
Peephole Optimization of Asynchronous Macromodule Networks

Ganesh C. Gopalakrishnan"'. Prabhakar N. Kudva, Erik L. Brunvand'"

Dept. of Computer Science. University of Utah. Salt Lake Oty. UT 84112

Abstract

Most high level synthesis tools/or asynchronous circuits
1aJr.e descriptions in concurrent hmdWare description lan­
guages and generate networks of macromodules or hand­
shake components. In this paper we describe a peephole
optimizer lor such macromodule networks thl1.t often ef­
/ects area and/or time Improvements. OUT optimizer first
deduces an equivalent black-box behavior for the given
network of macromodules IlSing Dill's trace-theoretic par­
allel composition operator. It then applies a new pro­
cedure called Burst-mode reduction to obtain burst-mode
machines, which can be synthesized into gate networks us­
ing available tools. Since bUTst-mode reduction can be ap­
plied to any macromodule network thl1.t is delay-insensitive
as well as deterministic, OUT optimizer covers a significant
IlIunber 0/ asynchronous circuits, especially those gener­
ated by asynchronous high level synthesis tools.

1 Introduction

Asynchronous systems have been shown to exhibit a
number of inherent advantages [1]. In order to facili­
tate the design of asynchronous circuits, several groups
[2,3.4] have developed high level synthesis tools that trans­
late concurrent program-like descriptions (semi-) automati­
callyintoanetWOdcofmacromoduies[S,I,6]orhandshaJr.e
components [7]. 'The macromodule networks generated by
these tools often contain repeated OCCIll'l'CllCeS of the same
macromodule subnetwork (also observed in hand-designed
macromodule networks). Our optimizer synthesizes cus­
tom replacements for these subnetworks.

The peephole optimization problem for macromodule
networks has been studied by Brunvand [8] as well as
van Berkel [9}. Both Brunvand and van Berkel pr0-
pose optimization rules to ttanslate macromodule networks
into more area- and time-efficient macromodule networks
that are refine1l'll!nts of the original networks in a formal
sense [10, 9]. In this paper. we take the different ap­
proach of translating macromodule networks into bUTst­
mode machines-a sub-class of multiple-input change ma­
chines. In recent years. numerous automatic synthesis tools

*SupporIcd in pan by NSF AWIId MIP-921S878

1063-6404194 $4.00 @ 1994 IEEE
442

to translate burst-mode machine descriptions into hazard­
free gate-level networks have been developed by a number
of researchers including Davis et. aI. [11], Nowiet et. aI.
[12, 13], and Yon et. al. [14]. We piet burst-mode ma­
chines as the target primarily based on their demonsttated
high efficiency in large applications.

2 DlustratioD of Our Approach

In order for our peephole-optimizer to be applicable on
a network. the joint behavior of the wwptimized network:
and its environment must obey the following restrictions.
After power-up, the network: must be quiescent-i.e .• it
must not produce any output signal transitions without first
consuming input signal transitions. Whenever quiescent.
the network must first await a collection of one or more
bigh-going or low-going input signal transitions (i.e.. an
input bUTst [11,12]) to aaive in some order. After absorb­
ing the input-burst. the network should, in a finite amount
of time,produce a collection of high-going or low-going
output signal transitions (i.e .• an output bUTst [11, 12]) in
some order. The production of all the transitions of an
output-burst should be an indication that the network bas
attained quiescence. This mode of interaction between the
netwolk and its environment is called the bUTst-mode be­
havior: which is a special case of fundamental-mode [IS]
operation.

The optiJni7.« first obtains the overall behavior of the
~ule subnetwork being optimized using the com­
posttion opcntor on trace structures (16). The behavior
Inferred In this /aslrionleavu out combinations of behav­
iors of the SJIbmodules thl1.t can never arise, or can lead to
internal hazards. 'The inferred behavior is converted into
an Encoded Interface State Graph (EISG) [17]. EISGs are
au~~1abel ~~~tionswithpolari7.ed Big·
~ transitions (e.g., a nsmg (a+),'" falling" (b-). etc.).
Fmally, the optimizer converts the EISG into a burst-mode
~ using our al~tbm 'Burst-mode reduction' (de­
tailed later). and synthesizes the 1'C8ulting burst-mode ma­
chine using an already available tool (e.g., see [13. 14.11]).
Any delay-insensitive and deterministic module MDI can
be reduced (via burst-mode reduction) to a corresponding
burst-mode machine MBM in such a way tbat the operation
of MDI would be euct1y the same as tbatof MBM pr0-
vided the environment obeys the fundamental-mode timmg

The OR42 module

Figure 1: A four-to-two quick-return converter

constraint associated with the burst-mode behavior.
Consider the example shown in Figure 1. This subnet­

work aa:epts a four-cycle handshake sequence [1] on r4
and a4 and generates a two-cycle handshake sequence [1]
on 1'2 and a2, with the property that some of the events in
these handshake sequences can overlap in order to provide
a high degree of concurrency, as shown by the Petri-net in
Figure 2. Assume that all intaface signals are low to begin
with. When r4+ occurs, the toggle element generates an
1'2+ as well as an a4+ (through the XOR gale). Transition
a4+ is treated as the "ack' by the four-cycle side which
generates an a4- ttansition which, in tum, is forwarded by
the toggle element to the uppez input of the C-element as
a rising signal ttansition. Meanwhile, 1'2+ is treated as a
request by the two-cycle side which generates an 12+. This
causes the C-element to receive rising ttansitions on both
its inputs. Therefore, it generates an a4- through the XOR­
gate. A similar sequence of steps now ensues during which
the two-cycle interface returns to its initial state, and then
the whole cycle repeats.

In optimizing QR42, we must first compose the behav­
iors of the three macromodules shown in Figure 1 along
with the behaviors of "fictitious modules" that express the
following consttaints on its intafaces: the four-phase inter­
face must wiUless a progression of events r4 ; a 4; ... ,
and the two-phase interface must wiblesses a progression
of events r2; a2; .•.. In addition, we must hide the
intema1 signal that connects the lower output of the toggle
element to the uppez input of the C-e1ement. The resulting
black-box behavior for QR42 is shown by the Petri-net in
Figure 2. Next, we must obtain the state graph (ElSG)
corresponding to this Petri-neL We can see that QR42 is
initially quiescent, waiting for the singleton input-burst r 4.
Afterreceiving r 4, it has the option of producing a 4 or r2.
If a4 is produced first, QR42 is in a state where output r2
as well as input r 4 are possible. If the environment were
to follow the burst-mode behavior, however, it would first
allow r2 to be produced before supplying the inputs r4
and a2 concurrently as an input-burst. The important point
to note is that even though a deterministic delay-insensitive
module may possess a large number of behaviors, an envi­
ronment that follows the burst-mode operating conditions
invokes only a proper subset of these behaviors. Now we
can perform Burst-mode redJlction, which retains only the

heavy arrows in Figure 2, and constructs the Bmst-mode
machine shown. We can ignore the dashed arrows because
of the assumption of delay insensitivity (for reasons given
later). Fmally, we can synthesize the burst-mode machine
(using Yun's tool [14], in our case) to obtain logic equations
shown in the figure. Burst-mode machines are Mealy-style
machines in which evecy transition is labeled with pairs
"//0" where I is a non-empty set ofpolari2ed signal ttan­
sitions called the input burst, and 0 is the output burst.
Contrary to the original definition [11], we require that 0
be non-empty, which is consistent with our assumption of
delay insen:sitivityof macromodules. The environment can
also be given a burst-mode specification by mirroring [16].
The network should also be initially quiescent, and should
attain quiescence after processing evecy successive input
burst. Finally, the network must be DI.

Udding [18] has provided four necessary and sufficient
conditions that characterize delay insensitivity. The ones
relevant for this paper are now briefly outlined.

• H a module accepts (genezates) two inputs (i.e., input
signal transitions) a and b in the order ab, it must also
accept (genezat.e) them in the order ba (Condition a).

• For input symbol a and output symbol b, and for ar­
bitrary trace t, if the behaviors ta and tb are legal for
the module, then the behaviors tab as well as tba must
also be legal (Condition b).

443

3 Details of the Optimizer

Currently we identify the sub-network to optimize man­
ually. In order to guarantee that the environment of the
sub-network will obey the burst-mode assumption, delay
analysis (currently done through simulation) is necessary.
The environment of the sub-network (e.g. channels and
datapath connections) must be suitably specified, to avoid
obtaining too general a result (currently done by introduc­
ing fictitious modules that possess the required I/O traces).
After the network being optimized has been composed into
a single trace structure, its description is converted into
an EISG by exhaustively "simu1ating" all their possible
moves until all their reachable configurations are covered.
Once EISGs are obtained, they are converted into equiva­
lent burst-mode machines by means of burst-mode rtduc­
tion. Basically, this algorithm traverses a path of the state
graph starting from the starting state, collecting input ttan­
sitions occurring along the way into the set input-burst, till
it encounters a state that has only arcs labeled by output­
signal transitions exiting it. The traversal is continued,
now fonning the set output-burst, till a state that has only
arcs labeled by input-signal transitions exiting it. A burst­
mode machine transition is now formed, and the algorithm
continues processing the rest of the state graph. Th4 ba­
sic intuition behind burst-mode reduction is that whenever
"lattice shJJpes" representing concurrency are encountered

f~4}/ ~ fa4,~2}

Iz4,a2, f~4,a2}/

la41 fa4,

Iz4JI
\a4,z2}

A4 - •• + &2' U + A2 12'

at - .4' ., + .4 QO' + 12 00'

go - A2 .4' + A2 QO + U go

Figure 2: Optimization of the four-to-two converter

in the state graph, such lattices are collapsed into input­
and output-bursts.

The input to burst-mode reduction is an EISO, which is
a state graph with circles denoting states. and arcs between
states labeled by a single polarized transition of an input
signal or an output signal. Only those BISGs obtained
by composing macromodules obeying restrictions stated
earlier are considered. The output is a burst-mode machine.
The method is as follows.

1. Mark all states as "not visited", and call the starting
state cu"tmt.

2. This step addresses the collapsing of "lattice shapes"
in the state graph. Specifically. if clITTent has not
been visited. mark it as visited. If ClITTenl has an
exit through at least one output transition, retain any
arbitrary output transition, while eliminating all oth­
ers. Call the destination of the retained transition as
ClITTent. and continue with Step 2. Else (all exits are
through input transitions) retain all the ttansitions out
of ClITTent. and consider all their destination states to
be ClITTent. in tum, and continue with Step 2 for these
states.

3. (We reach here after the initial "1l'8I1sition elimination"
portion of the algorithm is over.) Remove unreachable
portions of the state graph.

4. Set the starting state of the state graph as current.

S. Go to the clITTent state. It will have exits only through
input ttansitions. (1bis invariant is initially true due
to the quiescence of the starting state, and is preserved
by the way the following loop will work.)

Take any path out of clITTent and traverse it, collecting
input transitions encountered along the way into a set

444

input-burst. (We will Devt% encountez a state in the
intezim that has both an input exit as well as an output
exit.) Continue collecting input transitions, till we
encountez a state with exactly one output exit. Call
this state interrrrediate.

6. Continue travelSing along an arbitrary path from state
intermediate collecting output transitions into a set
output-burst till a state which has no exits through an
output transition is encountered. Call this state next.

7. Consttuct a burst-mode machine transition from CIlT­

rent going to next labeled by input-bII1'st/output-buI'st.

8. Repeat the procedure from Step 5 for all paths ema­
nating from clITTent.

9. Repeal Step 4, DOW treating all the states marked next
as ClITTent, and till all states have been visited.

10. Eliminate all duplicate ttansitions in the burst mode
machine.

The stepS in the algorithm can be justified as follows.
In Step 2, the algorithm chooses an arbitrary output 1l'8I1-

sition among competing output transitions. This is justified
because by Udding·s Condition (a). (as evidenced by the
"lattice shape" of the state graph), the ignored outputs are
guaranteed to appear later in sequence. In Step 2. the al­
gorithm "prefm" output transitions over input transitions.
This is justified on two counts:
• Because ofUdding'sCondition (b), competing inputs and
outputs are also guaranteed to appear in all possible orders.
Therefore, even if an input ttansition is ignored when it
competes with an output ttansition. that input 1l'8I1sition
will be offered later in sequmce.
• Due to the burst-mode assumption, the environment must

8M MM I~ -= m/clize m/c lize
Circuiu (JateI) (JateI) (nS) (nS)

QR42
(hand)

13 13 10 15
QR42
(vi) 13 74 10 20

QR42
(vl) 13 60 10 15

Ca1l2 17 21 4 8

c.n..c
Idiom 27 27 10 11

DecUion
Wait
('2xl) 26 18 8 15

SimpJII
GVI'
(p.l) 15 18 4 4

SimpJII
GVI'
(p.2) 8 12 10 14

Cal13-
MeIse

68 45 11 16

Completion-
tree

lize3 8 10 6 10

Campktim-
tree

me 4 11 15 8 13

CompIeIion-
tree

lizeS 14 20 8 17

Figure 3: Perfonnance of our Optimizer

allow the output transitions to happen before it applies in­
puts to the system. This is why output transitions are "pre­
ferred over" input transitions. After the state graph has
been pruned on the basis of the above statements, we enter
the phase offonning inputand output bursts for burst-mode
transitions. In this process, it is not necessary to consider
the particular order in which inputs or outputs appear in se­
quence. This is because a delay-insensitive system cannot
count on inputs/outputs appearing in any particular order
(Udding's Condition (a». In traversing from state current
to state intmnediate, if different sequences of input tran­
sitions coalesce into the same input burst set (e.g., r4 and
a2 ofQR42). then all these input transition sequences must
lead to the same behavior from state intermediate onwards
(in other words. all these input ttansition sequences must
cause the same set of output bursts and enter equivalent next
states). This will result in duplicate burst-mode transitions
which can be eliminated. as in Step 10.

The above reasoning shows that Burst-mode reduction

results in a burst-mode machine that has the same behavior
as the original macromodule network when that network
is operated under the burst-mode assumption. The follow­
ing well-formedness conditions of burst-mode machines
are also guaranteed. The fact that all input bursts are non­
empty is guaranteed by the quiescence requirement that is
an invariant of the loop beginning at state current in Step 4.
The subset property requires that no input burst can be a
subset of another. This is uue for the following reasons. In
traversing from state clU'mll to state intermediate in Step 4.
a sequence 8 of inputs is collected to form the set input­
burst. Due to Udding's Condition (a), these inputs will ap­
ptW in all permutations. Thecefore there can be no proper
subsequence of 8 that also goes between states current and
intermediate. The other' possibility is that a proper subse­
quence" of 8 leads to a different state intermediate. Then.
the state-graph exhibits non-c:leterministic choice, and by
definition we cannot handle non-deterrninistic machines.
The final possibility is that 8 and" are identical and lead
to the same state intermediate. This will result in dupli­
cate ttansitions that get eliminated in Step 10. Finally, the
unique entry condition is guaranteed by the wayan EISG
is generated. Essentially a state of an EISG includes the
state of the interface signals; hence, there cannot be a state­
conflict in the burst-mode machine because the EISG will
allocate two separate states for non-compatible interface­
signal auignments.

445

4 Results and Concluding Remarks

We have a prototype implementation for all the phases
of our optimizet described here. Though the execution
times of the parallel composition tool and the burst-mode
reduction program are worst-case exponential, our exam­
ples were processed quickly. In general. the burst-mode
circuits generated by us are smaller and faster, as shown
in Figure 3. To obtain the gate count of an un-optimized
network, the gate counts of the macromodules used in that
network were added up. The gate count of the optimized
network was obtained from the AND/OR realization that
Yun's tool [14] produces. In this table, the circuits Call-C
Idiom, SimpJe OVT (part 1 and 2). Control-Block Shar­
ing, and Call3-Merge are various networks produced by
the Occam or SIDLPA compilers. and decision-wait is a
primitive similar to a generalized C-element Notice that
our optimizer achieves significant optimization for com­
pletion trees. In obtaining speed estimates, we focussed
on cycle time [19], measured by "closing off" the I/O ports
of the asynchronous circuit (modulo the burst-mode be­
havior) thus turning it into an oscillator, and measuring the
speed using a unit-delaysimulator. More realistic examples
as well as measurement techniques are under exploration.
In practice, one may carry out macromodule subnetwork
replacement until the required degree of performance is
achieved. At this point, one may leave some macromod­
ules (at the "top levelj unaltered as they make the control

organization of a large system quite cle..
The authors would like to thank Nick Michell, Ken Yon,

and Steve Nowick for their help.

References

[1] Ivan Sutherland. Micropipelines. Commwaicationso/
the ACM, June 1989. The 1988 ACM 'Iilring Award
uct~.

[2] Jaco Haans, Kees van Berkel, Ad Peeters, and Frits
Schalij. Asynchronous multipliers as combinational
handshake circuits. In Proceedings of the IFIP Work­
ing Conference on Asynchronous Design Methods,
Manchester, England,31 March-2April,I993, 1993.
Participant's edition.

[3] ErikBrunvandandRobertF. Sproull. Translating con­
current programs into delay-insensitive circuits. In
Intmaational Conference on Computer Design (IC­
CAD), IEEE, pages 262-265, nov 1989.

[4] Venkatesh Akella and Ganesh Gopalakrishnan.
SHILPA: A High-Level Synthesis System for Self­
Timed Circuits. In International Conference on
Computer-aided Design,ICCAD 92, pages 587-591,
November 1992.

[5] S. M. Ornstein, M. J. Stucki, and W. A. Clark. A
functional description of macromodules. In Spring
Joint Computer Conference. AFIPS, 1967.

[6] Erik Brunvand. A cell set for self-timed design us­
ing actel FPGAs. Technical Report 91-013, Dept of
Computer Science, University of Utah , Salt Lake City,
UT 84112,1991.

[7] Kees van Belke!. HandshaU Circuits: An Asyn­
chronous Architecture/or VLSI Programming. Cam­
bridge University Press, 1993.

[8] Erik Brunvand. Translating ConcJl1Ttnt Commwaicat­
ing Programs into Asynchronous Circuits. PhD thesis,
Carnegie Mellon University, 1991.

[9] Kees van BClkel. HandshaU circuits: an inteT7rll!di­
ary between commwaicating processes andVLSI. PhD
thesis, Philips Research Laboratories, Eindhoven, The
Netherlands, 1992.

[10] Ganesh Gopalakrishnan, Nick Michell,.Erit Brun­
vand, and Steven M. Nowick. A correctness criterion
for asynchronous circuit verification and optimiza­
tion. IEEE Trrmsactions on Computer-Aided Design,
1992. Accepted/or Publication.

[11] AI Davis, Bill Coates, and Ken Stevens. The Post
Office Experience: Designing a Large Asynchronous
Chip. In T.N. Mudge. V. Milutinovic, and L. Hunter,

446

editors, Proceedings of the 26th Annual Hawaiian
International Conference on System Sciences, Volume
1. pages 409-i18.January 1993.

[12] Stephen Nowick. Automatic Synthesis of BlUst-mode
Asynchronous Controllers. PhD thesis, Stanford Uni­
versity, 1993. Ph.D. Thesis.

[13] Steven M. Nowick, Kenneth Y. Yon, and David L.
Dill. Practical Asynchronous Controller Design. In
Proceedings o/the International Conference on Com­
puter Design, pages 341-345. October 1992.

[14] Kenneth Y. Y1Dl. David L. Dill. and Steven M. Now­
ick. Synthesis of 3d asynchronous state machines. In
Proceedings of the International Conference on Com­
puter Design, pages 346-350, October 1992.

[15] Stephen H. Unger. Asynchronous SeqlU!1Itial Switch­
ing Circuits. John-Wiley. 1969.

[16] David L. Dill. Trace Theory/or Automatic Hierarchi­
cal Verification of Speed-independent Circuits. MIT
Press, 1989. An ACM Distinguished Dissertation.

[17] Ivan Suthetlandand Bob Sproull. Cbapter6and chap­
ter 7 of ssa notes II 4702 and II 4703. volume 1. on
interface state graphs. Technical memo, Sutherland,
Sproull, and Associates, 1986.

[18] Jan TIjmen Udding. A formal model for defining
and classifying delay-insensitive circuits and systems.
Distributed Computing. (1):197-204.1986.

[19] Steven Bums and Alain Martin. Performance analysis
and optimization of asynchronous circuits. In Carlo
Sequin. editor, AdvancedResearch in VLSI : Proceed­
ings 0/ the 1991 University 0/ California Santa Cruz
Conference, pages 71-86.1bc MIT Press, 1991. ISBN
0-262-19308-6.

