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ABSTRACT 
 
 
 

This dissertation utilizes life history theory to describe traits that are derived in 

humans through comparisons with other primate species. Modern human life histories are 

unique in that they are slower, exhibiting distinctly long postmenopausal life spans and 

later ages at sexual maturity as a result of a reduction in adult mortality since the 

evolutionary split the last Pan-Homo ancestor.  Faster reproduction with shorter than 

expected interbirth intervals and earlier weaning ages are likely the result of cooperative 

breeding featuring postmenopausal grandmothers.  Life history traits are distinguished 

from life history related variables (LHRVs) which are used to makes inferences about life 

history variables in extinct taxa.  Body mass LHRV is a strong predictive life history 

proxy, but brain size and dental development are only weakly associated and inferences 

using them should be made with caution.  Age at first birth is a central variable in 

demographic life history models as it identifies the beginning of fertility.  For most 

mammals, age at first birth is closely aligned with the timing of physiological maturity.  

Humans live in varying ecologies that influence maturation rates and have marriage 

institutions that can constrain sexual access to fecund females.  With few exceptions, the 

floor of the range of human age at first birth is remarkably consistent at about 17-18 

years.  Women who experience their first births before this age suffer maternal and infant 

costs.  Heterogeneity, the inherent variation in individual quality, may have an important



 

impact on the timing of life history events.  Individuals of lower quality in severe 

conditions are prone to culling, leaving a subset of robust individuals who thrive in 

measurable ways.  A test of this heterogeneity hypothesis is conducted using a subset of 

historic vital records from the Utah Population Database.  Results show that mothers of 

twins have a more robust phenotype with lower postmenopausal mortality, shorter 

average interbirth intervals, later ages at last birth, and higher lifetime fertility than their 

singleton-only bearing counterparts.  Thus, bearing twins may be a useful index of 

maternal heterogeneity. 
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INTRODUCTION 
 
 
 

 This dissertation describes the pattern of human life history in an evolutionary 

context and highlights the empirical advantages of comparisons between humans and 

nonhuman primates for identifying distinctively human features.  Researchers interested 

in reconstructing human evolutionary history traditionally focus on fossil, archaeological, 

developmental, and ethnographic studies.  Comparative primatology provides an 

additional complimentary line of evidence.  Examination of interspecific variation from a 

phylogenetic perspective reveals the evolutionary history of derived and ancestral traits 

across the order, highlighting those specialized human traits that require explanation.   

Most life history studies focus on females, because female fertility and mortality 

determine population growth and age structure.  Following Schultz’s original illustration, 

the major life events of a female mammal are age at weaning, age at sexual maturity, the 

pace and timing of reproduction, age at end of fertility and lifespan.  The timing of these 

variables are correlated, responding invariantly to shifts in extrinsic adult mortality rates. 

Herein I first compare modern human life histories to those of other great apes 

species to identify those traits that are derived in humans and which are likely to be 

shared by our closest ancestor.  Life history variables are distinguished from life history-

related variables (LHRVs), traits that are linked with, or can be used to make inferences 

about, life history but are not life history traits themselves.  LHRVs are important to 



 

evaluate as they provide an opportunity for estimating life history events that are difficult 

to measure directly as well as providing proxy life history parameters for extinct taxa.  

All great apes exhibit slow life histories but compared to other primates human 

life histories are the slowest, exhibiting long postmenopausal lifespans and later ages at 

first birth, pointing to a reduction in human adult mortality since we shared a last 

common ancestor.  Gorillas, though the largest of the great apes, have relatively fast life 

history pace, likely the result of a specialized folivorous diet.  Humans also exhibit a 

faster than expected reproductive rate with distinctively shorter interbirth intervals and 

early weaning, a pattern likely derived from a unique form of cooperative breeding 

featuring vigorous postmenopausal grandmothers.  

Three LHRVs – body mass, brain growth trajectories, and dental development – 

were compared to the timing of life history variables to determine their usefulness as 

proxies for extinct taxa.  Body mass proved to be the best predictor of life history events, 

while brain growth and dental development are weakly related proxies and inferences 

from them should be made with caution.   

Many researchers claim that the human brain grows at a faster rate and for a much 

longer post-natal period than chimpanzees, resulting in a significantly larger absolute and 

relative adult brain size.  However, few studies have demonstrated this pattern 

empirically.  A common assumption is that human brain growth extends beyond weaning, 

perhaps even until maturity, and accounts for the extended human subadult period.  In 

Chapters 1 and 2, I compile and plot several age-specific brain size datasets for humans 

and chimpanzees.  These data show that chimpanzees and humans have a similar 

percentage of adult brain size at birth, relative rates of brain growth, and achieve adult 

2 



brain size at similar ages, around 3-4 years old.  Both chapters discuss how these data 

challenge many of the assumptions about human altriciality and its influence on delayed 

juvenility. 

 Similarly, paleoanthropologists have high expectations for dental development 

patterns as proxies for life history events.  However, evaluation of life history-related 

variables for extinct hominins in chapter two shows that there is no evidence of any 

hominin taxa possessing a body size, brain size, or dental development pattern reflecting 

the modern human pattern.   

Age at first birth is a central variable in demographic life history models because 

it identifies the beginning of fertility.  For most mammals, age at first birth is closely 

aligned with the timing of physiological maturity.  Humans, however, live in varying 

ecologies that influence maturation rates and have marriage institutions that can constrain 

sexual access to fecund females. Using data from the published literature, in Chapter 3 I 

examine the human pattern of age at menarche, age at first birth, and age at marriage to 

characterize relationships among them. I identify the observed variation in each of these 

variables and review the proximate mechanisms that influence their timing.  These data 

show that, with few exceptions, the floor of the range of human age at first birth is 

remarkably consistent at about 17-18 years old across space and time.  Women who 

experience their first births before this age suffer maternal and infant costs.  I investigate 

the effect of age at marriage on age at first birth and find that, although there is broad 

variation in age at marriage across cultures, there is a strong tendency for marriage age to 

just precede female sexual maturity.  I propose that, in general, female sexual maturity 

determines martial age rather than the reverse.  Comparisons with nonhuman great ape 
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species confirm relatively late ages for all aspects of human sexual maturity, a pattern 

consistent with our slow life history.  Finally, I consider the contribution of demographic 

heterogeneity to secular shifts documented in reproductive timing of women. 

While humans usually give birth to singletons, dizygotic twinning occurs at low 

rates in all populations worldwide.  In Chapter 4, I consider two hypotheses that might 

account for the persistence of twinning.  One hypothesis is that maternal depletion 

reduces the effectiveness of controls on embryo number, so that older mothers in poorer 

condition are less able to reject second embryos.  Alternatively, twinning, while costly, 

may indicate mothers with greater capacity to bear that cost. Drawing from the vast 

natural fertility data in the Utah Population Database (UPDB), we compared the 

reproductive and survival events of 4,603 mothers who bore twins and 54,183 who had 

not.  These mothers were born between 1807 and 1899, lived to age 50, and married once 

to men who were alive when their wives were 50.  Results from proportional hazards and 

regression analyses are consistent with the second hypothesis. Mothers of twins exhibit 

lower post-menopausal mortality, shorter average interbirth intervals, later ages at last 

birth, and higher lifetime fertility than their singleton-only bearing counterparts.  We 

conclude that bearing twins is more likely for those with the robust phenotype and a 

useful index of maternal heterogeneity. 

4 



 

CHAPTER 1 
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by 
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2 
The Derived Features of Human Life History 

SUMMARY 

Shannen L. Robson, Carel P. van Schaik, 

and Kristen Hawkes 

This chapter compares and contrasts the life histories of extant great apes 

in order to construct a hypothetical life history of the last common ancestor of 

all great apes and to identify features of human life history that have been 

derived during the evolution of our lineage. Data compiled from the published 

literature indicate some variation across the living taxa, but all great apes 

have relatively long lifespans and late maturity. Therefore, we infer that a 

slow life history is the ancestral state of all great apes. 

We examine variation in the timing of brain growth and aspects of den­

tal development and find that they are not correlated in the life history varia­

tion across these species. We conclude that acijustment in growth and 

development, though constrained by life history, are imperfect predictors of life 

history variables. 

Our comparisons show that humans have the slowest life history of the 

great apes, with a notably longer adult lifespan and an older age at first birth. 

We investigate the two important features of human life history that deviate 

from the expected great ape pattern: shortened interbirth intervals and vigor­

ous postmenopausal longevity. Human infants are weaned earlier than 
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expected for their age at maturity and before they are capable of independent 

feeding. Because females conceive soon after weaning an infant, women 

typically have multiple dependent offspring simultaneously. The pattern of 

human age-related fertility decline appears to be conserved. Reproductive 

senescence occurs at essentially the same age among all great apes, suggesting 

that the marked postmenopausal survival of human females is a derived trait 

resulting from selection for slower rates of somatic aging. The human pattern 

of shortened interbirth intervals and "stacking" dependents could have 

evolved only if human mothers had reliable sources of help. Related post­

menopausal and prereproductive females, without infants of their own, likely 

gained inclusive fitness benefits from supplying that help. 

Despite variability in the statistics of deaths and births, every species 

shows strong central tendencies in demographic variables as a result of 

underlying, biologically anchored, individual predispositions for 

growth, development, reproduction, and aging (Harvey and Clutton­

Brock 1985). Our species is no exception. Although there have been 

frequent allusions to dramatic changes in human life history as a result 

of changes in sources of mortality (Olshansky, Carnes, and Cassel 1998) , 

our species shows all the hallmarks of one designed for slow develop­

ment and long life, with female fertility declining to menopause well 

before aging advances in other physiological systems. Thus, like any 

other species, humans possess a clearly delimited life history. And, for 

other species, it is a productive working hypothesis to regard these 

features as adaptations that evolved through natural selection. 

To set the agenda for the rest of this volume, it is essential that we 

obtain a clear picture of the changes that have taken place in hominin 

life history since the point of departure: the origin of the very first 

bipedal ape, five to seven million years ago. Ideally, we would also esti­

mate when the major changes or novelties evolved during hominin 

evolution, aSSOCiating the shifts with adaptations to the new habitats 

colonized and lifestyles adopted by new hominid species. This task is 

fraught with difficulties, however, because values for extinct species 

tend to be reconstructed through processes with many steps, each with 

a particular uncertainty, or through relationships of unknown validity 

for the species involved (Skinner and Wood, chapter 11, this volume) . 

We can map the similarities and differences between modern 

18 
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~:-3MYA .1 Bornean orangutans 

Sumatran orangutans 

12-15 MYA 3 MYAl 
Bonobos 

T 
5-7 MYA. Chimpanzees 

Humans 

Gorillas 

FIGURE 2.1 
Phylogenetic relationships of the great ape species. Estimated time of divergence of the orang­

utan, gorilla, and chimpanzee/bonobo lineages nom the hominid lineage (G1azko and Nei 

2003). Estimated time of bonobo/chimpanzee divergence (Wildman et a1. 2003). Estimated 

time of Bornean/Sumatran orangutan divergence (Zhang, Ryder, and Zhang 2001). 

humans and our closest living relatives, the great apes, with much less 

uncertainty and use these comparisons to infer the likely changes in 

life history over the radiation of our own lineage. 

DERIVED HUMAN LIFE HISTORY TRAITS 

Humans are part of the wider radiation of great apes. As shown in 

figure 2.1, our closest relatives are the two species of chimpanzee 

(genus Pan): the common chimpanzee (P. troglodytes) and the bonobo 

(P. paniscus). There is one other extant African great ape, the gorilla 

(Gorilla gorilla), which comes in various distinct subspecies. In Asia, a 

separate lineage of great apes evolved, of which two species of orang­

utan (Pongo pygmaeus and P. abeJii) are the only living representatives 

(Zhang, Ryder, and Zhang 2001). 

Which Apes Resemble the First Hominin? 

Using some composite estimates based on the living great apes to 

reconstruct the common ancestor at the root of the hominin lineage 

would be permissible only if these taxa have changed little since then. 

On one hand, there is some support for this assumption: the molecu­

lar and morphological similarities among the great apes suggest that 

they have been more conserved than the hominin radiation (Moore 
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1996). On the other hand, many assume that some parallel evolution 

has taken place in the African hominoid lineages, especially with respect 

to their locomotion. Because chimpanzees and gorillas are terrestrial 

knuckle walkers, it has long been considered parsimonious to assume 

that our common ancestor was too. However, Schmitt's (2003) recent 

examination of the locomotor biomechanics among extant primates 

suggests that human bipedalism most likely evolved independently 

from an arboreal ancestor. Because this change implies that the African 

great apes became more terrestrial over time, it may be argued that 

their late Miocene arboreal ancestors had slower life histories, given 

the general correlation between terrestriality and faster life history 

(van Schaik and Deaner 2003). If such parallel evolution is important 

to life history, then the still strictly arboreal orangutan may provide the 

best estimate for the earliest hominins. Therefore, if the African apes 

did not change independently, then the earliest hominins had a life 

history similar to our closest living relatives, the chimpanzee and 

bonobo, or if they did, one closer to the more arboreal orangutan. The 

utility of reconstructing a common ancestor from shared patterns and 

similarities between phylogenetically close extant relatives is obvious, 

but caution should be used in assuming that shifts in hominin life his­

tories always favor one direction. The recently discovered Homo flore­

siensis, a "hobbit"-size hominid (Brown et al. 2004; Falk et al. 2005) may 

exemplify how selection can favor a faster life history from a slower 

ancestor within our genus. 

Gorillas require special consideration because they are unusual 

among the great apes in that they achieve the largest body size in the 

shortest time. Adult body size is the result of both the duration and the 

rate of growth before maturity. Relative to other primates, all great 

apes grow for a longer time and achieve larger adult body sizes. 

Gorillas, however, grow much faster than the rest of us. On average, 

primates grow more slowly than other mammals and are therefore 

smaller at adulthood than nonprimate mammals of similar ages at first 

birth. Humans, chimpanzees, bonobos, and orangutans grow even 

more slowly than the primate average (Blurton Jones, chapter 8, this 

volume). But this is not true of gorillas. Variation in growth rate across 

the mammals is closely tied to variation in the rate of offspring pro­

duction (Charnov 1991; Charnov and Berrigan 1993). Gorillas grow 
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more quickly and also produce babies at shorter intervals than the 

other great apes (table 2.1). The reasons gorillas exhibit rapid growth 

are debated, but analyses by Leigh (1994) show that growth rates 

among primates co-vary with diet. 

Leigh (1994) examined the diet ecology and growth rates offorty­

two anthropoid primate species and found that those with more foliv­

orous diets tend to grow faster than those with more frugivorous ones. 

All great ape species, including gorillas, favor fruit when it is abundant, 

but chimpanzees and orangutans specialize on fruit and extractive 

foods (such as insects) and sometimes vertebrate meat (chimpanzees 

more so). To some extent, bonobos (and gorillas, in particular) fall 

back on vegetative foods that tend to be abundant but of lower quality 

(Malenky et al. 1994; Conklin-Brittain, Knott, and Wrangham 2001). 

The first australopithecines were thought to have diets dominated by 

fruits and seeds (Schoeninger et al. 2001). If diet ecology influences 

growth trajectories, then we would expect the earliest hominins to have 

growth and reproductive rates closer to those of chimpanzees and 

orangutans than to gorillas. Also, fossil evidence suggests similarities 

between chimpanzees and australopithecines (versus gorillas) in body 

sizes (McHenry 1994). Average growth rates for living humans are close 

to the rates for chimpanzees, bonobos, and orangutans (Blurton Jones, 

chapter 8, this volume). For these reasons, we consider the values of 

chimpanzees and orangutans as the endpoints of the range of estimates 

for the first hominins and refer to gorillas only when relevant. 

Data Sources 

To develop proper comparisons between people and living great 

apes, we primarily rely on the life history parameters estimated from 

hunter-gatherers, because their diets, mobility, foraging styles, and 

population densities most likely resemble those of modern humans 

before the invention of agriculture. Although we note estimates for 

some of these variables from a broader range of human populations in 

the text, in table 2.1 we used composite estimates from different 

detailed studies of extant hunter-gatherers whenever possible. This 

reduces concern about possible effects of improved diets and medical 

care on rate of development and senescence. It can be argued that the 

estimates are conservative in that ethnographically known populations 
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TABLE 2.1 
Plimary Life History Parameters of Female Great Apes (Arranged by Phylogenelic 

Distance from Humans), Mainly for Wild Populations, Compared with Those 

of Humans, Mainly Foragers 

Great Ape 
Species 

Orangutan 
(Pongo pygmaeus 
and P. abeJii) 

Gorilla 
(Gorilla gorilla) 

Bonobo 
(Pan paniscus) 

Chimpanzee 
(Pan tmglodytes) 

Human 
(Homo sapiens) 

Maximum 
Lifespan 
(Years) 

58.7a 

54.0a 

50.0+b 

53.4a 

85.0c 

Age at 
First Birth 
(Years) 

15.6d 

1O.Oe 

14.2f 

13.3g 

19.5h 

Adult 
Female 
Weight (kg) 

36.0i 

84.5 
(71-98)j 

33.0 
(27-39)j 

35.0 
(25-45)j 

47.0 
(38-56)k 

Gestation 
Length 
(Days) 

260m 

255m 

244n 

225m 

270m 

Sources: a. Judge and Carey (2000), b. Erwin et aL (2002), c. Hill and Hurtado (1996); Howell 
(1979); Blurton Jones, Hawkes, and O'Connell (2002), d. Wich el aL (2004), e. Alvarez (2000); for 

humans, only data from two roraging populations, the Ache and [Kung, f. Kuroda (1989), g. Average 
age at first birth for five P. troglodytes populations: Bussou, 10.9 years (Sugiyama 2004); Gombe, 13.3 

years (WalliS 1997); Mailale, 14.56 years (Nishida e( at 2003); Tai, 13.7 years (Boesch and Boesch­
Achermann 2000); and Kibale. 15.4 years (vVrangham in Knott 2001), h. Average age at first repro­

duction from four human foraging groups: Ache, 19.5 years (Hill and Hurtado 1996); !Kung, 19.2 

years (Howell 1979); Hadza, IS.77 years (Blurton Jones. unpublished data); and Hiwi. 20.5 years 
(Kaplan el a1. 2000), i. Smith and Jungers (1997); mean of subspecies, j. Average (range reporled in 

parentheses) compiled from Smit.h and Jungers (1997); Zihlman (1 997a); and Smith and Leigh 
(1998) , k. Average 01' range (reported in parenlheses) of ethnographic samples frorn Jenike 

(2001:table 5), 111. I-Iarvey, Martin, and Clutton-Brock (1987). n. Median gestation length [or bono­

bas in captivity reported by de Waal and Lanting (1997:190) from Thompson-Handler (1990), o. 
Average or range (reported in parentheses) compiled [rom Smith and Jungers (1997); Zihlman 

of hunter-gatherers occupied only a subset of habitats initially colo­

nized by modern people, mostly environments that are marginal for 

agriculture. 

The nonhuman great ape data primarily come from long-term 

field studies, and these data are improving over time (see table 2.1 for 

source references). In all the reports of wild studies, the ages of many 

adults were estimated; all maximum lifespans were based on estimates 

with unknown errors, Maximum lifespans in the table are therefore 
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Neonate 
Weight 
(kg) 

1.56 
(1.31-1.81)° 

1.95 
(1.6-2.3)° 

1.38 
(1.30-1.4S) ° 

1.90 
(1.4-2.4)° 

3.00 
(2.4-3.6)P 

THE DERIVED FEATURES OF HUMAN LIFE HISTORY 

Neonate as a 
% of Maternal 
Weight 

4.3% 

2.3% 

4.2% 

S.4% 

S.9% q 

Age at 
Weaning 
(Years) 

7.0e 

2.8e 

4.Se 

2.Se 

Interbirth 
Intel'val 
(Years) 

8.0Sd 

Age at 
Last Birth 
(Years) 

(1997a); and Smith and Leigh (1998) t p. Average neonatal weight of seventy-eight groups worldwide 
(range reported in parentheses) from Iv1eredith (1970). q. Calculated from data reported by Poppitt 

and colleagues (1994) on linked maternal/ neonatal ""eight ror eight populations, r. Average of two 
P. paniseLls populations: Warnba, 4.5 years (Takahata, Ihobe, and Idani 199G). and Lomako, 8.0 years 
(Fruth in Knott 2001). s. Average interbirth interval of six P. troglodytes populations: BOSSOll. 5.3 years 

(Sugiyama 2004); Combe. 5.2 years (Wallis 1997); Mahale. 5.6 years (Nishida et 31. 2003); TaL 5.7 
years (Boesch and Boesch-Achermann 2000); Kanywara, Kibale, 5.4 years (Brewer-Marsden, 
Marsden, and Emery-Thompson n.d.); and Budongo, 5.6 years (Brewer-tvlarsden, Marsden, and 

Emery-Thompson n.d.), t. Average human interbirlh interval oC three foraging groups: Ache, 3.2 
years (Hill and Hurtado 1996); !Kung, 4.12 years (Howell 19(9); and Hiwi. 3.76 years (Kaplan et al. 
2000), u. Average of latest recorded age at last birth in four P. troglodytes populations: Combe, 44 years 

(GoodalJ Institute); Mahale, 39 years (Nishida et at. 2003); Tai, 44 years (Boesch and Boesch­

Achermann 2000); and Bossou. 41 years (Sugiyama 2004), v. Hill and Hurtado (1996); Howell 
(1979); and Martin and colleagues (2003). 

taken from individuals of known ages in captivity. The mortality pro­

files constructed for wild populations do not indicate stable or growing 

populations for any of the species, which implies that observed mor­

talities are higher than they have generally been until quite recently. 

LIFE HISTORY CONTRASTS 

Comparisons of data in table 2.1 show that extant humans evolved 

the following changes in character states from the other great apes. 
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Maximum Potential Lifespan 

The maximum potential lifespan of humans is clearly longer than 

that of the other great apes by several decades. Even among human 

foragers without access to any medical support, some people live into 

their 70s and 80s (R. B. Lee 1968; Howell 1979; Hill and Hurtado 1996; 

Blurton Jones, Hawkes, and O'Connell 1999, 2002). In contrast, chim­

panzees in the wild usually die before they reach 45 (Hill et al. 2001), 

and orangutans before age 50 (Wich et al. 2004). This difference in 

lifespan remains even under captive and modern medical conditions; 

maximum recorded longevity for great apes is around 60 years (Erwin 

et al. 2002), whereas the oldest human on record died at 122 (Robine 

and Allard 1998). These data show that humans have gained an 

increase in maximum lifespan relative to the ancestral state of at least 

twenty to thirty years. Maximum lifespan and average adult lifespan are 

correlated variables (Sacher 1959; Hawkes, chapter 3, this volume). 

Chimpanzee (Hill et al. 2001) and orangutan (Wich et al. 2004) females 

in the wild who survive to age 15 can expect to live only an additional 

fifteen to twenty more years (probably more for orangutans), whereas 

hunter-gatherers at age 15 can expect to live about twice that long 

(Howell 1979; Hill and Hurtado 1996; Blurton Jones, Hawkes, and 

O'Connell 2002). 

Longer adult lifespans reflect lower adult mortality. When extrin­

sic adult mortality is as low as it is among great apes, adults can live 

long enough to display signs of declining physiological performance 

and eventually die from age-specific frailty. Ricklefs (1998) showed that 

in species with adult lifespans similar to chimpanzees, about 69 percent 

of adult deaths result from age-related causes. Selection can favor slow­

er rates of aging if the fitness benefits of extending vigorous physical 

performance exceed the costs of increased somatic maintenance and 

repair. Slower rates of aging may account for the difference between 

human and nonhuman great ape maximum lifespans (Hawkes 2003). 

There is little systematic evidence documenting age-specific declines in 

physical performance in nonhuman great apes, but qualitative descrip­

tions suggest that, as expected from their relatively shorter lifespans, 

chimpanzees do age faster than humans. Goodall (1986) classified 

chimpanzees at Gombe as old aged beginning at age 33. Finch and 

Stanford (2004:4) report that individuals age 35 or more years "show 
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frailty and weight loss" and the "external indications of senescence 

include sagging skin, slowed movements, and worn teeth." As chim­

panzees in the wild reach their mid-30s, they appear to age rapidly and 

die within a decade. In contrast, studies of physical performance 

among people who hunt and gather for a living show that vigor 

declines more slowly with age. Measures such as muscle strength in 

hunter-gatherer women decrease slowly over many decades (Blurton 

Jones and Marlowe 2002; Walker and Hill 2003). Comparable system­

atic performance data on great apes are needed to test whether they 

do, in fact, age more quickly than people. 

Age at First Birth 

As expected from an extension in lifespan, age at first reproduc­

tion among humans is much later than among other great apes and 

has increased from the ancestral state by four to six years. The age at 

first birth of female chimpanzees and bonobos in the wild, while vari­

able, shows a central tendency toward 13 and 14 years, respectively. For 

gorillas, the mean age at first birth is 10 years, and orangutans bear 

their first offspring around age 15.6 years. Mean age at first birth 

among human foraging populations is 19.5 years. 

These central tendencies persist for all great ape species in spite of 

differences in environment and ecology among populations in the 

wild. The affluence of captivity seems to have only a modest effect on 

age at first birth. It is often assumed that superabundance enhances 

physical condition, accelerates the timing of first birth, and extends 

longevity. However, there is evidence that the husbandry practices and 

socioecological conditions of many captive colonies do not always 

maximize the welfare of great apes and often increase incidents of vas­

cular disease, obesity, and stress (DeRousseau 1994; Finch and Stanford 

2003). Captive chimpanzees and bonobos bear their first offspring 

when they are around 11 years old (Bentley 1999; Knott 2001; Sugiyama 

2004). Even though this mean is earlier than the central tendency of 

age at first birth among their wild counterparts, it is within the age 

range of at least one wild population. Age at first birth for gorillas in 

captivity is virtually identical for those in the wild (9.3 versus 10 years). 

Captive orangutan females show the largest shift in age at first birth 

from their wild counterparts. Markham (1995) reports age at first birth 
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for orangutans in captivity as 11.5 years, almost four years earlier than 

orangutans in the wild. Whether in the wild or captivity, though, orang­

utans have the latest age at first birth and remain the "slowest" of the 

nonhuman great ape species. 

Similar to captive great apes, there is also surprisingly little variation 

in average age at first birth among humans. Even under current condi­

tions of ample food supply and medical care, human females, on aver­

age and cross-culturally, bear their first offspring after they are 18 years 

old (Bogin 1999a; Martin et al. 2003). Data from historic human records 

indicate that average age at first birth occurred even later, in the early 

to mid-20s (Le Bourg et al. 1993; Westendorp and Kirkwood 1998; 

Korpelainen 2000, 2003; Low, Simon, and Anderson 2002; Smith, 

Mineau, and Bean 2003; Grundy and Tomassini 2005; Helle, Lummaa, 

and Jokela 2005; Pettay et al. 2005). These data emphasize the limited 

plasticity of life history traits even in light of resource abundance. 

Maternal Body Size 

Later age at first birth enables energy to be invested in growth over 

a longer juvenile period, so most mammals with slower life histories also 

have larger body sizes (Purvis and Harvey 1995). Of all the primates, 

great apes are the longest-lived and latest maturing, as well as the 

largest-bodied. As previously discussed, gorillas are unusual in that they 

grow faster than the other great apes, including humans, achieving a 

much larger adult size. The remaining great ape species share a similar 

growth rate and achieve body sizes that generally vary with the duration 

of growth before maturity (Blurton Jones, chapter 8, this volume). 

Chimpanzees, bonobos, and orangutans bear their first offspring 

between the ages of 13 and 16 and have similar body weights, around 

35 kg. Human females have a later average age at first birth, 19.5 years, 

increasing the duration of growth four to six years longer than Fan or 

Fongo species. As a result, human females in extant foraging societies 

are about 10-15 kg larger than chimpanzee, bonobo, or orangutan 

females. Modern foragers are generally smaller than the estimated body 

sizes for people before the Mesolithic (Ruff, Trinkhaus, and Holliday 

1997; Jenike 2001). Ethnographic hunter-gatherer means may therefore 

underestimate the average maternal-size differences between humans 

and our common ancestor. 
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Gestation Length and Size at Birth 

Larger mothers have greater resources for offspring production, 

and great ape mothers translate this energy into larger, more expensive 

babies (Stearns 1992; see Hawkes, chapter 4, this volume:figure 4.7). As 

noted above, the rate of offspring production co-varies with growth 

rate (Charnov and Berrigan 1993); gorillas grow faster and produce 

babies at shorter intervals than the other great apes. Chimpanzees, 

bonobos, orangutans, and humans grow more slowly, more slowly even 

than the average primate but for a longer period of time, resulting in 

large mothers who produce large babies. Human females, with the 

longest duration of growth, have the largest maternal body sizes and 

produce the largest offspring. 

Larger human neonatal size is achieved through a comparably 

longer length of gestation, ten to thirty days longer than the other 

great apes (Haig 1999; Dufour and Sauther 2002). Although this dif­

ference seems slight, human newborns spend the last weeks before par­

turition accumulating remarkably large adipose fat stores (Southgate 

and Hey 1976), and these fat stores likely account for the compara­

tively larger size of human neonates. Across the mammals, neonatal fat 

stores scale allometrically with body size (Widdowson 1950). Human 

neonates, however, are more than three times fatter than expected for a 

mammal of their size (Kuzawa 1998). At birth, 12 to 15 percent of human 

neonatal body weight is adipose tissue (Fomon et al. 1982). Although 

there are no data documenting the body fat of great ape infants, the 

qualitative difference in the amount of body fat between human and 

great apes is apparent. Schultz (1969:152) made the general observation 

that "most human babies are born well padded with a remarkable 

amount of subcutaneous fat, whereas monkeys and apes have very 

little, so that they look decidedly 'skinny' and horribly wrinkled." 

Estimating neonatal size relative to maternal size is difficult 

because there is extreme variation in adult body size both inter- and 

intra-individually and within and among populations (see table 2.1 for 

ranges). Nevertheless, graphing data reported by Poppitt and col­

leagues (1994) show that neonatal weight scales allometric ally with 

maternal weight (figure 2.2). Bigger mothers bear larger infants, but 

the increase in the ratio of neonatal mass to maternal mass declines 

allometrically (slope of 0.746) with maternal size-6.4 percent for the 
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FIGURE 2.2 

Neonatal weight relative to maternal weight (data from Poppitt et a1. 1994). Neonatal 

weight scales allometrically with maternal weight at a slope of 0.746. 

smallest mothers and 5.8 percent for the largest mothers in Poppit and 

colleagues' sample. Among extant human populations, neonatal size is 

somewhat larger relative to maternal body weight than other great ape 

species (Leuttenegger 1973). This difference is inflated when ethno­

graphic hunter-gatherers are used to represent maternal size and may 

result from late Pleistocene decreases in adult size. Using two methods 

to estimate body mass, Ruff, Trinkhaus, and Holliday (1997) deter­

mined that adult individuals in our genus were about 10 percent larg­

er during the Pleistocene. 

Age at Weaning and Interbirth Intervals 

Species with slow life histories generally have later ages at weaning 

and longer interbirth intervals. Great apes exemplify this pattern. They 

wean their dependent offspring relatively late, especially the frugiv­

orous chimpanzees and orangutans (around ages 4.5 and 7 years, 

respectively), and have long interbirth intervals (5.5 and 8 years, 

respectively). Humans, however, have the slowest life history in many 

respects, but we wean our infants comparatively early. Human foragers 

typically wean their infants by age 3 and have mean inter birth intervals 
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of around 3.7 years. Like age at first birth, human weaning ages are 

similar across a broad range of ecologies. Weaning age for humans is 

consistently "between 2 to 3 years and generally occurs about midway 

in that range" (Kennedy 2005:7). 

Many ways have been proposed to estimate expected ("natural") 

weaning age from other human life history variables, and most predict 

later weaning age than practiced (Sellen 2001 a). Harvey and Clutton­

Brock (1985) predicted an average weaning age of 3.36 years based on 

a correlation between maternal and infant body size, but Charnov and 

Berrigan (1993) noted that mammalian infants are generally weaned 

when they achieve one-third of maternal body weight (Lee, Majluf, and 

Gordon 1991), which for humans occurs around 6.4 years. B. Smith 

(1992), following Schultz (1956), found that across a sample of pri­

mates, weaning age correlated with the eruption of the first permanent 

molar, around 6.5 years in humans. It is clear that the observed human 

weaning age of 2 to 3 years is earlier than these predictions. This is 

all the more remarkable because other aspects of our life history 

have slowed down relative to the ancestral state (Smith and Tompkins 

1995) . 

Age at Last Birth and Menopause 

Among mammals, oocytes are produced in the fetal ovaries until 

the third trimester of gestation, when the mitosis of germ cells ends. At 

this point, females have a fixed initial store of oocytes that is then sub­

ject to a process of continual depletion, or atresia, over their lifetime 

until the number of remaining follicles nears zero (vom Saal, Finch, 

and Nelson 1994; O'Connor, Holman, and Wood 2001; A. Cohen 2004). 

In humans, the cycle of ovulation and menstruation is generated by an 

endocrinological feedback loop that requires a sufficient oocyte store 

O. Wood 1994). When there are too few oocytes remaining to stimulate 

ovulation, estimated at around one thousand follicles (Richardson, 

Senikas, and Nelson 1987), cycling ceases. All menstruating primates 

can potentially experience the senescent cessation of menses, or 

menopause, if they live long enough. In nonhuman species, however, 

reproductive senescence usually corresponds with somatic senescence, 

and few species live beyond the depletion of their oocyte store. 

This is well documented in captive populations of macaques (for 
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example, M fuscata, Nozaki, Mitsunaga, and Shimizu [1995]; M muiatta, 

M. Walker [1995]; M nemestrina, Short et al. [1989]), where individu­

als live longer with senescent impairments than they can in the wild. 

Data on reproductive senescence in great apes is scant, but histological 

examination of captive chimpanzee females' ovaries suggests that the 

process of oocyte reduction is similar to that in humans (Gould, Flint, 

and Graham 1981). The few captive females that survived to meno­

pause exhibited the same pattern of declining fecundity and variable 

cycling experienced by women (Tutin and McGinnis 1981) and around 

the same age (Gould, Flint, and Graham 1981). 

Several years before menopause in women, the hormonal system 

that regulates menstrual cycles, the hypothalamic-pituitary-ovarian 

(HPO) axis, begins to break down because the number of oocytes 

necessary for ovarian steroid production is reduced below a necessary 

threshold. During this period of "perimenopause," cycle lengths become 

long and irregular, and many are anovulatory. Inconsistent functioning 

of the HPO axis and the increase in pregnancy failure during peri­

menopause result in a steep decline in the fertility of human females 

(Holman and Wood 2001). In noncontracepting human populations, 

average age at last birth precedes average age at menopause by about 

ten years (Gosden 1985). There are few data documenting the pattern 

of age-specific fertility decline in nonhuman great apes, but those avail­

able for chimpanzees suggest that fertility nears zero at 45 years of age 

(Nishida, Takasaki, and Takahata 1990; Boesch and Boesch Achermann 

2000; Sugiyama 2004), as it does in humans (Howell 1979; Hill and 

Hurtado 1996; Muller et a1. 2002; Martin et al. 2003). It appears that 

the age at which fertility declines in the other great apes is similar to 

that of humans (see Wich et a1. 2004 on orangutans). This similarity 

suggests that we all share the ancestral pattern of ovarian ontogeny and 

what is derived in humans is not an unusual rate or timing of repro­

ductive decline but a slowed rate of somatic aging and a Vigorous, post­

menopausal lifespan. 

EFFECTS OF DERIVED HUMAN LIFE HISTORY 
Many characteristics of growth and development depend on life 

history but are not, themselves, life history traits. The contrasts 

described above for females, excluding body size-maximum potential 
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lifespan (or average adult lifespan), age at first birth, gestation length, 

interbirth intervals and age at weaning, and age at last birth-are 

directly linked to population vital rates. In this section, we discuss links 

between the derived features of human life history and aspects of 

human growth, development, and sociality. 

Altriciality and Brain Growth 

The postnatal growth requirements of human brains have long 

been seen as the source of our slow maturation. Compared with infants 

of the other great apes, human infants have been considered "helpless 

and undeveloped at birth" (Gould 1977:369), incapable of indepen­

dent movement until at least 6 months of age; neonatal great apes are 

able to cling to their mothers from a very early age. This relative altri­

ciality (Portmann 1941) has been attributed to the relatively small size 

of the human neonate's brain, under the assumption that a rapidly 

growing and developing brain is incapable of coordinating fully devel­

oped locomotor behavior (R. Martin 1990). There have been objec­

tions to both primary aspects of this widely accepted perspective. First, 

Schultz (1969:154) pointed out that the minimal locomotor develop­

ment of humans at birth is not unusual, that, in fact, "the apes are born 

as helpless and immature as the exceptionally large human newborn." 

Because chimpanzee and gorilla infants are carried by their mothers 

for approximately twenty postnatal weeks, Schultz (1969: 157) conclud­

ed that this "flatly contradicts the frequently heard vague claim that 

man is unique in his being born utterly helpless in such a very imma­

ture state as is very exceptional among primates." In addition, human 

babies are born with strong grasping reflexes equal to that of other pri­

mates (Konner 1972) and use sophisticated behavioral strategies to 

maximize their survival (Hrdy 1999). Together, these observations sug­

gest that the motor skills of human neonates are no more altricial than 

those of other great apes and that infants are not behaviorally under­

developed. 

Second, human altriciality is said to be the result of a smaller rela­

tive brain size at birth due to an obstetrical constraint imposed by a 

pelvis shaped for bipedality. For most mammals, the rapid rate of fetal 

brain growth ends at, or just after, parturition. For humans, however, 

the fetal pattern of brain growth is comparably steeper and continues 
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for almost a year after birth. The continuation of rapid fetal brain 

growth rates during the first twelve postnatal months led Portmann 

(1941) to suggest that humans really have a twenty-one-month gesta­

tion span: nine months in utero and twelve extra-uterine months that 

R. Martin (1990) termed "exterogestation." This suggests that human 

infants are born "early" because continued brain growth in utero would 

result in a head size too large for successful parturition (R. Martin 

1983) . Recent analyses comparing the patterns of brain growth in chim­

pan-zees and humans (Leigh 2004) invite doubts about the uniqueness 

of rapid postnatal brain growth. We examine these data below. 

There are few published data sets of brain sizes for individuals of 

known ages. Most authors present their original data in figures and 

report averages instead of original values, making intraspecies com­

parisons difficult (Jolicoeur, Baron, and Cabana 1988; Cabana, 

Jolicoeur, and Michaud 1993). Of the complete data sets published, 

most are derived from autopsy and necropsy records, a unique sample 

of individuals with various pathologies that possibly misrepresents the 

"normal" population. These are cross-sectional data, not longitudinal, 

repeated measurements on the same individual to assess individual 

variation in brain size and growth. However, these data currently pro­

vide the only opportunity for quantifying brain growth and develop­

ment. Technological advances in brain imaging should make 

longitudinal data sets available for future comparison and analyses. 

We calculated human brain measures from Marchand's (1902) 

data set, which reports brain weight (wet, including meninges, in 

grams), stature (in centimeters), sex, and known or estimated chrono­

logical age. Marchand assembled these data from German autopsy 

records documented between 1885 and 1900. The original data include 

a total of 716 human males and 452 females from birth to more than 80 

years old. The variation in brain size with age and sex compares favor­

ably with other reports (Dekaban and Sadowsky 1978; Kretschmann 

et al. 1979), indicating that Marchand's series can serve as a represen­

tative sample. Our calculations use his data on all individuals 3 years 

old and younger. 

Brain weights for chimpanzees (Pan troglodytes) of known ages were 

drawn from necropsy data reported by Herndon and colleagues 

(1999). Brain weights were obtained fresh at Yerkes Regional Primate 
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Center from 76 captive individuals (33 females and 43 males) who died 

from natural causes or were euthanized when natural death was immi­

nent. We used a subset of these data to calculate percent of adult brain 

weight at birth and to graph brain size from birth to 3 years. 

These data, summarized in table 2.2 and plotted in figure 2.3, chal­

lenge three common assumptions about the uniqueness of human 

brain growth. First, chimpanzee and human infants are more similar in 

their percent of adult brain size at birth than usually assumed. It is con­

ventionally reported that human neonatal brain weight is only 25 per­

cent of adult size at birth whereas chimpanzee neonates have 50 

percent of their adult brain weight at birth (Dienske 1986). But chimps 

are twice as close to adult size at birth as are humans; instead of a large 

interspecific difference in relative neonatal brain size, the difference is 

only about 10 percent. A larger sample of chimpanzee neonates may 

close this interval even more. This revision results from slightly lower 

percentage values for humans but primarily from the much smaller 

neonatal value for chimpanzees. Until now, relative chimpanzee 

neonatal brain size has been repeatedly based on the estimated cranial 

capacity of a single cranial specimen, known to be 74 days old at death 

(Schultz 1941). When plotted against Herndon and colleagues' (1999) 

values, this specimen is larger than neonatal size and falls where it 

should in the scatter, given its age of 2.5 months. 

Second, we find that chimpanzees and humans share a very simi­

lar pattern of relative brain growth (see figure 2.2). Leigh (2004: 152), 

using the same data to calculate brain growth trajectories for chim­

panzees and humans, concluded that "after the first 18 months of life, 

Pan and Homo are not substantially different in terms of growth rates." 

Third, humans reach adult brain size much earlier than widely claimed, 

some individuals by 3 years of age. Kretschmann and colleagues 

(1979) used the Marchand (1902) data to show that, on average, males 

achieve 95 percent of total brain size by 3.82 years old and females 

reach 95 percent values by 3.44 years old. This is much earlier than 

assumed by most researchers. 

Analyses indicate similarities in brain growth, relative neonatal 

brain size, and motor and behavioral skills at birth between humans 

and chimpanzees, challenging the characterization of humans as 

distinctively altricial. The similarities between chimps and humans do 
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TABLE 2.2 

Human and Chimpanzee Brain Size at Birth and Adulthood by Sex 

Average Average Percent 
Neonatal Adult of Adult 
Brain Brain Total 

Species Sex Weight (g) 1 Weight (g) 2 at Birth 

Homo sapien;'> 

Males 371 (n = 16) 1404 (n = 150) 26.4 
Females 361 (n = 8) 1281 (n = 116) 28.2 

Pan troglodytes4 

Males 125 (n = 3) 406 (n = 17) 30.8 
Females 146 (n=4) 368 (n = 17) 39.7 

1. Neonate is defined as an individual between birth and 10 days old. 
2. Average adult brain size was calculated as the mean of individuals between 20 and 40 years old by sex 
for humans and the mean of individuals between 7 and 30 years old for each sex in chimpanzees 
because this range safely precedes a known trend toward declining brain weight with age (Dekaban 
and Sadowsky 1978; Herndon et al. 1999). 
3. References: Marchand (1902). 
4. References: Herndon and colleagues (1999). 
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FIGURE 2.3 
Percent of adult brain size achieved by age. Black dots are chimpanzees (Herndon et a1. 

1999; n = 26; males = 16. females = 10); open circles are humans (Marchand 1902; n = 

160; males = 111. females = 49). The star represents Schultz's (J 941) 74-day-old specimen. 
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not support the view that our juvenility is longer because of the growth 

requirements of our large brains. 

Dental Development 

Like brain growth and development, the pattern of dental growth 

and development is commonly used as a marker of life history events. 

Efforts have primarily focused on uncovering correlations between the 

timing and sequence of eruption of the permanent dentition and age 

at weaning and maturity. Relationships between dental markers and 

life history would provide a means to make direct interpretations of 

maturation schedules during hominin evolution based on fossil teeth. 

Given the systematic relationships among life history traits, establishing 

the timing of one would provide grounds for hypothesizing others. 

Teeth are less sensitive than other tissues to developmental insults and 

short-term ecological fluctuations (Nissen and Riessen 1964; Garn et 

al. 1973; Liversidge 2003), making them relatively reliable maturation 

markers. Schultz's often reprinted graph depicting variation in timing 

of life stages across the primates (for example, in Schultz 1969) used 

the emergence of the first permanent teeth to mark the end of infancy 

and the emergence of the last permanent teeth to mark the beginning 

of adulthood. Comparing primate species, Schultz (1949) also observed 

variation in the sequence of tooth eruption across the order. In species 

that are weaned relatively early, molars erupt before the deciduous 

teeth are lost and the emergence of the anterior permanent dentition. 

Schultz presumed that permanent molars erupted first so that infants 

would be prepared to masticate food when weaned, a generalization 

that B. Smith (2000) calls "Schultz's rule." Slower-developing humans 

show a distinctive eruption sequence: the permanent anterior denti­

tion emerges before the molars. Schultz speculated that the human 

shift in eruption sequence is directly connected to slower human life 

history and, in particular, our much longer period of juvenility. 

Building on Schultz's recognition of a connection between dental 

development and life history, B. Smith (1989a) showed that across the 

primates there is a strong correlation between the eruption of the first 

permanent molar (Ml), weaning age and eruption of the third molar 

(M3), and age at first birth. In addition to eruption schedules, crown 

and root formation increments have been used to assess develop­

mental age (Moorrees, Fanning, and Hunt 1963). The daily growth of 
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TABLE 2.3 

Eruption and Crown Formation Schedules for Permanent Teeth 

Ml M3 
Eruption Age at Eruption 
Mean Weanil"!g Mean 

Species Sex (Years) (Years)! CYears) a 
------------------------------------------------
Orang Unknown 4.20 (-3.5-4.9)a 7.0 -10 

-3.5a -10 

Gorilla Unknown 3.50 (3.0-4.0) b 2.8 11.40 (9.70-13.10) 
3.50 (3.0-4.0) b 10.38 (8.70-12.10) 

Chimp Female 3.27 (2.75-3.75)b 4.5 11.30 (9.75-13.08) 
3.19 (2.67-3.75)b 10.71 (9.00-13.08) 

Chimp Male 3.38 (3.00-3.75)b 4.5 11.36 (10.00-13.58) 
3.33 (3.00-3.58) b 10.27 (9.00-11.08) 

Chimp Unknown 3.323 (2.2-4.1)C 4.5 
3.218 (1.9-4.1)C 

Human Female 6.35 sd 
0.74b 2.8 20.50 
6.15 sd 20.40 
0.76b 

Human Male 6.40sd 
0.7gb 2.8 20.50 
6.33 sd 19.80 
0.79b 

I-Iuman Unknown 5.84 (4.74-7.0)d 2.8 

Top values represent maxillary teeth. and lower line. mandibular teeth. Ranges are reported in parentheses. 
a. Smith. Crummett. and Brandt (1994) and Kelley and Schwartz (2005) 
b. Smith. Crummett. and Brandt (1994) 
c. ronro\' and rvfahonf>v (1991) and 7ihlmf'm. BolIE'f, ami ROE',)rh (2004) report maxillary Ml at alveolar 
margin (et>limaung lour munths from gingival emergence) 3l4.1 years In a wild chimpanzee; they report 
dental characteristics of seventeen immature wild chimps of known ages and conclude thal "emergence of 
permanent teeth in wild chimpanzees is consIstently later than 90 percent of captive individuals" (Zihlman, 
Bolter. and Boesch 2004:10541). 
d. Liversldge (2003); mean (range) of fifty-six worldwide populations 
e. Macho (2001): Kelley and Schwartz (2005) 
f. Macho (2001) 
g. Reid et at. (1998) 
h. Liversidge (2000) 
i. See table 2.1 for rererences. 
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First Birth 
(Years)i 

15.6 

10.0 

13.3 

19.5 
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Ml Crown 
Formation 
(Years) 

3.01 
(2.90-3.12)e 
2.81 f 

2.70f 
2.90f 

2.85 f 
2.73f 

3.03f 
2.62f 

Average 
Molar 
Crown 
Formation 
(Years/ 

3.13 

2.85 

3.39 

3.07 

11 Crown 
Formation 
(Years) 

4.00g 
4.90 (4.45-5.35)g 

4.29 (3.33-4.54)h 
3.90 (3.l2-4.50)h 

12 Crown 
Formation 
(Years) 

4.50g 
5.07 (5.00-5.15)g 

4.42 
(4.17-5.40)h 
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dental microstructures, primarily crown formation and enamel depo­

sition, is an especially promising line of evidence that can link aspects 

of dental development to absolute calendar time (Bromage and Dean 

1985; Benyon and Dean 1987). Like eruption schedules, crown forma­

tion is also broadly correlated with life history variation across the 

anthropoid primates (Macho 2001). This correlation fails, however, 

within the narrow phylogenetic range we consider here. Table 2.3 

shows that the patterns of dental maturation and eruption in great 

apes do not always correspond with one another, nor with the order of 

fast-to-slow life histories among these species. 

A comparison of age at weaning in table 2.1 with Ml eruption in 

table 2.3 illustrates this lack of correspondence. Ml eruption follows 

weaning age in gorillas and chimpanzees by nine months to one year, 

but by more than three years in humans, whereas it precedes weaning 

by a similar span in orangutans. Although the age of M3 eruption is 

much older in later breeding humans, M3s do not erupt at an older 

age in the later breeding chimps and orangutans, compared with goril­

las. M3 eruption misestimates age at first birth in all the nonhuman 

great ape species by 1-5.5 years, erupting at around 11 years in gorillas 

and chimpanzees and 10 years in orangutans, whereas age at first birth 

occurs around 10, 13.3, and 15.6 years, respectively. These data show 

that the life history variation among the living great apes is not closely 

reflected in their molar eruption schedules. 

Comparison of crown formation rates in table 2.3 shows that 

microstructure development and life history variables correspond even 

less well. Not only are crown formation times quite similar among the 

nonhuman apes, failing to track variation in either weaning ages or age 

at maturity, but also there is "considerable overlap among great apes 

and humans" in the formation rates of both incisors and molars 

(Macho and Wood 1995b:23). The data show that researchers must 

temper expectations that individual aspects of dental development 

(such as anterior crown formation times) are tightly tied to age at first 

birth (Ramirez Rozzi and Bermudez de Castro 2004) and age at wean­

ing (Macho 2001). 

The timing of tooth eruption, crown maturation, and other aspects 

of dental development (Godfrey et al. 2003) varies among great ape 

species. Although the range of this variation is not independent of life 
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history, the evidence reveals that the link is not a tight one. The robust 

associations among life history traits themselves reflect the necessary 

interdependence of population vital rates (Hawkes, chapter 3, this vol­

ume) , but the demographic constraints on growth and development 

are quite indirect. Life histories may change without concomitant 

shifts in all aspects of development, and, conversely, selection might 

favor developmental adjustments within immature stages because of 

particular problems faced by infants and juveniles in each species 

(Godfrey et al. 2003). 

Interbirth Intervals and Juvenile Foraging 

A primary life history difference between human and nonhuman 

great apes is the faster rate of offspring production in human females. 

For large-bodied mammals that produce large-bodied babies, the span 

between two offspring (the interbirth interval) is typically long, result­

ing in slow female reproductive rates (Harvey and Clutton-Brock 

1985). In primates, conception closely follows weaning of the preced­

ing offspring (Pusey 1983; Graham and Nadler 1990; Watts 1991; Lee 

and Bowman 1995), suggesting that interbirth intervals end when an 

infant can successfully feed itself. Weaning is strictly defined as the 

cessation of infant suckling, but this definition conceals the fact that 

weaning is primarily a transitional process, a gradual reduction in the 

portion of milk ingested and a concomitant increase in solid food con­

sumption, not an abrupt cessation of lactation (Sellen, chapter 6, this 

volume). From the start of transitional feeding, primate infants forage 

for the solid food they ingest, although they occasionally obtain non­

milk resources through passive food sharing (Feistner and McGrew 

1989). The period of transitional feeding and the interbirth interval 

generally end when mothers have less fitness to gain from continuing 

their investment in the growing offspring than from beginning another 

pregnancy (Trivers 1974), usually at a time when an infant can suc­

cessfully obtain all its own daily calories. 

Offspring dependence is generally defined as the period during 

which the offspring drinks milk from its mother, that is, the time from 

birth to weaning. Some suggest a broader definition of dependence, 

noting that the mother provides services in addition to lactation that 

contribute to offspring survival (for example, Pereira and Altmann 
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1985) . Primate orphans provide a good measure of the timing of inde­

pendence from the mother. The available data, although largely anec­

dotal, suggest that suckling infants generally do not survive the death 

of their mother. Great ape orphan survival approaches that of no 

orphans if the mother is not lost before weaning age (Pusey 1983; 

Goodall 1986; Nishida, Takasaki, and Takahata 1990; Watts and Pusey 

1993). In contrast, human infants are weaned at an age when they are 

still largely incapable of independent foraging and therefore continue 

to depend on provisioning by older individuals (Lancaster and 

Lancaster 1983). Data for humans show that offspring suffer poor sur­

vivorship if the mother dies during the first years of a child's life (Hill 

and Hurtado 1991; Sear et al. 2002; Pavard et al. 2005). Thereafter, 

death of the mother has less effect, not because the child is indepen­

dent but because others supply support (Mace and Sear 2005). 

Weaning and nutritional independence are not synonymous in 

humans as they are among the other apes. Children are weaned earli­

er yet are nutritionally dependent much longer than expected for a 

primate with our age at maturity. It is generally assumed that children 

require provisioning because they lack the ecological knowledge and 

complex foraging skills to forage independently. Gaining these skills is 

thought to require a long period of learning and practice during juve­

nility, an "apprenticeship," in order for human children to forage com­

petently for themselves (Kaplan et al. 2000; Kaplan, Lancaster, and 

Robson 2003). 

Recent studies challenge two common assumptions about the lim­

itations of children's foraging efforts and capabilities. First, many for­

aging skills do not require substantial time and practice for children to 

master (Bliege Bird and Bird 2002; Blurton Jones and Marlowe 2002). 

Rather, children's foraging strategies appear to be more strongly con­

strained by their diminutive size, strength. and speed than by age and 

experience (Bird and Bliege Bird 2005; Tucker and Young 2005). 

Because children cannot acquire resources that require adult size, they 

forage from a different diet breadth. Calculations of juvenile foraging 

returns in child-accessible patches reveal that children are optimal for­

agers, targeting resources that yield the maximum immediate return 

rate (Bird and Bliege Bird 2002, 2005). These studies show that when 

evaluated within the constraints of their small size and strength, chil­

dren are strategic and skilled foragers. 
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Second, Hawkes, O'Connell, and Blurton Jones (1995) have 

shown that foraging children can contribute more to their own subsis­

tence than is widely assumed. Hadza children actively participate in 

food acquisition soon after weaning and throughout childhood, and 

these efforts make important contributions to their own nutrition. A 

mother often incorporates the productivity of her offspring when 

selecting foraging locations or resources, by choosing the strategy "that 

maximizes the team rate she and her children earn collectively, even if 

the rate she earns herself is Jess than the maximum possibJe" (Hawkes, 

O'Connell, and Blurton Jones 1995:695, italics original). Nevertheless, 

even though human juveniles can forage on their own behalf, they 

reside in habitats selected by adults and rarely ideal for independent 

juvenile subsistence. Thus, human children, unlike other ape juveniles, 

remain dependent upon supplemental provisioning long after they are 

weaned. 

Stacking and Cooperative Breeding 

With an earlier age at weaning and shorter interbirth intervals, 

human mothers shoulder the simultaneous nutritional dependence of 

multiple sequential offspring, a phenomenon we may call "stacking": 

mothers move on to bear another baby before the preceding one is 

nutritionally independent. This characteristic of humans is absent 

among nonhuman great apes. Great ape mothers may be accompanied 

by weaned subadult offspring while carrying a dependent infant, but 

they do not provision their offspring once weaned. Sumatran orang­

utans (van Noordwijk and van Schaik 2005) tolerate the presence of 

weaned juveniles, but these juveniles feed themselves and tend to leave 

their mother before the next infant is 2 years old (although there may 

be a longer association in the eastern subspecies P. pygmaeus morio of 

the Bornean orangutans [Horr 1975; M. Ancrenaz, personal commu­

nication 2005]). Maternal association with multiple immature off­

spring is more apparent in chimpanzees when a just-weaned juvenile 

and an older juvenile approaching adolescence may travel with their 

mother but, again, feed themselves. Orangutan immatures develop 

foraging competence at about the same age chimpanzees do, and their 

later weaning ages may be a response to the low productivity of the 

Southeast Asian rainforest, in which mothers cannot afford to travel 

with both a new baby and a weaned juvenile (van Noordwijk and van 
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Schaik 2005). This finding highlights the benefits that juveniles gain 

from association with adults. In more gregarious species, mothers may 

have shorter interbirth intervals because their weaned offspring need 

not make independent ranging choices yet. Comparing weaning ages 

in orangutans, chimpanzees, and gorillas, interbirth intervals vary 

inversely with gregariousness, and intervals are shortest in our own, 

especially gregarious species. 

Humanjuveniles not only remain in association with their mothers 

but also continue to depend on provisioning after the birth of a 

younger sibling. The caloric returns necessary for multiple dependents 

may exceed the abilities of a single individual forager and require con­

tributions from helpers other than the mother (Kaplan et al. 2000). 

Fathers have long been assumed to be the primary source of help. 

Men differ from the males in other great ape species by regularly 

acquiring food that is consumed by women and children, and it is 

assumed that paternal benefits to improved nutrition and survival of 

their own offspring account for the evolution of men's work (Kaplan et 

al. 2000). Forager men sometimes provide a substantial component of 

food for their own children (for example, Marlowe 2003); among 

hunter-gatherer societies, higher average subsistence contributions 

from men are associated with higher average female fertility (Marlowe 

2001). But the motives for men's contributions and the benefits they 

earn are disputed. Social benefits may be more important than par­

enting benefits in shaping these male activities. The returns from 

men's hunting are unpredictable, making it an unreliable strategy for 

family provisioning among low-latitude foragers (Hawkes, O'Connell, 

and Blurton Jones 2001b). When a hunter is successful, the meat is 

widely shared, so his family gets little more than others (Hawkes, 

O'Connell, and Blurton Jones 2001a). As in primates generally, the 

association of adult males with youngsters can sometimes serve as mat­

ing effort, mate guarding, or social bridging (Flinn 1992; Smuts and 

Gubernick 1992; Kuester and Paul 2000). Nevertheless, even if compe­

tition for social standing is the main motivation for men's food acqui­

sition, especially big game hunting, the result does provide benefits for 

mothers and their children (Hawkes and Bliege Bird 2002). 

Features of our distinctive life history, long postmenopausallifes­

pans and late age at first birth, provide two more reliable sources of 
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potential help to mothers with multiple dependents. Postmenopausal 

and adolescent females lack newborns of their own and are therefore 

inclined to provide allomaternal assistance to gain inclusive fitness 

benefits (Hrdy 1999). Ethnographic and historic data show that the 

presence of a grandmother (especially the maternal grandmother) 

increases the welfare of her grandchildren (Sear, Mace, and McGregor 

2000, 2003; Jamison et al. 2002; Sear et al. 2002; Voland and Beise 

2002; Lahdenpera et a1. 2004; Ragsdale 2004; Tymicki 2004). When cir­

cumstances permit (Hames and Draper 2004), older adolescents pro­

vide important help to their mothers through the caretaking of 

younger siblings (Tronick, Morelli, and rvey 1992). The fact that 

human mothers stack nutritionally dependent offspring points to the 

evolutionary importance of help from provisioners other than the 

mother in the evolution of our life histories (Hrdy 1999). 

CONCLUSIONS 
We have compared the life histories of humans and the living great 

apes to develop a hypothetical life history for a common ancestor and 

identify changes in our lineage. A general feature of living great apes 

is a slow life history, so we infer that this was also true of our common 

ancestor. Human life histories are even slower. Humans have a signifi­

cantly longer lifespan, with adults living at least twenty-five years longer 

than the other great apes. Human age at first birth is four to six years 

older than for orangutans and chimpanzees, increasing the period of 

juvenility and opportunity for growth. Additional time to grow results 

in larger human mothers who produce absolutely and relatively larger 

babies. 

Two striking deviations have shaped the pattern of slowing in 

human life histories: our short interbirth intervals and our vigorous 

postmenopausal longevity. First, slower life histories typically include 

longer inter birth intervals. Although humans have the longest 

subadult period, attain the largest body size, and produce the largest 

infants, we have the shortest interbirth intervals. Human infants are 

weaned several years earlier than might be expected of an ape with our 

age at maturity. Also, because women (like most primate females) con­

ceive soon after a child is weaned, they bear another baby before the 

preceding one is capable of independent foraging. Second, women 
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stop bearing offspring by their early 40s. The age at which fertility 

declines to menopause appears to be essentially the same in women as 

in the other apes, indicating that this trait may be conserved across the 

great ape radiation. The distinctively early weaning of human infants 

and stacking of dependent offspring could evolve only if human moth­

ers had a reliable source of help. Postmenopausal grandmothers and 

adolescents, because they themselves did not have infants, likely sup­

plied that help. 

We have also highlighted the imperfect correspondence among 

various aspects of growth and development in brains and teeth and 

between those developmental variables and the life history traits that 

are tied to population vital rates. Our exploration of the cross-species 

variation among great apes and humans in these dimensions is only a 

beginning. More is clearly in order. 
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Abstract

 

In this review we attempt to reconstruct the evolutionary history of hominin life history from extant and fossil
evidence. We utilize demographic life history theory and distinguish life history variables, traits such as weaning,
age at sexual maturity, and life span, from life history-related variables such as body mass, brain growth, and dental
development. The latter are either linked with, or can be used to make inferences about, life history, thus providing
an opportunity for estimating life history parameters in fossil taxa. We compare the life history variables of modern
great apes and identify traits that are likely to be shared by the last common ancestor of 

 

Pan-Homo

 

 and those likely
to be derived in hominins. All great apes exhibit slow life histories and we infer this to be true of the last common
ancestor of 

 

Pan-Homo

 

 and the stem hominin. Modern human life histories are even slower, exhibiting distinctively
long post-menopausal life spans and later ages at maturity, pointing to a reduction in adult mortality since the

 

Pan-Homo

 

 split. We suggest that lower adult mortality, distinctively short interbirth intervals, and early weaning
characteristic of modern humans are derived features resulting from cooperative breeding. We evaluate the
fidelity of three life history-related variables, body mass, brain growth and dental development, with the life
history parameters of living great apes. We found that body mass is the best predictor of great ape life history
events. Brain growth trajectories and dental development and eruption are weakly related proxies and inferences
from them should be made with caution. We evaluate the evidence of life history-related variables available for
extinct species and find that prior to the transitional hominins there is no evidence of any hominin taxon possessing
a body size, brain size or aspects of dental development much different from what we assume to be the primitive
life history pattern for the 

 

Pan-Homo

 

 clade. Data for life history-related variables among the transitional hominin
grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size,
crown and root formation times, and the timing and sequence of dental eruption of 

 

Homo erectus

 

 are inconsistent
with that of modern humans. 

 

Homo antecessor 

 

fossil material suggests a brain size similar to that of 

 

Homo erectus

s. s.,

 

 and crown formation times that are not yet modern, though there is some evidence of modern human-like
timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of 

 

Homo heidelber-

gensis

 

 and 

 

Homo neanderthalensis

 

 are consistent with a modern human life history but samples are too small to
be certain that they have life histories within the modern human range. As more life history-related variable
information for hominin species accumulates we are discovering that they can also have distinctive life histories
that do not conform to any living model. At least one extinct hominin subclade, 

 

Paranthropus

 

, has a pattern of
dental life history-related variables that most likely set it apart from the life histories of both modern humans and
chimpanzees.

 

Key words

 

dentition; encephalization; evolution; growth and development; hominin life history.

 

Introduction

 

Compared to other great apes modern humans have a
higher rate of survival, live longer, start reproducing later,
and have shorter interbirth intervals (reviewed in Leigh
2001; Robson et al. 2006). To reconstruct the recent evolu-
tion of these characteristics of modern human life history
we review the life histories of closely related extant and
fossil taxa. We also discuss the probable life histories of
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(1) the hypothetical last common ancestor (LCA) of the
chimpanzee/bonobo and modern human (

 

Pan

 

-

 

Homo

 

)
clade, (2) the hypothetical stem hominin taxon, (3) the
taxa that make up the major grades within the hominin
clade, and (4) the evolution of life history within the major
subclades within the hominin clade. Comparing the life
history of the living primates most closely related to modern
humans enables researchers to generate hypotheses about
what modern human life history traits are conserved and
which are derived.

Direct evidence about non-human great ape life history
has been gleaned by meticulous observation both in the
field and from captive animals (see Kappeler & Pereira,
2003; van Schaik et al. 2006). These data, combined with
molecular and other information about how their phylo-
genetic histories are related (see Bradley, 2008), contri-
butes to reconstructing the life history of the LCA of the

 

Pan

 

-

 

Homo

 

 clade. But in order to investigate the more
recent evolutionary context of modern human life history,
researchers must examine whatever evidence is available
about the life history of closely-related extinct animals. If
we make the untested assumption (see below) that the
common ancestor of the 

 

Pan

 

-

 

Homo 

 

clade had a life history
that is more like that of modern chimpanzees than that of
modern humans, we must look at the fossil evidence of
creatures that are more closely related to modern humans
than to 

 

Pan 

 

(that is the hominin clade) to investigate the
recent evolution of modern human life history.

Inferences about the life history of extinct hominin taxa
must be extracted from fossilized remains of the hard
tissues. Even this indirect information about the life his-
tory of fossil hominins is useful. If the taxon is directly
ancestral to modern humans (but see Wood & Lonergan,
2008; for the reasons why this hypothesis is difficult to
test and verify for most early hominin taxa) it provides
evidence about an earlier stage in the evolution of modern
human life history. If the taxon belongs to an extinct
hominin subclade it might help throw light on the factors
that determine and constrain how life history is configured
more widely within the hominin clade.

In this contribution we have two primary aims: first to
reconstruct the recent evolutionary history of hominin life
history from extant and fossil evidence, and second to
assess when, in what taxon or taxa, and at what pace, the
distinctive components of modern human life history
appear within the hominin clade. In the first section of our
contribution we compare the life histories of the living
great apes (orangutans, gorillas, chimpanzees, bonobos
and modern humans) to identify traits that are likely to be
derived in hominins, and thus suggest the likely life history
of the 

 

Pan

 

-

 

Homo 

 

LCA, and the stem hominin. We distinguish
life history variables (LHVs), traits such as age at weaning,
age at sexual maturity, and life span that can only be
measured in living populations, from life history-related
variables (LHRVs). The latter are variables that can be used

to make inferences about life history. Given the inability to
collect standard life history data from fossil material, we
evaluate how well three LHRVs, body mass, brain size and
dental development, serve as accurate proxies for the
timing of life history events in the extant great apes.

In the second section we address how different taxonomic
schemes influence the analysis of hominin life history
patterns by using both a relatively speciose (or ‘splitting’)
taxonomy, as well as a less speciose (or ‘lumping’) taxonomy
(see Wood & Lonergan, 2008). We then summarize what
can be deduced about the evolution of the major elements
of life history within the hominin clade. This includes an
assessment of when, and in which taxa, the distinctive aspects
of modern human life history make their appearance.

Finally, we consider the implications of these data for
hypotheses about the first appearance of a modern
human-like life history and evaluate how well the hominin
fossil evidence supports the predictions made using
comparative primate data. Specifically, we address three
key questions: (1) Did the unique features of modern
human life history appear suddenly as one integrated
package, or did the components evolve independently
and incrementally? (2) Did the onset of modern human life
history coincide with the appearance of larger-bodied
hominins with a modern human skeletal proportions, or
did it appear later in hominin evolution? (3) Are modern
human and modern chimpanzee life histories the only
ways that life history has been configured within the

 

Pan

 

-

 

Homo 

 

clade, or is there evidence within the fossil
hominin record of creatures that have a different life
history pattern?

 

Part I. Life history and life history-related 
variables of extant hominids

 

All organisms pass through major life stages and life
history theory seeks to explain cross-species differences in
the timing and covariation of these stages. It has been well
established across a broad array of species that the timing
of major life events tends to be correlated, even when the
effects of body size are removed (Harvey & Read, 1988;
Read & Harvey, 1989). A shift in the timing of one event
results in a concordant extension or compression in the
span between the occurrence of other events (Charnov,
1991). Primates in general, and great apes in particular,
have slow life histories, with comparatively long life
stages: late ages at maturity, low birth rates with small
litter sizes, and long adult life spans (Charnov & Berrigan,
1993). The pace of life history is largely determined by
age-specific mortality rates. Generally, species that suffer
high rates of adult mortality, that is, a high probability of
dying during one’s reproductive years, tend to have fast
life histories, whereas those with low adult mortality
exhibit slower life histories (Harvey et al. 1989). Shifts in
adult survival or mortality risk alter the pace of linked life
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history events, and also the constraints important for
optimizing growth and development (Hawkes, 2006a).

Many published lists of life history variables are confla-
tions of two different categories of information (Skinner
& Wood, 2006), which we distinguish in Table 1. The first
category (A) consists of variables such as gestation length,
age at weaning, longevity, interbirth interval, and age of
first and last reproduction. These variables reflect popula-
tion vital rates and the timing of life history events, and we
will refer to these as ‘life history variables’ (or LHVs). With
the possible exception of weaning (Humphrey et al. 2007),
we cannot yet make direct observations about life history
variables on extinct taxa and thus we are reduced to
making inferences about life history from qualitative or
quantitative information about ontogeny gleaned from
the hominin fossil record. This second category (B) consists
of variables such as body mass and brain size (e.g. Sacher,
1975; Martin, 1981; Martin, 1983; Hofman, 1984; Smith,
1989, 1992; Smith & Tompkins, 1995; Smith et al. 1995;
Godfrey et al. 2003) that have been shown empirically
within extant primates to be constrained by, or correlated
with, LHVs. To distinguish them from first-order life his-
tory variables we follow Skinner & Wood (2006) and refer
to the second-order category B variables as ‘life history-
related variables’ (LHRVs).

We examine first what LHV data are available for the
extant great apes, focusing solely on females for several
reasons. Female fertility rates and mortality rates determine
population growth and age structure and are typically
slower than male potential reproductive rates. Males must
compete for paternity opportunities set by female fertilities,
a limitation that has important consequences for male life
histories, especially with respect to reproductive strategies
(Kappeler & Pereira, 2003). In addition, many important
life history variables are either restricted to females (such
as gestation length, lactation, and interbirth intervals) or
are difficult to ascertain for males (such as parity). We then
consider in more detail how (and, more importantly, how
reliably) LHRVs can be inferred from the evidence pro-
vided by the hominin fossil record.

 

Which apes resemble the first hominins?

 

Modern humans are part of the wider radiation of great
apes as shown in

 

 

 

Fig. 1. We follow the standard two species
taxonomy for our closest living relatives in the genus

 

Pan

 

: the common chimpanzee (

 

Pan troglodytes

 

) and the
bonobo (

 

Pan paniscus

 

). Although differences between the
three chimpanzee subspecies are small (Fischer et al.
2006), recent evaluation of genetic differences among
chimpanzees supports the traditional taxonomic designa-
tion of three geographically distinct lineages (Becquet
et al. 2007). The two other non-human great apes, gorillas
and orangutans, are currently in a state of taxonomic flux.
Gorillas were traditionally classified as a single species
with various distinct subspecies, but recently the eastern
and western gorilla populations have been accorded
species status as 

 

Gorilla gorilla 

 

and 

 

Gorilla beringei

 

,
respectively (Groves 2001, 2003; Thalmann et al. 2007).
Similarly, two species are recognized within the orangutan
genus 

 

Pongo

 

, 

 

Pongo pygmaeus 

 

from Borneo and

 

 Pongo
abelii 

 

from Sumatra (Zhang et al. 2001). While these
revisions recognize important species differences within
orangutans and gorillas, there are insufficient species-
specific long-term life history data to justify us distinguishing

Table 1 Life history and life history-related variables and their present 
availability for extinct taxa

Available for 
extinct taxa*

Life history variables (LHVs)
Gestation length No
Age at weaning No?
Age at first reproduction No
Interbirth interval No
Mean life span No
Maximum life span No
Life history-related variables (LHRVs)
Body mass

Adult Yes
Neonatal Yes???

Brain mass†
Adult Yes
Neonatal Yes???

Dental crown and root formation times Yes?
Dental eruption times Yes?

*Availability designated as ‘Yes’ means that reasonable sample 
sizes (but not necessarily reliable estimates) are available for most 
taxa; ‘Yes?’ means that it is possible to collect data for this variable 
from the fossil record but sample sizes are currently too small to 
be meaningful for many taxa; ‘Yes???’ means that it is 
theoretically possible to get data for this variable in the fossil 
record, but sample sizes may never be large enough to make 
meaningful inferences. 
†Estimated from endocranial volume in extinct taxa.

Fig. 1 Phylogenetic relationships of the extant great ape species. 
Estimated time of divergence of the hominid lineage from Glazko & Nei 
(2003), for chimpanzee/bonobo from Wildman et al. (2003), for the 
Bornean/Sumatran orangutans from Zhang et al. (2001), and for the 
eastern/western gorillas from Thalmann et al. (2007).
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them for the purposes of our review, so we pool available
life history data on chimpanzees, gorillas and orangutans
and deal with these taxa at the generic level.

To use empirical data about the life history of the living
great apes to reconstruct the life history of the most recent
common ancestor of the 

 

Pan

 

-

 

Homo 

 

clade, or the life history
of the stem hominin, we must make the untested assump-
tion that the life histories of the non-human great apes
have undergone relatively little evolution of their own.
There is some support for this assumption, for the molecular
and morphological similarities among the great apes
suggest they have been more conserved than the hominin
radiation (Moore, 1996). On the other hand, many assume
that some parallel evolution has taken place in the African
hominoid lineages, especially with respect to their locomo-
tion. Because chimpanzees and gorillas are terrestrial
knuckle-walkers, it has long been considered parsimonious
to consider our common ancestor was, too. The wrist
morphology of early hominins apparently displays features
similar to those seen in our knuckle-walking great ape
relatives (Richmond & Strait, 2000), thus supporting this
assumption, but a recent examination of the locomotor
biomechanics among extant higher primates suggests that
hominin bipedalism may have evolved independently
from an arboreal ancestor (Schmitt, 2003; Thorpe et al.
2007; Crompton et al. 2008). Given the general correlation
between terrestriality and faster life history (van Schaik &
Deaner, 2003), and the evidence that the African great
apes became more terrestrial over time, it may be argued
that the late Miocene ancestors of the 

 

Pan

 

-

 

Homo 

 

clade
probably had slower life histories. If this is the case, the still
strictly arboreal orangutan may prove the best extant
model for the life history of the earliest hominins. If the
African apes did not evolve independently, then the
earliest hominins most likely had a life history similar to
that of our closest living relatives, the chimpanzee and
the bonobo. If they did evolve independently, the best
living model would be closer to that of the more arboreal
orangutan.

Adult body size is the result of both the duration and
rate of growth prior to maturity. Primates on average
grow more slowly than other mammals and are therefore
smaller compared to non-primate mammals of similar ages
at first reproduction. Modern humans, chimpanzees,
bonobos, and, orangutans grow even more slowly than
the primate average (Blurton Jones, 2006). But this is not
true of gorillas; they grow faster than the other great
apes, including ourselves. Differences in growth rates
across mammals are closely tied to differences in the rate
they produce offspring (Charnov, 1991; Charnov & Berrigan,
1993). Gorillas grow more quickly and produce offspring at
shorter intervals than do the other non-human great apes
(Table 2, see Robson et al. 2006 for discussion).

The rapid growth of gorillas may be related to their diet.
Leigh (1994) examined the diet, ecology and growth rates

of 42 anthropoid primate species and found that those
with more folivorous diets tend to grow faster than those
with more frugivorous diets. This association may simply
reflect nutritional adaptations, but it is also likely to be
influenced by the lowered ecological risks and intraspecific
feeding competition associated with a folivorous diet
(Janson & van Schaik, 1993). Without these constraints,
folivores are able to have faster infant and juvenile
growth rates (Leigh, 1994). All great ape species, including
gorillas, favor fruit when it is abundant, but chimpanzees
and orangutans specialize on fruit and extractive foods
(such as insects) and sometimes chimpanzees favor ver-
tebrate meat. In contrast, bonobos to some extent, and
gorillas in particular, fall back on vegetative foods that
tend to be abundant, but are of lower quality (Conklin-
Brittain et al. 2001; Malenky et al. 1994). The diets of
archaic hominins are generally reconstructed as being
dominated by vegetative items, such as fruits and seeds
(e.g. Schoeninger et al. 2001), so if diet influences growth
trajectories, then these early hominins would be expected
to have growth and reproductive rates closer to those of
chimpanzees and orangutans than to gorillas. Also, the
available fossil evidence suggests that the body size of
archaic hominins is more similar to that of chimpanzees
than to gorillas (McHenry, 1994). Average growth rates for
modern human females are close to the rates for chim-
panzees, bonobos and orangutans (Blurton Jones, 2006).
For these reasons, we suggest that chimpanzees and
orangutans provide the most appropriate models from
which to reconstruct the life history variables of archaic
hominins and we refer to data for gorillas only when relevant.

 

Comparing great ape life history estimates

 

To develop proper comparisons between modern humans
and the other extant great apes we primarily rely on
life history parameters estimated from modern human
hunter-gatherers, because their diets, mobility, foraging
styles, and population densities most likely resemble those
of modern humans prior to the introduction of agriculture.
While we refer to estimates drawn from a broader range
of modern human populations for some of the variables in
the text, in Table 2 whenever possible we use estimates
derived from detailed studies of extant hunter-gatherers.
This reduces concern about possible effects of improve-
ments in diet and medical care on rates of development
and senescence. We are aware, however, that it can be
argued that the estimates are conservative in that ethno-
graphically known populations of hunter-gatherers mostly
occupy environments that are marginal for agriculture,
thus these data are likely to sample only a subset of the
habitats initially colonized by modern humans.

The non-human great ape data primarily come from
long-term field studies and these data are constantly
being revised and improved. In all the reports of studies of
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wild populations, the ages of many adults were estimated
and maximum life spans were all based on estimates with
unknown errors. The maximum life spans given in Table 2
are therefore taken from captive individuals of known
ages. The mortality profiles constructed for wild popula-
tions do not suggest either stationary or growing popula-
tions, implying that the observed mortalities are higher
now than they have been until quite recently.

Comparisons of data in Table 2 show that modern
humans differ in the following ways from the other extant
great apes.

 

Maximum potential life span

 

The maximum potential life span of modern humans
exceeds that of the other extant great apes by several
decades. Even among modern human foragers with no
access to medical support, some individuals live into their
70s and 80s (Blurton Jones et al. 1999, 2002; Hill & Hurtado,

1996; Howell, 1979; Lee, 1968). In contrast, chimpanzees in
the wild usually die before they reach 45 (Hill et al. 2001)
and orangutans before age 50 (Wich et al. 2004). This
difference in life span persists under the best captive
conditions; maximum recorded longevity for great apes is
around 60 years (Erwin et al. 2002), while the oldest
modern human on record died at 122 (Robine & Allard,
1998). These data show that modern humans have an
increased maximum life span relative to the inferred
ancestral state (i.e. around 45–50 years in non-human
great apes) by at least 20–30 years, and maximum life span
and average adult life span are correlated (Charnov 1993;
Hawkes, 2006a; Sacher, 1959). Chimpanzee (Hill et al.
2001) and orangutan (Wich et al. 2004) females in the wild
who survive to age 15 can expect to live only an additional
15–20 years (probably more for orangutans), whereas
modern human hunter-gatherers at age 15 can expect to
live about twice that long (Howell, 1979; Hill & Hurtado,

Table 2 Primary life history variables of female great apes, mainly for wild populations compared to those of modern humans, mainly foragers

Species
Maximum life 
span (years)

Age at first 
birth (years)

Gestation 
length (days)

Age at 
weaning (years)

Interbirth 
interval (years)

Age at last 
birth (years)

Adult female 
body mass (kg)

Orangutan (Pongo sp.) 58.7* 15.6§ 260§§ 7.0¶ 8.05§ > 41§ 37.81‡‡‡‡
Gorilla (Gorilla sp.) 54* 10.0¶ 255§§ 4.1*** 4.40¶ < 42¶¶¶ 95.2‡‡‡‡
Bonobo (P. paniscus) 50.0+† 14.2** 244¶¶ 6.25††† 33.35‡‡‡‡
Chimpanzee 
(P. troglodytes)

53.4* 13.3†† 225§§ 4.5¶ 5.46‡‡‡ 42**** 35.41‡‡‡‡

Modern human 
(H. sapiens)

85‡ 19.5‡‡ 270§§ 2.8¶ 3.69§§§ 45†††† 45.5§§§§

*Judge & Carey (2000).
†Erwin et al. (2002).
‡Hill & Hurtado (1996); Howell (1979); Blurton Jones et al. (2002).
§Wich et al. (2004).
¶Alvarez (2000); for modern humans, only included data from two foraging populations, the Ache and !Kung.
**Kuroda (1989).
††Average age at first birth for five P. troglodytes populations: Bossou (10.9 years) Sugiyama (2004); Gombe (13.3 years) Wallis (1997); 
Mahale (14.56 years) Nishida et al. (2003); Tai (13.7 years) Boesch and Boesch-Achermann (2000); Kibale (15.4 years) Wrangham in 
Knott (2001).
‡‡Average age at first reproduction from four modern human foraging groups: Ache (19.5 years) Hill & Hurtado (1996); !Kung (19.2 years) 
Howell (1979); Hadza (18.77 years), Blurton Jones (unpublished data); Hiwi (20.5 years) Kaplan et al. (2000).
§§Harvey et al. (1987).
¶¶de Waal & Lanting (1997): 190 report median gestation length for bonobos in captivity from Thompson-Handler et al. (1990).
***Average of median age at last suckle of both species: G. gorilla (4.6 years) Nowell & Fletcher (2007); G. beringei (3.6 years) 
Fletcher (2001).
†††Average of two P. paniscus populations: Wamba (4.5 years) Takahata et al. (1996); Lomako (8.0 years) Fruth in Knott (2001).
‡‡‡Average interbirth interval of five P. troglodytes populations: Bossou (5.3 years) Sugiyama (2004); Gombe (5.2 years) Wallis (1997); 
Mahale (5.6 years) Nishida et al. (2003); Tai (5.7 years) Boesch & Boesch-Achermann (2000); Kanywara, Kibale (5.4 years) Brewer-Marsden 
et al. (2006); Budongo (5.6 years) Brewer-Marsden et al. (2006).
§§§Average modern human interbirth interval averaged from three foraging groups: Ache (3.2 years) Hill & Hurtado (1996); !Kung 
(4.12 years) Howell (1979); Hiwi (3.76 years) Kaplan et al. (2000).
¶¶¶Maximum reported age at last birth reported in captivity: Atsalis & Margulis (2006).
****Average of maximum age at last birth in four P. troglodytes populations: Gombe (44 years) Goodall Institute; Mahale (39 years) 
Nishida et al. (2003); Tai (44 years) Boesch & Boesch-Achermann (2000); Bossou (41 years) Sugiyama (2004).
††††Average age at last birth: Hill & Hurtado (1996); Howell (1979); Martin et al. (2003).
‡‡‡‡Body mass reported for wild populations Plavcan & van Schaik (1997).
§§§§Average of ethnographic sample reported in Jenike (2001; Table 5).
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1996; Blurton Jones et al. 2002). Among modern human
foragers about 30% of those over the age of 15 are past
the age of 45, while this is true of less than 3% of wild
chimpanzees (Hawkes & Blurton Jones, 2005).

Longer adult life spans reflect lower adult mortality.
When extrinsic adult mortality is as low as it is among
great apes, adults can live long enough to display signs of
declining physiological performance and eventually die
from age-specific frailty. Ricklefs (1998) showed that in
species with adult life spans similar to chimpanzees, about
69% of adult deaths result from age-related causes.
Selection can favor slower rates of aging if the fitness
benefits of extending vigorous physical performance
exceed the costs of increased somatic maintenance and
repair. Slower rates of aging may account for the differences
between modern human and non-human great ape
maximum life spans (Hawkes, 2003). While there is little
systematic evidence documenting age-specific declines in
physical performance in the non-human great apes,
qualitative descriptions suggest that, as expected from
their relatively shorter life spans, chimpanzees do age
faster than modern humans. Goodall (1986) classified
chimpanzees at Gombe as ‘old’ when they reached the age
of 33 years. Finch & Stanford (2004) report that chimpanzee
individuals aged 35 years or more ‘show frailty and weight
loss’ and the ‘external indications of senescence include
sagging skin, slowed movements, and worn teeth’ (

 

ibid

 

,
p. 4). Thus, when chimpanzees in the wild reach their
mid-30s they appear to age rapidly and die within a
decade. In contrast, studies of physical performance
among hunters and gatherers show that vigor declines
more slowly with age. Measures such as muscle strength in
hunter-gatherer women decrease slowly over many dec-
ades (Blurton Jones & Marlowe, 2002; Walker & Hill, 2003).
Comparable data on the physical performance of the
great apes are needed to test whether they do in fact age
more quickly than people.

 

Age at first birth

 

As expected from an extension in life span, Table 2 shows
that age at first reproduction among modern humans is
later than in the other great apes, and has increased from
what is inferred to be the ancestral state (see below) by 4–
6 years. The age at first birth of chimpanzees and bonobos
in the wild, while variable, shows a central tendency
toward age 13 and 14, respectively. This is the inferred
ancestral state for the 

 

Pan

 

-

 

Homo 

 

and the hominin clades.
For gorillas the mean age at first birth is 10 years and oran-
gutans bear their first offspring at around 15.6 years old.
Mean age at first birth among modern human foraging
populations is 19.5 years.

These central tendencies persist for all great ape species
in spite of differences in environment and ecology among
populations in the wild. Captivity seems to have only a
modest effect on age at first birth (Bentley, 1999). It is

often assumed that superabundance of food enhances
physical condition, accelerates the timing of first birth and
extends longevity. However, there is evidence that the
husbandry practices and socioecological conditions of
many captive colonies do not always maximize the welfare
of great apes and, indeed, often increase the incidence of
vascular disease, obesity, and stress (DeRousseau, 1994;
Finch & Stanford, 2003). Captive chimpanzees and bono-
bos bear their first offspring when they are around
11 years old (Bentley, 1999; Knott, 2001; Sugiyama, 2004)
and while this mean is earlier than the central tendency of
age at first birth among their wild counterparts, it is within
the age range of at least one wild population. Age at first
birth for gorillas in captivity is virtually identical to those
in the wild (9.3 versus 10 years, Harcourt & Stewart, 2007).
Captive orangutan females show the largest shift in age at
first birth from their wild counterparts. Markham (1995)
reports age at first birth for orangutans in captivity as
11.5 years, almost 4 years earlier than orangutans in the
wild. However, whether in the wild or captivity, orangu-
tans have the latest age at first birth and are the ‘slowest’
of the non-human great ape species.

There is surprisingly little variation in average age at
first birth among modern humans. Even under conditions
of ample food supply and medical care, cross-culturally
modern human females, on average, bear their first off-
spring after 18 years of age (Bogin, 1999; Martin et al.
2003). Data from historic records indicate that the average
age at first birth occurred even later than at present
(LeBourg et al. 1993; Westendorp & Kirkwood, 1998;
Korpelainen, 2000, 2003; Low et al. 2002; Smith et al.
2003; Grundy & Tomassini, 2005; Helle et al. 2005; Pettay
et al. 2005). These data emphasize the limited plasticity of
life history traits even when resources are abundant.

Later age at first birth allows energy to be invested
in growth over a longer juvenile period and thus most
mammals with slower life histories also have larger body
sizes (Purvis & Harvey, 1995). Larger mothers have greater
resources for offspring production and great ape mothers
translate this energy into larger, more expensive babies
than is the case for other primates ( Stearns, 1992; Hawkes,
2006b).

 

Gestation length

 

Larger primate mothers have larger babies (Robson et al.
2006). The large size of modern human neonates is
achieved through a gestation that is between 10 to 30
days longer than for the other great apes (Haig, 1999;
Dufour & Sauther, 2002). While this difference appears
slight, modern human newborns spend the weeks prior to
parturition accumulating large adipose fat stores (Southgate
& Hey, 1976) and it is these fat stores that account for
the relatively larger size of modern human neonates.
Across mammals neonatal fat stores scale allometrically
with body size (Widdowson, 1950). Modern human
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neonates, however, are over three times fatter than
expected for a mammal of their size (Kuzawa, 1998). At
birth, 12–15% of modern human neonatal body weight is
adipose tissue (Fomon et al. 1982). While there are no data
documenting the body fat of non-human great ape
infants, the qualitative difference in the amount of body
fat between modern humans and the other great apes is
apparent. Schultz (1969) made the general observation
that ‘most human babies are born well padded with a
remarkable amount of subcutaneous fat, whereas monkeys
and apes have very little, so that they look decidedly
‘skinny’ and horribly wrinkled’ (

 

ibid, 

 

p. 152).

 

Age at weaning and interbirth intervals

 

Species with slow life histories generally have relatively
later ages at weaning and longer interbirth intervals.
Great apes, especially the frugivorous chimpanzees and
orangutans, wean their offspring relatively late (around
ages 4–5 and 6–8, respectively) and have long interbirth
intervals (around 5–6 and 7–9 years, respectively). How-
ever, while modern humans have the slowest life history in
many respects, we wean our infants comparatively early.
Modern human foragers typically wean their infants by
3 years of age and have mean interbirth intervals of
around 3.7 years. Like age at first birth, modern human
weaning ages are consistent across a broad range of ecol-
ogies, so that weaning in modern humans occurs ‘between
2–3 years and generally occurs about midway in that
range’ (Kennedy 2005: p. 7).

Many different ways have been proposed to estimate
expected (‘natural’) weaning age from other modern
human life history variables and most predict later wean-
ing ages than have been observed (Sellen, 2001). Harvey &
Clutton-Brock (1985) predict an average weaning age of
3.36 years based on a correlation between maternal and
infant body size, but Charnov & Berrigan (1993) note that
mammalian infants are generally weaned when they
achieve one-third of maternal body weight (Lee et al.
1991), which for modern humans occurs around 6.4 years.
Smith (1992), following Schultz (1956), found that across
a sample of primates weaning age correlated with the
eruption of the first permanent molar, an event that
occurs around 6 years in modern humans (see Table 4).
The observed modern human weaning age of 2–3 years is
substantially earlier than these predictions, and this is all
the more remarkable because other aspects of our life
history have slowed down relative to the ancestral state
(Smith & Tompkins, 1995).

 

Age at last birth and menopause

 

In mammals, oocytes are produced in the fetal ovaries
until the third trimester of gestation when mitosis of germ
cells ends. This fixed store of oocytes is subject to a process
of continual depletion, or atresia, over the individual’s life
time (vom Saal et al. 1994; O’Connor et al. 2001; Cohen,

2004). In all higher primates, including modern humans,
the cycle of ovulation and menstruation is generated by an
endocrinological feedback loop that requires a sufficient
store of oocytes (Wood, 1994). When insufficient oocytes
remain to stimulate ovulation (estimated at around 1000
follicles, Richerson et al. 1987) cycling ceases. All menstruat-
ing primates can potentially experience the senescent
cessation of menses, or menopause, if they live long enough.
However, in non-human species reproductive senescence
usually corresponds with somatic senescence and few
species live beyond the depletion of their oocyte store.

Menopause has been well documented in captive
populations of macaques (e.g. 

 

Macaca fuscata

 

, Nozaki
et al. 1995; 

 

Macaca mulatta

 

, Walker 1995; 

 

Macaca
nemestrina,

 

 Short et al. 1989) where individuals with
senescent impairments live longer than they can in the
wild. Data on reproductive senescence in great apes are
scant, but histological examination of captive chimpanzee
ovaries suggests that the process of oocyte reduction is
similar to that in modern humans (Gould et al. 1981). The
few captive chimpanzee females that have survived to
menopause exhibited the same pattern of declining
fecundity and variable cycling experienced by women
(Tutin & McGinnis, 1981) and they did so around the same
age (Gould et al. 1981). Counts of primordial oocytes for
a sample of chimpanzees from 3 months to 47 years
show the same exponential rate of decline as the rate
documented in modern humans (Jones et al. 2007).

Several years prior to menopause in modern human
women, the hypothalamic-pituitary-ovarian (HPO) axis
begins to break down due to the number of oocytes falling
below the level necessary for ovarian steroid production.
During this period of ‘perimenopause’, cycle lengths
become long and irregular, and many are anovulatory.
The age at menopause, the permanent cessation of
menstruation, is assessed retrospectively, after 1 year of
no menstrual bleeding. Inconsistent functioning of the HPO
axis and the increase in pregnancy failure during perimen-
opause results in a steep decline in the fertility of modern
human females (Holman & Wood, 2001). Though age at
menopause varies, Treloar (1981) found in his classic
prospective study an average age of 50–51 for the com-
plete cessation of menses. In non-contracepting modern
human populations the average age at last birth precedes
the average age at menopause by about 10 years (Gosden,
1985) and this pattern is similar globally. ‘With few exceptions
the means [of age at last birth] fall in the 39–41-year range
even when subpopulations with different ages at marriage,
occupations of husbands, and numbers of infant deaths
are considered’ (Bongaarts & Potter, 1983: p. 43).

There are few data documenting the pattern of age-
specific fertility decline in non-human great apes, but the
data available for chimpanzees suggest that fertility is
close to zero at 45 years of age (Nishida et al. 1990; Boesch
& Boesch-Achermann, 2000; Sugiyama, 2004; Emery
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Thompson et al. 2007), much as it is in modern humans
(Howell, 1979; Hill & Hurtado, 1996; Muller et al. 2002;
Martin et al. 2003). It appears that the age at which fertility
declines in the other great apes is similar to that in modern
humans (see Wich et al. 2004 on orangutans). This similarity
suggests that all higher primates share the ancestral
pattern of ovarian ontogeny. What is derived in modern
humans is not an unusual rate, and thus an unusual timing,
of reproductive decline, but a slowed rate of somatic
aging, distinctively low adult mortality, and, in females, a
vigorous post-menopausal life.

 

Life history-related variables

 

Many characteristics of growth and development that
depend on life history are not life history traits themselves.
The first-order life history variables (LHVs) described above
– maximum potential life span (or average adult life span),
age at first birth, gestation length, interbirth intervals and
age at weaning, and age at last birth – directly summarize
rates of survival and reproduction across the life span. In
this section we discuss three attributes that are strongly
linked with life history – body mass, brain size, and the
timing and sequence of tooth formation and eruption –
and evaluate how well these variables correspond with
the timing of major life history events in the extant higher
primates. These life history-related variables (LHRVs) are
particularly relevant to palaeoanthropology because, unlike
first-order life history variables, they are attributes whose
values can potentially be derived from hominin fossil
evidence.

 

Body mass

 

Body size plays an important role in mammalian life histo-
ries (Charnov, 1993, see Hawkes, 2006a for discussion of
Charnov’s model) and is positively correlated with many
life history variables across a range of mammalian taxa (Har-
vey & Read, 1988). Specifically, there is a strong correlation
across subfamilies of primates between body size and
LHVs such as gestation length, weaning age, age at first
reproduction, interbirth interval and maximum life span
(Harvey & Clutton-Brock, 1985).

Great apes are the longest-lived and latest maturing as
well as the largest of all primates. Chimpanzees, bonobos,
orangutans, and modern humans all have late ages at first
birth, and this allows energy to be invested in growth over
a longer juvenile period and thus most mammals with
slower life histories are also large (Purvis & Harvey, 1995).
As previously discussed, gorillas are unusual in that they
grow faster than the other great apes, including modern
humans, and thus they achieve a larger adult size. The
remaining great ape species share a similar growth rate
(Table 2) and, as expected, achieve body sizes that generally
vary with the duration of growth before maturity (Blurton
Jones, 2006). Chimpanzees, bonobos, and orangutans

bear their first offspring between 13 and 16 years of age,
and they have similar body weights around 35 kg. Modern
human females have a later average age at first birth
(19.5), and grow 4–6 years longer than either 

 

Pan

 

 or

 

Pongo

 

. As a result, modern human females in extant
foraging societies are about 10–15 kg larger than chim-
panzee, bonobo, or orangutan females. Modern human
foragers are generally smaller than body sizes estimated
for pre-Mesolithic people (Jenike 2001; Ruff et al. 1997).
Ethnographic hunter-gatherer means may therefore
underestimate the average maternal size differences
between humans and the hypothetical common ancestor
of the 

 

Pan

 

-

 

Homo

 

 and hominin clades.

 

Brain growth trajectories and adult brain size

 

Encephalization is often linked to the slow pace of modern
human life history because adult brain size has been
shown to be correlated with many life history variables
(Sacher, 1975; Harvey & Clutton Brock, 1985; Deaner et al.
2003). Having a larger than expected adult brain size for a
given body size can be achieved either by extending the
period of brain growth, increasing the rate of brain
growth, or both (see Vinicius 2005 for review). Because
most relatively large-brained mammals also have slow life
histories, and because large brain size is strongly correlated
with many life history events, most researchers assume
that brain size and the pace of life history are physiologically
linked and that encephalization causes a slowdown in life
history. The idea that large brain size slows life history
implies that subadulthood is extended because it takes a
longer time to grow a larger brain (Kaplan et al. 2000).
However, few studies have systematically examined the
rate and timing of brain growth between modern humans
and the other great apes to test this assumption.

There are few published datasets of brain sizes for
modern human individuals of known ages. Most authors
summarize their original data in figures and report
parameters instead of original values, making intraspecies
comparisons difficult (Jolicoeur et al. 1988; Cabana et al.
1993). Of the complete datasets published, most are
derived from autopsy and necropsy records. Because these
samples are made up of individuals with various pathologies
it is more than likely that they do not represent the
‘normal’ population. These are cross-sectional data, not
longitudinal, repeated measurements on the same indi-
vidual, but these data currently provide the only opportu-
nity to quantify brain growth and development in modern
humans.

We used Marchand’s (1902) dataset that reports brain
weight (wet, including meninges, in grams), stature (in
centimeters), sex, and known or estimated chronological
age, assembled from German autopsy records documented
between 1885 and 1900. The original data include a total
of 716 modern human males and 452 females from birth
to over 80 years old and the variation in brain size with
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age and sex compares favorably with other reports
(Dekaban & Sadowsky, 1978; Kretschmann et al. 1979),
indicating that Marchand’s series can serve as a representa-
tive sample. Brain weights for chimpanzees (

 

Pan troglodytes

 

)
of known ages were drawn from necropsy data reported
by Herndon et al. (1999). Brain weights were obtained
fresh, from 76 captive individuals (33 females and 43
males) at Yerkes Regional Primate Center who died from
natural causes or were euthanized when natural death
was imminent.

Using these two datasets, shown in Fig. 2 and summarized
in Table 3, we examined how well the timing of brain
growth and development corresponds proportionately
with life history events. More specifically, we investigated

whether a longer period of postnatal brain growth is
associated with a longer subadulthood, whether a longer
period of postnatal brain growth is associated with a
smaller portion of adult brain size at birth, and whether a
longer subadult period is commensurate with a slower rate
of brain growth. We find that none of these predictions are
supported. Firstly, although modern human subadulthood
is over 6 years longer than that of chimpanzees (19.5 vs.
13.3 years), only one additional year is spent growing a
larger brain. The outlined portion of the shaded bands in
Fig. 2a highlights the length of brain growth during
subadulthood and shows that, compared to modern
humans, chimpanzees devote a relatively longer period of
their subadulthood to brain growth. Modern humans

Table 3 Comparison modern human and chimpanzee absolute and relative brain size

Average 
neonatal 
brain size (g)*

Average 
adult brain 
size(g)†

% adult 
brain size 
at birth

Age 90% 
of adult brain 
size attained 

Age at sexual 
maturity 
(years)

Years from adult 
brain size to 
maturity (years)

% subadult pd 
left after reaching
adult brain size

Modern human‡ 364 1352 27% 5 19.5 14.5 74%
Chimpanzee§ 137 384 36% 4 13.3 9.3 70%

*Neonate defined as individuals from birth to 10 days old.
†Average adult brain size was calculated as the mean of all individuals between 20–40 years old for modern humans and the mean of all 
individuals between 7 and 30 years old in chimpanzees because this range safely precedes a known trend toward declining brain weight 
with age (Dekaban & Sadowsky (1978); Herndon et al. (1999).
‡Modern human brain data from Marchand (1902).
§Chimpanzee brain weight data from Herndon et al. (1999).

Table 4 Eruption and crown formation schedules for permanent teeth of extant great ape species

I1 I1 I2 I2 M1 M1 M3 M3

(A) Chronological age at crown completion (years)
Orangutan (Pongo sp.) 2.9–3.1‡ 2.81§
Gorilla (Gorilla sp.) 2.7§ 2.9§
Chimpanzee (P. troglodytes) 4.0* 4.5–5.4* 4.5* 5.0–5.2* 2.1–2.3¶ 1.69–3.05¶ 6.9–8.0¶
Modern human (H. sapiens)† 4.2–5.0 3.4–3.8 4.8–5.1 3.8–4.2 3.0 3.1–3.3 9.3–9.4 11.2–11.3

M1 Age at weaning M3 Age at first birth

(B) Chronological age at molar eruption and corresponding life history event (years)
Orangutan (Pongo sp.) ~3.5–4.9** 7.0 ~10** 15.6
Gorilla (Gorilla sp.) 3.0–4.0** 4.1 8.7–13.1** 10
Chimpanzee (P. troglodytes) 2.66–4.08†† 4.5 8–14†† 13.3
Modern human (H. sapiens) 5.84 (4.74–7.0)‡‡ 2.8 19.8–20.4** 19.5

*Reid et al. (1998).
†Reid & Dean (2006). Initiation ages: UI1 = 128 days, UI2 = 383 days, LI1 = 90 days, LI2 = 146 days, M1 = birth, M3 = 8 years old.
‡Macho (2001); Kelley & Schwartz (2005).
§Macho (2001).
¶Smith et al. (2007c): Ranges reported from radiographic and histological studies of wild-born, captive-born, and unknown provanence 
samples. M1 initiation age = 1–2 months prior to birth. 
**Smith et al. (1994); Kelley & Schwartz (2005).
††Smith et al. (2007b; consensus range from Table 11).
‡‡Liversidge (2003): mean (range) of 56 world-wide modern human populations.
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reach adult brain size much earlier than widely claimed,
some as early as 3 years of age. Kretschmann et al. (1979)
used the Marchand (1902) data to show that on average
modern human males achieve 95% of total brain size by
3.82 years old and females by 3.44 years old. On average,
modern humans in this dataset achieve 90% of adult brain
size by 5 years old, only 1 year later than the chimpanzee
average (around 4 years) and much earlier than widely
assumed for our long subadulthoods and slower life history.

Second, chimpanzee and modern human infants are
more similar in the percentage of adult brain size achieved
at birth than previously assumed. It has conventionally
been reported (e.g. Dienske, 1986) that modern human
neonatal brain weight is only 25% of adult size at birth,
whereas chimpanzee neonates have achieved 50% of their
adult brain weight at birth. But this estimate of relative
chimpanzee neonatal brain size is based on the estimated
cranial capacity of a single specimen (Schultz, 1941). A
recent re-examination of that specimen has revealed that
it was not a neonate, but was 74 days old at death (Vinicius,
2005). When plotted against the Herndon et al. (1999)
values, this specimen falls in the scatter where it should be
given an age of 2.5 months (Robson et al. 2006). Thus, the
interspecific difference in relative brain size at birth is
reduced from 25% to only 10% (see Table 3). Additional
data may shrink the difference even further, weakening
any remaining association between relative neonatal
brain size and the length of subadulthood.

Third, chimpanzees and modern humans share a similar
pattern of relative brain growth trajectories (Fig. 2b). The
large brain size of modern human adults is primarily

achieved by a faster rate, and not by a longer relative
duration, of post-natal brain growth. Leigh (2004) conducted
similar analyses using the same data and concluded that
‘after the first 18 months of life, Pan and Homo are not
substantially different in terms of growth rates’ (p. 152).

These similarities between chimpanzees and modern
humans do not support the view that our juvenility is
longer because of the growth requirements of our large
brains. Whereas adult brain size is strongly correlated with
the length of subadulthood (Leigh, 2004), age at brain
growth cessation is not. These data show that encephal-
ization in primates is achieved through an increased velocity,
not longer relative duration, of brain growth and challenge
the widely held assumption that the length of brain
growth is linked to, and sets the pace of, life history.
Rather, external adult mortality and demographic profiles
probably determine the pace of mammalian life history
schedules and patterns of growth and development adjust
to these life history constraints (Dean, 2006). From this per-
spective, slower life history provides an opportunity for
shifts in the rate and timing of brain growth.

This analysis is important because recent studies have
drawn conclusions about the developmental patterns
and cognitive abilities of fossil hominins based on com-
parison of modern human and chimpanzee brain growth
trajectories (Coqueugniot et al. 2004; Alemseged et al.
2006). We and others (Leigh, 2004; Vinicius, 2005) show
that there is substantial overlap in brain growth trajectories
between modern humans and chimpanzees, thus under-
cutting the usual basis for inferences about cognition and
development.

Fig. 2 Comparison of modern human and chimpanzee absolute (panel A) and relative (panel B) brain growth trajectories. Black triangles are 
chimpanzees (Herndon et al. 1999; n = 26; males = 16, females = 10); open circles are modern humans (Marchand, 1902; n = 160; males = 111, 
females = 49). Shaded bands in panel A represent the period of subadulthood with the duration of brain growth outlined and darkened.
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Dental development
Any consistent relationships between dental growth and
development and life history would provide a means for
making direct interpretations of maturation schedules
within the hominin clade. Teeth are less sensitive to
developmental insults and short-term ecological fluctua-
tions than other tissues (Nissen & Riessen, 1964; Garn et al.
1973; Liversidge, 2003), thus making them relatively reliable
maturation indicators. We evaluate two forms of dental
data. Firstly, we examine the potential of dental micro-
structure, the rate and pattern of crown and root forma-
tion, as a means of comparing life histories. Second, we
evaluate the information available about the timing and
sequence of tooth eruption into the jaws in the same
light. Because the timing and pattern of overall dental
development are considered proxies for somatic growth,
and this is constrained by life history, it should in theory
be possible to make inferences about shared or distinct life
history patterns from these data.

Crown and root formation times. Enamel and dentin for-
mation are especially promising lines of evidence for link-
ing dental development with absolute calendar time
(Moorrees et al. 1963; Bromage & Dean, 1985; Beynon &
Dean, 1987). Because the rhythms of the incremental
growth of the dental hard tissues are regular, it is possi-
ble to use those cycles of cellular activity as clocks to time
the onset, duration and offset of the cellular activity
responsible for the deposition of dental hard tissues (Dean,
1987; Macho & Wood, 1995b; Schwartz & Dean, 2000;
Wood, 2000; and Dean, 2006 all provide reviews of the cel-
lular basis of dental ontogeny). Specifically, the crystalline
matrix secreted by enamel-forming cells (ameloblasts) and
dentin-forming cells (odontoblasts) shows two discrete
periodicities, a ‘short period’ (c. 24 h) and a ‘long period’
(c. 6–9 days). In enamel these physical manifestations are
called ‘cross-striations’ and the ‘brown striae of Retzius’,
respectively (Schwartz & Dean, 2000.) Their equivalents in
dentin are ‘von Ebner’s’ and ‘Andresen’s lines’, respec-
tively (Dean, 1995b, 1998; Fitzgerald, 1998; Dean, 2000).

Macho (2001) found that crown formation is broadly
correlated with life history across the anthropoid primates.
However, several studies have found similarities between
the molar formation times of modern humans and chim-
panzees (Reid et al. 1998; Smith et al. 2007a), and prelim-
inary data suggest that this is also true for bonobos
(Ramirez-Rozzi & Lacruz, 2007). We show, below, that the
broader correlation of crown formation variables with life
history does not operate within the narrower confines of
the extant great apes.

Comparison of crown formation rates in the extant
higher primates (Table 4a) shows a poor correspondence
between dental microstructure and life history variables,
such as age at weaning and age at first birth. Whereas the
timing of life history events among the great apes fall

along a continuum, crown formation times for these
species are quite similar, and thus fail to track weaning
ages or age at maturity. There is ‘considerable overlap
among great apes and humans’ in the formation rates of
both incisors and molars (Macho & Wood, 1995b: p. 23).
These data show that researchers must temper expectations
that individual aspects of dental development (such as
anterior crown formation times) are tightly tied to age at
weaning (Macho, 2001), or to age at first birth (Ramirez-
Rozzi & Bermudez de Castro, 2004).

Timing of tooth formation and eruption.  Schultz’s much
reproduced graph depicting differences in the timing of
life stages across primates (e.g. Schultz, 1969) used the
emergence of the first permanent teeth to mark the end of
infancy, and the emergence of the last permanent teeth to
mark the beginning of adulthood. Schultz (1949) also
observed differences in the sequence of tooth eruption
across primates. In species that are weaned relatively early,
molars erupt before the deciduous teeth are lost and prior
to the emergence of the anterior permanent dentition.
Schultz suggested that permanent molars erupted first so
that infants would be prepared to masticate food when
weaned, a generalization that Smith (2000) has called
‘Schultz’s rule’. Slower developing modern humans show
a distinctive eruption sequence, with the permanent
anterior dentition emerging before the molars. In the
non-human great apes the first molar is the first permanent
tooth to erupt, followed by the incisors and premolars, the
second molar, and then the canine. In modern humans the
first molar and first incisor erupt close together, followed
by the second incisor, with the canine, premolars and second
molar subsequently erupting close together (Mann et al.
1990; Conroy & Vannier, 1991a).

Dean & Wood (1981) published a provisional chart
comparing modern human, chimpanzee and gorilla tooth
crown and root development, and with subsequent impor-
tant modifications by Anemone, Conroy and Kuykendall
(summarized in Kuykendall, 2002) the chart is still used
today. However, the proximate cause of these differences
in eruption sequence has more to do with the roots than
with the crowns. For example, one of the main differences
between the dental development of modern humans and
chimpanzees and gorillas, the late eruption of the first
molar in the former, is caused by a temporal retardation in
the final stages of root formation so that first molar
eruption in modern humans occurs long after the crown
and most of the root are formed (Dean, 1995a; Macho &
Wood, 1995b).

Schultz speculated that the shift in eruption sequence
seen in modern humans is directly connected to our slower
life history and in particular to our much longer period of
juvenility. Building on Schultz’s recognition of a connection
between dental development and life history, Smith
(1989) showed that across the primates there is a correlation
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between the eruption of the first permanent molar (M1)
and weaning age, and between the eruption of the third
molar (M3) and age at first birth. However, a narrower
(sensu Smith (1989) re. allometry) examination of just the
great apes (Table 4b) shows that the patterns of dental
maturation and eruption do not always correspond with
one another, nor with the pace of life histories among
these species. A comparison of age at weaning with M1
eruption and age at first birth with M3 eruption in
Table 4b illustrates this lack of correspondence. The
eruption of M1 precedes weaning age in gorillas and
chimpanzees for a period that varies from several months
to more than 1 year and in modern humans by more than
3 years. In orang-utans, M1 eruption lags behind weaning
by 3 years. The age of M3 eruption is later in modern
humans, but M3s do not erupt later in the later-breeding
chimps and orangutans compared to gorillas. The eruption
of M3 inaccurately estimates age at first birth in all the
non-human great ape species by one to 5.5 years. For
example, the M3 erupts at around 11 years in gorillas and
chimpanzees and 10 years in orangutans, while age at first
birth occurs around 10, 13.3, and 15.6 years, respectively,
in these animals. These data show that among the living
great apes differences in life history are not necessarily
reflected in their molar eruption schedules.

The timing of tooth eruption, crown maturation, and
other aspects of dental development (Godfrey et al. 2003)
varies among great ape species. While the range of this
variation is not independent of life history, the evidence
reveals that the link is not a tight one. The robust associa-
tions among life history traits themselves reflect the nec-
essary interdependence of population vital rates (Hawkes,
2006a), but the demographic constraints on growth and
development are indirect. Life histories may change
without concomitant shifts in all aspects of growth and
development, and conversely selection might favor
ontogenetic adjustments that are adaptations to particular
problems faced by infants and juveniles in each species
(Godfrey et al. 2003).

Summary

There is a distinction between first order life history
variables such as age at weaning, age at sexual maturity,
and life span, and second order life history variables such
as body mass, brain size, and dental development. The
latter, which we refer to as life history-related variables
(LHRVs), are not life history variables as such, but are
either linked with, or can be used to make inferences
about life history variables. Life history variables can only
be recorded from observations of individual living ani-
mals, which can then be pooled to generate species
parameters. To the extent that LHRVs correspond with
LHVs, they offer an opportunity to estimate life history
parameters for fossil taxa.

A general feature of living great apes is a slow life his-
tory, so we infer this was also true of both the hypothetical
Pan-Homo LCA and the stem hominin. Within the great
apes, there is a distinct species order in the pace of life
history. Modern humans have the slowest life history,
followed by orangutans, chimpanzees and bonobos, and
gorillas. Compared to chimpanzees (see Table 2), modern
humans live at least 25 years longer and become sexually
mature more than 6 years later. Late age at maturity
results in larger mothers who then bear absolutely and rel-
atively larger, fatter babies. These characteristics point to
a lowering in adult mortality rates in the Homo lineage
since the Pan-Homo split. The age at which female fertility
declines to menopause appears to be the same in women
as in the other extant apes, indicating that this trait has
been conserved. However, modern humans have the
shortest interbirth intervals and experience an earlier
age at weaning than expected for an ape of our age at
maturity. The distinctively fast rate of modern human
reproduction results in ‘stacking’ weaned but nutritionally
dependent offspring. This unique pattern is likely a
derived feature of our genus and could only have evolved
if mothers had a reliable source of help with food acquisi-
tion for provisioning dependent youngsters. Vigorous,
postmenopausal grandmothers and adolescents, without
infant dependants of their own, are unique age stages of
modern human life history, and likely provided that help
(Robson et al. 2006).

Constructing life histories for extinct hominin species is
problematic because it depends on the extent to which
LHRVs are correlated with life history. We evaluated three
LHRVs, body mass, brain growth and dental development,
and found that many aspects of these variables corre-
spond imperfectly with a species life history. Previous
research has shown that aspects of life history strongly cor-
relate with these LHRVs across broad primate taxonomic
groups. Our evaluation shows that these correlations do
not hold within the narrow range of taxa we examine
here. Many aspects in the timing of growth and develop-
ment do not accurately correspond with the timing of life
history in the higher primate clade.

Of the three LHRVs we examined, body mass is the best
predictor of great ape life history events. While adult brain
size has been found to strongly predict aspects of life his-
tory (Deaner et al. 2003), we show that the timing of brain
growth is a less effective measure because it does not
match up with the length of subadulthood between
modern humans or chimpanzees. Both species complete
brain growth between 4–5 years old and, despite their
significantly larger adult brain sizes, modern humans
spend relatively less time during subadulthood growing a
large brain. Similarly, dental development and eruption is
also a weakly related proxy for the timing of life history
events and inferences about the latter from tooth forma-
tion and eruption times should be made with caution.
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Part II. Inferring the life history of extinct 
hominin taxa

Organizing the hominin fossil record

The classification of the hominin fossil evidence is contro-
versial, nonetheless a sound taxonomy is a prerequisite
for any paleobiological investigation, including one that
addresses the evolution of modern human life history. This
is because the allocation of individual fossils to each homi-
nin taxon determines the inferences drawn about the life
history of that taxon. There is lively debate about how to
define living species (for a discussion see Wood & Lonergan
2008), so we should not be surprised that there is a spec-
trum of opinion about how the species category should be
applied to fossil evidence.

One of the many factors that paleoanthropologists must
take into account is that the fossil record they have to
work with is confined to the remains of hard tissues (bones
and teeth). We know from living animals that many
uncontested species (for example, Cercopithecus species)
are difficult to distinguish using bones and teeth, thus
there are logical reasons to suspect that a hard tissue-
bound fossil record is always likely to underestimate the
number of species. This has recently been referred to as
‘Tattersall’s Rule’ (Antón, 2003). When discontinuities are
stressed (as in so-called ‘taxic’ interpretations), and if a
punctuated equilibrium model of evolution is adopted
along with a branching, or cladogenetic, interpretation of
the fossil record, then researchers will tend to split the

hominin fossil record into a larger rather than a smaller
number of species. This should be the preferred approach
for life history studies for the results will be less prone to
producing ‘chimeric’ life histories (Smith et al. 1994). Con-
versely, other researchers emphasize morphological conti-
nuity instead of morphological discontinuity, and see species
as longer-lived and more prone to substantial changes in
morphology through time. When this philosophy is com-
bined with a more gradualistic or anagenetic interpreta-
tion of evolution, researchers tend to resolve the hominin
fossil record into fewer, more inclusive, species. This will
also be the case if researchers think in terms of allotaxa
(e.g. Jolly, 2001; Antón, 2003) and allow a single species to
manifest substantial regional and temporal variation.

For the reasons given above the taxonomic hypothesis
we favor is the relatively speciose taxonomy in Table 5A, but
in Table 5B we also provide an example of how inferences
about life history would map onto the less speciose taxonomy
(both taxonomies are set out in Wood & Lonergan 2008).
While some researchers might contest the specific details
of each of these taxonomies, we offer them as a pragmatic
way to address whether and how differences in taxonomic
hypotheses affect the way we interpret the evolution of
modern human life history. Further details about most of
the taxa and a more extensive bibliography can be found
in Wood & Richmond (2000), and more recent reviews of
many of these taxa can be found in Hartwig (2002), Wood
& Constantino (2004) and Henry & Wood (2007).

We use the same six informal grade-based groupings
(Table 5; Fig. 3) of hominin taxa that are used by Wood &

Fig. 3 The more speciose (splitting) taxonomy. 
Informal groupings are based on brain size, 
body mass, postcanine tooth-size estimates, 
and locomotor mode. No ancestor-descendant 
relationships are implied among taxa.
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Lonergan (2008). The first group, possible and probable
primitive hominins, comprises Late Miocene/Early Pliocene
taxa that are temporally relatively close to the estimated
5–8 Ma split between hominins and panins (taxa more
closely related to modern chimpanzees than to modern
humans). In the early stages of hominin evolution it may
be either the lack of panin synapomorphies, or relatively
subtle derived differences in the size and shape of the
canines, the detailed morphology of the limbs or some

unique combination of such traits, which mark out the
creatures that are more closely related to modern humans
than they are to chimpanzees and bonobos. This group
contains a mix of taxa, some of which may belong in the
hominin clade, and others of which may belong to clades
that have no living representatives. The second grade
grouping, archaic hominins, includes Pliocene taxa from
East and southern Africa that exhibit morphology con-
sistent with facultative bipedalism, but cranially these

Table 5 (A) Splitting and (B) lumping hominin taxonomies and skeletal representation* within the taxa in the more speciose taxonomic scheme

(A) Splitting taxonomy

Informal group Taxa Age (Ma) Type specimen Crania Dentition Axial
Upper 
limb

Lower 
Limb

Possible and probable 
primitive hominins

S. tchadensis 7.0–6.0 TM 266-01-060-1 X X
Orronin tugenensis 6.0 BAR 1000’00 X X X
Ar. ramidus s. s.† 5.7–4.5 ARA-VP-6/1 X X X ff

Archaic hominins Australopithecus anamensis 4.2–3.9 KNM-KP 29281 ff X X X
Australopithecus afarensis s. s. 4.0–3.0 LH4 X X X X X
Kenyanthropus platyops 3.5–3.3 KNM-WT 40000 X X
Australopithecus bahrelghazali 3.5–3.0 KT 12/H1 X
Au. africanus 3.0–2.4 Taung 1 X X ff X X

Megadont archaic 
hominins

Au. garhi 2.5 BOU-VP-12/130 X X ? ?
P. aethiopicus 2.5–2.3 Omo 18.18 X X
P. boisei s. s. 2.3–1.3 OH 5 X X ? ?
P. robustus 2.0–1.5 TM1517 X X X X

Transitional hominins H. habilis s. s. 2.4–1.6 OH 7 X X X X X
H. rudolfensis 2.4–1.6 KNM-ER 1470 X X ?

Pre-modern Homo H. ergaster 1.9–1.5 KNM-ER 992 X X X X X
H. erectus s. s. 1.8–0.2 Trinil 2 X X X X
H. floresiensis‡ 0.074–0.012 LB1 X X ff X X
H. antecessor 0.7–0.5 ATD6-5 X X
H. heidelbergensis 0.6–0.1 Mauer 1 X X ff X
H. neanderthalensis 0.2–0.03 Neanderthal 1 X X X X X

Anatomically 
modern humans

H. sapiens s. s. 0.19-present None designated X X X X X

(B) Lumping taxonomy

Informal group Taxa Age (Ma) Taxa subsumed from the splitting taxonomy

Possible and probable primitive hominins Ar. ramidus s. l. 7.0–4.5 S. tchadensis, O. tugenensis, Ar. ramidus s. s.†
Archaic hominins Au. afarensis s. l. 4.2–3.0 Au. anamensis, Au. afarensis s. s., 

Au. bahrelghazali, K. platyops
Au. africanus 3.0–2.4 Au. africanus

Megadont archaic hominins P. boisei s. l. 2.5–1.3 Au. garhi, P. aethiopicus, P. boisei s. s.
P. robustus 2.0–1.5 P. robustus

Transitional hominins H. habilis s. l. 2.4–1.6 H. habilis s. s., H. rudolfensis
Pre-modern Homo H. erectus s. l. 1.9–0.018 H. erectus s. s., H. ergaster, H. floresiensis
Anatomically-modern humans H. sapiens s. l. 0.7-present H. antecessor, H. heidelbergensis, 

H. neanderthalensis, H. sapiens s. s.

*Skeletal representation key: X = present, ff = fragmentary specimens, ? = taxanomic affiliation of fossil specimen(s) uncertain.
†Recently, some specimens included in the Ar. ramidus s. s. have been raised to a separate species, Ar. kadabba (Haile-Selassie et al. (2004); 
however, this taxonomic distinction has not been incorporated into our analyses.
‡Given the recent and limited publication of this taxon and its current interpretation as an isolated endemic dwarf descendent of H. 
erectus s. s., H. floresiensis is not included in our comparisons or analyses of life history patterns in fossil hominins.
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taxa are broadly similar to chimpanzees with regards to
brain and body size. The third group, megadont archaic
hominins, includes Plio-Pleistocene taxa from southern
and East Africa. This group includes taxa many researchers
include in the genus Paranthropus, and the distinctive
cranial and dental morphology of Paranthropus includes
large and robust mandibular bodies and extremely large
postcanine teeth. Few, if any, postcranial fossils are
unambiguously linked with any of the three taxa con-
cerned. The fourth group, transitional hominins, includes
Late Pliocene/Early Pleistocene taxa from East and southern
Africa, which exhibit morphology consistent with facultative
bipedalism, and some individuals in this grade have a
slightly larger brain and postcanine teeth that are
absolutely smaller than those of archaic hominin taxa. We
place the two taxa concerned, Homo habilis sensu stricto
and Homo rudolfensis in their own grade to recognize the
ongoing debate about whether they should be included in
the genus Homo (see Wood & Collard, 1999b). The fifth
grade grouping, pre-modern Homo, includes Pleistocene
taxa present in Africa and Asia, which possess morphology
that is consistent with obligate bipedalism, brains that
range from medium to large, and small postcanine teeth.
This is the grade to which we allocate the recently
reported taxon Homo floresiensis from the island of
Flores, Indonesia (Brown et al. 2004; Morwood et al.
2004). This species appears to represent a late surviving
hominin descendant; however, given its unique morphology
and probable life history within the hominin clade it is not
included in comparisons among hominin taxa. The final,
sixth grade grouping, referred to as anatomically modern
Homo, includes specimens located across the globe which
exhibit morphology that is similar to, if not identical with,
that of modern Homo sapiens (the only extant hominin
taxon).

Readers should be aware of two caveats with respect to
the speciose taxonomy illustrated in Fig. 3. First, the age of
the first and last appearances of any taxon in the fossil
record (called the ‘first appearance datum’, or FAD, and
‘last appearance datum’, or LAD, respectively) almost
certainly underestimates the temporal range of each
taxon. It is very unlikely that we have a complete record of
hominin taxonomic diversity, particularly in the pre-4 Ma
phase of hominin evolution. This is because intensive
explorations of sediments of this age have only been
conducted for less than a decade, and because these
investigations have been restricted in their geographical
scope. Thus, the dataset we are working with in the early
phase of hominin evolution is almost certainly incomplete.
We should bear this in mind when formulating and testing
hypotheses about any aspect of hominin evolution, including
the evolution of modern human life history. Nonetheless,
FADs and LADs provide an approximate temporal
sequence for the hominin taxa. Second, we made a
deliberate decision not to use lines to connect the taxa in

Fig. 3. This reflects our view that within the constraints of
existing knowledge there are only two relatively well-
supported subclades within the hominin clade, one for
Paranthropus taxa and the other for post-Homo ergaster
pre-modern Homo taxa. Without well-supported subclades
in the early part of the hominin fossil record it is probably
unwise to begin to try to identify specific taxa as ancestors
or descendants of other taxa.

Body mass

How reliably can we estimate body mass using skeletal
fragments sampled from extinct taxa? Did increases in
hominin body mass occur gradually within the history of
species, or did it increase relatively quickly with the
appearance of new species? When in hominin evolution
did body mass reach the levels we see in contemporary and
subrecent modern humans?

The most reliable estimates of body mass are made
when the skeletal fragment is known to belong to a group
for which regressions can be determined using actual body
masses and skeletal measurements. This is clearly not the
case for fossil hominins, for the regressions used have to
be generated using data from extant, more or less, closely
related groups such as the hominids, hominoids, anthro-
poids or simians (e.g. Aiello & Wood, 1994). In addition to
this potential source of error, Richard Smith (1996) has
cautioned that because paleontologists have to rely on
proxies for body mass in fossil-only taxa this inevitably
introduces additional error into attempts to estimate the
body mass of fossil hominin taxa.

Traditionally, the most reliable body mass estimates for
living taxa have come from the postcranial skeleton. But,
reliably associated postcranial remains are rare in most of
the hominin fossil record, and some early hominin taxon
hypodigms (e.g. Paranthropus boisei) include little, or no,
postcranial evidence. This has led to attempts to use
cranial variables as proxies for body mass (e.g. Aiello &
Wood, 1994; Kappelman, 1996; Spocter & Manger, 2007).
We have compiled body mass estimates from the literature
using both postcranial and cranial methods for taxa in the
splitting and lumping hominin taxonomies (Table 6B,C).
The published body mass estimates for H. rudolfensis used
in Table 6 are more speculative than most because they
are based on postcranial fossils whose links to H. rudolfensis
are tentative and questionable. However, when Aiello &
Wood (1994) used orbit dimensions to predict body mass
directly from the KNM-ER 1470 cranium (the lectotype of
H. rudolfensis), the 95% CIs (confidence intervals) they
derived for its body mass (c. 43–67 kg) (Aiello & Wood,
1994, Table 8: p. 421) are very similar to the species 95%
CIs given in Table 6.

The 95% CIs around the means show that the body mass
estimates vary greatly in their reliability, and there are (as
one would expect) differences in the parameters of those
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taxa that have more inclusive and less inclusive interpretations
(for example, H. habilis sensu lato and H. habilis sensu
stricto). However, whether one uses the lumping or the
splitting taxonomy, there is apparently a substantial
increase in the mean body mass of some hominin taxa with
FADs around 2 Ma (Figs 4, 5). Prior to 2 Ma the estimated

body mass of each hominin taxon did not appear to differ
markedly from each other or from the average body mass
of extant chimpanzees (c. 35–45 kg; Table 6A). Exceptions
to this pattern are the estimated body masses of H.
rudolfensis and H. habilis s. l. (Taxon F in Fig. 4 and D in
Fig. 5), which at 2.4 Ma have estimates of mean body mass

Table 6 Body mass estimates for extant great ape species, modern humans and the hominin taxa as defined in the splitting and lumping hominin 
taxonomies

Species adult average
Male 
mean (kg)

Female 
mean (kg)

Sexual 
dimorphism‡ Method§Mean (kg) 95% CI†

A) Extant apes
Orangutans (Pongo sp.) 64 80 38 2.12 A
Gorillas (Gorilla sp.) 128 160 95 1.68 A
Bonobos (P. paniscus) 39 45 33 1.35 A
Chimpanzees (P. troglodytes) 41 46 35 1.31 A
Modern humans (world-wide) 49 53 46 1.16 A
(B) Splitting taxonomy
S. tchadensis ? ? ? ?
O. tugenensis ? ? ? ?
Ar. ramidus s. s.† 40 ? ? ? E
Au. anamensis 42 –72–156 51 33 1.54 B
Au. afarensis s. s. 38 31–45 45 29 1.55 B
K. platyops ? ? ? ?
Au. bahrelghazali ? ? ? ?
Au. africanus 34 30–38 41 30 1.36 B
Au. garhi ? ? ? ?
P. aethiopicus 38 ? 38 ? C 
P. boisei s. s. 41 –52–134 49 34 1.44 B
P. robustus 36 27–45 40 32 1.25 B
H. habilis s. s. 33 25–41 37 32 1.16 B
H. rudolfensis 55 46–64 60 51 1.18 B
H. ergaster 64 53–76 68 54 1.26 F
H. erectus s. s. 58 50–65 59 57 1.04 D,C,F
H. antecessor ? ? ? ?
H. heidelbergensis 71 62–80 84 78 1.08 F
H. neanderthalensis 72 69–76 76 65 1.17 F
H. sapiens s. s. 64 63–66 68 57 1.19 F
(C) Lumping taxonomy
Ar. ramidus s. l. 40 ? ? ? G
Au. afarensis s. l. 39 32–45 46 30 1.53 G
Au. africanus 34 30–38 41 30 1.36 G
P. boisei s. l. 40 21–59 43 34 1.26 G
P. robustus 36 27–45 40 32 1.25 G
H. habilis s. l. 46 34–57 52 41 1.27 G
H. erectus s. l. 61 55–66 65 57 1.14 G
H. sapiens s. l. 66 6–67 70 59 1.19 G

*See Appendix I for the fossil specimens used to estimate body mass for each taxon.
†The 95% confidence intervals are calculated using a quantile from Student’s t distribution, instead of a quantile of 1.96 from the normal 
distribution. This gives a more realistic estimate of the confidence interval for a mean derived from a small sample size (e.g. P. boisei s. s.).
‡Body-mass sexual dimorphism calculated as the ratio of the estimated male mean and the estimated female mean body mass.
§Method key: A = sex-specific body mass reported for wild (Plavcan & van Schaik, 1997) or ethnographic (Jenike, 2001) populations, 
B = based on a modern human regression of hindlimb joint size, C = based on a hominiod-derived regression of orbital area, D = based 
on a hominoid-derived regression of orbital height, E = a comparative estimate of upper limb joint size of Ar. ramidus and AL 288-1 (Au. 
afarensis), F = based on regressions of femoral head diameter and/or stature and bi-iliac breadth (see Ruff et al. 1997), and G = body mass 
estimates for the more inclusive taxa, calculated as the mean value of all specimens from appropriate individual taxa listed in the splitting 
hominin taxonomy.
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of 55 kg and 46 kg, respectively. It is important to note that
in both cases the specimens from which body mass is actually
being estimated and which give a reasonably large body
mass estimate for H. rudolfensis and H. habilis s. l., respectively,
date to ~1.8 Ma and not to 2.4 Ma, the first appearance
datum for this taxon. This apparent difference in the pattern
and timing of body size evolution within hominins is an
example of the influence of differing taxonomic hypotheses
on the interpretation of life history evolution.

The body mass of a species can increase during hominin
evolution because both males and females within a taxon
are larger, or because there is a selective increase in female
body mass and thus a reduction in body mass sexual dimor-
phism. Female body mass has long been considered a crit-
ical life history-related variable as we noted above, so it is
of particular interest to see when in hominin evolution
there is evidence of any significant reduction in the relatively
high levels of sexual dimorphism seen in Miocene higher
primates and in at least some archaic hominin taxa, such as
Australopithecus afarensis and P. boisei (Lockwood et al.
1996; Silverman et al. 2001 – but see Reno et al. 2003 for
a different interpretation of the extent of sexual
dimorphism in the former).

We calculated sexual dimorphism as the ratio of male to
female estimated body mass. In the speciose hominin
taxonomy (Table 6B) body mass sexual dimorphism
appears to be greater than or equal to that of chimpanzees

(~ 1.3, Table 6A) until the appearance of early Homo. The
less speciose hominin taxonomy (Table 6C) presents a
similar pattern, with early archaic hominin taxa (e.g. Au.
afarensis s. l. and Australopithecus africanus) exhibiting
higher levels of body mass sexual dimorphism than
chimpanzees. Paranthropus taxa and Homo habilis s. l. exhibit
levels of sexual dimorphism that are similar to those of
chimpanzees and sexual dimorphism decreases to modern
human levels with the appearance of Homo erectus s. l.
(but see the arguments in Spoor et al. 2007 and Lockwood
et al. 2007 for more substantial sexual dimorphism in H.
erectus s. l. and Paranthropus robustus, respectively). Thus,
working back from extant H. sapiens the pattern of moderate
levels of body mass sexual dimorphism seems to be con-
sistent back to, and including, H. heidelbergensis, with
greater body mass differences between presumed males
and presumed females now thought to be more likely in
Homo erectus s. l. and almost certainly the case in archaic
hominins. The larger mean body mass of H. ergaster, which
is temporally the earliest taxon included in H. erectus s. l.,
may be because there are no small individuals in the sample
that was used to generate that estimate.

Brain mass/endocranial volume

Though measures of brain growth and development do
not correspond with the timing of life history events in the

Fig. 4 Estimated body mass plotted against 
first appearance date for the fossil hominin 
taxa recognized in the splitting taxonomy. Box 
and whisker plots show the median, upper, 
and lower quartiles (box) and the maximum 
and minimum values (whiskers). The number of 
individual estimates (n) used for each variable 
in this comparison is listed in the legend. Taxa 
represented by a single horizontal line have 
only a single estimate for this variable. Taxa 
with no data for this variable appear between 
question marks; their position along the 
vertical axis is determined by their informal 
group membership.
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extant great apes, adult brain size has been shown to
be strongly correlated with many life history variables
(Sacher, 1975; Harvey & Clutton-Brock, 1985; Deaner et al.
2003; and see above). While it is not possible to make
direct measurements of brain size using fossil evidence, it
is possible, with varying degrees of precision, to measure
the volume of the cranial cavity, otherwise known as
endocranial volume. Brain mass can be derived from brain
volume, and brain volume can be derived from endo-
cranial volume if allowance is made for the space occupied
by endocranial vasculature and the intracranial extracerebral
cerebrospinal fluid. Few fossil hominin crania are well
enough preserved to be able to measure endocranial
volume with the precision and accuracy one can achieve
using museum specimens of extant taxa. Holloway (1983a)
attempted to classify endocranial volumes recorded from
fossil hominin crania according to what he considered was
the likelihood that the estimated volumes were an accu-
rate reflection of the actual volume, but most published
endocranial volumes of fossil hominins lack any assessment
of the precision or accuracy of the estimated volumes.

Parameters for the cranial capacity (i.e. endocranial
volume) of hominin taxa in the splitting and lumping
taxonomies are listed in Table 7 and illustrated in Figs 6
and 7. The confidence intervals (CIs) provided in Table 7
reflect interindividual variation within each taxon, but
they take no account of the precision and accuracy of each

individual endocranial volume measurement. All archaic
hominins have brain sizes that do not differ significantly
from P. troglodytes (~400 cm3). The brain sizes of H. habilis
s. s., H. rudolfensis, H. habilis s. l., H. ergaster and H. erectus
s. s. are intermediate between the values for P. troglodytes
and H. sapiens (Table 7B). The value for H. erectus s. s. is
the only one in this group that is closer to that for H.
sapiens than it is to that of P. troglodytes. Only Homo
neanderthalensis and Homo heidelbergensis have brain
sizes that are indistinguishable from those of H. sapiens
(Table 7B). Thus, there appears to be a discontinuity
between two LHRVs (body mass and brain size) in the
timing of the appearance of the modern human expression
of those variables.

Dental LHRVs

Crown and root formation times: extinct species
For fossil teeth (which are not naturally fractured or from
which thin-sections cannot be made) determining crown
formation time involves summing the estimated duration
of appositional enamel growth (that is, enamel covering
the cusp of a tooth whose long period lines do not reach
the surface of the crown) and the duration of imbricational
enamel growth (that is, the product of the number of
perikymata, defined as striae of Retzius that reach the
surface of the enamel in the form of steps that resemble

Fig. 5 Estimated body mass plotted against 
first appearance date for the fossil hominin 
taxa recognized in the lumping taxonomy. Box 
and whisker plots show the median, upper, 
and lower quartiles (box) and the maximum 
and minimum values (whiskers). The number of 
individual estimates (n) used for each variable 
in this comparison is listed in the legend. Taxa 
represented by a single horizontal line have 
only a single estimate for this variable. Taxa 
with no data for this variable appear between 
question marks; their position along the 
vertical axis is determined by their informal 
group membership.
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those of a tiled roof, and an estimated long period dura-
tion of 6–9 days).

In a recent analysis of enamel formation times in the
incisors and canines of early hominins, Dean et al. (2001)
counted long-period cross-striations, then used an empiri-
cally derived modal periodicity of 9 days to calculate
enamel formation times, and plotted these against enamel
thickness. These analyses show that archaic hominins
take on average 100 days less than modern humans to
reach an enamel thickness of 1000 μm. The authors conclude
that ‘none of the trajectories of enamel growth in apes,
australopiths or fossils attributed to H. habilis, H.

rudolfensis or H. erectus falls within that of the sample
from modern humans’ (Dean et al. 2001, p. 629). Similarly,
in his analysis of root formation time in OH 16 (a specimen
assigned to H. habilis s. s.) Dean (1995b) identified a
pattern unlike modern humans.

Generally, crown formation times of anterior teeth are
related to crown height (the taller the tooth, the longer it
takes to form) and those of postcanine teeth are related to
overall crown size (Macho & Wood, 1995b). Within fossil
hominin taxa the major exception to these generalizations
is that the premolar and molar crowns of P. boisei take the
same time, or less, to form than in modern humans and
chimpanzees, despite having crowns that are approximately
twice the overall size of those of modern humans. This is
due to a combination of more enamel secretion per day by
ameloblasts, and a faster rate of ameloblast activation
(Beynon & Wood, 1987). But we need more information
before we can determine whether these differences are
due to selection operating on life history, or diet, or on a
combination of the two. In her analysis of crown formation
times and life history evolution Macho (2001) suggests
that the rapid crown formation times of P. boisei are due
to a disjunction between body mass and brain mass.
However, she uses an estimated body mass for P. boisei
that is little different from modern humans. In fact the
available evidence suggests that neither P. boisei s. s. nor
P. boisei s. l. is likely to have been significantly heavier than
other archaic hominin taxa (Table 6). Thus, in this respect
at least, there is no evidence for a unique life history
pattern for P. boisei.

Dean et al. (2001) concluded, albeit based on analysis
of a single specimen, that H. neanderthalensis shared
similar enamel growth rates with modern humans. Using
perikymata packing patterns on the anterior dentition as
a proxy for crown formation times (that is, closely
spaced perikymata reflect decreased rates of maturation
of enamel-forming ameloblasts and thus longer crown
formation times) Ramirez-Rozzi & Bermúdez de Castro
(2004) countered Dean et al., concluding that Homo
antecessor and H. heidelbergensis had shorter periods of
dental growth than H. sapiens (both modern and Upper
Paleolithic-Mesolithic) and that H. neanderthalensis had
decreased crown formation times that were derived with
respect to H. antecessor and H. heidelbergensis, suggesting
a shorter period of somatic growth in this taxon.

Guatelli-Steinberg et al. (2005, 2007) also analyzed
Neanderthal enamel formation times by counting periky-
mata-packing rates, but their sample was not the same as
that used by Ramirez-Rozzi & Bermúdez de Castro (2004),
and contra the latter authors, Guatelli-Steinberg and
colleagues report growth rates within the range of
modern human variation. Guatelli-Steinberg et al. (2007)
suggest that ‘the most important question of all is the
degree to which variation in lateral-enamel formation
time of anterior teeth reflects life-history differences

Table 7 Cranial capacity estimates for the hominin taxa recognized in 
the splitting and lumping hominin taxonomies*

Mean cranial 
capacity (cm3)

95% 
CI†

Sample 
size

(A) Splitting
S. tchadensis 365 ? 1
O. tugenensis ? ?
Ar. ramidus s. s.† ? ?
Au. anamensis ? ?
Au. afarensis s. s. 458 335–580 4
K. platyops ? ?
Au. bahrelghazali ? ?
Au. africanus 464 426–502 8
Au. garhi 450 ? 1
P. aethiopicus 410 ? 1
P. boisei s. s. 481 454–507 10
P. robustus 563 –542–1668 2
H. habilis s. s. 609 544–674 6
H. rudolfensis 726 501–950 3
H. ergaster 764 640–888 6
H. erectus s. s. 1003 956–1051 36
H. antecessor 1000 ? 1
H. heidelbergensis 1204 1130–1278 17
H. neanderthalensis 1426 1351–1501 23
H. sapiens s. s. 1478 1444–1512 66

(B) Lumping‡
Ar. ramidus s. l. 365 ? 1
Au. afarensis s. l. 458 335–580 6
Au. africanus 464 426–502 8
P. boisei s. l. 472 447–498 12
P. robustus 563 –542–1668 2
H. habilis s. l. 648 579–716 9
H. erectus s. l. 969 919–1019 42
H. sapiens s. l. 1418 1384–1452 108

*See Appendix I for fossil specimens included in the estimation of 
cranial capacity for each taxon.
†The 95% confidence intervals are calculated using a quantile 
from Student’s t distribution, instead of a quantile of 1.96 from the 
normal distribution. This gives a more realistic estimate of the 
confidence interval for a mean derived from very small sample 
sizes (for example, P. robustus).
‡Cranial capacity estimates for these more inclusive taxa are 
calculated as the mean value of all specimens from appropriate 
individual taxa listed in the splitting hominin taxonomy above.
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Fig. 6 Estimated endocranial volume plotted 
against first appearance date for the fossil 
hominin taxa recognized in the splitting 
taxonomy. Box and whisker plots show the 
median, upper, and lower quartiles (box) and 
the maximum and minimum values (whiskers). 
The number of individual estimates (n) used for 
each variable in this comparison is listed in the 
legend. Taxa represented by a single horizontal 
line have only a single estimate for this variable. 
Taxa with no data for this variable appear 
between question marks; their position along 
the vertical axis is determined by their informal 
group membership.

Fig. 7 Estimated endocranial volume plotted 
against first appearance date for the fossil 
hominin taxa recognized in the lumping 
taxonomy. Box and whisker plots show the 
median, upper, and lower quartiles (box) and 
the maximum and minimum values (whiskers). 
The number of individual estimates (n) used for 
each variable in this comparison is listed in the 
legend. Taxa represented by a single horizontal 
line have only a single estimate for this 
variable.
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among and within species’ (ibid, p. 117). The high variation
in anterior tooth growth rates within modern humans
(Reid & Dean, 2006) and between modern humans and
other great ape populations (Dean & Reid, 2001) suggests
these rates are not reliable predictors of life history
(Smith et al. 2007d). 

Tooth eruption is considered the best predictor of life
history (Smith, 1991; Smith et al. 1994) and two recent
studies (Macchiarelli et al. 2006; Smith et al. 2007d) have
conducted the first preliminary attempts to associate
enamel formation rates with age of tooth eruption in
Neanderthals based on internal molar microstructure
visible using high-resolution microcomputed tomography,
but with conflicting conclusions. Macchiarelli et al. (2006),
based on a single permanent Neanderthal M1 (from La
Chaise-de-Vouthon, Charente, France), show enamel
formation times and root completion times comparable to
modern humans. They conclude that these data ‘firmly
place Neanderthal life history variables within those
known for modern humans’ (p. 748). Smith et al. (2007d)
conducted similar analyses on the entire dentition of
juvenile Neanderthal (from Scladina, Belgium) and deter-
mined the opposite, that formation times were shorter
and eruption times earlier than in modern humans. Smith
et al. conclude that ‘a prolonged childhood and slow life
history are unique to Homo sapiens’ (p. 20220). While the
majority of available evidence suggests Neanderthals,
and perhaps earlier Homo species, share a similar pattern
of dental growth and development with extant modern
humans (Dean 2007), the scant evidence is equivocal
and conclusions about similarities or differences in the
pattern of dental growth and development modern
humans and Neanderthals must wait until further data
are accumulated.

Timing of tooth formation and eruption
The extent of root development in the teeth of living taxa
can be assessed relatively crudely by radiography, and
more precisely if the teeth are available for sectioning and
histological analysis (Anemone, 2002). Unfortunately, all
these methods are more difficult to apply to fossil hominin
jaws. The mineralized bone of most fossils is resistant to
conventional radiographic techniques, but images can
be obtained by using computerized tomography (e.g.
Conroy & Vannier, 1987). Developments in hardware and
software are leading to expanded datasets for those fossil
hominin taxa with large hypodigms, but even so the data
for most extinct hominin taxa are still not sufficient to
form definite conclusions. As noted more than a decade
ago by Conroy & Vannier (1991b), just because the
eruption sequence differs between modern humans and
living chimpanzees it does not follow that fossil hominin
taxa, whose eruption sequence is the same as that as
modern humans, will have modern human rates of dental
development.

Figure 8 emphasizes the complexity of the interactions
between several aspects of the development of lower
incisors and molars in modern humans, living chimpanzees
and Paranthropus taxa. Despite similarities in gross dental
ontogeny between Pan and Paranthropus (that is, erup-
tion of M1 at ~3 years of age), different incisor crown for-
mation times in Pan and Paranthropus result in different
eruption sequences. However, despite modern humans
and Paranthropus having similar eruption sequences there
are marked differences in their rates of crown and root
formation. Even though similar eruption sequences can
mask differences in other aspects of dental development,
it is nonetheless a truism that eruption sequences are
bound to differ among hominin taxa unless all aspects of

Fig. 8 The relationship between crown 
formation and eruption sequence in modern 
humans, Pan, and P. boisei. The vertical dashed 
line represents the time from the onset of 
crown formation to eruption. The height of the 
crown represents the approximate time taken 
for crown formation; the balance of the period 
to eruption represents the time taken for the 
root to form. The tooth crowns are 
approximately to scale. Infancy is taken to 
cease at the time of M1 eruption (*). The 
vertical gray bars indicate rates and patterns in 
common among the taxa. All three genera 
share similar molar crown formation times, but 
Pan differs from the other two in eruption 
schedules and Homo in root formation times. 
Adapted from Macho & Wood (1995b).
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dental ontogeny change their rates proportionally (Macho
& Wood, 1995a).

Bermúdez de Castro et al. (2003) compared the relative
timing of tooth formation in a variety of hominin speci-
mens, and in samples of modern humans and the non-
human great apes, and found similarities between the
non-human great apes and archaic hominins on the one
hand, and H. antecessor, H. erectus s. s., H. heidelbergensis,
and modern humans on the other, with H. ergaster (or
early H. erectus s. l., depending on your taxonomic hypo-
thesis) specimens appearing to be intermediate between
these two groups.

In appropriate juvenile fossil hominin specimens it is
possible to use aspects of dental microstructure, assess-
ments of dental attrition and the sequence of eruption of
the dentition to determine the age-at-death and thus
compare dental development among extant great apes,
modern humans and fossil hominin specimens of the same
chronological age. Bromage & Dean (1985) pioneered this
approach by using counts of perikymata on the central
incisor crown, together with assumptions about the time
it takes to begin calcification of the tooth and the time it
takes to begin root formation, to more accurately age fossil
specimens and thus enable comparisons with modern
human dental specimens at a comparable stage of develop-
ment. They did this for several fossil hominin mandibles,
LH 2 (Au. afarensis), Sts 24 (Au. africanus), SK 63 (P. robustus),
and KNM-ER 820 (H. ergaster) and concluded that the
timing and duration of the dental development of these
specimens was much closer to that of extant chimpanzees
than to modern humans. However, although perikymata
counts made up c. 90% of the age estimates for LH 2
and Sts 24, for KNM-ER 820 the majority of the elapsed
time was based on assumptions, not observations, about
ontogeny.

Subsequent studies have achieved greater accuracy
and precision by sectioning whole teeth to recover
information about the cellular events involved in tooth
development (e.g. Dean et al. 1993; Moggi-Cecchi et al.
1998). Age at death estimates for other early Homo
specimens (e.g. KNM-ER 1590 and KNM-WT 15000)
assigned to H. rudolfensis and H. ergaster (or H. erectus s. l.),
respectively, also suggest that the timing of dental
development of these taxa was not modern human-like
(Smith, 1991). However, any inferences drawn from these
results must be tentative until we better understand the
extent of variation of dental development within regional
samples of H. sapiens (Liversidge, 2003; Reid & Dean, 2006).

Within the context of dental LHRVs such as crown
and root formation time and the relative timing of tooth
formation and eruption, H. neanderthalensis and Upper
Paleolithic H. sapiens exhibit a modern-human like pattern,
whereas the available evidence suggests that archaic and
transitional hominins were more chimpanzee-like. Dental
development in later H. erectus s. s., H. antecessor, and H.

heidelbergensis is more derived in the modern direction
than that of the archaic and transitional hominins, but the
pattern is still not like that of anatomically modern
humans. This would suggest that these pre-modern Homo
taxa have life histories that are unlike those of either
archaic hominins or modern humans.

Phylogenetic trends in fossil hominin life history-
related variables

If the application of cladistic methods to the hominin fossil
record was known to generate robust hypotheses about
the structure of the hominin clade, then in theory we
should be able to predict the primitive condition of LHRVs
for each of the hominin subclades, look for any evidence
of homoplasy in life history, and determine at what stage
in hominin evolution the distinctive aspects of modern
human life history make their appearance. However, there
is disagreement about the reliability of the results of
cladistic analyses of the hominin fossil record that are
based on traditional metrical or non-metrical data. Some
researchers (e.g. Strait & Grine, 2001, 2004) are more
willing than we are to accept as reliable the results of
hominin cladistic analyses. Other researchers (e.g.
Corruccini, 1994), especially those who have tried to test
the validity of these methods by applying them to living
higher taxa for which we have independent molecular
evidence about taxonomic relationships (e.g. Collard &
Wood, 2000), are more skeptical about the reliability of
cladistic analyses of early hominins that are based on
conventional (i.e. non 3D) metric and non-metrical data.

Just as a well-supported hypothesis about evolutionary
relationships among the living higher primates (see above)
is essential for predicting the primitive condition for life
history in the Pan-Homo and hominin clades, a robust
hypothesis about evolutionary relationships among
extinct hominin taxa is required to enable us to explore
the evolution of life history within the hominin clade. There
have been many attempts to determine phylogenetic
relationships within the hominin clade. Most differ in their
detailed conclusions, but nearly all (e.g. Chamberlain &
Wood, 1987; Skelton & McHenry, 1992; Strait et al. 1997,
2007) share the conclusion that around 2.5 Ma the
hominin clade split into two major subclades. One is the
subclade that contains the megadont archaic hominins
assigned to the genus Paranthropus; the other subclade
includes taxa assigned to Homo (i.e. H. erectus s. l., H.
heidelbergensis, and H. neanderthalensis, and the only
living hominin, H. sapiens).

If we accept that a genus should be both a clade and a
grade (see Wood & Collard, 1999a, 2001 and Wood &
Lonergan, this volume for a discussion) then it would be
natural to want to know whether all the taxa included in
Paranthropus, on the one hand, and Homo, on the other,
have the same life history. With respect to the Paranthropus
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clade, the data gathered for this review suggest that there
is little evidence for any significant increase in body mass
(but see Lockwood et al. 2007). There is, however, evidence
for a slight increase in endocranial volume compared to
modern chimpanzees (Elton et al. 2001). However, enamel
and dentin formation are faster in Paranthropus taxa
(see above) than they are for any other member of the
Pan-Homo clade for which data are available. This suggests
that if the pattern of Paranthropus life history mirrors its
dental growth and development, then it was most likely
distinct from that of modern humans, on the one hand,
and from chimpanzees and bonobos, on the other
(Kuykendall, 2003).

With regard to the Homo clade, there is disagreement
about the criteria used to determine whether a taxon
should be included within Homo, and thus where we
should place the boundary between Homo and non-Homo
hominin taxa (Wood & Collard, 1999a,b). As seen below in
a summary of LHRVs present in Homo taxa (which is just
one of the several categories of evidence that could be
used to determine the boundaries of a genus), there is
little evidence to support a grade distinction that applies
to all the taxa presently included in the genus Homo.

Implications of fossil hominin life history-related data 
for hypotheses about the evolution of modern human 
life history

There are a substantial number of differences between
the life history of modern humans and the life history of

our closest living relatives within the genus Pan. A summary
table outlining the presence of modern human-like LHRVs
within a speciose hominin taxonomy is presented in
Table 8. Prior to the transitional hominins, there is no
evidence of any hominin taxon possessing a body size,
brain size or aspects of dental development that differed
significantly from what we assume (but remember that
this is an untested assumption) to be the primitive life
history pattern for the Pan-Homo clade.

Within the transitional hominin grade, that is H. habilis
s. s. and H. rudolfensis (or H. habilis s. l. for those unconvinced
that this hypodigm subsumes more than one taxon), what
can be inferred about LHRVs is consistent. No LHRVs (with
the possible exception of H. rudolfensis body mass) are
consistent with the type of prolonged ontogeny seen in
modern humans. The situation is only slightly different for
H. ergaster, the mean body mass estimates for which are
similar to those of modern humans. Neither its adult brain
size, nor its crown and root formation times, nor the timing
and sequence of its dental eruption are consistent with a
modern human pattern. Middle Pleistocene H. erectus s. s.
may be more modern human-like in its dental development,
although the evidence is conflicting (for example, Sangiran 4
being more modern human-like and Sangiran 7 less so).
Non-craniodental evidence for fossil hominin growth and
development in H. ergaster/H. erectus s. s. is sparse and
conflicting. Whereas some workers interpret the pattern
of growth and development of the postcranial skeleton in
these taxa as compatible with that of modern humans
(Clegg & Aiello, 1999; Smith, 2004), others point to subtle

Table 8 The presence of modern human-like LHRVs within the taxa recognized in a splitting hominin taxonomy (Y = present; N = not present; ? = not known)

Informal Group Splitting taxonomy
Body 
Size

Brain 
Mass

Dental crown and 
root formation

Timing of tooth 
formation and eruption

Basal hominins S. tchadensis ? N ? ?
O. tugenensis ? ? ? ?
Ar. ramidus s. s. N ? ? ?

Archaic hominins Au. anamensis N ? ? ?
Au. afarensis s. s. N N N ?
K. platyops ? ? ? ?
Au. bahrelghazali ? ? ? ?
Au. africanus N N N N

Megadont archaic hominins Au. garhi ? N ? ?
P. aethiopicus N N ? ?
P. boisei s. s. N N N N*
P. robustus N N N N*

Transitional hominins H. habilus s. s. N N N N
H. rudolfensis Y N ? ?

Pre-modern Homo H. ergaster Y N N N
H. erectus s. s. Y N N N
H. antecessor ? N N Y
H. heidelbergensis Y Y N Y
H. neanderthalensis Y Y Y Y

Anatomically-modern humans H. sapiens s. s. Y Y Y Y

*Sequence but not timing.
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but significant differences (Tardieu, 1998) from the ontog-
eny of modern humans.

The fossil material attributed to H. antecessor does not
provide a good estimate of body mass, and it indicates an
adult brain size similar to that of Homo erectus s. s. The
crown formation times of H. antecessor are not yet modern,
but there is some evidence for modern human-like timing
of tooth formation and eruption. The body and brain sizes
of H. heidelbergensis and H. neanderthalensis are consistent
with a modern human life history. However, although
both of these taxa appear to possess a modern human-like
pattern of dental development, the crown formation
times of the former are similar to H. antecessor and those
of the latter appear to be autapomorphically rapid. Thus,
depending upon the weight one wants to give to these
LHRVs, and it is possible that a modern human pattern of
life history was present in H. heidelbergensis and H.
neanderthalensis.

Summary

Using the hominin fossil record, the second part of this
contribution attempted to answer the following questions:
1) Did the unique features of modern human life history
(or LHRVs) appear piecemeal, or did they appear suddenly
as an integrated package?
2) If they did appear as an integrated package, did that
package appear when large-bodied hominins with modern
human skeletal proportions emerged?
3) Were modern human and modern chimpanzee life
histories the only ways that life history has been configured
within the Pan-Homo clade?

The clear contrasts between the life history of modern
humans and the life history of our closest living relatives,
the chimpanzees, perhaps promoted the expectation
that there would be a point in evolutionary history when
all these variables switched simultaneously from their
primitive non-modern human condition to the modern
human condition. The reality seems to be more compli-
cated. Some LHRVs (for example, body mass) shift to the
modern human condition earlier while others, for exam-
ple, some aspects of dental development, do not appear
until the Middle/Late Pleistocene with H. neanderthalensis
and Homo sapiens.

Initial attempts to describe the dental ontogeny of fossil
hominins were mostly confined to statements about
whether it was ‘modern human-like’ or ‘ape-like’. Addi-
tional data and more sophisticated ways of displaying
those data resulted in the realization that the dental
ontogeny of many early hominins was distinctive, and was
not an amalgam of some modern human-like characteristics
and some ape-like ones (Bromage, 1987; Kuykendall,
2003). As we come to know more of the life histories of
early, and most likely also later, hominins we are also
discovering that they can have distinctive life histories that

do not conform to any living model (see Kelley, 2002, 2004
for insightful reviews of life history evolution within living
and extinct higher primates). At least one extinct hominin
subclade, Paranthropus, has a pattern of dental LHRVs
that most likely set it apart from the life histories of both
modern humans and chimpanzees.

Conclusion

Life history is an important component of the shared
adaptive mix that justifies grouping taxa into genera. The
tantalizing glimpses existing data and methods have
provided into the life history of taxa included in Homo,
suggest that this genus, as traditionally defined, subsumes
at least two different patterns of life history. If LHRVs are
used to reconstruct life history, then the life histories of
transitional hominins and pre-modern Homo appear to
differ from each other as well as from the life history of
anatomically modern Homo. How these differences relate
to hominin ecology and patterns of social and cultural
evolution within the hominin clade are pressing research
problems. The evolution of modern human life history, as
well as the evolution of life history in other parts of the
hominin clade, are clearly complex though there have
been some attempts to reconstruct evolutionary scenarios
(Hawkes et al. 1998; O’Connell et al. 1999; Kaplan et al.
2000). The task of using the hominin fossil record to
document and help understand these complexities has
barely begun.
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Appendix I

Notes for body mass and brain size data as used in
Tables 3–4.

Table 6. Body mass estimates

Splitting taxonomy
Ar. ramidus s. s. Wood & Richmond (2000). Estimate based
on the observation that shoulder joint size of Ar. ramidus
is 30% larger than that of AL 288-1 (30 kg).
Au. anamensis Male estimate from Leakey et al. (1995),
and female estimate from McHenry & Coffing (2000)
(calculated from the ratio of male to female in Au. afarensis).
Au. afarensis s. s. Adapted from McHenry (1992). Based on
A.L. 333-3, 333-4, 333-7, 333w-56 and 333x-26 for male,
and 129-1a, 129-1b, 288-1, 333-6 for female.
Au. africanus Adapted from McHenry (1992). Based on Sts
34, Stw 99, 311, 389 for male, and Sts 14, Stw 25, 102, 347,
358, 392, and TM 1512 for female.
Paranthropus aethiopicus Taken from Kappelman (1996).
Based on KNM-WT 17000 for male.
P. boisei s. s. Adapted from McHenry (1992). Based on
KNM-ER 1464 for male, and KNM-ER 1500 for female
[but see Wood & Constantino (2004) for a discussion of
whether KNM-ER 1500 can be confidently assigned to
P. boisei].
P. robustus Adapted from McHenry (1992). Based on SK 82
and 97 for male, and SK 3155 and TM 1517 for female.

H. habilis s. s. Adapted from McHenry (1992). Based on
KNM-ER 3735 (1503) for male, and OH 8 and 35 for female.
H. rudolfensis Adapted from McHenry (1992). Based on
KNM-ER 1481 and 3228 for male, and KNM-ER 813 and
1472 for female. It is possible that some or all of these
specimens belong to H. ergaster and not H. rudolfensis.
H. ergaster Adapted from Ruff et al. (1997). Based on
KNM-ER 736, 1808 and KNM-WT 15000 for male and
KNM-ER 737 for female.
H. erectus s. s. Taken from Aiello & Wood (1994) (Sangiran
17 = male), Kappelman (1996) (Zhoukoudian XI = female)
and adapted from Ruff et al. (1997) (OH 28 and OH
34 = female; Zhoukoudian FeIV = no sex determination).
H. heidelbergensis Adapted from Ruff et al. (1997),
Rosenberg et al. (1999) (Jinniushan) and Arsuaga et al.
(1999) (Atapuerca-SH-1). Species estimate based on
Atapuerca (SH) Pelvis 1 (m), Broken Hill 689, Broken Hill
690, Broken Hill 691, Broken Hill 719 (m), Broken Hill 907,
Boxgrove 1 (m), Jinniushan (f), Arago 44 (m), Gesher-
Benot-Ya’acov, KNM-BK 66, Ain Maarouf 1. Male (n = 4)
and female (n = 1) estimates based on sex determina-
tions taken from references and denoted by (m) and (f),
respectively.
H. neanderthalensis Adapted from Ruff et al. (1997).
Species estimate based on Amud 1 (m), La Chapelle-
aux-Saints (m), La Ferrassie 1 (m), La Ferrassie 2 (f), Kebara
2 (m), Neanderthal 1 (m), La Quina 5, Regourdou 1, Saint-
Cesaire 1 (m), Spy 1 (f), Spy 2 (m), Shanidar 1 (m), Shanidar
3 (m), Shanidar 5 (m), Krapina 207 (m), Krapina 208 (f),
Krapina 209 (f), Krapina 213 (m), Krapina 214 (f), Shanidar
2 (m), Shanidar 4 (m), Shanidar 6 (f), Tabun C1 (f). Male
(n = 14) and female (n = 7) estimates based on sex deter-
minations taken from Ruff et al. (1997) and denoted by
(m) and (f), respectively.
H. sapiens s. s. Adapted from Ruff et al. (1997). Species
estimate based on Qafzeh 3 (f), Qafzeh 7 (m), Qafzeh 8
(m), Qafzeh 9 (f), Skhul 4 (m), Skhul 5 (m), Skhul 6 (m),
Skhul 7 (m), Skhul 7a (f), Skhul 9 (m) and 104 specimens (49
male, 31 female and 24 unsexed) dated to between 10 ky
and 35 ky BP. Male (n = 56) and female (n = 36) estimates
based on sex determinations from Ruff et al. (1997) and
denoted by (m) and (f), respectively.

Lumping taxonomy
Au. afarensis s. l. Includes specimens attributed to Au. afa-
rensis s. s. and Au. anamensis. Sample sizes: species esti-
mate (n = 11); male (n = 6), female (n = 5).
P. boisei s. l. Includes specimens attributed to P. boisei s. s.
and P. aethiopicus. Sample sizes: species estimate (n = 3);
male (n = 2), female (n = 1).
H. habilis s. l. Includes specimens attributed to H. habilis s.
s. and H. rudolfensis. Sample sizes: species estimate (n = 7);
male (n = 3), female (n = 4). It is possible that some or all
of the specimens attributed to H. rudolfensis in this calcu-
lation actually belong to H. ergaster.

78



Hominin life history: reconstruction and evolution, S. L. Robson and B. Wood

© 2008 The Authors 
Journal compilation © 2008 Anatomical Society of Great Britain and Ireland

425

H. erectus s. l. Includes specimens attributed to H. erectus
s. s. and H. ergaster. Sample sizes: species estimate (n = 9);
male (n = 4), female (n = 4).
H. sapiens s. l. Includes specimens attributed to H. sapiens
s. s., H. neanderthalensis, and H. heidelbergensis. Sample
sizes: species estimate (n = 148); male (n = 74), female (n = 42).

Table 7. Cranial capacity estimates

Splitting taxonomy
Sahelanthropus tchadensis Based on TM 266-01-060-1
(Zollikofer et al. 2005)
Au. afarensis s. s. Based on AL 162-28, 333-45 (Delson et al.
2000), 333-105 – adult est. (Holloway, 1983b), 444-2 (Kim-
bel et al. 2004).
Au. africanus Based on MLD 1, 37/38; Sts 19/58, 5, 60, 71;
Taung – adult est. (Delson et al. 2000), Stw 505 (550 cc. Hol-
loway pers. comm. 2003).
Australopithecus garhi Based on BOU-VP-12/130 (Asfaw
et al. 1999).
P. aethiopicus Based on KNM-WT 17000 (Walker et al. 1986)
P. boisei s. s. Based on KGA 10-125 (Suwa et al. 1997),
KNM-ER 406, 13750; Omo L338y-6 (Delson et al. 2000),
KNM-ER 407, 732; OH 5 (Falk et al. 2000), KNM-ER 23000;
Omo 323-1976-896, KNM-WT 17400 (Brown et al. 1993);
and (Holloway, 1988).
P. robustus Based on SK 1585 (Falk et al. 2000), TM 1517
(Broom & Robinson, 1948).
H. habilis s. s. Based on KNM-ER 1805, 1813; OH 7, 13, 24
(Delson et al. 2000), OH 16 – adult est. (Tobias, 1971).
H. rudolfensis Based on KNM-ER 1470, 1590, 3732 (Delson
et al. 2000).
H. ergaster Based on D2280, 2282 (Gabunia et al. 2000),
2700 (Vekua et al. 2002); KNM-ER 3733, 3883 (Delson et al.
2000); KNM-WT 15000 (Begun & Walker, 1993). Note that
the inclusion of the recently discovered KNM-ER 42700
does not change the average cranial capacity of H.
ergaster by more than 10 cm3 if the actual capacity is close
to 720 as tentatively reported (Leakey et al. 2003).
H. erectus s. s. Based on BOU-VP-2/66 (Asfaw et al. 2002);
Ceprano (Ascenzi et al. 2000); Gongwangling 1/Lantian
(Woo, 1966); Hexian/PA 830 (Wu & Dong, 1982); Narmada/
Hathnora [mean of 1155 and 1421cc in Wolpoff (1999)];
Ngandong 1, 5, 6, 10, 11; Sambungmacan 1; Sangiran 4/
Pith IV (Delson et al. 2000), Ngandong 7, 12; Sangiran 2/
Pith II, 10/Pith VI, 17/Pith VIII; Trinil 2/Pith I; Zhoukoudian
II/D, X/L1, XI/L2, XII/L3 (Grimaud-Herve, 1997); Ngandong
9; Zhoukoudian III/E1, Zhoukoudian VI (Weidenreich,
1943); Ngawi [Wolpoff cited in Antón (2002)]; OH 9, 12
(Holloway, 1983b); Perning 1/Mojokerto – adult est.
(Antón, 1997); PL-1/Poyolo (Mowbray et al. 2000); Sam-
bungmacan 3 (Márquez et al. 2001), 4 (Baba et al. 2003);
Nanjing 1 (Liu, Zhang and Wu, in press); Sangiran 12/Pith

VII (Holloway, 1981a), Sangiran IX (Anton and Swisher III
pers. comm. 2003); Zhoukoudian V/H3 (Chiu et al. 1973).
H. antecessor Based on ATD-15 (Bermúdez de Castro et al.
1997).
H. heidelbergensis Based on Arago 21; Broken Hill-1/
Kabwe; Petralona 1; Reilingen; Swanscombe 1; Vertesszollos
II (Delson et al. 2000); Atapuerca 4, 5 (Arsuaga et al. 1997),
6 (Ruff et al. 1997); Bodo (Conroy et al. 2000); Dali 1 (Wu,
1981); Florisbad [Beaumont et al. cited in Aiello & Dean
(1990)]; Jinniushan (Wolpoff, 1999); Ndutu (Brauer, 1984);
Saldanha/Hopefield/Elandsfontein [Drennan cited in
Brauer (1984)]; Sale (Holloway, 1981b); Steinheim (Ruff
et al. 1997).
H. neanderthalensis Based on Amud 1; Biache-Saint Vaast;
Ganovce 1; Krapina 2/B, 3/C, 4/D; La Quina 5; Monte Circeo
I/Guattari 1; Neanderthal; Saccopastore I, II; Tabun C1 (Del-
son et al. 2000); Ehringsdorf 9; Gibraltar 1; La Chapelle-
aux-Saints; La Ferrassie 1; Le Moustier 1; Teshik-Tash 1
(Grimaud-Herve, 1997); La Quina 18-adult est.; Shanidar 5
(Ruff, et al. 1997), Shanidar 1 [Stewart cited in Day (1986)];
Spy 1, 2 (Holloway, 1983b).
H. sapiens s. s. Arene Candide 1, 1-IP, 2, 4, 5; Barma Grande
2; Bruniquel 2; Cap Blanc 1; Dolni Vestonice III; Grotte des
Enfants 4, 5, 6; Minatogawa 1, 2, 4; Mladec 1; Nazlet
Khater 1; Oberkassel 2; Paderbourne; Pataud 1; Qafzeh 11;
San Teodoro 1, 2, 3, 5; St. Germain-la-Riviere 1; Veryier 1;
Zhoukoudian Up. Cave 1, 2, 3 (Ruff et al. 1997); Asselar
(Tobias, 1971); Border Cave 1 (de Villiers, 1973); BOU-VP-
16/1 (White et al. 2003); Brno II, III; Dolni Vestonice XIII,
XIV, XV, XVI; Pavlov 1 [Vlcek cited in Schwartz & Tattersall
(2002)]; Combe-Cappelle; Predmosti 3, 9 (Grimaud-Herve,
1997); Cro-Magnon 3; Mladec 2, 5 (Wolpoff, 1999); Eyasi 1
[Protsch cited in Brauer (1984)]; Jebel Irhoud 1 (Holloway,
1981b) Jebel Irhoud 2 [Ennouchi cited in Brauer (1984)];
Kanjera 1 [Coon cited in Brauer (1984)]; LH 18/Ngaloba
(Brauer, 1984); Omo-Kibish 1 Omo-Kibish 2 [Day cited in
Brauer (1984)]; Qafzeh 6 (Vallois & Vandermeersch, 1972)
Qafzeh 9 [Genet-Varcin cited in Brauer (1984)]; Singa 1
[Wells cited in Stringer (1979)]; Skhul 4 [McCown and Keith
cited in Brauer (1984)]; Brno I; Chancelade 1; Cro-Magnon
1; Oberkassel 1; Predmosti 4, 10, Skhul 5, 9; Yinkou (Delson
et al. 2000).

Lumping taxonomy
P. boisei s. l. Includes specimens attributed to P. boisei s. s.
and P. aethiopicus.
H. habilis s. l. Includes specimens attributed to H. habilis s.
s. and H. rudolfensis.
H. erectus s. l. Includes specimens attributed to H. erectus
s. s. and H. ergaster.
H. sapiens s. l. Includes specimens attributed to H. sapiens
s. s., H. neanderthalensis, H. heidelbergensis, H. anteces-
sor, and Fontechevade (Delson et al. 2000).
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Abstract 

Age at first birth is a central variable in demographic life history models because 

it identifies the beginning of fertility.  For most mammals, age at first birth is closely 

aligned with the timing of physiological maturity.  Humans, however, live in varying 

ecologies that influence maturation rates and have marriage institutions that can constrain 

sexual access to fecund females. Using data from the published literature I examine 

human ages at menarche, ages at first birth, and ages at marriage to characterize 

relationships among them. I identify the observed variation in each of these variables and 

review the proximate mechanisms that influence their timing.  These data show that, with 

few exceptions, the floor of the range of human age at first birth is remarkably consistent 

at about 17-18 years old across space and time.  Women who bore their first births before 

this age suffer maternal and infant costs.  I investigate the effect of age at marriage on age 

at first birth and find that, although there is broad variation in age at marriage across 

cultures, there is a strong tendency for marriage age to just precede female sexual 

maturity.  I propose that, in general, female sexual maturity determines marital age rather 

than the reverse.  Comparisons with other great ape species confirm relatively late ages 

for all aspects of human sexual maturity, a pattern consistent with our slow life history.  

Finally, I consider the contribution of demographic heterogeneity to secular shifts 

documented in reproductive timing of women.   

 

  

81



 
 

Introduction 

 Life history encompasses the timing of vital life events and primates have been 

described as living „life in the slow lane‟ (Harvey and Clutton-Brock 1985; Stearns 1992; 

Charnov and Berrigan 1993). In comparison with other mammals, primates exhibit slow 

growth rates, long juvenile periods, low fertility and mortality rates, large neonates and 

longer lifespans than predicted for their body size (Ross 1998; Robson et al. 2006; 

Robson and Wood 2008; Bernstein 2010). Life history theory postulates that age at 

maturation in determinant growers is set by the tradeoff between the advantages of early 

sexual maturation for producing more offspring before dying (Kaplan et al. 2000; 

Hawkes 2006) and the advantages of waiting longer to achieve larger body size (Stearns 

1992; Purvis and Harvey 1995). Special attention has been paid to the relatively long 

juvenile period and slow growth process in primates (Blurton Jones 2006; Mumby and 

Vinicius 2008).  

 In Charnov‟s invariant life history model (1993) for female mammals, the 

production a female can put into offspring is a function of her size, which generally 

increases the longer she continues to grow before maturity. Time available to use the 

gains of larger size depends on the adult life span, which can be represented by its 

inverse, M, the instantaneous adult mortality rate. As that rate falls and average adult 

lifespan increases, selection favors delayed maturity to reap the benefits of larger size 

(Charnov 1993; Charnov and Berrigan 1993). Age at maturity and expected adult lifespan 

vary widely but the product of age at maturity and the inverse of average adult lifespan is 

approximately invariant (Charnov 1993).   
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 When organisms experience high levels of extrinsic adult mortality, they tend to 

evolve faster life history strategies (Charlesworth 1980; Promislow and Harvey 1990). In 

this context, selection favors a shorter period of growth and earlier maturation and 

reproduction (Harvey and Zammuto 1985).  For primates, with slow life histories, greater 

longevity strongly correlates with later ages at first reproduction both across and within 

primate clades (Alvarez 2000; Walker et al. 2006a; Migliano et al. 2007; Mumby and 

Vinicius 2008).   

 Partridge and Harvey (1988) define life histories as “the probabilities of survival 

and the rates of reproduction at each age in the life-span” highlighting the demographic 

framework of life history models.  As such, most life history studies focus on females, 

because female fertility and mortality determine population growth and age structure 

(Hawkes 2010). Age at first birth is a key life history variable in models of life history 

evolution because it represents the onset of female fertility.  Age at first birth in humans, 

however, is complicated by the effects of vastly differing ecologies on the timing of 

physiological reproductive maturity.  Unlike other female mammals, human age at first 

birth is also potentially constrained by marriage institutions that often restrict sexual 

access of males to fecund females.   

 The goal of this paper is to summarize what we know about the mechanistic 

pathways through which age at menarche and age at first birth may be adjusted in 

humans, and to situate this information in a broader adaptive context.  I begin by 

reviewing the variation in age at menarche and age at first birth, key components in the 

onset of female fertility, for populations across ecologies. I compare and discuss 

environmental influences that adjust them, including the effects of both adolescent 
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subfecundity and marital fertility. I compare these human parameters with those of great 

apes and evaluate recent studies that test the invariant components of Charnov‟s model.  

Finally, I propose that heterogeneity may play an important role in adjusting the 

population averages of these variables and make suggestions for future study.  

  

Variation in human age at menarche 

 The biological capacity for a young woman to conceive and deliver offspring is 

mediated by the pace of pubertal development, age at menarche and the duration of 

subfecundity before consistent ovulation. Wide variation in age at menarche, or first 

menstruation, has been well documented for different human populations (Worthman 

1999; Parent et al. 2003; Ellis et al. 2009).  In a sample of 19 small-scale forager, 

horticultural, and agricultural populations, the average age at menarche is 14.8 years old, 

ranging from 12.5 among the Yanamama to 18.5 among the Gainj of Paupa New Guinea 

(see Figure 3.1 and Table 3.1). Figure 3.2 compares menarche of these small scale 

populations with 67 contemporary countries of varying affluence.  The mean (or median) 

age at menarche for large-scale populations is 13.5 years, ranging from 12-16.2 years old.  

Although the small-scale populations have a later average age at menarche than 

contemporary populations both groups have 4-6 years of overlap in these ranges.  This 

variability has been shown to result from ecological, socioecological and epigenetic 

factors that influence the critical timing of pubertal development.  

Age at menarche has been a topic of great interest for anthropologists beginning 

with evaluation of the critical-weight hypothesis by Frisch and Revelle (1970). It is now 

evident that menarche is strongly associated with skeletal maturity and occurs after girls 
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have accomplished the majority of their stature (Ellison 1981; Moerman 1982; Lancaster 

1986; Ellison 2001). The pace and timing of pubertal development and menarche vary 

widely at both among individuals and between populations, and depend on the influence 

of local ecology and energy availability (Parent et al. 2003; Ellis 2004). Differences in 

the timing of sexual maturity are strongly associated with nutritional condition during 

adolescence (Ellison 1990; Rosetta 1990; Cumming et al. 1994; Ulijaszek 1995; 

Strassman 1996; Bentley 1999; Ellison 2001; Gillett Netting et al. 2004).  This is clearly 

demonstrated by the dramatic differences in age at menarche between impoverished girls 

adopted into affluence, compared with their peers who are not adopted (Mul et al. 2002; 

Teilmann et al. 2006).  Enhancements in health and nutrition can also account for the 

worldwide secular trend toward earlier puberty and median menarchal ages over the past 

century (Eveleth and Tanner 1990; Tanner 1990; Ellis et al. 2009).  Since the secular 

trend toward earlier age at menarche was first recognized, earlier maturity has been 

shown to be associated with good and improved childhood nutrition and health, while 

slow and delayed maturity is linked with poor childhood conditions (Foster et al. 1986; 

Garn 1987; Eveleth and Tanner 1990; Riley et al. 1993; Ellis 2004).   

Several studies indicate that girls who reach menarche early have a proportionally 

shorter duration of subfecundity and time to establishment of adult ovarian function. A 

comparison of Kikuyu (east African horticulturalists) and urban British girls found that 

earlier maturing girls progress more quickly through the pubertal sequence (Worthman 

1987, 1993). Apter and Vihko (1983) find that girls who reach menarche at age 12.0–12.9 

achieve 50% ovulatory cycles 3.0 years after menarche. In contrast, girls who are 13.0 

and older at first menses, achieve the same level of ovulatory function 4.5 years after 
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menarche (but see Foster et al. 1986).  However, an earlier onset of menarche does 

always result in a swifter pace through the pubertal sequence (Kramer and McMillan 

1998, 1999, 2006).  Disruptions in energy balance and energy flux, can delay female 

fecundity (Ellison 2001, 2003; Jasienska and Ellison 2004) and aspects of growth 

(Steinberg et al. 2008). 

 Social experiences have been brought to the fore as additional causal factors that 

shape pubertal timing (Belsky et al. 1991; Kim et al. 1997; Ellis et al. 2003; Ellis 2004). 

Evidence suggests that psychosocial stressors have both inhibiting and accelerating 

effects on developmental pace (Boyce and Ellis 2005). Several studies propose that an 

extended period of juvenility and delayed maturity are adaptive in high-quality social 

environments, whereas emotionally stressful childhoods and family dysfunction tend to 

predict earlier menarche (Hulanicka et al. 2001; Coall and Chisholm 2003; Chisholm et 

al. 2005). Father absence in particular has been identified as a stressor associated with 

early menarche, earlier ages of sexual activity and adolescent pregnancy (Ellis et al. 

2003; Quinlan 2003; Bogaert 2005).  

Potential intergenerational mechanisms have recently emerged as an important 

connection between environmental cues and pubertal timing. Prenatal conditions, 

birthweight and early childhood environment have all been tied to reproductive 

development (Adair 2001; Karlberg 2002; Koziel and Jankowska 2002; Lienhardt et al. 

2002). Other studies have found that daughters born to teen mothers are significantly 

more likely to become teen mothers themselves (Meade et al. 2008). New research also 

points to epigenetic effects on juvenile growth rates (Kuzawa 2005, 2007; Kuzawa and 

Sweet 2009). Ecological and nutritional information are transferred prenatally so that 
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growth rates are established, not only on short-term ecological fluctuations that may 

occur during gestation, but also based on inputs averaged over the last few generations in 

the maternal line. 

 Together these many thoroughly documented lines of inquiry about female 

pubertal development show that body size, growth rates, age at menarche and 

establishment of adult fecundity are related in complex and highly variable ways.  This 

suggests that phenotypic plasticity in these traits are a response to the range of ecological 

and social settings in which humans grow up and begin to reproduce (Kramer and 

Lancaster 2010). Flexibility is advantageous in giving girls the best chance of success 

under variable energetic, epidemiological, mortality and social conditions (Gluckman and 

Hanson 2006).   

 

Human adolescent subfecundity and the  

consequences of early teen pregnancy 

Female fertility does not begin at menarche. Instead, puberty is a step in a series 

of hormonal feedback loops that slowly activate consistent ovulatory cycles and peak 

ovarian function is not ordinarily achieved until the late teens or early twenties (Moerman 

1982; Ellison 1990).  A transitional period between menarche and peak ovarian function 

has long been recognized in the published literature.  Once known as "adolescent 

sterility" (Montagu 1946), it is now recognized as "adolescent subfecundity” (Ellison 

1990).  During the first years after menarche, menstrual cycles are characterized by a 

high frequency of ovulatory failure and luteal phase defects (Vihko and Apter 1984; 

Venturoli et al. 1987). Significant suppression of ovarian function is still observable in 
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women aged 18 to 22 years relative to women 23 to 35 years, after controlling the 

potentially confounding factors of exercise and energetic balance (Ellison, Lager, and 

Calfee 1987).  Research into the relationship between age at menarche and the length of 

adolescent subfecundity is not exact. Some studies show a positive correlation (late age at 

menarche implies a long period of subfecundity). Other studies show the opposite (Wood 

1994).   

Stature only marginally increases during this period whereas biiliac breadth 

reaches adult dimensions and the pelvic basin and birth canal are remodeled (Ellison 

1982).  Once full adult height and pelvic size is achieved, fat deposition accrues and girls 

transition from partial to full adult ovarian function (Ellison 2001). Therefore, the period 

of subfecundity following menarche serves as an important buffer, preventing women 

from conceiving until the completion of physical maturity.  

 Measuring the period of adolescent subfecundity from demographic data is often 

problematic as age at menarche was rarely collected prior to the mid-20th century (Foster 

et al. 1986).  Table 3.1 reports values for age at menarche, age at first birth, and the 

period between them for 19 small-scale forager, horticultural, and agricultural 

populations.  The average period between these two life history events is 4.3 years, 

ranging from 2.7 among the Pume‟ to 7.9 among the Hiwi, both foraging populations of 

Venezuela. These data show that menarche and first conception are not simultaneous 

events. In fact, very early maturers and girls who do conceive within 2 years after 

menarche suffer significant negative reproductive outcomes (Wyshak 1983; Lancaster 

and Hamburg 1986; Scholl et al. 1989; Forrest 1993; Satin et al. 1994; Fraser et al. 1995; 

Olausson et al. 1999; Stevens-Simon et al. 2002), possibly reflecting the combined 
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effects of maternal physiological immaturity and nutritional competition between a still 

growing mother and her fetus.    

 Given a tradeoff between growth and current reproduction, postmenarchal but still 

growing mothers have a smaller pool of energetic resources to devote to production of 

offspring (Ellis et al. 2009). As such these mothers are smaller and have smaller infants 

than do adult mothers (Garn et al. 1986; Wallace et al. 2004). Young teen mothers also 

experience higher rates of gestational complications and mortality, and their babies are at 

an increased risk of reduced fetal growth, stillbirths, congenital abnormalities, 

prematurity, low birthweight, and retardation (Black and DeBlassie 1985; Furstenberg et 

al. 1989; Luster and Mittelstaedt 1993; but see Frisancho 1981; Naeye 1981; Scholl et al. 

1990; Scholl et al. 1994; Smith and Pell 2001; King 2003). Rates of infant mortality, very 

low birth weight and preterm delivery are significantly greater among mothers 15 and 

younger compared to older teens and experience increased risk of ectopic pregnancy 

(Sandler et al. 1984), intrauterine fetal growth retardation (Scholl et al. 1989) and 

miscarriage (Martin et al. 1983).   

   
Variation in human age at first birth 

 
Age at first birth is easier to measure than age at menarche, as date of birth and 

parentage are commonly collected vital records.  Among 20 small-scale societies age at 

first birth is about 18.97 years, ranging from 15.5 among the Pume of Venezuela to over 

25 years among the Gainj of Paupa New Guinea (see Figure 3.1 and Table 3.1).  When 

these small-scale populations are compared with 56 contemporary nations (Figure 3.3), 

the range for the contemporary nations is narrower, between 17.8 to 23.5 years old.  This 

approximately 8-10 year distribution in average ages at first birth has been reported 
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elsewhere (Walker 2006; Low et al. 2008; Kramer and Lancaster 2010; Nettle 2011) and 

shows that there is surprisingly little variation in the floor of the age at first birth 

population averages in humans across temporal and ecological settings.  Even under 

affluent conditions of ample food supply and medical care, human females, on average 

and cross-culturally, bear their first offspring after they are 18 years old (Bogin 1999; 

Westoff 2003).   

Data from preindustrial and natural fertility (i.e., precontraception) industrial 

populations (Table 3.2) reveal a later average age at first birth for these populations, in 

the early to mid-20s. Historic populations, such as the 17th and 18th century French 

Canadians (LeBourg et al. 1993), demonstrate remarkably high total fertility rates despite 

their late average age of fertility onset at 23 years old.  Over 50% of this population 

achieved at least 8 children in a lifetime. This runs counter to generalizations that earlier 

age at first birth implies higher lifetime reproductive success.   

Together, these ages at first birth data underscore how late humans tend to have 

their firstborns compared to age at menarche among the other great apes. While variation 

is evident, aside from the extremely early age of the Pume‟ (15.5 years old), age at first 

birth in human populations is rarely earlier than 17-18 years old.  The upper limit, 

however, can be much later especially when contraception is a factor.  The demographic 

transition, characterized by later ages at initial reproduction, control of interbirth intervals 

and the total number of offspring, and substantial declines in total lifetime fertility, 

results from shifting female strategies in the face of changing market competition and 

increasing costs of children (Borgerhoff Mulder 1998; Low 2005).  Long right-side tails 
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in age at first birth can shift population averages later but do not alter the initial timing of 

menarche or sexual maturity. 

There is a strong, well documented negative association between female age at 

first birth and education, with the youngest teen mothers concentrated among the least 

educated segment of the population (Westoff 2003).  Postindustrial populations now 

reflect a bimodal pattern of age at first birth, a peak at around 18 and a second peak 

around 30 years old (Sullivan 2005).  Over the past few decades, nonmarital cohabitation 

and nonmarital childbearing have increased substantially, and while marriage age and the 

portion never marrying has increased and age at reproductive onset has been delayed 

(Bumpass and Raley 1995; Morgan and Rindfuss 1999), the initial potential age at first 

birth has not.  

  
Marital fertility 

 
 Women can bear children only between sexual maturity and menopause, if they 

are sexually active.  Beginning in the 1970s and 1980s demographers began to consider 

whether cultural marriage norms play an important role in the timing of age at first birth, 

a constraint referred to as marital fertility (Coale 1971; Coale and Trussell 1974).   

Marriage - an event that can occur at any time, be entered into at varying ages, can be 

undone, and may include more than two participants - was incorporated into demographic 

models as a factor influencing the timing and pace of childbearing (Bumpass et al. 1978; 

Trussell and Menken 1978).  It was proposed that the definition of a woman‟s first-birth 

interbirth interval be revised to include the period between marriage and first parturition, 

introducing female marital status as a characteristic of firth birth (Marini and Hodsdon 

1981; Teachman and Heckert 1985).  
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Since the mid-1800s developed European countries experienced a postponement 

of marriage that had a significant effect on reproductive rates (Hajnal 1965).  Rural 

Ireland demonstrated the highest percentage of unwed, reproductive aged individuals 

with 74% of males and 55% of females between 25-35 years old remaining single in 

1936 (Strassmann and Clarke 1998).   During each decade between 1871 and 1966 the 

number of out of wedlock births in this population was less than 4%, indicating a direct 

link between marriage and fertility (Strassmann and Clarke 1998).  By contrast, Coale 

(1965) selected the Hutterites as the standard for his estimate for total potential fertility of 

marital fertility, as nearly all women in this population marry at a median age of 22 

(Robinson 1986).  Coale‟s (1971) models of marital fertility rates for natural fertility 

populations indicate that changes in the proportion married in a population do not seem to 

affect the age-specific pattern of fertility within marriage (Coale and Trussell 1974).  

Those who do marry begin reproduction. Coital frequency may play a significant role in 

declining fertility with age and marriage length but seems to have little influence on the 

age at reproductive onset within marriage (Glasser and Lachenbruch 1968).   

As Figure 3.4 illustrates there is a 4-6 year lag between age at menarche and age 

at first birth.  Adolescent subfecundity accounts for a large portion of this temporal gap, 

but first birth is also mediated by sexual exposure necessary for conception.  There is 

some evidence that age at marriage plays a role in the timing of a woman‟s first birth 

(Kramer & Lancaster 2010).  Several cross-cultural studies report that girls who reach 

menarche early tend to marry and have their first born at a younger age (Urdy and Cliquet 

1982; Sandler et al. 1984; Borgerhoff Mulder 1989; Wood 1994; Ellis et al. 2003).  But 

the influence of age at menarche on age at marriage and first birth is not clear.  In a 
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sample taken from the United States Tremin Trust dataset, once secular trends in both age 

at marriage and age at menarche were taken into account, there was no evidence that age 

at menarche affects either age at marriage or the timing of first births in this population 

(Riley et al. 2001). In natural fertility populations, the lapse between menarche and 

exposure to conception is highly variable, and may last from as little as one to 2 years up 

to over a decade (Schlegel 1995; Whiting et al. 1986), primarily due to differences in 

ages at marriage. There is broad cultural variation in the frequency and „normative rules‟ 

about sexual access to young women and premarital sex.  While some of the variation 

between age at menarche and first birth (Figure 3.1) can be attributed to differences in 

timing of sexual activity characteristic of marriage, it is more likely that age at sexual 

maturity and first birth dictates the age at which females are likely to be married.   

 Figure 3.5 illustrates the median age at first marriage and age at first birth for 

women aged 25-49 in 56 developing countries (Westoff 2003), which shows the strong 

temporal association between these events.  Age at first birth for these populations occurs 

between 18-24 years old, within the same range as those of small-scale and historic 

natural fertility populations (Figures 3.1 and 3.3, Table 3.2).  While restricting sexual 

activity by delaying age at marriage can extend the age when women begin to reproduce, 

marriage does not seem to be timed as a hindrance to female reproduction.  The floor of 

age at first birth for populations represented in these figures is 18 regardless of marriage 

or other cultural practices across different geographies. There does appear to be a 

relationship between age at marriage and age at first birth, though it is more likely that 

the cultural practice of marriage is timed to anticipate female sexual maturity rather than 
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the reverse.  Marriage can thus be seen as a life history related event (Robson and Wood 

2008).  

 
Great ape comparison 

 
 It is possible to compare human age at menarche with other great ape species 

because all catharrhine primates (old world monkeys and apes, including humans) 

experience menses.  Menstruation is unique to a minority of mammals and occurs when 

death of some of the endometrial tissue leads to sloughing a part of the uterine lining with 

some blood flow from the vagina (Strassmann 1996).  Detection of menstrual flow makes 

menarche an observable event, although the amount of overt bleeding is much greater in 

chimpanzees, bonobos and humans than gorillas and orangutans (Strassmann 1996). In 

addition to menstruation, reproductive cycling in female chimpanzees and bonobos is 

also detectable via sexual swellings, a specifically derived feature in the Pan lineage 

within the great ape taxonomy.  Sexual skin swellings are estrogen induced, characterized 

by edema and pinkness around the genital area.  Swelling size and coloration is greatest 

during puberty with an initial period of „blister swellings‟ occurring during adolescence 

that diminish in size with successive menstrual cycles over a period of years (Dixson 

1998). During this time, adolescent females experience a period of subfecundity and 

display heightened proceptive behavior compared to adults (Goodall 1986).   

Using the detectable events of menstruation and sexual swellings, researchers 

have recorded the ages at menarche and at first birth for our great ape relatives.  Figure 

3.6 shows that age at menarche and first birth are much later for humans than for other 

great apes, with our closest cousins, the chimpanzees and bonobos showing averages 

around 8-10 for menarche and 13-14 for first birth, 4-5 years, earlier than the mean age 
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for small-scale societies (see also Figure 3.1 and Table 3.1 for human data). Humans, as 

life history theory predicts, have much later ages at menarche and first birth than the 

other great ape species.  As for human females, a period of adolescent sterility 

characterized by irregular, anovulatory cycles preceding fertile cycles commonly occurs 

in monkeys and apes (Hartman 1931; Young and Yerkes 1943).   

There is less known about how social factors might influence the timing of 

menarche, age at first birth, or the duration of adolescent subfecundity in nonhuman 

primates.  The daughters of dominant females have been found to produce their offspring 

at an earlier age in several macaque species (Harcourt 1987).  Social conditions have a 

similarly important impact on resource acquisition and growth rates in savanna baboons 

(Altmann and Alberts 2005).  However, stressful social conditions have no influence on 

age at first conception in rhesus macaques (Maestripieri 2005). Affluence of captivity 

impacts chimpanzees as affluence does in humans; captives tend to reach menarche 

earlier, have a shorter duration of adolescent sterility than their counterparts in the wild 

(Tutin 1980) and earlier ages at first birth (Tutin 1994).  A similar finding has been 

shown for bonobos (de Lathouwers and Van Elsacker 2005).  Gorilla age at first birth, 

however, did not differ under these two conditions (Tutin 1994). Provisioned free-

ranging orangutans have earlier ages at first birth than their wild counterparts (Kuze et al 

2008).  It is clear that young macaque primapare have smaller infants (Bowman and Lee 

1995), higher rates of reproductive failure (Berkovitch et al. 1998), stillbirths and failed 

pregnancies (Altmann et al. 1988), suggesting that still immature pregnant nonhuman 

primates suffer the same poor outcomes as seen in young human teens. 

95



 
 

Central tendencies for age at first birth persist for all great ape species in spite of 

differences in environment and ecology among populations in the wild (Robson et al. 

2006; Robson and Wood 2008).  Later age at first birth enables energy to be invested in 

growth over a longer juvenile period, so most mammals with slower life histories also 

have larger body sizes.  Aside from gorillas, the remaining great ape species share a 

similar growth rate and achieve body sizes that generally vary with the duration of 

growth before maturity (Blurton Jones 2006).  Larger mothers have greater resources for 

offspring production, and great ape mothers translate this energy into absolutely and 

relatively larger and more expensive babies (Hawkes 2006; Robson et al. 2006; Stearns 

1992).  Gorillas grow much faster than the other great apes, a difference that could be due 

to a largely folivorous diet.  Leigh (1994) found that folivorous anthropoids tend to 

exhibit faster growth rates than comparably sized nonfolivorous ones.  Mumby and 

Vinicius (2009) examined the variation in the pace of growth and correlations with age at 

first reproduction, maximum longevity and duration of the juvenile period for 36 primate 

species and their results found a strong decreasing rate of growth with later age at first 

reproduction.   

 
Evaluating Charnov’s life history model 

 
 Charnov‟s invariant model predicts that early sexual maturity is achieved by 

completing growth at a younger age and smaller body size when faced with high extrinsic 

adult mortality risks and there is compelling evidence supporting a strong relationship 

between mortality rates, growth rates, body size, and timing of reproductive development 

and fertility, as predicted. It is generally true that when life expectancy is low, 

reproductive maturity is early (Chisholm 1999; Hill and Kaplan 1999; Lancaster et al. 
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2000; Walker et al. 2006b). Across diverse ecologies - Chicago neighborhoods (Wilson 

and Daly 1997), modern nation-states (Low et al. 2008; Nettle 2011), and small-scale 

natural fertility societies (Walker et al. 2006a; Migliano et al. 2007; Walker and Hamiton 

2008) - higher adult mortality rates are strongly associated with earlier ages at first birth 

(Ellis et al. 2009).   

 The association between high morbidity and mortality, and early reproduction has 

been observed in developed populations (Geronimus 1992, 2003; Wilson and Daly 1997). 

In studies of interurban US black women, Geronimus demonstrates that under conditions 

where older women are more likely to be physically disadvantaged, in poor health or not 

survive, teen motherhood gives children the best chance of having multigenerational 

caretakers (Kramer and Lancaster 2010).  Low et al. (2008) found that for 170 nations, 

variation in life expectancy at birth accounted for 74% of the variation in age at first 

birth, with shorter life expectancy and impoverished conditions predicting earlier age at 

first birth.  A similar pattern was found in small-scale human societies (Walker et al. 

2006a).  

Delaying first reproduction allows individuals to reach larger sizes.  Most life 

history models use body weight to compare quadrapedal species, but in our species 

generally, using the weights of ethnographic hunter-gatherers may under-represent body 

size due to decreases in body size during the last 10,000 years (Ruff, Trinkhaus and 

Holliday 1997).  This, and the large inter- and intravariation in human body weight have 

prompted studies to utilize height for comparisons in bipedal humans.  Using data from 

seven populations, Migliano (Walker et al. 2006a; Migliano et al. 2007) tested whether 

small pygmy stature was the result of a “fast” life history strategy (Charnov 1993) in 
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which early start of reproduction and growth termination are adaptive responses to high 

external mortality rates.  Walker et al. (2006a) expanded Migliano‟s dataset with 15 

additional populations, and these analyses confirm the proposed fast-slow continuum 

across humans (Migliano et al. 2010).   

Across human societies, small stature and early fertility peaks are associated with 

high overall mortality rates, independent of nutritional factors (Migliano et al. 2007).  A 

notable exception to this pattern is the Pumé population, of Venezuela.  Though also 

documented to experience an early age at first birth and having high adult mortality 

profiles (Kramer and Greaves 2007), the Pumé are not unusually shorter in adult stature 

compared to other native South Americans (Kramer et al. 2009).  Several studies have 

shown that taller mothers have better infant survivorship.  Using a broad range of 

maternal height across developing countries, Monden and Smits (2010) found that 

maternal height is significantly and negatively related with under-five child mortality. 

Each additional centimeter of maternal height decreases the risk of child mortality, a 

pattern also found by Walker et al. (2006a).   

  
Discussion 

 
There is clear evidence that high adult mortality and morbidity risk sets the norms 

of reaction for human fertility. Long-term, prospective studies that follow individual 

women through adolescence and natural fertility into old age are needed to understand 

the longitudinal relationships that probably determine aspects of growth and 

maintenance, morbidity, and fecundity (Ellison 1990).  

Although age at marriage can extend the age when women first reproduce, the 

floor of age at first birth rarely extends below 17-18 regardless of marriage or other 
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cultural practices across different geographies. There appears to be a relationship between 

age at marriage and age at first birth, probably due to fecundability where marriage 

nearly always precedes first birth. Marriage can thus be seen as a life history related event 

(Robson and Wood 2008).  

 Genetic research has documented substantial genetic influences on a wide range 

of human life history traits including age at menarche, age at first birth, interbirth 

interval, fecundity, age at last reproduction, and adult longevity (Kirk et al. 2001; 

Rodgers et al. 2001; Rowe 2002; Pettay et al. 2005).  Strong genetic correlations are also 

known for macaques (Bloomquist 2009, 2011). Additional studies on these nonrandom 

genetic associations as well as the long-term epigenetic effects are clearly warranted.   

 Hawkes (2010) and Hawkes et al. (2009) have described how heterogeneity 

complicates comparisons of mortality and fertility schedules across populations and 

across species. Models of life history assume that finite resources require tradeoffs with 

fitness payoffs assessed over lifetimes.  But, the tradeoffs assumed in the models are 

often difficult to measure directly because individuals differ in the amount of resource 

they have to allocate (Service 2000; Cam et al. 2002; Zens and Peart 2003; Nussey et al. 

2008).  Age at sexual maturity is set by extrinsic mortality risk and is earlier if the chance 

of dying before reproducing is higher. If individual vulnerabilities vary, and 

developmental schedules are adjusted to those vulnerabilities, then when background 

mortality decreases, allowing more frail individuals survive, their earlier ages of 

menarche of would reduce the average age.  A similar pattern is seen in comparison of 

human demographic aging rates (Hawkes et al. 2009), when background mortality is 

higher, fewer frail individuals survive to older ages.  Consequently the mortality rates of 
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older age classes are determined by those who were at lower risk all along.  In addition to 

the ecological effects such as nutrition, the late ages at menarche in small-scale 

populations compared to large-scale populations (see Figure 3.5) could be due to severe 

culling at earlier ages.  The selective removal of frail individuals who die earlier under 

severe conditions increases the average age of menarche, reflecting only those more 

robust individuals who survive to adulthood.  Such simple culling of these vulnerable 

individuals changes the average risk to the survivors and contributes to population 

averages in the opposite direction.  In modern conditions, medical care and affluence 

allow for the survival of frail individuals who fall within the faster end of the norm of 

reaction.  These individuals move the population average earlier.   

 Overwhelming evidence suggests that 5-year demographic age class grouping is 

an inappropriate category for 15 to 20 year old females because young teens, those under 

15 years old, are at a substantially higher risk of poor reproductive outcomes than older 

teens and this pattern cross-cuts diverse human populations (Kramer and Lancaster 

2010). Studies that do distinguish outcomes between early versus later adolescents find 

that adverse outcomes are far more pronounced for very young mothers (Lancaster and 

Hamburg 1986; Forrest 1993; Satin et al. 1994; Fraser et al. 1995; Olausson et al. 1999) 

and very early maturers (Scholl et al. 1989). Risks for older teens more closely resemble 

those of adults (Phipps et al. 2002; Phipps and Sowers 2002).  Very young maternal age 

(girls under the age of 14) is rare. These stark distinctions at specific ages are obscured 

when all teens are combined into one age class. 
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Twinning in humans: maternal heterogeneity
in reproduction and survival
Shannen L. Robson1,* and Ken R. Smith2,3
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University of Utah, Salt Lake City, UT, USA

While humans usually give birth to singletons, dizygotic twinning occurs at low rates in all populations

worldwide. We evaluate two hypotheses that have differing expectations about the effects of bearing

twins on maternal lifetime reproduction and survival. The maternal depletion hypothesis argues that

mothers of twins will suffer negative outcomes owing to the higher physiological costs associated with bear-

ingmultiples. Alternatively, twinning, while costly,may indicatemothers with a greater capacity to bear that

cost. Drawing from the vast natural fertility data in the Utah Population Database, we compared the repro-

ductive and survival events of 4603 mothers who bore twins and 54 183 who had not. These mothers were

born between 1807 and 1899, lived at least to the age of 50 years and married once to men who were alive

when their wives were 50. Results from proportional hazards and regression analyses are consistent with the

second hypothesis. Mothers of twins exhibit lower postmenopausal mortality, shorter average inter-birth

intervals, later ages at last birth and higher lifetime fertility than their singleton-only bearing counterparts.

From the largest historical sample of twinning mothers yet published, we conclude that bearing twins is

more likely for those with a robust phenotype and is a useful index of maternal heterogeneity.

Keywords: twinning; heterogeneity; maternal depletion; reproduction; life history

1. INTRODUCTION
Though rare, twinning is not uncommon among humans,

universally occurring at persistently low rates worldwide

[1]. Rates of spontaneous twinning range from about 6

per thousand (‰) livebirths in Asia, 10–20‰ in Europe

and the United States, to about 40‰ in Africa [2] The

overall twinning rate is primarily owing to differences in

dizygotic twinning [2], the gestation of two separately ferti-

lized ova. Monozygotic twinning, the split of one fertilized

egg into two identical zygotes, is randomandnon-heritable,

occurring at a fairly stable rate of 3.5–4.0‰ across

populations sampled [3]. Dizygotic twinning results from

polyovulation, which varies by population and clusters in

families [4]. While dizygotic twinning may have a heritable

component [2], many studies have shown that it is more

environmentally facultative than genetic [5–9].

Twinning and increased litter size have high maternal

and offspring mortality risks, reducing offspring quality

and often cancelling out any fitness advantages of bearing

multiples [10–12]. These mortality risks combined with

the low rates of twinning in humans and other catarrhine

primates [13,14] suggest that these primate species are all

adapted to bear only one offspring per gestation [12].

Anderson [15] argues that twinning is not itself adaptive,

but rather may be a by-product of ‘insurance ovulation’

designed to hedge the risks of early embryo loss and

increase the survival of at least one viable zygote. It is

well documented that many more twins are conceived

than born, an event known as the ‘vanishing twin

phenomenon’ [16]. This suggests that there is individual

variation in both the frequency of polyovulation and the

efficiency of embryo rejection [17]. As such, bearing

twins may be a ‘cost-intensive error in an adaptive

brood reduction system’ [10, p. 700]. The insurance ovu-

lation hypothesis predicts that bearing twins exacts fitness

costs that outweigh any fitness benefits gained from

increased offspring quantity. Successful twin pregnancies

are more costly than singletons and mothers of twins are

expected to suffer maternal depletion effects [18].

Yet, evidence for a maternal depletion effect is equivocal

[19]. Hurt et al. [20] found that in some selected cases,

mortality actually declined with increasing births among

12 historical cohorts (populations unable to benefit from

better healthcare available in modern societies), though

results were inconsistent and not always significant.

In opposition to the maternal depletion hypothesis,

mothers who are able to sustain the cost of twin pregnan-

cies may gain a fitness advantage by doing so. Sear et al.

[21] found that mothers in rural Gambia who had given

birth to twins had higher overall fertility than mothers

who bore only singletons. Twinning may be an indicator

of higher maternal capacity and may identify those

women whose enhanced phenotypic quality allows them

to bear these elevated reproductive costs. Under this

hypothesis, women who twin should outperform mothers

of singletons on other life-history measures as well.

This heterogeneity hypothesis is consistent with obser-

vations that women with higher fertility rates and later

ages at last birth (ALB) also have higher subsequent survi-

val rates [22–24]. While these correlations appear to

challenge the allocation trade-offs between somatic main-

tenance and reproduction predicted by most evolutionary

models [25], the paradox of unmeasured heterogeneity

obscures the trade-offs [26–28]. When subjects differ in

their inherent quality, those with fewer resources are

prone to fail at earlier ages while more robust individuals

survive and thrive in measurable ways. Accordingly, twin-

ning mothers should exhibit additional features of a robust
* Author for correspondence (robson@umnh.utah.edu).
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phenotype, including shorter average inter-birth intervals,

later ALB and longer reproductive spans resulting in

higher parities, and longer postmenopausal lifespans.

To evaluate these alternative hypotheses, we measured

correlations between twinning and maternal reproductive

and life-history measures using a large sample of parous

women from a vast historical database documenting a

natural fertility population in Utah where fertility was

high. We first compare survival past the age of 50 between

twinning and singleton-only mothers. Then we compare

several key reproductive traits: lifetime parity, average

inter-birth interval, ALB and reproductive span length.

2. DEMOGRAPHIC DATA AND METHODS
We examined whether mothers of twins were more robust by

comparing the reproductive and survival events of mothers

who bore at least one set of twins with those women who

did not in the Utah Population Database (UPDB). The

UPDB is one of the world’s most comprehensive computer-

ized genealogies collating the vital records of migrants to

Utah and their Utah descendants for more than 1.6 million

individuals born from the early 1800s to the mid-1970s

(see http://www.huntsmancancer.org/groups/ppr/). Because

these records include basic demographic information on

parents and their children, fertility and mortality data are

extensive with coverage up to the present [29]. Previous

studies by Wyshak [4,30–35] investigated the inheritance,

demographics and characteristics of human twinning using

the UPDB. However, there are many limitations of these

early studies that precede digitization, including a lack of

non-twin control for comparison, very restrictive time

periods (1850 and earlier) and data quality concerns (fallibi-

lity of hand sorting and linkage). A subsequent investigation

on twinning in theUPDBbyCarmelli et al. [36] describes the

demographics and kinship survey of twins finding a variable

twinning rate of 11.5–14.0‰ births between 1820 and

1910, with a steady decline in both fertility and twinning

thereafter.

The large size of the UPDB allowed us to restrict our

sample to parous women who were born between 1807 and

1899 and lived at least to the age of 50 years, thereby includ-

ing only those women who experienced their entire

reproductive span and complete fertility. To avoid confound-

ing reproductive variables by widowhood, we limited the

sample to those women who were married just once to men

who were still alive when their wives were 50. We also

excluded women in polygamous marriages, which consti-

tuted a small per cent of the data. Even with these

restrictions, we captured a sizable number of women who

bore twins in a natural fertility population. The

final restricted sample had records for 58 786 women, 4603

of those were mothers of twins (7.84%) and 54 183 had sin-

gleton-only births. To examine social and cultural impacts of

the demographic transition,we divided our sample into those

women whose birth date was before or after 1870 to dis-

tinguish the natural fertility era from the early stages of

fertility planning. We trimmed the pre-1870 birth cohort

to those who were married after 1850. Those marrying

prior to 1850were generally a select setwhooftenweremar-

ried outside of Utah. Table 1 summarizes the descriptive

statistics for all of the model variables for both cohorts.

We conducted several analyses to determine whether

females in our sample who bore twins differed significantly T
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from singleton-only mothers on standard reproductive and

life-history measures. First, we assessed whether twinning

was associated with a woman’s survival past menopause

based on results from Cox proportional hazards regression

analysis. Model covariates included year of mother’s birth,

age at first birth (AFB), ALB, age at death of husband,

total number of children (lifetime parity), ever having

twins and number of children who died before the age of

18 (a measure of child mortality). In this model, we intro-

duce an interaction term (twin-parity) to control for

increases in twinning at later maternal age. We also adjusted

for religious affiliation (member or non-member of the

Church of Jesus Christ of Latter-day Saints (LDS religion)).

We then assessed whether mothers of twins had higher

parity, shorter average inter-birth intervals, longer reproduc-

tive spans and later ALB than non-twinning mothers from

regression analyses using SAS statistical software.

3. RESULTS
(a) Postmenopausal survival

Table 2 reports the results of Cox proportional hazards

regression comparing the postmenopausal survival of

women who did or did not have a twin set during her repro-

ductive career. We centred parity to control for the effects

of collinearity introduced by the interaction term (twin-

parity). Model results (table 2) show that when evaluated

at average parity (pre-1870 cohort ¼ 8.39, post-1870

cohort¼ 5.72), mothers of twins have a survival advantage

over singleton-only bearing mothers (pre-1870) hazard rate

ratio (HRR)¼ 0.924, p¼ 0.008, post-1870 HRR ¼ 0.967,

p¼ 0.1137). Although this effect is only significant for the

pre-1870 birth cohort, there was a survival benefit of being

a mother of twins that persisted until very high parities.

The benefit of bearing twins did not diminish until a parity

of 12, which is extreme for this population, when both sets

of mothers then share the same survival.

(b) Parity

We examined whether total lifetime parity differed

between twin and non-twin mothers using regression

analyses. The overall average number of children per

mother in the pre-1870 cohort was 8.39 and for the

post-1870 cohort was 5.72 (table 1). Table 3(a) shows

that mothers of twins in both birth cohorts had a signifi-

cantly higher lifetime parity (pre-1870, p , 0.0001; post-

1870, p , 0.0001), averaging 1.9 and 2.3 more children,

respectively, than non-twinning mothers controlling for

the effects of age at marriage and AFB, survival of hus-

band after the mother reached age 50 and LDS

religious affiliation. In table 3(b), we examined whether

higher parity results from child replacement owing to

higher offspring mortality of twins by controlling for

child mortality before the age of 18. The parity advantage

of twinning mothers dropped slightly to 1.24 in the pre-

1870 cohort and 1.56 more children in the post-1870

than singleton-only mothers, but remained significantly

greater than non-twinning mothers (both cohorts, p ,
0.0001). While a twin set itself increases a mother’s

parity by 1, the parities of twinning mothers in the

UPDB exceed this advantage, showing that mothers of

twins bear a higher number of singletons as well.

(c) Average inter-birth interval

Table 4 reports the results of a regression model showing

that mothers of twins had shorter, albeit small, average

inter-birth intervals than non-twinning mothers (pre-

1870, p¼ 0.1228; post-1870, p¼ 0.0013), controlling for

AFB and ALB, offspring mortality, survival of husband

after the mother reached the age of 50 and LDS religious

affiliation. The average inter-birth interval in the pre-1870

cohort was 2.62 years and for the post-1870 cohort was

3.24 years (table 1). As expected, the largest variable influ-

encing the length of the average inter-birth interval is child

mortality. The inter-birth intervals of twinning mothers

were significantly shorter in the later era cohort even

when average birth intervals were longer.

(d) Reproductive span and ALB

Tables 5(a) and 6(a) show that that mothers of twins had a

significantly longer reproductive span (calculated as ALB

minus AFB; pre-1870, p, 0.0001; post-1870, p,
0.0001) and later ages at last birth (pre-1870, p, 0.0001;

Table 2. Mortality hazard ratios for women living past age 50. (The interaction term twin-parity is introduced to the model

and parity is centred at the cohort average to account for collinearity. HRR, hazard rate ratio; AFB, age at first birth; ALB,
age at last birth; LDS, Latter-day Saints.)

dependent variable: postmenopausal longevity

likelihood ratio ¼ 116.3047, p. x2 � 0.0001 likelihood ratio ¼ 1227.8321, p. x2 � 0.0001

mother’s birth year before 1870, n ¼ 21 150 mother’s birth year after 1870–1900, n ¼ 37 636

95% confidence limits 95% confidence limits

variable HRR lower CI upper CI p. x2 HRR lower CI upper CI p. x2

birth year 0.996 0.995 0.998 ,0.0001 0.982 0.981 0.983 ,.0001
ever mother of twins 0.924 0.872 0.98 0.0081 0.967 0.927 1.008 0.1137

parity_centred 1.013 1.004 1.002 0.0058 1.018 1.011 1.025 ,0.0001
twin-parity: interaction 1.031 1.014 1.049 0.0004 0.988 0.975 1.002 0.0894
AFB 0.996 0.991 1.001 0.1578 0.995 0.992 0.999 0.0122
ALB 0.987 0.983 0.992 ,0.0001 0.990 0.987 0.993 ,0.0001
children died before 18 1.002 0.992 1.013 0.6299 1.032 1.020 1.044 ,.0001

husband lifespan 1.001 1.000 1.002 0.1883 0.998 0.997 0.998 ,0.0001
LDS religion 0.977 0.949 1.006 0.1168 0.925 0.905 0.945 ,0.0001
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post-1870, p, 0.0001) than non-twinning mothers, con-

trolling for AFB, offspring mortality, survival of husband

after the mother reached the age of 50 and LDS religious

affiliation. Both dependent variables remain significant for

the pre- and post-1870 birth cohorts after controlling for

age at marriage (tables 5(b) and 6(b)).

4. DISCUSSION
Our results from analyses using a large, historical, natural

fertility population show that twinning mothers ‘outper-

formed’ their singleton-only counterparts by living

longer past menopause, having higher overall parity,

shorter average inter-birth intervals, longer reproductive

spans and later ALB than non-twinning mothers. We

restricted our sample to parous women who had survived

to the age of 50, already a robust subset of the UPDB,

making the comparison groups more similar, and yet

our results still found significant differences between

twinning and non-twinning mothers. If twinning mothers

had ‘underperformed’ on these measures, this would have

supported the maternal depletion hypothesis that twin-

ning is costly and detrimental to female health and

fertility. We found that mothers of twins in the UPDB

sample exhibit a robust phenotype on several reproductive

and life-history measures compared with their singleton-

only bearing counterparts, suggesting that bearing twins

marks a more robust maternal phenotype.

Lack of support for negative long-term consequences

of twin childbearing is consistent with the heterogeneity

hypothesis, which predicts that some women in a popu-

lation bear reproductive costs more readily than others

Table 3. Linear regression results for the effects of bearing twins on lifetime parity. (Panel (b) controls for offspring mortality.

AFB, age at first birth; ALB, age at last birth; LDS, Latter-day Saints.)

dependent variable: number of children (mother’s parity)

mother’s birth year before 1870, n ¼ 21 150 mother’s birth year after 1870–1900, n ¼ 37 636

95% confidence limits 95% confidence limits

variable b lower CI upper CI p.x2 b lower CI upper CI p.x2

(a) p. F � 0.0001, r2 ¼ 0.3086 p. F � 0.0001, r2 ¼ 0.3088
intercept 74.4104 68.8272 79.9935 ,0.0001 185.1639 179.4108 190.8571 ,0.0001
ever mother of twins 1.9352 1.8190 2.0515 ,0.0001 2.3286 2.2240 2.4331 ,0.0001
marriage year 20.0322 20.0351 20.0292 ,0.0001 20.0916 20.0946 20.0885 ,0.0001
AFB 20.3597 20.3686 20.3507 ,0.0001 20.2763 20.2835 20.2690 ,0.0001

husband lifespan 0.0222 0.0195 0.0249 ,0.0001 0.0126 0.0106 0.0146 ,0.0001
LDS 0.5406 0.4661 0.6151 ,0.0001 0.7923 0.7376 0.8471 ,0.0001

(b) p. F � 0.0001, r2 ¼ 0.4290 p. F � 0.0001, r2 ¼ 0.4240
intercept 50.0987 44.9757 55.2217 ,0.0001 140.1592 134.8633 145.4551 ,0.0001
ever mother of twins 1.2446 1.1371 1.3521 ,0.0001 1.5556 1.4586 1.6527 ,0.0001
marriage year 20.0201 20.0229 20.0174 ,0.0001 20.0688 20.0716 20.0660 ,0.0001

AFB 20.3136 20.3218 0.3053 ,0.0001 20.2357 20.2424 20.2291 ,0.0001
children died before 18 0.7258 0.7045 0.7471 ,0.0001 1.0871 1.0625 1.1167 ,0.0001
husband lifespan 0.0192 0.0167 0.0217 ,0.0001 0.01168 0.0099 0.0135 ,0.0001
LDS religion 0.4580 0.3902 0.5257 ,0.0001 0.7170 0.6670 0.7670 ,0.0001

Table 4. Linear regression results for the effects of bearing twins on average inter-birth intervals. (AFB, age at first birth;
ALB, age at last birth; LDS, Latter-day Saints.)

dependent variable: average inter-birth interval

p. F � 0.0001, r2 ¼ 0.1086 p . F � 0.0001, r2 ¼ 0.0897

mother’s birth year before 1870, n ¼ 20 350 mother’s birth year after 1870–1900, n ¼ 31 909

95% confidence limits 95% confidence limits

variable b lower CI upper CI p.x2 b lower CI upper CI p.x2

intercept 28.1086 29.4646 26.7526 ,0.0001 218.4527 220.5780 216.3275 ,0.0001

ever mother of twins 20.0219 20.0497 0.0059 0.1228 20.0571 20.0918 20.0224 0.0013
birth year 0.0056 0.0049 0.0063 ,0.0001 20.0688 20.0716 20.0660 ,0.0001
AFB 20.0100 20.0123 20.0078 ,0.0001 20.0162 20.0188 20.0137 ,0.0001
ALB 0.0149 0.0130 0.0167 ,0.0001 0.0278 0.0260 0.0296 ,0.0001
children died before 18 20.1242 20.1299 20.1185 ,0.0001 20.2153 20.2244 20.2062 ,0.0001

husband lifespan 0.0018 0.0011 0.0025 ,0.0001 0.0025 0.0018 0.0032 ,0.0001
LDS religion 20.0965 20.1144 20.0787 ,0.0001 20.0332 20.0525 20.0139 0.0008
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[37]. More frail women have both longer inter-birth

intervals and earlier ALB, resulting in lower fertility.

The women who continue to bear offspring to older

ages are a more robust subset who have higher fertilities

and are more likely to successfully incur the cost

of twins.

Several previous studies also have suggested that the

ability to twin may reflect enhanced maternal phenotypic

quality. Instead of twin deliveries, Helle et al. [38] used

the expected productivity of a singleton delivery and

found that ‘twin mothers would have had higher fitness

than singleton mothers independently of twinning . . .

suggesting that twin mothers were generally of higher

phenotypic quality’ (p. 434). While ‘there may be some

qualities of twin mothers that allow them to bear the elev-

ated costs of a twin pregnancy’, [21, p. 441], ‘mothers

with twins usually had singletons too’ [12, p. 576],

suggesting that twinning is an opportunistic reproductive

strategy of some women during favourable ecological cir-

cumstances or maternal condition. In addition, mothers

of twins are generally in better physiological condition

and are taller [6,9,21,39,40].

Among the studies of twin mothers in pre-industrial

populations, Haukioja et al. [12] found that twinning

Table 5. Linear regression results for the effects of bearing twins on total reproductive span. (The model in panel (a) controls
for AFB while panel (b) includes marriage year. ALB, age at last birth; AFB, age at first birth; LDS, Latter-day Saints.)

dependent variable: reproductive interval (ALB–AFB)

mother’s birth year before 1870, n ¼ 21 150 mother’s birth year 1870–1900, n ¼ 37 636

95% confidence limits 95% confidence limits

variable b lower CI upper CI p.x2 b lower CI upper CI p.x2

(a) p . F � 0.0001, r2 ¼ 0.4197 p. F � 0.0001, r2 ¼ 0.3101
intercept 30.5754 30.0542 31.0967 ,0.0001 26.9117 26.4330 27.3904 ,0.0001
ever mother of twins 0.3038 0.0979 0.5097 0.0038 0.8531 0.6365 1.0697 ,0.0001
AFB 20.8417 20.8578 20.8257 ,0.0001 20.7656 20.7810 20.7501 ,0.0001
children died before 18 0.7628 0.7223 0.8034 ,0.0001 1.4698 1.4156 1.5241 ,0.0001

husband lifespan 0.0594 0.0546 0.0643 ,0.0001 0.0366 0.0324 0.0408 ,0.0001
LDS religion 0.5533 0.4224 0.6843 ,0.0001 1.2696 1.1533 1.3858 ,0.0001

(b) p . F � 0.0001, r2 ¼ 0.1327 p. F � 0.0001, r2 ¼ 0.2343
intercept 93.2099 81.1301 105.2896 ,0.0001 456.9310 444.5654 469.2967 ,0.0001
ever mother of twins 0.3118 0.0601 0.5636 0.0152 0.8684 0.6402 1.0966 ,0.0001
marriage year 20.0438 20.0502 20.0374 ,0.0001 20.2350 20.2415 20.2285 ,0.0001

children died before 18 1.0731 1.0237 1.1226 ,0.0001 1.4846 1.4270 1.5423 ,0.0001
husband lifespan 0.0590 0.0531 0.0649 ,0.0001 0.0464 0.0419 0.0509 ,0.0001
LDS religion 1.3205 1.1615 1.4796 ,0.0001 1.0615 0.9393 1.1838 ,0.0001

Table 6. Linear regression results for the effects of bearing twins on age at last birth. (The model results in panel (a) control
for AFB while panel (b) controls for marriage year. ALB, age at last birth; AFB, age at first birth, LDS, Latter-day Saints.)

dependent variable: ALB

mother’s birth year before 1870, n ¼ 21 150 mother’s birth year after 1870–1900, n ¼ 37 636

95% confidence limits 95% confidence limits

variable b lower CI upper CI P.x2 b lower CI upper CI p.x2

(a) p. F � 0.0001, r2 ¼ 0.1075 p . F � 0.0001, r2 ¼ 0.1283

intercept 30.5965 30.0519 31.1411 ,0.0001 27.0483 26.5560 27.5406 ,0.0001
ever mother of twins 0.3893 0.1714 0.6072 0.0005 1.1633 0.9283 1.3982 ,0.0001
AFB 0.1290 0.1124 0.1457 ,0.0001 0.1604 0.1449 0.1759 ,0.0001
children died before 18 0.8653 0.8225 0.9081 ,0.0001 1.8084 1.7499 1.8669 ,0.0001
husband lifespan 0.0621 0.0570 0.0671 ,0.0001 0.0412 0.0368 0.0456 ,0.0001

LDS religion 0.6553 0.5180 0.7926 ,0.0001 1.6738 1.5572 1.7949 ,0.0001

(b) p. F � 0.0001, r2 ¼ 0.0984 p . F � 0.0001, r2 ¼ 0.1524
intercept 53.7946 43.3852 64.2040 ,0.0001 270.7687 258.6164 282.9809 ,0.0001
ever mother of twins 0.3968 0.1778 0.6159 ,0.0001 1.1064 0.8746 1.3381 ,0.0001
marriage year 20.0108 20.0163 20.0052 ,0.0001 20.1259 20.1323 20.1196 ,0.0001
children died before 18 0.7931 0.7503 0.8359 ,0.0001 1.4133 1.3552 1.4714 ,0.0001

husband lifespan 0.0618 0.0567 0.0669 ,0.0001 0.0461 0.0417 0.0504 ,0.0001
LDS religion 0.5356 0.3985 0.6727 ,0.0001 1.8445 1.7252 1.9638 ,0.0001

Twinning S. L. Robson & K. R. Smith 5

Proc. R. Soc. B

 on May 11, 2011rspb.royalsocietypublishing.orgDownloaded from 

129



did not increase lifetime reproduction in eighteenth and

nineteenth century Finland owing to high maternal

and offspring mortality. Gabler & Voland [10] report

that that life expectancy of twinning mothers in the

Krummhorn dataset of eighteenth to nineteenth century

Germany was not statistically different from those only

bearing singletons, therefore finding no maternal mor-

tality costs as a result of twinning. They also report, as

we do, that mothers of twins have shorter inter-birth

intervals, longer reproductive spans, later ALB and a

higher overall fecundity (though high parities in this

population are not owing to twinning, but rather from a

higher overall fertility rate of singletons). Skjaervo et al.

[41] show that mothers of twins in 1700–1900 central

Norway have higher fecundity, longer reproductive

spans and later ALB.

Lummaa et al. [8] found no differences in inter-birth

interval length between twinning and non-twinning

mothers in historical data from northern Finland. Com-

paring two pre-industrial Finnish populations with

differing food resource availability, Lummaa et al. [8,42]

found that twins enhanced the reproductive success of

mothers where food was abundant and reliable, but

reduced lifetime fertility where crop failures and famines

were more common. This suggests that twinning may

be an opportunistic reproductive strategy, or its genetic

frequency selected, during favourable environmental

circumstances.

This pattern of reproductive robustness and enhanced

survival among twinning mothers is also seen in a con-

temporary natural fertility population. Sear et al. [21]

examined the reproductive histories of women in rural

Gambia, Africa, and found that mothers of twins had

shorter inter-birth intervals, higher age-specific fertility,

more surviving offspring and higher anthropometric

status during their teen years than mothers of singletons

only. From these results, the authors suggest that ‘twin

mothers may be of higher phenotypic quality than

women who only give birth to singletons’ (p. 441).

Historical demographic data offer important value for

testing evolutionary hypotheses in natural fertility popu-

lations that best approximate reproductive conditions

during human evolutionary history [43,44]. The few

studies that have investigated the reproductive and life-

history effects of twinning in natural fertility populations

have conducted analyses with very small sample sizes

(largest � 250) [10,12,21,38,41,42,45,46] often yielding

equivocal results. Using the largest dataset of twin

mothers yet published, at least 18 times larger than any

previously analysed historical sample, we have shown

that mothers of twins surpass their singleton-only bearing

counterparts on several life-history and reproductive

measures. Our results strongly support the hypothesis

that twinning is an index of phenotypic quality associated

with other dimensions of maternal heterogeneity.
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