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Abstract

Three-dimensional model-based computer vision uses geometric models of objects and
sensed data to recognize objects in a scene. Likewise, Computer Aided Design (CAD) sys-
tems are used to interactively generate three-dimensional models during the design process.
Despite this similarity, there has been a dichotomy between these fields. Recently, the
unification of CAD and vision systems has become the focus of research in the context of
manufacturing automation.

This paper explores the connection between CAD and computer vision. A method for the
automatic generation of recognition strategies based on the geometric properties of shape has
been devised and implemented. This uses a novel technique developed for quantifying the
following properties of features which compose models used in computer vision: robustness,
completeness, consistency, cost, and uniqueness. By utilizing this information, the auto-
matic synthesis of a specialized recognition scheme, called a Strategy Tree, is accomplished.
Strategy Trees describe, in a systematic and robust manner, the search process used for
recognition and localization of particular objects in the given scene. They consist of selected
features which satisfy system constraints and Corroborating Evidence Subtrees which are
used in the formation of hypotheses. Verification techniques, used to substantiate or refute
these hypotheses, are explored. Experiments utilizing 3-D data are presented.

1 Introduction

Recently, the pursuit of the fully automated assembly environment has fueled interest in model-
based computer vision and object manipulation. This involves building a 3-D model of the
°bject, matching the sensed environment with the known world and determining the position
and orientation of the recognized objects. The goal is to provide a solution to the problem of
visual recognition in a well-known, thus constrained, domain. This is in sharp contrast to the
more general problem of attempting to reproduce an anthropomorphic vision system.

In the automation environment, recognition schemes and representations have typically been
constructed using ad hoc techniques. Although objects used in the assembly process are designed
with a CAD system, generally there is no direct link from the CAD system to the robotic
workcell. This means the recognition systems are constructed independently of the CAD model
database. What is desired is a systematic approach for both the generation of representations
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Figure 1. Integrated Automation Environment

and recognition strategies based on the CAD models. Such a system provides an integrated
automation environment. Figure 1 shows how we view such an integrated system. As can
be seen, the system is composed of several components: a CAD system, a milling system, a
recognition system and a manipulation system. In this paper, we will focus on the automatic
generation of recognition strategies based on the CAD model. It has also been determined that
the use of shape, inherent in CAD models, can also be used to drive the recognition process.
Others have been studying portions of this system. Recent work by Ho has focused on the
generation of computer vision models directly from a CAD model! 1,21,

In this paper, we describe how our system automatically constructs an optimized search
strategy called a strategy trees. These trees provide a robust mechanism for recognition and
localization of three dimensional objects (occluded as well as non-occluded) in typical manufac-
turing scenes. The run time matching of 3-D models to a scene can be expensive. If the search
technique is optimized, cost can be decreased, thereby improving run time performance. One
way to accomplish such optimization is by the off line examination and evaluation of the 3-D
model leading to the generation of a recognition strategy.

1.1 Related Work

Research toward the automatic synthesis of general recognition strategies has been pursued
for the past several years. Goad designed a system which was concerned with automatic pro-
gramming for 3-D model based vision '3;. His work generated a recognition scheme for matching
edges based on a general sequential matching algorithm. His algorithm proceeded in three steps:
(1) predict a feature, (2) observe (match) a feature, and (3) back-project (refine the object hy-
pothesis based on step 2). These three steps form a template which was used by an automatic
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rOgramming phase. He used a unit sphere to gather loci of viewangies (camera positions) which
represent orientations of the object. His work differs from that described here in that he obtained
o,D interpretations of 2-D intensity images rather than 3-D sensor data. The only features used
were straight edges from intensity images and the search trees were generated from a template
and ordered by hand rather than automatically. His system didn’t consider partial occlusion,
f-jowever, this was a major contribution since it was one of the first attempts to automate the
veneration of recognition schemes.

° Another very influential project in this area was the 3DPO system by Bolles and Horaud”"T.
-phis work is the 3-D generalization of the Local Feature Focus method 5. Their system an-
notates a CAD model producing what is called the extended CAD model. From this model,
feature analysis is performed to determine unique features from which to base hypotheses. The
focus feature in their system is the dihedral arc. When the recognition system finds a dihedral
arc it looks for nearby features which are used to discriminate between model arcs with similar
attributes. From these, an object’s pose is hypothesized and subsequently verified. The work
here work closely parallels the 3DPO system. However, focus features were hand chosen in
3DPO as were the local features used for discrimination.

Recently, Ikeuchi has explored the use of interpretation trees for representation of recognition
strategies”!. His system uses the concept of visible faces to generate generic representative view's,
called aspects. From this set of aspects, an interpretation tree is formed which discriminates
among the different aspects. His system uses a variety of object features such as: EGI. face
inertia, adjacency information, face shape, and surface characteristics. Most of these features are
based on planar faces. A very specific interpretation tree is generated for an object using a set of
object specific rules. The rules were selected by hand rather than generated automatically. There
doesn’t appear to be any algorithmic approach for the application of the rules to discriminate
between the aspects. The branching on the tree seems to be a function of the particular aspects
chosen rather than being based on the geometric information in the model.

Others have studied the use of interpretation trees as a general solution to the problem
of object recognition!?.8l. An interpretation tree provides a general matching strategy where
every detected feature is matched to every possible feature in a model constrained by geometric
relationships. These trees provide a bottom-up approach to object recognition since they take
observed features for the scene and attempt to match these against a model. They do not
provide a strategy for detecting features since every model feature can possibly occur at every
level in the tree (subject to the constraints of course).

The system developed in this paper incorporates ideas from all of the systems described
above. However, our system isn’t dependent on a certain class of features but rather can be
extended to include many classes of features not implemented at this time. The system also
performs automatic selection of features based on a set of constraints: feature filters. These
features are used to form a strategy tree which provides a scheme for hypothesis formation,
corroborating evidence gathering and object verification. The flexibility of this approach makes
it significantly different from related work.

Our main goal of is the automatic synthesis of recognition system specifications for CAD-
based 3-Dimensional computer vision:9j. Given a CAD model of an object, a specific, tailor-made
system to recognize and locate the object is synthesized.

To attain this goal, the following problems have been solved:

1. Intermediate Representation: The use of geometric data is central to a strong recog-
nition paradigm. Weak methods can only be avoided when better information is available.
The Alpha-1 B-spline model allows the modeling of freeform sculptured surfaces. However,
CAD models typically do not contain the explicit information needed for recognition. To
obtain the geometric features of interest for 3-D recognition, techniques for the transfor-
mation from the CAD model to a computer vision representation have been developed.
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2. Automatic Feature Selection: The part to be recognized or manipulated must be
examined for significant features which can be reliably detected and which constrain th*
object’s pose as much as possible. Moreover, such a set of features must cover the object
from any possible viewing angle. In solving the feature selection problem, a technique is
available for synthesizing recognition systems. This produces much more efficient, robust
reliable and comprehensible systems.

3. Strategy Tree Synthesis: Once a robust, complete and consistent set of features has
been selected, a search strategy is automatically generated. Such a strategy takes into
account the strongest features and how their presence in a scene constrains the remaining
search. The features and the corresponding detection algorithms are welded, as optimally
as possible, into a search process for object identification and pose determination. The au-
tomatic synthesis of search strategies is a great step forward toward the goal of automated
manufacturing. Generation of strategies is constrained, not only by the feature selection
process but, by the actual task to be accomplished. Thus, strategies for a specific task
might not be as strong when applied to a different task; strategies are task specific.

The remainder of this paper explains how these three components can be exploited to au-
tomate the process of selecting proper features and recognition schemes for specific goals. Al-
gorithms are described which were developed for feature selection and which give supporting
evidence for their formulation. Lastly, strategy trees are defined, their use in specific domains
is explained, and a technique for the automatic generation of these search trees is given.

2 Intermediate Representation

Computer vision utilizes object models in a different manner than computer graphics or CAD
models. In CAD, the models must contain information about the 3-D object for rendering,
performing finite element analysis, milling and other processes. Computer vision is concerned
with recognition of the objects frpm sensory data. CAD models must contain information for
the local design operations such as what shape to extrude or what is the profile curve for a sweep
operation. Features used in construction of models are implicitly rather than explicitly used in
the CAD representation. For example, a dihedral edge formed from two adjoining surfaces isn’t
modeled as an edge per se but as two surfaces with adjacency information.

With computer vision models, the ability to index into an object model for the purpose of
recognition is needed. For example, if a 30 degree dihedral edge of length 4 inches is detected
in a scene, it is necessary to determine which 30 degree dihedral it matches in the model.
One approach is to index into the model and extract all 30 degree dihedral edges with similar
attributes (length, adjacent faces, etc.). Some way to represent this information is required.

In a previous paper, we have described how a set of intrinsic features can provide such a
transformation! 10]. The system we describe is not limited to a specific type of representation.
Rather, all that is needed is a method for extracting the pertinent features to be evaluated and
possibly used in the recognition process. In the experimental system developed here, a modified
winged-edge modeljlll is used as the interface between CAD and vision, where relationships
between features are explicit m the model. It is extended for inclusion of non-planar surfaces.
In addition to special mechanisms for matching, access to the geometric relationships of the
object is required for the automatic generation of strategy trees. From this modified winged-edge
description, an index on feature attributes can be generated which can quickly and efficiently
access the geometric knowledge contained in the model. The edge and surface information
used in the aspect computation, provides additional geometric information. In this case, it is
necessary to know which edges or surfaces are self-occluded by the object from a particular
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viewpoint. When not fully visible, the knowledge of the extent of occlusion can be used in
determining the potential of the feature for use in the matching process.

3 Automatic Feature Selection

Several kinds of knowledge are required for feature selection. Geometric information permits the
selection of a complete and consistent set of features, while knowledge about sensors provides
information on the robustness and reliability with which such features can be extracted. On the
other hand, domain specific information about the task can be used to select feature extraction
algorithms based on their complexity, robustness, etc.

Object recognition techniques are based for the most part on geometric features of the
objects to be recognized. This includes corners, edges and planar faces for polyhedra, as well
as points, arcs of distinct curvature and regions of constant curvature for sculptured surface
or other non-polyhedral objects. Other features such as axes of inertia, profile curves, surface
texture properties, reflectance, etc. can also be used. Another area of current research in CAD
systems is the possibility of designing by feature, which could include process knowledge. Such
capabilities would facilitate the feature selection process for object recognition.

Conceptually, the feature selection process can be viewed as a set of filters applied to the
complete original set of features of an object (see Figure 2). However, it should be pointed out
that in some cases these filters only rank features rather than eliminating them.- This becomes
important as we generate a recognition strategy based on the feature selection process. Filters
select and rank features; order of application is important. Conceptually, the filters remove
features from the input, in order of application, which do not meet the filter’s criteria. The goal
here is to automate and optimize this filtering process. The filters select features based on the
following qualities (not necessarily in this order):

e complete - does set of features cover all possible views of the object.

* rare - histogram the features; rare features are useful for quickly identifying the object;
these features make good root nodes in a search tree.

e robust - measure of how well the features can be detected; error and reliability.
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e cost - measure of complexity (space and time) for computing feature.

e consistency - how completely does feature characterize object pose: (i.e., how many
DOFs are unresolved); how well does the feature differentiate between objects; measure of
likelihood of correctly identifying the object.

3.1 Rare Features

The first filter in the feature selection phase is used to determine the uniqueness or commonality
of features. This can be tuned to filter out either common features or unique features. Model
features are histogrammed according to occurrences. This occurrence histogram can be used to
select those features which rarely or often occur depending on the system needs.

3.2 Robust Features

There are two types of feature robustness a system can quantify: the robustness of a feature
itself and the robustness of the extraction techniques which are applied to obtain the feature.
Furthermore, features should be dependable with respect to artifacts in the scene. For example,
concave dihedral edges can occur whenever a polyhedron is placed upon another polyhedron;
moreover, this is likely to occur due to occlusion in a polyhedral scene. On the other hand, the
likelihood of a convex edge being formed as an artifact of occlusion is very low. The knowledge
of such robustness, or lack thereof, can be incorporated into the Robust Feature filter.

3.3 Cost of Features

The expense of feature computation can by divided into two classifications: time and space.
However, time is usually the more critical element. Thus, in the experiments the cost in time
of feature computations is of greatest concern. The amount of time for feature calculation is
determined by both the algorithms which are available and the hardware at hand. Certain
feature computations can occur at the hardware level making those features more attractive
(faster) to obtain. In addition to the possibility of specialized hardware, there is a trade off
between speed and reliability of feature detection algorithms. Such knowledge needs to be
utilized in this filter.

3.4 Complete Features

Three dimensional models define the entire object, yet, during scene analysis only a single
view is available, or possibly multiple views, but not a complete view. How then, can the
model be matched with the sensed data from the scene? Unless special fixturmg is used in the
manufacturing environment, we must assume that the pose of the object m the scene is unknown.
In the past, researchers have addressed this problem with stable pose analysis of both vision
models and CAD models. Stable pose is a good approach if one can guarantee that parts will
not be touching or overlapping (i.e. bin-picking configurations). In practice, this is generally
not the case.

One solution is the use of aspect graphs. An aspect graph is a representation of an object's
topology; thus it captures all viewpoints of an object[12]. The aspect is the topological appear-
ance of the object from a particular viewpoint. Slight changes in the viewpoint change the size of
features, edges and faces, but do not cause them to appear or disappear. When a slight change
in viewpoint causes a feature to appear or disappear, an event takes place. An aspect graph, or
visual potential graph, is formed by representing aspects as nodes and events between aspects
as paths between corresponding nodes. Several researchers have developed algorithms for the
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Figure 3: Aspects Depend on Both Direction and Distance

construction of aspect graphs, however, the size of the graphs poses computation limitations to
their use[13,14j.

We use a discrete approximation by placing a tessellated sphere around the model, where
each of the polygons represents a different viewpoint. The tessellation can be made arbitrarily
fine, thus obtaining any desired granularity. Since an aspect is dependent not only on viewing
direction but also on the distance from the viewer to the object, we must determine how large
to scale this viewing sphere. Figure 3 demonstrates this idea. In this figure, the white pentagon
represents an object and each shaded area represents a different aspect. If we look along the
viewing direction represented by the arrow, we notice that the aspect changes. Since the distance
of the sensor from the work space is known a priori, and the sensor's physical characteristics
(focal length, sensing field size, etc.) are also known, it is possible to position the sphere to
correspond to the sensor’s position. Thus, knowledge of sensor configuration plays a role.

An icosahedral tessellation of a unit sphere is used and then the tessellated sphere is uniformly
scaled to the proper size. In experiments, it has been found that a tessellation of 80 fully covers
the set of aspects. If the tessellation is subdivided to 320 cells, same apparent aspects are
obtained, but they are spread across many more cells. Each tessellation cell, which we call
a tessel, can be thought df as a feature accumulator. That is, all object features which are
visible from a tessel (i.e., that viewpoint and distance from the model) are recorded. After
all features are accumulated, neighboring tessels which contain equivalent sets of features are
merged into the same aspect. When no more tessels can be merged, the minimal aspect set for
the model/sensor pair is reached. Each aspect corresponds to a topologically different viewpoint;
since all possible viewpoints are considered, complete coverage of the model is achieved.

It should be noted that this is similar to approach lkeuchi takes when generating of viewpoints
for his interpretation trees[6j. However, the technique described here differs from his in that
he uses a CAD system to generate 60 views and then, by hand, combines views with similar
aspects where the only features considered are faces. In our method, different classes of features
are used.
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Our method can be further refined by including knowledge of the sensing characteristics
determined in the Robust Feature phase of the process. If it is determined that a feature can't
be reliably detected when the sensing angle reaches a certain position, this knowledge can be
used to eliminate features from tessels.

3.5 Consistent Sets of Features

Although features may fulfill the requirements of the above filters for a specific workcell and task
configuration, they may not discriminate between views of the object or between different objects.
A feature set is considered consistent if it possesses the necessary geometric information to
distinguish between aspects. Symmetric objects pose problems for this type filter since multiple
aspects appear similar to the system. The consistency filter forces the set of features to be
strong enough to form a hypothesis.

The geometric information contained m features differs with feature type. It is desirable to
use features which make available the maximal amount of pose information possible. One way
to measure geometric content is in terms of degrees of freedom, DOF, which remain unknown
after a feature is matched to the model.

3.6 Use of the Filters

When used in combination, these filters provide the mechanism with which to build a strategy
tree. The task requirements may be such that the result of these filters is the null set of features.
This can be dependent on the order in which the filters are applied to the complete feature set.
For example, if the filter for rare features determines that a 1/4 inch dihedral edge is the best
feature and is applied prior to the robustness filter, that dihedral might not be accepted by the
robustness filter since it is so small. Thus, the set of features would be null after the application
of the robustness filter. Whereas, if the robustness filter is applied first, it wouldn’t accept such
features and when the rare filter is applied to the features accepted by the robustness filter,
it would determine a different set of features as being best. The order of application is to be
determined by knowledge of both the task to be accomplished and experience.

Since there is this possibility of null feature sets when filters are applied such that they
absolutely eliminate features, the filters need to be applied in a relative manner. That is, the
filters should rank the features rather than just eliminate those which don’t meet the criteria.
If the features are ranked by the filters, null sets should never occur. However, the order of
application is still important.

4 Strategy Tree Synthesis

Strategy trees describe the search strategy used to recognize and determine the pose of objects
in a scene. This is a generalization of a hierarchical classifier or decision tree. The use of
strategy trees permits one to exploit knowledge of relations between the geometric features in
the models. Such trees, also define a sequence of measurements or evaluations of the scene data
so as to eliminate certain classifications at particular nodes.

Figure 4 is an overview of how strategy trees are used in the system. The system consists
of two parts: the off-line model analysis and strategy generation and the run time environment.
The CAD model is analyzed in terms of the geometric knowledge needed for object recognition.
This geometric information, which is analyzed by the feature selection process, is used by the
strategy tree builder to produce the core of the run time recognition system. During run time, the
strategy tree provides the search structure and control for the hypothesis generator. By using
the information provided from the feature extractors and the strategy trees, the hypothesis
generator attempts to hypothesize pose descriptions for recognized objects in the scene. These
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Figure 4: Overview of Strategy Trees

hypotheses are verified for correctness and a description of recognized objects and their poses
are the end result. It should be stressed that the off-line processing time, while expensive,
greatly reduces the amount of time spent matching. This is because the search strategy which
is generated is optimized for a particular object in a specific workcell environment for a certain
task. If either the object is changed or the sensing environment is changed, the strategy might
also change.

Another benefit of the tree structure is the inherent parallelism of trees. This occurs when-
ever there is a branch; thus, trees with greater breadth will, in general, have higher inherent
parallelism. The sequentiality of trees refers to the depth of paths in the tree. Strategy trees are
shallow trees with many branches in the first two levels. Thus, there is a great deal of inherent
parallelism in these trees.

The matching strategy consists of two phases: the hypothesis generation phase and the hy-
pothesis verification phase. This recognition technique is known as hypothesize and verify. The
hypothesis generation phase is controlled by the strategy tree and the verification phase substan-
tiates or refutes the hypotheses generated from the strategy tree. As will become apparent in
the next subsection, the confidence of a hypothesis can be increased at the hypothesis generation
phase which has two effects: increased cost of hypothesis generation and decreased cost of the
verification phase. Conversely, the confidence in an initial hypothesis can be decreased, thereby
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Algorithm Define A* to be the set of all features contained in the ith aspect, where

0 < i < number-of-aspects. Define the operation,  to denote set difference. Define, f)
to be a level 1 node containing a set of unique features, possibly a singleton set, which
permit rapid identification of the object and its pose.

For each A*
D = fIDij where Dij = At- Aj (i <))

if D £ 0, then
choose / from D

if D = 0 and no Dij = 0, then
select / to be the union of 1 element from each Dij

if Dij = 0 for some ;, then
A- C Aj so do nothing

Figure 5. The Aspect Coverage Algorithm

expediting the hypothesis generation phase, which increases the computational expense of the
verification phase.

4.1 Description of Strategy Trees
A strategy tree consists of three major parts:
1 The Root - Which represents the object to be recognized.

2. Level 1 Featuris - Which are the strongest set of view independent features chosen for
their ability to permit rapid identification of the object and its pose. After level 1 features
are automatically selected, they are sorted by feature class (i.e. included angle, arc radius,
etc) and grouped together to form one level 1 node for each feature class.

3. Corroborating Evidence Subtrees. CES - Whose purpose is threefold: the discrim-
inate between between the features within a feature class, they direct the search for cor-
roborating evidence that supports the hypothesis of the level 1 features and they direct
the search for geometric information to completely determine the pose prior to hypothesis
generation.

Strategy trees determine the procedure a recognition system follows for object recognition. There
will be at least one strategy tree for each model under consideration. If a model is used in a differ-
ent task or environment, there could possibly be a different strategy tree for each of those tasks.
The leve! 1 features are selected using the feature filters. These conform to the requirements
which constrain the task, environment, and model yet contain the strongest geometric informa-
tion which leads to a solution. The corroborating evidence subtrees, CES, are constructed using
geometric information derived from the CAD model.

4.2 Construction of Strategy Trees

A method is now needed for extracting the features of interest from the aspects. The level 1
nodes of the strategy tree are built from these features. Recall, that an aspect is a feature
accumulator which forms a topologically equivalent set of features from multiple viewpoints.
The Aspect Coverage Algorithm, shown in Figure 5, is used to form level 1 nodes by extracting
the best, unique features from the aspects.

When D not the empty set, it means there is at least one feature which is contained in all
the aspects. Thus, that feature is used as a level 1 node. In the case where D is null but all the



285

Dx]s are not empty, there is a combination of features which uniquely spans the aspects. Thus,
a set of features for the level 1 node is used. In the last case, where the Dt is null for some j,
then D will also be null. Additionally, it is known that the aspect, Atis completely contained
in aspect Ay. At must be a subset of Ay because the set difference is null and if the two aspects,
Atand Ay, contained the exact same elements, they would have been merged at the tessel stage.
Since At is contained in Ay, a level 1 node is not created at this point. Rather, this aspect will
be covered by the level 1 node generated from aspect Ay.

From this set of level 1features, the features are automatically sorted by feature class. These
classes are determined from the feature histogram and are merged according to knowledge about
the sensor resolution. That is, if the sensor is known to have a resolution such that angles can
be detected with 2.5 degrees, angles within this tolerance are considered to be of the same class.
Similarly, arcs of a specific radius and curvature are grouped together. One level 1 node is
constructed for each feature class under consideration and the CES will discriminate between
the individual features within a class.

Once the level 1 nodes are built, it is necessary to generate the CES, Corroborating Evidence
Subtrees. The CESs simply substantiate that a hypothesis should be generated based on a
detected feature matching with level 1 node. Sufficient evidence must be found that a correct
hypothesis is being made before a hypothesis is actually generated and passed to the verification
phase for validation. This process serves two purposes: find spatially local supporting evidence
for the level 1 feature (discriminate between features within the feature class) and completely
constrain the object’s pose. Which features are used in this local corroboration is dependent on
which class of feature(s) the level 1 node contains. Furthermore, there might be several features
with similar attributes or nearly similar attributes within the class. This is because Level 1
nodes were collapsed into classes of features with similar attributes. The CES discriminates
between these by locating spatially local supporting evidence.

Occlusion becomes a factor during the determination of the CES strategy. Since dihedral
edges and arcs provide the nost consistent information (solve the most DOFs), they are used
for level 1 nodes more often than regions or curved surfaces. Edges and arcs are composed of
a starting point, an ending point, and the connecting edge or arc. When forming a strategy to
handle occlusion for these features, both ends of the feature must be considered since it can’t
be known a prion which end is occluded. Generally, four cases are considered when forming
the subtrees for local feature corroboration: (1) detected feature is not occluded, (2) one end of
detected feature is occluded, (3) other end of detected feature is occluded, or (4) both ends of
detected feature are occluded (i.e. only a portion of the feature is visible). For some features,
such as faces or regions of constant curvature, there is no concept of direction; hence, the end
conditions check can be replaced with adjacency information.

There are several rules which are implemented to control the construction of the CES level.
These rules are feature dependent and are expandable should other classes of features be included
m the system (e.g., generalized cylinders or regions of constant curvature).

e Dihedral Edge rules are:

- First look for another dihedral edge nearby which matches the model.
- Failing this, look for an appropriate 2-D corner.

- Failing this, use the approximate areas of adjacent faces.
» Dihedral Arc rules are:

- First look for another dihedral edge nearby which matches the model.

- Failing this, look for an appropriate 2-D corner.
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- Failing this, look for the surface type of adjacent faces or other attributes of the
adjacent regions (area, radius of cylinder).

« Planar Region rules are:

- First determine the orientation of the adjacent faces.
- Failing this, look for a nearby dihedral edge which matches the model.

- Failing this, look for an appropriate 2-D corner.
* Curved surface rule is:
- Determine surface types of adjacent surfaces

A CES is generated for every feature m the model which has similar attributes as the level 1
node. For example, suppose the level 1 node is a dihedral edge of included angle 30 degrees and
a dihedral edge in the scene is detected with an included angle close to 30 degrees. A CES Is
generated for all 30 degree angles in the model. In other words, an attempt is made to determine
which dihedral was detected. The use of corroborating evidence focuses the search strategy by
pruning unattractive paths at an early stage of the search.

4.3 Usage of Strategy Trees

The strategy tree guides the search through possible solutions. When a level 1node is matched in
the strategy tree and it is supported by the Corroborating Evidence Subtrees, then a hypothesis
is generated. The hypothesis is passed to an object verifier which determines whether the
hypothesises valid within some confidence level. Note that the strategy tree doesn t guarantee
that an object will be found. If a level 1 feature is not located for a particular pose then the
strategy will fail. Since level 1 features are robust, this will only happen m the presence of
massive occlusion.

The combinatorial explosion of the matching process is controlled by the use of heuristics.
For a detected feature to match a level 1 node, it must satisfy the following rules:

1 The attributes in the detected feature must be less than or equal to the attributes in the
model (i.e., the length of a detected edge must not be longer than a model edge, area of a
detected surface must not be greater than the area of the model, the included angle of a
dihedral arc must be within some range of the model).

2. If the detected feature is not occluded, the attributes must be within some tolerance of
the model’s values.

These simple rules greatly reduce the possible matches to the level 1 features. The check less
than or equal to” for feature attributes is used due to the possibility of occlusion. In dealing with
3-D data, perspective doesn’t alter the measurable attributes. Even with occlusion, a feature
cannot appear larger (longer for edges, larger area for surfaces) than the original model.

In the above method, occlusion must be detected in the range data. Three simple cases suffice
to determine whether occlusion is present or not. These tests are performed at the boundary of
the detected features (i.e., dihedral edge - endpoints, surface/face - bounding edges).

1 Feature ends with a jump edge. In this case, look at the relationship between the feature
and the part of the scene which forms the jump edge (scene-jump):

(a) feature is nearer than scene-jump. Implies Non-occluded

(b) scene-jump is nearer than feature. Implies Occluded
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2. Feature ends with a shadow edge. This is an unfortunate artifact of triangulation systems.
However, this is the prevalent class of 3-D sensor in use at research labs at the present. It
is unfortunate because the cause of the shadow edge is unknown. It could be the shadow
is caused by the actual edge of the object (e.g., the back-top edge of a cube), or is caused
by occlusion, or is caused by a non-occluding object casting a shadow on the feature in
question. Since the cause is not known, it must be considered occluded even though it
may not be. Implies Occluded

3. Feature ends with neither a shadow edge nor jump edge. It is known conclusively that the
feature is Non-occluded.

Once a level 1 node has been matched using the heuristics described above, and a determi-
nation made as to whether the feature is occluded or not, the local CES can be evaluated, as
prescribed by the strategy tree. This local evidence gathering limits the number of hypotheses
crenerated and passed to the object verification phase by determining whether a hypothesis is
justified by the local evidence. If there isn’t supporting local evidence, as prescribed by the
strategy tree, then that level 1 match fails and the detected feature is marked as unmatched. If
there is enough local supporting evidence, a hypothesis is generated for the object verification
phase to accept or reject.

Two forms of verification have been examined: structural and pixel correlation. Structural
verification refers to verifying spatial relations among the features which should be present in
the scene. This is similar to relational graph matching in 2-D. Pixel correlation refers to the
verification technique of matching predicted depth, pixel by pixel, in a generated image and the
sensed image. This corresponds to template matching in 2-D.

Either of these methods provides for verification. This follows the hypothesis verification
techniques used by others[5,4,15i. One of three states is assigned to the match of the hypothe-
sized feature or pixel with the observed feature or pixel:

* positive evidence When the observed feature or depth is approximately the same as
predicted. This means the observed object matches the transformed model in the predicted
image.

e neutral evidence When the observed feature or depth is closer to the sensor than the
predicted one. This seems counterintuitive but it simple means that the predicted fea-
ture/depth can’t be observed because something is possibly blocking sight of the object.
In the presense of occlusion, it can’t be determined whether the difference between the
prediction and the scene is due to an incorrect hypothesis or due to an occluding object.
This also holds for shadow pixel/region in the range image for the same reason.

¢ negative evidence When the observed feature or depth is much farther from the sensor
than the predicted one. This definitely points to an incorrect hypothesis since the observed
feature/depth is not occluded but is not where it should be.

If these measures are accumulated for the predicted range image or structural features, the
hypothesis can be quantified and accepted or rejected accordingly. This quantification provides
a measure of confidence m the hypothesis.

5 Experiments and Discussion

The concepts which have been outlined above have been implemented in an experimental system.
This section describes the sensing and computational environment. The synthesis of strategy
trees is demonstrated with an example polyhedron. The equipment used for the experiments
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Figure 6: Wireframe Drawing for Poly_|

consisted of a Technical Arts 100A White Scanner, DEC VAX class processors and an HP
Bobcat. The images used in the experiments are part of the the Ltah Range Database which
was compiled for standardization of research on range images for the research community 116

5.1 Geometric Design

To demonstrate the ideas presented in this paper, we will look at a simple example. A polyhe-
dron, we call Poiy.l, was designed using the Alpha_l design system described elsewhere: 17;. The
construction of the hierarchical winged-edge model from the CAD model is quite simple. Form
an object consisting of faces which consist of edges which consist of vertices for straight arcs
and radii and placement for circular arcs. Figure 6 shows the labeled edges of this winged-edge
model of the polyhedron. The edge numbering is used throughout the remainder of this chapter.
Table 1 lists the dihedral edges for poly.l. Table 2 lists the faces for poly_I. These are used by
the feature selection process as well as in the generation of strategy trees. Note the grouping of
the edges in Table 3 denoted by the horizontal lines. Due to noise in the data and error in the
feature extraction methods, the system can’t discriminate on angle value alone. Thus, dihedrals
are grouped together if they are within 5 degrees of each other.

5.2 Aspect Generation

In order to determine coverage of the object, aspects must be determined. In generating views of
an object from various viewpoints, hidden line or hidden surface removal is necessary to deter-
mine which features are visible. Aspects are formed by merging tessels which are topologically
equivalent. Figure 7 shows the 26 different aspects formed for p-oly.l by merging the tessels.

5.3 Feature Selection

The next step in the process is the evaluation of features. The filters are applied to the complete
set of features. For the rare filter, a feature histogram is used to determine which features don't
occur often in the model. Table 3 shows the histogram for the angle of all dihedral edges.
Robustness must be determined with respect to both the sensor and the suite of algorithms
used. Through experimentation, it has been determined, for the sensor configuration used here,
that an edge length under 1.0 inch can’t be reliably detected. Similarly, if a face is below a
certain size, its surface area can’t be reliably detected, nor can the pointwise normals or the
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edge angle length adjacent faces j

4 45.8 5.99 16 |
0 42.6 1.4 06
6 76.09 1.52 14
7 134.19 5.84 13
1 132.48 2.45 01
5 132.5 1.53 12
2 137.33 0.28 03
1 21 90 7.1 56
15 90 5.5 35
19 90 3.41 46
14 90 2.25 34
3 90 2.18 05
20 90 1.48 45
9 90 1.45 26
10 90 0.5 24

Table 1. Edge Attributes in Poly_|I

face area normal poly type
\ 0 1.8225 -0.678 0.000 0.735 convex
1 13.9725 -0.240 0.676 0.697 convex
2 0.3625 0.000 1.000 0.000 convex
3 6.9438 0.000 0.000 1.000 convex
i 4 4.4643 1.000 0.000 0.000 convex
j 5 9.2925 0.000 -1.000 0.000 convex
6

18.5328 0.000 0.000 -1.000 convex El

Table 2: Face Attributes in Poly_1

angle in degrees
0-85 85-55 55-65 65-82.5 82.5-100 100-125 125-145 145-860 |
I

0 2 0 1 8 0 4 0

Table 3: Histogram of Dihedral Edges
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Figure 7: Aspects for Poly.l



291

dihedral edges which form the face. This is because too few data points are sampled on such a
srnall face.

Dihedral edges were selected as the most consistent feature since they solve 5 DOFs. For
this reason, the consistent filter ranks dihedral edges as the best level 1 feature.

The ability of the strategy tree to provide a path for recognition given an arbitrary object
orientation is assured through the use of the aspect generation. Thus, the complete filter must
be sure that at least one feature from every aspect is included as a level 1 node. It is desirable
to use features which are visible from the greatest number of different viewpoints.

Feature cost has not been incorporated at this time. It is clear that algorithmic cost could
ke included via Logical Sensors and this is an area of future research.

54 Strategy Tree Synthesis

The order of application of these filters affects the generation of the level 1 nodes. Incorrect
application of the suite of filters will generate an inefficient strategy tree. It must be stressed
that a correct strategy tree will be built, but that the tree will be far from optimal. If the
application of the filters absolutely drops features from the set. it is possible to generate a null
set of features. For example, the histogram given in Table 3 includes all dihedral edges; even
those which do not have an acceptable level of robustness. |If the rare filter is applied first,
edge 6 is selected as the most unique feature since only one of these edges occurs in the model.
However, this edge is adjacent to a small face; thus the robustness filter would remove this edge.
The only solution at this point is to generate a strategy tree with a backup strategy formed from
a feature which is less consistent than a dihedral edge (the feature selected by the consistent
filter). An example of such a feature and strategy is to look for planar faces and the associated
relations between them.

Since strategy tree synthesis is automated, it is desirable to minimize the possibility of the
null feature set and non-optimal level 1 nodes. This is accomplished by ranking the features with
the filters. Thus, each filter produces a ranked list of the current feature set. As the strategy
tree is built, the application of filters now means to choose the feature with the highest rank
from that set.

The order in which the filters are applied was determined through experimentation. It has
been found that if the complete filter is applied first, the desired coverage is assured. From this
filter, a set of aspects is produced which contains visible features. Level 1 features are selected
for the strategy tree such that all aspects are represented by a level 1 node. However, one feature
might be visible from multiple aspects. Using the histogram, form a set of the features which
are contained in the greatest number of aspects (highest histogram value), possibly a singleton
set. From this set of features, use the rare filter to determine which of these features are unique.
From the ranked set of unique features, use the robustness filter to rank the robustness of each
of these features. Select the feature which is most robust. If this feature is robust enough, then
use it as a level 1 node. If it isn’t robust, repeat the algorithm for the next lowest histogram
value. When a level 1 node is generated, remove, from the set of aspects, all the aspects which
contain this feature. Recompute the histogram with the remaining aspects and repeat. Either a
set of level 1 nodes has been generated which spans the entire set of aspects or there are aspects
remaining which contain only non-robust features. In the latter case, a weaker level 1 node must
be formed for each of these aspects. This level 1 node will contain a feature which is not the
most consistent type of feature. In this case, rather than having a dihedral edge as a level |
node, the back up strategy is to match a face. At this point, the CES can be built.

One corroborating evidence subtree is generated for each dihedral edge which has attributes
similar to the level 1 node. For example, for the level 1 node, edge 7, a CES must be formed for
each of the edges in the 125-145 range. The reason for this is that when a 135 edge is located
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it should match one of these edges, but which one isn’t known until corroborating evidence is
gathered.

The next branch in each CES is determined by looking at the ends of the dihedral edge
to determine if they are occluded. Recall that occlusion is determined by the end type of a
particular edge. Shadow is assumed to be occluded, jump edge depends on whether it is an
occluded jump or a non-occluded jump edge. All others are non-occluded.

In the non-occluded case, use the rules described above for the type feature which forms the
particular level 1 node. In the example, most level 1 features are dihedral edges so the dihedral
rules are used. The rules are applied in the following order:

1 Attempt to find a dihedral edge close to the endpoint of the current edge. If found, use
this to quickly form a hypothesis.

2. Attempt to find the local 2-D corners. If found, these can help determine which hypothesis
should be formed. For example, if a 135 edge is located, the adjacent 2-D corner can help
to determine which, if any, of the 125-145 edges have been located.

3. Use the areas of the adjacent faces and relations between them to generate a hypothesis.

Figure 8 shows the initial level 1features for poly_l. Figure 9 shows the strategy tree for poly_l.
The edges are represented by their edge number in the model. Note that there is a CES for each
dihedral edge which is similar to the level 1 node. These are derived from Table 2. For level 1
node 7, edges 1, 5, and 2 all have similar dihedral angles. Thus, there is a CES for each of these
edges as well as edge 7. Note that the same CES can appear under multiple level 1 nodes. When
matching, the rules on attribute similarity are used to invoke these CESs. Figure 10 shows the
Corroborating Evidence Subtree for the dihedral edge 7. Note that there are 4 possible branches
shown for clarity. The non-occlusion branch is composed of an OR of the partial occlusion cases.
Thus, during run-time, the results of the partial occlusion are used by the non-occlusion branch.

5.5 Recognition

Now that the off-line procedure is completed, the usage of strategy trees can be demonstrated
with an example of matching. A range image is obtained and low-level 3-D feature extraction
performed on that data. The object is scanned, in this case poly_I. Figure 11 shows the data
for poly_I from the Utah Range Database. This is an unsmoothed image with bad data points
missing. A 3 x 3 Gaussian mask is used to smooth the image and replace missing data points
with an average of surrounding points.

From this data, the pointwise intrinsic features are computed for the object: surface normals
and surface curvature. Figure 12 shows the surface normals for the object. Since this is a
polyhedral object, the planar face finder is used to develop a surface representation. Table 4
lists attributes of the planes which were located. Two dihedral edges are located using the
dihedral edge finder. These edges correspond to edge 7 and edge 1 in the model.

Now the strategy tree shown in Figure 9 can be used. The level 1 features in the strategy
tree are the dihedral edges: 7, 19, 14, 3, 4, 1, 0, 21, 6, 20, and 9. The dihedral edges located
in the scene are shown in Table 5 (The corresponding model edges are included to help the
reader.) The system has not matched the dihedral edges at this point. By comparing these
attributes with those listed in Table 5, the reader will notice that the attributes calculated for
dihedral edge 5 are indeed erroneous. This is because the bordering face is too small to reliably
recover attributes from the sensed data.

The detected edge A is too short for reliability so it won’t be used. The detected edge D has
an angle which doesn’t match the model so it won’t be used in the matching process. Detected
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CES CES CESCES CES CES CES

U
Figure 8: Level 1 Features of Poly.I

face area normal centroid

1 5.799 -0.024 0.018 0.995 1.699 -2.101 -1.150
13.116 -0.630 0.226 0.741  -0.022 -2.324 -1.917
0.181 -0.128 0.899 0.391 1.177 1.167 =2.342
0.259 -0.695 0.588 0.392 0.710 0.858 «2.473
1.618 -0.448 -0.490 0.744 -0.904 -5.675 -2.070

g b w N

Table 4: Attributes of Located Planes
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CES CES CES CES

Figure 9: Strategy Tree for Poly.I

detected edge Edges Located Model Edge
edge name angle length  edge number
A 138.393°  0.2339 2
B 136.546° 2.4619 1
C 139.558° 5.7732 7
D 150.477° 0.8748 5

Table 5: Dihedral Edges Located in Scene
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Generate
A Match
Hypothesis Fails

Figure 10: Corroborating Evidence Subtree for Edge 7



296

Figure 11: Scan Data for Poiy_I

Figure 12: Surface Normals for Poly.I
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e(cres B and C both have angles with in the 130-140 range. Both of these edges match the same
Level 1 node meaing they are in the same feature class and the CES will discriminate between
them- The first determination in the strategy tree is to check for similarity. If a detected edge
is larger than a model edge, the match fails. Detected edge C fails to match the node: edge 1,
because the length is too long. Next the check for occlusion takes place. Detected edge B is
non-occluded at both endpoints and detected edge C is occluded at one endpoint. Since it has
been determined that detected edge B is a non-occluded edge, the attributes must be close to
the model for a match to succeed. For this reason, edge B fails to match the level 1 node: edge
7 Thus, only one Corroborating Evidence Subtree is invoked for each of the nodes which have
been matched: edge 7 and edge 1

The CES strategy first looks for an adjacent dihedral. In both cases, a dihedral is found.
For the node: edge 7, the dihedral used as corroborative evidence is detected edge B. Whereas
for the node: edge 1, the dihedral used as evidence is detected edge C. These two dihedrals are
sufficient to solve all 6 DOFs and each of these forms a hypothesis at this point.

Since both the hypotheses are the same, the verifier only needs to check one. An image is
formed with the hypothesized transform applied to the model and the perspective transform
of the sensor applied to that result. For every pixel in the image, the z-depth is determined.
Pixelwise evidence gathering can now be performed. The positive, negative and neutral evidence
is combined to verify or refute the match. For the hypothesized transform, the hypothesis is
correct in this case.

Although the example is a polyhedral object, extensions to non-polyhedral objects are un-
derway. If occlusion occurs in the scene, more CESs would be invoked to corroborate possible
matches. The use of this approach with multiple objects merely requires running the recognizers
in parallel.

6 Conclusions and Future Work

It has been shown that the automatic generation of recognition strategies is possible. A method
is presented which analyzed the geometric information of an object to determine the best strat-
egy for recognition within the constraints of the sensing environment and the task. Using this
information, a recognition system, a strategy tree, is produced which effectively matches models
with sensed data. The strategy tree generation is performed automatically with minimal as-
sistance from the user. The strategy tree provides a model based approach for the recognition
and location of objects using 3-D sensing techniques. These strategy trees are formed using the
following feature filters: robust, complete, consistent, unique, and cost effective. Using these
filters, a strategy is formed which includes the use of corroborating evidence to substantiate
hypotheses at formation time thereby increasing the speed for recognition.

Many areas of future research remain open. One primary area of future research is the
exploration of 3-D feat ire extraction with emphasis on efficient routines. The feature extraction
techniques used in this research were relatively slow when compared to the matching time. Faster
feature extraction would enhance such a system. Research into the use of other 3-D features
should also be an active area. The application of these concepts to other representations, such
as generalized cylinders, should be explored. Other computer vision representations, as they
become available, for freeform surfaces should be incorporated into the feature selection and
strategy generation process.

Another area is the use of knowledge-based techniques for the synthesis of recognizers. Spe-
cific rules have been outlined which govern the automatic generation of strategy trees. These
rules could be implemented in a more general framework such as an expert system. Such as
system could reason about tasking information. The representation of algorithmic information
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provides an vast area of untapped research opportunities. The use of Logical Sensor Specifica-
tions seems to be a good approach to the problem and should be investigated.
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