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ABSTRACT

Physical simulation has become an essential tool in computer animation. As 

the use of visual effects increases, the need for simulating real-world materials 

increases. In this dissertation, we consider three problems in physics-based 

animation: large-scale splashing liquids, elastoplastic material simulation, and 

dimensionality reduction techniques for fluid simulation.

Fluid simulation has been one of the greatest successes of physics-based 

animation, generating hundreds of research papers and a great many special 

effects over the last fifteen years. However, the animation of large-scale, splashing 

liquids remains challenging. We show that a novel combination of unilateral 

incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited 

to the animation of large-scale, violent, splashing liquids.

Materials that incorporate both plastic and elastic deformations, also referred 

to as elastioplastic materials, are frequently encountered in everyday life. 

Methods for animating such common real-world materials are useful for effects 

practitioners and have been successfully employed in films. We describe 

a point-based method for animating elastoplastic materials. Our primary 

contribution is a simple method for computing the deformation gradient for 

each particle in the simulation. Given the deformation gradient, we can apply 

arbitrary constitutive models and compute the resulting elastic forces. Our 

method has two primary advantages: we do not store or compare to an initial 

rest configuration and we work directly with the deformation gradient. The first 

advantage avoids poor numerical conditioning and the second naturally leads to 

a multiplicative model of deformation appropriate for finite deformations.

One of the most significant drawbacks of physics-based animation is that 

ever-higher fidelity leads to an explosion in the number of degrees of freedom.



This problem leads us to the consideration of dimensionality reduction techniques. 

We present several enhancements to model-reduced fluid simulation that allow 

improved simulation bases and two-way solid-fluid coupling. Specifically, 

we present a basis enrichment scheme that allows us to combine data-driven 

or artistically derived bases with more general analytic bases derived from 

Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling 

in a time-splitting fashion—we alternately timestep the fluid and rigid body 

simulators, while taking into account the effects of the fluid on the rigid bodies 

and vice versa. We employ the vortex panel method to handle solid-fluid coupling 

and use dynamic pressure to compute the effect of the fluid on rigid bodies.

Taken together, these contributions have advanced the state-of-the art in 

physics-based animation and are practical enough to be used in production 

pipelines.
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CHAPTER 1

INTRODUCTION

Over the last decade and a half, physical simulation has become an essential 

tool in computer animation. With advances in rendering and physics-based 

animation, many stories where the visuals were previously left to the imagination 

of readers are now realistically brought to life in film. Nearly every major film 

uses visual effects in some way. Some blockbuster films use visual effects for 

nearly every shot, allowing film makers, writers, and directors to tell any story 

they like. As the demand for visual effects increases, the need for realistically 

animating real-world materials increases. A major goal in computer animation 

research is to simulate the behavior of real-world materials, including such 

phenomena as fracturing rigid and soft bodies, cloth, hair, explosions and smoke, 

flowing and splashing liquids, and even muscle deformations.

This dissertation considers three problems in physics-based animation: large- 

scale splashing liquids, elastoplastic material simulation, and dimensionality 

reduction techniques for fluid simulation. This chapter continues with the 

introduction of these problems which are covered in detail in later chapters, 

Large-scale splashing liquids in Chapter 3, elastoplastic material simulation in 

Chapter 4, and finally reduced fluid simulation in Chapter 5.

Computers have been used to simulate fluids for scientific and engineering 

applications since the advent of the electronic computer. Over the last fifteen 

years, fluid simulation has emerged as one of the most effective applications 

of physics-based approaches to animation and has become a valuable tool for 

movie production, producing realistic bodies of water, fire, smoke, and other
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phenomena. The use of fluid simulation for special effects is now commonplace 

and the topic has received copious attention in the graphics community and 

several fluid simulations have won awards. For example, the Visual Effects 

Society awarded the tidal wave in The Day After Tomorrow the award for The Best 

Single Visual Effect of the Year, while Digital Domain, Dreamworks, and Industrial 

Light and Magic have each received Academy Awards for their fluid simulators. 

However, despite tremendous progress, challenges remain. One such challenge is 

the simulation of large-scale splashing liquids. Such simulations are challenging 

for a variety of reasons. Simulating large-scale liquids with fine-scale details can 

require high grid resolutions, which dramatically increases computational costs. 

Splashing liquids separate into a variety of scales from large blobs down to fine 

mist, and capturing these scales can be difficult with surface tracking methods. 

Allowing liquid to separate and expand freely is also restricted by the standard 

incompressible fluid solvers.

Because at the spatial and temporal scales we seek to animate, liquids 

compression is negligible, computer graphics researchers have largely focused on 

simulating incompressible fluids. Even approaches, such as smoothed particle 

hydrodynamics (SPH), that are naturally suited to simulate compressible flow 

are often modified for incompressible flow [63]. While computationally efficient, 

incompressibility induces an artificial surface tension that prevents liquid near 

the surface from mixing with the surrounding air. This mixing is important 

at large scales, especially during violent splashes, such as after underwater 

explosions. In Chapter 3, we show that for single-phase fluid simulation, such 

mixing is effectively modeled with unilateral incompressibility [50, 51], which 

allows positive divergence while prohibiting negative pressures, thus avoiding 

the pressure oscillations found in compressible simulation, while removing the 

artificial surface tension caused by bilateral incompressibility.

We use a variant of the fluid-implicit-particle (FLIP) method as our underlying 

simulation method. However, our approach, which we call mass-full FLIP, 

attaches mass to the particles and more closely resembles compressible FLIP [9]



3

than the incompressible variety [76]. Mass-full FLIP is extremely well-suited 

to the unilateral incompressibility (UIC) solve. In the context of UIC, ensuring 

conservation of mass becomes difficult—allowing positive divergence can result 

in significant volume gain. Like SPH methods, mass-full FLIP conserves mass by 

conserving particles. Additionally, the UIC is most appropriate in highly turbulent 

simulations where the numerical viscosity associated with semi-Lagrangian and 

related schemes would be especially inappropriate.

Finally, we treat obstacles and fluid in a unified manner—we discretize 

obstacles using particles and rasterize their mass onto the background grid using 

the same trilinear kernel. We additionally employ the variational approach 

to obstacles endorsed by Batty and colleagues [4]. Combined with unilateral 

incompressibility, our treatment of boundaries easily allows liquids to separate 

from obstacles, avoiding the common visual artifact of liquid gliding along the 

ceiling.

In Chapter 3, we show that a novel combination of unilateral incompressibility, 

mass-full FLIP, and blurred boundaries is extremely well-suited to the animation 

of such liquids and avoids common artifacts such as artificial surface tension, 

volume loss/gain, and fluid sticking to obstacles. We demonstrate our approach 

on several examples, such as the flooding of a city. Side-by-side comparisons 

with incompressible simulations clearly demonstrate the different behavior 

afforded by our approach. In general, the more tumultuous the motion, the 

more different the results. While we do not expect our approach to replace 

bilateral incompressibility, we believe the rich behavior afforded by it will prove 

an important tool for animating large-scale splashing liquids.

Materials that incorporate both plastic and elastic deformations such as 

chewing gum, toothpaste, shaving cream, sauces, bread dough, and modeling 

clay are frequently encountered in everyday life and have been successfully used 

in special effects such as the honey in Bee Movie [58] and the food in Ratatouille [26]. 

In fact, the later work won the Visual Effects Society award for Outstanding Effects 

in an Animated Motion Picture. At the same time, point-based simulation methods
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have increased dramatically in popularity and sophistication in recent years. 

These methods are capable of modeling a wide range of materials in a variety 

of contexts, from real-time fluid simulations [11] to fracturing solids [54]. Their 

versatility makes them especially attractive for computer graphics applications.

We describe a point-based approach for animating elastoplastic materials. Our 

primary contribution is a simple method for computing the deformation gradient 

for each particle in the simulation. The deformation gradient is computed for each 

particle by finding the affine transformation that best approximates the motion of 

neighboring particles over a single timestep. This transformation is found using 

a least-squares fit to the positions of neighboring particles at the beginning and 

end of the timestep. These transformations are then multiplicitively composed to 

compute the total deformation gradient that describes the deformation around a 

particle over the course of the simulation.

Our approach has two primary advantages. First, we do not store and 

compare to an initial rest state. Under large plastic deformations, the mapping 

from an initial rest state to the current state becomes numerical ill-conditioned. 

By storing only the elastic part of the deformation, we avoid these numerical 

problems. Second, instead of working with a strain metric, we work directly with 

the deformation gradient. By focusing on the deformation gradient, our approach 

can handle arbitrary constitutive models [35]. More importantly, working with 

the deformation gradient naturally leads to a multiplicative formulation of 

deformation, which is more suitable to finite deformations than the additive 

models from classical plasticity that are often used in graphics [61]. In Chapter 4, 

we demonstrate our approach on a number of examples that exhibit a wide range 

of material behaviors.

One of the most significant drawbacks of physics-based animation is "the curse 

of dimensionality"—the quest for ever-higher fidelity leads to an explosion in the 

number of degrees of freedom. This problem naturally leads to the consideration 

of dimensionality reduction techniques. By constructing a problem-specific 

model of our fluid, we can reduce the number of degrees of freedom to only
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the ones needed for our specific problem. While this is less accurate than a 

full dynamics simulation, we can tailor the simulation to our specific time and 

computational requirements.

In Chapter 5, we present several enhancements to the basic reduced fluid 

simulation pipeline. Specifically, we present a basis enrichment scheme for 

combining analytic, data-driven, and artistically authored bases as well as a new 

approach to two-way solid-fluid coupling that scales to a large number of rigid 

bodies.

The analytic bases act somewhat like regularization, allowing our approach 

to generalize outside the training data and thus requiring significantly less 

training data without the risk of over-fitting. We treat two-way solid-fluid 

coupling in a time-splitting fashion—we first compute the effect of the solid 

on the fluid and then compute the effect of the fluid on the solid. We employ 

a vortex panel method to compute obstacles' effects on the fluid and dynamic 

pressure to compute forces induced on the obstacle by the surrounding fluid. In 

a precomputation step, we account for the geometric boundary of each object, 

which involves assembling and inverting a dense "panel matrix;" however, at 

runtime, solid-fluid coupling reduces to a matrix multiplication for each object. 

We handle multiple obstacles by iteratively computing the coupling in a way 

similar to Schwarz alternating methods [68]. Fluid-solid coupling is achieved 

using dynamic pressure to compute forces on solid objects from fluid velocities; 

these forces are then treated as external forces in a rigid body simulator. Our 

results demonstrate that our enhancements are practical for two-way coupled 

reduced fluid simulation with rigid bodies.

1.1 Thesis Statement
The choice of the degrees of freedom for simulating real-world phenomena 

is important. By combining degrees of freedom like particles, grids, different 

global bases, and vortex panels, we can make tradeoffs in simulation speed and 

detail to effectively simulate various real-world phenomena.



CHAPTER 2

RELATED WORK 

2.1 Fluid Simulation
The most popular approach for animating fluids has been to discretize the 

governing equations on a regular Cartesian grid and staggering the velocity and 

pressure samples, known as the "staggered-grid" [30]. In graphics, the first use 

of this approach for a grid-based liquid simulation in 3D was introduced by 

Foster and Metaxas [24], who pioneered its use for graphics applications. Semi- 

Lagrangian advection was introduced by Stam [65], which allowed simulations to 

remain stable even with very large timesteps, but also led to excessive numerical 

dissipation. To address excessive dissipation, Fedkiw et al. [22] used vorticity 

confinement and higher order interpolation; additionally, this method was 

incorporated into a liquid solver with a combination of level sets and marker 

particles for surface tracking [23]. This approach was later extended by Enright et 

al. [21], who used marker particles on both sides of the interface as well as velocity 

extrapolation into the air.

The goal of our method is to simulate large-scale splashing liquids without 

sacrificing small-scale details, which is very similar to that of Losasso and 

colleagues [43], who coupled incompressible flow to a particle system to achieve 

some of the first really convincing animations of breaking waves. Their particle 

system is quite similar to our mass-full FLIP, though they do not create particles 

deep in the body of the fluid. More significantly, like us, they adopted variable 

densities and are able to achieve fluid expansion in the form of spray and 

foam. However, they used these variable densities as targets for bilateral
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incompressibility, whereas we adopt UIC. McAdams and colleagues [47] adopted 

this density targeting approach to precondition collisions in hair simulation and 

Solenthaler and colleagues [63] also used density targeting to reduce fluctuations 

in SPH simulations. Raveendran and colleagues [57] advocated using a coarse 

grid projection to reduce compressibility in SPH simulations. Lentine and 

colleagues [39] similarly use coarse grids to resolve large-scale divergence 

and then perform finer scale projections to achieve high detail. Bodin and 

colleagues [7] introduced inequality constraints to incorporate boundaries into 

incompressibility solves in SPH fluid simulations.

The most closely related work to ours from a technical standpoint is the 

work of Narain and colleagues, who introduced unilateral incompressibility 

and applied it to two-dimensional crowd simulation [50] and to the animation 

of granular materials [51]. The latter approach was extended to the PCISPH 

framework by Alduan and colleagues [2]. These impressive results prompted us 

to consider the application of unilateral incompressibility to liquids. The chief 

technical innovation required in the context of liquids is the unified treatment of 

liquid and obstacles through particle sampling and rasterization with the same 

trilinear filter.

Recently, Schechter and Bridson [60] introduced Ghost SPH to address artificial 

surface tension in SPH simulations. Their approach involves using improved 

boundary conditions through the introduction of ghost particles. This technique 

alleviates particle clumping that results when particles do not have sufficient 

neighbors to reach their target density—by introducing ghost particles, the target 

density is reached. Another solution to this problem was presented by Macklin 

and Muller [46]. Our solution is different. Instead of modifying the free-surface 

boundary conditions, we place a one-sided constraint on the divergence, which 

is more analogous to turning off SPH pressure forces if the density were below 

the target.

However, the underlying causes of artificial surface tension in SPH and FLIP 

simulation are similar, but different. Artificial surface tension in SPH results
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from small particle neighborhoods clumping together to try and achieve a target 

density, while in grid-based and FLIP simulations, artificial surface tension is 

caused by negative pressures that result from disallowing positive divergence.

Chentanez and Muller-Fischer [14] also set out to create large-scale effects. To 

do so in real-time they developed an Eulerian "tall-cell" simulation system that 

runs on a GPU. They also incorporated important secondary effects, including 

wave textures and spray, mist, and foam particles. Incorporating such elements 

into our approach would likely lead to a much richer visual experience. The 

same year, they also achieved separation from solid boundaries by solving a 

linear complementarity problem [13]. They adopted a multigrid solver and 

enforced non-negative pressures only in obstacle boundaries, whereas we use 

preconditioned conjugate gradient wrapped in an active-set method and disallow 

negative pressures in all cells near the liquid surface.

We also draw on the work of Batty and colleagues [4] for handling boundary 

conditions. Similar to their work, we take into account the volume occupied 

by obstacles to adjust the amount of fluid that can enter a cell. However, while 

they use a box filter for obstacles, we use the same trilinear filter for rasterizing 

obstacles as we use for particles. We also note that they were the first to cast 

wall-separation as a linear complementarity problem, which they solved with a 

PATH solver that did not scale to large problems.

There is a rich body of work on fluid simulation in computer graphics. 

A complete survey is beyond the scope of this dissertation, but we whole­

heartedly refer the interested reader to the book by Bridson [10] or, for the more 

mathematically oriented, the text by Chorin and Marsden [15].

2.2 Point-based Methods and Elastoplastic Materials
For a complete survey of point-based methods, we heartily recommend 

the book by Gross and Pfister [28]. We focus our attention on methods 

for animating elastoplastic solids and viscoelastic fluids. Terzopoulos and 

Fleisher [67] introduced inelastic deformations, including viscoelasticity, plasticity,
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and fracture, to the graphics community. O'Brien and colleagues [52] incorporated 

a similar plasticity model into a finite element simulation to animate ductile 

fracture. To avoid problems with poorly conditioned or tangled elements, they 

demonstrated only limited amounts of plastic deformation. We also note that they 

used an additive model of plasticity. While such a model is appropriate when 

considering infinitesimal deformations, as Irving and colleagues [35] pointed 

out, a multiplicative model is more appropriate in the context of finite plastic 

deformation. Clavet et al. [16] modeled viscoelastic fluids with a mass-spring 

system in which the springs are dynamically inserted and removed. Their springs 

explicitly model viscous and elastic forces and include a model of plastic flow. 

Goktekin et al. [25] took an alternative approach and added elastic forces to an 

Eulerian fluid simulation. In their approach, a linear strain rate is integrated 

through time and undergoes plastic decay. Their approach used a linear model 

of elastic deformation that is not invariant to rotations. This shortcoming was 

addressed by Losasso and colleagues [42], who applied a rotation to the advected 

elastic strain to account for rotations in the velocity field. However, as noted by 

Irving [34], because this model is not based on the deformation gradient, it is 

unable to model hyperelastic materials.

Muller et al. [49] introduced a point-based method for animating elastic, plastic, 

and melting objects. They broke the possible deformations into two separate 

regimes. Deformations that were largely elastic were treated by comparing the 

current configuration of neighboring particles to a rest configuration, while large 

plastic deformations were handled by updating a strain measure in a way similar 

to Goktekin et al. [25]. Their approach to primarily elastic deformation uses 

moving least-squares to fit a transformation that maps neighbors in a reference 

shape to the current shape. While we use a very similar moving least-squares 

fit to compute the deformation gradient, we fit the deformation over individual 

timesteps and compose the deformations to arrive at the total deformation. While 

this approach invariably leads to drift in the deformation gradient over time, 

it is able to handle changing neighborhoods and large plastic flow in a unified



10

way. Keiser et al. [37] also developed a unified approach by substituting fluid 

dynamics for the large plastic deformation regime of Muller et al. [49]. Like ours, 

their approach is able to model a wide variety of materials in a unified way.

Solenthaler and colleagues [64] have replaced the moving least-squares 

approach used by Muller et al. [49] and Keiser et al. [37] with an SPH formulation. 

Their approach is able to model fluids, elastic, and rigid objects as well as 

objects that have parts of different types. Additionally, they include melting and 

solidification, merging and splitting, and plasticity using the model of O'Brien et 

al. [52]. More recently, Becker et al. [5] extended the approach of Solenthaler 

and colleagues by employing a corotated SPH formulation that extracts the local 

orientations of the object from the deformation field and calculating the elastic 

forces in a rotated configuration. Hieber and Koumoutsakos [32] described a 

Lagrangian particle method for simulating linear and nonlinear elastic solids 

that does not require a rest configuration. Instead of performing a least-squares 

fit to the deformation in every timestep, they update the deformation gradient 

by integrating the gradient of the velocity field. In contrast to these meshless 

methods, Bargteil et al. [3] introduced a finite element method for animating 

large viscoplastic flow. Their approach relied on a robust remeshing operation 

to maintain well-conditioned elements. Wojtan and Turk [73] improved on 

this approach by using embedded surface meshes, producing highly detailed 

animations of heavily deformed objects. By using embedded meshes, they 

were also able to adopt a fast and simple remeshing procedure. These last two 

papers are the only work in graphics that shares both the main advantages of 

our approach. However, our approach has the advantage of being meshless, 

allowing us to avoid remeshing and the consequent resampling and smoothing 

of simulation variables. More recently, Wicke et al. [70] introduced a dynamic 

meshing algorithm that attempts to replace as few elements as possible while 

still maintaing high element quality even under gross mesh deformation.
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2.3 Dimensionally Reduced Fluids
Dimensionality reduction for computational fluid dynamics (CFD) has 

been well studied in engineering. These methods are variously referred to 

in the literature as proper orthogonal decomposition (POD), Karhunen-Loeve 

decomposition, or subspace integration. The POD method has been used in 

many applications involving dimensionality reduction of complex flows and 

to investigate coherent structures in turbulent flows [44,45, 33]. The snapshot 

POD method introduced by Sirovich [62] for the study of coherent structures can 

be used to create a reduced model from a series of snapshots of a simulation. 

Treuille and colleagues [69] introduced this snapshot technique to graphics and 

described how each step of a fluid simulation can be performed in the reduced 

space.

Since that work, researchers have also developed modular techniques by 

connecting fluid tiles, which capture specific boundary conditions, at runtime to 

create large novel reduced fluid simulations [71]. Additionally, researchers have 

also experimented with different bases for fluid simulation. Gupta et al. [29] used 

the Legendre polynomials for both simulation and rendering of participating 

media. Long et al. [40] improve upon Fourier-based solutions by shifting to the 

discrete sine/cosine transform to handle boundary conditions. However, this 

method is limited to simple domains. More recently, DeWitt et al. [18] used static 

analysis of the domain to construct a basis from Eigenfuctions of the Laplacian. 

In some simple domains, this basis even has a closed form. In our work, we 

combine this basis with the snapshot POD method. Other researchers have 

extended reduced fluid methods by applying a cubature approach for nonlinear 

functions [38] and including inverse operators for solid-fluid coupling [66].

Treuille et al. [69] handled solid obstacles by defining a local basis on a fixed 

size grid surrounding each obstacle. This local basis was created by computing 

the velocity field that cancels the flow into the obstacle induced by each mode of 

the fluid simulation basis and then applying the same snapshot POD technique 

to compute a compressed basis. This process was repeated for a number of
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translations and rotations of the obstacle. Additionally, the rigid body motion 

of each object was also sampled to incorporate object movement into the local 

basis. At runtime, the local basis for canceling the normal flow is determined 

based on the location, rotation, and movement of the object. In contrast to this 

approach, our approach to solid-fluid coupling, based on vortex panel methods, 

does not limit interaction to a small region around the obstacle, has a small 

runtime memory footprint, avoids expensive precomputation, and allows for 

direct interaction between obstacles.

Other approaches for handling moving boundary conditions in reduced fluid 

simulations involve taking the difference of the normal velocity and the desired 

normal velocity, and projecting it onto the velocity basis and then subtracting the 

result from the reduced state [18]. This method approximates the forces up to 

the resolution representable by the basis modes. In contrast, our method is able 

to increase the resolution of our boundary conditions independent of our fluid 

basis.

Our approach to solid-fluid coupling makes use of the vortex panel method, 

which was developed to study flow around airfoils [31,17] and was introduced 

to graphics by Park and Kim [53] to handle obstacles in a vortex particle method. 

More recent variations have been used to simulate smoke as a surface [55,12].



CHAPTER 3

PHYSICS-BASED ANIMATION OF LARGE- 

SCALE SPLASHING LIQUIDS

Our approach brings together several components: unilateral incompress­

ibility, mass-full FLIP, and blurred obstacles. While some of these techniques 

have been employed before inside and outside of the graphics literature, we 

demonstrate that their novel combination is especially effective for computer 

animation of large-scale splashing liquids.

3.1 Unilateral Incompressibility
For completeness, we briefly describe the unilateral incompressibility con­

straint (UIC) and discuss practical issues in its application to simulating liquids. 

The Euler equations describe the motion of inviscid fluids by stating that mass 

and momentum are conserved:

@P = -V  • (pu) (3.1)

= -u  •Vu - Vp + f , (3.2)
@t p p v ’

where P denotes the density of the fluid, t time, u the velocity, p  the pressure,

and f external forces such as gravity. For incompressible flow, the constraint that

density be a constant leads to the solution of a Poisson equation to determine the

pressure that will lead to a divergence-free velocity field, while for compressible

flow, an equation of state determines pressure as a function of density [6]. In

the case of unilaterally incompressible flows, we place an upper bound on the

density of fluid in any given cell, pmax, and require that pressures be non-negative.
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Additionally, we require that for any given cell, either the density is pmax or that 

the pressure is zero. Intuitively, this last constraint requires that the cell be full of 

liquid or be treated like air.

These constraints can be formulated as a linear complementarity problem,

Here, Vf is a face-centered volume fraction (see Section 3.3) representing the

pc and pf  are cell-centered and face-centered liquid densities, respectively 

(see Section 3.2). Intuitively, b estimates the amount of free space (air) in a 

cell at the end of the timestep if pressure was zero.

We solve this system using the modified proportioning with reduced gradient 

projections (MPRGP) method as described by Dostal [20,19], with the Modified 

Incomplete Cholesky (MIC(0)) preconditioner as described by Bridson [10]. 

MPRGP is an active-set method where the active set includes cells where the 

pressure is currently zero and the free set contains cells where the pressure is 

positive. The method interleaves conjugate gradient steps with expansion steps 

that increase the size of the active set and proportioning steps that add cells to the 

free set. The method requires an estimate of the induced norm of the matrix (the 

largest eigenvalue) to use as a bound on step sizes. In practice, this can be found 

using power iterations. We have found that warm-starting these iterations with 

the eigenvector from a previous matrix can dramatically reduce the resulting 

number of matrix multiplications. The method is more general than the problem 

we have described—it also allows for constraints of the form pi > lj. We can take

Ap + b > 0

p > 0  

pT (Ap + b) = 0

(3.3)

(3.4)

(3.5)

with the substitutions

(3.6)

(3.7)

fraction of the volume around the face that may be occupied by liquid, and
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advantage of this functionality to allow for negative pressures (suction) away 

from the surface of the liquid.

After solving for the pressure, we update the velocity field,

un+1 = u
Vpn

V f- p - . (3.8)
f Pf

It is worth noting that this formulation is not unique. In particular, the volume 

fractions, Vf in Equation (3.8) could be moved to the right-hand side and/or the 

densities, pf, could be included in the matrix, both of which may seem more 

natural choices. Just moving the volume fractions to the right-hand side leads to 

instability as the cell-centered volume fractions, needed to multiply pmax and pc, 

may disagree somewhat with the face-centered volume fractions. Moving the 

densities into the matrix does not cause instabilities, but leads to fewer expansion 

steps and less lively motion. If the densities are moved to the matrix, moving the 

face fractions to the right-hand side has little effect.

The intuition behind the UIC solve is less straightforward than standard 

incompressible solves. In a traditional incompressible solve, the solver is 

prohibited from allowing divergence in any cell that has been labeled liquid. 

However, with unilateral incompressibility, the solver is free to relabel liquid 

cells as air by setting the pressure to zero and allowing negative divergence. The 

presence of zero pressures and negative divergence in the liquid prohibits the 

sort of long-distance pressure gradients that allow fluid to slosh back and forth. 

Instead, the fluid quickly settles and comes to rest. Intuitively, our formulation 

encourages the solver to consider cells labeled liquid as liquid by making them 

look full, as in an incompressible solve. However, this formulation is more 

sensitive to spatial oscillations in the density field that naturally occur from 

numerical errors in particle advection. These oscillations can lead to popping and 

even explosions, especially when timesteps are large relative to the grid spacing.

The fix, as detailed by Narain and colleagues [51], is a density correction— 

essentially an additional linear complementarity problem that operates on 

positions rather than velocities to instantaneously adjust the density to satisfy the
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constraint that p < pmax. The matrix in this solve sets At to 1 and removes the last 

term from b (i.e., setting the velocity to zero). After solving for pseudo-pressures, 

y, in each cell, we compute the gradient on each face, x = Vy, and update the 

density of each cell using the divergence of x,

pc+ = V  •x. (3.9)

We also apply averaged corrections to the face densities, pf , and store the 

face-centered x for application as an instantaneous offset to particle positions 

during advection (immediately before time integration). Note that sign errors 

are especially easy to make.

3.2 Mass-full FLIP
Unilateral incompressibility and mass-full fluid implicit particle (FLIP) methods 

are very well-suited to each other. Unilateral incompressibility, like bilateral 

incompressibility, requires the solution of a global system every timestep. This 

solve is easily performed on mass-full FLIP's background grid. Moreover, 

we require density estimates at various locations on the grid. These are 

easily obtained by rasterizing particle mass onto the grid and dividing by 

volume. Furthermore, mass-full FLIP, like SPH, automatically conserves mass 

by conserving the number of particles—a very attractive feature. Finally, FLIP's 

advection scheme results in very low dissipation, perfect for our target of 

large-scale splashing liquids.

Given the popularity of FLIP in computer graphics, we only briefly describe 

the method (for details please see [76, 10]). The anatomy of a timestep in our 

system is as follows:

1. Rasterize particle velocities and masses onto the grid

2. Apply external forces (gravity)

3. Solve unilateral incompressibility and apply pressure gradient (see Sec­

tion 3.1)
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4. Extrapolate velocity field

5. Update particle velocities

6. Advect particles through velocity field

3.2.1 Particle Rasterization

In the first step, we rasterize particle velocities and masses onto the grid. 

Velocity and mass contributions from each particle are accumulated onto each face; 

just mass is contributed to cell centers. We use the standard trilinear weighting 

kernel. After all particles have contributed, velocities are normalized and masses 

are converted to densities by dividing by the volume of a cell. Specifically,

where m f is the mass of a face, mp is the mass of a particle, T(-) is the trilinear 

interpolation kernel, xp is the particle position, x f is the position of the center of 

a face, up and uf are the u-components of the velocity of the particle and face, 

respectively (similar equations exist for the v- and w- components), pf  is the 

density at the face center, and h is the grid spacing. Note we do not need to 

explicitly store both mf and pf .

Because we divide by density in Equation (3.8), any cell that has mass less than 

a threshold is treated as air and not included in the unilateral incompressibility 

solve.

(3.10)
p

(3.11)

(3.12)

3.2.2 Velocity Extrapolation

We perform a simple velocity extrapolation algorithm that is similar in spirit 

to fast sweeping, but does not make use of levelset values. We first mark each
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grid face that received any density. We then sweep over the grid several times. 

In each sweep, a face that has marked neighboring faces is assigned an average

than building a levelset and applying fast sweeping, but is much faster.

3.2.3 Update Particle Velocity

As is commonly done, we use a combination of particle in cell (PIC) and FLIP 

to update the particle velocities. That is, we combine the trilinear interpolated 

velocity from the grid (PIC) with the change in grid velocity (FLIP).

3.2.4 Particle Advection

We use the second-order trapezoidal rule or first-order Euler integration for 

advection. In the later case, the extrapolation step may be skipped. Particle 

paths are clipped against domain boundaries and the levelset representation of 

obstacles. In the later case, we try stepping along the gradient of the levelset to 

place the particle on the obstacle surface. If this fails to converge (or places the 

particle outside the domain boundary), we perform several bisection steps along 

the particle's initial path to find a position with a positive (outside the obstacle), 

but small, levelset value.

Our handling of obstacles is the most novel component of our approach. We 

sample the obstacles with particles, just as we do the liquid. We then rasterize 

obstacle particles onto the grid using the trilinear interpolation weights we also 

use for the liquid particles. In effect, we are blurring the boundaries of the 

obstacles in the same way that we blur the boundaries of the liquid. More 

specifically, to compute pmax for a cell, we approximate the integral

of the neighboring velocities and is itself marked. This approach is less accurate

3.3 Obstacle Handing

f f f  T(x -  xc) f  (x)dV
(3.13)pmax = p f
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where pf  is the default density of the fluid (1000 kg/m 3 for water), T(-) is the 

trilinear interpolation basis centered at the cell, x is a dummy variable for 

integration, xc is the position of the cell center, and f  is a characteristic or indicator 

function that is 0 inside the obstacle and 1 outside. The integral for the face 

volume fractions, v f , which represent the maximum amount of liquid that can 

rasterize to a face, are computed similarly by leaving out the scaling by pf . 

In practice, we uniformly sample the obstacles to evaluate the integral. This 

approach ensures that the volume computations agree with the rasterization 

stencil used by the fluid particles. If this were not the case, for example with the 

"box filter," a cell could be marked as containing zero fluid volume and yet, a 

liquid particle would be able to rasterize to it.

As our unilateral incompressibility solve does not allow negative pressures, 

there is no "suction" along obstacles and we automatically obtain wall-separating 

boundary conditions as cells next to obstacles "expand." That is, the pressure 

solve allows the fluid velocity field to point out of the obstacle, but not into it 

once the maximum density is reached. Additionally, as noted above, during 

advection, we ensure that particles are outside obstacle levelsets.

It is the novel combination of blurred obstacle boundaries, unilateral incom­

pressibility, variational volume fractions and particle collision detection that 

allows our method to handle obstacles seamlessly—with no special effort we 

get wall-separation. These benefits do come at a cost, however. We sacrifice 

sharp boundary conditions and sharp interfaces. This sacrifice is justified in the 

context of large-scale single-phase liquid simulation, but would prove too great 

for multiphase flow or in cases where the boundary layer plays a key role.

3.4 Results and Discussion
We include two comparisons between our approach and an incompressible 

FLIP solver. Like the solver detailed above, our incompressible FLIP uses the 

second-order trapezoidal rule, which produces somewhat smoother results than 

the commonly used midpoint method, and our simple velocity extrapolation.
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One difference is that while our particles will contribute mass to nearby cells due 

to the trilinear filter, our incompressible solver uses a "box filter" to determine 

which cells are labeled "liquid." In our experience, this diminished volume gain 

and led to better results from particle skinning. Our incompressible solver also 

uses traditional nonblurred obstacles.

In the first comparison, we set up two fountains (see Figure 3.1). Our approach 

allows the liquid to separate and expand in a natural manner, while the artificial 

surface tension of the incompressible solver causes the fountain to oscillate and 

collapse on itself.

The second comparison is a dam break with an obstacle (see Figure 3.2). 

In this example, our approach creates a large splash as the liquid passes over 

the obstacle, while the incompressible approach flows over the obstacle with 

almost no noticeable splash. This example also demonstrates incompressible 

FLIP's tendency toward volume gain as a single particle can force a cell to be 

labeled liquid. Our additional examples (see Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 

3.9, 3.10, 3.11, and 3.12) demonstrate more large-scale, splashy fluid effects. Our 

simulations were performed with a variety of grid resolutions and domain scales, 

see Table 3.1 and Table 3.2 for details and timing results.

Figure 3.1. The artificial surface tension from forcing incompressibility leads to 
seeming small-scale behavior (left). Unilateral incompressibility allows the fluid 
to separate and leads to the impression of a larger-scale fountain (right).
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Figure 3.2. A dam breaking over an obstacle. Left Column: Incompressible FLIP. 
Right Column: Our Method.



22

Figure 3.3. A sequence of images showing a city being flooded by a tidal wave.
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Figure 3.4. A quadruple dam break creates a large splash in the center of the 
scene. Left: Top view. Right: Side view.
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Figure 3.5. Left: Several liquid objects fall into a circular pool of water. Right: A 
large dam breaks over uneven terrain.
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Figure 3.7. Two streams of liquid collide.
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Figure 3.9. A series of underwater explosions cause large-scale splashing.
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Figure 3.10. A sequence of images from an animation of two streams colliding.
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Figure 3.11. A sequence of images from an animation of two streams colliding 
visualized as particles.
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Figure 3.12. A sequence of images from an animation of several underwater 
explosions rendered from different viewpoints.
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Table 3.1. Grid scale, resolutions, and particle counts for all examples in this 
chapter.

Figure Grid
spacing (h)

Domain
size

Particle
count

Figure 3.3 
Figure 3.1 (UIC) 
Figure 3.2 (u Ic ) 
Figure 3.4 
Figure 3.8 
Figure 3.6 
Figure 3.9

2
0.05
0.1
0.1
0.1
0.125
0.0625

250x80x80
50x100x50
80x60x40
100x100x100
100x120x100
208x112x160
80x80x80

16,307,596
104,988
1,539,000
5,508,794
2,060,247
6,937,747
3,430,944

Table 3.2. Timing results for all examples in this chapter. Timing results are given 
in average seconds for one 30 Hz frame.

Figure Total
time

Solve
time

Extrapolate
velocity

Particle
advection

Particle
rasterization

Figure 3.3 75.6 35.3 1.5 23.5 14.4
Figure 3.1 (UIC) 7.8 5.1 0.8 0.7 0.7
Figure 3.2 (UIC) 21.7 5.2 0.5 9 6.8
Figure 3.4 118.5 54.2 2.7 30.3 29.9
Figure 3.8 81.6 52.1 4.6 12.4 10.2
Figure 3.6 556 470 12.6 39.1 28.7
Figure 3.9 20 11.3 0.3 4.2 4

3.5 Limitations
A primary limitation of our approach is that there is no representation of the 

liquid surface, forcing us to rely on particle skinning approaches—generating 

surfaces from animated particle data, which can lead to artifacts, especially at 

low resolutions and with uniform or overly randomized samplings. Interestingly, 

while other researchers using FLIP have generally favored lower numbers of 

particles per cell, we found that increasing the number of particles per cell was 

a very effective strategy for achieving higher resolution animations without 

requiring the solution of larger LCPs. An alternative to particle skinning
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would be to couple our particles to an explicit mesh surface as done by Yu and 

colleagues [74], though this would not allow for the frame-level parallelism of 

our particle skinning approach. Another disadvantage of our approach is the 

necessity for two LCP solves, both of which are more expensive than the simple 

Poisson solve in traditional incompressibility. We would also like to improve 

the computational efficiency of our approach. Many software design decisions 

were made favoring ease of debugging and experimentation over efficiency, so 

we believe there is much room for improvement.

One, perhaps subtle, disadvantage of assigning mass to the particles is that it 

makes reseeding very difficult. Placing too many particles in a cell will result 

in unwanted expansion, while too few will result in collapse. It took several 

iterations to produce the example in Figure 3.1, which required solving for the 

number of particles to add based on the fountain velocity and simulation timestep. 

Finally, we note that our approach essentially blurs both the liquid surface and 

obstacles. While this is acceptable for large-scale, splashy behavior, in many 

contexts, sharp boundaries are essential to compute the desired behavior [56].



CHAPTER 4

A POINT-BASED METHOD FOR ANIMATING 

ELASTOPLASTIC SOLIDS

We describe a point-based approach for animating elastoplastic materials. Our 

primary contribution is a simple method for computing the deformation gradient 

for each particle in the simulation. The deformation gradient is computed for 

each particle by finding the affine transformation that best approximates the 

motion of neighboring particles over a single timestep. These transformations 

are then composed to compute the total deformation gradient that describes 

the deformation around a particle over the course of the simulation. Given the 

deformation gradient, we can apply arbitrary constitutive models and compute 

the resulting elastic forces.

4.1 Computing the Deformation Gradient
In this section, we describe our method for computing the deformation 

gradient and the consequent elastic forces. We focus on the modifications 

we made to the open-source SPH simulator released by Adams et al. [1]. For 

additional details on SPH simulation, we refer the reader to that paper and its 

references.

Our goal is to compute elastic forces in a point-based simulation. In order 

to do so, we must first compute the deformation in the vicinity of each particle, 

pi. We first consider how to compute the deformation around pi over a single 

timestep. Let xi be the position of pi at the beginning of the timestep and yi be 

the location of pi at the end of the timestep. If pj are the neighbors of pi, we seek
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the transformation matrix F, such that

n

D F(x j -  xi) -  (y j -  y ^ (4.1)
j=1

is minimized. If we let

(4.2)

and

Y = ( y1 y2 y3 ••• y n ), (4.3)

where the individual xi and yi are column vectors; then if the deformation can be 

represented with an affine transformation, we have

Taking the transpose of both sides and multiplying both sides by X we obtain the 

normal equations,

This solution gives us the best linear transformation for the neighborhood 

around pi in a least-squares sense. However, we want nearer particles to have 

greater influence, so we multiply the columns of X and Y by a weighting kernel. 

Our implementation uses the poly6 kernel (the default smoothing kernel given 

by Muller et al. [48]),

FX = Y. (4.4)

XXT f t = x y t . (4.5)

Solving for F, we have

(4.6)

0 < r < h 
otherwise.

(4.7)

4.2 Composing Deformation Gradients
This approach gives us the deformation over a single timestep. However, this 

deformation is a linear transformation and transformations compose through
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multiplication. Thus, to compute the deformation over some time interval, we 

break the interval into a series of k timesteps, estimate the deformation over each 

timestep, and compute
k

F = [ ]  Fi. (4.8)
i=1

We note that only a single F, representing the total elastic deformation, need be 

stored for each particle. The individual Fi are computed during the associated 

timestep, but not stored.

4.3 Constitutive Model
Once we have the deformation gradient, we can apply any constitutive 

model we like, compute strain, stress, and elastic forces, and move the simulator 

forward. In our implementation, we diagonalize F into UFVt  using a singular 

value decomposition [35] and apply the multiplicative plasticity model described 

by Bargteil et al. [3] to obtain the elastic deformation, Fe. We then compute the 

diagonalized stress as in Irving et al. [35],

P = 2 ^ (Fe -  I) + ATr (Fe -  i ) I. (4.9)

Following Solenthaler et al. [64] and accounting for our diagonalized deformation 

gradient and stress, the elastic force pi exerts on pj is

fij = -2v{Uj UFePVT dij (4.10)

where vi and vj are the volumes of particles pi and pj and

dij = VW(F-1(y j -  y ), h). (4.11)

Note that the vector from y\ to yj is back projected to the reference space 

before applying the weighting kernel. We use the weighting kernel developed 

specifically for elastic forces by Solenthaler et al. [64],

h) = | c — cos((r+h)n) + c — 0 < r < hn \ 2h / nW(r,h) = < ' n ^ y  2h ) - n  - "  (4 .12)
0 otherwise,
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where
f

c = -----(------------- ) • (4.13)
8h4 (f  -  f  + f2 )

In order to ensure conservation of momentum, fij and f ji are averaged and equal 

and opposite forces are applied to the particles. We note that because we have 

diagonalized F and P, the forces computed in Equation (4.10) are rotationally 

invariant.

4.4 Results and Discussion
Our implementation adds the elastic forces described in this chapter to the 

open source SPH simulator by Adams and colleagues [1]. The resulting system 

may be thought of as a "unified SPH" simulator and is capable of simulating 

liquids and solids as well as materials that demonstrate properties of both liquids 

and solids. In fact, many of our examples included SPH pressure forces as well 

as elastic forces, as we found that pressure forces provided additional stability. 

We refer the interested reader to the paper by Adams and colleagues [1] and the 

associated source code for details such as time integration (symplectic forward 

Euler), neighborhood selection (the 30 nearest neighbors within a given radius), 

etc.

Figures 4.1-4.7 demonstrate our method's ability to handle a wide range of 

materials. Figure 4.2 shows an example with a modified version of our plasticity 

model that divides the flow rate by the magnitude of the stress, so that the material 

flows more easily under small stresses. Figure 4.4 demonstrates a hyper-elastic 

material where the eigenvalues of F are squared before computing the stress. 

Figure 4.6 compares one of our simulations with real-world footage of bread 

dough and Figure 4.7 demonstrates the effects of varying our material parameters. 

Figure 4.8 shows a comparison of our approach with an approach that stores 

and compares to a reference shape and then removes plastic deformation before 

computing elastic forces and an additive approach that computes Green's strain 

at every timestep and adds it to the total elastic strain. As is expected, storing the
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Figure 4.1. Two different shapes form a pile on the ground. The right image 
shows the simulation particles.

Figure 4.2. An armadillo demonstrates non-Newtonian behavior similar to a 
cornstarch solution—resisting large stresses, it initially bounces on the ground, 
but when the stress is reduced it flows readily.

reference configuration works very well for largely elastic bodies, but under large 

plastic flow, the simulation becomes unstable. Conversely, an additive model of 

elastic deformation works well enough when most of the deformation is plastic, 

but fails to return to the rest shape when the deformation is primarily elastic.

Table 4.1 summarizes our computation times. All results were obtained 

on a single core of a Xeon E5410 (2.33 Ghz), with 16 GB of memory available. 

Profiling has shown that in the example in Figure 4.3,14% of the computation 

time was spent in our elasticity code. Half of this time was spent performing 

eigendecompositions. This total cost is roughly twice the cost of surface tension 

forces, which we did not use in our examples. We note that our examples were 

run with very conservative timesteps—some of our examples ran successfully 

with 10x larger timesteps.

Generating visually appealing, time-coherent surfaces for particle-based 

simulations remains a difficult problem that is beyond the scope of this disserta-
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Figure 4.3. An elastoplastic bunny falls on a sphere

Figure 4.4. Hyperelastic boxes dropped on the ground. The left cube is quite
stiff, the right cube is softer.

Figure 4.5. Three cylinders with different material properties fall on the ground.
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Figure 4.6. Real-world footage of bread dough shaped like a star (left) is compared 
to a simulation (right).
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Figure 4.7. We demonstrate the effects of our plastic material parameters by 
dropping a box on the ground.
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u I u
w

Figure 4.8. Final frames in a comparison of our method (left) against a method 
that uses a rest configuration (middle) and a method with an additive strain 
model (right). The top row is an elastic material, the bottom row is a very plastic 
material. The simulation consists of applying and then releasing an analytic 
compression force that increases away from the center of the object. The lower 
middle image is the last frame before the simulation became unstable.

Table 4.1. Timing results for the examples in this chapter.
Figure At (ms) Particles Sec/Frame
Fig. 4.2 0.5 52316 96.4888
Fig. 4.3 0.1 40556 379.065
Fig. 4.5 (left) 0.1 16770 138.257
Fig. 4.5 (center) 0.1 16770 137.909
Fig. 4.5 (right) 0.1 16770 141.591
Fig. 4.4 (left) 0.1 665 4.76452
Fig. 4.4 (right) 0.1 665 4.88767
Fig. 4.7 (top, left) 0.1 12152 102.545
Fig. 4.7 (center, left) 0.1 12152 86.9948
Fig. 4.7 (bottom, left) 0.1 12152 94.4097
Fig. 4.7 (top, right) 0.1 12152 96.135
Fig. 4.7 (center, right) 0.1 12152 87.1509
Fig. 4.7 (bottom, right) 0.1 12152 94.3632
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tion. Our results were generated with a variation of the method described by 

Williams [72].

One of the paramount concerns in any computer graphics simulator is stability 

and ours is no exception. One of the sources of error and instability in our 

approach is the estimation of the deformation gradient. In particular, if a particle 

does not have enough neighbors or the distribution of particles is degenerate, 

XXT will be ill-conditioned. To address this problem, we do not update the 

deformation gradient if a particle has less than a set number of neighbors (6 in 

our implementation), if XXT is ill-conditioned, or if the update would cause any 

of the eigenvalues of F to be less than or equal to zero. We also note that plastic 

flow tends to improve stability by bringing F towards the identity. Consequently, 

relaxing the constraint that plastic deformation be volume preserving in cases 

when F encodes large volume changes further improves stability. When the 

method does fail, it tends to be in areas around sharp features, where a particle's 

neighbors subtend a small solid angle, or in areas where topological changes are 

occurring. Addressing these issues is an important area of future work.



CHAPTER 5

ENHANCEMENTS TO MODEL-REDUCED

FLUID SIMULATION

We present several enhancements to model-reduced fluid simulation that 

allow improved simulation bases and two-way solid-fluid coupling. Specifically, 

we present a basis enrichment scheme that allows us to combine data-driven or 

artistically derived bases with more general analytic bases derived from Laplacian 

Eigenfunctions. We handle two-way solid-fluid coupling in a time-splitting 

fashion; we alternately timestep the fluid and rigid body simulators, while taking 

into account the effects of the fluid on the rigid bodies and vice versa. We employ 

the vortex panel method to handle solid-fluid coupling and use dynamic pressure 

to compute the effect of the fluid on rigid bodies.

In this section, we will first briefly review the mechanics of reduced fluid 

simulation, then in following sections, we introduce our basis enrichment scheme, 

and finally present our approach for two-way solid-fluid coupling.

The basic mechanics for reduced fluid simulation were introduced by Treuille 

and colleagues [69]. We begin with the incompressible Navier-Stokes equations 

which describe the motion of a viscous fluid,

5.1 Reduced Fluid Simulation

—  = -(u  • V)u -  vV2u + Vp + fe 

V u  = 0

(5.1)

(5.2)
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where u is the velocity, v is the viscosity parameter, p is the pressure, and fe are the 

external forces. The goal of reduced simulation is to reduce the dimensionality 

of u through Galerkin projection onto a low-dimensional basis,

r = Bt u (5.3)

where, r e R r represents the reduced coefficients and B is the basis represented as 

a matrix with r columns, each representing a basis function.

A typical fluid simulation in computer graphics employs operator splitting 

breaking the simulation into several individual steps: advection, applying 

external forces, applying viscosity, and projection onto a divergence-free field. 

To perform reduced fluid simulations, we must address each of these steps.

Fortunately, because we only include divergence-free fields in our basis, we 

can only represent divergence-free fields, removing the need for the expensive 

projection step. External forces are easily handled by Galerkin projection onto 

the basis. Specifically, given external forces, fe, we compute reduced forces

fe = BT fe. (5.4)

These are simply scaled and added to the reduced velocity coefficients,

r := r + sfe, (5.5)

for some scaling factor s that accounts for density, grid-spacing, and timestep.

The diffusion term is also easily handled. Being a linear operator, the 

discretization of the diffusion operator V2u can be represented as a matrix D. 

Projecting into the subspace, we get the reduced diffusion matrix

D = BtDB, (5.6)

which is precomputed for a given domain.

The nonlinear advection operator, - (u • V)u, is more complicated. The 

nonlinearities preclude it from being written as a single reduced matrix. Instead, 

a reduced advection matrix for each basis function can be precomputed and then
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at runtime combined into the final reduced advection operator. The discretization 

of the advection operator for a given velocity field, u, can be expressed as a 

matrix, Au. This matrix, when applied to a field, v, (i.e., Auv) has the effect of 

advecting v through u.

Thus, we precompute, for each basis function or mode, b i, in the basis 

B = [b1 . . .b r] a matrix, Abi, that represents advection through the velocity field 

b i. Each of these matrices can be reduced

Ab = BTAbiB, (5.7)

during precomputation. During simulation, the reduced advection matrix 

is computed by summing all mode advection matrices weighted by their 

corresponding reduced state coefficient

X  AbA (5.8)

Viscosity and advection can be combined into a single update from time t to 

t + At and can be written as:

rt+At = (eAt(vD+A)) rt= êAt(vD+A)) rt. (5.9)

This matrix-vector product is computed efficiently using an iterative Taylor 

approximation [71].

We note that while the reduced simulation can proceed without the notion of 

a grid, for collecting training data and visualization purposes, a grid is useful. In 

our system, we explicitly use the grid for solid-fluid coupling.

5.2 Basis Enrichment
The divergence-free bases used in reduced fluid simulations have been 

constructed in either of two ways. The first method involves running a training 

simulation and then extracting a reduced basis using a Singular Value Decom­

position (SVD). This process is accomplished by concatenating velocity-field 

snapshots of a high-resolution fluid simulation into a matrix, computing the
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SVD, and then selecting r singular vectors [69]. A basis generated in this way can 

capture motion similar to the training data very well in the least squares sense; 

however, it suffers from a number of problems. Arbitrary motion during runtime 

can be problematic as the basis may not generalize well to motion outside of the 

training simulation, e.g., using a training simulation where an obstacle generates 

flow in one half of the domain for a runtime where the obstacle moves to the other 

half. To minimize problems from over fitting, a significant amount of simulation 

data has to be precomputed. Additionally, it can be difficult for artists to know 

what kinds of training simulations to run in order to generate a suitable basis, 

not to mention the large amount of precomputation space and time needed.

The second method involves creating a basis using an analytic approach, for 

example choosing Eigenfunctions of the Laplacian operator. For a few simple 

domains, these bases can be computed in closed form. In more general domains, 

the Eigenfunctions of the discrete Laplacian operator are computed using an 

Eigendecomposition [18]. In simple domains like a box, the advection operators 

can be computed analytically and because the modes are only loosely coupled, the 

resulting matrices are sparse. The Eigenfunction modes work well for gross flow 

and do not suffer from over-fitting, but detailed flow can require an impractically 

large number of modes.

To give artists control over generating a basis, we provide a velocity drawing 

tool. After the velocity has been drawn, it is projected onto a divergence-free field 

and the artist can timestep the simulation to generate the desired velocity field. 

This process allows an artist to create different flow effects, such as vortices or 

laminar flow paths, with minimal training data. Alternatively, artists can simply 

interact with the simulation to generate training data. We will now describe how 

to combine different bases; a similar approach has been used in the context of 

reduced bases for direct to indirect radiance transfer [41].

To exploit any sparsity that might exist in the Laplacian Eigenfunctions, 

we would like to keep this basis intact when including the data-driven, artist­

generated modes. Thus, given a Laplacian Eigenfunction basis, E, and velocity
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fields generated by an artist, D = [d1 ... d^], where each column is a user-generated 

velocity field scaled to unit length, we would like to construct a combined basis 

that keeps the structure of E intact. First, the SVD of D = USVT is computed and 

the left singular vectors, U, with corresponding singular values greater than zero 

are retained. U is then deflated against the basis,

Ud = U -  EEt  U, (5.10)

where the columns of Ud now contain the parts of the velocity fields, U, that could 

not be represented by the basis, E. The columns of matrix Ud are now orthogonal 

to the columns of E but may no longer be orthogonal to each other, i.e., U jU d 

may not be the identity. To generate a basis that spans the same subspace, we 

simply compute the SVD of Ud and retain the singular vectors corresponding to 

non-zero singular values,1 resulting in an orthonormal basis R. Concatenation of 

E and R forms an orthogonal basis, perfectly valid for reduced fluid simulation. 

From now on, we therefore assume that B is the concatenated matrix [E|R].

We would also like the ability to specifically activate the artist-generated 

modes during runtime. If one wishes to directly excite an artist-created mode 

during runtime, the projection of those modes into B can be precomputed. At 

runtime the resulting coefficients can be added to the reduced state. No projection 

is necessary during runtime.

5.3 Two-way Solid-fluid Coupling
We use the reduced fluid simulation engine described in Section 5.1 and 

Box2D [8] for rigid body simulation. To couple them, we use a time splitting 

technique and alternately timestep each simulator while taking into account the 

effects of the fluid on the rigid bodies and vice versa.

1 W hile U is full rank, if there is a large overlap betw een U and E, deflation will result in a 
rank deficient m atrix Ud (with zero singular values).
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5.3.1 Solid-to-Fluid Coupling

To account for the effect of rigid bodies on the fluid flow, we adopt a vortex 

panel method [17, 53]. This approach has two advantages over previous work. 

First, obstacles are not limited to a finite range of spatial influence. In fact, they 

have global influence, though the fall-off is quite fast. Second, we avoid the 

substantial precomputation of sampling the object's effect at various positions and 

orientations in the domain. Our only precomputation involves inverting matrices. 

Finally, we note that our approach generalizes beyond reduced fluid simulation 

and could be used in other contexts, such as smoothed particle hydrodynamics, 

Eulerian, or semi-Lagrangian methods.

In two dimensions, objects are discretized into M  piecewise linear segments 

called panels. In our system, the panel lengths are chosen to be on the order of 

the fluid simulation's grid spacing. The panels are then used both as quadrature 

points and as vorticity sources that cancel flow normal to the obstacle.

The velocity, u = (u, v), generated by a panel at a point x in the local coordinate 

system of the panel, is given by

Yp Y , do + e
u = — , v = —  ln - ----- , (5.11)

2n 2n de + e

where y is the panel strength, p is the angle subtended by the panel from the 

point x, do, and de are the distances from x to the origin and end of the panel, 

respectively, and e is a small constant to avoid division by zero (see Figure 5.1).

To cancel the flow normal to an object, we must consider the interactions 

between all the panels of the object. To do so, we compute a coupling matrix 

P e RMxM that encodes the influence of the strength of panel i on the velocity at 

panel j. Specifically, let u j  be the velocity induced at the midpoint of panel j by 

panel i when panel i has unit strength (i.e., yi = 1). Then the Pji is given by

Pji = - uij • nj, (5.12)

where nj is the normal vector of the j-th panel.
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Figure 5.1. A vortex panel. Left: Panel coordinate system. Right: Velocity field 
induced by the panel.

Given P and a velocity field, u, to cancel the flow normal to the obstacle, we 

must solve the linear system,

Py = b (5.13)

where y  is the panel strength vector, and b is a vector encoding the violation of 

the boundary condition. Specifically,

bi = A( (uf  -  uo) • n  (5.14)

where b; is the violation at panel i, A; is the panel area, uf is the fluid velocity 

evaluated at the midpoint of the panel, and uo is the velocity of the object. This 

approach corresponds to a 1-point quadrature rule. Of course, higher order 

methods could be used.

As described, the M x M panel coupling matrix P is singular and an additional 

constraint must be added in order to obtain a unique solution. We add the 

constraint that there is zero circulation around the boundary, i.e.,

M
Y ^ A i Yi = 0. (5.15)

i

This constraint is encoded by adding a row to the panel matrix containing the 

panel lengths and a zero to the end of b. The panel matrix is computed in object
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space, allowing for rigid body transformations without modification. P can be 

inverted during precomputation; at runtime, panel strengths are computed with 

a single matrix-vector product.

Some distributions of panels are problematic when objects contain symmetries. 

For example, a square with two panels per side is unable to cancel the normal 

velocities induced from rigid body rotation. In such cases, it suffices to use an 

odd number of panels per side.

5.3.2 Multiple Bodies

Thus far, we have described how to handle a single object. To handle multiple 

objects, we must account for their interaction. Ideally, we would compute a 

single coupling matrix encoding the interactions of all panels in the system. 

However, this would require solving a new and much larger linear system every 

step, removing the ability to precompute an inverse [12]. Instead, we employ a 

fixed point iteration approach that takes advantage of the precomputed inverse 

panel matrices. First, the panel strengths of each object are computed to satisfy 

the boundary conditions of the reduced velocity field, i.e., for all objects i we 

compute

Yi = P-1bi. (5.16)

We then iteratively solve for panel strengths that additionally satisfy object-object 

interactions.

Each iteration, for each object i in our simulation:

1. Compute b cobj, which is the boundary violation induced by all other objects.

2. Store the previously computed panel strengths.

3. Solve for the new panel strengths,

Yi = P71(bC"g + b f j ). (5.17)

4. Compute the norm of the difference in panel strengths.
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Iterations are performed until the panel strengths converge, or a user-specified 

tolerance or iteration limit is reached. This scheme, which falls into the class of 

Schwarz alternating methods [68], is guaranteed to converge to a unique solution 

for second-order PDE's. Golas et al. [27] successfully demonstrate an alternating 

method to couple Eulerian grids with vortex particle methods.

This alternating scheme may fail due to the singularities that occur when 

evaluating the velocity very near a panel. Velocities evaluated too close to a 

panel should not be relied upon and instead another approach should be taken, 

such as interpolating from reliable positions [31].

5.3.3 Domain Boundaries

When an object approaches the domain boundary, the velocity field induced 

by its vortex panels will not generally respect the solid wall boundary conditions 

(see Figure 5.2). For simple domains with closed form Laplacian Eigenfunctions, 

we employ the method of images—used in electrostatics to handle wall boundary 

conditions—to accurately and efficiently enforce the wall boundary conditions. 

To do so, objects that violate the solid wall boundary conditions above an error 

threshold are reflected across the solid wall. The resulting combined velocity 

field will only have tangential components along the solid wall. The velocities 

induced from the reflected panels are evaluated only at positions that fall inside 

the domain. This approach will correctly satisfy the domain wall boundary 

conditions by canceling the normal components of the velocity induced by the 

original object. This method is similar in spirit to Long et al. [40] who used the 

reflection properties of the discrete sine/cosine transform to handle solid wall 

domain boundaries.

5.3.4 Feedback

The resulting velocity field is a combination of the reduced fluid velocity, ur, 

and a panel velocity field, up, where
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Figure 5.2. Domain boundary comparison. Left: A visualization of the velocity 
field of an object near a domain boundary. Note that, along the black line, 
the velocities point into and out of the domain. Right: After the addition of a 
mirrored object below the black line, there is no flow across the domain boundary.

up = X  u  (5.18)
i

and ui is the velocity field induced by panel i. up can be evaluated at any specific 

point in space through evaluation of Equation (5.11) and a straightforward 

summation. For example, to advect a tracer particle, we can combine the reduced 

velocity, reconstructed in the neighborhood of the particle, with the velocity 

evaluated from the panels.

However, the panel strengths have no memory and must be recomputed 

from scratch each timestep. Thus, we need to feed their contribution back 

into the reduced fluid simulation to preserve momentum. This step can be 

accomplished by iterating over the panels and summing their contribution to 

the background grid. The resulting velocity field, up, is then be projected 

into the reduced space and added to the reduced coefficients. However, 

naively evaluating Equation (5.11) at every background grid velocity sample is
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computationally expensive and can be especially wasteful if there are large errors 

when up is projected into the reduced basis.

Instead, we approximate the contributions of panels to distant background 

grid samples using a quadtree data structure. Specifically, we build a quadtree 

over the background grid where the root corresponds to the entire domain and the 

leaf nodes correspond to disjoint subgrids. In our examples, the maximum size 

of a leaf node subgrid is 4 x 4, corresponding to 4 u and 4 v velocity samples. We 

use a precomputed error metric to determine how deep to descend the quadtree 

when evaluating u;. To precompute this error metric, we consider a unit strength 

vortex panel and evaluate ui at the center of the quadtree node, c, and additional 

sample points inside the quadtree node, sj. Then, the maximum error induced 

by using a constant approximation of ui for the quadtree node is

max ||u;(c) -  u j(s j)||. (5.19)
j

We compute these error samples for quadtree nodes at a number of distances 

and directions from the panel and store the maximum error incurred at a given 

level of the quadtree for a given distance.

At runtime, when computing the contribution of ui to up, which is stored on 

the background grid, we use these precomputed values to determine the error 

induced by approximating the velocities using the center of a quadtree node. If 

the error is below a threshold, the panel velocity is evaluated at the center of 

the quadtree node and this value is added to all the background velocity values 

covered by the quadtree node; otherwise, we descend the tree.

When using our quadtree acceleration, we still must project up onto the 

reduced basis. Note that some details of the velocity field will be lost in this 

projection and, in particular, the reduced velocity field may not respect obstacles 

boundaries. However, before this feedback, the velocity field ur + up does satisfy 

the boundary conditions and can be evaluated exactly at any point in space in 

time linear in the number of panels and the number of reduced coefficients. This 

velocity should be used for, e.g., advecting tracer particles.
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5.3.5 Fluid-to-Solid Coupling

We incorporate fluid to solid coupling by computing the dynamic pressure 

on the boundary of the rigid body. From the dynamic pressure, we compute the 

force, which is then added to the rigid body simulation. The dynamic pressure, 

sometimes called the velocity pressure, is

1 Tq = ^pu  u, (5.20)

where p is the density of the fluid, and u is the fluid velocity. For each panel, we 

have already computed the difference in relative velocity between the obstacle 

and fluid when solving for the panel strengths. From that velocity, we compute 

the dynamic pressure q at panel centers and then multiply by the panel area to 

get forces [59], which are normal to the panels. Specifically, the force on panel i is

f = Aiqni, (5.21)

which is then applied to the rigid body at the panel centers.

Buoyancy forces can optionally be included with

fi = -pA ihigni, (5.22)

where hi is the depth of the panel center and g  is the scalar gravitational constant. 

The minus sign is to signify that the force is in the direction opposite the surface 

normal of the panel.

Both forces integrate over surfaces and require that objects are closed.

5.4 Results and Discussion
In our first example, we have a single data-driven mode with 63 Eigenmodes. 

The artist input and the input after it has been projected to be divergence-free is 

shown in Figure 5.3. The Eigenmodes poorly capture this "jet," but represent 

gross flow well, while our enhanced basis captures both the gross flow and the 

jet well; see Figure 5.4.
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Figure 5.3. Artist input comparison. Left: Line integral convolution (LIC) is used 
to visualize the input from the artist. Right: The input from the artist after it has 
been projected to be divergence free.

Our second example uses a 128x128 grid with 67 Eigenmodes and contains 

two pairs of falling objects; each pair has one object above the other. After being 

released, the objects above catch up to the objects below, closing the gap between 

them. The objects that start out above draft off of the objects below, allowing them 

to fall faster through the fluid, demonstrating the effects of solid-fluid coupling 

and object-object interaction; see Figure 5.5.

Finally, we have combined both our basis enhancement and two-way coupling 

into a simple 2D game; see Figure 5.6. The game uses 73 Eigenmodes and there 

are 15 objects with a total of 147 panels. Timing results in Table 5.1 show that 

the naive approach of computing feedback from the panel velocities to the 

reduced simulation dominates timing, taking 41ms in this example. By using our 

quadtree feedback approach, we can reduce the time spent computing feedback 

by increasing the error threshold of the approximation. In practice, this error 

threshold can be quite large because this error is hidden by errors made when 

projecting the resulting velocity field into the reduced basis.
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Figure 5.4. Basis comparison. Left: Only Eigenmodes. Right: A data driven 
mode with Eigenmodes. When exciting the jet with high intensity, the induced 
flow is not well represented using only the Eigenmodes.
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Figure 5.5. Drafting example: Objects above draft off of and catch up to the 
objects below. This example demonstrates solid-fluid coupling and object-object 
interactions.
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Figure 5.6. An image from a game using our system.



57

Table 5.1. Timings in ms for game scene with 73 modes on a 65x65 staggered 
grid. ___________________________________

Description Time (ms)
Advect 0.744
Diffuse 0.00536
Panel Solves 5.626
Panel Feedback Naive 41.175
Panel Feedback Quadtree 5.825



CHAPTER 6

CONCLUSIONS

This dissertation considered three problems in physics-based animation: 

large-scale splashing liquids, elastoplastic material simulation, and dimension­

ality reduction techniques for fluid simulation. We demonstrated that our 

novel combination of unilateral incompressibility, mass-full FLIP, and blurred 

boundaries provides a very effective simulation strategy for large-scale splashing 

liquids. By avoiding the artificial surface tension of traditional incompressibility, 

our approach is able to simulate liquids that mix freely with the surrounding air, 

while also avoiding the oscillations present in smoothed particle hydrodynamics. 

The particle-based mass-full FLIP is well-suited to splashes and the thin-sheets 

they create and do not suffer from mass loss or gain. Our blurred boundaries 

unify the liquid and obstacle representations and work with the unilateral 

incompressibility to allow liquid to detach from obstacles. Overall, we believe our 

approach offers a number of advantages over the state-of-the-art for animating 

large-scale, splashy liquids. In future work, we would like to experiment 

with alternative LCP solvers, such as the multigrid method of Chentanez and 

Muller [13] and interior point methods.

Additionally, we demonstrated that our point-based approach for animating 

elastoplastic materials is well-suited to simulating materials that experience 

large plastic deformations. It is also capable of simulating rather stiff elastic 

materials, though some drift is inevitable. Unfortunately, our approach is not 

well-suited to the large elastic deformations exhibited by soft objects. In such 

cases, the deformation gradient becomes ill-conditioned and our method breaks
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down. Recently, Jones et al. [36] addressed this limitation and are able to handle 

large elastic deformations by including a rest configuration. Other researchers 

extended our method to handle larger timesteps and improved stability by 

using an implicit integrator, which we suggested was a promising area of future 

work [75]. Other interesting areas of future work include addressing topological 

changes in a physically based manner (currently, topological changes occur when 

particle neighborhoods change), and methods for resampling/adaptive sampling. 

The last direction is particularly interesting as it may improve stability as well as 

provide performance benefits.

We believe our approach has a number of advantages over competing 

techniques. In particular, it does not require any rest configuration, no remeshing 

is needed, it can handle elastic and large plastic deformations in a unified 

framework and it is simple to implement and inexpensive to compute. While 

we have demonstrated our approach with a particle-based method, the general 

approach to computing the deformation gradient should be applicable in other 

simulation methods, such as Eulerian grid-based or finite element techniques. 

This work has garnered 26 citations in the last 3 years and inspired follow-on 

work.

Finally, we discussed several enhancements to dimensionally reduced fluid 

simulations: a basis enrichment scheme to mix data-driven and analytic modes, 

and a new approach to two-way solid-fluid coupling. Our enrichment scheme 

enables the combination of the generality of Eigenmodes with the context 

awareness and art directability of data-driven modes. Our approach to solid-fluid 

coupling combines vortex panel methods for solid-to-fluid coupling, dynamic 

pressure for fluid-to-solid coupling, the method of images to handle domain 

boundaries, and a quadtree-based method to accelerate the solid-to-fluid coupling. 

This approach enables robust coupling of dynamic objects to the dimensionally 

reduced simulation and requires no training data. In future work, we plan to 

extend the technique to 3D.
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