

d2k

(2π)2
eik(rA−r′

B
) t(k)

ω2 + |t(k)|2

=
(

eiK+(rA−r′
B
)−iφ − eiK−(rA−r′

B
)+iφ

)

×e−iπ/6 |ω|A0
K1

( |ω||rA − r′B|
)

. (B17)
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Appendix C: AA-configuration of two impurities

When both impurities are residing on the same sublat-
tice, using Eq. (B12) we find that the interaction energy
is given by

WAA(R) = −2

∞
∫

−∞

dω

2π
ln
(

1− T 2
iωGiω(R, 0)Giω(0,R)

)

= −2

∞
∫

−∞

dω

2π
ln

(

1 + T 2
iω

ω2A2
0

π2v4
K2

0 (|ω|R/v) cos2 θAA

)

,(C1)

where the T -matrix is written with the help of Eqs. (B4)
and (B13) as

Tiω =
U

1 + iωUA0

πv2 ln
(

t
|ω|

) . (C2)

In the weak impurity limit UA0 ≪ vR the difference
between the T -matrix and U is negligible. Furthermore
the logarithm in Eq. (C1) can be expanded yielding the
perturbative expression, Eq. (1),

WAA(R) = −U2A2
0

π2v4
cos2 θAA

∞
∫

−∞

dωω2K2
0

( |ω|R
v

)

= − 1

16π

U2A2
0

vR3
cos2θAA. (C3)

In the strong impurity limit UA0 ≪ vR the T -matrix is
independent of U ,

Tiω =
−iπv2

ωA0 ln
(

t
|ω|

) . (C4)

The leading contribution to the frequency integral still
comes from |ω| ∼ v/R where K0 ∼ 1. Provided that
ln(R/a) ≫ 1 the expansion to the lowest order in Tiω

remains legitimate and we obtain Eq. (3),

WAA(R) = − cos2 θAA

ln2 (R/a)

∞
∫

−∞

dω

π
K2

0

( |ω|R
v

)

=
πv cos2θAA

2R ln2(R/a)
.

(C5)

Appendix D: AB-configuration of two impurities

When both impurities are residing on the same sublat-
tice, using Eq. (B12) we find that the interaction energy
is given by

WAB (R) = −2

∞
∫

−∞

dω

2π
ln
(

1− T 2
iωGiω(R, 0)Giω(0,R)

)

=

−2

∞
∫

−∞

dω

2π
ln

(

1− T 2
iω

ω2A2
0

π2v4
K2

1 (|ω|R/v) sin2 θAB

)

. (D1)

In the week impurity limit (Eq. (2) of the paper),

WAB (R) =
U2A2

0

πv4
sin2 θAB

∞
∫

−∞

dωω2K2
1

( |ω|R
v

)

=
3

16π

U2A2
0

vR3
sin2 θAB . (D2)

In the strong impurity limit

WAB (R) = −2

∞
∫

−∞

dω

2π
ln

(

1 +
K2

1 (|ω|R/v) sin2 θAB

ln2(R/a)

)

= − 2v

πR

∞
∫

0

dy ln [1 + z2K2
1 (y)], (D3)

where z = | sin θAB |/ ln(R/a) ≪ 1. In the last integral
we can write,

∞
∫

0

dy ln
(

1 + z2K2
1 (y)

)

=

∞
∫

0

dy ln

(

1 +
z2

y2

)

+

∞
∫

0

dy ln

(

1 + z2K2
1 (y)

1 + z2/y2

)

. (D4)

The first integral in the last expression originates from
y ∼ z ≪ 1 and is equal to πz. In the second integral, the
main contribution comes from y ∼ 1, since the leading
singularity has been subtracted. Thus, for z ≪ 1 the
logarithms can now we expanded to the linear order in
z2 to give

∞
∫

0

dy ln

(

1 + z2K2
1(y)

1 + z2/y2

)

= z2
∞
∫

0

dy [K2
1 (y)−1/y2] = −π2z2

4
.

(D5)
as a result,

WAB (R) = − 2v

πR

∞
∫

0

dy ln [1 + z2K2
1 (y)]

= − 2v

πR

(

πz − π2z2

4
+O(z3)

)

, (D6)

which reproduces Eq. (4).



8

1 A. H. Castro Neto, F. Guinea, N. M. R. Peres,
K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81,
109 (2009)

2 V. V. Cheianov and V. I. Fal’ko, Phys. Rev. Lett. 97,
226801 (2006).

3 A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake,
and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).

4 Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A.
Zettl, M.F. Crommie, Y. R. Shen, and F. Wang, Nature
459, 820 (2009).

5 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys.
Rev. Lett. 102, 256405 (2009).

6 G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly,
and J. van den Brink, Phys. Rev. B 76, 073103 (2007).

7 Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, and
Z. X. Shen, ACS Nano 2, 1033 (2008).

8 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and
Z. X. Shen, ACS Nano 2, 2301 (2008).

9 P. Shemella and S. K. Nayak, Appl. Phys. Lett. 94, 032101
(2009).

10 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K.
S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong,
Nature (London) 457, 706 (2009).

11 V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres,
Phys. Rev. B 80, 045401 (2009).

12 G. Cocco, E. Cadelano, and L. Colombo, Phys. Rev. B 81,
241412(R) (2010).

13 M. Ezawa, Phys. Rev. B 73, 045432 (2006).
14 Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett.

97, 216803 (2006).
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