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Abstract 

Most high level synthesis tools/or asynchronous circuits 
1aJr.e descriptions in concurrent hmdWare description lan­
guages and generate networks of macromodules or hand­
shake components. In this paper we describe a peephole 
optimizer lor such macromodule networks thl1.t often ef­
/ects area and/or time Improvements. OUT optimizer first 
deduces an equivalent black-box behavior for the given 
network of macromodules IlSing Dill's trace-theoretic par­
allel composition operator. It then applies a new pro­
cedure called Burst-mode reduction to obtain burst-mode 
machines, which can be synthesized into gate networks us­
ing available tools. Since bUTst-mode reduction can be ap­
plied to any macromodule network thl1.t is delay-insensitive 
as well as deterministic, OUT optimizer covers a significant 
IlIunber 0/ asynchronous circuits, especially those gener­
ated by asynchronous high level synthesis tools. 

1 Introduction 

Asynchronous systems have been shown to exhibit a 
number of inherent advantages [1]. In order to facili­
tate the design of asynchronous circuits, several groups 
[2,3.4] have developed high level synthesis tools that trans­
late concurrent program-like descriptions (semi-) automati­
callyintoanetWOdcofmacromoduies[S,I,6]orhandshaJr.e 
components [7]. 'The macromodule networks generated by 
these tools often contain repeated OCCIll'l'CllCeS of the same 
macromodule subnetwork (also observed in hand-designed 
macromodule networks). Our optimizer synthesizes cus­
tom replacements for these subnetworks. 

The peephole optimization problem for macromodule 
networks has been studied by Brunvand [8] as well as 
van Berkel [9}. Both Brunvand and van Berkel pr0-
pose optimization rules to ttanslate macromodule networks 
into more area- and time-efficient macromodule networks 
that are refine1l'll!nts of the original networks in a formal 
sense [10, 9]. In this paper. we take the different ap­
proach of translating macromodule networks into bUTst­
mode machines-a sub-class of multiple-input change ma­
chines. In recent years. numerous automatic synthesis tools 
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to translate burst-mode machine descriptions into hazard­
free gate-level networks have been developed by a number 
of researchers including Davis et. aI. [11], Nowiet et. aI. 
[12, 13], and Yon et. al. [14]. We piet burst-mode ma­
chines as the target primarily based on their demonsttated 
high efficiency in large applications. 

2 DlustratioD of Our Approach 

In order for our peephole-optimizer to be applicable on 
a network. the joint behavior of the wwptimized network: 
and its environment must obey the following restrictions. 
After power-up, the network: must be quiescent-i.e .• it 
must not produce any output signal transitions without first 
consuming input signal transitions. Whenever quiescent. 
the network must first await a collection of one or more 
bigh-going or low-going input signal transitions (i.e.. an 
input bUTst [11,12]) to aaive in some order. After absorb­
ing the input-burst. the network should, in a finite amount 
of time,produce a collection of high-going or low-going 
output signal transitions (i.e .• an output bUTst [11, 12]) in 
some order. The production of all the transitions of an 
output-burst should be an indication that the network bas 
attained quiescence. This mode of interaction between the 
netwolk and its environment is called the bUTst-mode be­
havior: which is a special case of fundamental-mode [IS] 
operation. 

The optiJni7.« first obtains the overall behavior of the 
~ule subnetwork being optimized using the com­
posttion opcntor on trace structures (16). The behavior 
Inferred In this /aslrionleavu out combinations of behav­
iors of the SJIbmodules thl1.t can never arise, or can lead to 
internal hazards. 'The inferred behavior is converted into 
an Encoded Interface State Graph (EISG) [17]. EISGs are 
au~~1abel ~~~tionswithpolari7.ed Big· 
~ transitions (e.g., a nsmg (a+),'" falling" (b-). etc.). 
Fmally, the optimizer converts the EISG into a burst-mode 
~ using our al~tbm 'Burst-mode reduction' (de­
tailed later). and synthesizes the 1'C8ulting burst-mode ma­
chine using an already available tool (e.g., see [13. 14.11]). 
Any delay-insensitive and deterministic module MDI can 
be reduced (via burst-mode reduction) to a corresponding 
burst-mode machine MBM in such a way tbat the operation 
of MDI would be euct1y the same as tbatof MBM pr0-
vided the environment obeys the fundamental-mode timmg 



The OR42 module 

Figure 1: A four-to-two quick-return converter 

constraint associated with the burst-mode behavior. 
Consider the example shown in Figure 1. This subnet­

work aa:epts a four-cycle handshake sequence [1] on r4 
and a4 and generates a two-cycle handshake sequence [1] 
on 1'2 and a2, with the property that some of the events in 
these handshake sequences can overlap in order to provide 
a high degree of concurrency, as shown by the Petri-net in 
Figure 2. Assume that all intaface signals are low to begin 
with. When r4+ occurs, the toggle element generates an 
1'2+ as well as an a4+ (through the XOR gale). Transition 
a4+ is treated as the "ack' by the four-cycle side which 
generates an a4- ttansition which, in tum, is forwarded by 
the toggle element to the uppez input of the C-element as 
a rising signal ttansition. Meanwhile, 1'2+ is treated as a 
request by the two-cycle side which generates an 12+. This 
causes the C-element to receive rising ttansitions on both 
its inputs. Therefore, it generates an a4- through the XOR­
gate. A similar sequence of steps now ensues during which 
the two-cycle interface returns to its initial state, and then 
the whole cycle repeats. 

In optimizing QR42, we must first compose the behav­
iors of the three macromodules shown in Figure 1 along 
with the behaviors of "fictitious modules" that express the 
following consttaints on its intafaces: the four-phase inter­
face must wiUless a progression of events r4 ; a 4; ... , 
and the two-phase interface must wiblesses a progression 
of events r2; a2; .•.. In addition, we must hide the 
intema1 signal that connects the lower output of the toggle 
element to the uppez input of the C-e1ement. The resulting 
black-box behavior for QR42 is shown by the Petri-net in 
Figure 2. Next, we must obtain the state graph (ElSG) 
corresponding to this Petri-neL We can see that QR42 is 
initially quiescent, waiting for the singleton input-burst r 4. 
Afterreceiving r 4, it has the option of producing a 4 or r2. 
If a4 is produced first, QR42 is in a state where output r2 
as well as input r 4 are possible. If the environment were 
to follow the burst-mode behavior, however, it would first 
allow r2 to be produced before supplying the inputs r4 
and a2 concurrently as an input-burst. The important point 
to note is that even though a deterministic delay-insensitive 
module may possess a large number of behaviors, an envi­
ronment that follows the burst-mode operating conditions 
invokes only a proper subset of these behaviors. Now we 
can perform Burst-mode redJlction, which retains only the 

heavy arrows in Figure 2, and constructs the Bmst-mode 
machine shown. We can ignore the dashed arrows because 
of the assumption of delay insensitivity (for reasons given 
later). Fmally, we can synthesize the burst-mode machine 
(using Yun's tool [14], in our case) to obtain logic equations 
shown in the figure. Burst-mode machines are Mealy-style 
machines in which evecy transition is labeled with pairs 
"//0" where I is a non-empty set ofpolari2ed signal ttan­
sitions called the input burst, and 0 is the output burst. 
Contrary to the original definition [11], we require that 0 
be non-empty, which is consistent with our assumption of 
delay insen:sitivityof macromodules. The environment can 
also be given a burst-mode specification by mirroring [16]. 
The network should also be initially quiescent, and should 
attain quiescence after processing evecy successive input 
burst. Finally, the network must be DI. 

Udding [18] has provided four necessary and sufficient 
conditions that characterize delay insensitivity. The ones 
relevant for this paper are now briefly outlined. 

• H a module accepts (genezates) two inputs (i.e., input 
signal transitions) a and b in the order ab, it must also 
accept (genezat.e) them in the order ba (Condition a). 

• For input symbol a and output symbol b, and for ar­
bitrary trace t, if the behaviors ta and tb are legal for 
the module, then the behaviors tab as well as tba must 
also be legal (Condition b). 
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3 Details of the Optimizer 

Currently we identify the sub-network to optimize man­
ually. In order to guarantee that the environment of the 
sub-network will obey the burst-mode assumption, delay 
analysis (currently done through simulation) is necessary. 
The environment of the sub-network (e.g. channels and 
datapath connections) must be suitably specified, to avoid 
obtaining too general a result (currently done by introduc­
ing fictitious modules that possess the required I/O traces). 
After the network being optimized has been composed into 
a single trace structure, its description is converted into 
an EISG by exhaustively "simu1ating" all their possible 
moves until all their reachable configurations are covered. 
Once EISGs are obtained, they are converted into equiva­
lent burst-mode machines by means of burst-mode rtduc­
tion. Basically, this algorithm traverses a path of the state 
graph starting from the starting state, collecting input ttan­
sitions occurring along the way into the set input-burst, till 
it encounters a state that has only arcs labeled by output­
signal transitions exiting it. The traversal is continued, 
now fonning the set output-burst, till a state that has only 
arcs labeled by input-signal transitions exiting it. A burst­
mode machine transition is now formed, and the algorithm 
continues processing the rest of the state graph. Th4 ba­
sic intuition behind burst-mode reduction is that whenever 
"lattice shJJpes" representing concurrency are encountered 
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Figure 2: Optimization of the four-to-two converter 

in the state graph, such lattices are collapsed into input­
and output-bursts. 

The input to burst-mode reduction is an EISO, which is 
a state graph with circles denoting states. and arcs between 
states labeled by a single polarized transition of an input 
signal or an output signal. Only those BISGs obtained 
by composing macromodules obeying restrictions stated 
earlier are considered. The output is a burst-mode machine. 
The method is as follows. 

1. Mark all states as "not visited", and call the starting 
state cu"tmt. 

2. This step addresses the collapsing of "lattice shapes" 
in the state graph. Specifically. if clITTent has not 
been visited. mark it as visited. If ClITTenl has an 
exit through at least one output transition, retain any 
arbitrary output transition, while eliminating all oth­
ers. Call the destination of the retained transition as 
ClITTent. and continue with Step 2. Else (all exits are 
through input transitions) retain all the ttansitions out 
of ClITTent. and consider all their destination states to 
be ClITTent. in tum, and continue with Step 2 for these 
states. 

3. (We reach here after the initial "1l'8I1sition elimination" 
portion of the algorithm is over.) Remove unreachable 
portions of the state graph. 

4. Set the starting state of the state graph as current. 

S. Go to the clITTent state. It will have exits only through 
input ttansitions. (1bis invariant is initially true due 
to the quiescence of the starting state, and is preserved 
by the way the following loop will work.) 

Take any path out of clITTent and traverse it, collecting 
input transitions encountered along the way into a set 
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input-burst. (We will Devt% encountez a state in the 
intezim that has both an input exit as well as an output 
exit.) Continue collecting input transitions, till we 
encountez a state with exactly one output exit. Call 
this state interrrrediate. 

6. Continue travelSing along an arbitrary path from state 
intermediate collecting output transitions into a set 
output-burst till a state which has no exits through an 
output transition is encountered. Call this state next. 

7. Consttuct a burst-mode machine transition from CIlT­

rent going to next labeled by input-bII1'st/output-buI'st. 

8. Repeat the procedure from Step 5 for all paths ema­
nating from clITTent. 

9. Repeal Step 4, DOW treating all the states marked next 
as ClITTent, and till all states have been visited. 

10. Eliminate all duplicate ttansitions in the burst mode 
machine. 

The stepS in the algorithm can be justified as follows. 
In Step 2, the algorithm chooses an arbitrary output 1l'8I1-

sition among competing output transitions. This is justified 
because by Udding·s Condition (a). (as evidenced by the 
"lattice shape" of the state graph), the ignored outputs are 
guaranteed to appear later in sequence. In Step 2. the al­
gorithm "prefm" output transitions over input transitions. 
This is justified on two counts: 
• Because ofUdding'sCondition (b), competing inputs and 
outputs are also guaranteed to appear in all possible orders. 
Therefore, even if an input ttansition is ignored when it 
competes with an output ttansition. that input 1l'8I1sition 
will be offered later in sequmce. 
• Due to the burst-mode assumption, the environment must 
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QR42 
(hand) 

13 13 10 15 
QR42 
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QR42 
(vl) 13 60 10 15 

Ca1l2 17 21 4 8 

c.n..c 
Idiom 27 27 10 11 
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Wait 
('2xl) 26 18 8 15 

SimpJII 
GVI' 
(p.l) 15 18 4 4 

SimpJII 
GVI' 
(p.2) 8 12 10 14 

Cal13-
MeIse 
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Completion-
tree 

lize3 8 10 6 10 

Campktim-
tree 

me 4 11 15 8 13 

CompIeIion-
tree 

lizeS 14 20 8 17 

Figure 3: Perfonnance of our Optimizer 

allow the output transitions to happen before it applies in­
puts to the system. This is why output transitions are "pre­
ferred over" input transitions. After the state graph has 
been pruned on the basis of the above statements, we enter 
the phase offonning inputand output bursts for burst-mode 
transitions. In this process, it is not necessary to consider 
the particular order in which inputs or outputs appear in se­
quence. This is because a delay-insensitive system cannot 
count on inputs/outputs appearing in any particular order 
(Udding's Condition (a». In traversing from state current 
to state intmnediate, if different sequences of input tran­
sitions coalesce into the same input burst set (e.g., r4 and 
a2 ofQR42). then all these input transition sequences must 
lead to the same behavior from state intermediate onwards 
(in other words. all these input ttansition sequences must 
cause the same set of output bursts and enter equivalent next 
states). This will result in duplicate burst-mode transitions 
which can be eliminated. as in Step 10. 

The above reasoning shows that Burst-mode reduction 

results in a burst-mode machine that has the same behavior 
as the original macromodule network when that network 
is operated under the burst-mode assumption. The follow­
ing well-formedness conditions of burst-mode machines 
are also guaranteed. The fact that all input bursts are non­
empty is guaranteed by the quiescence requirement that is 
an invariant of the loop beginning at state current in Step 4. 
The subset property requires that no input burst can be a 
subset of another. This is uue for the following reasons. In 
traversing from state clU'mll to state intermediate in Step 4. 
a sequence 8 of inputs is collected to form the set input­
burst. Due to Udding's Condition (a), these inputs will ap­
ptW in all permutations. Thecefore there can be no proper 
subsequence of 8 that also goes between states current and 
intermediate. The other' possibility is that a proper subse­
quence" of 8 leads to a different state intermediate. Then. 
the state-graph exhibits non-c:leterministic choice, and by 
definition we cannot handle non-deterrninistic machines. 
The final possibility is that 8 and" are identical and lead 
to the same state intermediate. This will result in dupli­
cate ttansitions that get eliminated in Step 10. Finally, the 
unique entry condition is guaranteed by the wayan EISG 
is generated. Essentially a state of an EISG includes the 
state of the interface signals; hence, there cannot be a state­
conflict in the burst-mode machine because the EISG will 
allocate two separate states for non-compatible interface­
signal auignments. 
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4 Results and Concluding Remarks 

We have a prototype implementation for all the phases 
of our optimizet described here. Though the execution 
times of the parallel composition tool and the burst-mode 
reduction program are worst-case exponential, our exam­
ples were processed quickly. In general. the burst-mode 
circuits generated by us are smaller and faster, as shown 
in Figure 3. To obtain the gate count of an un-optimized 
network, the gate counts of the macromodules used in that 
network were added up. The gate count of the optimized 
network was obtained from the AND/OR realization that 
Yun's tool [14] produces. In this table, the circuits Call-C 
Idiom, SimpJe OVT (part 1 and 2). Control-Block Shar­
ing, and Call3-Merge are various networks produced by 
the Occam or SIDLPA compilers. and decision-wait is a 
primitive similar to a generalized C-element Notice that 
our optimizer achieves significant optimization for com­
pletion trees. In obtaining speed estimates, we focussed 
on cycle time [19], measured by "closing off" the I/O ports 
of the asynchronous circuit (modulo the burst-mode be­
havior) thus turning it into an oscillator, and measuring the 
speed using a unit-delaysimulator. More realistic examples 
as well as measurement techniques are under exploration. 
In practice, one may carry out macromodule subnetwork 
replacement until the required degree of performance is 
achieved. At this point, one may leave some macromod­
ules (at the "top levelj unaltered as they make the control 



organization of a large system quite cle.. 
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