
Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127,2008

Examination and Analysis of Implementation Choices within the Material Point Method (MPM)
M. Steffen1, P.C. Wallstedt2, J .E . Guilkey2 3, R.M. Kirby1 and M. Berzins1

Abstract: The Material Point Method (MPM)
has shown itself to be a powerful tool in the sim­
ulation of large deformation problems, especially
those involving complex geometries and contact
where typical finite element type methods fre­
quently fail. While these large complex problems
lead to some impressive simulations and solu­
tions, there has been a lack of basic analysis char­
acterizing the errors present in the method, even
on the simplest of problems. The large number of
choices one has when implementing the method,
such as the choice of basis functions and boundary
treatments, further complicates this error analysis.
In this paper we explore some of the many choices
one can make when implementing an MPM al­
gorithm and the numerical ramifications of these
choices. Specifically, we analyze and demonstrate
how the smoothing length within the General­
ized Interpolation Material Point Method (GIMP)
can affect the error and stability properties of
the method. We also demonstrate how various
choices of basis functions and boundary treat­
ments affect the spatial convergence properties of
MPM.

Keyword: Material Point Method, GIMP,
Meshfree Methods, Meshless Methods, Particle
Methods, Smoothed Particle Hydrodynamics,
Quadrature

1 Introduction

The Material Point Method (MPM) [Sulsky,
Chen, and Schreyer (1994); Sulsky, Zhou, and

1 School of Computing, University of Utah, Salt Lake City,
UT, USA. {msteffen,kirby,berzins}@cs.utah.edu

2 Department of Mechanical Engineering, Uni­
versity of Utah, Salt Lake City, UT, USA.
{philip.wallstedt,james.guilkey}@utah.edu

3 Corresponding Author

Schreyer (1995)] is a mixed Lagrangian and Eu-
lerian method utilizing Lagrangian particles to
carry history-dependent material properties and
an Eulerian background mesh to calculate deriva­
tives and solve the equations of motion.

MPM and its variants have been shown to be
extremely successful and robust in simulating a
large number of complicated engineering prob­
lems (see for example [Bardenhagen. Brydon, and
Guilkey (2005); Nairn (2006); Sulsky, Schreyer,
Peterson, Kwok, and Coon (2007)]). The most
well known of these variants is the General­
ized Interpolation Material Point (GIMP) Method
[Bardenhagen and Kober (2004)], of which tradi­
tional MPM is a special case. GIMP provides im­
proved accuracy, stability and robustness to sim­
ulations through the introduction of particle char­
acteristic functions, which in most cases have the
effect of smoothing the grid basis functions. The
ability to handle solid mechanics problems in­
volving large deformations and/or fragmentation
of structures, which are sometimes problematic
for finite element methods, has led, in part, to the
method’s success.

MPM, and later, GIMP, was chosen as the solid
mechanics component for fluid-structure interac­
tion simulations within the Center for the Sim­
ulation of Accidental Fires and Explosions (C-
SAFE). The goal of C-SAFE has been the devel­
opment of a capability to simulate the response
of a metal container filled with explosives to a
large hydrocarbon pool fire, including heat up, ig­
nition and rupture of the container. The pioneer­
ing work of Kashiwa and co-workers [Kashiwa,
Lewis, and Wilson (1996)] inspired this choice
as they had demonstrated many of the capabili­
ties that would be required for such simulations,
including material failure and solid-to-gas phase

108 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

transition. To achieve the required level of par-
allelization and to provide a platform for Adap­
tive Mesh Refinement, C-SAFE investigators cre­
ated the Uintah Computational Framework (UCF)
[Parker, Guilkey, and Harman (2006)]. It is within
this software environment that the implementa­
tions of MPM and GIMP under consideration here
exist, along with components for fire simulation,
compressible reacting flow, and fluid-structure in­
teraction.

The main goal of this paper is to examine some
of the implementation choices within GIMP in a
multi-dimensional simulation setting and to un­
derstand the algorithmic and numerical ramifica­
tions of those choices. Specifically, we will focus
on the smoothing length parameter (or the par­
ticle characteristic function) and examine a few
choices for evolving the smoothing length in time
which have been implemented within the UCF.
We will perform analysis and carry out simula­
tions in both 1-D and 3-D in order to shed light on
the error and stability properties that result from
the various choices.

This paper is organized as follows. Section 2
provides background to give context concerning
where and how MPM fits into the family of par­
ticle and meshfree methods and introduces previ­
ous analysis performed on MPM. Section 3 gives
an algorithmic overview of MPM and GIMP, fo­
cusing on some of the choices made when im­
plementing MPM within the UCF. Section 4 pro­
vides an analysis and interpretation of some of the
spatial errors present in MPM and GIMP, build­
ing on previous analysis by the authors. In the
process, we investigate the relationship between
GIMP as implemented in the UCF and MPM us­
ing B-spline basis functions. Section 5 overviews
the process for developing interesting problems
with analytical solutions which can be used to test
our methods and measure errors in our solutions.
In Section 6 we present numerical results and dis­
cuss the differences that result from the aforemen­
tioned choices. Lastly, Section 7 is a summary of
our findings and our conclusions.

2 Background

The Material Point Method was introduced by
Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou,
and Schreyer (1995) as a solid mechanics exten­
sion to FLIP (Fluid-Implicit Particle) [Brackbill
and Ruppel (1986); Brackbill, Kothe, and Ruppel
(1988)], a “full-particle” Particle In Cell (PIC) flu­
ids simulation method.

More recently, Bardenhagen and Kober (2004)
generalized the development that gives rise to
MPM and showed that MPM can be considered
a subset of their “Generalized Interpolation Mate­
rial Point” (GIMP) method.

Although not derived directly from what are clas­
sically considered as meshfree or meshless meth­
ods, MPM falls within a general class of mesh­
free methods and is discussed within the mesh­
free community since it has both many of the
same advantages and many of the same chal­
lenges as other meshfree methods [Li and Liu
(2004)]. Like many meshfree methods, the pri­
mary partitioning of the material does not involve
a polygonal tessellation (as in finite elements),
but rather some alternative non-mesh-based un­
structured representation. However, unlike fully
mesh-free methods, such as the Meshless Lo­
cal Petrov-Galerkin Method (MLPG) [Atluri and
Zhu (1998); Han, Rajendran, and Atluri (2005);
Han, Liu, Rajendran, and Atluri (2006); Atluri
(2006); Atluri, Liu, and Han (2006)], MPM uti­
lizes a background mesh to perform differentia­
tion, integration, and solve the equations of mo­
tion. The use of a background mesh is still simi­
lar to other meshfree methods such as the Element
Free Galerkin Method (EFGM) [Belytschko, Lu,
and Gu (1994)]. While the background mesh is
formally free to take any form, it is most often
chosen for computational efficiency to be a Carte­
sian lattice (i.e. segments, quadrilaterals and hex-
ahedra in 1-D, 2-D and 3-D respectively). These
functions are used, in essence, as a means of dis­
cretizing the continuum equations, with the do­
main of these functions being an alternative (in
the sense of versus particles) representation of the
deformed configuration of the material. Nodal
integration based upon particle positions as is

Implementation Choices within the Material Point Method 109

used in other particle methods such as PIC meth­
ods [Grigoryev, Vshivkov, and Fedoruk (2002)] is
employed during the solution process.

Spatial integration errors were quickly deter­
mined to be the limiting factor in the accuracy
and stability of MPM. One proposed way to ame­
liorate the convergence problems found in MPM
was to move away from the idea of nodal inte­
gration and instead think of the particles as hav­
ing extent within the quadrature scheme. Barden-
hagen and Kober (2004) accomplished this with
GIMP by adding particle characteristic functions.
There were questions, however, on how to evolve
these functions in time within a multi-D simula­
tion. Since the deformation gradient is only main­
tained at one point within a particle’s voxel, it is
unclear that the use of this information to deform
particles’ voxels is sufficient to maintain a par­
tition of the deformed domain. And, if it were
sufficient, it is even more unclear how to accom­
plish the accurate spatial integration of these de­
formed voxels. Ma, Lu, and Komanduri (2006)
proposed another approach for evolving the par­
ticle characteristic functions by adding massless
corner particles to explicitly track the deforma­
tion of a particle’s voxel, or integration domain.
Steffen, Kirby, and Berzins (2008) analyzed the
case where nodal integration was still used, but
looked at how the use of smoother basis functions
drastically reduced the nodal integration quadra­
ture errors.

3 Overview of the Material Point Method

MPM is a mixed Lagrangian and Eulerian
method with particles representing the discrete
Lagrangian state of a material. The history de­
pendent properties of a material are carried and
updated on the particles. A background mesh is
also used, in part to solve the equations of motion.
This background mesh can be non-uniform and
be comprised of elements of various shapes; how­
ever for computational efficiency a uniform Carte­
sian grid is almost always employed. Among
other benefits, a uniform Cartesian grid eliminates
the need for computationally expensive neighbor­
hood searches during particle-mesh interaction.
Particle information is projected to this back­

ground mesh, from which gradients required for
constitutive model evaluation (at the particles) are
calculated and the equations of motion are solved.
Using the solution to the equations of motion on
the grid, the material state, minimally velocities
and positions, is then updated at the particles.

As the above procedure is similar for nearly all
variants of MPM, the main distinguishing fea­
ture between the different MPM methods in this
paper is the choice of basis functions. We will
start by giving an overview of standard MPM, or
MPM using standard piecewise-linear basis func­
tions. Next, we will show how MPM can be eas­
ily implemented using B-spline basis functions
and mention the benefits of these smoother basis
functions. The Generalized Interpolation Mate­
rial Point Method (GIMP) will then be reviewed.
Lastly, various options for implementing kine­
matic boundary conditions will be presented.

3.1 Standard Material Point Method

The MPM procedure begins by discretizing the
problem domain Q with a set of material points,
or particles. The particles are assigned initial val­
ues of position, velocity, mass, volume, and de­
formation gradient, denoted xp, vp, mp, Vp, and
F p (subscript index p is used to distinguish parti­
cle values versus an index of i for grid node val­
ues). Alternatively, instead of velocity and mass,
momentum and mass density may be prescribed
at the particle location, from which mp and \p can
be calculated. Depending on the simulation, other
quantities may be required at the material points
as well, such as temperature. The particles are
then considered to exist within a computational
grid, which for ease of computation is usually a
regular Cartesian lattice. Fig. 1 depicts a repre­
sentation of a typical 2-D MPM problem.

At each time-step tk (all of the following quanti­
ties will be assumed to be at time tk unless oth­
erwise noted), the first step in the MPM compu­
tational cycle involves projecting (or spreading)
data from the material points to the grid. Specifi­
cally, we are interested in projecting particle mass
and momentum to the grid to calculate mass and

110 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.101-121, 2008

Figure 1: Typical 2-D MPM problem setup.
The dotted line represents the boundary of the
simulated object Q and each closed point rep­
resents a material point used to discretize Q.
The square mesh represents the background grid.
Each square in the background grid is a grid cell,
and grid nodes are located at the comers of grid
cells.

velocity at the grid nodes in the following way:

= '£<Pipmp (Dmi

= (! > ,pinp\p) /m h (2)

where (j>ip = 0,-(xp) is the basis function centered
at grid node i evaluated at the position xp. Note
that Eq. 1 represents the mass-lumped version of
what Sulsky and Kaul (2004) describe as the con­
sistent mass matrix M\j = 'Zp <pip<pjpmp. Next, in­
ternal force on the grid is found by taking the di­
vergence of stress as a function of the constitutive
model and the deformation gradient stored with
each particle.

<7p = <r(Fp)

fj'" = - X V 0 ,p . a pVp!

(3)

(4)

where V 0,p = V0,-(xp) and Vp = det(Fp)V® de­
notes the volume of the particle voxel (in its de­
formed configuration). Combining the internal
grid force with any external forces fp\ grid ac­
celerations are then calculated as:

(5)

Next, grid velocities are updated with an appro­
priate time stepping scheme. Implicit time step­
ping schemes exist for MPM [Guilkey and Weiss
(2003); Sulsky and Kaul (2004); Love and Sul­
sky (2006b)], however we choose to use the ex­
plicit Forward-Euler time discretization presented
within the original MPM algorithm:

-a,-A/. (6)

Velocity gradients are then calculated at the parti­
cle positions using the updated grid velocities:

VvJ+ 1 = X V 0 ,pv*+1. (7)

Lastly, the history-dependent particle quantities
are time-advanced. Particle deformation gradi­
ents, velocities, and positions are updated using
calculated velocity gradients, grid accelerations,
and grid velocities:

F *+1 = (1 + Vvp+ 1A /)F'

V;,+1 = v J + X f c pa,-A/
i

X kp +] = X * + £ < f r p v f + 1 A/.

(8)

(9)

(10)

Eqs. 1-10 outline one time-step of MPM and as­
sume initialization of particle values at time /°:
xp, vp, Fp, and Vp . Non-linear finite element
codes often use a staggered central difference
method [Belytschko, Liu, and Moran (2000)]. If
possible, a simple change of initializing particle

—]/9
velocities a half time step earlier, i.e. vp ; , and
using the same MPM algorithmic procedure out­
lined above leads to the following set of staggered
central-difference update equations:

k+\ - a,-A/ (ID

Implementation Choices within the Material Point Method 111

v v ‘ + i = 5 > , „ v ;

= (i + Vv? 2At)F P

k+i k^i
Vp ‘ = vp - I 2^ (l>in*iAl

jt+ i

(12)

(13)

(14)

(15)

A similar staggered central difference method is
used for MPM by Sulsky, Schreyer, Peterson,
Kwok, and Coon (2007), the benefits of which
are reviewed in detail by Wallstedt and Guilkey
(2008).

The calculation of <yp involves a constitutive
model evaluation and is specific for different ma­
terial models. The neo-Hookean elastic consti­
tutive model used in this paper is more fully de­
scribed in Section 5.1.

Calculating fjxt is another problem dependent pro­
cedure with several options. The first option is
to calculate fjxt directly on the grid. This is eas­
ily done with body forces such as gravity where
fjxt — nijg. Another option is to calculate F * on
the particles and project to the grid through the
grid shape functions:

p

’Xt
p • (16)

Moving forces, such as surface tractions can be
implemented by associating the forces with a fi­
nite set of “surface” particles in conjunction with
Eq. 16. Lastly, for performance reasons, MPM
is typically implemented using a fixed, equally
spaced Cartesian lattice, however nothing in the
method requires the grid to be fixed. Moving
grid nodes can be implemented to track bound­
ary forces, calculating fjxt directly on the bound­
ary nodes, however implementing this for com­
plex geometries in multiple dimensions is not triv­
ial.

Most standard MPM implementations use
piecewise-linear basis functions for due to
their ease of implementation, small local support,
and familiarity to those in the finite element

community. The 1-D form of the piecewise-linear
basis function is given by:

0 (*) =
\x\/h |x| < h

otherwise.
(17)

where h is the grid spacing. The basis function
associated with grid node i at position x, is then
(pi — <p(x — Xj). The basis functions in multi-D are
separable functions, constructed using Eq. 17 in
each dimension, e.g., in 3-D,

0,-(x) = 0f(x)0fCy)0f(z).

3.2 B-Spline Material Point Method

(18)

As Bardenhagen and Kober (2004) described in
the development of GIMP, lack of regularity in

is conjectured to be the root cause of what
is referred to as “grid cell crossing instabilities”.
As can be seen in Fig. 2(a), piecewise-linear basis
functions are only Co continuous at cell bound­
aries. Tran, Kim, and Berzins (2007) performed
a detailed analysis concerning temporal errors
within an MPM fluids framework in which the
grid crossing errors arising from use of piecewise-
linear basis functions were precisely determined.
An analysis by Steffen, Kirby, and Berzins (2008)
shows how the lack of smoothness of the standard
piecewise-linear basis functions (Eq. 17) causes
significant spatial quadrature errors, and the use
of smoother basis functions, such as B-splines,
significantly reduces these errors.

A typical one-dimensional quadratic B-spline can
be constructed by convolving piecewise-constant
basis functions with themselves:

(t> =x*x*x/{\x\? (19)

where x(r) is the piecewise-constant basis func­
tion:

X(x)
\x\ < -jl

otherwise
(20)

and I is width of %. The B-spline basis function
associated with node i, is then 0,-(jc) = <p(x — Xj).
The multi-D B-spline basis functions in MPM are
not radial basis functions, as in other meshfree

112 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

methods, but rather are separable, constructed us­
ing Eq. 19 in each dimension-the same way as
with piecewise-linear basis functions in Eq. 18.
Evaluating Eq. 19 gives the 1-D B-spline basis
function:

- ^ 42h‘ ^
1 ^

- ¥ x~-

ihx ~

f I
1 2 3

2hlX 2hx ~

— \h < X < —\h

— jli < x < jl i

\h < x < \h

otherwise.

(21)

It is worth noting that a set of these quadratic
B-spline basis functions maintain the partition of
unity property required by the mass-lumping im­
plicit in the MPM projection functions such as
Eq. 1 and Eq. 2. An example set of these basis
functions is shown in Fig. 2(b).

The above construction of B-splines basis func­
tions by the convolution of piecewise-constant
functions is helpful in showing the connection be­
tween the various basis functions considered in
the paper. This convolution construction has a
number of consequences, including requiring the
use of extra, or ghost nodes, beyond the boundary
to maintain a partition of unity within the domain.
This presents no problems when implementing
periodic boundary conditions, however Dirichlet
boundary conditions are non-trivial to implement.
One such boundary treatment will be discussed in
Section 3.4.

Another option, which requires a slight departure
from the convolution construction, is to modify
the boundary basis functions to still maintain a
partition of unity within the domain but enforce
that the boundary basis function evaluates exactly
to one on the boundary (which, by construction,
would require all other basis functions to evaluate
to zero at that boundary). One such set of basis
functions was used by Steffen, Kirby, and Berzins
(2008) in their simulation of a one-dimensional
bar with traction forces. The basis functions used
in that paper, however, can only represent func­
tions which have zero slope on the grid bound­
aries, which was the case in their simulation.

Another choice of B-spline basis construction
which allows for the same partition of unity prop-

(a) Piecewise-Linear

(c) GIMP
Figure 2: Example sets of 1-D basis functions
used in MPM. Each set of basis functions shows
an accompanying set of particles (with height rep­
resenting velocity) and the corresponding velocity
field on the grid after projecting particle values us­
ing Eq. 2. Piecewise-linear basis functions result
in piecewise-linear velocity fields with a disconti­
nuity of velocity gradients occurring at grid node
locations. Both B-spline and GIMP basis func­
tions result in smoother fields.

erty, the boundary basis functions to exactly eval­
uate to one on the boundary, and which also al­
lows representation of non-zero slope solutions is
the use of an open knot vector to describe the ba­
sis functions. Again, for computational efficiency.

Implementation Choices within the Material Point Method 113

we choose the knot vector to be an open uniform
knot vector with the end knots having a multi­
plicity of k — 1 for a A-order B-spline. For ex­
ample, if we discretize our 1-D domain of length
I with N knots, the knot spacing would be h =
I/ (N — 1), and the knot vector for a set of fourth-
order B-splines (consisting of third-order polyno­
mials) would look like

[xo ,xo ,xo ,x i -2 ,Xn- l , X n- l , X n- l \ ,

where Xj = xq I i ■ h. For a A-order B-spline, this
results in N I k 2 basis functions which are cal­
culated recursively as

$i.k = $i.k I
■Xj

- < p i+
%i+k '

%i+k -̂ i+ 1

h i =
1 Xj < X < Xj . I

0 otherwise.

(22)

(23)

If either denominator in Eq. 22 evaluates to zero
(which only happens when knots are repeated in
the knot vector), the entire term is set equal to
zero.

Note that this is a slight departure from the pre­
vious MPM basis functions where there exists ex­
actly one basis function for each grid node. Here,
if grid nodes were used as knots, there are k 2
extra basis functions, or degrees of freedom in the
system. However, the mechanics of the MPM al­
gorithm remain exactly the same with the sub­
script i representing values associated with de­
grees of freedom, rather than values associated
with grid points. Fig. 3 shows examples of these
modified boundary B-spline basis functions.

3.3 Generalized Interpolation Material Point
Method

The Generalized Interpolation Material Point
(GIMP) Method [Bardenhagen and Kober (2004)]
is an extension to MPM which takes advantage of
the fact that equations such as Eq. 1 take the form:

Si = 'E g p f rip

— 2 u $ p ~ J q S (x - - X p) d Q ,
(24)

(a) Quadratic B-Spline (k = 3)

(b) Cubic B-Spline (k = 4)
Figure 3: Example sets of modified boundary 1-D
B-spline basis functions used in MPM.

with 8 the Kronecker delta. GIMP then replaces
8 with a general particle characteristic function
X p(x) centered at the particle position xp. This
results in new projection equations of the form:

8i = (25)

where 0 (- is the weighting function given by

,p fn X p (x)d Q J q
<Pi(x)X p(x)d£l- (26)

Equations using V<pip, such as Eq. 4 are similarly
modified to use a gradient weighting function:

V<i>w =
1

V <P i(x)X p(x)dn. (27)
,p fn X p (*)d t o J a

GIMP is often implemented using standard
piecewise-linear grid basis functions (Eq: 17) and
piecewise-constant particle characteristic func­
tions:

Xp —
|x| < 2Ip

otherwise.
(28)

in which case the 1-D MPM and GIMP weighting
functions can be grouped together in the follow-

114 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.101-121, 2008

ing general form:

1 — (4.v2 + Ip)/ (4/i/p)

1 — |.v| jh

)i+k-\x\)2 / { 2hlp)

otherwise.

(29)

where lp is the width of the particle characteristic
function %p. Again, the basis function associated
with node i located at position .v, is <pj(x) = <p(x —
Xj) and the multi-D weighting function is con­
structed as the tensor product of the 1-D weight­
ing functions in each direction.

Since a particle moves and its voxel deforms in
time, the question then becomes how to handle
lp, the vector of widths of particle p’s voxel in
a multi-D simulation. Ideally, we would like the
particles’ voxels to deform and tile space for all
time. In 1-D, this was accomplished by setting
lp equal to the particle’s time-updated volume
Vp. This scheme results in particle specific, time-
dependent weighting functions (/)jp and was re­
ferred to as contiguous-particle GIMP (cpGIMP).
For general multi-D simulations, however, the use
of rectilinear %p will not allow a perfect tiling to
occur.

One choice for handling \p in a multi-D simula­
tion, and what we will refer to as standard GIMP,
is to leave the particle lengths unchanged for all
time, i.e. \p — l'1,. where the superscript 0 indi­
cates initial particle size. Standard GIMP weight­
ing functions are then particle specific, but not
time-dependent. Another option is uniform GIMP
(uGIMP), where a single smoothing length I is
used for all particles, for all time. Note that in
the case where the initial discretization was per­
formed using uniform particles, standard GIMP
would be the same as uGIMP. And lastly, while
space cannot be tiled in a general multi-D simu­
lation using rectilinear %p, updating \p in time to
give a rough approximation to the particle’s de­
formed voxel will still be referred to as cpGIMP.
The cpGIMP approximation used in this paper is
lp = l^diag(F), such that the particle size varies

through time as dictated by the appropriate diago­
nal term of the deformation gradient F. Note that
lp here refers to the full particle width, and not the
half-width as used in the original GIMP formula­
tion.

Fig. 4 shows an example 1-D GIMP weight­
ing function (f>lp and gradient weighting function
V 0 ,- for a piecewise-constant xP with a character­
istic length of I. Notice that that while <f>j looks
smooth in Fig. 4(a), the dashed lines show loca­
tions of breaks in continuity which become ap­
parent in Vtpjp in Fig. 4(b). These breaks in con­
tinuity will become important in later analysis.

(a) GIMP Weighting Function

(b) GIMP Gradient Weighting Function
Figure 4: Example GIMP weighting function (f>jp,
and gradient weighting function V 0 ,- centered at
0 using piecewise linear grid basis functions and
piecewise constant particle characteristic func­
tions Xp- Dotted lines denote breaks in the con­
tinuity of the functions.

3.4 Kinematic Boundary Conditions

One of the conveniences afforded by the use of a
Cartesian background grid is the ease of applica­

Implementation Choices within the Material Point Method 115

tion of kinematic boundary conditions. That is,
Dirichlet or Neumann conditions, or a combina­
tion, on the velocity field. Note that if no treat­
ment is given to the boundary nodes, then parti­
cles are able to freely advect from the computa­
tional domain in what could be considered a zero
gradient Neumann condition. This important part
of the algorithm has received scant treatment in
the literature (although it is very relevant when
one is actually implementing MPM), so we turn
attention to it here.

3.4.1 Traditional MPM

In traditional MPM, boundary conditions only
need be applied on those nodes which coincide
with the extents of the computational domain. As
illustrated in Fig. 2(a) nodes beyond those bound­
aries are not influenced by particles within the do­
main. This can be considered a result of the zero
width of the Dirac delta characteristic functions.
Boundary conditions must be applied to the ve­
locity that has been projected to the nodes (Eq. 2),
the time advanced velocity (Eq. 6), and the ac­
celeration (Eq. 5). For Dirichlet conditions, this
simply means overwriting the calculated values
for the velocities with the prescribed values. For
the acceleration, some debate exists regarding the
proper means of treatment. The usual approach
has been to assume that a Dirichlet condition for
velocity implies that the acceleration should be
zero on those boundary nodes. However, it is also
possible that if Eq. 6 were solved for acceleration:

a,- = (vf+ 1 -v f)/ A t, (30)

the proper value for the acceleration at the bound­
ary nodes would be computed based on the dif­
ference between the time advanced velocity (after
application of boundary conditions) and the pro­
jected velocity (without the application of bound­
ary conditions). Put another way, acceleration on
the boundary nodes can be considered to reflect
the force required to bring the velocity at those
nodes from the projected value to the prescribed
value.

While these two approaches to the acceleration
seem substantially different, the difference in sim­
ulation results is very subtle. Indeed, when both

approaches are tested with the manufactured solu­
tion described in Sec. 5.1, the superiority of either
is not apparent. Currently, the UCF implementa­
tion uses the boundary treatment given in Eq. 30.

In addition to prescribed velocity boundary con­
ditions, “symmetry” boundary conditions are also
frequently useful. Symmetry BCs are used to rep­
resent a plane of symmetry, which allows the use
of a reduced computational domain, or a friction-
less surface. They are achieved by simply apply­
ing a zero velocity Dirichlet condition on the com­
ponent of velocity normal to a boundary, while
allowing the other components to remain at their
computed values. Acceleration is handled in the
same manner, with the normal component either
zeroed out, or computed as in Eq. 30.

3.4.2 GIMP and B-Spline MPM

When using GIMP or B-Spline MPM, there are
additional considerations in the applications of
the boundary conditions. Namely, because of
their increased extents, it is possible for particles
to influence, and be influenced by, nodes that lie
outside of the simulation domain, (see Figures
2(b) and 2(c)). In the UCF, these are referred to
as “extra” nodes, but may also be called “ghost”
nodes by other investigators. Boundary condi­
tion treatment of these nodes for Dirichlet con­
ditions is the same as for the regular boundary
nodes, namely, their computed values are replaced
by prescribed values as described above.

In treating symmetry boundaries, the extra nodes
require special care. In particular, the normal
component of velocity for these nodes is no longer
set to zero, but rather should be set to the negative
of the value of the node opposite the boundary.
The need to do so is apparent if one considers two
objects approaching a collision plane symmetri­
cally. The normal component of velocity on the
opposite sides of that plane will have opposing
signs.

4 Analysis and Interpretation

MPM is a fairly new method and thus there has
been a recent push by the MPM community to
provide a more formal analysis of errors in the

116 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

method. Bardenhagen (2002) looked at energy
conservation errors in MPM, focusing on the ef­
fects of the choice of two time-stepping algo­
rithms. Recently, Wallstedt and Guilkey (2008)
expanded on the analysis of those time-stepping
algorithms. Love and Sulsky (2006a) and Love
and Sulsky (2006b) analyze an energy consis­
tent implementation of MPM, the second of these
showing an implicit implementation to be un­
conditionally stable and energy-momentum con­
sistent. Wallstedt and Guilkey (2007) focus on
velocity projection errors and present a scheme
which helps ameliorate these errors. Steffen,
Kirby, and Berzins (2008) perform an analysis
on some of the spatial integration errors present
within MPM.

In this section, we continue adding a few more
pieces to the error analysis of MPM. Specifically
we will look at integration errors which are af­
fected by the smoothing of the piecewise-linear
basis functions.

4.1 The Relationship between GIMP and B-
Splines

Taking a closer look at the weighting function
(Eq. 26), we see that the construction is essen­
tially a convolution of the grid basis functions
and the particle basis function %p. Since a stan­
dard piecewise-linear tf>j can also be represented as
the convolution of piecewise-constant basis func­
tions, we can rewrite the GIMP weighting func­
tion as:

4>=Xg*Xg*Xp/(\Xg\\Xp\) (3 1 >

where the width of Xg is h (the grid spacing), and
the width of %p is lp, as described in the GIMP
methods. The equivalent GIMP basis function
would then come from evaluating Eq. 31:

Q.(x) = 4>(x-Xi) (32)

with the GIMP weighting function equivalent to
evaluating Eq. 32 at the particle position, xp. The
reason for rewriting the GIMP basis functions in
this way is to demonstrate the similarities be­
tween the construction of GIMP basis functions
and the construction of B-spline basis functions

as in Eq. 19. Both basis functions are constructed
by convolving piecewise-constant basis functions
with themselves; however all of the % in the B-
spline basis are of width h while one of the %
functions used in the GIMP method has width lp.
In cpGIMP, the particle characteristic length lp
(of which there may be different lengths for dif­
ferent directions) is updated in time, meaning the
cpGIMP weighting function (Eq. 29) is time de­
pendent, and is different for each particle p. The
ideal case would be that the updating of lp in time
will cause the set of particle characteristic func­
tions x p to perfectly tile space, but due to the rec­
tilinear constraints of %p, this is not possible in
general multi-D simulations. Because of this in­
ability to tile space, and the recognition that the
major benefit of GIMP is the smoother equiva­
lent basis functions, a simplified standard GIMP
is used in which lp = P for all time. Further­
more, if lp = I is constant for all particles p in
a simulation (uGIMP), the effect is truly equiva­
lent to using standard MPM with a smoother set
of basis functions. In fact, if one were to disasso­
ciate the smoothing length, /, from the particles
in a uGIMP formulation and instead leave / as
a free parameter, the effect is to create quadratic
B-spline-like basis functions, with / determining
the maximum extent of the functions. Choos­
ing / = 1̂ would give standard GIMP. Choosing
I = h would give quadratic B-spline basis func­
tions. Choosing I = 0 would lead to the degen­
erate case of Xp = S(x — xp), leaving us with the
standard piecewise-linear basis functions.

It has been our decision to leave the smoothing
length I as a free parameter the UCF, allowing
for various options when running simulations. We
will explore various choices of I in the sections to
follow.

4.2 Smoothing Length Dependent Integration
Errors

Spatial integrals within MPM are performed using
nodal integration - an approximation which takes
the form:

f f { x) d a ^ f { x p)Vp. (33)
JQ p

Implementation Choices within the Material Point Method 117

An analysis of errors in the above approximation
within the MPM framework was performed by
Steffen, Kirby, and Berzins (2008). There, the
nodal integration approximations in MPM were
equated to non-uniformly-spaced midpoint inte­
gration of functions with discontinuities in vari­
ous derivatives. In particular, the analysis focused
on the errors when calculating the internal force
(Eq. 4), which involves the following approxima­
tion:

p n t __

Q
(*) • V<pi(x)dLl £<7,, -V<l>ipVp

(34)

The main result from that analysis showed that if
the particle arrangements did not respect the dis­
continuities which arise from the basis functions
(i.e. a particle’s voxel overhangs node bound­
aries), an extra integration, or “jump” error can
arise in the above approximation which is of the
order C{{f'p+^]]Axp+2, where the function, /. be­
ing integrated is Cp continuous (with p = — 1 for
discontinuous functions). Here, [[•]] represents the
jump in the p + 1 derivative of / at the discon­
tinuity and Ax is the particle spacing. Note that
the function V^(in Eq. 34 is discontinuous, thus a
jump error of ff(Ax) can arise in MPM when us­
ing standard piecewise-linear basis functions, de­
pending on particle spacing. Numerical examples
of this error were shown in Steffen, Kirby, and
Berzins (2008).

The jump error for a single particle is calcu­
lated as Ejump = fQp f(x) dx - f(x p)Ax, where Qp
spans a discontinuity, or jump, and Ax is the width
of the particle. This consists of measuring the
midpoint integration error for the single interval
spanning the jumps. Integration approximations,
such as in Eq. 33, involve integration over the
whole domain, using multiple intervals, leading to
a composite midpoint rule integration error which
is ff(Ax2). These two errors are additive, giving a
total error of the form

Etotul = j fix) dQ £ f(x p) Vp = Emp + EJump,

(35)

where Emp is the composite midpoint error and

Ejump is any errors arising from integrating across
jumps. Note that if we assume particles are non­
overlapping and fill space, this equation can also
be written as

Etotai— ’y .
P Q,

f (x) d n - f (x p)Vp (36)

Since the errors are additive and since Emp is
always ff(A x2), Co and higher continuous func­
tions exhibit an overall integration error which
is ff(A x2), while discontinuous functions have
an error which is ff(A x). Again, this is impor­
tant because the nodal integration for the internal
force calculation in Eq. 4 involves the gradients
of the basis functions, which are discontinuous at
grid cell boundaries when the standard piecewise-
linear basis functions are used.

In uGIMP, we have the choice of a smoothing pa­
rameter I (the width of our general particle charac­
teristic function %), independent of the individual
particle sizes, which ensures us C\ continuous ba­
sis functions but leads to a situation which was not
analyzed in Steffen, Kirby, and Berzins (2008) -
the case where the width of the particle is greater
than the smoothing length. In such cases (as illus­
trated in Fig. 5), a particle can span two jumps in
the continuity of the basis functions.

Consider a general case from Eq. 36 where a sin­
gle particle, or Qp, spans three regions of a piece­
wise linear function. The first region (R\) is de­
fined by the equation y\ = a\x + b\, the second
(/?2) will be >’2 = c/2X ■ l>2- and the third (R3) is
>’3 = a^x + Z>3 with the particle located a distance
8 inside the second region (see Fig. 5). For this

118 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.101-121, 2008

a^=0

[

+

a2 = -2/(hl)

]
83 — 0

+Ax/2-5 5 1-5 Ax/2-1+6

(b) GIMP Specific Two-Jump Situation
Figure 5: Example cases of a particle’s volume
(the area between the square brackets) spanning
two jumps in a piecewise-linear function: (a)
shows a particle spanning two jumps in a gen­
eral piecewise-linear function with a\ and i =
1 .2 .3 the parameters describing the linear seg­
ments, while (b) shows the specific piecewise-
linear uGIMP gradient function V 0 and a situa­
tion where the particle size Av is greater than the
smoothing length /.

case, the integration error is given by:

E jU,„P = I f (x) d x - f (x p)Vp (37)
Jiip

= / \'\dx+ / \'->dx+
JQrnRt ' ./Q,,n/?2'

/ >’3 dx — }'2 (xp) A v (38)
J Q,,r 1R}
1 7 1

= - («3 — Cl2) + - («2 — «3) / Av+

1 ,

(«2 — «3)/<5 + “ («3 — (1 1) 8 “ +

1 1 7
- (« ! — 2 « 2 + « 3)5 A v + - (« 3 — «[)Av"
2 8

(39)

where I is the width of the center region and 8 is
the particle offset into the center region. Since I
and 8 are both less than Av, this whole expres­
sion appears to be &'(A.\2). However, when we
consider the specific case of measuring the inte­
gration error in internal force (Eq. 34 with a = 1)
when a particle spans the center region of V 0 as

in uGIMP (see Fig. 4(b) and Fig. 5(b)), the slopes
of the left and right regions in Fig. 5(b) are zero,
while the slope of the center region is dependent
on the smoothing length I and the grid spacing h.
Specifically, for these regions, ci\ = 0, r/3 = 0 and
ci2 = —2/(hi). When we substitute these parame­
ters into Eq. 39, we are left with

- 1p r= ___Gjump j Av — / + 2 | (40)

Here, it is clear that the jump error in this case is
£>’(Av). If instead, Av < / and the particle only
spans one of the uGIMP jumps, the error then
takes the form:

jump = -77 - [<52 — <5Av + 7 Av2].
hi 4

(41)

Since / no longer depends on Av, this is now
f/(A\2).

To test this analysis, we calculate the force on a
single node for a set of particles with constant
stress a . This is the same test performed by Stef­
fen, Kirby, and Berzins (2008) when looking at
a particle spanning a single jump instead of the
two-jumps analyzed above. In this case, the inter­
nal force on a node is calculated as

fi = - I V0,
P

ip ■gpVp = - o '2 V * ,(xp)Vp. (42)

For a constant stress, internal force should be
zero, so any errors are from integrating V 0,-.
Fig. 6 shows the errors for various particle spac-
ings when the smoothing length / = 1/10. As
expected, when Av < / the error converges as
I>’(A\2). When Av becomes greater than /, the er­
ror tends towards £>’(Av).

Here, we have shown errors in the internal force
which are either £>’(Av) or I>’(A\2), depending on
the relationship between the smoothing length /
and the particle widths Av. For stability, in ad­
dition to the typical CFL constraints one needs
when smooth forces exist, we need to consider
further time step restrictions when force kicks
arise from these integration errors. These time
step restrictions would be similar to those re­
quired, as shown by Tran, Kim, and Berzins

Implementation Choices within the Material Point Method 119

1/PPC

Figure 6 : Errors in internal force vs. particle spac­
ing for constant <7=1, grid spacing h = 1 , and
smoothing length / = 1/10. The particles have
a global uniform density, however they have a
locally non-uniform spacing. Otherwise, super-
convergent results are observed. Note that when
particle spacing is less than the smoothing length
/, the error converges as second-order. As the par­
ticle spacing becomes greater than the smoothing
length, the error tends towards first-order.

(2007), due to force kicks arising from grid cross­
ing errors. While a time step of Ati may be suf­
ficient when we are in the 6 (Ax1) error region,
a smaller Atj may be required to control stability
when we are in the 6 (Ax) error region.

4.3 Impact o f Boundary Treatments

In MPM, the union of the particles’ voxels are as­
sumed to fill space and define the material of in­
terest. However, many calculations are not per­
formed directly on the particles, but rather on the
background grid to which the particle information
is projected. This projection of particle informa­
tion leads to a set of “active” basis functions and
grid cells (those which have particles in their sup­
port) which, in general, will differ geometrically
than the union of particles’ voxels. This can, and
does, lead to a further errors in many MPM simu­
lations.

In standard MPM with piecewise-linear basis
functions, the active grid cells are those which
contain a particle. One could argue that a grid cell
which contains no particles but still overlaps with

a particle voxel (from a particle in a neighboring
cell) should also be active, but is not considered
so in the current MPM framework. In either case,
when considering active cells on the grid, there
may be a geometric error of up to h in each direc­
tion. When moving to uGIMP, or B-splines, this
geometric error can become worse since the sup­
port of these basis functions are larger. Cubic B-
splines, quadratic B-splines, and uGIMP can ex­
perience geometric errors of up to 2h, 3h/2 and
h I 1/2. respectively. All of these errors are 6 (h);
however it is important to note that these geomet­
ric errors are not only a function of how well the
object of interest is aligned with grid cells, but
they are also a function of basis function choice.

Some work has been performed on MPM back­
ground grids which more closely represent the
material of interest. For example, Wallstedt
(2008) has worked on an MLS representation of
a material boundary and incorporates this bound­
ary into the MPM integration routines. Here, we
sidestep part of the issue by developing test prob­
lems in Section 5 whose boundaries are perfectly
aligned with the grid boundaries (such as a fixed-
fixed elastic bar). Even with these aligned test
problems, geometric errors can still exist since in­
formation is projected to extra nodes outside the
domain, as is shown in Fig. 2(b) and Fig. 2(c);
information which is still used in standard kine­
matic boundary treatments.

To illustrate this geometric error, Fig. 7 shows
an example of the density field resulting from
projecting particles with constant mass (a dis­
cretization of a constant density field) to the
grid. The density field is calculated as p(x) =
I ip4i(x) with pi = mi/(Jjp îpVp). In this ex­
ample, the constant density field spans the region
[0 . 1] which is embedded in a grid covering the
region [—0.2.1.2]. Since the deformed configura­
tion of the material with respect to the grid is ef­
fectively the support of the fields of interest, we
can see from Fig. 7 how implementing bound­
ary conditions and modeling contact can present
a challenge when wider basis functions are used.

We postulate that, in general, all of the methods
here can suffer from G(li) geometric errors. In
the special case of boundary aligned problems,

120 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

1.5

1

™ n cc 0.5
Q

0

-0.5
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x

Figure 7: Density fields resulting from projecting particle mass to the background grid. The true density field
is shown, along with density fields calculated with piecewise-linear and quadratic B-spline basis functions.
Here we can see that the geometric extent of information projected to the grid not only depends on which
grid cells contain material, but also on basis function choice.

-■□OOOOOOOOOOOOOOOOOOOOOOOOOOOOOir-

------True Density
------Piecewise-Linear Basis
— Quadratic B-spline Basis
o Particle Locations

methods where information is projected to extra
nodes, such as uGIMP and standard B-splines,
will still be affected by this &(h) geometric er­
ror when Neumann or Dirichlet boundary con­
ditions are applied. These methods should not
be affected by this error when periodic bound­
ary conditions are used. Methods which do not
require the use of extra nodes, such as standard
MPM with piecewise-linear basis functions (Fig.
2(a)), modified boundary B-splines (Fig. 3), and
cpGIMP will not be affected by this geometric er­
ror.

It is worth noting that while cpGIMP is imple­
mented in the UCF using extra boundary nodes,
information is not projected to these extra nodes
in well-behaved boundary aligned simulations.
This is because the particle p that is closest to the
boundary has width lp, and is located at a position
of lp/ 2 to the inside of the boundary, and the clos­
est extra node is at a distance of h + lpf 2 , which
is the exact location where the extra node’s basis
function goes to zero (see Fig. 4).

5 Test Problem Development

Code verification has gained renewed importance
in recent decades as costly projects rely more
heavily on computer simulations. Full time-
dependent test problems with analytical solu­
tions are desired so that simulation errors can
be assessed. The Method of Manufactured solu­
tions [Schwer (2002); Knupp and Salari (2003);

Banerjee (2006)] begins with an assumed solu­
tion to the model equations and analytically deter­
mines the external force required to achieve that
solution. This allows the user to verify the ac­
curacy of numerical implementations, understand
the effects of parameter choices within the code,
and to find where bugs may exist or improvements
can be made. The critical advantage afforded by
MMS is the ability to test codes with boundaries
or nonlinearities for which exact solutions will
never be known. It is argued [Knupp and Salari
(2003)] that MMS is sufficient to verify a code,
not merely necessary.

Since full transient mechanics solutions are of­
ten difficult to find in the literature, we will first
present an overview of the method of manufac­
tured solutions with which we will then develop
both 1-D and 3-D test problems.

5.1 Method o f Manufactured Solutions
Overview

For this paper we define several non-linear dy­
namic manufactured solutions and use them for
subsequent testing. The solutions exercise the
mathematical and numerical capabilities of the
code and provide reliable test problems for ascer­
taining a simulation’s accuracy and stability prop­
erties.

Finite Element Method (FEM) texts often present
Total Lagrange and Updated Lagrange forms of
the equations of motion. The Total Lagrange form

Implementation Choices within the Material Point Method 121

is written in terms of the reference configuration
of the material whereas the Updated Lagrange
form is written in terms of the current configu­
ration. Either form can be used successfully in a
FEM algorithm, and solutions from Updated and
Total Lagrange formulations are equivalent [Be-
lytschko, Liu, and Moran (2000)].

However, within GIMP it is necessary to manu­
facture solutions in the Total Lagrange formula­
tion so that zero normal stress can be applied to
free surfaces as a boundary condition. This might
at first appear to conflict with the fact that GIMP
is always implemented in the Updated Lagrange
form. The equivalence of the two forms and the
ability to map back and forth between them allows
a manufactured solution in the Total Lagrange
form to be validly compared to a numerical so­
lution in the Updated Lagrange form.

The equations of motion are presented in Total
and Updated Lagrangian forms, respectively:

VP + pob = poa (43)

V<r + pb = pa (44)

where
P l 5' Piola-Kirchoff Stress,
O' Cauchy Stress,
p density,
b acceleration due to body forces, and
a acceleration.

Many complicated constitutive models are used
successfully with GIMP, but for our purposes the
simple neo-Hookean is sufficient to test the non­
linear capabilities of the algorithm. The stress is
related in Total and Updated Lagrangian forms,
respectively:

P = Aln/F^ 1 + ju r ~~1 (F F r - l) (45)

(J = ^ i + ^ (F F ^ _ l) (46)

where
u displacement,
X position in the reference

configuration,
. |-l_ is.
' ^ d X deformation gradient,
J = [F[Jacobian,

shear modulus, and
X Lame constant.

The acceleration b due to body forces is used as
the MMS source term. The source term is “man­
ufactured” in such a fashion that the equations of
motion are satisfied for the particular input fields.
We select as an ansatz the displacement field, such
as a sine function, and then apply a special body
force throughout the object that causes the dis­
placement to occur.

5.2 One-Dimensional Periodic Bar

To understand the effect of smoothing length on
errors within MPM, we start by simulating a one­
dimensional periodic bar on the domain [0 . 1].
The problem we are considering has an assumed
analytical displacement and resultant deformation
gradient of:

u {X ,t)= A sin {2 n X)cos{C n t), (47)

F(X,t) = 1 + 2Ajicos(2jiX) cos(Cjit). (48)

where X is the material position in the reference
configuration, A is the maximum deformation per­
centage, and C = y^E/po is the wave speed. The
bar is subjected to a body force of

b(x ,t) = C2K2u(X,t)(2F(X,ty-2 + l) . (49)

The functions u and F are included in Eq. 49 only
to simplify notation. The constitutive model is
drawn from Eq. 46 in 1-D with zero Poisson’s ra­
tio:

This constitutive model, when combined with the
body force given by Eq. 49 will lead to the analyt­
ical displacement solution in Eq. 47.

While this one-dimensional bar has a periodic
solution, the manufactured solution was chosen
such that the velocity and displacements are both
zero on the boundaries of our simulation domain
[0.1]. This allows us to test our simulation with
both Dirichlet and periodic boundary treatments
of the same problem.

5.3 Axis-Aligned Displacement in a Unit Cube

Displacement in a unit cube is prescribed with
normal components such that the corners and

122 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

edges of GIMP particles are coincident and
collinear. This choice allows direct demonstra­
tion that GIMP can achieve the same spatial ac­
curacy characteristics in multiple dimensions that
have been shown in a single dimension. It is not,
however, representative of general material defor­
mations usually found in most realistic engineer­
ing scenarios.

The displacement field is chosen to be:

u =
A sin(27rX) sin(C7«)

A sin(27rF) sin(| n + Cm)
A sin(27rZ) sin(|7T + Cnt)

(51)

where X, Y, and Z are the scalar components of
position in the reference configuration, t is time,
A is the maximum amplitude of displacement,
and C = V E/po is the wave speed, where E is
Young’s modulus. The factors of two are chosen
so that a periodic boundary condition can be used
if desired.

The deformation gradient tensor is found by tak­
ing derivatives with respect to position, but for the
axis-aligned problem only the diagonal terms are
non-zero. Therefore:

F x x = 1 + 2A 7rcos(27rX) sin(C7w)
Fyy = 1 +2A7TCOs(27rF)sin(|7T + Cw)
Fzz = 1 I 2/l7rcos(27rX}s infI Cut)

(52)

Acceleration is found by twice differentiating dis­
placement Eq. 51 in time. Then substituting stress
P into Eq. 43 and solving for the body force b
(used as the MMS source term) it is found that:

/ Ux

Uy

U'Z

4ji _ ,-2
,Po
' 4ji _ f-,2
.Po
4/1 ,-2
Po

,k(K-
Pô xx

PoFyy

\

J

(53)

where K — ln(FXxFyyFzz) and the subscripts on
u and F indicate individual terms of displacement
and deformation gradient equations.

6 Results

6.1 One-D Smoothing Length Experiments

We simulated the one-dimensional periodic bar
developed in Section 5.2 on the domain [0,1] to

understand the effect of smoothing length on er­
rors within MPM.

The bar is initially discretized with an even sam­
pling of points with initial positions X®. The
particle positions are then adjusted to xp — X® +
u(Xp,0), and deformation gradients set to Fp —
F(Xp, 0). The simulation is run to a final time T
and errors in the particle positions are calculated
as

Error = |xT —X — u(X , T) \. (54)

This simulation was run with the parameters A —
0.02, E — 104, and po = 1.0 to a final time T —
2/C (one full period of oscillation) using uGIMP
with various numbers of particles-per-cell (PPC)
and various smoothing lengths. Fig. 8 shows how
errors depend on smoothing length for different
numbers of PPC when we run at a relatively large
time step corresponding to a CFL number of 0.8.
We see that the simulations go unstable when the
smoothing length is close to, or less than the ini­
tial width of the particles. The 2 PPC simulation
goes unstable for L < h/2, the 3 PPC simulation
goes unstable for L < h j3, etc.
Fig. 9 shows the effect of smoothing length on the
time-step stability restrictions. Fig. 9(a) shows
larger smoothing lengths are stable for a wider
range of CFL values when the problem is dis­
cretized with 4 PPC. While the simulation using
a smoothing length of hj% goes unstable at a CFL
number of approximately 0.75, the same simula­
tion with a smoothing length of h (equivalent to
quadratic B-spline basis functions) is stable up to
a CFL number of approximately 1.2. Fig. 9(b)
shows similar behaviors for 8 PPC. Furthermore,
the time-step stability restrictions do not change
significantly between the 4 PPC and 8 PPC sim­
ulations, suggesting that the stability is more de­
pendent on the smoothing length than the number
of particles per cell.

6.2 One-D Spatial Convergence Results

To investigate the spatial convergence properties
of the various MPM methods, we start by simulat­
ing the same one-dimensional periodic bar from
Section 5.2, now focusing on the behavior of the

Implementation Choices within the Material Point Method 123

Figure 8 : Stability analysis for uGIMP showing
errors vs. uGIMP smoothing length. The simula­
tions were run with a fixed time step correspond­
ing to a CFL number of 0.8.

error with respect to grid resolution and how that
error may differ using different choices of basis
functions and boundary treatments. The simula­
tions were run with the parameters A = 0.05 (5%
maximum displacement), E — 104, and po = 1.0
to a final time T — 1/C (one-half period of oscilla­
tion). All simulations were run with a time step of
At — 4 ■ 10^6, corresponding to a CFL number of
approximately 0.2 for 512 grid cells-the highest
resolution test case.

Fig. 10 shows results from simulations with both
the standard MPM piecewise linear basis func­
tions and quadratic B-splines. With an initial dis­
cretization of 4 PPC, we see the standard MPM
piecewise linear basis functions showing no sig­
nificant convergence beyond a modest 16 grid
cells. Quadratic B-splines show a significant
improvement, demonstrating f f (h 2) convergence,
with an error plateau occurring past 128 grid cells.
The 4 PPC quadratic B-spline simulation was
run with both periodic boundary conditions us­
ing standard splines (see Fig. 2(b)) and Dirichlet
boundary conditions using the modified bound­
ary splines (Fig. 3(a)). The results from the two
boundary treatments are nearly identical. As was
shown previously, using smoother basis functions
greatly improves numerical quadrature errors and
stability issues, however nodal integration will al­
ways give some quadrature error which can ex-

CFL

(a) 4 Particles Per Cell

CFL

(b) 8 Particles Per Cell
Figure 9: Examination of stability for uGIMP
showing errors versus CFL number for various
choices of smoothing length.

plain the error plateaus starting at 128 grid cells.
The last set of simulations in Fig. 10 shows the
same quadratic B-spline simulation with Dirichlet
boundary conditions, except this time the problem
has been discretized using 6 PPC. The extra par­
ticles helps lower the quadrature error and lower
the error plateau.

To further illustrate errors stemming from bound­
ary treatments, Fig. 11 shows errors for the same
problem simulated with B-splines, using three
distinct boundary treatments. Similar to Fig. 10,
the Dirichlet boundary conditions with modified
boundary B-splines and the periodic boundary
conditions with standard B-splines show nearly
identical results and demonstrate ff(h 2) conver­
gence. Also shown are results for standard

124 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

Figure 10: Spatial convergence on a one­
dimensional bar manufactured solution problem.

B-splines with Dirichlet boundary conditions.
This technique requires handling of the extra or
“ghost” boundary nodes as explained in Section
3.4.2. As was discussed previously, this can lead
to a geometric error on the grid which is 0 (h)
and the results show that the error convergence is
in fact reduced to 0 (h).

Figure 11: Spatial convergence on a one­
dimensional bar manufactured solution using
quadratic B-splines with various boundary treat­
ments.

6.3 Verification with the Method o f Manufac­
tured Solutions in Multi-D

The full three-dimensional axis-aligned problem
from Section 5.3 was implemented in the UCF to

both demonstrate the validity of the multi-D man­
ufactured solution and show that many of the 1-D
convergence results from the previous section are
also valid in 3-D. The simulation was run with
the parameters A = 0.05 (5% maximum displace­
ment), po = 1.0, E = 104 and a Poisson’s ratio of
0.3. The problem was discretized using 4 PPC in
each dimension (64 total particles per cell). Both
B-spline basis functions (with symmetric and pe­
riodic boundary conditions) and cpGIMP were
used in the simulations. The study consisted of
grid resolutions from 8 x 8 x 8 cells (32768 parti­
cles) up to 64 x 64 x 64 cells (16.8 million parti­
cles).

The results in Fig. 12 clearly show if(h2) con­
vergence with cpGIMP for all grid resolutions in
the study. Using B-spline basis functions with
periodic boundary conditions did nearly as well,
with convergence rates trailing off at higher grid
resolutions. Similar to the 1-D results, errors
when using standard B-splines with the extra, or
“ghost” boundary nodes (this time with symmet­
ric boundary conditions) demonstrate the 0 (h)
convergence we expect due to the geometric er­
rors on the grid.

It is not surprising that cpGIMP outperforms
other methods, as this problem is well suited for
cpGIMP since particles remain axis-aligned and
their voxels area a true partition of the domain.
Fig. 13 is a visualization of a representative 2­
D slice of the actual solution, showing the axis-
aligned particle voxels and how they partition the
domain. B-splines when using extra boundary
nodes performed as expected, demonstrating the
same 0(h) error as the 1-D results. There is an
obvious benefit to using periodic boundary condi­
tions over symmetric boundary conditions for this
problem since the errors are significantly lower.
It is still unclear, however, why the convergence
rate for the periodic boundary conditions trails off
from the if(h2) behavior we would expect from
the 1-D results. There are a number of possi­
bilities, including a more complicated quadrature
error behavior in multi-D, or the buildup of grid
crossing errors (similar to those analyzed by Tran,
Kim, and Berzins (2007)), which may be more
significant in multi-D since many more grid cross-

Implementation Choices within the Material Point Method 125

ing events occur than in 1-D simulations using
similar resolutions.

10“1

10~a
2
LU
05
Sio~3

10“4

101 10a
Grid Cells (each dimension)

Figure 12: Spatial convergence on the three­
dimensional axis-aligned manufactured solution
problem.

Figure 13: Visualization of a representative 2-D
slice of the exact solution (Eq. 51) at time t —
.005, showing deformed particle positions (black
dots) and a conceptualization of the axis aligned
particle voxels. The voxels have been rounded
and their sizes slightly reduced for visual clarity.

7 Summary

In this paper we have considered some of the
many choices one must consider when imple­
menting the Material Point Method. Two of the
design choices which have significant impact on
error properties of the method are which grid basis
functions to use and how to implement boundary
conditions. We explored and analyzed the numer­
ical impact of these algorithmic choices.

A number of basis functions were explored,
including: standard piecewise-linear basis
functions, B-spline basis functions, uniform
GIMP (uGIMP), and contiguous particle GIMP
(cpGIMP). All these functions were shown to
be connected through a similar construction
technique-the convolution of piecewise-constant
functions of various lengths. Analysis of the
uGIMP functions showed an integration, or
quadrature error which was second order with
respect to particle spacing when the basis func­
tion smoothing length is larger than the particle
widths. When the smoothing length is smaller
than the particle widths, this integration error
becomes first order. The effects of this rela­
tionship between particle widths and smoothing
lengths were demonstrated in simulations where
instabilities occurred when the smoothing length
was set smaller than the particle widths.

Boundary condition implementation also had an
effect on the overall errors in the method. The ge­
ometric errors present in the grid representation
of the deformed material can result in first order
spatial errors when standard kinematic boundary
conditions are applied. These geometric errors
are exacerbated when smoother, and necessarily
wider, basis functions are used, such as uGIMP,
or B-splines. We were able to eliminate these
first order errors when using periodic boundary
treatments. Relaxing the requirement that each
grid node correspond to a single basis function led
us to a set of modified boundary B-spline basis
functions which eliminated the geometric errors
for our problem and allowed second order spa­
tial convergence with standard Dirichlet boundary
conditions.

126 Copyright © 2008 Tech Science Press CMES, vol.31, no.2, pp.107-127, 2008

Acknowledgement: This work was supported
by the U.S. Department of Energy through the
Center for the Simulation of Accidental Fires
and Explosions (C-SAFE), under grant W-7405-
ENG-48. In addition, the authors would like to ac­
knowledge helpful discussions with members of
the Utah MPM Group.

References

Atluri, S. N. (2006): Mesh less Local Petrov-
Galerkin (MLPG) mixed collocation method for
elasticity problems. CMES: Computer Model­
ing in Engineering & Sciences, vol. 14, no. 3, pp.
141-152.

Atluri, S. N.; Liu, II. T.; Han, Z. D. (2006):
Mesh less Local Petrov-Galerkin (MLPG) mixed
finite difference method for solid mechanics.
CMES: Computer Modeling in Engineering &
Sciences, vol. 15, no. 1, pp. 1-16.

Atluri, S. N.; Zhu, T. (1998): A new Meshless
Local Petrov-Galerkin (MLPG) approach in com­
putational mechanics. Computational Mechan­
ics, vol. 22, no. 2, pp. 117-127.

Banerjee, B. (2006): Method of manu­
factured solutions, www.eng.utah.edu/ baner-
jee/Notes/MMS.pdf, 2006.

Bardenhagen, S. (2002): Energy conservation
error in the material point method for solid me­
chanics. Journal o f Computational Physics, vol.
180, p p .383-403.

Bardenhagen, S.; Kober, E. (2004): The
generalized interpolation material point method.
CMES: Computer Modeling in Engineering and
Sciences, vol. 5, pp. 4 7 7 ^ 9 5 .

Bardenhagen, S. G.; Brydon, A. D.; Guilkey,
J . E. (2005): Insight into the physics of foam
densification via numerical simulation. Journal
o f the Mechanics and Physics o f Solids, vol. 53,
no. 3, pp. 597-617.

Belytschko, T.; Liu, W. K.; Moran, B. (2000):
Nonlinear Finite Elements fo r Continua and
Structures. John Wiley and Sons, LTD.

Belytschko, T.; Lu, Y. Y.; Gu, L. (1994): Ele­
ment free Galerkin methods. International Jour­
nal fo r Numerical Methods in Engineering, vol.
37, no. 2, pp. 229-256.

Brackbill, J . U.; Kothe, D. B.; Ruppel, H. M.
(1988): FLIP: a low-dissipation, particle-in-cell
method for fluid flow. Computer Physics Com­
munications, vol. 48, pp. 25-38.

Brackbill, J . U.; Ruppel, II. M. (1986): FLIP: a
method for adaptively zoned, particle-in-cell cal­
culations of fluid flows in two dimensions. Jour­
nal o f Computational Physics, vol. 65, pp. 314—
343.'

Grigoryev, Y. N.; Vshivkov. V. A.; Fedoruk,
M. P. (2002): Numerical “Particle-in-Cell”
Methods. VSP.

Guilkey, J . E.; Weiss, J . A. (2003): Implicit
time integration for the material point method:
Quantitative and algorithmic comparisons with
the finite element method. International Jour­
nal fo r Numerical Methods in Engineering, vol.
57, no. 9, pp. 1323-1338.

Han, Z. D.; Liu, H. T.; Rajendran, A. M.;
Atluri, S. N. (2006): The applications of Mesh­
less Local Petrov-Galerkin (MLPG) approaches
in high-speed impact, penetration and perforation
problems. CMES: Computer Modeling in Engi­
neering & Sciences, vol. 14, no. 2, pp. 119-128.

Han, Z. D.; Rajendran, A. M .; Atluri, S. N.
(2005): Meshless Local Petrov-Galerkin
(MLPG) approaches for solving nonlinear prob­
lems with large deformations and rotations.
CMES: Computer Modeling in Engineering &
Sciences, vol. 10, no. 1, pp. 1-12.

Kashiwa, B. A.; Lewis, M. L .; Wilson, T.
(1996): Fluid-structure interaction modeling.
Technical Report LA-13111-PR, Los Alamos Na­
tional Laboratory, Los Alamos, 1996.

Knupp, P.; Salari, K. (2003): Verification o f
Computer Codes in Computational Science and
Engineering. Chapman and Hall/CRC.

Li, S.; Liu, W. K. (2004): Meshfree Particle
Methods. Springer.

http://www.eng.utah.edu/

Implementation Choices within the Material Point Method 127

Love, E .; Sulsky, D. L. (2006): An energy-
consistent material-point method for dynamic fi­
nite deformation plasticity. International Journal
fo r Numerical Methods in Engineering, vol. 65,
no. 10, pp. 1608-1638.

Love, E .; Sulsky, D. L. (2006): An uncondition­
ally stable, energy-momentum consistent imple­
mentation of the material-point method. Com­
puter Methods in Applied Mechanics and Engi­
neering, vol. 195, no. 33-36, pp. 3903-3925.

Ma, J .; Lu, H.; Komanduri, R. (2006): Struc­
tured mesh refinement in generalized interpola­
tion material point method (GIMP) for simulation
of dynamic problems. CMES: Computer Model­
ing in Engineering and Sciences, vol. 12, pp. 213—
227.

Nairn, J . A. (2006): Numerical simulations
of transverse compression and densification in
wood. Wood and Fiber Science, vol. 38, no. 4,
pp. 576-591.

Parker, S.; Guilkey, J .; Harman, T. (2006):
A component-based parallel infrastructure for the
simulation of fluid-structure interaction. Engi­
neering With Computers, vol. 22, no. 3, pp. 277­
292.

Schwer, L. (2002): Method of man­
ufactured solutions: Demonstrations.
www.usacm.org/vnvcsm/PDF_Documents/MMS-
Demo-03Sep02.pdf, 2002.

Steffen, M.; Kirby, R. M .; Berzins, M. (2008):
Analysis and reduction of quadrature errors in the
material point method (MPM). International
Journal fo r Numerical Methods in Engineering.
DOI: 10.1002/nme.2360.

Sulsky, IX; Chen, A.; Schreyer, H. L . (1994): A
particle method for history dependent materials.
Comput. Methods Appl. Mech. Engrg., vol. 118,
pp. 179-196.

Sulsky, D.; Kaul, A. (2004): Implicit dynamics
in the material-point method. Computer Methods
in Applied Mechanics and Engineering, vol. 193,
no. 12-14, pp. 1137-1170.

Sulsky, IX; Schreyer, H.; Peterson, K.; Kwok,
R.; Coon, M. (2007): Using the material point
method to model sea ice dynamics. Journal o f
Geophysical Research, vol. 112.

Sulsky, IX; Zhou, S.; Schreyer, H. L. (1995):
Application of a particle-in-cell method to solid
mechanics. Computer Physics Communications,
vol. 87, pp. 236-252.

Tran, L. T.; Kim, J .; Berzins, M. (2007): Solv­
ing Time-Dependent PDEs using the Material
Point Method, A Case Study from Gas Dynam­
ics. Technical Report UUSCI-2007-010, SCI In­
stitute, University of Utah, 2007.

Wallstedt, P. C. (2008): On the Order o f Ac­
curacy o f the Generalized Interpolation Material
Point Method. PhD thesis, University of Utah,
2008.

Wallstedt, P. C.; Guilkey, J . E. (2007): Im­
proved velocity projection for the material point
method. CMES: Computer Modeling in Engi­
neering and Sciences, vol. 19, pp. 223-232.

Wallstedt, P. C .; Guilkey, J . E . (2008): An eval­
uation of explicit time integration schemes for use
with the generalized interpolation material point
method. To Appear In Journal o f Computational
Physics.

http://www.usacm.org/vnvcsm/PDF_Documents/MMS-

