
Copyright ©  2008 Tech Science Press CMES, vol.31, no.2, pp.107-127,2008

Examination and Analysis of Implementation Choices within the Material Point Method (MPM)
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Abstract: The Material Point Method (MPM) 
has shown itself to be a powerful tool in the sim­
ulation of large deformation problems, especially 
those involving complex geometries and contact 
where typical finite element type methods fre­
quently fail. While these large complex problems 
lead to some impressive simulations and solu­
tions, there has been a lack of basic analysis char­
acterizing the errors present in the method, even 
on the simplest of problems. The large number of 
choices one has when implementing the method, 
such as the choice of basis functions and boundary 
treatments, further complicates this error analysis. 
In this paper we explore some of the many choices 
one can make when implementing an MPM al­
gorithm and the numerical ramifications of these 
choices. Specifically, we analyze and demonstrate 
how the smoothing length within the General­
ized Interpolation Material Point Method (GIMP) 
can affect the error and stability properties of 
the method. We also demonstrate how various 
choices of basis functions and boundary treat­
ments affect the spatial convergence properties of 
MPM.

Keyword: Material Point Method, GIMP, 
Meshfree Methods, Meshless Methods, Particle 
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1 Introduction

The Material Point Method (MPM) [Sulsky, 
Chen, and Schreyer (1994); Sulsky, Zhou, and

1 School of Computing, University of Utah, Salt Lake City, 
UT, USA. {msteffen,kirby,berzins}@cs.utah.edu

2 Department of Mechanical Engineering, Uni­
versity of Utah, Salt Lake City, UT, USA. 
{philip.wallstedt,james.guilkey}@utah.edu

3 Corresponding Author

Schreyer (1995)] is a mixed Lagrangian and Eu- 
lerian method utilizing Lagrangian particles to 
carry history-dependent material properties and 
an Eulerian background mesh to calculate deriva­
tives and solve the equations of motion.

MPM and its variants have been shown to be 
extremely successful and robust in simulating a 
large number of complicated engineering prob­
lems (see for example [Bardenhagen. Brydon, and 
Guilkey (2005); Nairn (2006); Sulsky, Schreyer, 
Peterson, Kwok, and Coon (2007)]). The most 
well known of these variants is the General­
ized Interpolation Material Point (GIMP) Method 
[Bardenhagen and Kober (2004)], of which tradi­
tional MPM is a special case. GIMP provides im­
proved accuracy, stability and robustness to sim­
ulations through the introduction of particle char­
acteristic functions, which in most cases have the 
effect of smoothing the grid basis functions. The 
ability to handle solid mechanics problems in­
volving large deformations and/or fragmentation 
of structures, which are sometimes problematic 
for finite element methods, has led, in part, to the 
method’s success.

MPM, and later, GIMP, was chosen as the solid 
mechanics component for fluid-structure interac­
tion simulations within the Center for the Sim­
ulation of Accidental Fires and Explosions (C- 
SAFE). The goal of C-SAFE has been the devel­
opment of a capability to simulate the response 
of a metal container filled with explosives to a 
large hydrocarbon pool fire, including heat up, ig­
nition and rupture of the container. The pioneer­
ing work of Kashiwa and co-workers [Kashiwa, 
Lewis, and Wilson (1996)] inspired this choice 
as they had demonstrated many of the capabili­
ties that would be required for such simulations, 
including material failure and solid-to-gas phase
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transition. To achieve the required level of par- 
allelization and to provide a platform for Adap­
tive Mesh Refinement, C-SAFE investigators cre­
ated the Uintah Computational Framework (UCF) 
[Parker, Guilkey, and Harman (2006)]. It is within 
this software environment that the implementa­
tions of MPM and GIMP under consideration here 
exist, along with components for fire simulation, 
compressible reacting flow, and fluid-structure in­
teraction.

The main goal of this paper is to examine some 
of the implementation choices within GIMP in a 
multi-dimensional simulation setting and to un­
derstand the algorithmic and numerical ramifica­
tions of those choices. Specifically, we will focus 
on the smoothing length parameter (or the par­
ticle characteristic function) and examine a few 
choices for evolving the smoothing length in time 
which have been implemented within the UCF. 
We will perform analysis and carry out simula­
tions in both 1-D and 3-D in order to shed light on 
the error and stability properties that result from 
the various choices.

This paper is organized as follows. Section 2 
provides background to give context concerning 
where and how MPM fits into the family of par­
ticle and meshfree methods and introduces previ­
ous analysis performed on MPM. Section 3 gives 
an algorithmic overview of MPM and GIMP, fo­
cusing on some of the choices made when im­
plementing MPM within the UCF. Section 4 pro­
vides an analysis and interpretation of some of the 
spatial errors present in MPM and GIMP, build­
ing on previous analysis by the authors. In the 
process, we investigate the relationship between 
GIMP as implemented in the UCF and MPM us­
ing B-spline basis functions. Section 5 overviews 
the process for developing interesting problems 
with analytical solutions which can be used to test 
our methods and measure errors in our solutions. 
In Section 6 we present numerical results and dis­
cuss the differences that result from the aforemen­
tioned choices. Lastly, Section 7 is a summary of 
our findings and our conclusions.

2 Background

The Material Point Method was introduced by 
Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou, 
and Schreyer (1995) as a solid mechanics exten­
sion to FLIP (Fluid-Implicit Particle) [Brackbill 
and Ruppel (1986); Brackbill, Kothe, and Ruppel 
(1988)], a “full-particle” Particle In Cell (PIC) flu­
ids simulation method.

More recently, Bardenhagen and Kober (2004) 
generalized the development that gives rise to 
MPM and showed that MPM can be considered 
a subset of their “Generalized Interpolation Mate­
rial Point” (GIMP) method.

Although not derived directly from what are clas­
sically considered as meshfree or meshless meth­
ods, MPM falls within a general class of mesh­
free methods and is discussed within the mesh­
free community since it has both many of the 
same advantages and many of the same chal­
lenges as other meshfree methods [Li and Liu
(2004)]. Like many meshfree methods, the pri­
mary partitioning of the material does not involve 
a polygonal tessellation (as in finite elements), 
but rather some alternative non-mesh-based un­
structured representation. However, unlike fully 
mesh-free methods, such as the Meshless Lo­
cal Petrov-Galerkin Method (MLPG) [Atluri and 
Zhu (1998); Han, Rajendran, and Atluri (2005); 
Han, Liu, Rajendran, and Atluri (2006); Atluri
(2006); Atluri, Liu, and Han (2006)], MPM uti­
lizes a background mesh to perform differentia­
tion, integration, and solve the equations of mo­
tion. The use of a background mesh is still simi­
lar to other meshfree methods such as the Element 
Free Galerkin Method (EFGM) [Belytschko, Lu, 
and Gu (1994)]. While the background mesh is 
formally free to take any form, it is most often 
chosen for computational efficiency to be a Carte­
sian lattice (i.e. segments, quadrilaterals and hex- 
ahedra in 1-D, 2-D and 3-D respectively). These 
functions are used, in essence, as a means of dis­
cretizing the continuum equations, with the do­
main of these functions being an alternative (in 
the sense of versus particles) representation of the 
deformed configuration of the material. Nodal 
integration based upon particle positions as is
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used in other particle methods such as PIC meth­
ods [Grigoryev, Vshivkov, and Fedoruk (2002)] is 
employed during the solution process.

Spatial integration errors were quickly deter­
mined to be the limiting factor in the accuracy 
and stability of MPM. One proposed way to ame­
liorate the convergence problems found in MPM 
was to move away from the idea of nodal inte­
gration and instead think of the particles as hav­
ing extent within the quadrature scheme. Barden- 
hagen and Kober (2004) accomplished this with 
GIMP by adding particle characteristic functions. 
There were questions, however, on how to evolve 
these functions in time within a multi-D simula­
tion. Since the deformation gradient is only main­
tained at one point within a particle’s voxel, it is 
unclear that the use of this information to deform 
particles’ voxels is sufficient to maintain a par­
tition of the deformed domain. And, if it were 
sufficient, it is even more unclear how to accom­
plish the accurate spatial integration of these de­
formed voxels. Ma, Lu, and Komanduri (2006) 
proposed another approach for evolving the par­
ticle characteristic functions by adding massless 
corner particles to explicitly track the deforma­
tion of a particle’s voxel, or integration domain. 
Steffen, Kirby, and Berzins (2008) analyzed the 
case where nodal integration was still used, but 
looked at how the use of smoother basis functions 
drastically reduced the nodal integration quadra­
ture errors.

3 Overview of the Material Point Method

MPM is a mixed Lagrangian and Eulerian 
method with particles representing the discrete 
Lagrangian state of a material. The history de­
pendent properties of a material are carried and 
updated on the particles. A background mesh is 
also used, in part to solve the equations of motion. 
This background mesh can be non-uniform and 
be comprised of elements of various shapes; how­
ever for computational efficiency a uniform Carte­
sian grid is almost always employed. Among 
other benefits, a uniform Cartesian grid eliminates 
the need for computationally expensive neighbor­
hood searches during particle-mesh interaction. 
Particle information is projected to this back­

ground mesh, from which gradients required for 
constitutive model evaluation (at the particles) are 
calculated and the equations of motion are solved. 
Using the solution to the equations of motion on 
the grid, the material state, minimally velocities 
and positions, is then updated at the particles.

As the above procedure is similar for nearly all 
variants of MPM, the main distinguishing fea­
ture between the different MPM methods in this 
paper is the choice of basis functions. We will 
start by giving an overview of standard MPM, or 
MPM using standard piecewise-linear basis func­
tions. Next, we will show how MPM can be eas­
ily implemented using B-spline basis functions 
and mention the benefits of these smoother basis 
functions. The Generalized Interpolation Mate­
rial Point Method (GIMP) will then be reviewed. 
Lastly, various options for implementing kine­
matic boundary conditions will be presented.

3.1 Standard Material Point Method

The MPM procedure begins by discretizing the 
problem domain Q with a set of material points, 
or particles. The particles are assigned initial val­
ues of position, velocity, mass, volume, and de­
formation gradient, denoted xp, vp, mp, Vp, and 
F p (subscript index p  is used to distinguish parti­
cle values versus an index of i for grid node val­
ues). Alternatively, instead of velocity and mass, 
momentum and mass density may be prescribed 
at the particle location, from which mp and \p can 
be calculated. Depending on the simulation, other 
quantities may be required at the material points 
as well, such as temperature. The particles are 
then considered to exist within a computational 
grid, which for ease of computation is usually a 
regular Cartesian lattice. Fig. 1 depicts a repre­
sentation of a typical 2-D MPM problem.

At each time-step tk (all of the following quanti­
ties will be assumed to be at time tk unless oth­
erwise noted), the first step in the MPM compu­
tational cycle involves projecting (or spreading) 
data from the material points to the grid. Specifi­
cally, we are interested in projecting particle mass 
and momentum to the grid to calculate mass and
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Figure 1: Typical 2-D MPM problem setup. 
The dotted line represents the boundary of the 
simulated object Q and each closed point rep­
resents a material point used to discretize Q. 
The square mesh represents the background grid. 
Each square in the background grid is a grid cell, 
and grid nodes are located at the comers of grid 
cells.

velocity at the grid nodes in the following way:

=  '£<Pipmp (Dmi

=  ( ! > ,pinp\p ) /m h (2)

where (j>ip =  0,-(xp) is the basis function centered
at grid node i evaluated at the position xp. Note 
that Eq. 1 represents the mass-lumped version of 
what Sulsky and Kaul (2004) describe as the con­
sistent mass matrix M\j =  'Zp <pip<pjpmp. Next, in­
ternal force on the grid is found by taking the di­
vergence of stress as a function of the constitutive 
model and the deformation gradient stored with 
each particle.

<7p =  <r(Fp)

fj'" =  - X V 0 ,p . a pVp!

(3)

(4)

where V 0,p =  V0,-(xp) and Vp =  det(Fp)V® de­
notes the volume of the particle voxel (in its de­
formed configuration). Combining the internal 
grid force with any external forces fp\ grid ac­
celerations are then calculated as:

(5)

Next, grid velocities are updated with an appro­
priate time stepping scheme. Implicit time step­
ping schemes exist for MPM [Guilkey and Weiss 
(2003); Sulsky and Kaul (2004); Love and Sul­
sky (2006b)], however we choose to use the ex­
plicit Forward-Euler time discretization presented 
within the original MPM algorithm:

-a,-A/. (6)

Velocity gradients are then calculated at the parti­
cle positions using the updated grid velocities:

VvJ+ 1 = X V 0 ,pv*+1. (7)

Lastly, the history-dependent particle quantities 
are time-advanced. Particle deformation gradi­
ents, velocities, and positions are updated using 
calculated velocity gradients, grid accelerations, 
and grid velocities:

F *+1 =  (1 + Vvp+ 1A /)F'

V;,+1 =  v J +  X f c pa,-A/
i

X kp +] =  X *  + £ < f r p v f + 1 A/.

(8)

(9)

(10)

Eqs. 1-10 outline one time-step of MPM and as­
sume initialization of particle values at time /°: 
xp, vp, Fp, and Vp . Non-linear finite element 
codes often use a staggered central difference 
method [Belytschko, Liu, and Moran (2000)]. If 
possible, a simple change of initializing particle

— ]/9
velocities a half time step earlier, i.e. vp ; , and 
using the same MPM algorithmic procedure out­
lined above leads to the following set of staggered 
central-difference update equations:

k+\ - a,-A/ (ID
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v v ‘ + i = 5 > , „ v ;

= ( i + Vv? 2At)F P

k+i k^i 
Vp ‘ =  vp - I 2^ (l>in*iAl

jt+ i

(12)

(13)

(14)

(15)

A similar staggered central difference method is 
used for MPM by Sulsky, Schreyer, Peterson, 
Kwok, and Coon (2007), the benefits of which 
are reviewed in detail by Wallstedt and Guilkey 
(2008).

The calculation of <yp involves a constitutive 
model evaluation and is specific for different ma­
terial models. The neo-Hookean elastic consti­
tutive model used in this paper is more fully de­
scribed in Section 5.1.

Calculating fjxt is another problem dependent pro­
cedure with several options. The first option is 
to calculate fjxt directly on the grid. This is eas­
ily done with body forces such as gravity where 
fjxt — nijg. Another option is to calculate F *  on 
the particles and project to the grid through the 
grid shape functions:

p

’Xt 
p • (16)

Moving forces, such as surface tractions can be 
implemented by associating the forces with a fi­
nite set of “surface” particles in conjunction with 
Eq. 16. Lastly, for performance reasons, MPM 
is typically implemented using a fixed, equally 
spaced Cartesian lattice, however nothing in the 
method requires the grid to be fixed. Moving 
grid nodes can be implemented to track bound­
ary forces, calculating fjxt directly on the bound­
ary nodes, however implementing this for com­
plex geometries in multiple dimensions is not triv­
ial.

Most standard MPM implementations use 
piecewise-linear basis functions for due to 
their ease of implementation, small local support, 
and familiarity to those in the finite element

community. The 1-D form of the piecewise-linear 
basis function is given by:

0 (*) =
\x\/h |x| <  h 

otherwise.
(17)

where h is the grid spacing. The basis function 
associated with grid node i at position x, is then 
(pi — <p(x — Xj). The basis functions in multi-D are 
separable functions, constructed using Eq. 17 in 
each dimension, e.g., in 3-D,

0,-(x) =  0f(x)0fCy)0f(z).

3.2 B-Spline Material Point Method

(18)

As Bardenhagen and Kober (2004) described in 
the development of GIMP, lack of regularity in 

is conjectured to be the root cause of what 
is referred to as “grid cell crossing instabilities”. 
As can be seen in Fig. 2(a), piecewise-linear basis 
functions are only Co continuous at cell bound­
aries. Tran, Kim, and Berzins (2007) performed 
a detailed analysis concerning temporal errors 
within an MPM fluids framework in which the 
grid crossing errors arising from use of piecewise- 
linear basis functions were precisely determined. 
An analysis by Steffen, Kirby, and Berzins (2008) 
shows how the lack of smoothness of the standard 
piecewise-linear basis functions (Eq. 17) causes 
significant spatial quadrature errors, and the use 
of smoother basis functions, such as B-splines, 
significantly reduces these errors.

A typical one-dimensional quadratic B-spline can 
be constructed by convolving piecewise-constant 
basis functions with themselves:

(t> =x*x*x/{\x\? (19)

where x(r) is the piecewise-constant basis func­
tion:

X(x)
\x\ <  -jl 

otherwise
(20)

and I is width of %. The B-spline basis function 
associated with node i, is then 0,-(jc) =  <p(x — Xj). 
The multi-D B-spline basis functions in MPM are 
not radial basis functions, as in other meshfree
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methods, but rather are separable, constructed us­
ing Eq. 19 in each dimension-the same way as 
with piecewise-linear basis functions in Eq. 18. 
Evaluating Eq. 19 gives the 1-D B-spline basis 
function:

- ^ 42h‘ ^
1 ^

- ¥ x~-

ihx ~ 

f  I
1 2 3 

2hlX  2hx ~

— \h <  X <  —\h

— jli <  x  <  jl i  

\h <  x  <  \h 

otherwise.

(21 )

It is worth noting that a set of these quadratic 
B-spline basis functions maintain the partition of 
unity property required by the mass-lumping im­
plicit in the MPM projection functions such as 
Eq. 1 and Eq. 2. An example set of these basis 
functions is shown in Fig. 2(b).

The above construction of B-splines basis func­
tions by the convolution of piecewise-constant 
functions is helpful in showing the connection be­
tween the various basis functions considered in 
the paper. This convolution construction has a 
number of consequences, including requiring the 
use of extra, or ghost nodes, beyond the boundary 
to maintain a partition of unity within the domain. 
This presents no problems when implementing 
periodic boundary conditions, however Dirichlet 
boundary conditions are non-trivial to implement. 
One such boundary treatment will be discussed in 
Section 3.4.

Another option, which requires a slight departure 
from the convolution construction, is to modify 
the boundary basis functions to still maintain a 
partition of unity within the domain but enforce 
that the boundary basis function evaluates exactly 
to one on the boundary (which, by construction, 
would require all other basis functions to evaluate 
to zero at that boundary). One such set of basis 
functions was used by Steffen, Kirby, and Berzins 
(2008) in their simulation of a one-dimensional 
bar with traction forces. The basis functions used 
in that paper, however, can only represent func­
tions which have zero slope on the grid bound­
aries, which was the case in their simulation.

Another choice of B-spline basis construction 
which allows for the same partition of unity prop-

(a) Piecewise-Linear

(c) GIMP
Figure 2: Example sets of 1-D basis functions 
used in MPM. Each set of basis functions shows 
an accompanying set of particles (with height rep­
resenting velocity) and the corresponding velocity 
field on the grid after projecting particle values us­
ing Eq. 2. Piecewise-linear basis functions result 
in piecewise-linear velocity fields with a disconti­
nuity of velocity gradients occurring at grid node 
locations. Both B-spline and GIMP basis func­
tions result in smoother fields.

erty, the boundary basis functions to exactly eval­
uate to one on the boundary, and which also al­
lows representation of non-zero slope solutions is 
the use of an open knot vector to describe the ba­
sis functions. Again, for computational efficiency.
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we choose the knot vector to be an open uniform 
knot vector with the end knots having a multi­
plicity of k — 1 for a A-order B-spline. For ex­
ample, if we discretize our 1-D domain of length 
I with N knots, the knot spacing would be h =  
I/ (N — 1), and the knot vector for a set of fourth- 
order B-splines (consisting of third-order polyno­
mials) would look like

[xo ,xo ,xo ,x i -2 ,Xn- l , X n- l , X n- l \ ,

where Xj =  xq I i ■ h. For a A-order B-spline, this 
results in N I k 2 basis functions which are cal­
culated recursively as

$i.k =  $i.k I
■Xj

- < p i+
%i+k '

%i+k -̂ i+ 1

h i  =
1 Xj <  X <  Xj . I

0  otherwise.

(22)

(23)

If either denominator in Eq. 22 evaluates to zero 
(which only happens when knots are repeated in 
the knot vector), the entire term is set equal to 
zero.

Note that this is a slight departure from the pre­
vious MPM basis functions where there exists ex­
actly one basis function for each grid node. Here, 
if grid nodes were used as knots, there are k 2 
extra basis functions, or degrees of freedom in the 
system. However, the mechanics of the MPM al­
gorithm remain exactly the same with the sub­
script i representing values associated with de­
grees of freedom, rather than values associated 
with grid points. Fig. 3 shows examples of these 
modified boundary B-spline basis functions.

3.3 Generalized Interpolation Material Point 
Method

The Generalized Interpolation Material Point 
(GIMP) Method [ Bardenhagen and Kober (2004)] 
is an extension to MPM which takes advantage of 
the fact that equations such as Eq. 1 take the form:

Si =  'E g p f rip

— 2 u $ p ~ J q S (x - - X p ) d Q ,
(24)

(a) Quadratic B-Spline (k =  3)

(b) Cubic B-Spline (k =  4)
Figure 3: Example sets of modified boundary 1-D 
B-spline basis functions used in MPM.

with 8 the Kronecker delta. GIMP then replaces 
8 with a general particle characteristic function 
X p(x) centered at the particle position xp. This 
results in new projection equations of the form:

8i  = (25)

where 0 (- is the weighting function given by

,p fn X p (x )d Q  J q
<Pi(x )X p(x)d£l- (26)

Equations using V<pip, such as Eq. 4 are similarly 
modified to use a gradient weighting function:

V<i>w =
1

V <P i(x)X p(x)dn. (27)
,p fn X p ( * )d t o J a

GIMP is often implemented using standard 
piecewise-linear grid basis functions (Eq: 17) and 
piecewise-constant particle characteristic func­
tions:

Xp —
|x| <  2Ip 

otherwise.
(28)

in which case the 1-D MPM and GIMP weighting 
functions can be grouped together in the follow-
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ing general form:

1 — (4.v2 +  Ip )/  (4/i/p) 

1 — |.v| jh

)i+k-\x\)2 / { 2hlp)

otherwise.

(29)

where lp is the width of the particle characteristic 
function %p. Again, the basis function associated 
with node i located at position .v, is <pj(x) =  <p(x — 
Xj) and the multi-D weighting function is con­
structed as the tensor product of the 1-D weight­
ing functions in each direction.

Since a particle moves and its voxel deforms in 
time, the question then becomes how to handle 
lp, the vector of widths of particle p’s voxel in 
a multi-D simulation. Ideally, we would like the 
particles’ voxels to deform and tile space for all 
time. In 1-D, this was accomplished by setting 
lp equal to the particle’s time-updated volume 
Vp. This scheme results in particle specific, time- 
dependent weighting functions (/)jp and was re­
ferred to as contiguous-particle GIMP (cpGIMP). 
For general multi-D simulations, however, the use 
of rectilinear %p will not allow a perfect tiling to 
occur.

One choice for handling \p in a multi-D simula­
tion, and what we will refer to as standard GIMP, 
is to leave the particle lengths unchanged for all 
time, i.e. \p — l'1,. where the superscript 0 indi­
cates initial particle size. Standard GIMP weight­
ing functions are then particle specific, but not 
time-dependent. Another option is uniform GIMP 
(uGIMP), where a single smoothing length I is 
used for all particles, for all time. Note that in 
the case where the initial discretization was per­
formed using uniform particles, standard GIMP 
would be the same as uGIMP. And lastly, while 
space cannot be tiled in a general multi-D simu­
lation using rectilinear %p, updating \p in time to 
give a rough approximation to the particle’s de­
formed voxel will still be referred to as cpGIMP. 
The cpGIMP approximation used in this paper is 
lp =  l^diag(F), such that the particle size varies

through time as dictated by the appropriate diago­
nal term of the deformation gradient F. Note that 
lp here refers to the full particle width, and not the 
half-width as used in the original GIMP formula­
tion.

Fig. 4 shows an example 1-D GIMP weight­
ing function (f>lp and gradient weighting function 
V 0 ,- for a piecewise-constant xP with a character­
istic length of I. Notice that that while <f>j looks 
smooth in Fig. 4(a), the dashed lines show loca­
tions of breaks in continuity which become ap­
parent in Vtpjp in Fig. 4(b). These breaks in con­
tinuity will become important in later analysis.

(a) GIMP Weighting Function

(b) GIMP Gradient Weighting Function 
Figure 4: Example GIMP weighting function (f>jp, 
and gradient weighting function V 0 ,- centered at
0  using piecewise linear grid basis functions and 
piecewise constant particle characteristic func­
tions Xp- Dotted lines denote breaks in the con­
tinuity of the functions.

3.4 Kinematic Boundary Conditions

One of the conveniences afforded by the use of a 
Cartesian background grid is the ease of applica­
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tion of kinematic boundary conditions. That is, 
Dirichlet or Neumann conditions, or a combina­
tion, on the velocity field. Note that if no treat­
ment is given to the boundary nodes, then parti­
cles are able to freely advect from the computa­
tional domain in what could be considered a zero 
gradient Neumann condition. This important part 
of the algorithm has received scant treatment in 
the literature (although it is very relevant when 
one is actually implementing MPM), so we turn 
attention to it here.

3.4.1 Traditional MPM

In traditional MPM, boundary conditions only 
need be applied on those nodes which coincide 
with the extents of the computational domain. As 
illustrated in Fig. 2(a) nodes beyond those bound­
aries are not influenced by particles within the do­
main. This can be considered a result of the zero 
width of the Dirac delta characteristic functions. 
Boundary conditions must be applied to the ve­
locity that has been projected to the nodes (Eq. 2), 
the time advanced velocity (Eq. 6 ), and the ac­
celeration (Eq. 5). For Dirichlet conditions, this 
simply means overwriting the calculated values 
for the velocities with the prescribed values. For 
the acceleration, some debate exists regarding the 
proper means of treatment. The usual approach 
has been to assume that a Dirichlet condition for 
velocity implies that the acceleration should be 
zero on those boundary nodes. However, it is also 
possible that if Eq. 6  were solved for acceleration:

a,- =  (vf+ 1 -v f)/ A t, (30)

the proper value for the acceleration at the bound­
ary nodes would be computed based on the dif­
ference between the time advanced velocity (after 
application of boundary conditions) and the pro­
jected velocity (without the application of bound­
ary conditions). Put another way, acceleration on 
the boundary nodes can be considered to reflect 
the force required to bring the velocity at those 
nodes from the projected value to the prescribed 
value.

While these two approaches to the acceleration 
seem substantially different, the difference in sim­
ulation results is very subtle. Indeed, when both

approaches are tested with the manufactured solu­
tion described in Sec. 5.1, the superiority of either 
is not apparent. Currently, the UCF implementa­
tion uses the boundary treatment given in Eq. 30.

In addition to prescribed velocity boundary con­
ditions, “symmetry” boundary conditions are also 
frequently useful. Symmetry BCs are used to rep­
resent a plane of symmetry, which allows the use 
of a reduced computational domain, or a friction- 
less surface. They are achieved by simply apply­
ing a zero velocity Dirichlet condition on the com­
ponent of velocity normal to a boundary, while 
allowing the other components to remain at their 
computed values. Acceleration is handled in the 
same manner, with the normal component either 
zeroed out, or computed as in Eq. 30.

3.4.2 GIMP and B-Spline MPM

When using GIMP or B-Spline MPM, there are 
additional considerations in the applications of 
the boundary conditions. Namely, because of 
their increased extents, it is possible for particles 
to influence, and be influenced by, nodes that lie 
outside of the simulation domain, (see Figures 
2(b) and 2(c)). In the UCF, these are referred to 
as “extra” nodes, but may also be called “ghost” 
nodes by other investigators. Boundary condi­
tion treatment of these nodes for Dirichlet con­
ditions is the same as for the regular boundary 
nodes, namely, their computed values are replaced 
by prescribed values as described above.

In treating symmetry boundaries, the extra nodes 
require special care. In particular, the normal 
component of velocity for these nodes is no longer 
set to zero, but rather should be set to the negative 
of the value of the node opposite the boundary. 
The need to do so is apparent if one considers two 
objects approaching a collision plane symmetri­
cally. The normal component of velocity on the 
opposite sides of that plane will have opposing 
signs.

4 Analysis and Interpretation

MPM is a fairly new method and thus there has 
been a recent push by the MPM community to 
provide a more formal analysis of errors in the
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method. Bardenhagen (2002) looked at energy 
conservation errors in MPM, focusing on the ef­
fects of the choice of two time-stepping algo­
rithms. Recently, Wallstedt and Guilkey (2008) 
expanded on the analysis of those time-stepping 
algorithms. Love and Sulsky (2006a) and Love 
and Sulsky (2006b) analyze an energy consis­
tent implementation of MPM, the second of these 
showing an implicit implementation to be un­
conditionally stable and energy-momentum con­
sistent. Wallstedt and Guilkey (2007) focus on 
velocity projection errors and present a scheme 
which helps ameliorate these errors. Steffen, 
Kirby, and Berzins (2008) perform an analysis 
on some of the spatial integration errors present 
within MPM.

In this section, we continue adding a few more 
pieces to the error analysis of MPM. Specifically 
we will look at integration errors which are af­
fected by the smoothing of the piecewise-linear 
basis functions.

4.1 The Relationship between GIMP and B- 
Splines

Taking a closer look at the weighting function 
(Eq. 26), we see that the construction is essen­
tially a convolution of the grid basis functions 
and the particle basis function %p. Since a stan­
dard piecewise-linear tf>j can also be represented as 
the convolution of piecewise-constant basis func­
tions, we can rewrite the GIMP weighting func­
tion as:

4>=Xg*Xg*Xp/(\Xg\\Xp\) (3 1 >

where the width of Xg is h (the grid spacing), and 
the width of %p is lp, as described in the GIMP 
methods. The equivalent GIMP basis function 
would then come from evaluating Eq. 31:

Q.(x) = 4>(x-Xi) (32)

with the GIMP weighting function equivalent to 
evaluating Eq. 32 at the particle position, xp. The 
reason for rewriting the GIMP basis functions in 
this way is to demonstrate the similarities be­
tween the construction of GIMP basis functions 
and the construction of B-spline basis functions

as in Eq. 19. Both basis functions are constructed 
by convolving piecewise-constant basis functions 
with themselves; however all of the % in the B- 
spline basis are of width h while one of the % 
functions used in the GIMP method has width lp.
In cpGIMP, the particle characteristic length lp 
(of which there may be different lengths for dif­
ferent directions) is updated in time, meaning the 
cpGIMP weighting function (Eq. 29) is time de­
pendent, and is different for each particle p. The 
ideal case would be that the updating of lp in time 
will cause the set of particle characteristic func­
tions x p to perfectly tile space, but due to the rec­
tilinear constraints of %p, this is not possible in 
general multi-D simulations. Because of this in­
ability to tile space, and the recognition that the 
major benefit of GIMP is the smoother equiva­
lent basis functions, a simplified standard GIMP 
is used in which lp = P  for all time. Further­
more, if lp = I is constant for all particles p  in 
a simulation (uGIMP), the effect is truly equiva­
lent to using standard MPM with a smoother set 
of basis functions. In fact, if one were to disasso­
ciate the smoothing length, /, from the particles 
in a uGIMP formulation and instead leave / as 
a free parameter, the effect is to create quadratic 
B-spline-like basis functions, with / determining 
the maximum extent of the functions. Choos­
ing / =  1̂  would give standard GIMP. Choosing 
I = h would give quadratic B-spline basis func­
tions. Choosing I =  0 would lead to the degen­
erate case of Xp =  S(x — xp), leaving us with the 
standard piecewise-linear basis functions.

It has been our decision to leave the smoothing 
length I as a free parameter the UCF, allowing 
for various options when running simulations. We 
will explore various choices of I in the sections to 
follow.

4.2 Smoothing Length Dependent Integration 
Errors

Spatial integrals within MPM are performed using 
nodal integration -  an approximation which takes 
the form:

f  f { x ) d a ^ f { x p)Vp. (33)
JQ p
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An analysis of errors in the above approximation 
within the MPM framework was performed by 
Steffen, Kirby, and Berzins (2008). There, the 
nodal integration approximations in MPM were 
equated to non-uniformly-spaced midpoint inte­
gration of functions with discontinuities in vari­
ous derivatives. In particular, the analysis focused 
on the errors when calculating the internal force 
(Eq. 4), which involves the following approxima­
tion:

p n t  __

Q
(*) • V<pi(x)dLl £<7,, -V<l>ipVp

(34)

The main result from that analysis showed that if 
the particle arrangements did not respect the dis­
continuities which arise from the basis functions 
(i.e. a particle’s voxel overhangs node bound­
aries), an extra integration, or “jump” error can 
arise in the above approximation which is of the 
order C{{f'p+^]]Axp+2, where the function, /. be­
ing integrated is Cp continuous (with p =  — 1 for 
discontinuous functions). Here, [[•]] represents the 
jump in the p  +  1  derivative of / at the discon­
tinuity and Ax is the particle spacing. Note that 
the function V^( in Eq. 34 is discontinuous, thus a 
jump error of ff(Ax) can arise in MPM when us­
ing standard piecewise-linear basis functions, de­
pending on particle spacing. Numerical examples 
of this error were shown in Steffen, Kirby, and 
Berzins (2008).

The jump error for a single particle is calcu­
lated as Ejump =  fQp f(x) dx -  f(x p)Ax, where Qp 
spans a discontinuity, or jump, and Ax is the width 
of the particle. This consists of measuring the 
midpoint integration error for the single interval 
spanning the jumps. Integration approximations, 
such as in Eq. 33, involve integration over the 
whole domain, using multiple intervals, leading to 
a composite midpoint rule integration error which 
is ff(Ax2). These two errors are additive, giving a 
total error of the form

Etotul =  j  fix )  dQ  £  f(x p) Vp =  Emp +  EJump,

(35)

where Emp is the composite midpoint error and

Ejump is any errors arising from integrating across 
jumps. Note that if we assume particles are non­
overlapping and fill space, this equation can also 
be written as

Etotai— ’y .
P Q,

f ( x ) d n - f ( x p)Vp (36)

Since the errors are additive and since Emp is 
always ff(A x2), Co and higher continuous func­
tions exhibit an overall integration error which 
is ff(A x2), while discontinuous functions have 
an error which is ff(A x). Again, this is impor­
tant because the nodal integration for the internal 
force calculation in Eq. 4 involves the gradients 
of the basis functions, which are discontinuous at 
grid cell boundaries when the standard piecewise- 
linear basis functions are used.

In uGIMP, we have the choice of a smoothing pa­
rameter I (the width of our general particle charac­
teristic function %), independent of the individual 
particle sizes, which ensures us C\ continuous ba­
sis functions but leads to a situation which was not 
analyzed in Steffen, Kirby, and Berzins (2008) -  
the case where the width of the particle is greater 
than the smoothing length. In such cases (as illus­
trated in Fig. 5), a particle can span two jumps in 
the continuity of the basis functions.

Consider a general case from Eq. 36 where a sin­
gle particle, or Qp, spans three regions of a piece­
wise linear function. The first region (R\) is de­
fined by the equation y\ =  a\x + b\, the second 
(/?2 ) will be >’2 =  c/2X ■ l>2- and the third (R3) is 
>’3 =  a^x +  Z>3 with the particle located a distance
8 inside the second region (see Fig. 5). For this
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a2 = -2/(hl)
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(b) GIMP Specific Two-Jump Situation 
Figure 5: Example cases of a particle’s volume 
(the area between the square brackets) spanning 
two jumps in a piecewise-linear function: (a) 
shows a particle spanning two jumps in a gen­
eral piecewise-linear function with a\ and i =  
1 .2 .3  the parameters describing the linear seg­
ments, while (b) shows the specific piecewise- 
linear uGIMP gradient function V 0 and a situa­
tion where the particle size Av is greater than the 
smoothing length /.

case, the integration error is given by:

E jU,„P =  I  f ( x ) d x - f ( x p )Vp (37)
Jiip

=  / \'\dx+ / \'->dx+
JQrnRt ' ./Q,,n/?2'

/ >’3 dx — }'2 (xp) A v (38)
J  Q,,r 1R}
1 7 1

=  -  («3 — Cl2 ) +  -  («2 — «3 ) / Av+

1 ,

(«2  — «3)/<5 +  “ («3  — ( 1 1 ) 8 “ +

1 1 7
- ( « !  — 2 « 2 + « 3 )5 A v +  - (« 3  — «[)Av"
2 8

(39)

where I is the width of the center region and 8 is 
the particle offset into the center region. Since I 
and 8 are both less than Av, this whole expres­
sion appears to be &'(A.\2). However, when we 
consider the specific case of measuring the inte­
gration error in internal force (Eq. 34 with a  =  1) 
when a particle spans the center region of V 0 as

in uGIMP (see Fig. 4(b) and Fig. 5(b)), the slopes 
of the left and right regions in Fig. 5(b) are zero, 
while the slope of the center region is dependent 
on the smoothing length I and the grid spacing h. 
Specifically, for these regions, ci\ =  0, r/3 =  0 and 
ci2 =  —2/(hi). When we substitute these parame­
ters into Eq. 39, we are left with

- 1p  r= ___Gjump j Av — / +  2 | (40)

Here, it is clear that the jump error in this case is 
£>’(Av). If instead, Av <  / and the particle only 
spans one of the uGIMP jumps, the error then 
takes the form:

jump =  -77 - [<52 — <5Av +  7  Av2]. 
hi 4

(41)

Since / no longer depends on Av, this is now
f/(A\2 ).

To test this analysis, we calculate the force on a 
single node for a set of particles with constant 
stress a .  This is the same test performed by Stef­
fen, Kirby, and Berzins (2008) when looking at 
a particle spanning a single jump instead of the 
two-jumps analyzed above. In this case, the inter­
nal force on a node is calculated as

fi =  - I  V0,
P

ip ■gpVp =  - o '2 V * ,( xp )Vp. (42)

For a constant stress, internal force should be 
zero, so any errors are from integrating V 0,-. 
Fig. 6 shows the errors for various particle spac- 
ings when the smoothing length / =  1/10. As 
expected, when Av <  / the error converges as 
I>’(A\2 ). When Av becomes greater than /, the er­
ror tends towards £>’(Av).

Here, we have shown errors in the internal force 
which are either £>’(Av) or I>’(A\2), depending on 
the relationship between the smoothing length / 
and the particle widths Av. For stability, in ad­
dition to the typical CFL constraints one needs 
when smooth forces exist, we need to consider 
further time step restrictions when force kicks 
arise from these integration errors. These time 
step restrictions would be similar to those re­
quired, as shown by Tran, Kim, and Berzins
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1/PPC

Figure 6 : Errors in internal force vs. particle spac­
ing for constant <7=1, grid spacing h =  1 , and 
smoothing length / =  1/10. The particles have 
a global uniform density, however they have a 
locally non-uniform spacing. Otherwise, super- 
convergent results are observed. Note that when 
particle spacing is less than the smoothing length 
/, the error converges as second-order. As the par­
ticle spacing becomes greater than the smoothing 
length, the error tends towards first-order.

(2007), due to force kicks arising from grid cross­
ing errors. While a time step of Ati may be suf­
ficient when we are in the 6  (Ax1) error region, 
a smaller Atj may be required to control stability 
when we are in the 6 (Ax) error region.

4.3 Impact o f  Boundary Treatments

In MPM, the union of the particles’ voxels are as­
sumed to fill space and define the material of in­
terest. However, many calculations are not per­
formed directly on the particles, but rather on the 
background grid to which the particle information 
is projected. This projection of particle informa­
tion leads to a set of “active” basis functions and 
grid cells (those which have particles in their sup­
port) which, in general, will differ geometrically 
than the union of particles’ voxels. This can, and 
does, lead to a further errors in many MPM simu­
lations.

In standard MPM with piecewise-linear basis 
functions, the active grid cells are those which 
contain a particle. One could argue that a grid cell 
which contains no particles but still overlaps with

a particle voxel (from a particle in a neighboring 
cell) should also be active, but is not considered 
so in the current MPM framework. In either case, 
when considering active cells on the grid, there 
may be a geometric error of up to h in each direc­
tion. When moving to uGIMP, or B-splines, this 
geometric error can become worse since the sup­
port of these basis functions are larger. Cubic B- 
splines, quadratic B-splines, and uGIMP can ex­
perience geometric errors of up to 2h, 3h/2  and 
h I 1/2. respectively. All of these errors are 6 (h); 
however it is important to note that these geomet­
ric errors are not only a function of how well the 
object of interest is aligned with grid cells, but 
they are also a function of basis function choice.

Some work has been performed on MPM back­
ground grids which more closely represent the 
material of interest. For example, Wallstedt
(2008) has worked on an MLS representation of 
a material boundary and incorporates this bound­
ary into the MPM integration routines. Here, we 
sidestep part of the issue by developing test prob­
lems in Section 5 whose boundaries are perfectly 
aligned with the grid boundaries (such as a fixed- 
fixed elastic bar). Even with these aligned test 
problems, geometric errors can still exist since in­
formation is projected to extra nodes outside the 
domain, as is shown in Fig. 2(b) and Fig. 2(c); 
information which is still used in standard kine­
matic boundary treatments.

To illustrate this geometric error, Fig. 7 shows 
an example of the density field resulting from 
projecting particles with constant mass (a dis­
cretization of a constant density field) to the 
grid. The density field is calculated as p(x) =  
I ip4i(x) with pi = mi/(Jjp îpVp). In this ex­
ample, the constant density field spans the region 
[0 . 1 ] which is embedded in a grid covering the 
region [—0.2.1.2]. Since the deformed configura­
tion of the material with respect to the grid is ef­
fectively the support of the fields of interest, we 
can see from Fig. 7 how implementing bound­
ary conditions and modeling contact can present 
a challenge when wider basis functions are used.

We postulate that, in general, all of the methods 
here can suffer from G(li) geometric errors. In 
the special case of boundary aligned problems,
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Figure 7: Density fields resulting from projecting particle mass to the background grid. The true density field 
is shown, along with density fields calculated with piecewise-linear and quadratic B-spline basis functions. 
Here we can see that the geometric extent of information projected to the grid not only depends on which 
grid cells contain material, but also on basis function choice.
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methods where information is projected to extra 
nodes, such as uGIMP and standard B-splines, 
will still be affected by this &(h) geometric er­
ror when Neumann or Dirichlet boundary con­
ditions are applied. These methods should not 
be affected by this error when periodic bound­
ary conditions are used. Methods which do not 
require the use of extra nodes, such as standard 
MPM with piecewise-linear basis functions (Fig. 
2(a)), modified boundary B-splines (Fig. 3), and 
cpGIMP will not be affected by this geometric er­
ror.

It is worth noting that while cpGIMP is imple­
mented in the UCF using extra boundary nodes, 
information is not projected to these extra nodes 
in well-behaved boundary aligned simulations. 
This is because the particle p that is closest to the 
boundary has width lp, and is located at a position 
of lp/ 2  to the inside of the boundary, and the clos­
est extra node is at a distance of h +  lpf  2 , which 
is the exact location where the extra node’s basis 
function goes to zero (see Fig. 4).

5 Test Problem Development

Code verification has gained renewed importance 
in recent decades as costly projects rely more 
heavily on computer simulations. Full time- 
dependent test problems with analytical solu­
tions are desired so that simulation errors can 
be assessed. The Method of Manufactured solu­
tions [Schwer (2002); Knupp and Salari (2003);

Banerjee (2006)] begins with an assumed solu­
tion to the model equations and analytically deter­
mines the external force required to achieve that 
solution. This allows the user to verify the ac­
curacy of numerical implementations, understand 
the effects of parameter choices within the code, 
and to find where bugs may exist or improvements 
can be made. The critical advantage afforded by 
MMS is the ability to test codes with boundaries 
or nonlinearities for which exact solutions will 
never be known. It is argued [Knupp and Salari 
(2003)] that MMS is sufficient to verify a code, 
not merely necessary.

Since full transient mechanics solutions are of­
ten difficult to find in the literature, we will first 
present an overview of the method of manufac­
tured solutions with which we will then develop 
both 1-D and 3-D test problems.

5.1 Method o f  Manufactured Solutions 
Overview

For this paper we define several non-linear dy­
namic manufactured solutions and use them for 
subsequent testing. The solutions exercise the 
mathematical and numerical capabilities of the 
code and provide reliable test problems for ascer­
taining a simulation’s accuracy and stability prop­
erties.

Finite Element Method (FEM) texts often present 
Total Lagrange and Updated Lagrange forms of 
the equations of motion. The Total Lagrange form
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is written in terms of the reference configuration 
of the material whereas the Updated Lagrange 
form is written in terms of the current configu­
ration. Either form can be used successfully in a 
FEM algorithm, and solutions from Updated and 
Total Lagrange formulations are equivalent [Be- 
lytschko, Liu, and Moran (2000)].

However, within GIMP it is necessary to manu­
facture solutions in the Total Lagrange formula­
tion so that zero normal stress can be applied to 
free surfaces as a boundary condition. This might 
at first appear to conflict with the fact that GIMP 
is always implemented in the Updated Lagrange 
form. The equivalence of the two forms and the 
ability to map back and forth between them allows 
a manufactured solution in the Total Lagrange 
form to be validly compared to a numerical so­
lution in the Updated Lagrange form.

The equations of motion are presented in Total 
and Updated Lagrangian forms, respectively:

VP +  pob =  poa (43)

V<r +  pb =  pa (44)

where
P l 5' Piola-Kirchoff Stress,
O' Cauchy Stress, 
p density,
b acceleration due to body forces, and 
a acceleration.

Many complicated constitutive models are used 
successfully with GIMP, but for our purposes the 
simple neo-Hookean is sufficient to test the non­
linear capabilities of the algorithm. The stress is 
related in Total and Updated Lagrangian forms, 
respectively:

P =  Aln/F^ 1 + ju r ~~1 (F F r - l )  (45)

(J =  ^ i  +  ^ ( F F ^ _ l )  (46)

where
u displacement,
X position in the reference

configuration,
. |-l_ is.
' ^  d X deformation gradient,
J =  [F[ Jacobian,

shear modulus, and
X Lame constant.

The acceleration b due to body forces is used as 
the MMS source term. The source term is “man­
ufactured” in such a fashion that the equations of 
motion are satisfied for the particular input fields. 
We select as an ansatz the displacement field, such 
as a sine function, and then apply a special body 
force throughout the object that causes the dis­
placement to occur.

5.2 One-Dimensional Periodic Bar

To understand the effect of smoothing length on 
errors within MPM, we start by simulating a one­
dimensional periodic bar on the domain [0 . 1]. 
The problem we are considering has an assumed 
analytical displacement and resultant deformation 
gradient of:

u {X ,t)= A sin {2 n X )cos{C n t), (47)

F(X,t) =  1 + 2Ajicos(2jiX) cos(Cjit). (48)

where X is the material position in the reference 
configuration, A is the maximum deformation per­
centage, and C = y^E/po is the wave speed. The 
bar is subjected to a body force of

b(x ,t) = C2K2u(X,t)(2F(X,ty-2 + l) .  (49)

The functions u and F  are included in Eq. 49 only 
to simplify notation. The constitutive model is 
drawn from Eq. 46 in 1-D with zero Poisson’s ra­
tio:

This constitutive model, when combined with the 
body force given by Eq. 49 will lead to the analyt­
ical displacement solution in Eq. 47.

While this one-dimensional bar has a periodic 
solution, the manufactured solution was chosen 
such that the velocity and displacements are both 
zero on the boundaries of our simulation domain 
[0.1]. This allows us to test our simulation with 
both Dirichlet and periodic boundary treatments 
of the same problem.

5.3 Axis-Aligned Displacement in a Unit Cube

Displacement in a unit cube is prescribed with 
normal components such that the corners and
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edges of GIMP particles are coincident and 
collinear. This choice allows direct demonstra­
tion that GIMP can achieve the same spatial ac­
curacy characteristics in multiple dimensions that 
have been shown in a single dimension. It is not, 
however, representative of general material defor­
mations usually found in most realistic engineer­
ing scenarios.

The displacement field is chosen to be:

u =
A sin(27rX) sin(C7«)

A sin(27rF) sin(| n +  Cm ) 
A sin(27rZ) sin(|7T + Cnt)

(51)

where X, Y, and Z are the scalar components of 
position in the reference configuration, t is time, 
A is the maximum amplitude of displacement, 
and C =  V E/po  is the wave speed, where E  is 
Young’s modulus. The factors of two are chosen 
so that a periodic boundary condition can be used 
if desired.

The deformation gradient tensor is found by tak­
ing derivatives with respect to position, but for the 
axis-aligned problem only the diagonal terms are 
non-zero. Therefore:

F x x  =  1 + 2A 7rcos(27rX ) sin(C7w)
Fyy =  1 +2A7TCOs(27rF)sin(|7T +  Cw ) 
Fzz =  1 I 2/l7rcos(27rX}s infI  Cut)

(52)

Acceleration is found by twice differentiating dis­
placement Eq. 51 in time. Then substituting stress 
P into Eq. 43 and solving for the body force b 
(used as the MMS source term) it is found that:

/ Ux
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(53)

where K — ln(FXxFyyFzz) and the subscripts on 
u and F  indicate individual terms of displacement 
and deformation gradient equations.

6 Results

6.1 One-D Smoothing Length Experiments

We simulated the one-dimensional periodic bar 
developed in Section 5.2 on the domain [0,1] to

understand the effect of smoothing length on er­
rors within MPM.

The bar is initially discretized with an even sam­
pling of points with initial positions X®. The 
particle positions are then adjusted to xp — X® +  
u(Xp,0), and deformation gradients set to Fp — 
F(Xp, 0). The simulation is run to a final time T 
and errors in the particle positions are calculated 
as

Error =  |xT —X — u(X , T) \. (54)

This simulation was run with the parameters A — 
0.02, E — 104, and po =  1.0 to a final time T — 
2/C (one full period of oscillation) using uGIMP 
with various numbers of particles-per-cell (PPC) 
and various smoothing lengths. Fig. 8 shows how 
errors depend on smoothing length for different 
numbers of PPC when we run at a relatively large 
time step corresponding to a CFL number of 0.8. 
We see that the simulations go unstable when the 
smoothing length is close to, or less than the ini­
tial width of the particles. The 2 PPC simulation 
goes unstable for L <  h/2, the 3 PPC simulation 
goes unstable for L < h j3, etc.
Fig. 9 shows the effect of smoothing length on the 
time-step stability restrictions. Fig. 9(a) shows 
larger smoothing lengths are stable for a wider 
range of CFL values when the problem is dis­
cretized with 4 PPC. While the simulation using 
a smoothing length of hj% goes unstable at a CFL 
number of approximately 0.75, the same simula­
tion with a smoothing length of h (equivalent to 
quadratic B-spline basis functions) is stable up to 
a CFL number of approximately 1.2. Fig. 9(b) 
shows similar behaviors for 8 PPC. Furthermore, 
the time-step stability restrictions do not change 
significantly between the 4 PPC and 8 PPC sim­
ulations, suggesting that the stability is more de­
pendent on the smoothing length than the number 
of particles per cell.

6.2 One-D Spatial Convergence Results

To investigate the spatial convergence properties 
of the various MPM methods, we start by simulat­
ing the same one-dimensional periodic bar from 
Section 5.2, now focusing on the behavior of the
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Figure 8 : Stability analysis for uGIMP showing 
errors vs. uGIMP smoothing length. The simula­
tions were run with a fixed time step correspond­
ing to a CFL number of 0.8.

error with respect to grid resolution and how that 
error may differ using different choices of basis 
functions and boundary treatments. The simula­
tions were run with the parameters A =  0.05 (5% 
maximum displacement), E — 104, and po =  1.0 
to a final time T — 1/C (one-half period of oscilla­
tion). All simulations were run with a time step of 
At — 4 ■ 10^6, corresponding to a CFL number of 
approximately 0.2 for 512 grid cells-the highest 
resolution test case.

Fig. 10 shows results from simulations with both 
the standard MPM piecewise linear basis func­
tions and quadratic B-splines. With an initial dis­
cretization of 4 PPC, we see the standard MPM 
piecewise linear basis functions showing no sig­
nificant convergence beyond a modest 16 grid 
cells. Quadratic B-splines show a significant 
improvement, demonstrating f f ( h 2) convergence, 
with an error plateau occurring past 128 grid cells. 
The 4 PPC quadratic B-spline simulation was 
run with both periodic boundary conditions us­
ing standard splines (see Fig. 2(b)) and Dirichlet 
boundary conditions using the modified bound­
ary splines (Fig. 3(a)). The results from the two 
boundary treatments are nearly identical. As was 
shown previously, using smoother basis functions 
greatly improves numerical quadrature errors and 
stability issues, however nodal integration will al­
ways give some quadrature error which can ex-

CFL

(a) 4 Particles Per Cell

CFL

(b) 8 Particles Per Cell 
Figure 9: Examination of stability for uGIMP 
showing errors versus CFL number for various 
choices of smoothing length.

plain the error plateaus starting at 128 grid cells. 
The last set of simulations in Fig. 10 shows the 
same quadratic B-spline simulation with Dirichlet 
boundary conditions, except this time the problem 
has been discretized using 6  PPC. The extra par­
ticles helps lower the quadrature error and lower 
the error plateau.

To further illustrate errors stemming from bound­
ary treatments, Fig. 11 shows errors for the same 
problem simulated with B-splines, using three 
distinct boundary treatments. Similar to Fig. 10, 
the Dirichlet boundary conditions with modified 
boundary B-splines and the periodic boundary 
conditions with standard B-splines show nearly 
identical results and demonstrate ff(h 2) conver­
gence. Also shown are results for standard
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Figure 10: Spatial convergence on a one­
dimensional bar manufactured solution problem.

B-splines with Dirichlet boundary conditions. 
This technique requires handling of the extra or 
“ghost” boundary nodes as explained in Section 
3.4.2. As was discussed previously, this can lead 
to a geometric error on the grid which is 0 (h) 
and the results show that the error convergence is 
in fact reduced to 0 (h).

Figure 11: Spatial convergence on a one­
dimensional bar manufactured solution using 
quadratic B-splines with various boundary treat­
ments.

6.3 Verification with the Method o f  Manufac­
tured Solutions in Multi-D

The full three-dimensional axis-aligned problem 
from Section 5.3 was implemented in the UCF to

both demonstrate the validity of the multi-D man­
ufactured solution and show that many of the 1-D 
convergence results from the previous section are 
also valid in 3-D. The simulation was run with 
the parameters A =  0.05 (5% maximum displace­
ment), po =  1.0, E  =  104 and a Poisson’s ratio of 
0.3. The problem was discretized using 4 PPC in 
each dimension (64 total particles per cell). Both 
B-spline basis functions (with symmetric and pe­
riodic boundary conditions) and cpGIMP were 
used in the simulations. The study consisted of 
grid resolutions from 8 x 8 x 8 cells (32768 parti­
cles) up to 64 x 64 x 64 cells (16.8 million parti­
cles).

The results in Fig. 12 clearly show if(h2) con­
vergence with cpGIMP for all grid resolutions in 
the study. Using B-spline basis functions with 
periodic boundary conditions did nearly as well, 
with convergence rates trailing off at higher grid 
resolutions. Similar to the 1-D results, errors 
when using standard B-splines with the extra, or 
“ghost” boundary nodes (this time with symmet­
ric boundary conditions) demonstrate the 0 (h) 
convergence we expect due to the geometric er­
rors on the grid.

It is not surprising that cpGIMP outperforms 
other methods, as this problem is well suited for 
cpGIMP since particles remain axis-aligned and 
their voxels area a true partition of the domain. 
Fig. 13 is a visualization of a representative 2­
D slice of the actual solution, showing the axis- 
aligned particle voxels and how they partition the 
domain. B-splines when using extra boundary 
nodes performed as expected, demonstrating the 
same 0(h )  error as the 1-D results. There is an 
obvious benefit to using periodic boundary condi­
tions over symmetric boundary conditions for this 
problem since the errors are significantly lower. 
It is still unclear, however, why the convergence 
rate for the periodic boundary conditions trails off 
from the if(h2) behavior we would expect from 
the 1-D results. There are a number of possi­
bilities, including a more complicated quadrature 
error behavior in multi-D, or the buildup of grid 
crossing errors (similar to those analyzed by Tran, 
Kim, and Berzins (2007)), which may be more 
significant in multi-D since many more grid cross-
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ing events occur than in 1-D simulations using 
similar resolutions.
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Figure 12: Spatial convergence on the three­
dimensional axis-aligned manufactured solution 
problem.

Figure 13: Visualization of a representative 2-D 
slice of the exact solution (Eq. 51) at time t — 
.005, showing deformed particle positions (black 
dots) and a conceptualization of the axis aligned 
particle voxels. The voxels have been rounded 
and their sizes slightly reduced for visual clarity.

7 Summary

In this paper we have considered some of the 
many choices one must consider when imple­
menting the Material Point Method. Two of the 
design choices which have significant impact on 
error properties of the method are which grid basis 
functions to use and how to implement boundary 
conditions. We explored and analyzed the numer­
ical impact of these algorithmic choices.

A number of basis functions were explored, 
including: standard piecewise-linear basis 
functions, B-spline basis functions, uniform 
GIMP (uGIMP), and contiguous particle GIMP 
(cpGIMP). All these functions were shown to 
be connected through a similar construction 
technique-the convolution of piecewise-constant 
functions of various lengths. Analysis of the 
uGIMP functions showed an integration, or 
quadrature error which was second order with 
respect to particle spacing when the basis func­
tion smoothing length is larger than the particle 
widths. When the smoothing length is smaller 
than the particle widths, this integration error 
becomes first order. The effects of this rela­
tionship between particle widths and smoothing 
lengths were demonstrated in simulations where 
instabilities occurred when the smoothing length 
was set smaller than the particle widths.

Boundary condition implementation also had an 
effect on the overall errors in the method. The ge­
ometric errors present in the grid representation 
of the deformed material can result in first order 
spatial errors when standard kinematic boundary 
conditions are applied. These geometric errors 
are exacerbated when smoother, and necessarily 
wider, basis functions are used, such as uGIMP, 
or B-splines. We were able to eliminate these 
first order errors when using periodic boundary 
treatments. Relaxing the requirement that each 
grid node correspond to a single basis function led 
us to a set of modified boundary B-spline basis 
functions which eliminated the geometric errors 
for our problem and allowed second order spa­
tial convergence with standard Dirichlet boundary 
conditions.
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