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ABSTRACT

In the past few years, we have seen a tremendous increase in digital data being gener-

ated. By 2011, storage vendors had shipped 905 PB of purpose-built backup appliances.

By 2013, the number of objects stored in Amazon S3 had reached 2 trillion. Facebook

had stored 20 PB of photos by 2010. All of these require an efficient storage solution. To

improve space efficiency, compression and deduplication are being widely used. Com-

pression works by identifying repeated strings and replacing them with more compact

encodings while deduplication partitions data into fixed-size or variable-size chunks and

removes duplicate blocks. While we have seen great improvements in space efficiency

from these two approaches, there are still some limitations. First, traditional compressors

are limited in their ability to detect redundancy across a large range since they search for

redundant data in a fine-grain level (string level). For deduplication, metadata embedded

in an input file changes more frequently, and this introduces more unnecessary unique

chunks, leading to poor deduplication. Cloud storage systems suffer from unpredictable

and inefficient performance because of interference among different types of workloads.

This dissertation proposes techniques to improve the effectiveness of traditional com-

pressors and deduplication in improving space efficiency, and a new IO scheduling algo-

rithm to improve performance predictability and efficiency for cloud storage systems. The

common idea is to utilize similarity. To improve the effectiveness of compression and

deduplication, similarity in content is used to transform an input file into a compression-

or deduplication-friendly format. We propose Migratory Compression, a generic data

transformation that identifies similar data in a coarse-grain level (block level) and then

groups similar blocks together. It can be used as a preprocessing stage for any traditional

compressor. We find metadata have a huge impact in reducing the benefit of deduplication.

To isolate the impact from metadata, we propose to separate metadata from data. Three

approaches are presented for use cases with different constrains. For the commonly used

tar format, we propose Migratory Tar: a data transformation and also a new tar format that

deduplicates better. We also present a case study where we use deduplication to reduce



storage consumption for storing disk images, while at the same time achieving high perfor-

mance in image deployment. Finally, we apply the same principle of utilizing similarity in

IO scheduling to prevent interference between random and sequential workloads, leading

to efficient, consistent, and predictable performance for sequential workloads and a high

disk utilization.
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CHAPTER 1

INTRODUCTION

Digital data are growing exponentially, with the International Data Corporation (IDC)

projecting that they will reach 44 ZB by 2020 [1]. By 2011, 905 PB of capacity had been

shipped by purpose-built backup appliance vendors, and this number was projected to

increase to be more than 8 EB by 2016 [2]. By February 2015, there were more than 37,000

public virtual machine images, provided and managed by the Amazon EC2 Cloud [3]. This

trend is expected only to continue. How to store this rapidly growing amount of digital data

efficiently becomes a big challenge for storage systems. In this dissertation, we propose two

methods to improve compression and deduplication [4], a case study where deduplication is

used to improve space efficiency in storing disk image and a new IO scheduling algorithm

which improves performance predictability and efficiency.

Space efficiency is an important metric for storage systems. It measures how efficient

a storage system is in storing information. A system is more space efficient if 1) more

information can be stored for a given amount of storage space or 2) less storage space

is required to store a certain amount of information. Two data reduction techniques are

commonly used to improve space efficiency: compression and deduplication. Compression

identifies repeated strings within a certain window size and represents them with more

compact encodings. Deduplication works by partitioning the data into chunks, identify-

ing duplicate chunks, and storing only one copy of the duplicates. By improving space

efficiency, the effective size of a storage system can be improved and thus storage space

requirements and cost can be reduced. Tuduce and Gross [5] showed that with compression,

one can increase the effective main memory size from 2× to 10×. It allows us to run

applications with a smaller memory size that would otherwise be impossible. With the

improvement of space efficiency, we can use fewer storage resources to store the same

amount of data, enabling new possibilities in using storage techniques. Tapes were the

primary storage media for storing backups and archives because they are cheaper than hard



2

drives. However, with deduplication, the storage space requirement for storing backups

and archives can be reduced dramatically. Now it becomes economically feasible to replace

tapes with hard drives for this use case [4]. Improved space efficiency also enables storage

consolidation that reduces cost [6,7] and overhead in management, maintenance and power

consumption [8–10]. With Nitro [11], a compressed and deduplicating Solid-State Drive

(SSD) cache, it is possible to build a single storage system that can be used for both

backup/archive workloads and for primary workloads (such as email servers or file servers).

Space efficiency is thus an important property for storage systems, and there is a continuous

demand for more efficient storage solutions.

While we have seen wide adoption of compression and deduplication, there are some

limitations. Traditional compressors detect redundancy in a fine granularity: they try to

detect redundancy in the string level. This approach fundamentally does not scale to find

redundancy across a large range. Many file formats co-locate metadata with data. Metadata

change more frequently, introducing many unnecessary unique chunks and leading to poor

deduplication. To improve the effectiveness for compression and deduplication, we propose

two data transformations. The key idea is to use similarity in data content. To improve the

effectiveness of compression, we propose Migratory Compression: it identifies similarity

in a coarse granularity, the chunk level, and then groups similar chunks together so that

traditional compressors can detect more redundant strings with a small window (Chapter 2).

To improve the effectiveness of deduplication, we propose to separate metadata blocks from

data blocks (Chapter 3). For the tar format, we present Migratory Tar, a data transformation

and a new tar format, which stores the same type of blocks together.

We further present a case study where we use deduplication, together with compression,

to improve space efficiency in storing disk images (Chapter 4). Finally, we apply the same

idea of using similarity in the area of disk IO scheduling. We propose Differential IO

Scheduling, which schedules the same type of IO requests to the same disk, improving

performance for cloud storage systems (Chapter 5).

1.1 Compression
Compression is a classic method which represents information with fewer bits than its

original form, by exploiting redundancy in the information it represents. Among the most

popular compression algorithms are the Lempel-Ziv (LZ) [12] compression methods. They
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search for redundant content in string-level and work as follows: they scan a certain amount

(called the window size) of the input data, identify repeated strings within that window,

and encode repeated strings with the position of the first appearance of that string. By

avoiding storing duplicate strings multiple times, the compressed form can represent the

same amount of information as its original form but with less storage space. Compression

has been widely used in the storage hierarchy, such as compressed main memory [5],

compressed SSD caches [13], compressed file systems [14], and backup and archive storage

systems [4].

For these compression algorithms, there is a trade-off between compressibility and

computation overhead. The larger the window size, the greater the opportunity to find

repeated strings, leading to better compression. However, a larger window size requires

more computation and memory, leading to a longer runtime. In practice, most real-world

implementations use small window sizes. For example, DEFLATE, used by gzip, has a

64 KB sliding window [15], and the maximum window for bzip2 is 900 KB [16]. The only

compression algorithm we are aware of that uses larger window sizes is LZMA in 7z [17],

which supports a window size up to 1 GB.1 It usually compresses better than gzip and

bzip2 but takes significantly longer. Overall, since these traditional compressors search

for redundant information only at the level of individual strings, they are limited in their

capability in exploiting redundancy across a larger window size, leading to suboptimal

compression.

To improve the compressibility for traditional compressors, we introduce a generic

data transformation called Migratory Compression (Chapter 2). In contrast to traditional

compression algorithms, it works at chunk 2 level: an input file is partitioned into chunks

and then similar chunks are detected and grouped together. By grouping similar chunks

together, it becomes easier for standard compressors to detect redundant strings, even

with small window sizes. We evaluate Migratory Compression and find that it improves

compressibility significantly, and sometimes runtime for traditional compressors.

1The specification of LZMA supports windows up to 4 GB, but we have not found a practical implemen-
tation for Linux that supports more than 1 GB, and use that number henceforth. One alternative compressor,
xz [18], supports a window of 1.5 GB, but we found its decrease in throughput highly disproportionate to its
increase in compression.

2We use ‘chunk’ or ‘block’ interchangeably in this dissertation
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1.2 Deduplication
Compared to compression, deduplication is a more recent technique to remove redun-

dant data. One early work was Venti [19], proposed by Quinlan and Dorward in 2002.

Rather than searching for repeated information in string level as compression does, dedu-

plication works at a coarse-grained chunk level, with a typical chunk size of a few kilobytes.

To store input data, it partitions the input into chunks and calculates a fingerprint for each

chunk, typically a cryptographic hash value, such as SHA1, based on chunk content. If two

chunks match on their fingerprint, they are considered to be identical and only a single copy

will be stored in the storage system. A fingerprint index is maintained to track all unique

chunks stored in the system, and when storing new chunks, the fingerprint index is checked

for duplication. Compression can be applied after the input data is deduplicated [4].

Much work has been done to make a deduplicating storage system efficient. Among

them, many focus on improving read/write throughput in storing or retrieving data. For

a large storage system, the fingerprint index can become too large to fit in main memory,

and several approaches have been proposed to address this problem. They include using a

Bloom filter structure [20] to quickly detect new unique chunks, and utilizing data locality

across different generations of the same backup [4, 21]. Furthermore, some systems, such

as SparseIndex [22], trade-off a small loss in space efficiency for better performance by

deduplicating new data against only a subset of stored chunks (a small number of duplicate

chunks are allowed in such systems). Another important problem arising with deduplica-

tion is fragmentation: because deduplication only stores a single copy of duplicate blocks,

when a new file containing duplicate blocks is stored into the system, these duplicate blocks

are not stored but refer to identical blocks which have been stored earlier. This leads to

degraded sequential read performance for newly stored files. Several attempts have tried to

address this problem, with the use of a rewrite algorithm [23, 24] to re-introduce duplicate

blocks when writing a new file and garbage-collect duplicate blocks at a later time, or by

building a better caching algorithm [25] using future access information that is available

when reading a file.

With the previous work, one can build an efficient deduplicating storage system. How-

ever, there are still two questions that are unanswered. First, it is unclear how well current

file formats work for deduplication. We examine a few popular backup and archive file



5

formats, including tar, and found these file formats are not optimal for deduplication. The

second question we answer is whether it is possible to use a deduplicating storage system to

store disk images without affecting the performance of disk image deployment. We provide

answers to these two questions in this dissertation.

1.2.1 Improve Deduplication by Separating Metadata From Data

While much work has been done to improve read and write throughput for deduplicating

storage systems, little has been done to study the impact of input data formats in deduplica-

tion. We found that many file formats in wide use suffer from an inherent design property

that is incompatible with deduplication: they intersperse metadata with data. Metadata

is changed more frequently and this introduces many unnecessary unique chunks, resulting

in poor deduplication.

To isolate the interference between metadata and data blocks, we propose to separate

metadata from data blocks (Chapter 3). Three approaches exist to achieve that goal. The

first is to re-design file formats so that metadata is stored separately from data. This is

the ideal case when the file format can be changed. When it is challenging to change a

file format for compatibility reasons, a second approach is to postprocess an input file and

transform it into a deduplication-friendly format that separates metadata from data. As a

last resort, we can make the deduplicating storage systems aware of file formats, to identify

metadata from data and treat it differently. In this dissertation, we will focus on the second

approach with the tar format as a case study. We design a data transformation method

called Migratory Tar, to transform a tar file into an mtar file. In the mtar format, data and

metadata are stored at two separate places and the deduplication can be improved by more

than 5×.

1.2.2 Using Deduplication for Efficient Disk Image Deployment

Compression and deduplication can improve space efficiency. However, they come

with a cost: they may affect the runtime performance of an application. So, while it is

important to improve space efficiency, it is also important that the use of compression and

deduplication does not affect runtime performance. In Chapter 4, we present a case study

where we use compression and deduplication to improve space efficiency in storing disk

images for a high-performance disk image deployment system without negatively affecting
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its runtime performance in image deployment.

Efficient disk image deployment is an important component for cloud platforms and

network testbeds. In these environments, a disk image is used to instantiate compute

instances. Each disk image ranges from a few to hundreds of GBs of space, and the

complete category of disk images requires a large storage space. At the same time, to

provide good user experience, it is important to instantiate compute instances quickly. This

requires an efficient and scalable disk image deployment system that can distribute and

install disk images quickly.

Frisbee [26] is the highly optimized disk image deployment system used in Emulab, a

network testbed running at the University of Utah. It has a combinations of optimizations

that make it efficient, such as the use of compression for efficient storage and image

distribution, and using filesystem information to skip unallocated disk sectors when storing

and installing a disk image. A Frisbee disk image file is composed of independently

installable units. Each unit can be installed in parallel in a pipelined fashion. To get

the highest possible performance, a key design in Frisbee is to install a disk image at the

maximal disk write throughput and optimize all other stages in the pipeline. When using a

deduplicating storage system for Frisbee, it could become a new bottleneck in the pipeline

and affect its performance.

To answer the question whether it is feasible to use a deduplicating storage system

for a high-performance disk image deployment system such as Frisbee, we have built a

prototype system, called Venti-Frisbee (VF for short). The new system is designed in

such a way that it does not break the key design in the original Frisbee and thus achieves

comparable performance in image deployment while achieving storage space saving with

the use of a deduplicating storage system. When using the Venti deduplicating storage

system for Frisbee, we strike a balance between space saving from using Venti and its

read performance in providing data for image distribution. We also explored where to do

compression so that it does not affect image deployment performance and deduplication.

Finally, we evaluate the end-to-end image deployment performance of the new system and

show that it achieves a comparable performance to the original Frisbee system.



7

1.3 Performance Efficiency and Predictability for Cloud Storage
The previous sections focus on improving space efficiency with compression and dedu-

plication by utilizing similarity in content. Now, we take a look at how we can use similarity

in IO access patterns to improve performance predictability and efficiency for cloud storage

systems.

With attracting benefits such as elasticity, agility, and massive economies of scale, many

applications are migrating to cloud [27–29]. A key driver behind this is the development of

virtualization techniques that enable efficient sharing of hardware resources. For storage,

there are several types of service abstractions provided by cloud providers, including object

stores (e.g., Amazon S3), block stores (e.g., Amazon EBS), and databases (e.g., Amazon

RDS, Google Cloud SQL, and Microsoft SQL Azure). Among these cloud storage systems,

replication is commonly used to improve reliability. The reason behind this is that in the

large clusters that powers today’s cloud computing, hardware component failures such as

hard drive failures become common [30]. For example, both Google Filesystem (GFS) [31]

and Ceph [32] use replication in their systems.

Because of the multitenant nature, the performance experienced by end-users in cloud

storage environments varies unpredictably, sometimes more than an order of magnitude,

compared with a dedicated cluster [33, 34]. For disk-based storage systems, when two or

more tenants share the same physical disk, they compete for the disk head position for I/O

accesses. For instance, random workloads from one tenant can destructively interfere with

sequential workloads of another tenant [35], and reads may conflict with writes [36]. In

order to provide predictable and efficient performance, some mechanism are required to

isolate the interference between different types of workloads.

In this work, we focus on improving predictability and efficiency for read-intensive

workloads, by minimizing the interference between random and sequential read requests.

Random read requests have a destructive effect in reducing disk utilization and this leads to

unpredictable bandwidths for sequential workloads. We propose Differential IO Schedul-

ing (DIOS for short). The key idea is to utilize replication: in a replicating storage system,

one could dedicate each replica for serving a particular type of request, either random or

sequential. Since each replica now serves only one type of request, it separates random read

requests from sequential ones and prevents interference between them. Replicas that serve
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sequential requests can continue to provide high disk utilization. We implement DIOS in

Ceph and evaluate its effectiveness. We find the new scheduling algorithm provides more

predictable performance and higher disk utilization.

1.4 Summary
In this dissertation, we propose several techniques to improve space efficiency and

performance for storage systems. The common idea across them is to utilize similarity. For

Migratory Compression and Migratory Tar, we use similarity in data content. Migratory

Compression improves compression by grouping similar data blocks, while to improve

deduplication for many data formats, we propose to separate metadata from data and

store the same type of blocks together. We further explore the use of compression and

deduplication to improve space efficiency when storing disk images for a high-performance

disk image deployment system. Finally, we extend the same idea and apply it in IO

scheduling. We propose Differential IO Scheduling, which schedules the same type of IO

requests to the same disk. This isolates interference between different types of workloads,

improving a system’s throughput and performance predictability.

1.5 Thesis Statement
Similarity in content and access patterns can be utilized to improve space efficiency by

storing similar data together, and performance predictability and efficiency by scheduling

similar IO requests to the same hard drive.

1.6 Contributions
1. This dissertation proposes a new and generic data transformation technique called

Migratory Compression. It can improve compressibility and sometimes runtime for

traditional compressors (Chapter 2).

2. This dissertation reveals many file formats are not deduplication-friendly and pro-

poses to separate data from metadata. It proposes three approaches to deal with this

problem for use cases with different constraints. For the tar format, this dissertation

proposes a data transformation method and a new tar format, called Migratory Tar.

It improves deduplication for tar files (Chapter 3).
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3. This dissertation exploits the similarity across disk images and uses data dedupli-

cation to improve storage efficiency for a high-performance disk image deployment

system (Chapter 4).

4. This dissertation proposes a new chunk algorithm - Aligned Fixed-size Chunking

(AFC), to do fixed-size chunking for deduplicating allocated data blocks for disk

images (Chapter 4).

5. This dissertation proposes Differential IO Scheduling to improve performance pre-

dictability and efficiency for cloud storage systems (Chapter 5).



CHAPTER 2

MIGRATORY COMPRESSION

2.1 Overview
This chapter presents Migratory Compression (MC), a coarse-grained data transforma-

tion, to improve the effectiveness of traditional compressors in modern storage systems1.

In MC, similar data chunks are re-located together to improve compression. After decom-

pression, migrated chunks return to their previous locations. We evaluate the compres-

sion effectiveness and overhead of MC, explore reorganization approaches on a variety

of datasets, and evaluate MC with different configurations, including four compressors,

different compression levels, fixed- or variable-size chunking, and various chunk sizes. We

present a prototype implementation of MC in a commercial deduplicating file system and

evaluate effectiveness of MC in improving file transfer performance across slow networks.

We also compare MC to the more established technique of delta compression, which is

significantly more complex to implement within file systems.

We find that Migratory Compression improves compression effectiveness compared to

traditional compressors by 11–105%, with relatively low impact on runtime performance.

Frequently, adding MC to a relatively fast compressor like gzip results in compression that

is more effective in both space and runtime than slower alternatives. When applying MC

in archive storage, it improves gzip compression by 44–157%. MC can also reduce the

network transfer time by up to 76% for distributing RPM packages. Most importantly, MC

can be implemented in broadly used, modern file systems.

2.2 Introduction
Compression is a class of data transformation techniques to represent information with

fewer bits than its original form by exploiting statistical redundancy. It is widely used

in the storage hierarchy, such as compressed memory [5], compressed SSD caches [13],

1This work was published in USENIX FAST in 2014 [37].
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file systems [14], and backup storage systems [4]. Generally, there is a tradeoff between

computation and compressibility: often much of the available compression in a dataset can

be achieved with a small amount of computation, but more extensive computation (and

memory) can result in better data reduction [38].

There are various methods to improve compressibility, which largely can be categorized

as increasing the lookback window and reordering data. Most compression techniques

find redundant strings within a window of data; the larger the window size, the greater the

opportunity to find redundant strings, leading to better compression. However, to limit the

overhead in finding redundancy, most real-world implementations use small window sizes.

For example, DEFLATE, used by gzip, has a 64 KB sliding window [15] and the maximum

window for bzip2 is 900 KB [16]. The only compression algorithm we are aware of that

uses larger window sizes is LZMA in 7z [17], which supports history up to 1 GB.2 It

usually compresses better than gzip and bzip2 but takes significantly longer. Some other

compression tools, such as rzip [39], find identical sequences over a long distance by

computing hashes over fixed-sized blocks and then rolling hashes over blocks of that size

throughout the file; this effectively does intrafile deduplication but cannot take advantage

of small interspersed changes. Delta compression (DC) [40] can find small differences

in similar locations between two highly similar files. While this enables highly efficient

compression between similar files, it cannot delta-encode widely dispersed regions in a

large file or set of files without targeted pair-wise matching of similar content [41].

Data reordering is another way to improve compression: since compression algorithms

work by identifying repeated strings, one can improve compression by grouping similar

characters together. The Burrows-Wheeler Transform (BWT) [42] is one such example

that works on relatively small blocks of data: it permutes the order of the characters in

a block, and if there are substrings that appear often, the transformed string will have

single characters repeat in a row. BWT is interesting because the operation to invert the

transformed block to obtain the original data requires only that an index be stored with the

transformed data and that the transformed data be sorted in the lexicographical order to

2The specification of LZMA supports windows up to 4 GB, but we have not found a practical implemen-
tation for Linux that supports more than 1 GB and use that number henceforth. One alternative compressor,
xz [18], supports a window of 1.5 GB, but we found its decrease in throughput highly disproportionate to its
increase in compression.
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use the index to identify the original contents. bzip2 uses BWT as the second layer in its

compression stack.

What we propose is, in a sense, a coarse-grained BWT over a large range (typically tens

of GBs or more). We call it Migratory Compression (MC) because it tries to rearrange data

to make it more compressible, while providing a mechanism to reverse the transformation

after decompression. Unlike BWT, however, the unit of movement is kilobytes rather than

characters, and the scope of movement is an entire file or group of files. Also, the recipe to

reconstruct the original data is a nontrivial size, though still only ~0.2% of the original file.

With MC, data is first partitioned into chunks. Then we ‘sort’ chunks so that similar

chunks are grouped and located together. Duplicate chunks are removed and only the first

appearance of that copy is stored. Standard compressors are then able to find repeated

strings across adjacent chunks.3 Thus MC is a preprocessor that can be combined with

arbitrary adaptive lossless compressors such as gzip, bzip2, or 7z; if someone invented

a better compressor, MC could be integrated with it via simple scripting. We find that MC

improves gzip by up to a factor of two on datasets with high rates of similarity (including

duplicate content), usually with better performance. Frequently gzip with MC compresses

both better and faster than other off-the-shelf compressors like bzip2 and 7z at their default

levels.

We consider three principal use cases of Migratory Compression:

• mzip is a term for using MC to compress a single file. With mzip, we extract the

resemblance information, cluster similar data, reorder data in the file, and compress

the reordered file using an off-the-shelf compressor. The compressed file contains

the recipe needed to restore the original contents after decompression. The bulk of

our evaluation is in the context of stand-alone file compression; henceforth mzip

refers to integrating MC with traditional compressors (gzip by default unless stated

otherwise).

3It is possible for an adaptive compressor’s history to be smaller than size of two chunks, in which case
it will not be able to take advantage of these adjacent chunks. For instance, if the chunks were 64 KB, gzip
would not match the start of one chunk against the start of the next chunk. By making the chunk size small
relative to the compressor’s window size, we avoid such issues.
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• Archival involves data migration from backup storage systems to archive tiers, or

data stored directly in an archive system such as Amazon Glacier [43]. Such data are

cold and rarely read, so the penalty resulting from distributing a file across a storage

system may be acceptable. We have prototyped MC in the context of the archival tier

of the Data Domain File System (DDFS) [4].

• File transfer over low-bandwidth networks can benefit from better compression,

even if that compression is relatively slow, and mzip goes beyond strict deduplication

of systems like LBFS [44]. Our experiments show that mzip can lead to a shorter

end-to-end transfer time than traditional compression, even including the overhead

of reorganizing data.

There are two runtime overheads for MC. One is to detect similar chunks: this requires

a preprocessing stage to compute similarity features for each chunk, followed by clustering

chunks that share these features. The other overhead comes from the large number of

I/Os necessary to reorganize the original data, first when performing compression and

later to transform the uncompressed output back to its original contents. We quantify the

effectiveness of using fixed-size or variable-size chunks, three chunk sizes (2 KB, 8 KB

and 32 KB), and different numbers of features, which trade compression against runtime

overhead. For the data movement overhead, we evaluate several approaches as well as the

relative performance of hard disks and solid state storage.

In summary, our work makes the following contributions. First, we propose Migratory

Compression, a new data transformation algorithm. Second, we evaluate its effectiveness

with real-world datasets, quantify the overheads introduced, and evaluate three data reor-

ganization approaches with both HDDs and SSDs. Third, we compare mzip with delta

compression and show that these two techniques are comparable, though with different

implementation characteristics. Last, we demonstrate its effectiveness with two additional

use cases. The first is to use MC to improve space efficiency for the archive tier within

a deduplicating storage system, DDFS; in the second use case, we look into improving

network transfer for distributing RPM packages with MC.
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2.3 Alternatives
One goal of any compressor is to distill data into a minimal representation. Another is

to perform this transformation with minimal resources (computation, memory, and I/O).

These two goals are largely conflicting, in that additional resources typically result in

better compression, though frequently with diminishing returns [38]. Here we consider

two alternatives to spending extra resources for better compression: moving similar data

together and delta-compressing similar data in place.

2.3.1 Migratory versus Traditional Compression

Figure 2.1 compares traditional compression and Migratory Compression. The blue

chunks at the end of the file (A’ and A” ) are similar to the blue chunk at the start (A ), but

they have small changes that keep them from being entirely identical. With (a) traditional

compression, there is a limited window over which the compressor will look for similar

content, so A’ and A” later in the file do not get compressed relative to A. With (b) MC, we

move these chunks to be together, followed by two more similar chunks, B and B’. Note

that the two green chunks labeled D are identical rather than merely similar, so the second

is replaced by a reference to the first.

One question is whether we could simply obtain extra compression by increasing the

window size of a standard compressor. We see later (Section 2.6.4.4) that the “maximal”

setting for 7z, which uses a 1 GB lookback window (and a memory footprint over 10 GB)

and substantial computation, often results in worse compression with poorer throughput

than the default 7z setting integrated with MC.

2.3.2 Migratory versus Delta Compression

Another obvious question is how MC compares to a similar technology, delta compres-

sion (DC) [40]. The premise of DC is to encode an object A′ relative to a similar object A,

and it is effectively the same as compressing A, discarding the output of that compression,

and using the compressor state to continue compressing A′. Anything in A′ that repeats

content in A is replaced by a reference to its location in A, and content within A′ that

repeats previous content in A′ can also be replaced with a reference.

When comparing MC and DC, there are striking similarities because both can use fea-

tures to identify similar chunks. These features are compact (64 bytes per 8 KB chunk by



15

(a)

(b)

Figure 2.1. Compression alternatives. a) traditional compression. b) migratory compres-
sion. With MC similar data moves close enough together to be identified as redundant,
using the same compression window.

default), allowing GBs or even TBs of data to be efficiently searched for similar chunks.

Both techniques improve compression by taking advantage of redundancy between similar

chunks: MC reads the chunks and writes them consecutively to aid standard compressors,

while DC reads two similar chunks and encodes one relative to the other. We see in Sec-

tion 2.6.3 that MC generally improves compression and has faster performance than intrafile

DC, but these differences are rather small and could be related to internal implementation

details.

One area where MC is clearly superior to DC is in its simplicity, which makes it com-

patible with numerous compressors and eases integration with storage systems. Within a

storage system, MC is a nearly seamless addition, since all of the content still exists after

migration—it is simply at a different offset than before migration. For storage systems that

support indirection, such as deduplicated storage [4], MC causes few architectural changes,

though it likely increases fragmentation. On the other hand, DC introduces dependencies

between data chunks that span the storage system: storage functionality has to be modified

to handle indirections between delta compressed chunks and the base chunks against which

they have been encoded [45]. Such modifications affect such system features as garbage

collection, replication, and integrity checks.
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2.4 Approach
Much of the focus of our work on Migratory Compression is in the context of reorga-

nizing and compressing a single file (mzip), described in Section 2.4.1. We also use mzip

to optimize network transfer for distributing RPM packages. In addition, we compare mzip

to in-place delta-encoding of similar data (Section 2.4.2) and discuss how we implement

data reorganization during migration to an archival tier within DDFS4 (Section 2.4.3).

2.4.1 Single-file Migratory Compression

The general idea of MC is to partition data into chunks and reorder them to store similar

chunks sequentially, increasing compressors’ opportunity to detect redundant strings and

leading to better compression. For standalone file compression, this can be added as

a preprocessing stage, which we term mzip. A reconstruction process is needed as a

postprocessing stage in order to restore the original file after decompression.

2.4.1.1 Similarity Detection with Super-features

The first step in MC is to partition the data into chunks. These chunks can be fixed-size

or variable-size “content-defined chunks.” Prior work suggests that, in general, variable-

size chunking provides a better opportunity to identify duplicate and similar data [41];

however, virtual machines use fixed-sized blocks, and deduplicating VM images potentially

benefits from fixed-sized blocks [46]. We default to variable-sized chunks based on the

comparison of fixed-sized and variable-sized units below.

One big challenge to doing MC is to identify similar chunks efficiently and scalably. A

common practice is to generate similarity features for each chunk. To generate a feature

for a chunk, we use a hash function with a rolling window: for every possible overlapping

window, we calculate a value. Among these values, we pick a special one (for example, the

maximal value) as the feature from that hash. To reduce false positive in detecting similar

blocks, we use a few hash functions to generate many features. Two chunks are likely to

be similar if they share multiple features. While it is possible to enumerate the closest

matches by comparing all features, a useful approximation is to group sets of features into

super-features (SFs): two data objects that have a single SF in common are likely to be

4Guanlin implemented and evaluated data reorganization for archive migration in DDFS.



17

fairly similar [47]. This approach has been used numerous times to successfully identify

similar web pages, files, and/or chunks within files [41, 45, 48]. In this work, we use an

existing tool from Shilane’s previous work [45] to generate super-features.

Four superfeatures are generated for each chunk. We adopt the “FirstFit” approach of

Kulkarni et al. [41], which we will term the greedy matching algorithm. Each time a chunk

is processed, its N SFs are looked up in N hash tables, one per SF. If any SF matches, the

chunk is associated with the other chunks sharing that SF (i.e., it is added to a list and the

search for matches terminates). If no SF matches, the chunk is inserted into each of the N

hash tables so that future matches can be identified.

We explored other options, such as sorting all chunks on each of the SFs to look for

chunks that match several SFs rather than just one. Across the datasets we analyzed, this

sort marginally improved compression, but the computational overhead was disproportion-

ate. Note, however, that applying MC to a file that is so large that its metadata (fingerprints

and SFs) is too large to process in memory would require some out-of-core method, such

as sorting.

2.4.1.2 Data Migration and Reconstruction

Given information about which chunks in a file are similar, our mzip preprocessor

outputs two recipes: migrate and restore. The migrate recipe contains the chunk order of

the reorganized file: chunks identified to be similar are located together, ordered by their

offset within the original file. (That is, a later chunk is moved to be adjacent to the first

chunk it is similar to.) The restore recipe contains the order of chunks in the reorganized

file and is used to reconstruct the original file. Generally, the overhead of generating these

recipes is orders of magnitude less than the the overhead of physically migrating the data

stored in disk.

Figure 2.2 presents a simplified example of these two procedures, assuming fixed chunk

sizes. We show a file with a sequence of chunks A through D, including A’ and B’ to

indicate chunks that are similar to A and B, respectively. The reorganized file places A’

after A and B’ after B, so the migrate recipe specifies that the reorganized file consists of

chunk 0 (A), chunk 3 (A’), chunk 1 (B), chunk 5 (B’), and so on. The restore recipe shows

that to obtain the original order, we output chunk 0 (A), chunk 2 (B), chunk 4 (C), chunk

1 (A’), etc. from the reorganized file. (For variable-length chunks, the recipes contain byte
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Figure 2.2. An example of the reorganization and restore procedures.

offsets and lengths rather than block offsets.)

Once we have the migrate recipe and the restore recipe, we can create the reorganized

file. Reorganization (migration) and reconstruction are complements of each other, each

moving data from a specific location in an input file to a desired location in the output file.

(There is a slight asymmetry resulting from deduplication, as completely identical chunks

can be omitted completely in the reorganized file, then copied 1-to-N when reconstructing

the original file.)

There are several methods for moving chunks.

• In-Memory When the original file can fit in memory, we can read in the whole file

into memory and output chunks in the reorganized order sequentially. We call this

the ‘in-memory’ approach.

• Chunk-level When we cannot fit the original file in memory, the simplest way to

reorganize a file is to scan the chunk order in the migrate recipe: for every chunk

needed, seek to the offset of that chunk in the original file, read it, and output it to

the reorganized file. When using HDDs, this could become very inefficient because

of the number of random I/Os involved.
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• Multi-pass We also designed a ‘multipass’ algorithm, which scans the original file

repeatedly from start to finish; during each pass, chunks in a particular reorg range

of the reorganized file are saved in a memory buffer while others are discarded. At

the end of each pass, chunks in the memory buffer are output to the reorganized file

and the reorg range is moved forward. This approach replaces random I/Os with

multiple scans of the original file. (Note that if the file fits in memory, the in-memory

approach is the multipass approach with a single pass.)

Our experiments in Section 2.6.2 show that the in-memory approach is best, but when

memory is insufficient, the multipass approach is more efficient than chunk-level. We can

model the relative costs of the two approaches as follows. Let T be elapsed time, where

Tmp is the time for multipass and Tc is the time when using individual chunks. Focusing

only on I/O costs, Tmp is the time to read the entire file sequentially N times, where N is the

number of passes over the data. If disk throughput is D and the file size is S, Tmp = S∗N/D.

For a size of 15GB, 3 passes, and 100MB/s throughput, this works out to 7.7 minutes for

I/O. If CS represents the chunk size, the number of chunk-level I/O operations is S/CS and

the elapsed time is Tc =
S/CS
IOPS . For a disk with 100 IOPS and an 8KB chunk size, this equals

5.4 hours. Of course there is some locality, so what fraction of I/Os must be sequential or

cached for the chunk approach to break even with the multipass one? If we assume that the

total cost for chunk-level is the cost of reading the file once sequentially5 plus the cost of

random I/Os, then we solve for the cost of the random fraction (RF) of I/Os equaling the

cost of N−1 sequential reads of the file:

S∗ (N−1)/D =
S∗RF/CS

IOPS

Solving this equation, we have the following.

RF =
(N−1)∗ IOPS∗CS

D
.

In the example above, this works out to 16
1024 = 1.6%: if more than 1.6% of the data has

dispersed similarity matches, then the multipass method should be preferred.

5Note that if there are so many random I/Os that we do not read large sequential blocks, Tmp is reduced
by a factor of 1−RF .
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Solid-state disks, however, offer a good compromise. Using SSDs to avoid the penalty

of random I/Os on HDDs causes the chunk approach to come closer (up to 90%) to the

in-memory performance.

2.4.1.3 mzip Workflow

Figure 2.3 presents the compression and decompression workflows in mzip. Com-

pression/decompression and segmentation are adopted from existing tools, while similarity

detection and reorganization/restoration are specially developed and highlighted in red. The

original file is read once by the segmenter, computing cryptographically secure fingerprints

(for deduplication) and resemblance features, then it is read again by the reorganizer to pro-

duce a file for compression. (This file may exist only as a pipeline between the reorganizer

and the compressor, not separately stored, something we did for all compressors but rzip,

as it requires the ability to seek.) To restore the file, the compressed file is decompressed

and its restore recipe is extracted from the beginning of the resulting file. Then the rest of

that file is processed by the restorer, in conjunction with the recipe, to produce the original

content.

2.4.2 Intra-file Delta Compression

When applied in the context of a single file, we hypothesized that mzip would be

slightly better than delta compression (DC) because its compression state at the time the

similar chunk is compressed includes content from many KBs-MBs of data, depending on

the compressor. To evaluate how mzip compares with DC within a file, we implemented

a version of DC that uses the same workflows as mzip, except the ‘reorganizer’ and the

‘restorer’ in mzip are replaced with a ‘delta-encoder’ and a ‘delta-decoder.’ The delta-

encoder encodes each similar chunk as a delta against a base chunk, while the delta-decoder

reconstructs a chunk by patching the delta to its base chunk. (In our implementation, the

chunk which appears first in the file is selected as the base for each group of similar chunks.

We use xdelta [49] for encoding, relying on the later compression pass to compress

anything that has not been removed as redundant.)
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(a) (b)

Figure 2.3. Workflow in Migratory Compression. a) Compression workflow. b) Decom-
pression workflow.

2.4.3 Migratory Compression in an Archival Storage System

In addition to reorganizing the content of individual files, MC is well suited for reducing

data requirements within an entire file system. However, this impacts read locality, which is

already an issue for deduplicating storage systems [25]. This performance penalty therefore

makes it a good fit for systems with minimal requirements for read performance. An

archival system, such as Amazon Glacier [43], is a prime use case, as much of its data

will not be reread; when it is, significant delays can be expected. When the archival system

is a tier within a backup environment, such that data moves in bulk at regular intervals, the

data migration is an opportune time to migrate similar chunks together.

To validate the MC approach in a real storage system, we implemented a prototype

using the existing deduplicating Data Domain Filesystem (DDFS) [4]. After deduplica-

tion, chunks in DDFS are aggregated into compression regions (CRs), which in turn are

aggregated into containers. DDFS can support two storage tiers: an active tier for backups

and a long-term retention tier for archival; while the former stores the most recent data

within a time period (e.g., 90 days), the latter stores the relatively ‘cold’ data that needs to
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be retained for an extended time period (e.g., 5 years) before being deleted. Data migration

is important for customers who weigh the dollar-per-GB cost over the migrate/retrieval

performance for long-term data.

A daemon called data migration is used to migrate selected data periodically from the

active tier to the archive tier. For performance reasons, data in the active tier is compressed

with a simple LZ algorithm while we use gzip in the archive tier for better compression.

Thus, for each file to be migrated in the namespace, DDFS reads out the corresponding

compression regions from the active tier, decompresses each, and recompresses with gzip.

The MC technique would offer customers a further tradeoff between the compression

ratio and migrate/retrieval throughput. It works as follows:

• Similarity Range. Similarity detection is limited to files migrated in one iteration,

for instance all files written in a span of two weeks or 90 days.

• Super-features. We use 12 similarity features, combined as 3 SFs. For each con-

tainer to be migrated, we read out its metadata region, extract the SFs associated with

each chunk, and write these to a file along with the chunk’s fingerprint.

• Clustering. Chunks are grouped in a similar fashion to the greedy single SF match-

ing algorithm described in Section 2.4.1.1, but via sorting rather than a hash table.

• Data reorganization. Similar chunks are written together by collecting them from

the container set in multiple passes, similar to the single-file multipass approach

described in Section 2.4.1.2 but without a strict ordering. Instead, the passes are

selected by choosing the largest clusters of similar chunks in the first one-third, then

smaller clusters, and finally dissimilar chunks. Since chunks are grouped by any of

3 SFs, we use 3 Bloom filters, respectively, to identify which chunks are desired in a

pass. We then copy the chunks needed for a given pass into the CR designated for a

given chunk’s SF; the CR is flushed to disk if it reaches its maximum capacity.

Note that DDFS already has the notion of a mapping of a file identifier to a tree of

chunk identifiers, and relocating a chunk does not affect the chunk tree associated with

a file. Only the low-level index mapping a chunk fingerprint to a location in the storage

system need be updated when a chunk is moved. Thus, there is no notion of a restore recipe

in the DDFS case, only a recipe specifying which chunks to co-locate.



23

In theory, MC could be used in the backup tier as well as for archival: the same

mechanism for grouping similar data could be used as a background task. However, the

impact on data locality would not only impact read performance [25], it could degrade

ingest performance during backups by breaking the assumptions underlying data locality:

DDFS expects an access to the fingerprint index on disk to bring nearby entries into

memory [4].

2.5 Methodology
We discuss evaluation metrics in Section 2.5.1, tunable parameters in Section 2.5.2, and

datasets in Section 2.5.3.

2.5.1 Metrics

The high-level metrics by which to evaluate a compressor are the compression factor

(CF) and the resource usage of the compressor. CF is the ratio of an original size to its

compressed size, i.e., higher CFs correspond to more data eliminated through compression;

deduplication ratios are analogous.

In general, resource usage equates to processing time per unit of data, which can be

thought of as the throughput of the compressor. There are other resources to consider,

such as the required memory: in some systems memory is plentiful and even the roughly

10 GB of DRAM used by 7z with its maximum 1 GB dictionary is fine; in some cases the

amount of memory available or the amount of compression being done in parallel results

in a smaller limit.

Evaluating the performance of a compressor is further complicated by the question

of parallelization. Some compressors are inherently single-threaded while others support

parallel threads. Generally, however, the fastest compression is also single-threaded (e.g.,

gzip), while a slower but more effective compressor such as 7z is slower despite its

multiple threads. We consider end-to-end time, not CPU time.

Most of our experiments were run inside a virtual machine, hosted by an ESX server

with 2×6 Intel 2.67GHz Xeon X5650 cores, 96 GB memory, and 1-TB 3G SATA 7.2k 2.5in

drives. The VM is allocated 90 GB memory except in cases when memory is explicitly

limited, as well as 8 cores and a virtual disk with a 100 GB ext4 partition on a two-disk

RAID-1 array. For 8 KB random accesses, we have measured 134 IOPS for reads (as well
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as 385 IOPS for writes, but we are not evaluating random writes), using a 70 GB file and

an I/O queue depth of 1. For 128 KB sequential accesses, we measured 108 MB/s for reads

and 80 MB/s for writes. The SSD used is a Samsung Pro 840, with 22K IOPS for random

8 KB reads and 264 MB/s for 128 KB sequential reads (write throughputs become very

low because there is no TRIM support in the hypervisor: 20 MB/s for 128 KB sequential

writes). To minimize performance variation, all other virtual machines were shut down

except those providing system services. Each experiment was repeated three times; we

report averages. We do not plot error bars because the vast majority of experiments have

a relative standard error under 5%; in a couple of cases, decompression timings vary with

10–15% relative error.

To compare the complexity of MC with other compression algorithms, we ran most

experiments in-memory. In order to evaluate the extra I/O necessary when files do not fit in

memory, some experiments limit memory size to 8 GB and use either an SSD or hard drive

for I/O.

The tool that computes chunk fingerprints and features is written in C, while the tools

that analyze that data to cluster similar chunks and reorganize the files are written in Perl.

The various compressors are off-the-shelf Linux tools installed from repositories.

2.5.2 Parameters Explored

In addition to varying the workload by evaluating different datasets, we consider the

effect of a number of parameters. Defaults are shown in bold.

• Compressor. We consider gzip, bzip2, 7z, and rzip, with or without MC.

• Compression tuning. Each compressor can be run with a parameter that trades

off performance against compressibility. We use the default parameters unless

specified otherwise.

• MC chunking. Are chunks fixed or variable sized?

• MC chunk size. How large are chunks? We consider 2, 8, and 32 KB; for variable-

sized chunks, these represent target averages.

• MC resemblance computation. How are super-features matched? (Default: Four

SFs, matched greedily, one SF at a time.)
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• MC data source. When reorganizing an input file or reconstructing the original file

after decompression, where is the input stored? We consider an in-memory file

system, SSD, and hard disk.

2.5.3 Datasets

Table 2.1 summarizes salient characteristics of the input datasets used to test mzip, two

types of backups and a pair of virtual machine images. Each entry shows the total size

of the file processed, its deduplication ratio (half of them can significantly boost their CF

using MC simply through deduplication), and the CF of the four off-the-shelf compressors.

We find that 7z and rzip both compress significantly better than the others and are similar

to each other.

• We use four single backup image files taken from production deduplication backup

appliances. Two are backups of workstations while the other two are backups of

Exchange email servers.

• We use two virtual machine disk images consisting of VMware VMDK files. One

has Ubuntu 12.04.01 LTS installed while the other uses Fedora Core release 4 (a

dated but stable build environment).

2.6 mzip Evaluation
The most important consideration in evaluating MC is whether the added effort to find

and relocate similar content is justified by the improvement in compression. Section 2.6.1

compares CF and throughput across the six datasets. Section 2.6.2 looks specifically at

the throughput when memory limitations force repeated accesses to disk and finds that

SSDs would compensate for random I/O penalties. Section 2.6.3 compares mzip to a

similar intra-file DC tool. Finally, Section 2.6.4 considers additional sensitivity to various

parameters and configurations.

2.6.1 Compression Effectiveness and Performance Tradeoff

Figure 2.4 plots compression throughput versus compression factor, using the six datasets.

All I/O was done using an in-memory file system. Each plot shows eight points, four for

the off-the-shelf compressors (gzip, bzip2, 7z, and rzip) using default settings and four

for these compressors using MC.
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Table 2.1. Dataset summary: size, deduplication factor of 8 KB variable chunking and
compression ratios of standalone compressors.

Dataset Size
(GB)

Dedupe
(X)

Compression Factor of
Standalone Compressors (X)

Type Name gzip bzip2 7z rzip

Workstation
Backup

WORKSTATION1 17.36 1.69 2.70 3.22 4.44 4.46
WORKSTATION2 15.73 1.77 2.32 2.61 3.16 3.12

Email Server
Backup

EXCHANGE1 13.93 1.06 1.83 1.92 3.35 3.99
EXCHANGE2 17.32 1.02 2.78 3.13 4.75 4.79

VM Image
Ubuntu-VM 6.98 1.51 3.90 4.26 6.71 6.69
Fedora-VM 27.95 1.19 3.21 3.49 4.22 3.97
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Figure 2.4. Compression throughput vs. compression factor for all datasets, using unmodi-
fied compression or MC, for four compressors, one figure per dataset. (a) EXCHANGE1. (b)
EXCHANGE2. (c) Fedora-VM. (d) Ubuntu-VM. (e) WORKSTATION1. (f) WORKSTATION2.
The legend for all plots appears in (c)
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Generally, adding MC to a compressor significantly improves the CF (23–105% for

gzip, 18–84% for bzip2, 15–74% for 7z and 11–47% for rzip). It is unsurprising

that rzip has the least improvement, since it already finds duplicate chunks across a

range of a file, but MC further increases that range. Depending on the compressor and

dataset, throughput may decrease moderately or it may actually improve as a result of

the compressor getting (a) deduplicated and (b) more compressible input. We find that

7z with MC always gets the highest CF, but often another compressor gets nearly the

same compression with better throughput. We also note that in general, for these datasets,

off-the-shelf rzip compresses just about as well as off-the-shelf 7z but with much higher

throughput. Better, though, the combination of gzip and MC has a comparable CF to any

of the other compressors without MC, and with still higher throughput, making it a good

choice for general use.

Figure 2.5 shows decompression throughput versus CF for all datasets. Decompression

performance may be more important than compression performance for use cases where

something is compressed once but uncompressed many times. From these figures, we can

see decompression throughputs are improved for most compressors. It is likely because

deduplication leads to less data to decompress. For EXCHANGE1 and EXCHANGE2, CF

improves substantially as well, with throughput not greatly affected. Only for Fedora-

VM does gzip decompression throughput decrease in any significant fashion (from about

140 MB/s to 120).

2.6.2 Data Reorganization Throughput

To evaluate how mzip may work when a file does not fit in memory, we experimented

with a limit of 8 GB RAM when the input data is stored in either a solid state disk (SSD) or

hard disk drive (HDD). The output file is stored in the HDD. When reading from HDD, we

evaluated two approaches: chunk-level and multipass. Since SSD has no random-access

penalty, we use only chunk-level and compare SSD to in-mem.

Figure 2.6 shows the compression throughputs for SSD-based and HDD-based mzip

(Henceforth mzip refers to gzip+ MC.).

We can see that SSD approaches in-memory performance, but as expected, there is a

significant reduction in throughput using the HDD. This reduction can be mitigated by the

multipass approach. For instance, using a reorg range of 60% of memory, 4.81 GB, if the
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Figure 2.5. Decompression throughput vs. compression factor for all datasets, using
unmodified compression or MC, one figure per dataset. (a) EXCHANGE1. (b) EXCHANGE2.
(c) Fedora-VM. (d) Ubuntu-VM. (e) WORKSTATION1. (f) WORKSTATION2. The legend
for all plots appears in (d)
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file does not fit in memory, the throughput can be improved significantly for HDD-based

mzip by comparison to accessing each chunk in the order it appears in the reorganized file

(and paying the corresponding costs of random I/Os).

Note that Ubuntu-VM can approximately fit in available memory, so the chunk-level

approach performs better than multipass: multipass reads the file sequentially twice, while

chunk-level can use OS-level caching.

2.6.3 Delta Compression

Figure 2.7 compares the compression and performance achieved by mzip to com-

pression using in-place delta-encoding,6 as described in Section 2.4.2. Both use gzip

as the final compressor. Figure 2.7(a) shows the CF for each dataset, broken down by

the contribution of each technique. The bottom of each stacked bar shows the impact of

deduplication (usually quite small but up to a factor of 1.8). The next part of each bar

shows the additional contribution of gzip after deduplication has been applied, but with

no reordering or delta-encoding. Note that these two components will be the same for each

pair of bars. The top component is the additional benefit of either mzip or delta-encoding.

mzip is always slightly better (from 0.81% to 4.89%) than deltas, but with either technique

we can get additional compression beyond the gain from deduplication and traditional

compression: > 80% more for EXCHANGE1, > 40% more for EXCHANGE2 and > 25%

more for WORKSTATION1.

Figure 2.7(b) plots the compression throughput for mzip and DC, using an in-memory

file system. mzip is consistently faster than DC. For compression, mzip averages 7.21%

higher throughput for these datasets, while for decompression mzip averages 29.35% higher

throughput.

2.6.4 Sensitivity to Environment

The effectiveness and performance of MC depend on how it is used. We looked into var-

ious chunk sizes, compared fixed-size with variable-size chunking, evaluated the number

of SFs to use in clustering, and studied different compression levels and window sizes.

6Delta-encoding plus compression is delta compression. Some tools, such as vcdiff [50], do both
simultaneously, while our tool delta-encodes chunks and then compresses the entire file.
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Figure 2.7. Comparison between mzip and gzip (delta compression) in terms of compres-
sion factor and compression throughput. (a) compression factor, by contributing technique.
(b) compression throughput. CFs are broken down by dedup and gzip (same for both),
plus the additional benefit of either MC or DC.

2.6.4.1 Chunk Size

Figure 2.8 plots gzip-MC (a) CF and (b) runtime as a function of chunk size (we

show runtime to break down individual components by their contribution to the overall

delay). We shrink and increase the default 8 KB chunk size by a factor of 4. Compression

increases slightly in shrinking from 8 KB to 2 KB but decreases dramatically moving up

to 32 KB. The improvement from the smaller chunksize is much less than seen when

only deduplication is performed [51], because MC eliminates redundancy among similar

chunks as well as identical ones. The reduction when increasing to 32 KB is due to a

combination of fewer chunks being detected as identical and similar, and the small gzip

lookback window: similar content in one chunk may not match content from the preceding

chunk.

Figure 2.8(b) shows the runtime overhead, broken down by processing phase. The right

bar for each dataset corresponds to standalone gzip without MC, and the remaining bars

show the additive costs of segmentation, clustering, and the pipelined reorganization and

compression. Generally performance is decreased by moving to a smaller chunk size, but

interestingly, in two of the three cases it is also worse when moving to a larger chunk size.

We attribute the lower throughput to the poorer deduplication and compression achieved,

which pushes more data through the system.
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Figure 2.8. Compression factor and runtime for mzip, varying chunk size. (a) compression
factor. (b) runtime, by component cost.

2.6.4.2 Chunking Algorithm

Data can be divided into fixed-sized or variable-sized blocks. For MC, supporting

variable-sized chunks requires tracking individual byte offsets and sizes rather than simply

block offsets. This increases the recipe sizes by about a factor of two, but because the

recipes are small relative to the original file, the effect of this increase is limited. In addition,

variable chunks result in better deduplication and matching than fixed, so CFs from using

variable chunks are 14.5% higher than those using fixed chunks.

Figure 2.9 plots mzip compression for three datasets, when fixed-size or variable-size

chunking is used. From Figure 2.9(a), we can see that variable-size chunking gives con-

sistently better compression. Figure 2.9(b) shows that the overall performance of both

approaches is comparable, and sometimes variable-size chunking has better performance.

Though variable-size chunking spends more time in the segmentation stage, the time to

do compression can be reduced considerably when more chunks are duplicated or grouped

together.

2.6.4.3 Resemblance Computation

By default we use sixteen features, combined into four SFs, and a match on any SF is

sufficient to indicate a match between two chunks. In fact, most similar chunks are detected

by using a single SF. However, when using all four SFs, compression factors are improved

greatly in some cases (e.g., a 13.6% improvement for EXCHANGE1) while compression
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Figure 2.9. Compression factor and runtime for mzip, when either fixed-size or variable–
size chunking is used. (a) compression factor. (b) runtime.

throughputs are not affected much. We therefore default to using 4 SFs.

2.6.4.4 Compression Window

So far, we have focused on the default behavior of the three compressors we have been

considering. Now, we turn to examine the “maximal” level. For gzip, the maximal level

makes only a small improvement in CF but with a significant drop in throughput, compared

to the default. In the case of bzip2, the default is equivalent to the level that does the best

compression, but overall execution time is still manageable, and lower levels do not change

the results significantly. In the case of 7z, there is an enormous difference between its

default level and its maximal level: the maximal level generally gives a much higher CF

with only a moderate drop in throughput. For rzip, we use an undocumented parameter

“-L20”to increase the window to 2 GB; increasing the window beyond that had diminishing

returns because of the increasingly coarse granularity of duplicate matching.

Figure 2.10 shows the compression throughput and CF for WORKSTATION1, Ubuntu-

VM, and EXCHANGE1 when the default or maximum level is used, for different compres-

sors with and without MC. From these figures, we can tell that maximal gzip reduces

throughput without discernible effect on CF, and maximal rzip and 7z improves CF and

reduces performance. More importantly, for gzip and rzip with MC, we can achieve

comparable or higher CFs with much higher compression throughput than compressors’

standard maximal level. For example, the black cross marking rzip-DEF(MC) is above

and to the right of the filled black pentagram marking rzip-MAX. This is also true for

7z for WORKSTATION1. For this dataset, we also find that rzip-DEF with MC achieves



33

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10

C
o
m

p
. 
T

p
u
t.
 (

M
B

/s
)

Compression Factor (X)

(a)

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12

C
o
m

p
. 
T

p
u
t.
 (

M
B

/s
)

Compression Factor (X)

(b)

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10

C
o
m

p
. 
T

p
u
t.
 (

M
B

/s
)

Compression Factor (X)

gz-DEF
gz-MAX

gz-DEF(mc)
gz-MAX(mc)

bz
bz(mc)

7z-DEF
7z-MAX

7z-DEF(mc)
7z-MAX(mc)

rz-DEF
rz-MAX

rz-DEF(mc)
rz-MAX(mc)

(c)

Figure 2.10. Comparison between the default and the maximum compression level, for
standard compressors with and without MC, for three datasets. (a) WORKSTATION1. (b)
Ubuntu-VM. and (c) EXCHANGE1.
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comparable compressibility as 7z-MAX. The best compression comes from 7z-MAX with

MC, which also has better throughput than 7z-MAX without MC.

2.7 Additional Use Cases of MC

In addition to using MC in the context of a single file, we consider two other uses of

MC. First, we evaluate a prototype of MC in an existing deduplicating storage system. We

then evaluate briefly the use of mzip for improving network transfer for distributing RPM

packages.

2.7.1 Archival Migration in DDFS

We implemented MC during data migration from the active (backup) tier to the archive

tier within DDFS. We evaluated the benefit of MC using a DDFS, running on a Linux-based

backup appliance equipped with 8x2 Intel 2.53GHz Xeon E5540 cores and 72 GB memory.

In our experiment, either the active tier or archive tier is backed by a disk array of 14

1-TB SATA disks. To minimize performance variation, no other workloads ran during the

experiment.

Table 2.2 shows the characteristics of a few backup datasets using either form of com-

pression. (Note that the WORKSTATIONS dataset is the union of several workstation back-

ups, including WORKSTATION1 and WORKSTATION2, and all datasets are many backups

rather than a single file as before.) The logical size refers to prededuplication data, and

most datasets deduplicate substantially. DDFS compresses each compression region using

either LZ or gzip.

The table shows that gzip compression is 25–44% better than LZ on these datasets,

hence DDFS uses gzip by default for archival. We therefore compare base gzip with gzip

after MC preprocessing. For these datasets, we reorganize all backups together, which is

comparable to an archive migration policy that migrates a few months at a time; if archival

happened more frequently, the benefits would be reduced.

Figure 2.11(a) depicts the compressibility of each dataset, including separate phases

of data reorganization. As described in Section 2.4.3, we migrate data in thirds. The top

third contains the biggest clusters and achieves the greatest compression. The middle third

contains smaller clusters and may not compress quite as well, and the bottom third contains

the smallest clusters, including clusters of a single chunk (nothing similar to combine it
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Table 2.2. Datasets used for archival migration evaluation.

Type Name Logical
(GB)

Dedup.
(GB)

Dedup.
+LZ
(GB)

LZ
(CF)

Dedup.
+gzip
(GB)

gzip

(CF)

Workstation WORKSTATIONS 2471 454 230 1.97 160 2.84

Email
Server

EXCHANGE1 570 51 27 1.89 22 2.37
EXCHANGE2 718 630 305 2.07 241 2.61
EXCHANGE3 596 216 103 2.10 81 2.67
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Figure 2.11. Breakdown of the effect of migrating data, using just gzip or using MC in
3 phases. (a) CFs as a function of migration phase. (b) fraction of data saved in each
migration phase. (c) durations, as a function of threads, for EXCHANGE1.
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with). The next bar for each dataset shows the aggregate CF using MC, while the right-most

bar shows the compression achieved with gzip and no reorganization. Collectively, MC

achieves 1.44–2.57× better compression than the gzip baseline. Specifically, MC outper-

forms gzip most (by 2.57×) on the workstations dataset, while it improves the least (by

1.44×) on EXCHANGE3.

Figure 2.11(b) provides a different view into the same data. Here, the cumulative

fraction of data saved for each dataset is depicted, from bottom to top, normalized by

the post-deduplicated dataset size. The greatest savings (about 60% of each dataset) come

from simply doing gzip, shown in green. If we reorganize the top third of the clusters, we

additionally save the fraction shown in red. By reorganizing the top two-thirds we include

the fraction in blue; interestingly, in the case of WORKSTATIONS, the reduction achieved

by MC in the middle third relative to gzip is higher than that of the top third, because gzip

alone does not compress the middle third as well as it compresses the top. If we reorganize

everything that matches other data, we may further improve compression, but only two

datasets have a noticeable impact from the bottom third. Finally, the portion in gray at the

top of each bar represents the data that remains after MC.

There are some costs to the increased compression. First, MC has a considerably

higher memory footprint than the baseline: compared to gzip, the extra memory usage

for reorganization buffers is 6 GB (128 KB compression regions * 48 K regions filled si-

multaneously). Second, there is run-time overhead to identify clusters of similar chunks

and to copy and group the similar data. To understand what factors dominate the run-time

overhead of MC, Figure 2.11(c) reports the elapsed time to copy the post-deduplication

51 GB EXCHANGE1 dataset to the archive tier, with and without MC, as a function of the

number of threads (using a log scale). We see that multithreading significantly improves

the processing time of each pass. We divide the container range into multiple subranges and

copy the data chunks from each subrange into in-memory data reorganization buffers with

multiple worker threads. As the threads increase from 1 to 16, the baseline (gzip) duration

drops monotonically and is uniformly less than the MC execution time. On the other

hand, MC achieves the minimum execution time with 8 worker threads; further increasing

the thread count does not reduce execution time, an issue we attribute to intra-bucket

serialization within hash table operations and increased I/O burstiness.
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Reading the entire EXCHANGE1 dataset, there is a 30% performance degradation after

MC compared to simply copying in the original containers. Such a read penalty would be

unacceptable for primary storage, problematic for backup [25], but reasonable for archival

data, given lower performance expectations. But reading back just the final backup within

the dataset is 7× slower than without reorganization, if all chunks are relocated whenever

possible. Fortunately, there are potentially significant benefits to partial reorganization.

The greatest compression gains are obtained by grouping the biggest clusters, so migrating

only the top third of clusters can provide high benefits at moderate cost. Interestingly, if

just the top third of clusters are reorganized, there is only a 24% degradation reading the

final backup.

2.7.2 File Transfer

One use case of mzip is to compress files prior to network transfer, either statically

(done once and saved) or dynamically (when the cost of compression must be included in

addition to network transfer and decompression). We performed analyses of RPM files to

see how mzip might work on smaller files that are commonly transmitted over WANs. In

a Fedora 11 machine, we sorted installed RPMs according to their installed size as reported

by dpkg-query, selecting the top 40 largest packages. We then used yumdownloader to

download binary packages for each, followed by rpmtocpio to convert the rpm packages

into cpio format, an archival format similar to tar. The 40 packages resulted in 54

cpio files, since multiple binary files could be available for a given package, compiled

for different CPU architectures. By default, gzip is used to compress a cpio file to be the

payload of an RPM package.

Figure 2.12 compares the compression effectiveness between mzip and gzip, for the

RPM dataset. As the baseline, we compressed the cpio files with gzip. For mzip, we

first reorganized these cpio files in 1 KB chunks (scaling down the unit of reorganization

because the files are much smaller than the backups and VMDKs) and then ran gzip. The

aggregate size of these cpio files is 1710 MB. gzip compressed them to 576 MB while

mzip compressed them to 488 MB, 15% smaller than gzip. The average CF for gzip is

3.17×, compared to 4.94× for mzip, and the average unweighted CF improvements (mzip

over gzip) across this dataset is 32%. When we take account of the file size as the weight,

we get an average weighted CF improvement of 15%. The improvements are not as huge as
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we have seen in the evaluation section for mzip. We believe two reasons contribute to this

result. First, files in this dataset are much smaller than those used in the previous dataset,

which includes large backups and VM images. Second, this dataset contains binary data,

which may have fewer duplicate and similar data blocks.

Figure 2.13 presents the results where we transfer extracted RPM packages over a

dual-T1 network (a maximum of 3 Mbps in aggregate), in uncompressed (cpio), gzip-

compressed (essential RPM) and mzip-compressed formats. We found a 13% overall re-

duction (from 2040 seconds to 1780 seconds) in transfer time through mzip (transfer time

includes decompression at the destination). If compression at the source is also included,

the reduction is 5%, since mzip takes a longer time to do compression. However, for the

five RPMs with the greatest improvement from mzip, the transfer time decreased by 76%,

when compression is done before-hand, and 69% when the cost of compression is also

included. The relatively small improvement across the full set of RPMs contrasts with the

significant improvement in some cases, suggesting that mzip may be useful for applications

such as software distribution, where MC can sometimes greatly reduce the compressed size.
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2.8 Related Work
Compression is a well-trodden area of research. Adaptive compression, in which strings

are matched against patterns found earlier in a data stream, dates back to the variants

of Lempel-Ziv encoding [12, 52]. Much of the early work in compression was done in

a resource-poor environment, with limited memory and computation, so the size of the

adaptive dictionary was severely limited. Since then, there have been advances in both

encoding algorithms and dictionary sizes, so for instance Pavlov’s 7z uses a “Lempel-Ziv-

Markov-Chain” (LZMA) algorithm with a dictionary up to 1 GB [17]. With rzip, standard

compression is combined with rolling block hashes to find large duplicate content, and

larger lookahead windows decrease the granularity of duplicate detection [39].

The Burrows-Wheeler Transform (BWT), incorporated into bzip2, rearranges data within

a relatively small window to make it more compressible [42]. This transform is reasonably

efficient and easily reversed, but it is limited in what improvements it can effect.

Delta compression, described in Section 2.3.2, refers to compressing a data stream

relative to some other known data [40]. With this technique, large files must normally be

compared piecemeal, using subfiles that are identified on the fly using a heuristic to match

data from the old and new files [50]. MC is similar to that sort of heuristic, except it permits

deltas to be computed at the granularity of small chunks (such as 8 KB) rather than a sizable
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fraction of a file. It has been used for network transfers, such as updating changing Web

pages over HTTP [53]. One can also deduplicate identical chunks in network transfers at

various granularities [44, 48].

DC has also been used in the context of deduplicating systems. Deltas can be done

at the level of individual chunks [45] or large units of MBs or more [54]. Fine-grained

comparisons have a greater chance to identify similar chunks but require more state.

These techniques have limitations in the range of data over which compression will

identify repeated sequences; even the 1 GB dictionary used by 7-zip is small compared to

many of today’s files. There are other ways to find redundancy spread across large corpora.

As one example, REBL performed fixed-sized or content-defined chunking and then used

resemblance detection to decide which blocks or chunks should be delta-encoded [41]. Of

the approaches described here, MC is logically the most similar to REBL, in that it breaks

content into variable sized chunks and identifies similar chunks to compress together. The

work on REBL only reported the savings of pair-wise DC on any chunks found to be similar,

not the end-to-end algorithm and overhead to perform standalone compression and later

reconstruct the original data. From the standpoint of rearranging data to make it more

compressible, MC is most similar to BWT.

2.9 Summary
Storage systems must optimize space consumption while remaining simple enough to

implement. Migratory Compression reorders content, improving traditional compression

by up to 2× with little impact on throughput and limited complexity. When compressing

individual files, MC paired with a typical compressor (e.g., gzip or 7z) provides a clear im-

provement. More importantly, MC delivers slightly better compression than delta-encoding

without the added complexities of tracking dependencies. Migratory Compression can be

applied broadly in other file systems.



CHAPTER 3

IMPROVE DEDUPLICATION BY SEPARATING

METADATA FROM DATA

In the previous chapter, we talked about Migratory Compression, which improves com-

pression by grouping similar blocks together. Now, we discuss a technique to improve

deduplication by separating metadata from data1.

3.1 Overview
Deduplication is widely used to improve space efficiency in storage systems. While

much attention has been paid to making the process of deduplication fast and scalable, the

effectiveness of deduplication can vary dramatically, depending on the data stored. We

show that many file formats suffer from a fundamental design property that is incompatible

with deduplication: they intersperse metadata with data in ways that result in otherwise

identical data being different. We examine three models for improving deduplication in

the presence of embedded metadata: deduplication-friendly data formats, application-level

postprocessing, and format-aware deduplication. Working with real-world file formats and

datasets, we find that by separating metadata from data, deduplication ratios are improved

significantly—in some cases as dramatically as 5.6×.

3.2 Introduction
The amount of digital data continues to grow rapidly. Data deduplication has been

shown to be effective in improving space efficiency for backup/archive storage systems [4,

22,56], and there is an increasing interest in applying deduplication to general-purpose file

systems [57,58]. The effectiveness of deduplication is therefore crucial to the efficiency of

such storage systems.

1This work was published at the USENIX HotStorage 2015 [55].
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Generally, there are three types of deduplication: whole-file (also known as single-

instance store [59]), fixed-size blocks [19], and variable-size content-defined chunks [4,44].

Whole-file and fixed-block deduplication work well in some environments [46, 60, 61],

but using the content itself to determine deduplication unit boundaries is popular for two

reasons. First, within a file, a small edit that shifts the remaining content would cause

fixed-size blocks to align differently such that they would not deduplicate. Second, even

small unmodified files may be written to the backup system by applications such as EMC

NetWorker or Symantec NetBackup as part of a larger aggregate file to amortize over-

heads [51]; these aggregate files resemble UNIX tar files.

In this work, we show that many file formats suffer from a fundamental design property

that is incompatible with deduplication: they intersperse metadata with data in ways that

result in otherwise identical data being different. Metadata is changed more frequently,

sometimes in trivial ways, leading to poor deduplication.

We observe that there are at least three ways to adapt ill-behaved data to deduplicating

storage:

• Deduplication-friendly formats The best solution is to design file formats that sep-

arate metadata and data in a way that preserves potential deduplication. We provide

a case study of EMC NetWorker, which has migrated to a new deduplication-friendly

data format for backup data.

• Application-level postprocessing When it is hard to change the file format for an

established application, it is often possible to postprocess files to produce a new

format that is better suited to deduplication. We describe mtar, which transforms tar

files into a more deduplication-friendly format.

• Format-aware deduplication Sometimes neither of the previous approaches is fea-

sible, and special logic is required within the deduplicating system. We describe

how EMC Data Domain appliances handle two cases of file formats that use special

markers interspersed with data: tape markers for virtual tape libraries and block

headers within the Oracle RMAN backup format [62].

This work makes three contributions. 1) This is the first detailed study that identifies the

impact of metadata on deduplication. 2) It proposes two new formats (Common Data For-
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mat and mtar) that improve deduplication. 3) It evaluates the new formats with real-world

datasets and shows quantitative improvements to deduplication ratios. We hope that this

study contributes to an increased understanding of the role of metadata in deduplication,

and thus improved storage efficiency in future deduplicating systems and file formats.

3.3 Deduplication-friendly Formats
In this section, we2 discuss our experiences with EMC NetWorker, a commercial backup

software system. NetWorker was first developed in the age of tape-based backups and

has since evolved. It uses application-specific data formats that describe data in different

formats for different types of backup devices: disk backups and tape backups use different

formats. The format is proprietary, but we discuss it here in general terms.

For disk-based file systems, the NetWorker save format includes these fields, among

others: internal file identifier, file name, offset and size, and file attributes. These meta-

data fields precede the data of each saved file, and some of these fields are unfriendly

to deduplication. In particular, the internal file identifier is a monotonically increasing

sequence number, so adding a file to a directory shifts the sequence number of every file

that follows, and the blocks are no longer identical. Attributes such as timestamps can

thwart deduplication; we discuss this further in the context of tar in section 3.4.

We have designed a new Common Data Format (CDF), which separates data from

metadata. The metadata of all files is grouped together and stored in one section, where it

references file data stored in another section. This separation has a substantial impact on

deduplication, and as a result, EMC’s backup software products are migrating to this new

format.

We evaluated CDF by estimating the deduplication across the backups of 15 hosts

using content-defined chunks (8 KB average, 4 KB min, 12 KB max). Fingerprints are

checked using Bloom filters [20]. This dataset is a subset of the workstations dataset used

by Douglis et al. in an earlier study [63]; here we have fewer workstations and evaluate

deduplication ratios (defined as original size
deduplicated size ) only for the full backups. There were 15–25

backups per workstation, totalling up to about 420 GB. The more backups there are for a

2This section was mainly contributed by EMC collaborators. Thus, ‘we’ refers to EMC collaborators in
this section.



44

host, the higher its deduplication ratio is likely to be, since the same data may appear more

times. In addition, some hosts have remarkably high internal deduplication: the fraction of

data within even a single backup that is eliminated by deduplication with other data in the

same backup.

Figure 3.1 shows the deduplication within each of the datasets using the original Net-

Worker data format and the deduplication-friendly CDF format. Since both the number

of backups and the internal deduplication affect the overall deduplication ratio, these are

shown (colon-separated) as the x-axis labels for each host. (We ignore traditional LZ

compression, which is applied after deduplication.) The datasets are sorted in decreasing

order of deduplication.

The backups in the original format deduplicated rather poorly, with deduplication ratios

of 3.6–6.1× even with over 20 backups stored. Moving to the CDF format produces

deduplication ratios from 17.0–33.4×, with an average improvement (shown in red) of

4.9×. Many systems had aggregate deduplication better than simply finding the same data

once in each backup. We attribute this to these workstations being engineering worksta-

tions containing multiple copies of certain data such as source code, leading to internal

deduplication as high as 1.9×.

In addition we found that interhost duplication reported in the earlier study [63], using

the original NetWorker format, understated the available deduplication. For instance, the

most content in common across two hosts reported in that study was 74% of one host’s

chunks, but when considering only the data without the impact of metadata, it rose to 93%.

3.4 Application-level Postprocessing
Next, we look at tar as an example of an application that has a well-defined data format

that is 1) unfriendly to deduplication; and 2) in wide use for decades, and is thus hard to

change for compatibility reasons. For this class of applications, we propose postprocessing

as a way to de-interleave data and metadata, improving deduplication.

3.4.1 Tar

tar [64] was initially designed for archival storage on magnetic tapes, and the format

was optimized for sequential IO. A tar file is a sequence of entries, one per file, each

containing a file header and data blocks. The file header includes metadata for that file,
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including its path, ownership and modification time. The tar program works in 512-byte

blocks. Thus, each file entry consists of one header block3 and many data blocks. File head-

ers are placed immediately before the corresponding data blocks to avoid multiple “seeks”

when extracting a single file. An illustration of the tar format is presented in Figure 3.2.

While the tar format works well for tape backups, it is now also commonly used to

store and distribute source code, binaries, and disk-based backups. tar’s decision to place

metadata and data together in its file format, however, interacts poorly with deduplicating

storage. Specifically, we found that when storing tar files of multiple releases of source

code, we were only able to achieve deduplication ratios of about 2×; if we simply con-

catenated the files (thus throwing out the metadata), we were able to achieve deduplication

ratios of up to 18× (with an average chunk size of 8 KB). The tar format clearly interferes

with deduplication.

The underlying reason is that metadata changes more frequently than data blocks. By

3Multiple header blocks are used when the file path is too long to fit in a single header block.
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tar Header block 

Data blocks 
File 1 File 2 

Figure 3.2. The tar format.

mixing more frequently changing metadata with data blocks, the tar format unnecessarily

introduces many more unique chunks. An illustration of this problem is presented in

Figure 3.3.

3.4.2 Migratory Tar

We propose a new Migratory Tar format (mtar for short), in which we separate metadata

from data blocks by co-locating metadata blocks at the end of the mtar file. Changes in

metadata are localized and isolated from data blocks, enabling better deduplication of the

data.

An mtar file can be created by migrating a tar file. Specifically, we scan a tar file,

output all data blocks to the mtar file and all header blocks to a temporary file, and then

concatenate the two.4 We store the offset of the metadata block in the first block of a

mtar file for efficient access. To get back the original tar file, a restore operation reads the

first block, finds the first header block, reads all data blocks for that file starting from the

second block, and outputs it. This process is repeated for every file, resulting in re-creation

of the original tar file. This dynamic reorganization of the tar file is similar to Migratory

Compression (MC), discussed in Chapter 2. An illustration of the mtar format and the

migrate and restore operations are shown in Figure 3.4.

mtar works best when a tar file includes many small files, because metadata interleaves

with data more frequently. This is generally true for source code distributions, which we

evaluate. For tar files that include mostly large files, we expect less benefit from mtar.

4Putting metadata at the end of the mtar file allows us to make a single pass over the input tar file: the
amount of metadata and data cannot be known without reading the entire file, and appending the smaller
metadata to the larger data is more efficient than the reverse.



47

Version 1 

Header block 

Data blocks 

File 1 File 2 

Version 2 

Modified  
Header block 

Chunk1 Chunk2 Chunk3 

Chunk1 Chunk2 Chunk3 

Figure 3.3. In tar, changes in header blocks lead to many new unique chunks. Chunk1
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blocks.
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Figure 3.4. The tar and mtar formats and transformations between them.

We implemented mtar by extending GNU tar version 1.27.1 (the extension is available at

https://github.com/xinglin/mtar).

3.4.3 Evaluation

To evaluate mtar, we use source code distributions of the Linux kernel and 9 GNU

software packages from ftp://ftp.gnu.org/gnu/. For each package, we examine dedu-

plication for multiple released versions. The software packages are shown in Table 3.1.

For each dataset, we download compressed tar files and decompress them. We remove

https://github.com/xinglin/mtar
ftp://ftp.gnu.org/gnu/


48

Table 3.1. Datasets for evaluating mtar

Software Versions Size (MiB)
automake 64 304.72
bash 23 276.69
coreutils 37 1284.49
fdisk 13 21.61
gcc 68 20315.45
gdb 32 4004.77
glibc 43 3811.48
smalltalk 33 685.39
tar 21 219.86
linux 308 98444.58

padded blocks at the end of each tar file,5 then use our modified tar program to convert each

tar file into an mtar file. We compared deduplication for tar and mtar using the fs-hasher

tool, released by the File systems and Storage Lab at Stony Brook University [65]. We

use variable-size chunking, with 8 KB as the average chunk size (4 KB min, 16 KB max).

We also examined an average chunk size of 2 KB and 32 KB, with the same ratio for the

minimal and maximal chunk sizes. An MD5 hash value is generated for each chunk; note

that this is not collision-resistant, but for our analysis an occasional error is unimportant.

We compare bytes in unique chunks to bytes in all chunks.

Figure 3.5 shows that mtar improves deduplication ratios over tar by 1.1–5.3×, at the

8 KB average chunk size. Using a 2 KB average chunk size, mtar achieves 1.1–3.3×

improvements. For a 32 KB average chunk size, the improvements range from 1.1–6.2×.

These results show mtar improves deduplication significantly.

Next, we examined deduplication ratios for metadata blocks and data blocks separately.

For comparison, we also included deduplication ratios where we simply concatenated the

content of each file. The results are presented in Figure 3.6, for the average chunk size

of 8 KB. It is clear from the figure that metadata blocks have no duplication (with a

deduplication ratio of 1 for all datasets), while data blocks show high deduplication ratios.

More importantly, deduplication ratios for data blocks are close to the case where we

concatenate source files, showing that mtar’s improvement over tar comes from increased

5tar does IO in fixed multiples of blocks, called records. It pads the last few blocks to be a full record.
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Figure 3.5. Deduplication ratios for tar and mtar, with different average chunk sizes. (a)
2 KB. (b) 8 KB. (c) 32 KB. The number in red above each bar shows the improvement due
to mtar.
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deduplication among the data blocks.

It is interesting to note the effect on stored (post-deduplication) blocks: as mtar im-

proves the deduplication ratios for data blocks, the fraction of stored blocks that consist

of undeduplicatable metadata blocks increases significantly. For the Linux kernel, before

deduplication, 95.61% are data blocks and only 4.39% are metadata blocks. After dedupli-

cation, the unique data blocks become 5.75% (16.62× deduplication ratio), while we still

have the same metadata blocks. While the percentage of metadata blocks is small in the

original data, the weight becomes much more significant after deduplication: here, 43.3%

of post-deduplication storage comes from metadata ( 4.39
(4.39+5.75)). Future work should also

study how to store metadata efficiently.

3.5 Format-aware Deduplication
Formats that are not designed with deduplication in mind may needlessly degrade

deduplication effectiveness. If it is not possible to change the data format or postprocess

prior to writing it to storage, then the storage system needs to understand and address the

effects on the fly. Here we 6 describe two examples of format-aware deduplication in EMC

Data Domain appliances [4].

One of the earliest data types requiring special handling was the existence of “block

markers” intended for magnetic tapes. When using a disk-based system to emulate tape, the

incoming stream for a “virtual tape library” (VTL) device continues to periodically include

block markers with a special bit pattern. Since these block markers appear at fixed intervals,

a shift in content results in the marker appearing at a different point within a chunk, and the

chunk does not deduplicate. Worse, the block markers can also contain variable metadata,

even preventing deduplication of unmodified data. Data Domain addressed this by allowing

the system to scan for block markers while performing chunking and fingerprinting. If one

is identified, then it is removed from the content and stored in a separate location, thus the

fingerprints of the remaining data are unaffected. Upon a read, the marker is inserted at the

specified offset to restore the original data. Marker handling can have significant impact:

for example, one customer saw deduplication improve from 9.9× to 16.8× with proper

treatment of the interspersed metadata (a 70% improvement).

6Work presented in this section is also mainly contributed by EMC collaborators.
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Another data type requiring special handling arises in Oracle RMAN backups [62].

RMAN writes fixed-sized blocks, configurable between 2KB and 64KB, each containing

a block header and footer. Portions of the header and footer can change from backup to

backup even when the block data remains unchanged, due to internal Oracle data formats.

Additionally, RMAN may multiplex multiple data files together into a backup and the

ordering of multiplexing can change; this affects content-defined chunk creation. Without

special handling, therefore, deduplication would be degraded due to the modified metadata

in the header and footer and the possibility of a change to the order in which files were

multiplexed.

To solve the above problem, Data Domain modified the system to use block headers

to delineate Oracle blocks as the (fixed-size) unit of deduplication and to remove portions

of the block header and footer similar to tape marker handling: the variable portion is

stripped out and stored as a small inlined data unit within the file system metadata, and the

remaining content is fingerprinted. By doing this, deduplication becomes impervious to

multiplexing order or changes isolated to the header.

In experiments doing 6 backups of an Oracle database with a 5% change rate between

backups, we observed a 1.2–2× improvement in deduplication (4.5→5.28× without mul-

tiplexing and 2.48→5.07× with multiplexing). Thus, removing block headers restores the

deduplication to that expected from the underlying data.

While we see promising results by making deduplication systems aware of data formats,

this approach has a significant drawback, requiring deduplicating appliance manufacturers

to track a moving target. Changes to the format cause deduplication to drop, requiring

engineers to address the change. This results in a cycle of analysis, implementation, testing,

and finally a patch release—a process that can take substantial time and effort.

3.6 Related Work
Most work in the deduplication space has focused on improving write throughput (e.g.,

Data Domain [4], Guo, et al. [66], Sparse Indexing [22] and Silo [21]), with a significant

recent effort on improving restore performance [23, 25, 67]. Min et al. [24] proposed a

general-purpose framework DeFrame, which allowed us to explore a variety of parameters

(indexing structure, rewriting algorithm, etc.) in the design space within a single system.

Li et al. [9] also studied power consumption for backup storage systems. However, little
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work has been done to examine the impact of input data in deduplication. The closest

work to both RMAN block special handling and mtar is a poster proposing a tar-format

aware chunking algorithm [68]. To prevent the interference from metadata blocks, Sung et

al. partition every header block as a deduplication chunk, while in our mtar approach, we

group header blocks together and separate header blocks from data blocks. Their approach

requires changes in the chunking algorithm for existing deduplication systems to make

them aware of the tar format. mtar does not require any changes. Their chunking algorithm

produces small chunks in the tar block size (512 bytes). This could break minimal chunk

size requirements; in addition, small chunks dramatically increase deduplication system

metadata overhead [51].

mtar has similarity to MC (Chapter2): both reorganize data to improve space efficiency,

but mtar uses knowledge of the tar format to improve deduplication while MC rewrites

generic data to improve traditional compression.

3.7 Summary
We have examined the effect of metadata on deduplication effectiveness. When meta-

data changes frequently over time, it is essential to separate it from data that stays more

stable and would otherwise deduplicate. This separation can occur within the deduplication

process, but that leads to complexity as well as dependencies on both data formats and

deduplication environments. It can be done as a postprocessing step, which makes the

benefits more generic: any deduplication back-end can benefit from the conversion process,

but the postprocessor still must closely track the input format. Designing a data format to be

deduplication-friendly has the best benefits of all, as the application improves deduplication

in a platform-independent manner while isolating the storage system from the data format.



CHAPTER 4

USING DEDUPLICATING STORAGE FOR

EFFICIENT DISK IMAGE DEPLOYMENT

In Chapter 2 and Chapter 3, we presented two techniques, Migratory Compression and

separating metadata from data, to improve compression and deduplication. In this chapter,

we present a case study where we use deduplication to improve space efficiency in storing

disk images while at the same time maintaining high performance in image deployment1.

4.1 Overview
Many clouds and network testbeds use disk images to initialize local storage on their

compute devices. Large facilities must manage thousands or more images, requiring sig-

nificant amounts of storage. At the same time, to provide a good user experience, they must

be able to deploy those images quickly. Driven by our experience in operating the Emulab

site at the University of Utah—a long-lived and heavily-used testbed—we have created a

new service for efficiently storing and deploying disk images. This service exploits the

redundant data found in similar images, using deduplication to greatly reduce the amount

of physical storage required. In addition to space savings, our system also integrates with

an existing highly-optimized disk image deployment system, Frisbee, without significantly

increasing the time required to distribute and install images. In this chapter, we explain the

design of our system and discuss the trade-offs we made to strike a balance between effi-

cient storage and fast disk image deployment. We also propose a new chunking algorithm,

called AFC, which enables fixed-size chunking for deduplicating allocated disk sectors.

Experimental results show that our system reduces storage requirements by up to 3× while

imposing only a negligible runtime overhead on the end-to-end disk-deployment process.

1This work was published at TridentCom 2015 [69].
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4.2 Introduction
Disk images are widely used by modern, large-scale facilities to initialize the contents

of a local disk when bringing up compute instances. A disk image captures, at a block level,

the contents of a disk; this typically consists of an operating system and other software or

data. Each disk image ranges from several GBs to hundreds of GBs, and maintaining a

large catalog of images requires a large amount of storage space. On the other hand, for

physical and virtual machines that will be booted from a local disk, this image must be

transferred over the network from an image server and installed on the local disk before

booting can begin. Because it is on the critical path for provisioning and booting nodes,

the performance of image distribution and installation is critical. In this work, we consider

two interrelated needs of a large-scale disk image deployment system: keeping the storage

needs modest by using deduplication, and retaining high performance in image deployment

through careful integration into an existing high-performance image deployment system.

IaaS facilities generally make a large collection of disk images available to their users;

these images may contain a variety of operating systems and sets of standard software.

In addition, most allow users to create disk images of their own. The Amazon EC2

Web site [3], for example, lists more than 37,000 public Amazon Machine Images. The

Utah Emulab testbed (which we operate) manages more than 1,000 images—public and

private—for its users [70], and the DETER testbed manages more than 400 [71]. These

catalogs represent large amounts of data (21 TB for Emulab), and moreover, they grow

steadily over time [70]. A facility’s operators and users continually create new images,

while old images need to be retained to support existing users or the reproducibility of pre-

vious results. It becomes important to store these large numbers of disk images efficiently.

Data deduplication has been shown to be an efficient way to save disk space for storing

disk images. In a deduplicating storage system, large pieces of data—e.g., disk images—

are divided into blocks, and every unique block is stored exactly once. If two images

have a block in common, they share the single copy of that block. Because disk images

are typically derived from other images by making small changes, there is significant

duplication between an image and its “children.” Previous work has shown that dedu-

plication can greatly reduce the storage requirements of disk-image catalogs across virtual

machines [46, 60, 72] and across machines in a commercial environment [61].
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To support efficient and scalable image deployment, systems like Emulab have designed

sophisticated mechanisms. Frisbee [26], used in Emulab, includes the following features.

First, image data is compressed before it is stored, and it is transferred in compressed

format during image deployment. Second, Frisbee utilizes filesystem information to skip

unallocated disk sectors. This reduces the amount of data to store during image creation.

More importantly, less data needs to be transferred across the network and fewer disk writes

are needed during image installation. Third, the image file created by Frisbee is composed

of independently installable chunks. Each Frisbee chunk 2 can be requested and installed

independently and in any order. Last, Frisbee uses pipelining so that Frisbee chunks at

different stages in the pipeline can be processed in parallel. To get the highest possible

performance, the pipeline is designed so that the last stage (writing image data to disk) is

the bottleneck. This ensures that Frisbee can install the image at the full speed of the disk.

To be scalable, it implements its own application-level multicast protocol.

We present Venti-Frisbee (VF), our new image-deployment system that utilizes a dedu-

plicating storage system to reduce the amount of physical storage while maintaining Fris-

bee’s high performance in image deployment. We use Venti [19] as our deduplicating

storage system, but any similar system should work.

Several challenges need to be addressed in order to use Venti to store disk images for

Frisbee. Specifically, the integration should not break any of the features of Frisbee that

make it efficient for image deployment. We deal with the following challenges:

• Compression plays an important role in Frisbee, so we have to decide when to do

compression for the new system. Compressing images before storing them into Venti

leads to poor deduplication, while storing raw image data into Venti requires Frisbee

to compress it before distribution. To resolve this tension, we compress deduplication

blocks before storing them into Venti. In this way, we get good deduplication and

avoid compression during image deployment.

• Frisbee skips unallocated sectors and concatenates allocated sectors. This implies

that, in the face of sector allocation and deallocation, the positions of sectors in the

2We use “Frisbee chunks” to denote chunks for Frisbee images. ‘chunk’ and ‘block’ refers to the
deduplication unit and they are used interchangeably.
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output image data will not remain the same. Fixed-size chunking may thus become

less effective. We propose a new chunking algorithm, called Aligned Fixed-size

Chunking (AFC). It utilizes disk offsets to pad the start and the end of each contigu-

ous allocated sector range to ensure full blocks from each allocated range.

• To ensure that block retrieval from Venti does not become the new bottleneck in the

pipeline, we select the block size for deduplication carefully. We use a larger block

size (32 KB) in VF than those commonly used for backup and archival storage (a few

KBs).

• The new system also needs to support Frisbee’s ability to deploy an image in in-

dependently installable chunks. To support this feature, we precompute the Frisbee

chunk header metadata.

With all these design elements working together, VF gets similar image deployment per-

formance to unmodified Frisbee, while achieving significant space savings.

To summarize, this work makes three contributions. First, it presents the design of

VF, which uses a deduplicating storage system for an efficient image deployment system,

with goals to achieve efficient storage and image deployment simultaneously. Although

VF builds upon Frisbee, we believe that the principles of its design are broadly applicable

to IaaS image-deployment systems that need to combine efficient catalog storage with fast

and scalable image deployment. Second, it presents a new chunking algorithm, called

AFC. AFC enables us to retain the performance of fixed-size chunking for allocated disk

sectors while achieving much better deduplication. Third, it evaluates VF using data from

the Utah Emulab testbed. Experimental results show that VF achieves significant storage

savings while also achieving run-time performance nearly identical to that of Frisbee. For

a fixed space budget, a site of any size could store 3× more images for its users.

4.3 Foundation: Frisbee and Venti
VF is built on top of two existing systems: Frisbee [26], a scalable, high-performance

disk-deployment system, and Venti [19], a content-addressable deduplicating archival stor-

age system. In its original design, Frisbee stores disk images as files in a regular filesystem

on the Frisbee server; VF replaces this back-end storage with Venti. While this change is
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a conceptually simple one, Frisbee’s design principles for efficient image distribution have

four implications for VF. We discuss each implication in turn.

4.3.1 Frisbee

Frisbee is a disk-deployment system that was designed for clusters, datacenters, clouds,

and other environments in which identical disk images must be deployed to a large number

of servers in a short amount of time. The disk images can be distributed on demand to

target machines, where they fully replace the contents of the target disks.

Frisbee’s design principles are directly relevant to our new design with Venti, and so

we describe them here. While our discussion focuses on Frisbee, similar principles can

be found in other scalable high-performance disk-imaging systems. The overriding goal

of these design decisions is to install the disk image at full disk speed: the disk’s write

speed represents a bound on how quickly the image deployment can complete. As long as

the disk-deployment system can supply data fast enough to keep the target disk busy, disk

deployment proceeds at the maximum speed possible. VF aims to preserve this property.

• Utilize filesystem information. For maximum generality and robustness, Frisbee

works at the block level rather than the filesystem level. Utilizing information from

the filesystem, however, helps Frisbee to distinguish allocated disk sectors from

unallocated ones. Since filesystems typically have a large amount of unallocated

space (only about 10% is allocated for images in Emulab), this brings several benefits

to Frisbee. First, by storing only allocated sectors when creating a disk image, the

storage requirements for each disk image are reduced. Second, it reduces the network

bandwidth required to distribute the image to clients. Third, it reduces disk writes

during image installation, as unallocated sectors can be skipped. However, it does

mean that the sequence of disk sectors that goes into a Frisbee image is different from

that of another image that has only a single additional sector allocated.

Implication 1: VF must take block layout into account when deciding block bound-

aries for deduplication. If blocks are not aligned consistently between different

images, this could result in poor deduplication.

• Compress image data. The data read from allocated disk sectors is compressed

as it is added to the image file. As with filesystem-awareness, data compression
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reduces storage requirements and network bandwidth during image distribution. The

additional decompression step added during image installation does not introduce a

significant overhead: decompressing image data can be done twice as fast as writing

decompressed image data to disk, and the two tasks can be pipelined. On the other

hand, doing compression for image data is significantly slower than any stage in the

image deployment pipeline.

Implication 2: Image data should be compressed, but that compression must not be

done at image-deployment time.

• Independently installable Frisbee chunks. As illustrated in Figure 4.1, Frisbee

identifies ranges of contiguous allocated sectors, then compresses and concatenates

them to form fixed-size (1 MB) “Frisbee chunks.” Frisbee chunks are stored in the

“on the wire” format so that the Frisbee server can send them without any processing

overhead. They are also self-describing: all information needed to install a Frisbee

chunk (such as where the data goes on the target disk) is kept in its header. This

allows Frisbee chunks to be installed independently and in any order. When a new

client joins an image-deployment session, it can begin processing the Frisbee chunks

it receives immediately; it does not have to process the image sequentially starting

from the beginning. To scale to a large number of clients, Frisbee uses IP multicast.

Clients can join an in-progress distribution session at any time and the network

protocol is client-driven. Each client asks for Frisbee chunks it does not yet have,

and the Frisbee server multicasts these Frisbee chunks to all clients. This also enables

clients with different processing power and disk throughputs to participate at different

speeds. Retransmission for lost packets is handled at 1 KB granularity.

Implication 3: To retain Frisbee’s existing optimizations, VF must be able to con-

struct Frisbee chunks independently and in any order.

• Pipelining. The design of independently installable Frisbee chunks also enables

pipelining: the installation of one Frisbee chunk can be pipelined with the transmis-

sion and decompression of other Frisbee chunks. In Frisbee, there are two levels of

pipelining, shown in Figure 4.2. The image-deployment pipeline has three stages:

image data is read from the Frisbee server’s disks, transmitted on the network,



59

Header 

Header 

Source Disk Frisbee Image 

Allocated 
sectors 
Free 
sectors 

Chunk 

Figure 4.1. Frisbee identifies allocated disk sectors, compresses them, and concatenates
them into 1 MB Frisbee chunks.
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Figure 4.2. Frisbee’s two-level pipelining design and the design of VF. In the new design
of VF, the first stage (Read from FS) is replaced with Frisbee chunk construction from
Venti.
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and installed on the target disk. Image installation at the client machine is further

decomposed into three pipeline stages: receiving Frisbee chunks from the network,

decompressing the data in those Frisbee chunks, and writing the decompressed data

to the target disk. These stages are handled by separate threads so that they can

proceed in parallel. The pipeline is designed such that the last stage (writing to

disk) is the bottleneck of the pipeline overall. This results in a highly efficient

disk-deployment system that succeeds in writing at the full speed at the target disk

during image installation.

VF replaces the image read stage in this pipeline with a process that constructs Frisbee

chunks from data stored in Venti. To meet its performance goals, VF must not allow this

construction process to become longer than the other stages in the pipeline and thus become

the new bottleneck.

Implication 4: To get a high level of performance comparable to the original Frisbee,

the Frisbee chunk-construction stage from Venti in VF must be faster than the slowest stage

(writing to disk) in the image-deployment pipeline.

4.3.2 Venti

Our second building block is Venti, a deduplicating storage system by Quinlan and

Dorward [19], with enhancements from the Foundation [73] system. It has been used for

daily archival snapshots of filesystems in the Plan 9 operating system. We use the Venti

archival storage server. It provides a large data repository and exposes a simple object

interface for clients to read and write variable-size blocks. A block can be any size from

512 B–56 KB. When a block is written to Venti, it returns a handle to retrieve that block.

The handle includes the fingerprint (the SHA–1 hash of its content) for that block and it

uniquely identifies a data block within the storage system. Venti skips writes of duplicate

blocks and stores only unique ones. When compression is turned on, each unique block is

compressed and then written to disk.

Venti is publicly available and it served our purposes in developing the VF prototype.

As long as it is “fast enough” to not be a new bottleneck, VF should get similar high

performance as the original Frisbee system. The design space explored in this work and

its conclusions are independent of the particular deduplicating system used. Other dedupli-
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cating systems, including commercial ones such as the EMC Data Domain Deduplication

Storage System [4], could be used in place of Venti.

4.4 Design and Implementation
In this section, we lay out the design and implementation of VF, describing our de-

sign decisions relating to compression, chunking and selection of block sizes, and image

reconstruction.

4.4.1 Compression

Traditional data compression plays an important role in Frisbee, reducing the data

transfer across the network during image deployment; without it, network transfer would

become the bottleneck in the image deployment. In terms of disk savings, compression

results in a 3× reduction for the 430 Linux images we used in this study: it compresses

651 GB of allocated data to just 216 GB. In comparison, we found that deduplication gives

us a 3–5× reduction in space. In order to get further space reduction, we must use both

techniques together to get further improvement in storage—a deduplication scheme that

is designed without compression will not likely lead to a significant decrease in storage

requirements. However, the role of compression in the overall system must be carefully

designed so that it will not affect deduplication or image deployment performance signifi-

cantly. There are three possible alternative designs, shown in Figure 4.3.

Figure 4.3(a) presents the most straightforward approach to integrating Frisbee and

Venti: it depicts storing compressed Frisbee images directly into Venti, by first partitioning

them into blocks and then storing those blocks in Venti. This approach has the advantage

that, at image-deployment time, Frisbee chunk construction requires only concatenating

the data retrieved from Venti to reform chunks. However, it requires that deduplication

be done on compressed data. Compressed data does not deduplicate well. There are two

reasons. First, compressors have already tried to identify and replace repeated strings with

more compact encodings. Moreover, even small changes to a disk (e.g., the allocation of

a single sector) can produce a dramatically different compressed image compared to the

original, leading to poor deduplication across multiple disk images. The overall effect is

that this approach results in high image-deployment performance but little savings from

deduplication.
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Figure 4.3. Three possible compression schemes. (a) store compressed images. (b) store
uncompressed images. (c) store compressed blocks.

Figure 4.3(b) shows another option, which improves deduplication. It uses the Frisbee

image-creation tool to identify allocated ranges on the disk, breaks uncompressed data

from these ranges into blocks, and stores them in Venti. Venti fingerprints the blocks and

stores only unique ones. This approach achieves efficient deduplication, but it incurs major

overhead on the image-deployment path: data must now be compressed after retrieval and

before sending it on the wire. This scheme meets our storage-saving goals, but falls short

on high-performance image deployment.

A third approach, shown in Figure 4.3(c), performs compression immediately after

partitioning image data into blocks and stores compressed blocks in Venti. During image

deployment, compressed blocks are retrieved from Venti and concatenated to build Frisbee

chunks, ready for Frisbee to deploy. No compression is needed during image deployment.

This retains the full benefit of deduplication based on uncompressed data, since compress-

ing two identical blocks results in identical compressed blocks. This slightly decreases

the effectiveness of the compression itself (as compressors tend to operate better on larger

blocks), but we found that this effect is very small. Since this approach gives us both good

deduplication and high image-deployment performance, we adopted this approach in VF.

4.4.2 Chunking

When deciding how to deduplicate image data, we found two major design decisions to

consider.
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The first is the type of chunking algorithm to use. There are two types of chunking al-

gorithms: fixed-size [19] or variable-size [4,44,74]. Fixed-size chunking determines block

boundaries based on data offsets, while variable-size chunking is based on data content and

is more resistant to boundary shifts from data insertions and deletions. Fixed-size chunking

is straightforward and requires low computational overhead, while variable-size chunking

has considerably higher computational overhead (almost one order of magnitude slower, as

we will show later on in this section).

Second, we had to consider whether the source of data being deduplicated preserves the

position of existing data when it is modified by an allocation or deallocation, or whether

the data shifts due to these changes. “Stream-style” data, such as a file or a collection of

concatenated files (e.g., Linux tar files), does not preserve positions: adding or removing

data in a file shifts all data that follows the change. Variable-size chunking was designed

specifically for stream-style data, as it is driven by content and not position. “Disk-style”

data does preserve position: allocating or deallocating a sector does not cause other sectors

to shift positions. However, disk-style data is usually larger because it does not distinguish

between allocated and unallocated sectors. Thus, a larger amount of data needs to be

processed and this increases processing time.

As described earlier, Frisbee uses filesystem information to identify allocated sectors

and generates a data stream by concatenating only these sectors when creating a disk image.

Because of this, a Frisbee image itself resembles “stream-style” data, and the most obvious

choice would seem to be variable-size chunking. However, we found that we can get good

performance and deduplication using a new approach we have designed, called Aligned

Fixed-size Chunking (AFC), that allows us to do fixed-size chunking for allocated sectors.

The key idea is to combine disk offsets with padding: breaking up contiguous ranges of

allocated sectors in aligned units of the target blocksize using disk offsets, padding the first

and last as necessary to ensure full blocks. The result is identical to performing fixed-size

chunking on the disk itself after first zeroing unused sectors.

Figure 4.4 shows a comparison between using conventional (“baseline”) fixed-size

chunking and AFC. Image A is the base image. Image A’ is different from A, by freeing the

first two sectors (1 and 2) and allocating the next three (“a”, “b”, and “c”). Assume we are

partitioning this image into fixed-size blocks of four sectors each. Frisbee will concatenate
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Figure 4.4. Comparison between baseline fixed-size chunking and aligned fixed-size
chunking (AFC).

the second allocated range starting from the ninth sector with the first allocated range. Thus,

in the baseline fixed-size chunking, for Image A, the first block will contain [1,2,3,4] and

the second block will contain [5,6,7,8]. However, for image A’, the first block will contain

[a,b,c,3] and the second block will contain [4,5,6,7]. Sector allocations and deallocations

cause block boundary shifts resulting in no deduplication between the images.

In AFC, we zero-pad (“z”) at the start and the end of each range to ensure full blocks for

each range. Thus, for Image A, we will generate the following blocks: [1,2,z,z], [z,3,4,5],

and [6,7,8,z]. When applying this technique to the second image, we will get exactly

the same block boundaries for deduplication, yielding [z,z,a,b], [c,z,z,z], [z,3,4,5], and

[6,7,8,z]. Here the allocations and deallocation only affect the first two blocks, leaving the

last two and other following blocks identical.

We performed an experiment measuring the deduplication ratio (defined as original size
deduplicated size )

and runtime for these five chunking options, over the 430 Linux images used in our study.

We used fs-hasher (the same tool we used in mtar in autorefchap3), a chunking and hash

tool developed by Stony Brook University, with hash calculations disabled when measuring

the chunking time.

Figure 4.5 presents the results. Here we can see that the variable-size chunking options

(Variable-disk and Variable-stream) yield the best deduplication but perform poorly, with

chunking times about 10× longer than their corresponding fixed-size alternatives (Fixed-

disk and Fixed-stream). We also observe that chunking at the disk level (Variable-disk

and Fixed-disk) increases chunking time by more than 2× compared with chunking at the

stream level (Variable-stream and Fixed-stream). Finally, we note that AFC has perfor-
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Figure 4.5. Comparison of different chunking options in terms of deduplication and
runtime.

mance similar to fixed-size chunking at the stream level, while achieving the same level of

deduplication as fixed-size chunking at the disk level.

4.4.3 Block Size

Having decided the chunking algorithm to use, we must now decide on a particular

block size. Block size directly affects the efficiency of deduplication. Smaller sizes present

more opportunities to find duplication, but at the cost of a higher ratio of metadata to data.

(Smaller blocks mean that Venti must store more fingerprints.) Block size also affects the

image-construction performance: more accesses to the Venti store are needed with smaller

block sizes to fetch the same amount of data. This in turn can affect the performance of

image deployment. Thus we must strike a balance between the deduplication ratio and the

image-construction performance when choosing the block size.

The possible block sizes for Venti (and therefore VF) range from 512 B to 56 KB.

Because we are dealing primarily with filesystem data in our images, we consider the

lower bound to be 4 KB, which is the minimum block size used in many OS filesystem

implementations. In subsection 4.5.3, we compare five candidate block sizes from the

range 4 KB–48 KB, and find 32 KB to work best in practice.



66

4.4.4 Frisbee Chunk Construction

The previous sections have discussed the design space with respect to storing images

in Venti. We now turn to retrieving them, or “constructing” Frisbee images from the

deduplicated data. We focus on the construction of Frisbee chunks.

When a block is stored in Venti, Venti returns a “fingerprint” (a hash of the block’s

content) that can be used to retrieve it. Together, the list of fingerprints resulting from

storing the entire image constitutes a “recipe file” for the image. At the time the image is

created and stored, we precompute the mapping of Frisbee chunks to fingerprints. This is

done by running the same process that Frisbee runs to create a disk image. The difference

is, instead of storing compressed data blocks after the header of this Frisbee chunk, we

store fingerprint indexes for data blocks in the recipe file for this Frisbee chunk.

Chunkmaker is responsible for constructing a Frisbee chunk. When it receives a re-

quest for a Frisbee chunk, it looks into the corresponding chunk header to get fingerprint

indexes and then uses indexes to get fingerprints from the recipe file. After that, it retrieves

the corresponding blocks from Venti and concatenates them with the precomputed chunk

header to produce a complete Frisbee chunk. No complicated processing is required at

image construction time; it simply reads from the deduplicating store. Repeated requests

for the same Frisbee chunk are optimized by caching recently constructed Frisbee chunks.

4.4.5 Design Summary

The new image-deployment pipeline of the VF system is shown in the bottom half

of Figure 4.2. Though similar to the original pipeline, the whole system incorporates four

main considerations to make the new system as efficient as the original one for image

deployment while improving storage efficiency significantly. The considerations include

the informed choice of the deduplication block size, careful alignment of block boundaries,

precompression of data blocks, and precomputation of header metadata for Frisbee chunks.

4.5 Evaluation
We start our evaluation by providing data about the performance of the unmodified

Frisbee pipeline. These results support our claim that disk writes are the bottleneck and

provide a lower bound for the performance of image construction.

Following that, our evaluation of VF is presented in three parts. The first presents an
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empirical analysis of the three alternatives for performing compression and validates our

choice for VF. The second describes the experiments we performed to measure storage

savings and the image-construction time as a function of deduplication block size (men-

tioned in subsection 4.4.3). The third compares our VF system against the standard Emulab

Frisbee implementation (hereafter referred to as “baseline Frisbee”), measuring both their

storage demands and their image-deployment performance.

All experiments were performed on the Utah Emulab testbed [75]. The infrastructure

for our evaluation consists of one server machine, acting as both a Venti archival storage

system and a Frisbee image server, and 20 client machines all connected via dedicated

1 Gbps switched Ethernet. All machines are Dell PowerEdge R710s: each machine has a

single quad-core 2.4 GHz 64-bit Xeon processor, 12 GB RAM, and two 250 GB, 7200 RPM

Seagate SATA disks, each capable of sustained sequential read and write throughput of up

to 110 MB/s. The server has one additional 1.5 TB, 7200 RPM Western Digital Caviar

Black SATA disk hosting the Venti repository. This disk can perform sequential reads and

writes at rates up to 150 MB/s. All machines run a 64-bit version of the Ubuntu 10.04

operating system.

For disk images, we used a collection of 430 Linux images from the Utah Emulab

facility. Of these, 76 are “standard” images provided by the Emulab facility and 354

are custom images created by users. The chosen images were created between 2002 and

2011 and include images based on RedHat, Fedora, CentOS, and Ubuntu distributions.

Individual images range in size from 146 MB to 1,836 MB, with a total disk size of 217 GB.

For all end-to-end image deployments, both the baseline Frisbee server and VF are

configured to distribute data at a bandwidth of 500 Mbps. Factoring out network and

Frisbee protocol overheads, this translates to a maximum image data rate of 57.5 MB/s.

4.5.1 Frisbee Pipeline Measurements

One thesis of our work is that extracting an image from Venti and constructing a Frisbee

image needs to be fast, but ultimately just “fast enough” to not be the bottleneck for image

deployment. To support this, we empirically measured the stages of the Frisbee pipeline.

The results are shown in Table 4.1.3 The last three lines show the stages of the image-

3We did not include image read time in our measurements as the disk where Frisbee images are stored
can provide up to 150 MB/s read bandwidth and is unlikely to be a bottleneck.
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Table 4.1. Average throughput rate and execution time of each stage in the baseline Frisbee
pipeline. Throughput values are measured relative to the uncompressed data, except for
network transfer, which reflects compressed data (with uncompressed rate in parentheses).

Stage Throughput (MB/s) Time (sec)
image compress 30.29 53.97
network transfer 54.27 (165.27) 9.54
image decompress 160.87 9.96
disk write 71.07 22.03

deployment pipeline. (The first, compression, is performed at image-creation time.) The

network transfer rate of 54 MB/s appears to be the bottleneck, but this is a compressed

data rate. The effective (uncompressed) data rate delivered to subsequent stages is actually

165 MB/s.

These results confirm that the client disk (71 MB/s) is in fact the bottleneck during

image deployment. This is true even when the client is zeroing, rather than skipping

(seeking over), unused disk space—measured at 89 MB/s. Finally, the results provide a

lower bound for image-construction time (22 seconds). The result for image compression

further shows the expense of compression relative even to disk writes, highlighting the

necessity of keeping compression off of the image-deployment path.

4.5.2 The Impact of Compression

In Section 4.4.1 we presented three alternatives for where to do compression in VF (see

Figure 4.3) and argued that the third alternative (c) was best. Here we present the empirical

data to support our conclusion.

The expected drawback to the first alternative, storing compressed Frisbee chunks in

Venti (a), is poor deduplication. To measure this, we loaded the compressed Frisbee chunks

of 430 Frisbee images into a Venti store in 32 KB blocks. We observed a deduplication ratio

of only 1.11×, compared to 3.26× for VF, confirming our expectation.

The second alternative of storing uncompressed image data and letting Venti compress

it (b) introduces image compression in the deployment path. As we see in Table 4.1, image-

data compression is much slower than disk write and would make image construction

the new bottleneck. This would seriously impact the end-to-end performance of image

deployment. We want to emphasize that this conclusion holds, independently of what
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deduplication storage systems are used.

One concern with the approach we ultimately took for VF (c) is that we are compressing

data in smaller units (individual deduplication blocks), which results in a lower compres-

sion ratio and hence larger Frisbee images. Larger images in turn mean that more data must

be sent across the network. To investigate this issue, we measured the total size (number of

chunks) for 430 Linux images compressed both in baseline Frisbee and in VF. The result

was that images were indeed larger, but only by 6% (547.6 chunks per image versus 515.5).

4.5.3 The Space/Time Trade-off

As mentioned in Section 4.4.3, the choice of a block size for Venti storage can im-

pact not only the storage savings but also the time required to retrieve and construct an

image from Venti. To explore this trade-off, we populated five Venti repositories with all

Linux images using 4 KB, 8 KB, 16 KB, 32 KB, and 48 KB block sizes, respectively, and

measured the effect on deduplication and image-construction performance.

Table 4.2 summarizes the data deduplication achieved at the various block sizes. Over-

all, we achieve a 3–5× deduplication ratio. The results also show that the deduplication

ratio increases as we decrease the block size. This is not a surprising result, because

intuitively, smaller block sizes tend to increase opportunities for deduplication. Finally,

we note that a larger deduplication block size improves compression and thus leads to a

smaller image size (237.3 GB for the 48 KB block size versus 263.8 GB for 4 KB).

Whereas Table 4.2 shows just the image data stored in Venti, Table 4.3 shows the total

amount of storage required, including the image metadata. The table includes baseline

Frisbee ndz image files as the basis for computing storage savings. For baseline Frisbee,

metadata consists of the per-chunk headers that record the ranges present in each Frisbee

chunk; the “Total” column shows the total size of the ndz files for our 430-image collection.

For VF images, metadata includes the fingerprints (SHA–1 hashes) for retrieving data from

Venti and headers for Frisbee chunk construction, while “Total” is the sum of metadata size

and the size of the Venti repository. This table shows that we can reduce the total storage

space by more than 3×. That also means that we can store more disk images, given a fixed

storage space.

Based on Table 4.2 and Table 4.3, it is tempting to choose the smallest Venti block size

for VF in order to maximize storage savings. This is the decision one would make if only
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Table 4.2. The effect of different Venti block sizes for deduplicating disk data. These
storage figures are for disk data only, and do not account for image metadata.

Venti block Image Image data Dedup.
size (KB) data (GB) in Venti (GB) ratio (×)
4 263.795 50.310 5.24
8 253.305 60.025 4.22
16 245.665 67.943 3.62
32 239.892 73.617 3.26
48 237.313 76.173 3.12

Table 4.3. Total storage space required for storing images in different repository formats,
including metadata. ndz is for baseline Frisbee images stored in a filesystem.

Repository Total Metadata Data reduction
format (GB) (GB) vs. ndz (×)
ndz 233.391 0.912 –
Venti 4 KB 55.456 5.146 4.21
Venti 8 KB 63.085 3.060 3.70
Venti 16 KB 69.534 2.010 3.36
Venti 32 KB 75.103 1.485 3.11
Venti 48 KB 77.486 1.314 3.01
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considering storage savings. However, it is also important to consider the effect on image

construction.

To produce an overall image-construction time, we measured the times required to

construct individual Frisbee chunks. These times are summed, for every Frisbee chunk

in an image, to get the construction time for a single image. We then averaged the per-

image times to get an average image construction time for each block size. Because Venti

maintains a cache of recently accessed blocks, we further consider two cases: one in which

that cache is completely empty (“cold”) and one in which it is not (“hot”).

Figure 4.6 presents the results of this experiment. The stacked bars represent the

average time required to construct an image in both the cold and hot cases. The horizontal

line shows the average disk write time when installing an image at the target disk (from

Table 4.1). This time is the “goal” that we must beat in order to avoid becoming the

bottleneck in the image-deployment pipeline.

From this figure it is clear that increasing the block size significantly decreases the

image-construction overhead, especially for Venti with a cold cache. It is also clear that

we cannot use 4 KB and 8 KB as the block size because even with a hot cache, image-

construction time exceeds the time required to write the image to disk. Of the remaining

block sizes, it is tempting to use 48K since the image-construction time, even with a cold

cache, can match the disk-write time. However, for the purposes of this work, we chose to

use 32K, given that the majority of the time, the Venti cache will not be empty and we do

gain slightly better deduplication. We note that the optimal block size is, in large part, an

artifact of the specific performance characteristics of the deduplicating store. If we were

to use a storage system other than Venti, we would need to re-evaluate the exact optimal

block size, though the fundamental tradeoffs would remain the same.

4.5.4 Delivering a Large Catalog

The experiments described below compare VF to the baseline Frisbee system for de-

ploying images.

4.5.4.1 Storage Savings

To explore storage savings at scale, we loaded our corpus of 430 disk images into the

Venti repository in 32 KB blocks and measured the storage size of the repository after
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Figure 4.6. Average image-construction time for different Venti block sizes.

adding each image. We loaded the images into Venti in order of their creation times, oldest

to newest, to obtain a realistic sense of the growth rate for an image repository over time. As

we did this, we also tracked the storage that would be required by a conventional Emulab

image store—a directory of ndz image files—in which the images are added in the same

order.

The results show the growth of these two repositories is approximately linear in the

number of images, but the Venti repository grows much more slowly than the ndz file

repository. The absolute difference between the Venti storage and the file-based ndz storage

is ∼75 GB vs. ∼233 GB. With a fixed storage budget, VF can store ∼3× more disk

images. In the long run, VF may give more substantial savings. This is especially true

in environments where new images are most often derived from existing images.

4.5.4.2 End-to-End Image Deployment

To determine how well VF works in a production environment, we performed end-to-

end tests, deploying an image from the Frisbee server to one or more client machines using

both baseline Frisbee and VF with a 32 KB block size. Frisbee scales quite well with an

increasing number of clients [26]. We therefore ran tests to measure image deployment

with 1, 8, and 16 simultaneous clients. Running with simultaneous clients increases the

request load on the server and also tends to randomize and duplicate requests—situations

which the VF server must be able to handle efficiently to compete with baseline Frisbee.
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Our tests involved deploying an Ubuntu 10 image to one or more clients, then measuring

the time until the last client completes. For both baseline Frisbee and VF, the Frisbee

server was configured to distribute image data at a maximum throughput of 500 Mbps. The

Ubuntu image contained 1.4 GB of uncompressed filesystem data. The compressed ndz file

for baseline Frisbee is 394 chunks, while the image encoded by VF is 422 chunks. Each

test configuration used either baseline Frisbee or VF to send the image to a given number

of clients. We ran each configuration ten times, measuring the time required for all clients

to download and install the image.

Figure 4.7 summarizes our results. The bars in the figure show the average time to

deploy over the ten runs of each configuration. (The figure plots the standard deviation

of the time in each configuration, but these are so small that they are hardly visible.) The

results show that for 1, 8, or 16 clients, VF has just over a 2% increase in run time compared

to baseline Frisbee.

Another scenario that Frisbee was designed to handle well is efficient deployment of

images in the face of clients joining and leaving a session at different times. To ensure that

VF handled this case efficiently as well, we ran another test with 20 clients evenly divided

into five groups. Groups joined the Frisbee session at five-second intervals: the first group

joined at time zero, and the last after 20 seconds. We designed this experiment so that the

final group joins just before the first group is expected to finish, based on the run times from

the previous experiment. For baseline Frisbee and VF, we ran this experiment ten times.

Figure 4.8 shows the results. The times shown are the average elapsed time for each

group over the ten trials. Clients in all groups took a similar amount of time to finish. The

difference between baseline Frisbee and VF is always less than 3%. These results show

that VF performance is very close to that of baseline Frisbee.

4.5.4.3 Pipelined Distribution

The experiments in Section 4.5.4.2 show that VF suffered only a small performance

impact compared to baseline Frisbee. Yet the most significant source of additional overhead

in VF is the chunk-construction process (described in Section 4.5.3), which could take

significant time. To understand how this overhead is masked, we instrumented the end-to-

end distribution process and analyzed the steps involved.

Figure 4.9 presents the timeline for deploying the first 10 chunks of an image using
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both the baseline Frisbee and VF. Each vertical bar represents the time taken to deploy

a single chunk, with each pair of bars showing the time for the same chunk using both

Frisbee implementations. Within each bar, the time is divided into seven categories:

• Image construction: the time to read (baseline) or read and construct (VF) the

Frisbee chunk.

• Network transfer: the time to transfer the entire Frisbee chunk over the network,

measured from the server sending the first packet of the chunk to the client receiving

the final packet of the chunk.

• Decompress, decompress + disk write, and disk write: because Frisbee chunk

decompression is overlapped with writing decompressed data to the disk, we break

down time to show when only the decompressor is active, both are active, or only the

disk writer is active.
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• In decompress queue: the time between when the last packet of a Frisbee chunk is

received over the network and that chunk starts to be decompressed.

• In disk writer queue: the time between when the last piece of a Frisbee chunk is

decompressed and the first piece of that chunk starts to be written to disk. Where this

time is nonzero, it represents idle time in the processing of the chunk and indicates

that the disk is the bottleneck in the system.

Note that the clocks for the server and client machines were synchronized within one

millisecond.

For most Frisbee chunks sent by the baseline Frisbee (the long bars), one can see a rapid

read, transmission, and decompression followed by a long queue time before the chunk is

written to disk. The long queue time is due to earlier chunks still being written and clearly

illustrates that the disk is the bottleneck in chunk processing.

For chunks sent by VF, there is a construction cost (the “image construction” bar),

requiring more server processing per Frisbee chunk. This is reflected by the increasing gap

between the start of processing of each chunk relative to baseline Frisbee. However, this

cost is not reflected in the overall time for Frisbee chunk processing, as it is largely masked

by the client-side disk bottleneck. This is shown by the decreased queue time for each

chunk in VF. Thus, Frisbee chunks arrive at the client later in VF, but join a shorter write

queue once they arrive.

4.6 Discussion
The design of Frisbee and VF were influenced heavily by the design of the Emulab

system. In this section, we discuss how this affects the applicability of VF to other envi-

ronments and what changes might be required to increase its generality.

A major assumption in the design of Frisbee is that the complete resources of the client

machine are available during the image-deployment process. This ability to dedicate full

CPU, RAM, and network bandwidth resources to image deployment, coupled with the use

of commodity SATA hard drives, leads to the situation where the hard drive is clearly the

bottleneck. We believe this situation is not unique to Emulab and is true for many image

deployment systems, whether in a network testbed or a cloud infrastructure. Even using

today’s commodity Solid State Drives (SSDs) is not likely to move the bottleneck, since
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even a 1 Gbs network is capable of transmitting data more quickly, given a reasonable (3×)

compression ratio. However, continuing improvements in SSD performance, coupled with

increased prevalence of 10 Gbs Ethernet will increase pressure on the Frisbee server. The

read performance of Venti will need to be revisited along with other aspects of the server,

such as the system used to store disk images.

The collection of disk images we used in this study was created between 2002 and 2011

and covers a diverse assortment of Linux distributions, including RedHat, Fedora, CentOS

and Ubuntu. These represent a mix of system-provided and user-customized versions. The

provenance of this data set raises the question as to whether it is representative of today’s

images. If anything, we believe the images chosen for this study are more “conservative”

with respect to the potential for deduplication than are today’s images. This is largely

because, at least in Emulab, we have increasingly “incentivized” the use of custom images

through newer, more convenient interfaces. These include single-click snapshotting of

nodes and explicit versioning of images. Images created this way are more likely to be

small variations of previous versions, and therefore deduplicate even better.

A final question is whether it is feasible to apply techniques used in VF (and Frisbee) in

other environments, specifically OpenStack [76], one of the most popular Cloud software

platforms. The image service in OpenStack is provided by Glance [77], which provides

a RESTful API to add, retrieve, and query images. Glance provides a very basic image

distribution service: the image data is retrieved from Glance by HTTP requests and re-

sponses. We believe the set of techniques used in Frisbee can be applied to Glance. These

include transmission of image data in compressed format, use of multicast for scalable

image deployment, partitioning of image data into independently installable data units, and

the pipelining design in image deployment. We can also use data deduplication to store

virtual machine images.

4.7 Related Work
The work related to VF falls into four categories: analysis of duplication in disk images,

use of deduplicating storage for storing disk images, storage for virtual machines, and

scalable and efficient disk-image deployment.

Several studies have analyzed data across disk images and have found significant amounts

of duplicate data; this work supplies the basic motivation for VF. Jin and Miller [60] ana-
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lyzed deduplication for a set of 52 disk images, applying various strategies for partitioning

the images into fixed- and variable-length blocks. For a set of fourteen related images,

they showed that deduplication could reduce storage space demand by up to 78%. They

also showed that fixed-size chunking does slightly better than variable-size chunking at

small block sizes. Meyer and Bolosky [61] compared block-based and whole-file dedupli-

cation over a dataset collected from 850 Windows desktop PCs in production use. They

observed that there exists up to 72% and 83% duplicate data for file-based and block-based

deduplication. Jayaram et al. [72] analyzed a set of 525 virtual machine images from their

production cloud datacenter and found more than 30% of blocks appear at least twice.

Smaldone et al. [46] and Lin et al. [37] analyzed virtual machine backup files and found

there exists a significant amount of duplicate data. Atkinson et al. [70] found that disk

images derived from a “base” image commonly share 60–80% of blocks with their base

image.

Others have designed storage systems with deduplication to store disk images. Both

the Mirage image format (MIF) [78] and the Marvin Image Store (MIS) [79] utilize file-

based deduplication to improve storage efficiency. However, these stores optimize only for

storage size, and are not designed specifically for scalable and efficient image deployment.

Liguori et al. [80] used Venti to host live disk images for running virtual machines. Since

most reads and writes inside the client virtual machine must communicate over the network

with the Venti server, performance is poor and does not scale well. On contrast, VF installs

an image on the client’s local disk, giving consistent, high performance.

Some storage systems, like Parallax [81], Capo [82] and Lithium [83], were built for

running virtual machines. With Parallax, Meyer et al. proposed to run a storage virtual

machine at each host, to provide access to a shared block device. This approach will not

scale well because it relies on centralized, shared storage. To improve scalability, Capo uses

the disk at each host machine as the persistent cache for disk images. However, it requires

a special block device in the hypervisor layer. I/O performance depends on whether an I/O

request hits in the cache, and it becomes less consistent and predictable overall. Lithium is

a distributed storage system utilizing local disks at each host. It uses peer-to-peer sharing

to replicate per-VM storage volumes. The problem with some of these approaches is that

they only work for running virtual machines; they are not applicable when users need
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physical machines (which testbed environments like Emulab must support). Others require

running storage services in the background, which could interfere with user applications.

Our approach works for both virtual machines and physical machines, and no background

storage service is needed.

Other related work looks at scalable image deployment. VMTorrent [84] and VMThun-

der [85] use peer-to-peer (P2P) sharing for image deployment. To further improve the

opportunity to share data blocks, VDN [86] and Liquid [87] use deduplication in P2P

sharing by using block IDs based on block content, rather than the combination of image

name and offset. P2P imaging is unsuitable for testbed environments, as machines are

unavailable to participate most of the time: running an intensive data-transfer application

would risk interfering with active experiments. Instead, Frisbee [26] uses an application-

level multicast protocol for scalable image deployment.

The work most similar to VF is LiveDFS [88], which examined both the deduplication

effect and image-deployment performance. However, LiveDFS scales poorly: distribution

time increases linearly with the number of virtual machine instances, whereas VF inherits

Frisbee’s flat scaling [26]. LiveDFS also did not explore the trade-off between disk-space

saving and image-deployment performance, using a single block size for experiments. VF

explores the role that compression plays in saving disk space, considering several options

for how to include it. We also evaluated various block sizes to strike a balance between

storage savings and image-deployment performance.

Versioning is another technique to store multiversion data efficiently, where the new

version is stored as a delta (the difference between the new version and the original version),

with a reference to the original version. A common use case is to implement efficient

snapshots (e.g., LVM [89], WAFL [90], and Parallax [81]). While versioning might be

effective to reduce storage space, it has several limitations. First, the complexity and the

execution time to construct the latest version increases linearly as the number of versions

increases. This is undesirable, since the latest version is likely to be used more frequently

and should get the best performance. Second, the comparison in versioning is only between

two versions, while deduplication can be done globally across all stored disk images and

within a single image. We leave a full comparison between versioning and deduplication

as future work.



80

Pullakandam [91] made an early attempt at using Venti to store disk images for Frisbee.

It was not optimized in two ways. First, the earlier design stored raw image data into

Venti, and compression of image data was done before image distribution (Approach (b),

as shown in 4.3(b)). At a block size of 32 KB, the image construction time in the earlier

work took 80 seconds, while it only took 10 seconds with a warm cache in VF. Given that

it took only 22 seconds to deploy an image, image construction in the earlier work clearly

becomes a significant bottleneck. Second, the chunking algorithm used in the earlier work

was fixed-size chunking at the disk-level, while we propose a new chunking algorithm

(AFC), achieving a similar deduplication effect with a shorter runtime.

4.8 Summary
This chapter has presented the design and evaluation of a system that couples dedupli-

cating storage with a high-performance disk-deployment system. Integrating these com-

ponents effectively requires an end-to-end view; the use of deduplicating storage in our

complete VF system balances the goals of storage reduction and fast image transmission.

The principles and trade-offs in the design of VF, which balances these goals, are the

primary contributions of this work. By optimizing the storage for deduplicating data in

this context and architecting an efficient pipeline, VF produces substantial image-storage

savings while incurring very modest costs in the time required for image deployment.

These properties are valuable for “infrastructure as a service” (IaaS) facilities, including

both clouds and network testbeds, that must manage large catalogs of disk images and

deploy images quickly to produce a good user experience.



CHAPTER 5

DIFFERENTIAL IO SCHEDULING FOR

REPLICATING CLOUD STORAGE

Previous chapters have shown that similarity in content can be used to improve space

efficiency. The same principle can also be applied in IO scheduling: specifically, we

can schedule IO requests based on their characteristics, achieving predictable, consistent

performance with high disk utilization. We present one such example Differential IO

Scheduling in this chapter1.

5.1 Overview
A common problem with disk-based cloud storage services is that performance can

vary greatly and become highly unpredictable and inefficient in a multitenant environment.

A fundamental reason for this is interference between workloads co-located on the same

physical disk. We observe that different IO patterns interfere with each other significantly.

As we introduce more random workloads into a system, the bandwidth received by sequen-

tial workloads degrades significantly. To deal with this problem, we propose Differential

IO Scheduling to improve predictability and efficiency for read-intensive workloads. The

key observation is that replication is commonly used for cloud storage systems, and thus

we can dedicate each disk for serving only one type of read requests. This separation

prevents interference between random requests and sequential ones, leading to consistent

and efficient performance for sequential workloads. A prototype implementation based on

Ceph shows the new scheduling algorithm provides more predictable and efficient perfor-

mance for sequential workloads. It achieves a consistent aggregate bandwidth of 120 MB/s

for 20 sequential workloads, regardless how many random read workloads are running

concurrently. On the other hand, in the standard Ceph, the aggregate bandwidth drops from

1This work was published at HotStorage in 2012 [92].
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240 MB/s when run alone, to only 18.54 MB/s when run concurrently with 40 random

workloads.

5.2 Introduction
Infrastructure-as-a-Service (IaaS) cloud computing services offer virtual machines (VMs),

that provide elastic computing, storage, and network resources. Exemplified by Amazon

EC2 [93] and OpenStack [76], IaaS clouds are attractive because they are cost-effective

and simple to manage.

There are several types of storage service abstractions in the cloud, including object

stores (e.g., Amazon S3), block stores (e.g., Amazon EBS), and databases (e.g., Amazon

RDS, Google Cloud SQL, and Microsoft SQL Azure). Among these options, block-level

storage provides the most flexibility: because a block device is attached as a conventional

disk to a VM, applications do not need to be modified to “port” them to the cloud. A block

device can be mapped to a partition of a local attached hard drive, a logical volume from a

Storage Area Network (SAN), or a customized driver that leverages a storage cluster. For

example, Amazon EBS not only provides block storage, but also offers high reliability by

performing replication in the storage cluster.

However, because of their multitenant nature, a large number of diverse workloads are

running concurrently by different tenants, leading to competition for resources and inter-

ference among different workloads. The performance experienced by end-users in cloud

storage environments varies unpredictably, sometimes more than an order of magnitude,

compared with a dedicated cluster [33, 34]. For example, Schad et al. [34] observed that

the performance of CPU, memory speed, I/O, and network bandwidth in Amazon EC2

is at least an order of magnitude less stable than a physical cluster. In another report

Shripad and Radu pointed out that at different times of day, the performance of Amazon

EBS and S3 also varied significantly [94]. Such performance fluctuations are a natural

consequence of sharing servers, networks, and storage among many different users. For

block storage, when two or more tenants share the same physical disk, they compete for

the disk head position for I/O accesses. For instance, random workloads from one tenant

can destructively interfere with sequential workloads of another tenant [35], and reads

may conflict with writes [36]. Such interference makes the performance experienced by

applications highly unpredictable. Attackers may also use the performance anomaly as a
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covert channel between VMs to perform co-residence checks [95].

We are targeting a cloud environment under heavy use by a large number of tenants

running a diverse set of workloads. The workload may be database queries made of many

small random reads, or MapReduce [96] jobs with mostly sequential IOs and some random

IOs. In this work, we focus on solving one of the interferences that could happen in such

environments: the interference between random and sequential read workloads. When

more random workloads are introduced into a system, more seeks are required from the

disk, and it becomes much less efficient in serving sequential workloads. Ideally, we want

to build a system that stays at a high utilization for sequential workloads, even when there

are a large number of random workloads running concurrently.

For better reliability, replication is commonly used in cloud storage systems, such as

Google File System [31] and Ceph [32]. We propose to take advantage of replication to

isolate the interference between random and sequential read workloads by dedicating each

disk to serve only one type of workloads. To demonstrate the problem, we first present

interference analysis between random and sequential workloads for both a single hard disk

drive and Ceph, a popular distributed storage system. Then, we present Differential IO

Scheduling (DIOS for short): it detects types of read requests and intelligently schedules

read operations to different replica disks, to avoid co-locating random and sequential reads

and thus the unpredictable interference between these types of workloads. We present

an evaluation of our prototype implementation based on Ceph, validating our hypothesis

that DIOS provides a more predictable and efficient performance (up to 6× better) for

sequential workloads, with a reasonable degradation in performance (within 50%) for

random workloads as the tradeoff.

5.3 Interference Analysis
To motivate the design of DIOS, we first present undesirable interference between

sequential and random read workloads when they are concurrently executed. We use the

FIO tool [97] to generate workloads directly at the block storage level. For higher-level ab-

stractions, we use the TPC-H benchmark [98] to simulate real-world application scenarios.

Specifically, our objective is to evaluate the performance interference between random and

sequential read workloads. We present the study of the interference for a single physical

disk and Ceph, on which our prototype implementation is based.
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5.3.1 Benchmark with FIO

We use FIO to investigate the performance interference between random read (RR) and

sequential read (SR) workloads. Each workload was set to run for 120 seconds, and direct

I/O was used to bypass operating system caches and examine disk behavior directly. We

measured throughput of random workloads in terms of I/O operations per second (IOPS),

and used bandwidth (MB/s) to measure sequential workloads2. For the single disk tests,

we used a TOSHIBA 10K RPM 600 GB SCSI disk (product ID MBF2600RC). This disk

is attached to a RAID controller but is exported to the operating system directly as a single

SCSI target. The controller is a MegaRAID SAS 2008 [Falcon] from LSI Logic / Symbios

Logic. A different 10 GB physical region of the disk is used for each workload.

• Co-locating same type of workloads. Our first set of experiments investigated

the interference between workloads of the same type. We varied the number of

concurrent workloads from 1 to 16, doubling it at each step. The default I/O size

is 8 KB for random workloads and 64 KB for sequential workloads. We kept 32

outstanding I/Os by default. The throughput for each workload is measured and we

present the results in Figure 5.1.

The figures show clearly that as we co-locate same type of workloads, each workload

gets similar throughput, implying a fair sharing among them. The performance is also

predictable. Hence, we have our first observation.

Observation 1: When co-locating workloads with the same I/O request characteris-

tics, each workload gets a fair share in performance and system resources.

• Co-locating random and sequential read workloads. Next, we examine effects

when we co-locate RR workloads with sequential ones. The same settings for RR

and SR workloads were used as the previous experiment. In the baseline, we keep

adding more SR workloads to the disk until we reach a total of 17 SR workloads,

adding one SR workload at a time. For comparison, we run a single SR workload

and keep adding one RR workload at each step until 16 RR workloads are added.

2For random workloads, IOPS shows the seek interval directly while for sequential workloads, the
throughput is not sensitive to seeks.
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Figure 5.1. Co-locating same type of workloads. (a) random read. (b) sequential read.

We report aggregated bandwidths of SR workloads. The results are presented in

Figure 5.2(a).

The figure shows that the bandwidth the disk can deliver dropped rapidly as we

added the first few random workloads (∼10 MB/s when four RR workloads were

introduced) and became extremely small by the end. On the other hand, the disk

sustained to deliver ∼100 MB/s when co-locating sequential workloads, even when

we added 16 sequential workloads.

We also did a similar experiment with Ceph. The Ceph cluster was configured

with 12 disks, with a replication factor of 2. We ran the same set of experiments,

except that they were scaled up: in the baseline, we experimented with up to 200 SR

workloads, by adding 2 at each step. For comparison, we ran 20 SR workloads and

added 2 RR workloads at each step until we had a total of 200 workloads. The result

is presented in 5.2(b). The first green triangle from the left represents the aggregated

bandwidth for 20 SRs when we added the first 2 RR workloads, with the second

triangle standing for the aggregated bandwidth for SR workloads when 4 RRs were

added, and the same applies for the rest. We see a similar trend that, as we introduce

more random workloads into the system, bandwidths for sequential workloads drop

significantly. From these experiment, we know the following.

Observation 2: RR workloads can destructively impact a disk’s effective utilization.

We should try to avoid co-locating random workloads with sequential workloads, in

order to get high disk utilization.
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Figure 5.2. Co-locating random read workloads with sequential read workloads, for a disk
or Ceph. (a) disk. (b) Ceph.

5.3.2 Higher-level experiments

Our previous results demonstrate the interference between workloads at the block stor-

age level; we now show that such interference propagates up to the application layer. To

measure this effect, we used the query 7 (dominated by random IOs) provided with TPC-H

as a random workload, and a scan of the lineitem table as a sequential workload. We

populated two mysql databases with the same dataset at the scale factor of 1. The data of

these two databases is stored in two partitions in the same disk. We ran these two workloads

against each database, either in isolation or concurrently. When both workloads are run

concurrently, we re-start the workload that finishes earlier (with another mysql database)

to ensure that the other workload is interfered across its whole execution. We compare the

total execution time for each workload, averaged across three runs.

Figure 5.3 presents the results. Running the two workloads concurrently on the same

disk increases the runtime of the random workload by only 16%: when run by itself,

it takes 113 seconds, and when co-located with the sequential workload, it takes 131

seconds. However, co-location increases the runtime of the sequential workload much more

substantially, from 73 seconds to 172, an increase of 135%. This clearly demonstrates that

random workloads do interfere with sequential workloads (destructively) for real-world

applications.

We also scaled this experiment up to using 20 scans with 20 queries and ran it with

the Ceph cluster. The increase in runtime for scan workloads is 86%, from an average of
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Figure 5.3. Performance interference in TPC-H, running with a physical disk

187 seconds to an average of 348 seconds, while for query workloads, it is a 94% increase,

from 562 seconds to 1088 seconds. In this case, we did not see a destructive impact from

co-locating these two types of workloads. This is likely because we have not generated

enough load for the system, and disk IO might not be a significant bottleneck for this

workload: each query was only issuing 1 or 2 outstanding IOs, while we have 6 disks and

each IO request needs to traverse the IO stack at the client machine, transmitted across the

network, served by the IO stack at the server machine, and finally transmitted back to the

client and returned to the application. Running TPC-H queries with mysql databases at

this scale does not seem to be the suitable workload for demonstrating our point. In the

following evaluations, we focus on FIO and leave exploration of a larger scale of TPC-H

queries and other high-level workloads for Ceph as future work.

5.3.3 Discussion

We now discuss effective disk utilization and our rationale for optimizing for sequential

workloads. For serving an IO request, the disk needs to seek to the correct cylinder, wait

for the right sectors to be rotated under the disk read/write header, and finally transfer data.

Seeking and rotation are necessary but do not effectively contribute to data transfer. So, one

metric to measure the effective utilization of a disk is the ratio of time when it is transferring

data to the total time. The formal definition of effective disk utilization is as follows (T 1:

transfer time, T 2: seek time, T 3: rotation time, R: disk transfer rate).

disk util = T 1
T 1+T 2+T 3
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Bandwidth = T 1∗R
T 1+T 2+T 3 = T 1

T 1+T 2+T 3 ∗R = disk util ∗R

Measuring disk transfer time and seek time directly is challenging. A reasonable metric

to use is the disk bandwidth, since there is a linear relation between disk utilization and

bandwidth, as shown by the definitions above.

By definition, sequential workloads are using a disk at high utilization, since only a

single seek is needed for the first read request, and after that, the disk can start to transfer

data at its full capability. On the other hand, random workloads lead to poor disk utilization,

since for almost every read request, the disk needs to do a seek and wait for the rotation. As

we can see from previous analysis, introducing random read workloads has a destructive

impact on bandwidths for sequential workloads. To maintain high disk utilization, we

should isolate these two types of workloads to prevent the interference. By optimizing the

bandwidths sequential workloads receive, we are optimizing the disk bandwidth and thus

utilization.

5.4 Differential IO Scheduling
In designing a cloud storage system offering block-level storage abstraction, we have

the following assumptions. First, the system is built from many inexpensive commodity

components that have a failure rate high enough that replication is necessary to offer

high availability and durability. Second, all nodes in the cloud are within a single data

center, interconnected by high speed Ethernet with sufficient bisection bandwidth that this

is not a major concern. Third, no assumption is made on the storage workload from

VMs. The workload may be database queries made of many small random reads, or

map-reduce jobs with mostly sequential IOs and some random IOs. A particular VM may

change its workload characteristics over time. Finally, given the large user base and diverse

workloads, we assume new random and sequential workloads constantly come into the

system and at any given time, the system needs to serve both types of workloads.

The basic idea in DIOS is to partition the data nodes in a storage cluster into replication

groups, each replica within a replication group serving a particular type of read requests3:

each disk serves either random read requests or sequential read requests, but not both

3We do not deal with write requests in this work and leave it as future work.
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simultaneously. Since we isolate random read requests from sequential ones, data nodes

serving sequential workloads remain high disk utilization, leading to good and predictable

performance for sequential workloads. Since we partition the cluster with some data nodes

reserved for serving only sequential workloads, the performance for random workloads

may not be as good as the baseline where all data nodes can be used for serving random

read requests.

Figure 5.4 presents the overall architecture for a cloud storage system, providing block-

level abstraction with DIOS. Data nodes are partitioned into replication groups of 2 data

nodes each, assuming a replication factor of 2. The cloud storage system exports a block-

level interface for upper-layer applications, and the block device driver is running at each

compute node. DIOS is implemented within the block device driver. For each write, it

is stored in a replication group by replicating the write request at each data node. When

the driver receives a read IO request from an application, it detects the type of this request

and schedules this request based on its type: if it is a random read request, it is sent to the

first data node. Otherwise, the read request is sent to the second data node. The data is

returned by the corresponding data node, after it receives the read request. Note that this

scheduling algorithm can be extended for other replication factors as well. For example,

given a replication factor of 3, we could reserve the first two to serve random requests and

the last for serving sequential ones.

The architecture of Ceph [32] resembles the overall architecture we have designed for

DIOS, and thus we modified Ceph by adding the support for DIOS.

5.4.1 Ceph Background

Ceph is a unified distributed storage system that provides storage service with three

abstractions: files, block devices, and objects. All these abstractions are built on a common

subsystem: its object store, called RADOS [99]. RADOS implements the primary-copy

replication scheme to improve the reliability of objects stored in the system. RADOS is

also scalable in that there is no centralized metadata service for managing the location of a

data block. Instead, the topology map of the storage cluster is used at each node, and this

map is also used to determine the location of a data block independently. Whenever there

are new nodes added into the cluster or faulty nodes removed from the cluster, the topology

map is updated. Data is redistributed/replicated automatically to reach a predefined level
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of redundancy.

Each data node in Ceph is called an Object Storage Device (OSD). A set of OSDs

is grouped into a placement group (PG, similar to a replication group, as we discussed

previously), within which objects are replicated. An OSD can be a member in multiple

PGs, in which the role of that OSD may be different: in one PG, an OSD might be the

primary replica for an object, while in another PG, it might be the second replica or the

third. For an object, it is first mapped to a placement group, mainly based on its name.

Then the placement group is mapped to an order list of r distinct OSDs, using a pseudo-

random replica distribution algorithm, called CRUSH [100]. For a replication factor of 3,

the mapping from objects to PGs and PGs to OSDs are presented in Figure 5.5.

The first replica in a placement group is called the primary replica. In Ceph, a read

request is always sent to and served by the primary replica. Since each data node can be

the primary replica in some placement groups, they can receive both types of read requests,

leading to poor disk utilization. For a write request, it is sent to the primary replica and the

primary replica forwards this write request to other replicas in the same placement group

for replication.

To support DIOS in Ceph, we extended CRUSH by adding a new replica placement

algorithm called direct-map and changed the driver so that it schedules read requests to
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Figure 5.5. The mapping among objects, placement groups (PGs), and object storage
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different replicas based on request bytes. We discuss each in turn.

5.4.2 Deterministic Replica Placement

At a high level, CRUSH works as follows. The cluster topology map is organized in

a hierarchy: the root node stands for the cluster, which contains C server cabinets. Each

cabinet in turn contains S disk shelves and each shelf contains D storage devices. When

CRUSH is asked to find r distinct storage devices, it starts the iteration from the root node:

find r storage device from this root node. Then, it finds this node contains cabinets, instead

of storage devices. It continues the iteration for each cabinet contained in that root node:

find r/C distinct storage devices randomly from this cabinet. Shelves are found to be

contained in that cabinet. Then, for each shelf, it finally finds storage devices and returns

r/C/S distinct ordered storage devices randomly. Finally, an ordered list of r replicas are

aggregated at the root node. This is simplified in that we assume equal weights for each

cabinet and shelf. Depending on the cluster’s configuration, we could assign weights for

cabinets and shelves appropriately.

For load-balancing, CRUSH randomly selects some number of items at each level.

As a result, a data node could appear as any replica in a placement group. However, in

DIOS, each data node is supposed to have one designated position in a placement group.

To achieve that determinism, we modified CRUSH to support a new replica selection

algorithm, which we called direct-map. It works as following: to find m items from a set

with n items, it first sorts and partitions n items into groups of m items. Then it randomly

picks one group and returns all m items in order.
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direct-map is a general replica selection algorithm that is implemented within the CRUSH

framework and could be applied at any level. But to support DIOS, we have to use it at

the root level. For levels below the root node, standard random replica selection algorithms

can be used. This is sufficient for our environment since there are only two levels in our

environment: the cluster contains data nodes directly. We apply direct-map at the root level

and it returns a pair of OSDs (e.g., {OSD1, OSD2} or {OSD3, OSD4}) for a placement

group.

5.4.3 Workload Type Detection

We also need a way to detect sequential and random workloads. We implemented

the most intuitive one: when the logical block address of a request is contiguous with

the previous one, the request is treated as sequential. To deal with the interleaves from

multiple access streams, we use a similar approach as Gulati et al. [35] took in calculating

seek distance. Instead of remembering only one previous request, we remember an array

of n noncontiguous requests (precisely, we remember n next expected offsets. The value of

n is configurable; we used 16 for our experiments). When the current request is contiguous

to one of expected offsets, the value for that expected offset is updated based on the current

request. Otherwise, we calculate the expected offset based on this request and add this to

the array (replace an existing one in round robin when the array is full).

5.5 Evaluation
Table 5.1 shows the configuration of a single d820 server we used in our experiments.

These machines are hosted in the Emulab network testbed, hosted by the FLUX research

group at the University of Utah. Each disk can provide 154 MB/s for 64 KB sequential

reads and 668 IOPS for 8 KB random reads at an iodepth of 32. Two d820 machines are

used as data nodes and another machine is used as the client machine to generate workloads.

At each data node, we use the first 3 as data disks and the remaining 3 as journal disks.4 In

total, we have 6 data disks. We used ext4 as the file system for each disk. We implemented

our direct-map replica selection algorithm in Ceph at version 0.56.3 (the second stable

release - Bobtail). The sequential detection algorithm was implemented in the RADOS

4Ceph implements journaling for consistency.
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Table 5.1. The configuration of a d820 machine

Processors 4 × 2.2 GHz 8-Core Intel(R) Xeon(R) E5-4620
Memory 128 GB DDR3 RAM
Disk 6× 10K RPM TOSHIBA MBF2600RC SCSI disks

block driver included in the Linux kernel 3.2.6.

To demonstrate the benefit of DIOS, we ran 20 sequential read workloads, with 10, 20,

and 40 random read workloads respectively. We reported aggregated bandwidths for 20

sequential read workloads and aggregated IOPSs for random workloads. The workloads

are simulated with FIO, and IO requests are issued to a 2.6 GB file (the data file of the

mysql database, for TPC-H at scale of 1). The IO size is 64 KB for SR and 8 KB for RR.

We maintain 32 outstanding IOs. The results are presented in Figure 5.6.

Figure 5.6(a) shows that in the baseline Ceph, aggregated bandwidths for sequential

workloads dropped significantly, as we added more random workloads into the system:

it started with an aggregated bandwidth of 240 MB/s when there are no random work-

loads running concurrently and dropped to be only 18.54 MB/s when 40 RRs were added.

Bandwidths for sequential workloads were impacted significantly by co-located random

workloads. On the other hand, since we partition the disks among random and sequential

workloads in DIOS, such interference is prevented, and sequential workloads received

consistent bandwidths, with an aggregated bandwidth stable at about 120 MB/s. Sequential

workloads got higher bandwidths in DIOS than the baseline Ceph when there were 10, 20,

or 40 random workloads running concurrently (e.g., it is more than 6× higher than the

baseline Ceph at 40 RRs). This is the type of workload mixes that DIOS is designed for

and from the experiment, we did see that DIOS provides consistent and high performance

for sequential workloads.

Figure 5.6(b) shows the aggregated IOPS for random workloads. With DIOS, IOPSs for

random workloads were lower than the baseline. This is expected, since we now only have

half of the disks serving random workloads. When 40 random workloads were running

concurrently, there was a drop in the aggregate IOPS in both the baseline Ceph and Ceph

with DIOS. We believe this is because when 40 random workloads are introduced into the

system, disks need to serve random IOs across a larger area, leading to longer seek times
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Figure 5.6. Comparison between the baseline Ceph and Ceph with DIOS. In (a), we
showed aggregated bandwidths of 20 sequential workloads when they were run concur-
rently with 0, 10, 20, or 40 random workloads respectively. In (b), we showed aggregated
IOPSs of random workloads, when they were run concurrently with 20 sequential work-
loads.

and a lower IOPS.

Overall, we show that for cloud environments that a large number of diverse workloads

are running concurrently, random workloads could lead to destructive interference for

sequential ones, leading to inefficient performance. DIOS successfully isolates random

requests from sequential ones and provides consistently high bandwidths for sequential

workloads, leading to high disk utilization and efficient performance.

5.6 Related Work
Performance variation and unpredictability is a well-known problem in shared cloud

environments. Shripad et al. [94] pointed out the performance of Amazon EBS and S3

could vary greatly at different times of day. Gulati et al. [35] noticed that random workloads

interfered with sequential workloads significantly. Some attacks, such as resource-freeing

attacks [101], are also possible to improve a tenant’s performance at a co-located tenant’s

expense.

There is much related work on providing QoS-based resource allocation for storage,

such as Stonehenge [102], Argon [103], and Aqua [104]. In particular, Stonehenge provides

multidimensional storage performance virtualization by translating other metrics into disk

bandwidth guarantees. Bandwidth reservation is guaranteed with a novel disk scheduler

using virtual clock request scheduling. To provide performance insulation, Argon partitions
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the cache and schedules disk requests based on time slicing. All of these algorithms are to

allocate throughput or bandwidth in proportion to the pre-defined weights.

Further proposals provide additional support for latency-sensitive applications (BVT [105],

SMART [106], pClock [107]). Furthermore, mClock [108] borrows the concept of reserva-

tion and limit from CPU and memory scheduling to storage, in addition to the proportional

weight-based allocation. mClock uses two schedulers: the constraint-based scheduler

ensures no variation regarding minimum reservation and upper limit; the weight-based

scheduler tries to allocate resources in proportion to weights.

Some other work has looked into proportional resource sharing and load balancing

problems in distributed storage systems. PARDA [109] used the AIMD approach used

for congestion control in TCP to achieve proportional resource allocation for distributed

storage systems. In BASIL [110], the authors proposed a linear model for characterizing

the load of a workload and device capacity modeling. Their system migrates workloads

across devices to achieve load-balancing.

These works typically abstract the storage device to a single block device, such as

a physical disk, a LUN, or a RAID device. They rely on the lower layer to deal with

replications, and replication is a black-box to these approaches. In contrast, we propose to

leverage the replication information during scheduling to isolate the interference between

random and sequential workloads, improving effective disk utilization.

Providing predictability and performance isolation is an important subject in multi-

tenant cloud database management systems (DBMSs), as seen in recent works from the

database community [111, 112]. Nevertheless, these works studied these problems from

a higher-level abstraction, and in particular, at the DBMSs layer, which is clearly differ-

ent from our approach focusing on the low-level block level storage. DIOS clearly has

important applications in those domains.

One recent work that came very close to DIOS is Flash on Rails [113]. While flash-

based Solid-state drives provide high performance, read requests could be blocked by write

requests, leading to unpredictable performance. For achieving consistent performance for

flash storage, they proposed utilizing replication: data is replicated at several drives and

during each interval, a certain number of drives within a sliding window serve only read

requests while the remaining drives serve writes. For drives that serve only read requests,
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write requests are buffered in memory. The sliding window is moved at every interval so

that one drive is moved out of the sliding window and a new drive is added. The new drive

starts to serve read requests, while write requests buffered in memory for the old drive are

then flushed. This approach is very similar to what we did in DIOS: we also partition the

hard drives to serve different types of read requests while they partition SSDs to serve read

or write requests.

5.7 Summary
In this chapter, we reveal the performance interference problem among different tenants

when co-locating random and sequential read workloads in the cloud. Then we propose a

new scheduling algorithm, DIOS, which partitions a replicating storage cluster into two

groups, with each serving one particular type of requests. Our prototype implementation

based on Ceph demonstrated that DIOS can provide a strong isolation between sequential

and random workloads, achieving consistent and high performance for sequential work-

loads. By carefully separating and scheduling different types of workloads in a multitenant

cloud environment, the efficiency of the whole system is improved. Future work includes

the evaluation of DIOS for different cloud applications, such as multitenant cloud database

management systems and multitenant cloud hosting services and extension for different

replication factors.



CHAPTER 6

CONCLUSION

6.1 Summary of the Dissertation
Digital data is continuing to grow exponentially, and it is important to investigate

techniques to improve space efficiency for storage systems. By improving space efficiency,

one can store more information without increasing investment in storage hardware. Com-

pression and deduplication are two methods commonly used to improve space efficiency.

This dissertation addresses some limitations in compression and deduplication, improving

their effectiveness in data reduction by using similarity in content. Cloud storage is being

widely used. However, users suffer from unpredictable and inefficient performance because

of interference between co-located workloads. This dissertation proposes a new scheduling

algorithm to address this problem by using similarity in access patterns. Overall, this

dissertation has showed that similarity in content and access patterns can be utilized to

improve space efficiency and performance for storage systems.

In Chapter 2, we address the scalability limitation in detecting redundant information

for traditional compressors. Traditional compressors search for redundancy in a fine granu-

larity (the string level), and this approach does not scale: the larger the window size we use,

the longer the compressor takes to detect redundancy. The maximal window size that is in

practical use is only 1 GB. To deal with limitation, we propose Migratory Compression: it

works by detecting similarity in the block level and then grouping similar blocks together.

After this data reorganization, traditional compressors can detect redundancy with small

window sizes. With experiments using real-world datasets, we have shown that Migratory

Compression improves compressibility and frequently runtime. Migratory Compression

is also generic: it can be used for any standard compressor to improve their compression

performance.

In Chapter 3, we identify many file formats used in deduplication environments that

are sub-optimal and suffer from a common problem: metadata is interleaved with data.
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Metadata changes more frequently, and this introduces many unnecessary unique chunks,

reducing the benefit from deduplication. We propose to separate metadata from data and

store metadata separately. When it is possible to change file formats, we recommend

designing and using deduplication-friendly formats. When it is challenging to change file

formats because of compatibility issues, we propose doing application-level postprocessing

to transform the input from its original format into a deduplication-friendly format. When

either of these approaches does not work, we can modify deduplication systems to be

aware of input file formats. The last approach requires more engineering efforts, and we

recommend to take this approach as a last resort. For each approach, we present real-world

case studies and evaluate the benefit from separating metadata from data. Significant

improvements in deduplication have been demonstrated.

In Chapter 4, we present a case study where we use a deduplicating storage system to

improve space efficiency in storing disk images. One of the main challenges is how to use

compression in the integrated system to achieve efficient storage and image deployment

simultaneously. We analyze three alternatives and propose to store compressed chunks

into the deduplicating storage system. We also propose a new chunking algorithm called

Aligned Fixed-size Chunking (AFC). AFC allows us to do fixed-size chunking for allocated

sectors for disk images. It provides better deduplication than traditional fixed-size chunking

and runs considerably faster than variable-size chunking, providing another option when

selecting a chunking algorithm. With a combination of using four techniques, we demon-

strate that it is possible to use a deduplicating storage system to store disk images, achieving

similar high performance in image deployment as the original system does.

Lastly, we applied the same idea of utilizing similarity, in the context of IO scheduling

in Chapter 5. Our analysis reveals random workloads have a significant impact on disk

bandwidth and utilization. Co-locating random workloads with sequential ones leads to

unpredictable and inefficient performance. To deal with this problem, we propose to

schedule different types of requests to different replica disks so that each disk is serving

only the same type of requests. This separation prevents interference between random and

sequential read workloads, resulting in consistent and efficient performance for sequential

read workloads.

To summarize, Migratory Compression utilizes similarity in content to improve com-
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pression. To improve the effectiveness of deduplication, we propose separating metadata

from data and storing the same type of data together. Furthermore, we exploit similarity

across disk images and present a use case of using deduplication storage systems to improve

space efficiency in storing disk images. From the above three pieces of work, we show that

similarity in content can be used to improve space efficiency. In Differential IO Scheduling,

we schedule same type of requests to the same disk, achieving consistent and more efficient

performance. We show similarity in access patterns can be utilized to improve performance

for storage systems.

6.2 Future Research Directions
We believe techniques proposed in this dissertation are practical and can be used in

future file systems and storage systems. We discuss briefly a few topics that are of particular

interests to explore.

• Migratory Compression: In this work, we use an existing tool from a prior project [114],

to do chunking and produce superfeatures. It uses a specific algorithm in calculating

superfeatures. We have not examined other algorithms in calculating superfeatures.

It would be interesting to know the interaction between different compression al-

gorithms and superfeature calculation algorithms. Specifically, we are interested

to know which superfeature algorithm can bring in the greatest improvement in

compression for a specific compressor.

We also present a case study using Migratory Compression in data migration between

a backup system and an archive system. In general, storage systems that use some

kinds of staging area to buffer writes temporarily can be enhanced with Migratory

Compression to improve space efficiency. It has become common to use nonvolatile

memory in storage systems to absorb write requests [4, 90]. Shingled Magnetic

Recording (SMR) drives do not support random writes. Instead, they use a persistent

write cache internally [115] to cache write requests and move them to their permanent

locations later. For such systems, we can add Migratory Compression when we move

data from the staging area to their permanent locations. Read-back performance

needs to be considered when evaluating Migratory Compression in such systems.

Solid-State Disks may help in improving read-back performance. It is interesting to



100

explore what the performance degradation is when we add Migratory Compression,

for SSD- or HDD- based storage systems respectively.

We mainly use backup datasets to evaluate Migratory Compression. It would be

interesting to evaluate Migratory Compression with other types of data, as well. A

few examples include scientific datasets [116,117], large corpora of web pages [118],

images and videos, and human genomes. It would also be interesting to develop

some sampling techniques [119–121] to estimate the potential benefit of Migratory

Compression for a particular given input, without actually running it.

Lastly, mzip also has potential performance improvements, such as multithreading

and reimplementing in a more efficient programming language. Using GPUs [122–

126] to accelerate the process in chunking, calculating fingerprints and super-features,

and detecting similar chunks would also be an interesting area to explore.

• Separating Metadata From Data: We use semantic information from file formats

to distinguish metadata from data and then store metadata separately from data. A

more general approach would be to detect data hotness: design some algorithms to

detect hot data that is more likely to change and then store hot data separately from

cold data. Separating metadata from data can be considered as a special case for

this principle: metadata is changed more frequently, and can be classified as hot data

and we can consider data blocks as cold data. A few hot and cold data classification

algorithms have been proposed and applied in improving the performance of storage

systems [127, 128]. We can possibly apply these techniques to detect data hotness

and use that information to reorganize data to improve deduplication.

We also mainly examine file formats used in backup environments. Other file for-

mats, such as video formats, suffer from a similar problem. Dewakar et al. [129]

identified a video file interleaves text, audio, and video information. When we

encode a video file in different languages (English, Chinese, etc.), the video data

remains the same but the text and audio data needs to be changed. This leads

to poor deduplication across different versions of the same video. In their work,

they proposed two new chunking algorithms that utilize file format information to

determine chunk boundaries. Another possible approach is to design some data
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transformation technique, similar to Migratory Compression and Migratory Tar, to

group the same type of data together. We believe this will improve deduplication and

is worth exploring.

This study also indicates that a more thorough investigation is needed to re-examine

a few use cases (databases and HTML web pages, etc.) that have shown poor

deduplication. We might be able to identify the root cause for poor deduplication

in these use cases and then be able to construct our solution so that we can also get

good deduplication.

• Deduplicating Storage for Efficient Disk Image Deployment We present a case

study of using deduplication for high-performance image deployment in a large net-

work testbed. It would be very interesting to apply the same set of design principles

in other image deployment systems, such as Glance [77] in OpenStack. We believe

we could be able to improve the space efficiency in storing virtual machine images

and performance in image deployment significantly, if we use the techniques we have

proposed in our study.

• Differential IO Scheduling In this study, we assume cloud storage systems are

based on hard disk drives. We find random workloads have a significant performance

impact on disk utilization. This will remain true for the new generation of hard disk

drives based on Shingled Magnetic Recording (SMR). SMR drives use the same

mechanical mechanism as traditional hard disk drives and the only difference is

tracks overlap with each other in SMR drives. DIOS could be applied for cloud

storage systems based on SMR drives as well.

As technologies for flash memory continue to advance and the cost continues to

drop, flash-based Solid State Drives (SSDs) are getting popular. SSDs are based on

circuits and are different from traditional mechanical hard disk drives. Our initial

measurement shows that a consumer-level Samsung SSD provides reasonably good

performance even for random workloads: 200 MB/s for random read workloads,

versus 400 MB/s for sequential ones. We believe random workloads have much less

impact on disk utilization for SSDs, and the benefit from DIOS may become limited.

However, SSDs suffer from another problem: write requests can stall subsequent
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read requests to the same flash chip, and there are some proposals [113], very sim-

ilar to DIOS, which separate read requests from write ones to achieve predictable

performance.

Ceph is not performing well for sequential workloads in baseline. It only achieves

a maximum bandwidth of 250 MB/s, given that we have 6 data disks and each disk

can give us a 150 MB/s bandwidth. So, we are only getting a maximum of 27%

disk utilization in Ceph, even when we are running just sequential workloads. This

leaves us a very small space to improve. We believe we can achieve better results if

Ceph could provide much better performance for sequential workloads in its baseline.

We instrument Ceph and find it spends a considerable amount of time in concur-

rency control (locking). We believe as Ceph becomes mature and more optimization

techniques, such as lock-free algorithms, are introduced, we can see performance

improvements, and by that time, the benefit from DIOS will become more significant.

It would also be interesting to apply DIOS in other replication systems as well, such

as RAID0.
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