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ABSTRACT 

 

Salt Lake City, located at the base of the Wasatch mountain range in Utah, 

receives a majority of its potable water from a system of mountain creeks. Snowmelt 

runoff from mountain watersheds provides the city a clean and relatively inexpensive 

water supply, and has been a key driver in the city’s growth and prosperity. There has 

been keen interest recently on the possible impact of the deposition of darkening matter, 

such as dust and black carbon (BC) on the snow, which might lead to a decrease in its 

‘albedo’ or reflective capacity. Such a decrease is expected to result in faster melting of 

the snow, shifting springtime streamflows to winter. This study aimed to develop a 

modeling framework to estimate the impact on snowmelt-driven runoff due to various BC 

deposition scenarios. 

An albedo simulation model, Snow, Ice, and Aerosol Radiation (SNICAR) model, 

was used to understand the evolution of albedo under different BC loadings. An Albedo-

Snow Water Equivalent (A-SWE)  model was developed using a machine learning 

technique, ‘Random Forests’, to quantify the effect on the state of snowpack under 

various albedo-change scenarios. An Albedo-Snow Water Equivalent-Streamflow (A-

SWE-S) model was designed using an advanced statistical modeling technique, 

‘Generalized Additive Models (GAMs)’, to extend the analysis to streamflow variations.  

All models were tested and validated using robust k-fold cross-validation. Albedo 

data were obtained from NASA’s MODIS satellite platform. The key results found the  

snowpack to be depleted 2-3 weeks later with an albedo increase between 5-10% above 

current conditions, and 1-2 weeks earlier under albedo decrease of 5-10% below current 

conditions. Future work will involve improving the A-SWE-S model by better accounting 

for lagged effects, and the use of results from both models in a city-wide systems model 
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to understand water supply reliability under combined deposition and climate change 

scenarios. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Link between air quality and snowmelt runoff 

Salt Lake City is located to the southeast of the Great Salt Lake, and is surrounded 

by the Wasatch Mountains to the east and the Oquirrh Mountains to the southwest. 

During the winter, the mountain ranges trap pollutants within the Salt Lake Valley. 

Temperature inversions in the valley, a phenomenon where cold air is trapped below 

warm air, further cause air pollution to accumulate near the valley floor. Air quality is 

particularly poor between November and February [Silcox et al., 2012], with the worst 

inversion episodes occurring during January and February. The pollution is usually 

characterized by particulate matter smaller than 2.5 microns in diameter (PM 2.5) [Silcox 

et al., 2012]. It has been found that 57% of wintertime PM 2.5 emissions are contributed 

by “mobile sources”, which mainly consist of automobiles [Utah Division of Air Quality, 

2014]. It was also found that there are an average of 4.3 dust events in the Salt Lake 

Valley each water year, and that most such events occur in April and September 

[Steenburgh and Massey, 2012]. 

Air quality data from an EPA site in Salt Lake City (located at Hawthorne 

Elementary School, 1675 South 600 East) were used to understand the frequency and 

intensity of air quality episodes. According to EPA standards, the PM2.5 concentrations 

2004 had the most number of days with air quality below mandated standards, with 36 

days exceeding 35 µg m−3. Appendix A provides the number of days air quality standards 

was not met in Salt Lake City, along with the number of days a much higher PM2.5 level 
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of 60 µg m−3 was exceeded. 

Appendix A shows the PM2.5 concentrations recorded by the EPA site for years 

2004, 2007 and 2012, respectively. These years were chosen because they represent years 

of relatively poor, average and good air quality. Appendix A also shows the 

concentrations of PM2.5 for the water years (1st October-30th September) 2008-09 and 

2011-12, respectively. Regardless of the severity of the pollution episodes, it can be 

observed that they mainly occur during winter and spring. The majority of the severe 

events occur between late December and mid-March.   

The melting of snow is controlled by, among other factors, its albedo. Albedo can 

be defined as a nondimensional, unitless quantity that indicates how well a surface 

reflects solar energy [National Snow and Ice Data Center, “Thermodynamics: Albedo”]. 

Albedo varies between 0 and 1, where 0 indicates ‘complete absorption’ and 1 indicates 

‘complete reflection’. The albedo of snow ranges from about 0.9 for freshly fallen snow, 

to about 0.4 for melting snow, and around 0.2 for dirty snow [Hall and Martinec, 1985].  

Albedo is an important parameter in the energy balance of the earth [Dobos, 2003], and 

depends on both the reflective properties of the surface (e.g. snow grain size, liquid water 

content, dust or impurities, and surface roughness) and on atmospheric parameters (e.g., 

solar incident angle, cloud characteristics and air turbidity) [Warren, 1982].  

Extensive research has documented the effect of deposition of various darkening 

matter on the albedo of snow, with the greatest focus on desert dust. It has been 

hypothesized that measured snow albedos at visible wavelengths are significantly lower 

than pure-snow values due to the presence of dust or soot, and it has been understood that 

smaller particles are more effective at lowering albedo [Warren and Wiscombe, 1980]. 

Absorbing impurities such as dust and carbonaceous particles decreases the spectral 

albedo in the visible wavelengths, from 0.95–0.98 down to as low as 0.30 [Painter et al., 

2012]. Also important is the wavelength in which the albedo of snow is measured. In the 

near infrared (0.7 to 1.5 µm) and shortwave (1.5 to 3 µm) wavelengths, snow grain 
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growth is the most important parameter that decreases albedo. Light absorbing impurities 

generally decrease the spectral albedo in the visible wavelength (0.4 to 0.7 µm) [Painter 

et al., 2012].   

The impact of darkening matter on snow albedo can be understood in terms of the 

energy balance of snow. Solar radiation is the primary driver of snow melt in 

mountainous areas, with the irradiance and albedo of snow being other factors 

[Oerlemans, 2009; Bales et al., 2009; Painter et al., 2007]. Solar radiation heats the dust 

and carbonaceous matter, and these particles then heat the surrounding snow grains by 

conduction. On reaching 00C, the snow grains are affected by further radiative forcing 

and start to melt. As the snow layer starts to melt, the pollutant particles percolate to the 

lower layer. This decreases the albedo of the lower layer, and accelerates its melt [Painter 

et al., 2012]. This feedback loop of decreased albedo and accelerated melting due to 

pollutant deposition is what contributes to the radiative forcing on snow.  

One study has shown that desert dust causes snow to melt 1 month earlier in the 

San Juan Mountains of Colorado [Painter et al., 2007], and various other studies have 

further confirmed the impact on snowmelt from mountainous watersheds. One study 

related errors in the National Weather Service - Colorado Basin River Forecast Center 

(CBRFC)’s streamflow predictions to interannual variability of dust radiative forcing in 

snow, using data from NASA’s MODIS satellite [Bryant et al., 2013]. It was found that 

each 10 Watt/m2 of dust forcing during the melt period contributed to a runoff prediction 

bias of 10.0% ± 1.5% and a 1.5 ± 0.6 day shift in runoff center of mass. The same study 

also found that 11 years of mean dust-on-snow (DOS) forcing corresponded to an earlier 

melt of between 25-30 days relative to clean snow. A related study [Deems et al., 2013] 

found that extreme dust on snow absorbs up to four times as much radiation as moderate 

dust, and shifts peak snowmelt between 3-6 weeks earlier. The study also found that 

extreme dust scenarios mean an annual flow reduction of 1% compared to moderate dust, 

and a reduction of 6% compared to no dust.  
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The focus of this study is more on black carbon (BC) deposition on snow, as 

compared to dust-on-snow. BC is known to be the main component of microscopic soot 

particles produced from the burning of fossil fuels and biomass, and strongly absorbs 

solar radiation [Hadley and Kirchstetter, 2012]. Soot can be further defined as a 

combination of mostly BC, organic carbon (OC), metal and sulfate. BC and soot are 

therefore more indicative of human activities, mainly in urban areas, and can be 

hypothesized to be a major component of darkening matter deposition in the Wasatch 

Mountains near Salt Lake City. Research at the Zhadang glacier in China found BC 

concentrations of 334-473 ppm in snow, contributing to a radiative forcing of between 

1.1-8.6 Watt/m2 [Qu et al., 2014]. A study in Nepal [Yasunari et al., 2010], at the Yala 

Glacier, found BC concentrations between 26.0-68.2 μg/kg. These concentrations were 

estimated to cause albedo reductions of 2.0-5.2%, resulting in a decrease of 11.6-33.9% 

annual runoff of a typical Tibetan glacier.  

Numerous studies have found that snowmelt runoff in the United States and 

elsewhere is being affected considerably by the impact of rising temperatures [Khadka et 

al., 2014; Stewart et al., 2004; Stone et al., 2002;]. Spring peak runoff is expected to 

occur much earlier, and total runoff volume is expected to decrease considerably. 

Although this study is focused on understanding the changes in snowmelt runoff due to 

black carbon deposition, future efforts are expected to focus on water supply reliability. 

This will be done using various climate change scenarios for precipitation and 

temperature. 

BC data for the Wasatch are extremely rare, and it is only possible to estimate the 

concentrations using other deposited particles as proxies. A study of the Wasatch 

Mountain snow suggested anthropogenic sources for some carbonaceous matter, 

including emissions from transportation and industrial activities [Reynolds et al., 2014]. 

The study analyzed DOS samples, and found organic carbon to range from 0.66% to 

5.35% at various locations. Many of the sampling locations explored in the above paper 
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are located extremely close to the study watershed used for this particular study, 

indicating that results from the paper could be possibly used. However, the paper does 

not mention the sample weight used to calculate the previously mentioned carbon 

percentages, which made it impossible to estimate the exact concentrations of carbon at 

the test sites. Personal correspondence with the authors revealed that the sample weight 

was possibly not documented.  PM2.5 is primarily composed of ammonium sulfate, 

ammonium nitrate, organic carbonaceous matter and elemental carbon [Neil Frank, 

EPA], indicating that it could be used as a proxy for BC deposition.  

 

1.2. Salt Lake City’s water supply system 

Salt Lake City in Utah, USA receives a majority of its potable water from 

snowmelt-fed streams originating in watersheds in the Wasatch Range of mountains. 

Seven major canyons in the Wasatch Mountains are the primary water sources for the 

city, encompassing about 200 square miles and draining approximately 152,000 acre-feet 

of water every year. While access to some of the watersheds is regulated, intense human 

activity such as skiing and tourism is prevalent in other watersheds [Salt Lake City 

Department of Public Utilities, March 1999]. 

Four creeks, Big Cottonwood, Little Cottonwood, Parleys and City Creeks, supply 

the majority of Salt Lake City’s potable water (Environmental Protection Agency, Jan. 

2010). The City Creek watershed has a maximum elevation of 9400 feet, is about 12 

miles long and has 19.2 square miles of drainage area. Almost completely owned by the 

government, the watershed is primarily used for recreational activities apart from 

supplying water to the city. The Big Cottonwood Canyon watershed drains 50 square 

miles of area, and has elevations ranging from 5000 feet to more than 10,500 feet. The 

watershed yields more than 51,000 acre-feet of water, making it the highest contributing 

watershed in the Salt Lake City area. The Solitude and Brighton ski resorts are located in 

the Big Cottonwood Canyon, and constitute the largest human activity in the watershed. 
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Little Cottonwood Canyon consists of elevations ranging from 5200 to 11,200 feet, and 

drains an area of 27.4 square miles. It has the second highest yield of all the seven 

watersheds, with an annual yield of more than 46,000 acre-feet [Salt Lake City 

Watershed Management Plan]. The Alta and Snowbird ski resorts are located in the 

canyon, and bring a considerable number of visitors annually.  

Parleys Canyon watershed is the largest among the previously mentioned four 

watersheds, with a total area of about 50 square miles. Elevations in the watershed range 

from 4700 feet to 9400 feet above mean sea level. The average annual yield exceeds 

18,000 acre-feet [Salt Lake City Watershed Management Plan]. The Interstate-80 

freeway passes through the lower part of the canyon, and various recreational activities 

are common in the watershed area. Two reservoirs, Little Dell and Mountain Dell, are 

located within the watershed and are used to store peak springtime flows for future use.  

Parleys Canyon was chosen as the watershed of choice for this study because of its 

proximity to both the city and possibly to another source of particulate pollution, the I-80. 

It is also impacted by various anthropogenic activities.  Another important factor for 

selecting Parleys was the availability of a continuous streamflow record for the study 

period (2001-2013). The modeling workflow and techniques used in this study can be 

easily replicated for the other watersheds in Salt Lake City, or watersheds located 

elsewhere, if need be and the data for calibration exist. 

 

1.3. Study region 

Parleys Canyon lies between Emigration Creek watershed to the north and Mill 

Creek watershed to the south. Figure 1 shows the watershed delineated using a US 

Geological Survey (USGS) Digital Elevation Model (DEM) in ArcMap. The watershed 

consists of three major streams – Parleys Creek, Lamb’s Creek and Alexander Spring 

Creek.  The outlet chosen for watershed delineation is located very close to the 

streamflow gauging station, and is just upstream of the Mountain Dell Reservoir. It 
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should be noted that there are actually three Parleys Canyon watersheds. The watershed 

used for this study includes the area draining to Mountain Dell, and does not include the 

portion to the north (draining to Little Dell Reservoir) and the controlled flow area 

downstream of Mountain Dell Reservoir.  
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Figure 1: Parleys Creek watershed (shown along with data sources) 



 

 

 

 

CHAPTER 2 

 

METHODS AND DATA 

 

2.1. Snowmelt modeling: An introduction  

and comparison of methods 

Snow is a unique component of the hydrological cycle, because snowpack acts 

like a reservoir, releasing runoff due to variations in temperature and other factors. 

Hydrological modeling without snowmelt modeling is usually a combination of the 

processes of precipitation, infiltration, evapotranspiration (ET), subsurface transport and 

surface runoff. The inclusion of snowpack increases the effect of lag, which can often be 

a challenging phenomenon to model. It is therefore important to understand the energy 

balance of snow, along with the effects of surface topography, vegetation and other 

factors on melt.   

Energy balance processes related to snowmelt are known to include net radiation 

(‘shortwave’ or solar radiation, and ‘longwave’ or atmospheric radiation), latent and 

sensible heat transfer, and heat due to precipitation [Anderson, 2006]. Net shortwave 

radiation depends on solar output and surface albedo, with the albedo varying between 

0.9 and 0.4 for snow. Longwave radiation is emitted by the atmosphere and various 

particles in the atmosphere, and is influenced by the amount of water vapor and air 

temperature [Anderson, 2006]. Melt occurs when the temperature of the snow surface 

rises to 00C, and runoff from the snowpack occurs when it cannot hold any further melt 

water in the pore spaces. The melt process can be further accelerated by the absorption of 

heat from precipitation falling on the snow [USACE, 1998].  
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This study presented a unique challenge in terms of the choice of modeling 

framework, especially due to the complex interactions between air quality and hydrology 

required to be studied. Substantial effort was put into exploring various physically-based 

hydrological models, including the Snowmelt Runoff Model (SRM), the SNOW-17 snow 

accumulation and ablation model, Utah Energy Balance (UEB) model, Variable 

Infiltration Capacity (VIC) model and the Gridded Surface Subsurface Hydrologic 

Analysis (GSSHA) model. Some of the models (example, SRM and UEB) were designed 

to be primarily snowmelt models for use in alpine watersheds, whereas others were 

general hydrological models (VIC and GSSHA) with snowmelt-routines included. The 

models can also be classified as temperature-index models (example, SRM and Snow-

17), with simple melt equations based on air temperature, and energy-balance models 

(example, UEB), which depend on relationships between incident, absorbed and reflected 

energies to calculate melt. 

It was understood that most snowmelt models did not have a parameter such as 

‘snow albedo’ that could be modified to account for particulate deposition, and even if 

they did, were extremely complicated to set up and use. UEB and GSSHA showed the 

most promise for use in the study, but it was possible that streamflow variations arising 

due to errors in model calibration could be confused with variations due to albedo 

reductions. Hydrological models also have many parameters and state variables that need 

to be estimated based on watershed characteristics. 

 

2.2. Data-driven methods: Statistical  

modeling in hydrology 

Based on the study of various physically-based hydrological models, other 

modeling options were explored. The recent surge in the application of data analytics to 

various fields such as the social sciences, bioinformatics, computer science and business 

has resulted in the availability of a plethora of data-driven modeling options. Statistical 
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modeling has advanced much beyond basic linear regression and classification to 

advanced methods such as Generalized Additive Models (GAMs) and Generalized Linear 

Mixed Models (GLMMs), capable of interpreting nonlinear relationships and lag in time 

series data. Machine learning techniques such as Recursive Partitioning and Random 

Forests allow classification of a large amount of data in order to predict the effect on one 

variable due to changes in another variable. 

Many statistical modeling techniques and almost all machine learning (ML) 

methods are very computationally-intensive, but the availability of easy-to-use and 

optimized libraries in the R statistical language [R Core Team, 2013] make their 

application relatively straightforward. Robust validation methods such as k-fold cross-

validation allow the predictive skill of statistical models to be tested.  

 

2.3. Application of remote sensing data  

to snowmelt modeling 

Snowmelt modeling, like most parts of hydrological modeling, is extremely 

dependent on accurate measurement of various parameters and state variables for 

accurate results. Various snow data measurements, like snow water equivalent (SWE), 

snow albedo, snow depth and snow cover, have historically been made using snow course 

data. The SWE data used in the study have been obtained from a snow telemetry 

(SNOTEL) site operated by the United States Natural Resources Conservation Service 

(NRCS), collected using a snow pillow and transmitted using telemetry [Schaefer and 

Paetzold, March 2000].  Field measurements, unless automated like SNOTEL, can be 

cumbersome and expensive. Also at best they represent point data at the station of 

measurement, and not spatial data about the watershed of interest. 

Remote sensing allows hydrologists to understand the spatial and long-term 

temporal trends in snow properties and behavior, especially in remote alpine watersheds. 

Data can be collected either from low-flying aircraft, or from satellites sources like 
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Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor 

Microwave/Imager (SSM/I), Advanced Microwave Scanning Radiometer - Earth 

Observing System (AMSR-E) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) [WMO]. Data are collected in various bands of the electromagnetic spectrum 

like visible, shortwave, infrared, thermal infrared, microwave and gamma [WMO]. 

Although there are many advantages with using satellite-sensed data for snowmelt 

studies, there are also certain challenges to overcome. Such data can sometimes be 

temporally infrequent, as in the case of LANDSAT, with a temporal resolution of 16 

days. Although methods have been developed to distinguish various surfaces in satellite 

images [Crane and Anderson, 1984; Dozier and Marks, 1987], problems still persist when 

substantial forest cover, shadows and rocks are present [WMO]. Cloud cover can also be 

a significant issue, with only certain bands in the spectrum capable of differentiating 

between clouds and snow. Even with these challenges, remotely-sensed data provide the 

most convenient and spatially accurate data for understanding the role of snowmelt in 

hydrology. 

Datasets widely used in snow hydrology are the MOD- and MYD- suites of 

products from the Terra MODIS and Aqua MODIS satellites, respectively. The MOD- 

and MYD- suites include snow cover data with different spatial resolutions, ranging from 

500 m on a sinusoidal projection, to 0.050 and 0.250 resolution on a geographic Lat/Lon 

projection. Temporal resolutions range between daily and monthly for various products in 

the suite [Hall and Riggs, 2007]. This particular study has extensively used data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) platform, specifically from 

the MCD43A3 Albedo Product (MODIS/Terra Albedo Daily L3 Global 500m SIN Grid) 

dataset [Professor Schaaf’s Lab].   

Along with trying to answer some important questions on water supply reliability 

under conditions of pollutant deposition on snow, this study also attempts to determine 

the applicability of MODIS albedo data for long-term hydrological analysis. Future work 
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is also expected to include other satellite datasets in improving the process of connecting 

air pollution, contaminant deposition, snow processes and runoff.   

 

2.4. Black carbon (BC) deposition scenarios 

Due to exact black carbon (BC) concentrations for the Wasatch not being 

available, it was not possible to determine albedo impact under contaminant deposition as 

it was initially planned in the study. The Snow, Ice, and Aerosol Radiation (SNICAR) 

model (Flanner et al., 2007; Flanner at el., 2009) uses a two-stream radiative transfer 

solution from Toon et al. (1989) to calculate the albedo of snow for various combinations 

of deposited pollutants. The SNICAR model allows for the calculation of albedo affected 

by black carbon deposition, and the SNICAR analysis provided in this study can be used 

to determine the impact on Wasatch albedo once BC concentrations are determined.  

Future work is expected to use these concentrations to formulate scenarios for BC 

deposition and to understand water system reliability under such circumstances. 

The albedo values used in this study, a daily time-series obtained from MODIS satellite 

data, represent the actual state of albedo in the watershed. That is, the time-series 

represents albedo under current deposition conditions and can be used as the ‘base case’ 

for any scenario formulation. Once actual BC concentrations are obtained, for example 

500 ppb (parts per billion), SNICAR can then be used to generate the albedo for that 

concentration of BC, and for concentrations of BC lower than (200 ppb, 300 ppb etc.) and 

greater than (800 ppb, 1000 ppb etc.) the actual concentration. These albedo values could 

then be used to generate scenarios based on the percentage change of albedo from the 

base case. 

This study presents an albedo change analysis that is disconnected from the 

SNICAR model. The SNICAR analysis presented in this paper is only meant to 

demonstrate the model’s capability in determining albedo under various BC deposition 

conditions. The statistical and machine learning models described in this paper operate 
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independently, and are used to track snowpack state change (via SWE) and streamflow 

variations. The models operate based on theoretical percentage changes in albedo.  

In order to understand the impact of varying albedo on snowpack state and streamflow, 

various albedo scenarios were applied to both models developed. As described earlier, 

due to lack of black carbon (BC) data for the Wasatch, these scenario represent 

percentage change in albedo over each year. If continuous (time-series) or frequent BC 

data becomes available at some point, the input albedo values to the models can be 

modified appropriately using the SNICAR model results described in this study. 

The models were run using ‘percentage-change in albedo’ scenarios of +10%, 

+5%, -5% and -10%. The albedo time-series was only modified for the months of 

January, February, March, April, May, November and December each year, as snowpack 

in the Wasatch is not known to commonly exist in noticeable amounts outside these 

months. If there is assumed to be no BC in the snow, albedo change scenarios of -10% 

and -5% would represent deposition of about 1500 ppb and 500 ppb BC, respectively, 

based on the SNICAR model results. Similarly, the +10% and +5% albedo change 

scenarios would then represent a change from 1500 ppb and 500 ppb deposition to zero 

BC deposition. Other change scenarios could be used to understand the effect on SWE 

due to relatively lower or greater albedo impacts.  

 

2.5. Use of the SNICAR snow albedo model to estimate the  

sensitivity of broadband snow albedo to various pollutants  

and varying concentrations 

Pollutants in the snow can include BC, dust and volcanic ash. Inputs to the model 

include type of incident radiation (‘Diffuse’ or ‘Direct’), solar zenith angle (if radiation is 

direct), snow grain effective radius, snowpack thickness, snowpack density and albedo of 

underlying ground. Concentrations of uncoated and sulfate-coated BC, dust of various 

sizes and volcanic ash can be entered to calculate the effects of impurities on snow 
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albedo. Although an online interface for SNICAR exists (http://snow.engin.umich.edu/), 

a MATLAB script provided by Dr. Mark Flanner (Atmospheric, Oceanic and Space 

Sciences, University of Michigan) was used for the purpose of this study. Appendix B 

lists some of the parameter values used. 

SNICAR was run using varying uncoated BC concentrations from 0 to 3000 ppb 

(parts per billion). Figure 2 graphically shows the depletion of snow albedo with 

increasing BC. Appendix B shows the % change for each 100 ppb increase in BC 

concentration, both from the previous BC concentration and from zero BC concentration. 

The albedo calculated by SNICAR for zero BC concentration is 0.8273, which drops to 

0.8105 with 100 ppb BC (an approximate 2% reduction in albedo).  

 

 

Figure 2: Effect of varying black carbon concentrations on snow albedo 
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It can be observed that although the albedo keeps decreasing with increasing BC 

deposition, the rate of albedo depletion slows down. The albedo only decreases between 

0.3-0.4 % over the previous BC concentration, once BC exceeds 1500 ppb in the snow. 

Even then, the percentage of albedo depletion from zero albedo in snow is significant. It 

can be seen that with 500 ppb BC in snow, albedo is depleted 5.34% from zero BC in 

snow. The depletion is 7.39% and 9.31%, for 1000 ppb and 1500 ppb, respectively. Snow 

albedo is reduced by 11.57% and 14.31%, with 2000 ppb and 3000 ppb BC, respectively. 

 

2.6. Description of data 

2.6.1. MODIS albedo data: The MCD43A3 dataset 

Albedo can be defined as the ‘ratio of upwelling to downwelling radiative flux at 

the surface’, with downwelling flux being a sum of a direct component and a diffuse 

component [Professor Schaaf’s Lab].  White-sky albedo is the bihemispherical 

reflectance under conditions of isotropic illumination, with the angular dependency 

removed. Black-sky albedo is the directional hemispherical reflectance computed at local 

solar noon [MODIS-Atmosphere, NASA GCFC]. The white-sky and black-sky albedos 

allow the actual albedo to be calculated for a number of illumination conditions [Roman 

et al., 2010], by interpolating as a function of the diffuse skylight [Lewis and Barnsley, 

1994].  

The MCD43A3 Albedo Product, in the MODIS/Terra Albedo Daily L3 Global 

500m Sinusoidal Grid, provides the white-sky and black-sky albedos (at local solar 

angle) for MODIS bands 1-7 as well as for three broad bands ((0.3-0.7µm, 0.7-5.0µm and 

0.3-5.0µm) [Professor Schaaf’s Lab].  The shortwave (0.3-5.0µm) broadband domain is  

the most important for this study, as it primarily characterizes the total energy reflected 

by the earth’s surface [Liang and Walthall, 1999].  Version v006 MCD43A3 data for 

MODIS h09v04 grid (containing Utah) were obtained from University of Massachusetts, 

Boston [Professor Schaaf’s Lab] as daily HDF (Hierarchical Data Format) files. Figure 3  
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Figure 3: MCD43A3 band 29 (shortwave broadband white-sky albedo) for January 1, 

2009 (h09v04 grid) 

 

shows a sample MCD43A3 file for the h09v04 grid.  

White-sky and black-sky albedos were extracted from MCD43A3, for all days in 

2001-2013. Within each HDF file, shortwave broadband white-sky and black-sky albedos 

are specified as sub-datasets 29 and 19, respectively. The albedo is scaled down by a 

factor of 1000, with ‘no value’ pixels indicated by a value of 32766. ArcMap’s Model 

Builder was used to extract the two sub-datasets, clip each file to the extent of the study 

watershed and convert to NetCDF format for analysis with R. Figure 4 shows the Model 

Builder schematic used for this process, and Figure 5 shows a sample of white-sky albedo 

extracted for the study watershed using the Model Builder model. A script written in R, 

utilizing the ncdf package [NCDF], was used to extract spatially-averaged (mean) albedo 

from each clipped NetCDF file. The script is shown in Appendix D.  
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Figure 4: ArcMap ModelBuilder tool used to extract albedo data from HDF files 

 

Figure 5: Sample white-sky albedo extracted from MCD43A3 band 29 (January 1, 2009) 

for Parleys watershed (albedo scaled up by 1000) 
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An analysis of spatially-averaged albedo extracted from MCD43A3 shows close 

correlation between white-sky and black-sky albedo, especially during periods of dense 

snowpack (Figure 6). The Pearson's product-moment correlation test, a measure of linear 

correlation, on the two albedos provides a correlation value greater than 0.99, with a p-

value < 2.2e-16. For the purpose of this study, only white-sky albedo will be considered 

so as to simplify analysis. Also, the method of spatial averaging is assumed to capture the 

temporal trend of the albedo and to suffice for modeling. This assumption might be 

considered relevant in this study due to the fact that all other data used, from the 

SNOTEL site, EPA site and streamflow gage, are also point-measurement data. Future 

studies could benefit from integrating spatially varying albedo in the modeling 

framework, or by understanding the variation between spatially-averaged albedo and 

point albedo at various locations on the watershed.  

 

 

Figure 6: Correlation between mean white-sky and mean black-sky albedo for Parleys 

Creek (albedo derived from MCD43A3 dataset) 
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2.6.2 SNOTEL data (precipitation, temperature and snow water equivalent) 

SNOTEL is a system of automated sensors that measure snowpack and other 

related climate data, operated by the Natural Resources Conservation Service (NRCS) of 

the United States Department of Agriculture (USDA). There are more than 600 SNOTEL 

(snow telemetry) sites in 13 states. Variables measured by the SNOTEL network include 

snow depth, soil moisture and temperature, precipitation, wind speed, solar radiation, 

humidity and atmospheric pressure. For this study, data were obtained from SNOTEL site 

684 ‘Parleys Summit’ located at latitude 40 deg 46 min N and longitude 111 deg 38 min 

W, at an altitude of 7500 feet (2286 meters). Figure 1 shows the location of the SNOTEL 

site. The station has been reporting since 1978, with a combination of daily and hourly 

sensors.  

Daily accumulated precipitation, average temperature and snow water equivalent 

data from 2001-2013 were obtained in the form of CSV files from the station’s web 

interface (http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=684), with one CSV file for 

each year. An R script (Appendix E) was used to automate the import process to R, the 

interpolation of missing data and the conversion of accumulated precipitation to 

continuous measurements. Appendix C shows the extracted precipitation, temperature 

and snow water equivalent (SWE) data, respectively. 

 

2.6.3 Streamflow data for Parleys Creek 

Salt Lake City Department of Public Utilities (SLCDPU) provided streamflow 

data for Parleys Creek from 2001-2013, for a gauging station located on Lamb’s Creek at 

Latitude 40.754761 and Longitude 111.708534. Lambs Creek and Alexander Spring 

Creek combine with Parleys Creek before it drains to the Mountain Dell Reservoir, and 

the gauging station is located after this merging. Figure 1 shows the location of the 

gauging station, and Appendix C shows the streamflow data extracted from the files 

provided by SLCDPU. 

http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=684
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Flows in the Parleys Creek watershed are known to exhibit distinct springtime 

peaks typical of snowmelt-driven systems [Salt Lake City, 1999], with wide variability 

among year-to-year peak flows. Flows in the water years 2005-2006, 2006-2007 and 

2011-2012 are significantly higher compared to other years, driven by greater snowpack 

and possible mid- and late-winter storms. Appendix C shows discharge in Parleys Creek 

for the years 2002, 2005 and 2008, respectively.  

It was observed that some years, like 2002, have a fairly steep rise towards peak 

discharge, followed by an equally steep drop towards summer flows. The steep drop 

possibly indicates that spring temperatures were relatively higher, with no spring-time 

snowstorms, and this led to rapid snowpack depletion. Other years, like 2005, exhibited 

less drastic changes, but also some substantial late-spring and early-summer streamflow 

changes. These changes were possibly driven by storms, and by sudden changes in air 

temperature. For certain years, for example 2008, it was difficult to accurately assign a 

pattern to streamflow. Such years exhibited numerous drops and rises in streamflow, 

possibly driven by severe storms between May and July.  

Considering that a data-driven modeling approach is used for this study, it is 

essential to note trends such as those mentioned above. A physical model is driven by 

mathematical relationships between various variables, whereas a data-driven approach is 

based on relationships between trends of various variables.  

 

2.6.4. Air quality data (PM 2.5 and PM 10) from EPA 

Black carbon aerosols have been defined as the solid component of PM 2.5, with 

PM 2.5 being particulate matter (PM) with sizes less than 2.5 micrometers. PM 10, 

composed of larger particles and usually representative of dust, have sizes less than PM 

10. The closest US Environmental Protection Agency (EPA) reporting station to the 

Parleys Creek watershed is located at Hawthorne Elementary School, 1675 South 600 

East, Salt Lake City. There is no station reporting continuous air quality at the watershed 
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location, and the EPA site remains the best data source at this moment. 

The station is located at elevation of 4285 feet, at latitude 40.736389 and 

longitude -111.872222. PM 2.5 data were obtained from the ‘Federal Reference Method 

(FRM) Network’ (Parameter code 88101), and PM 10 data were obtained from Parameter 

code 81102 [Utah State DAQ, 2010]. Appendix C shows the PM 2.5 and PM 10 data 

obtained from EPA’s Hawthorne site, respectively.  

 

2.6.5 The combined dataset: parleys_data 

All the variables used for this study were compiled into a single R dataframe, 

parleys_data. Dataframes are the fundamental data structure used within R, and contain 

variables with the same number of rows. They have a class name of “data.frame” within 

R, and each variable in a dataframe is represented by a unique row name [R 

documentation, data.frame {base}].  

In the dataframe, average air temperature is represented by the variable ‘tavg’, 

precipitation by ‘precip’, streamflow by ‘flow’, mean white-sky albedo by ‘mean_wsa’, 

mean black-sky albedo by ‘mean_bsa’, PM 10 by ‘pm10’, PM 2.5 by ‘pm2.5’, snow 

water equivalent by ‘wteq’ and dates by ‘date’. Table 1 shows the summary statistics of 

various continuous, time-series variables in parleys_data. 

Various other temporal variables were also created, in addition to the time-series 

variables. These include the current ‘timestep’ (from 1 to 4748), ‘month_number’ (1-12), 

‘year’ (2001-13), ‘day_ofyear’ (1-365/366) and ‘day_number’ (day of the month). These 

variables were used to include the temporal trends in the statistical models. Certain 

additional variables were added to parleys_data while creating the models, and these are 

separately described in the sections about the models. 

The Pearson product-moment test, using the R function cor() [Becker et al., 1988], 

can be used to understand the correlation between variables. The correlation test provides 

the Pearson correlation coefficient, which falls between +1 and -1 inclusive. A value of 1 
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indicates total positive correlation, 0 indicates no correlation and -1 is total negative 

correlation. Figure 7 shows the correlation values generated for various variable pairs in 

parleys_data, along with a matrix of scatterplots generated using the ggpairs() function [R 

documentation, GGally: Extension to ggplot2]. Table 1 shows summary statistics for 

various variables in parleys_data. 

 PM2.5 and PM10 are observed to be positively correlated with a Pearson 

coefficient of +0.76, indicating that it might be possible to use only one of them while 

modeling the air quality link with albedo. PM2.5 is better correlated (+0.32) with mean 

white-sky albedo (mean_wsa) than PM10 is with the albedo (+0.18). The albedo 

(mean_wsa) is negatively correlated (-0.67) with average temperature (tavg), which is 

expected considering that albedo decreases with increase in temperature and subsequent 

melting. The snow water equivalent (wteq) is negatively correlated with temperature (-

0.53), since SWE decreases with increase in temperature. SWE is also strongly correlated 

with the albedos (+0.76 and +0.73), which points to the fact that air quality and snowpack 

properties follow the same temporal trend. This indicates that adding a temporal trend to 

any model relating both might increase prediction power significantly. Most other 

variable pairs do not have significant coefficients, either due to nonlinear relationships or 

high lag.  

 

2.7. Statistical modeling techniques 

Machine learning is driven by large amounts of data and algorithms, whereas 

statistical modeling is driven by assuming a model for the data [Breiman, 2001]. One 

model used in this study, the Albedo-SWE model, was built using the Random Forests 

machine learning technique. Another model, the Albedo-SWE-Streamflow model, was 

built using the Generalized Additive Models (GAMs) statistical modeling framework. 

Linear regression, in statistics, is a method of modeling the relationship between a 

dependent variable and one or more predictor or explanatory variables. In case a single  
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   Table 1: Summary statistics of variables in parleys_data 

Statistic/ 

Variable 
precip flow tavg pm10 pm2.5 mean 

_wsa 

mean 

_ bsa 

wteq 

Min 0 0.5 -19.2 2 0 0.104 0.104 -0.050 

Max 2.2 134.82 26.5 360 94.2 0.592 0.573 24.45 

Mean 0.089 8.119 5.78 25.67 10.737 0.2 0.194 4.177 

Median 0 4.64 5.1 21 7.1 0.139 0.124 0.25 

Standard 

Devation 

0.203 11.327 9.063 18.844 11.099 0.096 0.102 5.802 

 

 

Figure 7: Correlation scatterplot for parleys_data 
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predictor variable is used, it is referred to as simple linear regression. Use of multiple 

predictor variables is termed multiple linear regression. Such models are usually fitted 

using a least squares approach (ordinary linear regression) or a maximum-likelihood 

estimation approach.  

Simple Linear Regression: 

𝒚 = 𝒃𝒙 + 𝝐 

Multiple Linear Regression: 

𝒚𝒊 = 𝒃𝟎𝒙𝒊𝟎 + 𝒃𝟏𝒙𝒊𝟏 + 𝒃𝟐𝒙𝒊𝟐 … . . +𝝐 

Where; 

x=predictor variable(s) 

y=predicted variable 

b=coefficient of relationship (slope) 

ϵ=model error 

A further extension of ordinary linear regression is the generalized linear model 

(GLM), which allows for the use of predicted (or dependent) variables that are 

necessarily not normally distributed. Such models incorporate other distributions, usually 

of the exponential family, through a link function [Clark]. The link function links the 

mean of the predicted variable to the predictors, and performs internal transformation to 

linearize the relationship between variables. The basic structure of a GLM is shown 

below. 

𝑬(𝒀) = 𝒈−𝟏(𝜼) 

Where; 

E(Y)=expected value of predicted variable Y, generated from a distribution 

η=linear predictor 

g=link function that relates linear model to predicted variable, Y  

Generalized Additive Models (GAMs) are another approach to incorporate 

nonlinear predictors into the modeling framework, while retaining the ability to model 
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non-normal dependent variables. GAMs use smooth functions of the predictor variables 

to determine the predicted variable. Nonparametric methods are used to fit individual 

functions to each predictor, usually in the form of a spline or loess of some form. GAMs 

are extremely useful when there exists a very complex relationship between the predictor 

and predicted variables, which cannot be fitted even using GLMs. The R package mgcv, 

using the function gam, fits a generalized additive model to data with the Generalized 

Cross Validation (GCV) method [R gam {mgcv} documentation]. The function allows 

the user to specify the family to be used for the distribution and link, along with other 

function parameters. The general form of a GAM is given below. 

Example GAM: 

𝒈(𝑬(𝒀)) = 𝒃𝟎 + 𝒇(𝒙𝟏) + 𝒌(𝒙𝟐) 

Where; 

E(Y)=expected value of predicted variable Y, generated from a distribution 

g=link function that relates predictors to predicted variable, Y 

x=predictor variable(s) 

f, k=smoothing functions 

Model selection and validation allows the modeler to choose optimal parameters 

and values, such as the number of predictor variables and model fitting options, in order 

to get the best possible model that generalizes to new data. It is often useful to compare 

the fit and predictive skill of a model, while minimizing model complexity and model run 

time. In many cases, a model fits the training data very well, but is not able to predict 

using new data-a phenomenon referred to as ‘over-fitting’. Measures of model prediction 

error are only useful when combined with a method to test the model using new data.  

In this study, k-fold cross-validation was used as the model validation and 

parameter selection method. This method creates k partitions of the dataset, and k-1 

partitions are used for training the model in each iteration. The remaining one partition is 

used to test the model prediction. This process of iteration can be used to calculate the 
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root mean squared error of prediction (RMSEP) and the r-squared of prediction (r2p) of 

model prediction accuracy, of each combination of model parameters. The best 

combination is the one that either minimizes the RMSEP or maximizes the r2p, with the 

RMSEP a better judge of model prediction accuracy than the r2p [Cornell University, 

2012].  

𝑹𝑴𝑺𝑬𝑷𝒑 = √
∑ (𝒚𝒊 − 𝒚𝒑)

𝟐
 𝒏

𝒊=𝒊

𝒏
 

Where; 

y=actual (real) value of predicted variable (in test set) 

yp=modeled value of predicted variable 

 

𝒓𝟐𝒑 = 𝟏 − 𝑺𝑺 𝒓𝒆𝒔
𝑺𝑺𝒕𝒐𝒕

  

Where;   

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖)2 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑖

 

𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − �̅�)2 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 ∝ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎

𝑖

 

f=modeled value of predicted variable 

y=actual (real) value of predicted variable 

�̅�=mean of actual data 

 

2.8. Machine learning, trees and random forests 

Machine learning is a field of study and development of algorithms that learn 

from data [Kovahi, 1998] to build models that can predict. Designed to make decisions 

based on available data [Simon, 2013], machine learning is both related to and different 

from statistical modeling. It is extremely useful when there are complex interactions 

between the predictor variables, and when the relationship between predictor and 

predicted variables is nonlinear. Machine learning is widely used in computer science, 
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especially in the fields of computer vision, pattern recognition, artificial intelligence and 

data mining. Machine learning is an algorithmic modeling approach, differing from 

statistical modeling because it begins with a black-box assumption of no known 

relationship between predictor(s) and predicted variables [Breiman, 2001]. 

Machine learning methods are usually classified as ‘supervised learning’, 

‘unsupervised learning’ and ‘reinforcement learning’ [Russell et al., 2003]. Supervised 

learning refers to models that develop a function based on some learning data [Mohri et 

al., 2012], in order to make predictions on or classify new data. In unsupervised learning, 

a learning algorithm finds patterns directly in input data. The method used in this study, 

Random Forests, is an ensemble supervised learning technique. Ensemble methods use 

multiple learning algorithms to make decisions [Polikar, 2006]. Such models allow for 

the exploration of model uncertainty, and account for the fact that many weak models 

together can be more robust than a single overfitted model.  

Decision trees is a machine learning technique that uses tree-like models relating 

predictors and predicted variables. Decision trees can be used both for classification and 

regression, and a combination of both is usually referred to as Classification And 

Regression Tree (CART) analysis [Breiman et al., 1984]. A method termed ‘recursive 

partitioning’ is usually used to split the input dataset into the tree’s branches and nodes, 

based on the input data and a purity measure [Strobl et al., 2015]. The algorithm 

progressively splits the independent variable, with the purity of the node calculated at 

each split, and the split with the highest purity kept. The purity measure indicates the 

homogeneity of the data under each node, and is calculated using mean squared error. 

The R language [R Core Team, 2013] has various packages for decision tree modeling: 

the rpart package for CART analysis, the party package for nonparametric regression 

trees and the randomForest package for Random Forests. 

 Random Forests [Breiman, 2001] are designed to build multiple decision trees 

from the training dataset, with each tree constructed using a different bootstrap sample, 
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and using the mean of those trees to make predictions. A common issue with standard 

tree methods is overfitting, in which random relationships result in noisy predictions. 

Random Forests are specifically designed to avoid this problem, which was also an issue 

observed during the GAM model formulation in this study. Random Forests are 

implemented in R using the randomForest package [Liaw and Wiener, 2002], which 

provide methods for creating, comparing, modifying and predicting using random forests. 

Unlike in regression-based models, which use p-values to rank the importance of 

predictor variables, random forests generally use a variable importance measure 

[Breiman, 2001]. The randomForest package contains a very useful method (varImpPlot) 

to plot a dotchart of the variable importance as measured by the forest. Unlike simpler 

tree-based methods, due to the large number of component trees and with each tree 

having a slightly different outcome, it can be difficult to visually interpret the node and 

branches in random forests. Therefore, the variable importance plot was extensively used 

while formulating the A-SWE model to decide which variables were important to 

describe the relationship being modeled, and which variables could be left out. 

 

2.9. Time series models 

Regardless of the technique used (statistical, machine learning or any other), there 

are multiple challenges in modeling time-series data. Each of these challenges can 

sometimes be tackled using multiple techniques, each with its own merits and demerits. 

One major issue with time-series data is that they are often auto-correlated, where the 

value of a variable at a time step is related to its value at one or more preceding time 

steps. A common method to include the auto-correlation effect in the model is to add 

lagged variables as predictor variables. This allows the model to predict the dependent 

variable from both the predictor and from a lagged version of the predictor. 

The above method depends on the assumption that the lag itself is ‘stationary’ 

over time, referring to the fact that its means and variances do not change over time.  
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Nonstationarity can be a bigger challenge to handle, as was observed while building one 

model to predict streamflow for this study (‘3.2. A-SWE-S MODEL’).  Since streamflow 

is a function of various hydrological processes, sometimes driven by reservoir-like 

storage effects, its lags are not stationary. In such cases, simply adding a lagged version 

of the predictor might not improve prediction significantly.   

 



 

 

 

 

CHAPTER 3 

 

MODEL FORMULATION AND VALIDATION 

 

3.1. A-SWE model 

3.1.1 Model formulation 

The A-SWE model was initially built using the Generalized Additive Model 

(GAM) framework, which allows relationships between nonlinear data to be modeled 

using smoothing functions. The model was built using average air temperature (tavg, in 

degrees Celsius) and spatially averaged mean white-sky albedo (mean_wsa) as 

predictors, with the temporal pattern of snowpack represented by a ‘day of the year’ 

component. The GAM performed satisfactorily in terms of model fit, with r2p (R squared 

of prediction) values between 0.49 and 0.87 during k-fold cross-validation using 12 years 

of training data and 1 year of validation data, and explained 85% of the variance in SWE 

(wteq). But the model RMSEP (root mean squared error of prediction) was very high, 

with prediction errors of up to 4.3 inches for some years. Most importantly, the model 

was not able to suitably predict the SWE in the transition between snowpack and no-

snowpack periods. Inclusion of lagged terms for albedo did not significantly improve 

model performance. 

Based on the hypothesis that autocorrelation and significant lag was reducing 

model prediction capability, a Random Forest approach was attempted. A model was 

built using the randomForest package [Liaw and Wiener, 2002], using mean_wsa to 

predict wteq. The yearly albedo cycle was included using the day_ofyear variable. After 

observing that the model was not able to track the albedo transition period and peak 
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albedo perfectly, two new variables were added to the model formulation. The 

max_mean_wsa variable contains the maximum mean_wsa for the calender year, and 

day_sincemaxwsa represents the number of days since the previous peak mean_wsa.  

Further model runs indicated that adding lagged terms for the predictor might 

improve the model, and this was confirmed by the Partial Autocorrelation Function 

(PACF) plot [R Documentation acf{stats}] for mean_wsa (shown in Figure 8).  The 

PACF explains the linear dependence of an element in the series with a previous element 

in the same series, and the ensuing lagged effect, corrected for correlation across shorter 

lags. It can help explain the amount of lag to be added to the model. Based on the PACF 

plot, the first and second lagged terms for mean_wsa (lag1_mean_wsa and 

lag2_mean_wsa) were added to the model. These terms lag the mean_wsa time-series by 

one day and two days, respectively. Appendix F contains the code used to automate the 

calculation of these additional variables. All the variables used in the A-SWE model are 

shown in Table 2. The table also describes the physical meaning of all variables. 

The final model formulation for the A-SWE model is as below: 

swe.rf<-randomForest(wteq ~ day_ofyear + mean_wsa + lag1_mean_wsa + 

lag2_mean_wsa + max_mean_wsa + day_sincemaxwsa, ntree=1000, mtry=3, 

data=parleys_data3) 

Initially the model was built using 500 trees, but the number of trees was 

increased to 1000 to improve model performance. Further increasing the number of trees 

did not decrease mean squared error, which was constant at around 0.19.  Climatic 

variables tavg and precip were added to the model formulation, but were removed when 

it was observed that they were decreasing model accuracy by increasing mean squared 

error to about 0.32. 

The percentage of variance explained by the randomForest model can be obtained 

using the print() command, as shown below. It can be seen that the model explains more 

than 99% of the variance in the predicted variable, using 3 variables at a time to create  
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Figure 8: PACF for mean_wsa 

 

      Table 2: Time series variables used in the A-SWE model 

Variable Description Physical meaning 

Wteq Snow water equivalent 

(inches) 

Predicted variable 

day_ofyear Day of the year (1-

365/366) 

Represents the seasonal cycle 

of the snowpack; acts as a 

proxy for average seasonal 

temperature 

mean_wsa Mean white-sky albedo 

(0-1) 

Main predictor variable 

lag1_mean_wsa Lagged mean white-sky 

albedo (lag=1 day, 0-1) 

Connects the effect of albedo 

lagged by 1 day on current 

snowpack state 

lag2_mean_wsa Lagged mean white-sky 

albedo (lag=2 days, 0-1) 

Connects the effect of albedo 

lagged by 2 days on current 

snowpack state 

max_mean_wsa Maximum mean white-

sky albedo in the 

calendar year (0-1) 

Represents inter-annual 

variability in snowpack 

albedo 

day_sincemaxwsa Days since the mean 

white- sky albedo peaked 

in the previous year  

Represents temporal trend of 

interannual variability in 

snowpack albedo 
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splits in the trees. A variable importance plot shown in Figure 9, generated using the 

varImpPlot() command, visually describes the importance of each variable in increasing 

node purity. It can be observed from the plot that the most important variable for 

increasing node purity (roughly, decreasing the mean squared error) is day_ofyear, 

indicating that the temporal component is essential to model snow processes. The mean 

white-sky albedo (mean_wsa) and its lags are also important, and they are followed by 

the other variables that slightly improve model accuracy. The variable importance plot is 

generally used as a method to select variables for deletion to reduce model run time and 

complexity, but all variables were left in since the model took only about 30 seconds to 

create. 

> print(swe.rf) 

Call: randomForest(formula = wteq ~ day_ofyear + mean_wsa + lag1_mean_wsa + 

lag2_mean_wsa + max_mean_wsa + day_sincemaxwsa, data = parleys_data3,ntree = 

1000, mtry = 3)  

               Type of random forest: regression 

 

 

Figure 9: Variable importance plot for the A-SWE random forest (swe.rf) 
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                     Number of trees: 1000 

No. of variables tried at each split: 3 

          Mean of squared residuals: 0.19478 

                    % Var explained: 99.42 

 

3.1.2 Model validation 

Model validation by k-fold cross-validation was performed to understand the 

year-to-year model prediction accuracy. An R script (shown in Appendix F) was used to 

create the model using 12 years of data and use the remaining 1 year of data to calculate 

SWE (wteq). The code contains a loop to perform this subsampling process for all 13 

years. Figure 10 shows the results of the k-fold cross-validation, with predicted SWE in 

red and actual SWE in black. 

It can be seen that the model predicts SWE remarkably well for certain years like 

2003, 2008 and 2009. Other years like 2004 and 2007 are slightly over-predicted, and 

years like 2010 and 2011 are slightly under-predicted. Some years like 2002, 2005, 2006, 

2012 and 2013 are not predicted very well, with the model unable to track abrupt 

variations in albedo due to winter storms and sudden melt events. The year 2001 is a 

special case, as the model predicts SWE even in the summer months. This can be 

explained by the fact that due to 2001 being the first year in the dataset, the 

day_sincemaxwsa variable could only be approximately calculated since there were no 

data for the melt event in the year 2000. This was expected to confuse the model and 

generate SWE in the summer months, a phenomenon not observed for the other years. 

Overall the A-SWE random forest model performs well for years that follow the 

general snowpack development and depletion temporal trend, and does not for years in 

which the SWE fluctuates due to other factors. Even with this issue, the model is able to 

capture the trends in SWE changes fairly well. Future efforts are planned at improving 

model accuracy in years that do not follow general snowpack depletion trends. 
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Figure 10: k-fold cross-validation of the A-SWE model 

 

3.2. A-SWE-S model 

3.2.1. Model formulation 

The A-SWE-S (Albedo-Snow Water Equivalent-Streamflow) model was earlier 

formulated as the SWE-S model, to use output snow water equivalent from the SWE-S 

model to predict streamflow. The rather complicated lagged and auto-correlated 

relationship between SWE and streamflow resulted in extremely low prediction 

accuracies with the Random Forest approach, and focus was shifted to the Generalized 
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Additive Model (GAM). GAMs allow for nonlinear predictors to be included using 

‘smooth functions’ linked by a ‘link function’ to the predicted variable, and are described 

in the section ‘2.7 Statistical modeling techniques’. 

Some additional variables were obtained for the A-SWE-S model formulation, to 

better simulate the hydrological processes of precipitation, snowmelt, infiltration, base 

flow, evapotranspiration and runoff. Since data for these variables were only available 

from the year 2004, the model was formulated, validated and implemented using data 

from 2004-2013. These additional variables included soil moisture (sms) at 2, 8 and 20 

inches depth, soil temperature (sto) at 2, 8 and 20 inches depth, and snow depth (snwd, in 

inches), and were all obtained from the Parleys Summit SNOTEL site.  The mean white-

sky albedo, in its log10 form, was added to the model to allow streamflow prediction 

under albedo change scenarios. The albedo variable was also added to allow predictions 

independent of the SWE-S model. The AIC() function, which calculates the  ‘Akaike 

Information Criterion’ (Sakamoto et al., 1986), was used to determine the final model 

formulation. AIC allows the modeler to choose the best combination of variables by 

comparing AICs of various model formulations, with the lowest AIC being best. 

Three other variables, precip_memory10, precip_memory15 and 

precip_memory30, were created using the available continuous precipitation data. These 

variables represent ‘precipitation memory’, and are essentially precipitation accumulation 

for 10, 15 and 30 days respectively, after which they reset to zero. They are designed to 

simulate the effects of lagged runoff in the watershed. Also included is ‘precip_accum’, 

which represents the accumulated precipitation reset to zero at the start of each water 

year. 

The final A-SWE-S model formulation is shown below, and the smooth functions 

and number of knots used for each variable are described in Table 3. The table also 

describes the physical significance of each variable. A summary() call  showed that the 

GAM explained 93.7% of the variance in the predicted variable. The R code used to  
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Table 3: Time series variables used in the A-SWE-S model 

Variable Description Smooth 

function 

Number of 

knots 

Physical 

meaning  

lflow (predicted) Log10 of flow - - Predicted 

variable 

day_ofyear Day of the year 

(1-365/366) 

Cubic 

regression 

spline 

(shrinkage 

version) 

100 Represents 

the seasonal 

cycle of 

streamflow 

precip_accum Accumulated 

precipitation 

(inches) 

Cyclic cubic 

regression 

spline 

100 Represents 

long-term 

trends in 

precipitation 

over the 

water year 

day_sincemelt Days since the 

SWE peaked in 

the previous 

year 

Cyclic cubic 

regression 

spline 

100 Represents 

temporal 

trend of 

interannual 

variability in 

snowpack 

depletion 

sms20 Soil moisture 

% at 20” 

Cubic spline 

basis 

150 Represents 

vadose zone 

water 

content 

sto20 Soil 

temperature at 

20” (DegC) 

Thin plate 

regression 

spline 

150 Represents 

ground heat 

flux 

wteq Snow water 

equivalent 

(inches) 

Thin plate 

regression 

spline 

150 Predictor 

variable 

sms2 Soil moisture 

% at 2” 

Cubic spline 

basis 

150 Represents 

vadose zone 

water 

sms8 Soil moisture 

% at 8” 

Cubic spline 

basis 

150 Represents 

vadose zone 

water 

content 

log10mean_wsa Log10 of mean 

white-sky 

albedo 

 

 

Cubic spline 

basis 

100 Predictor 

variable 
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Table 3 (Continued): 

Variable Description Smooth 

function 

Number of 

knots 

Physical 

meaning 

precip_memory15 Precipitation 

accumulation 

over each 15 

day period 

Thin plate 

regression 

spline 

40 Represents 

the short 

term trends 

in 

precipitation; 

represents to 

ET and 

ponding 

precip_memory10 Precipitation 

accumulation 

over each 10 

day period 

Thin plate 

regression 

spline 

40 Represents 

the short 

term trends 

in 

precipitation; 

represents to 

ET and 

ponding 

 

precip_memory30 Precipitation 

accumulation 

over each 30 

day period 

Thin plate 

regression 

spline 

40 Represents 

the short 

term trends 

in 

precipitation; 

represents to 

ET and 

ponding 

Snwd Snow depth 

(inches) 

Thin plate 

regression 

spline 

50 Additional 

snowpack 

prediction 

variable  
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generate various additional variables for the model, along with other model code and 

output, is given in Appendix H.  

flow.gam = 

gam(lflow~s(day_ofyear,bs='cc',k=100)+s(precip_accum,bs='cc',k=100)+s(day_sincemel

t,bs='cc',k=100)+s(sms20,bs='cr',k=150)+s(sto20,k=150)+s(wteq,k=150)+s(sms8,bs='cr',

k=150)+s(sms2,bs='cr',k=150)+s(log10mean_wsa,bs='cr',k=100)+s(precip_memory15,k=

40)+s(precip_memory10,k=40)+s(precip_memory30,k=40)+s(snwd,k=50),data=parleys_

data3,family=gaussian) 

 

3.2.2. Model validation 

The A-SWE-S model was validated for the 10 years of data available, using k-

fold cross-validation. Appendix H contains the code used to perform the validation, and 

Figure 11 shows the results. It can be observed that the model is able to predict the 

general trend of streamflow each year with fairly good accuracy, except for the first year 

of record (2004). Peaks and drops in the actual streamflow are reflected in the modeled 

streamflow, with a certain amount of lag. This lag is especially pronounced in the year 

2011. Future model improvement efforts are planned at further reducing the effect of lag  

and autocorrelation, which is a frequent challenge to statistical modeling of complex 

time-series data. Unlike the A-SWE Random Forest, due to insufficient accuracy with 

tracking the end of spring streamflow, the A-SWE-S GAM will only be used to model the 

effect of albedo change on peak runoff for this study. This can be used in conjunction 

with the A-SWE model results to understand dust deposition impacts on snowpack-

driven streamflow.  
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Figure 11: k-fold cross-validation of the A-SWE-S model 

 

 



 
 

 

 

 

CHAPTER 4 

 

RESULTS 

 

Figure 12 diagrammatically describes the modeling process used for this study. 

Table 4 describes the albedo change impacts on SWE. Figures 13, 14, 15 and 16 show 

plots of predicted SWE, for various scenarios, of years 2002, 2005, 2008 and 2012. 

Appendix G contains plots for all the other years. It was observed that SWE under 1.1x 

(+10%) albedo change reduces to zero on an average 3-4 weeks later than actual SWE. 

The delay in SWE reaching zero, representing the end of the snowpack, was as high as 6 

weeks in the year 2005 for 1.1x albedo, compared to actual albedo. SWE under 1.05x 

(+5%) albedo change was seen to reach zero on an average 2-3 weeks later compared to 

actual albedo. Under albedo decrease conditions, representing an increase in BC 

deposition, it was seen that SWE under 0.95x (-5%) and 0.90x (-10%) scenarios was 

closer to actual SWE for most years. Under such scenarios, the snowpack was either 

depleted on an average between 1-2 weeks earlier compared to actual conditions or 

matched the actual snowpack depletion time. Although there were years in which 

depletion under the 0.90x scenario was earlier than under the 0.95x scenario by a few 

days, this trend was not consistent. This indicates that beyond a certain amount of 

snowpack depletion, any further reduction in albedo might not have a great impact on 

SWE due to the low surface area of snow present.   

Since the A-SWE-S model was not able to track the end of the melt season 

accurately and suffered from errors due to lagged effects, it was only used to understand 

if peak discharge varied due to albedo change. The model was used to predict flow under
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Figure 12: Modeling schematic 
 

 

Table 4: Albedo change impact on the snowpack 

Albedo 

Scenario 

Deposition 

of black 

carbon 

Change from ‘Base’ scenario Impact on SWE 

depletion 

1.10x -1500 ppb 1500 ppb deposition to zero 

deposition 

3-4 weeks later 

1.05x -500 ppb 500 ppb deposition to zero deposition 2-3 weeks later 

Base (1x) - - - 

0.95x +500 ppb Zero deposition to 500 ppb deposition 1-2 weeks earlier 

0.90x +1500 ppb Zero deposition to 1500 ppb 

deposition 

1-2 weeks earlier 
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Figure 13: Predicted SWE for year 2002 

 

 

Figure 14: Predicted SWE for year 2005 
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Figure 15: Predicted SWE for year 2008 

 

 

Figure 16: Predicted SWE for year 2012 
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1.1x, 1.05x, 1x, 0.95x and 0.90x mean white-sky albedo (mean_wsa) conditions.  The 

change in sum of predicted streamflows (Σflow) was calculated to vary between +218 cfs 

and -71 cfs for various years, relative to the actual streamflow predicted (1x).  

Figures 17 shows the histograms of 1.1x and 1x scenarios obtained by this 

analysis for year 2005, and both plots can visually be interpreted as being similar. A 

similar phenomenon was observed for the other years, and was confirmed using a two-

sample t-test. Therefore, the variations in flow due to albedo variations are either too 

minimal to be statistically significant, or the model is not able to predict flow under such 

variations. 

 

 

Figure 17: Histograms of flow results from A-SWE-S model (1.1x and 1x albedo) 



 
 

 

 

 

CHAPTER 5 

 

CONCLUSIONS 

 

This study, unique in its combined analysis of air quality and hydrology, resulted in many 

useful conclusions about the impact of albedo change on snowpack state and streamflow 

in the Wasatch. A very important finding was that snowpack was found to be depleted 2-

4 weeks later under decreased black carbon deposition, and 1-2 weeks earlier due to 

elevated black carbon deposition, compared to respective base conditions. The Parleys 

Creek watershed is only one among four major watersheds that supply potable water to 

Salt Lake City, and the modeling techniques used in this study can be applied to the other 

watersheds. Results from this study are planned to be used to drive a systems model of 

the city’s water supply, to understand the impact of black carbon deposition on water 

system reliability. This analysis will also be conducted under climate change scenarios, to 

quantify dual deposition and climate impacts. The study also explored the applications of 

long-term MODIS albedo datasets in hydrology, and future efforts will look at furthering 

the application of satellite remote sensing datasets in research involving contaminant 

deposition on snow. Future work is targeted at improving the prediction models, 

especially the flow prediction model. The models, unique in their aspect of application of 

advanced statistical and machine learning techniques, can be further improved by better 

accounting for lagged and autocorrelation. Also the models, constrained under the 

variable range used to build them, could be tested and improved using data with greater 

variability or random sampling. With the availability of reliable BC data in the future, it 

might be possible to analyze flow variation trends under actual deposition conditions.



 
 

 
 
 

   

 

APPENDIX A  

 

ANALYSIS OF AIR QUALITY IN SALT LAKE CITY 

 

Table A1: PM2.5 exceedance in Salt Lake City from 2001-13 

Year Number of days 

PM2.5 > 35 µg 

m−3 

Number of days 

PM2.5 > 60 µg 

m−3 

2001 25 9 

2002 26 6 

2003 5 0 

2004 36 12 

2005 22 1 

2006 10 0 

2007 18 7 

2008 10 1 

2009 16 4 

2010 15 4 

2011 9 2 

2012 0 - 

2013 35 5 
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Figure A1: PM2.5 in 2004  

 

 

Figure A2: PM2.5 in 2007 
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Figure A3: PM2.5 in 2012 

 

 

Figure A4: PM2.5 in water year 2008-09 
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Figure A5: PM2.5 in water year 2011-12 

 

 

 

 

 



 

 
 
 

 

 

APPENDIX B 

 

SNICAR ANALYSIS 

 

Table B1: Parameters used for SNICAR analysis 

Parameter Value/Selection used 

Type of incident radiation Direct-beam incident flux 

Two-stream approximation type Hemispheric Mean 

Broadband albedo of underlying surface 0.25 

Cosine of solar zenith angle for direct-

beam 

0.5 

Number of snow layers 2 

Snow layer(s) thickness 0.02, 9.98 

Snow density of each layer  150 kg/m3 

Snow effective grain size for each layer 100 microns 
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Table B2: Change in snow albedo due to varying black carbon concentrations 

BC conc  

(ppb or 

ng/g) 

Albedo Change over 

previous BC 

concentration 

% Change 

over previous 

BC 

concentration 

Change 

from zero 

BC 

% Change 

from zero 

BC 

0 0.8273 0 0 0 0 

100 0.8105 -0.017 -2.03 -0.017 -2.03 

200 0.8016 -0.009 -1.10 -0.026 -3.11 

300 0.7946 -0.007 -0.87 -0.033 -3.95 

400 0.7885 -0.006 -0.77 -0.039 -4.69 

500 0.7831 -0.005 -0.68 -0.044 -5.34 

600 0.7782 -0.005 -0.63 -0.049 -5.93 

700 0.7737 -0.004 -0.58 -0.054 -6.48 

800 0.7695 -0.004 -0.54 -0.058 -6.99 

900 0.7655 -0.004 -0.52 -0.062 -7.47 

1000 0.7617 -0.004 -0.50 -0.066 -7.93 

1100 0.7582 -0.004 -0.46 -0.069 -8.35 

1200 0.7548 -0.003 -0.45 -0.073 -8.76 

1300 0.7515 -0.003 -0.44 -0.076 -9.16 

1400 0.7484 -0.003 -0.41 -0.079 -9.54 

1500 0.7453 -0.003 -0.41 -0.082 -9.91 

1600 0.7424 -0.003 -0.39 -0.085 -10.26 

1700 0.7396 -0.003 -0.38 -0.088 -10.60 

1800 0.7369 -0.003 -0.37 -0.090 -10.93 

1900 0.7342 -0.003 -0.37 -0.093 -11.25 

2000 0.7316 -0.003 -0.35 -0.096 -11.57 

2100 0.7291 -0.003 -0.34 -0.098 -11.87 
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Table B2 (Continued):  

BC conc  

(ppb or 

ng/g) 

Albedo Change over 

previous BC 

concentration 

% Change 

over previous 

BC 

concentration 

Change 

from zero 

BC 

% Change 

from zero 

BC 

2200 0.7266 -0.002 -0.34 -0.101 -12.17 

2300 0.7243 -0.002 -0.32 -0.103 -12.45 

2400 0.7219 -0.002 -0.33 -0.105 -12.74 

2500 0.7196 -0.002 -0.32 -0.108 -13.02 

2600 0.7174 -0.002 -0.31 -0.110 -13.28 

2700 0.7152 -0.002 -0.31 -0.112 -13.55 

2800 0.7131 -0.002 -0.29 -0.114 -13.80 

2900 0.711 -0.002 -0.29 -0.116 -14.06 

3000 0.7089 -0.002 -0.30 -0.118 -14.31 

 



 

 
 
 

 

 

APPENDIX C 

 

ADDITIONAL GRAPHICS OF VARIOUS DATASETS 

 

 

Figure C1: Daily precipitation data from Parleys Summit SNOTEL 

 

Figure C2: Daily average temperature data from Parleys Summit SNOTEL 
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Figure C3: Daily SWE data from Parleys Summit SNOTEL 

 

 

Figure C4: Daily streamflow (discharge) data for Parleys Creek 
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Figure C5: Discharge for 2002 

 

 

Figure C6: Discharge for 2005 
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Figure C7: Discharge for 2008 

 

 

Figure C8: Daily PM2.5 data from EPA's Hawthorne Site 
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Figure C9: Daily PM10 data from EPA's Hawthorne Site 



 

 
 
 

 

 

APPENDIX D 

 

R SCRIPT USED FOR EXTRACTION OF MEAN ALBEDOS 

 

#Load required libraries;install them prior to running code 

library(ncdf) 

library(pROC) 

#............................................. 

#MODIS NetCDF file statistics calculator updated with clock,save folder select and 

better file name appending.  

# ***Doesn't remove NAs and Infs from CSV file. Does not plot*** 

#............................................. 

#Script calculates statistics (max,min, mean and sd) for MODIS satellite image files files 

in NetCDF3 format. Use ArcGIS to convert MODIS Tif files to 

#NetCDF if required. Check consistency of NetCDF files before using script. The script 

creates a data frame containing julian year, julian day of the year, 

#actual dates, mins, maxes, means and sds for all the NetCDF files. It also creates a CSV 

from the data frame in a sub-folder of the folder- 

#containing the netcdf files. 

#(Use Panoply NetCDF reader or the ncdf library in R to check NetCDF file before 

running script. Check its variable names and other data before using script) 

#.......................................................... 

#Edit below before running script 

folder_path<-("F:/Research/Statistical modeling/MCD43A3 Parleys NetCDF/Band29 
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SW WSA Parleys/clipped_netcdf") #Set to file path containing only .nc netcdf3 files 

variable='Albedo' #Edit to the name of the variable in netcdf files to calculate statistics 

for 

savefile_name<-'MCD43A3 Albedo Band29 WSA 2000-13 Parleys Creek.csv' #Edit to 

change CSV save file name 

savefolder_name<-'Statistics-MCD43A3 Albedo Band29 WSA 2000-13 Parleys Creek' 

#Edit savefolder_name to change name of folder that will contain the CSV file and plots 

# plotname_append<-'_WSA_band29_' #Edit to change what will be appended to the 

plots generated by script 

# title_append='2000-13 Parleys Creek, MODIS Band 29 Shortwave White Sky Albedo' 

#Edit this variable as required; this is used as subtitle for each plot 

#.......................................................... 

ptm <- proc.time() #Start clock 

setwd(folder_path) 

files <- list.files(path=folder_path, pattern=".nc", all.files=T, full.names=F, no.. = T) 

#creates list of netcdf files in folder 

number<-length(files) #number of netcdf files in folder 

years <- rep(NA, number) #creates vector for storing years 

days <- rep(NA, number) #creates vector for storing julian days 

actual_dates <- vector() #creates vector for storing actual date in YYYY-MM-DD format 

mins <- rep(NA, number) #creates vector for storing minimum values 

maxes <- rep(NA, number) #creates vector for storing maximum values 

means <- rep(NA, number) #creates vector for storing mean values 

sds <- rep(NA, number) #creates vector for storing standard deviation values 

count<-0 #Initialize variable to count number of files processed 

for(r in 1:number) #loop over all netcdf files in folder 

{ 



62 
 

 

  ncin<-open.ncdf(files[r]) #opens netcdf file 

    julian_date<-substr(files[r],10,16) #extracts julian date YYYYDDD 

  actual_date<-as.POSIXct(julian_date, format="%Y %j") #converts julian date to 

YYYY-MM-DD format 

  current_year<-substr(files[r],10,13) #reads current file's year. The two numeric values in 

substr represent starting and ending position in file name for year extraction. 

  current_day<-substr(files[r],14,16) #reads current file's julian day. The two numeric 

values in substr represent starting and ending position in file name for julian day 

extraction. 

  x<-get.var.ncdf(ncin,variable) #reads in current file into x; the second parameter 

represents variable name to be read from NetCDF 

  x[x<0] <- NA #converts all negative values to NA-this is required because NA values 

are automatically converted to -128 when the netcdf file is read into R 

   min_val<-min(x,na.rm=TRUE) #calculates minimum value from file, ignoring NA 

values 

  max_val<-max(x,na.rm=TRUE) #calculates maximum value from file, ignoring NA 

values 

  mean_val<-mean(x,na.rm=TRUE) #calculates mean value from file, ignoring NA 

values 

  sd_val<-sd(x,na.rm=TRUE) #calculates sd value from file, ignoring NA values 

close.ncdf(ncin) #Closes netcdf file to prevent memory overload 

  years[r]<-current_year #saves current file's year into vector 

  days[r]<-current_day #saves current file's julian day into vector 

  actual_date<-format(actual_date,format="%Y-%m-%d") #converts POSIXct class 

object dates to characters for insertion into vector 

  actual_dates<-c(actual_dates,actual_date) #saves current date into vector 

    mins[r]<-round(min_val*0.001,digits=3) #saves current mimimum values into vector, 
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rounding to specified number of digits 

  maxes[r]<-round(max_val*0.001,digits=3) #saves current maximum values into vector, 

rounding to specified number of digits 

  means[r]<-round(mean_val*0.001,digits=3) #saves current mean values into vector, 

rounding to specified number of digits 

  sds[r]<-round(sd_val*0.001,digits=3) #saves current sd values into vector, rounding to 

specified number of digits 

  count<-count+1 #Increment count of files processed 

} 

x<-paste(getwd(),"/",as.character(savefolder_name),sep="") #Create folder path as 

subfolder of working directory to save output 

dir.create(x) #Create subfolder to save output 

#Create data frame containing extracted statistics and save to CSV file 

albedo_values=data.frame(years,days,actual_dates,mins,maxes,means,sds) #creates data 

frame from vectors 

albedo_values$actual_dates<-as.POSIXct(albedo_values$actual_dates,format="%Y-%m-

%d") #changes format of actual_dates in dataframe to POSIXct 

write.csv(albedo_values, file=paste(x,"/",savefile_name,sep="")) #writes CSV file from 

dataframe 

print(paste0("Total number of files processed: ", count)) #Displays number of files 

processed 

# Stop the clock and display elapsed time 

proc.time() – ptm 



 

 
 
 

 

 

APPENDIX E 

 

R SCRIPT USED FOR DATA EXTRACTION FROM CSV FILES 

 

require(zoo) 

#""Read multiple CSVs in a folder and extract the data in them to a single dataframe""# 

#Code by Jai K. Panthail# 

#Code allows to specify how many lines to skip before reading 

#Code allows to specify which columns to read 

#Code allows to specify final column names in saved dataframe 

#To edit: 

#folder_path: path to folder containing CSV files 

#number_columns: number of columns in the CSV file 

#pos_import:the position of columns to import; for example: '2' indicates to import 

second column 

#skip:the number of rows to skip before starting to read data 

#col_names:the vector containing the new names to be given to the imported column 

(optional:required for post-processing below) 

#################"Edit everything below"################################# 

folder_path<-("F:/Research/Statistical modeling-ATPS/Temperature data") 

number_columns<-7 

pos_import=c(2,7) 

skip_count=2 

col_names<-c('date','tavg') 
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df <- data.frame() 

##########################"Main 

Code"#################################### 

import_true<-rep("NULL",number_columns) 

for (r in 1:length(pos_import)){ 

  import_true[pos_import[r]]=NA 

} 

setwd(folder_path) 

files <- list.files(path=folder_path, pattern=".csv", all.files=T, full.names=F, no.. = T) 

#creates list of csv files in folder 

number<-length(files) 

for (i in 1:number){ 

  x<-read.csv(files[i],skip=skip_count,header=T,colClasses=import_true) 

  df<-rbind(df,x) 

} 

####### 

#Post processing: edit as per requirement. This is usually to change column names, to 

convert date to as.Date(), to remove NA values etc 

colnames(df)<-col_names #Change column names to those contained in col_names 

df$date<-as.Date(df$date) #Change date format to as.Date 

df$tavg[df$tavg==-99.9]<-NA #Convert missing values (-99.9, this case) to NA 

df$tavg=na.approx(df$tavg,na.rm=F) #Interpolate NA values using 'zoo' package 

parleys_tavg=df #Save dataframe created from previous steps to final dataframe 

################################################################## 



 

 
 
 

 

 

APPENDIX F 

 

A-SWE MODEL FORMULATION AND K-FOLD CROSS-VALIDATION 

 

##Create variables (day_sincemaxwsa and max_mean_wsa)## 

require(nnet) 

#Calculate day of max mean_wsa each year# 

i=which.is.max(subset(parleys_data,year==2001)$mean_wsa) 

j=which.is.max(subset(parleys_data,year==2002)$mean_wsa) 

k=which.is.max(subset(parleys_data,year==2003)$mean_wsa) 

l=which.is.max(subset(parleys_data,year==2004)$mean_wsa) 

m=which.is.max(subset(parleys_data,year==2005)$mean_wsa) 

n=which.is.max(subset(parleys_data,year==2006)$mean_wsa) 

o=which.is.max(subset(parleys_data,year==2007)$mean_wsa) 

p=which.is.max(subset(parleys_data,year==2008)$mean_wsa) 

q=which.is.max(subset(parleys_data,year==2009)$mean_wsa) 

r=which.is.max(subset(parleys_data,year==2010)$mean_wsa) 

s=which.is.max(subset(parleys_data,year==2011)$mean_wsa) 

t=which.is.max(subset(parleys_data,year==2012)$mean_wsa) 

u=which.is.max(subset(parleys_data,year==2013)$mean_wsa) 

#Creating vector containing days since max mean_wsa each year 

day_sincemaxwsa=c(seq(0,339),seq(0,365-i+j),seq(0,365-j+k),seq(0,365-k+l),seq(0,365-

l+m),seq(0,366-m+n),seq(0,365-n+o),seq(0,365-o+p),seq(0,365-p+q),seq(0,366-

q+r),seq(0,365-r+s),seq(0,365-s+t),seq(0,365-t+u),seq(0,365-u)) 
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parleys_data$day_sincemaxwsa=day_sincemaxwsa 

#Calculation of max albedo each year# 

a=max(subset(parleys_data,year==2001)$mean_wsa) 

b=max(subset(parleys_data,year==2002)$mean_wsa) 

c=max(subset(parleys_data,year==2003)$mean_wsa) 

d=max(subset(parleys_data,year==2004)$mean_wsa) 

e=max(subset(parleys_data,year==2005)$mean_wsa) 

f=max(subset(parleys_data,year==2006)$mean_wsa) 

g=max(subset(parleys_data,year==2007)$mean_wsa) 

h=max(subset(parleys_data,year==2008)$mean_wsa) 

i=max(subset(parleys_data,year==2009)$mean_wsa) 

j=max(subset(parleys_data,year==2010)$mean_wsa) 

k=max(subset(parleys_data,year==2011)$mean_wsa) 

l=max(subset(parleys_data,year==2012)$mean_wsa) 

m=max(subset(parleys_data,year==2013)$mean_wsa) 

#Creating vector containing max mean_wsa for each year 

max_mean_wsa=c(rep(a,365),rep(b,365),rep(c,365),rep(d,366),rep(e,365),rep(f,365),rep(

g,365),rep(h,366),rep(i,365),rep(j,365),rep(k,365),rep(l,366),rep(m,365)) 

parleys_data$max_mean_wsa=max_mean_wsa 

#Create new dataframe (copy of parleys_data) and additional variables 

parleys_data2 = parleys_data 

parleys_data2$lag1_mean_wsa = lag(parleys_data2$mean_wsa,k=1) 

parleys_data2$lag2_mean_wsa = lag(parleys_data2$mean_wsa,k=2) 

#Create new dataframe from parleys_data2, removing NA values 

valID = which(complete.cases(parleys_data2)) 

parleys_data3 = parleys_data2[valID,] 

#Find individual years 
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yrs = unique(parleys_data3$year) 

nyrs = length(yrs) 

#Create arrays to store rmsep and r2p values 

rmsep_array22<-array(NA,nyrs) 

r2p_array22<-array(NA,nyrs) 

#Variables for ggplot2 plotting 

dfyear = NULL 

dftime = NULL 

dfwteq = NULL 

dfpwteq = NULL 

#Load randomForest package 

require(randomForest) 

#k-fold cross-validation using years 

for (y in 1:length(yrs)){ 

  yrID = which(parleys_data3$year==yrs[y]) 

  swe.train = parleys_data3[-yrID,] 

  swe.test = parleys_data3[yrID,] 

  swe.xval<-randomForest(wteq ~ day_ofyear + mean_wsa + lag1_mean_wsa + 

lag2_mean_wsa + max_mean_wsa + day_sincemaxwsa, ntree=1000, mtry=3, 

data=swe.train) 

  swe.pred = predict(swe.xval, newdata=swe.test) 

  rmsep_array22[y] = sqrt(mean((swe.pred - swe.test$wteq)^2)) 

  r2p_array22[y] = summary(lm(swe.pred ~ swe.test$wteq))$r.squared 

  dfyear = c(dfyear, rep(yrs[y], length(swe.pred))) 

  dftime = c(dftime, swe.test$day_ofyear)  

  dfwteq = c(dfwteq, swe.test$wteq) 

  dfpwteq = c(dfpwteq, swe.pred) 
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} 

#ggplot2 plotting 

require(ggplot2) 

png("parleys_wsa_wteq_rf_kfold.png",width = 2000, height = 2000) 

mydf = data.frame(time=dftime, year=dfyear, 

                  wteq=dfwteq, predwteq=dfpwteq) 

x = ggplot(mydf, aes(x=time, y=wteq)) + geom_line() 

x = x + geom_line(aes(x=time, y=predwteq), color="red") 

x = x + facet_wrap(~ year) 

x = x + ggtitle("Predicted (red) vs Actual (black) wteq, k-fold cross validation of A-SWE 

RandomForest") 

x = x + theme(plot.title=element_text(size=20)) 

print(x) 

dev.off() 



 

 
 
 

 

 

APPENDIX G 

 

SWE PREDICTED USING THE A-SWE RANDOM FOREST MODEL 

 

 

Figure G1: SWE prediction for 2001 
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Figure G2: SWE prediction for 2003 

 

 

 

Figure G3: SWE prediction for 2004 
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Figure G4: SWE prediction for 2006 

 

 

Figure G5: SWE prediction for 2007 
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Figure G6: SWE prediction for 2009 

 

 

Figure G7: SWE prediction for 2010 
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Figure G8: SWE prediction for 2011 

 

 

Figure G9: SWE prediction for 2013 

 



 

 
 
 

 

 

APPENDIX H 

 

A-SWE-S MODEL FORMULATION AND K-FOLD CROSS-VALIDATION 

 

######################################## 

##Create variables for use in modeling## 

require(nnet) 

#Calculate day of max wteq each year 

l=which.is.max(subset(parleys_data,year==2004)$wteq) 

m=which.is.max(subset(parleys_data,year==2005)$wteq) 

n=which.is.max(subset(parleys_data,year==2006)$wteq) 

o=which.is.max(subset(parleys_data,year==2007)$wteq) 

p=which.is.max(subset(parleys_data,year==2008)$wteq) 

q=which.is.max(subset(parleys_data,year==2009)$wteq) 

r=which.is.max(subset(parleys_data,year==2010)$wteq) 

s=which.is.max(subset(parleys_data,year==2011)$wteq) 

t=which.is.max(subset(parleys_data,year==2012)$wteq)  

u=which.is.max(subset(parleys_data,year==2013)$wteq) 

#Creating vector containing days since melt started (day after max_wteq) each year 

day_sincemelt=c(seq(0,365-l+m),seq(0,366-m+n),seq(0,365-n+o),seq(0,365-

o+p),seq(0,365-p+q),seq(0,366-q+r),seq(0,365-r+s),seq(0,365-s+t),seq(0,365-

t+u),seq(0,365-u)) 

day_sincemelt=c(seq(311,310+3653-length(day_sincemelt)),day_sincemelt) 
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parleys_data$day_sincemelt=day_sincemelt 

#Calculation of Max Wteq each year 

d=max(subset(parleys_data,year==2004)$wteq) 

e=max(subset(parleys_data,year==2005)$wteq) 

f=max(subset(parleys_data,year==2006)$wteq) 

g=max(subset(parleys_data,year==2007)$wteq) 

h=max(subset(parleys_data,year==2008)$wteq) 

i=max(subset(parleys_data,year==2009)$wteq) 

j=max(subset(parleys_data,year==2010)$wteq) 

k=max(subset(parleys_data,year==2011)$wteq) 

l=max(subset(parleys_data,year==2012)$wteq) 

m=max(subset(parleys_data,year==2013)$wteq) 

#Creating vector containing max WTEQ for each year 

max_wteq=c(rep(d,366),rep(e,365),rep(f,365),rep(g,365),rep(h,366),rep(i,365),rep(j,365),

rep(k,365),rep(l,366),rep(m,365)) 

parleys_data$max_wteq=max_wteq 

#Create copy of parleys_data dataframe 

parleys_data2 = parleys_data 

#5 day precip memory 

precip_memory5=rep(NA,nrow(parleys_data)) 

precip_memory5[1]=0 

c=0 

for (i in 1:nrow(parleys_data)){ 

  #print(i) 

  #print(c) 

  c=c+1 

  if(c==5){ 
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    precip_memory5[i]=0 

    c=0 

  } 

  precip_memory5[i+1]=parleys_data$precip[i+1]+precip_memory5[i] 

} 

precip_memory5=precip_memory5[1:nrow(parleys_data)] 

#10 day precip memory 

precip_memory10=rep(NA,nrow(parleys_data)) 

precip_memory10[1]=0 

c=0 

for (i in 1:nrow(parleys_data)){ 

  #print(i) 

  #print(c) 

  c=c+1 

  if(c==10){ 

    precip_memory10[i]=0 

    c=0 

  } 

  precip_memory10[i+1]=parleys_data$precip[i+1]+precip_memory10[i] 

} 

precip_memory10=precip_memory10[1:nrow(parleys_data)] 

#15 day precip memory 

precip_memory15=rep(NA,nrow(parleys_data)) 

precip_memory15[1]=0 

c=0 

for (i in 1:nrow(parleys_data)){ 

  #print(i) 
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  #print(c) 

  c=c+1 

  if(c==15){ 

    precip_memory15[i]=0 

    c=0 

  } 

  precip_memory15[i+1]=parleys_data$precip[i+1]+precip_memory15[i] 

} 

precip_memory15=precip_memory15[1:nrow(parleys_data)] 

#30 day precip memory 

precip_memory30=rep(NA,nrow(parleys_data)) 

precip_memory30[1]=0 

c=0 

for (i in 1:nrow(parleys_data)){ 

  #print(i) 

  #print(c) 

  c=c+1 

  if(c==30){ 

    precip_memory30[i]=0 

    c=0 

  } 

  precip_memory30[i+1]=parleys_data$precip[i+1]+precip_memory30[i] 

} 

precip_memory30=precip_memory30[1:nrow(parleys_data)] 

#Add precip memory terms to dataset 

parleys_data2$precip_memory5=precip_memory5 

parleys_data2$precip_memory10=precip_memory10 
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parleys_data2$precip_memory15=precip_memory15 

parleys_data2$precip_memory30=precip_memory30 

#Create additional variables# 

parleys_data2$lflow = log10(parleys_data2$flow) 

parleys_data2$log10mean_wsa=log10(parleys_data2$mean_wsa) 

parleys_data3=parleys_data2 

####k-fold cross-validation### 

require(mgcv) 

require(ggplot2) 

#Variables for plotting 

dfyear = NULL 

dftime = NULL 

dfflow = NULL 

dfpflow = NULL 

#Find all years in data set and number of years 

allyrs = unique(parleys_data3$year) 

nyrs = length(yrs) 

#Create knots of various variables in dataset  

day_knots=100 

sincemelt_knots=100 

precip_knots=100 

wteq_knots=150 

sms2_knots=150 

sms8_knots=150 

sms20_knots=150 

sto20_knots=150 

alb_knots=100 
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precip_memory10_knots=40 

precip_memory15_knots=40 

precip_memory30_knots=40 

snwd_knots=50 

#Create arrays to hold rmsep and r2p values for various years 

rmsep_array50<-array(NA,nyrs) 

r2p_array50<-array(NA,nyrs) 

#k-fold 

for (h in 1:nyrs){ 

  print(paste("Year",allyrs[h],h)) 

  yearID = which(parleys_data3$year==allyrs[h]) 

  flow.train = parleys_data3[-yearID,] 

  flow.test = parleys_data3[yearID,] 

  flow.xval = 

gam(lflow~s(day_ofyear,bs='cc',k=day_knots)+s(precip_accum,bs='cc',k=precip_knots)+

s(day_sincemelt,bs='cc',k=sincemelt_knots)+s(sms20,bs='cr',k=sms20_knots)+s(sto20,k=

sto20_knots)+s(wteq,k=wteq_knots)+s(sms8,bs='cr',k=sms8_knots)+s(sms2,bs='cr',k=sm

s2_knots)+s(log10mean_wsa,bs='cr',k=alb_knots)+s(precip_memory15,k=precip_memor

y15_knots)+s(precip_memory10,k=precip_memory10_knots)+s(precip_memory30,k=pre

cip_memory30_knots)+s(snwd,k=snwd_knots),data=flow.train,family=gaussian) 

  flow.pred = predict(flow.xval, flow.test)   

  rmsep_array50[h] = 10**(sqrt(mean((flow.test$lflow - flow.pred)^2, na.rm=TRUE))) 

  r2p_array50[h] = summary(lm(10**(flow.pred) ~ flow.test$flow))$r.squared 

  dfyear = c(dfyear, rep(allyrs[h], length(flow.pred))) 

  dftime = c(dftime, flow.test$day_ofyear)  

  dfflow = c(dfflow, flow.test$flow) 

  dfpflow = c(dfpflow, flow.pred) 
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} 

 min_rmsep=min(rmsep_array50)  

max_rmsep=max(rmsep_array50)  

max_r2p=max(r2p_array50)   

min_r2p=min(r2p_array50) 

optim_r2p<-which(r2p_array50 == max(r2p_array50), arr.ind = TRUE) 

optim_rmsep<-which(rmsep_array50 == min(rmsep_array50), arr.ind = TRUE) 

min_rmsep #Best rmsep 

max_rmsep #Worst rmsep 

max_r2p #Best r2p     

min_r2p #Worst r2p 

optim_r2p #Find combination with maximum r2p (Best model fit combination) 

optim_rmsep #Find combination with minimum rmsep (Combination with least error of 

prediction) 

#Plotting using ggplot2 

png("parleys_wteq_flow_gam_kfold.png",width=2400,height=2400) 

mydf = data.frame(time=dftime, year=dfyear, 

                  flow=dfflow, predflow=10**dfpflow) 

x = ggplot(mydf, aes(x=time, y=flow)) + geom_line() 

x = x + geom_line(aes(x=time, y=predflow), color="red") 

x = x + facet_wrap(~ year) 

x = x + ggtitle("Predicted (red) vs actual (black) flow, k-fold cross-validation of A-SWE-

S GAM") 

print(x) 

dev.off() 

> summary(flow.xval) 

Family: gaussian  
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Link function: identity  

Formula: 

lflow ~ s(day_ofyear, bs = "cc", k = 100) + s(precip_accum, bs = "cc",  

    k = 100) + s(day_sincemelt, bs = "cc", k = 100) + s(sms20,  

    bs = "cr", k = 150) + s(sto20, k = 150) + s(wteq, k = 150) +  

    s(sms8, bs = "cr", k = 150) + s(sms2, bs = "cr", k = 150) +  

    s(log10mean_wsa, bs = "cr", k = 100) + s(precip_memory15,  

    k = 40) + s(precip_memory10, k = 40) + s(precip_memory30,  

    k = 40) + s(snwd, k = 50) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.806713   0.001533   526.3   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 

                      edf Ref.df      F  p-value     

s(day_ofyear)       68.74  98.00 12.610  < 2e-16 *** 

s(precip_accum)     92.20  98.00 47.687  < 2e-16 *** 

s(day_sincemelt)    84.83  98.00 10.777  < 2e-16 *** 

s(sms20)            38.87  48.43  6.987  < 2e-16 *** 

s(sto20)            48.34  59.67  3.948  < 2e-16 *** 

s(wteq)            105.37 122.97  3.569  < 2e-16 *** 

s(sms8)             33.27  41.59  6.798  < 2e-16 *** 

s(sms2)             19.85  24.94  8.259  < 2e-16 *** 

s(log10mean_wsa)    39.98  48.14  3.393 5.36e-14 *** 

s(precip_memory15)  26.56  30.86  2.323 5.04e-05 *** 
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s(precip_memory10)  23.24  27.22  2.331 0.000115 *** 

s(precip_memory30)  34.32  37.14  7.374  < 2e-16 *** 

s(snwd)             28.22  34.01  3.658 6.04e-12 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.924   Deviance explained = 93.7% 

GCV = 0.010423  Scale est. = 0.0085834  n = 3653 
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