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Abstract

We present a novel approach to weakly super­
vised semantic class learning from the web, 
using a single powerful hyponym pattern com ­
bined with graph structures, which capture 
two properties associated with pattern-based 
extractions: popularity and productivity. In­
tuitively, a candidate is popular if  it was dis­
covered many times by other instances in the 
hyponym pattern. A  candidate is productive 
if  it frequently leads to the discovery o f other 
instances. Together, these two measures cap­
ture not only frequency o f occurrence, but also 
cross-checking that the candidate occurs both 
near the class name and near other class mem­
bers. We developed two algorithms that begin 
with just a class name and one seed instance 
and then automatically generate a ranked list 
of new class instances. We conducted exper­
iments on four semantic classes and consis­
tently achieved high accuracies.

1 Introduction

Knowing the semantic classes of words (e.g., “trout” 
is a kind of fish) can be extremely valuable for 
many natural language processing tasks. Although 
some semantic dictionaries do exist (e.g., Word- 
Net (Miller, 1990)), they are rarely complete, espe­
cially for large open classes (e.g., classes of people 
and objects) and rapidly changing categories (e.g., 
computer technology). (Roark and Charniak, 1998) 
reported that 3 of every 5 terms generated by their 
semantic lexicon learner were not present in Word- 
Net. Automatic semantic lexicon acquisition could

be used to enhance existing resources such as Word- 
Net, or to produce semantic lexicons for specialized 
categories or domains.

A variety of methods have been developed for 
automatic semantic class identification, under the 
rubrics of lexical acquisition, hyponym acquisition, 
semantic lexicon induction, semantic class learn­
ing, and web-based information extraction. Many 
of these approaches employ surface-level patterns to 
identify words and their associated semantic classes. 
However, such patterns tend to overgenerate (i.e., 
deliver incorrect results) and hence require addi­
tional filtering mechanisms.

To overcome this problem, we employed one sin­
gle powerful doubly-anchored  hyponym pattern to 
query the web and extract semantic class instances: 
CLASS_NAME such as CLASS .MEMBER and *.

We hypothesized that a doubly-anchored pattern, 
which includes both the class name and a class 
member, would achieve high accuracy because of 
its specificity. To address concerns about coverage, 
we embedded the search in a bootstrapping process. 
This method produced many correct instances, but 
despite the highly restrictive nature of the pattern, 
still produced many incorrect instances. This re­
sult led us to explore new ways to improve the ac­
curacy of hyponym patterns without requiring addi­
tional training resources.

The main contribution of this work is a novel 
method for combining hyponym patterns with graph 
structures that capture two properties associated 
with pattern extraction: popularity  and productivity. 
Intuitively, a candidate word (or phrase) is popular 
if it was discovered many times by other words (or
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phrases) in a hyponym pattern. A candidate word is 
productive if it frequently leads to the discovery of 
other words. Together, these two measures capture 
not only frequency of occurrence, but also cross­
checking that the word occurs both near the class 
name and near other class members.

We present two algorithms that use hyponym p a t­
tern linkage graphs (H PLGs) to represent popularity 
and productivity information. The first method uses 
a dynamically constructed HPLG to assess the pop­
ularity of each candidate and steer the bootstrapping 
process. This approach produces an efficient boot­
strapping process that performs reasonably well, but 
it cannot take advantage of productivity information 
because of the dynamic nature of the process.

The second method is a two-step procedure that 
begins with an exhaustive pattern search that ac­
quires popularity and productivity information about 
candidate instances. The candidates are then ranked 
based on properties of the HPLG. We conducted ex­
periments with four semantic classes, achieving high 
accuracies and outperforming the results reported by 
others who have worked on the same classes.

2 Related Work

A substantial amount of research has been done in 
the area of semantic class learning, under a variety 
of different names and with a variety of different 
goals. Given the great deal of similar work in infor­
mation extraction and ontology learning, we focus 
here only on techniques for weakly supervised or 
unsupervised semantic class (i.e., supertype-based) 
learning, since that is most related to the work in 
this paper.

Fully unsupervised semantic clustering (e.g., 
(Lin, 1998; Lin and Pantel, 2002; Davidov and Rap­
poport, 2006)) has the disadvantage that it may or 
may not produce the types and granularities of se­
mantic classes desired by a user. Another related 
line of work is automated ontology construction, 
which aims to create lexical hierarchies based on se­
mantic classes (e.g., (Caraballo, 1999; Cimiano and 
Volker, 2005; Mann, 2002)), and learning semantic 
relations such as meronymy (Berland and Charniak, 
1999; Girju et al., 2003).

Our research focuses on semantic lexicon induc­
tion, which aims to generate lists of words that be­

long to a given semantic class (e.g., lists of f ish  
or VEHICLE words). Weakly supervised learning 
methods for semantic lexicon generation have uti­
lized co-occurrence statistics (Riloff and Shepherd, 
1997; Roark and Charniak, 1998), syntactic in­
formation (Tanev and Magnini, 2006; Pantel and 
Ravichandran, 2004; Phillips and Riloff, 2002), 
lexico-syntactic contextual patterns (e.g., “resides 
in < lo ca tio n >  ” or “m oved to < lo ca tio n >  ”) (Riloff 
and Jones, 1999; Thelen and Riloff, 2002), and 
local and global contexts (Fleischman and Hovy, 
2002). These methods have been evaluated only on 
fixed corpora1, although (Pantel et al., 2004) demon­
strated how to scale up their algorithms for the web.

Several techniques for semantic class induction 
have also been developed specifically for learning 
from the web. (Pa§ca, 2004) uses Hearst’s pat­
terns (Hearst, 1992) to learn semantic class instances 
and class groups by acquiring contexts around the 
pattern. Pasca also developed a second technique 
(Pa§ca, 2007b) that creates context vectors for a 
group of seed instances by searching web query 
logs, and uses them to learn similar instances.

The work most closely related to ours is Hearst’s 
early work on hyponym learning (Hearst, 1992) 
and more recent work that has followed up on her 
idea. Hearst’s system exploited patterns that explic­
itly identify a hyponym relation between a seman­
tic class and a word (e.g., “such authors as Shake­
speare”). We will refer to these as hyponym p a t­
terns. Pasca’s previously mentioned system (Pa§ca, 
2004) applies hyponym patterns to the web and ac­
quires contexts around them. The KnowltAll system 
(Etzioni et al., 2005) also uses hyponym patterns to 
extract class instances from the web and then evalu­
ates them further by computing mutual information 
scores based on web queries.

The work by (Widdows and Dorow, 2002) on lex­
ical acquisition is similar to ours because they also 
use graph structures to learn semantic classes. How­
ever, their graph is based entirely on syntactic rela­
tions between words, while our graph captures the 
ability of instances to find each other in a hyponym 
pattern based on web querying, without any part-of- 
speech tagging or parsing.

1Meta-bootstrapping (Riloff and Jones, 1999) was evaluated 
on web pages, but used a precompiled corpus of downloaded 
web pages.



3 Semantic Class Learning with Hyponym 
Pattern Linkage Graphs

3.1 A Doubly-Anchored Hyponym Pattern

Our work was motivated by early research on hy- 
ponym learning (Hearst, 1992), which applied pat­
terns to a corpus to associate words with semantic 
classes. Hearst’s system exploited patterns that ex­
plicitly link a class name with a class member, such 
as “X  and other Y s” and “Ys such as X ”. Relying 
on surface-level patterns, however, is risky because 
incorrect items are frequently extracted due to poly­
semy, idiomatic expressions, parsing errors, etc.

Our work began with the simple idea of using an 
extremely specific pattern to extract semantic class 
members with high accuracy. Our expectation was 
that a very specific pattern would virtually eliminate 
the most common types of false hits that are caused 
by phenomena such as polysemy and idiomatic ex­
pressions. A concern, however, was that an ex­
tremely specific pattern would suffer from sparse 
data and not extract many new instances. By using 
the web as a corpus, we hoped that the pattern could 
extract at least a few instances for virtually any class, 
and then we could gain additional traction by boot­
strapping these instances.

All of the work presented in this paper uses just 
one doubly-anchored pattern to identify candidate 
instances for a semantic class:

< c la s s jia m e >  such as < c la s s jn e m b e r>  and *

This pattern has two variables: the name of the se­
mantic class to be learned (class Jiam e) and a mem­
ber of the semantic class (class-m em ber). The aster­
isk (*) indicates the location of the extracted words. 
We describe this pattern as being doubly-anchored  
because it is instantiated with both the name of the 
semantic class as well as a class member.

For example, the pattern “c a r s  such as f o r d  
and * ” will extract automobiles, and the pattern 
“p r e s id e n ts  such as f o r d  and  *” will extract 
presidents. The doubly-anchored nature of the pat­
tern serves two purposes. First, it increases the like­
lihood of finding a true list construction for the class. 
o u r  system does not use part-of-speech tagging or 
parsing, so the pattern itself is the only guide for 
finding an appropriate linguistic context.

Second, the doubly-anchored pattern virtually

M em bers  = {Seed,};
Po= “C lass  such as S eed  and *”;

= ;
ite r  = 0;
While ((iter < M a x -I te r s )  and (P  ^  {}))  

iter++;
For each 

S n ip p e ts  = web .query (P,);
C andida tes = extract_words (Snippets,P i); 

= ;
For each 

If (Candidate^ ^ M em bers);
= ;  

Pk= “C lass  such as C andidatek  and *”; 
= ;

= ;= ;

Figure 1: Reckless Bootstrapping

eliminates ambiguity because the class J iam e  and 
class-m em ber mutually disambiguate each other. 
For example, the word f o r d  could refer to an auto­
mobile or a person, but in the pattern “ CAR S such as 
FORD and *” it will almost certainly refer to an au­
tomobile. Similarly, the class “PRESIDENT” could 
refer to country presidents or corporate presidents, 
and “b u s h ” could refer to a plant or a person. But 
in the pattern “p r e s id e n ts  such as b u s h ”, both 
words will surely refer to country presidents.

Another advantage of the doubly-anchored pat­
tern is that an ambiguous or underspecified class 
name will be constrained by the presence of the class 
member. For example, to generate a list of com­
pany presidents, someone might naively define the 
class name as PRESIDENTS. A singly-anchored pat­
tern (e.g., “p r e s id e n ts  such as *”) might gener­
ate lists of other types of presidents (e.g., country 
presidents, university presidents, etc.). Because the 
doubly-anchored pattern also requires a class mem­
ber (e.g., “p r e s id e n ts  such as b i l l  g a te s  and  
*”), it is likely to generate only the desired types of 
instances.

3.2 Reckless Bootstrapping

To evaluate the performance of the doubly-anchored 
pattern, we began by using the pattern to search the 
web and embedded this process in a simple boot­
strapping loop, which is presented in Figure 1. As 
input, the user must provide the name of the desired



semantic class (Class) and a seed example (Seed), 
which are used to instantiate the pattern. On the 
first iteration, the pattern is given to Google as a 
web query, and new class members are extracted 
from the retrieved text snippets. We wanted the 
system to be as language-independent as possible, 
so we refrained from using any taggers or parsing 
tools. As a result, instances are extracted using only 
word boundaries and orthographic information. For 
proper name classes, we extract all capitalized words 
that immediately follow the pattern. For common 
noun classes, we extract just one word, if it is not 
capitalized. Examples are shown below, with the ex­
tracted items underlined:

countries such as China and Sri Lanka a r e ...
fishes such as trout and bass can ...

One limitation is that our system cannot learn 
multi-word instances of common noun categories, 
or proper names that include uncapitalized words 
(e.g., “United States of America”). These limita­
tions could be easily overcome by incorporating a 
noun phrase (NP) chunker and extracting NPs.

Each new class member is then used as a seed in­
stance in the bootstrapping loop. We implemented 
this process as breadth-first search, where each “ply” 
of the search process is the result of bootstrapping 
the class members learned during the previous it­
eration as seed instances for the next one. During 
each iteration, we issue a new web query and add 
the newly extracted class members to the queue for 
the next cycle. We run this bootstrapping process for 
a fixed number of iterations (search ply), or until no 
new class members are produced. We will refer to 
this process as reckless bootstrapping because there 
are no checks of any kind. Every term extracted by 
the pattern is assumed to be a class member.

3.2.1 Results
Table 1 shows the results for 4 iterations of reck­

less bootstrapping for four semantic categories: U.S. 
states, countries, singers, and fish. The first two 
categories are relatively small, closed sets (our gold 
standard contains 50 U.S. states and 194 countries). 
The singers and fish  categories are much larger, open 
sets (see Section 4 for details).

Table 1 reveals that the doubly-anchored pattern 
achieves high accuracy during the first iteration, but

Iter. countries states singers fish
1 .80 .79 .91 .76
2 .57 .21 .87 .64
3 .21 .18 .86 .54
4 .16 - .83 .54

Table 1: Reckless Bootstrapping Accuracies

quality deteriorates rapidly as bootstrapping pro­
gresses. Figure 2 shows the recall and precision 
curves for countries and states. High precision is 
achieved only with low levels of recall for countries. 
Our initial hypothesis was that such a specific pat­
tern would be able to maintain high precision be­
cause non-class members would be unlikely to co­
occur with the pattern. But we were surprised to find 
that many incorrect entries were generated for rea­
sons such as broken expressions like “Merce -dez”, 
misidentified list constructions (e.g., “In countries 
such as China U.S. Policy is fa iling ...”), and incom­
plete proper names due to insufficient length of the 
retrieved text snippet.

Incorporating a noun phrase chunker would elim­
inate some of these cases, but far from all of them. 
We concluded that even such a restrictive pattern is 
not sufficient for semantic class learning on its own.

Country/State

Recall

Figure 2: Recall/precision for reckless bootstrapping

In the next section, we present a new approach 
that creates a Hyponym Pattern Linkage Graph to 
steer bootstrapping and improve accuracy.

3.3 Using Dynamic Graphs to Steer 
Bootstrapping

Intuitively, we expect true class members to occur 
frequently in pattern contexts with other class mem-



bers. To operationalize this intuition, we create a hy- 
ponym  pattern  linkage graph , which represents the 
frequencies with which candidate instances generate 
each other in the pattern contexts.

We define a hyponym pattern  linkage graph  
(HPLG) as a , where each vertex
is a candidate instance and each edge 
means that instance was generated by instance . 
The weight w of an edge is the frequency with which

generated . For example, consider the following 
sentence, where the pattern is italicized and the ex­
tracted instance is underlined:

Countries such as China and Laos have been...

In the HPLG, an edge e =  {C h in a , L a o s)  would 
be created because the pattern anchored by China 
extracted Laos as a new candidate instance. If this 
pattern extracted Laos from 15 different snippets, 
then the edge’s weight would be 15. The in-degree 
of a node represents its popularity, i.e., the number 
of instance occurrences that generated it.

The graph is constructed dynamically as boot­
strapping progresses. Initially, the seed is the only 
trusted class m em ber and the only vertex in the 
graph. The bootstrapping process begins by instan­
tiating the doubly-anchored pattern with the seed 
class member, issuing a web query to generate new 
candidate instances, and adding these new instances 
to the graph. A score is then assigned to every node 
in the graph, using one of several different metrics 
defined below. The highest-scoring unexplored node 
is then added to the set of trusted class members, and 
used as the seed for the next bootstrapping iteration.

We experimented with three scoring functions for 
selecting nodes. The In-Degree (inD) score for ver­
tex is the sum of the weights of all incoming edges 
(u, v ) , where it is a trusted class member. Intuitively, 
this captures the popularity of among instances 
that have already been identified as good instances. 
The Best Edge (BE) score for vertex is the maxi­
mum edge weight among the incoming edges , 
where u  is a trusted class member.

The Key Player Problem (KPP) measure is used in 
social network analysis (Borgatti and Everett, 2006) 
to identify nodes whose removal would result in a 
residual network of minimum cohesion. A node re­
ceives a high value if it is highly connected and rel­
atively close to most other nodes in the graph. The

^—-v 1
— d(u , v )

KPP(v)  =  lvhl—

where is the shortest path between two ver­
tices, where u is a trusted node. For tie-breaking, the 
distances are multiplied by the weight of the edge.

Note that all of these measures rely only on in­
coming edges because a node does not acquire out­
going edges until it has already been selected as a 
trusted class member and used to acquire new in­
stances. In the next section, we describe a two-step 
process for creating graphs that can take advantage 
of both incoming and outgoing edges.

3.4 Re-Ranking with Precompiled Graphs

One way to try to confirm (or disconfirm) whether 
a candidate instance is a true class member is to see 
whether it can produce new candidate instances. If 
we instantiate our pattern with the candidate (i.e., 
“c la s s_ n a m e  such as CANDIDATE and *”) and 
successfully extract many new instances, then this 
is evidence that the candidate frequently occurs with 
the CLASS_NAME in list constructions. We will re­
fer to the ability of a candidate to generate new in­
stances as its productivity .

The previous bootstrapping algorithm uses a dy­
namically constructed graph that is constantly evolv­
ing as new nodes are selected and explored. Each 
node is scored based only on the set of instances 
that have been generated and identified as “trusted” 
at that point in the bootstrapping process. To use 
productivity information, we must adopt a different 
procedure because we need to know not only who 
generated each candidate, but also the complete set 
of instances that the candidate itself can generate.

We adopted a two-step process that can use both 
popularity and productivity information in a hy- 
ponym pattern linkage graph to assess the quality of 
candidate instances. First, we perform reckless boot­
strapping  for a class Jiam e  and seed  until no new 
instances are generated. Second, we assign a score 
to each node in the graph using a scoring function 
that takes into account both the in-degree (popular­
ity) and out-degree (productivity) of each node. We 
experimented with four different scoring functions, 
some of which were motivated by work on word

KPP score for vertex is computed as:



sense disambiguation to identify the most “impor­
tant” node in a graph containing its possible senses 
(Navigli and Lapata, 2007).

The Out-degree (outD) score for vertex is the 
weighted sum of 's  outgoing edges, normalized by 
the number of other nodes in the graph.

w (v 'P)
4 r t f  \ V (v,p)€E  outD(v) = ------- -------------

This measure captures only productivity, while the 
next three measures consider both productivity and 
popularity. The Total-degree (totD) score for ver­
tex is the weighted sum of both incoming and 
outgoing edges, normalized by the number of other 
nodes in the graph. The Betweenness (BT) score 
(Freeman, 1979) considers a vertex to be important 
if  it occurs on many shortest paths between other 
vertices.

s.teV :s^v^ t <Jst
where is the number of shortest paths from to , 
and is the number of shortest paths from to 
t  that pass through vertex v. PageRank (Page et al.,
1998) establishes the relative importance of a ver­
tex through an iterative Markov chain model. The 
PageRank (PR) score of a vertex is determined 
on the basis of the nodes it is connected to.

, ( i_ a) , ^  PR{u)
P R ( v )  — —ttTi----h tt /  ---------------7—r

u vge  o u td e9 r e e \ u )

a  is a damping factor that we set to 0.85. We dis­
carded all instances that produced zero productivity 
links, meaning that they did not generate any other 
candidates when used in web queries.

4 Experimental evaluation

4.1 Data
We evaluated our algorithms on four semantic cat­
egories: U.S. states, countries, singers, and fish. 
The states and countries categories are relatively 
small, closed sets: our gold standards consist of 50 
U.S. states and 194 countries (based on a list found 
on Wikipedia). The singers and fish  categories are 
much larger, open classes. As our gold standard for 
fish , we used a list of common fish names found on 
Wikipedia.2 All the singer names generated by our

2We also counted as correct plural versions of items found 
on the list. The total size of our fish list is 1102.

States
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
25 1.0 1.0 1.0 1.0 1.0 .88 .88
50 .96 .98 .98 1.0 1.0 .86 .82
64 .77 .78 .77 .78 .78 .77 .67

Countries
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
50 .98 .97 .98 1.0 1.0 .98 .97
100 .96 .97 .94 1.0 .99 .97 .95
150 .90 .92 .91 1.0 .95 .94 .92
200 .83 .81 .83 .90 .87 .82 .80
300 .60 .59 .61 .61 .62 .56 .60
323 .57 .55 .57 .57 .58 .52 .57

Singers
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
10 .92 .96 .92 1.0 1.0 1.0 1.0
25 .89 .90 .91 1.0 1.0 1.0 .99
50 .92 .85 .92 .97 .98 .95 .97
75 .89 .83 .91 .96 .95 .93 .95
100 .86 .81 .89 .96 .93 .94 .94
150 .86 .79 .88 .95 .92 .93 .87
180 .86 .80 .87 .91 .91 .91 .88

Fish
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
10 .90 .90 .90 1.0 1.0 .90 .70
25 .80 .88 .76 1.0 .96 .96 .72
50 .82 .80 .78 1.0 .94 .88 .66
75 .72 .69 .72 .93 .87 .79 .64
100 .63 .68 .66 .84 .80 .74 .62
116 .60 .65 .66 .80 .78 .71 .59

Table 2: Accuracies for each semantic class

algorithms were manually reviewed for correctness. 
We evaluated performance in terms of accuracy (the 
percentage of instances that were correct).3

4.2 Performance
Table 2 shows the accuracy results of the two al­
gorithms that use hyponym pattern linkage graphs. 
We display results for the top-ranked N candidates, 
for all instances that have a productivity value 
zero.4 The Popularity columns show results for the

3We never generated duplicates so the instances are distinct.
4Obviously, this cutoff is not available to the popularity- 

based bootstrapping algorithm, but here we are just comparing 
the top N results for both algorithms.



bootstrapping algorithm described in Section 3,3, 
using three different scoring functions, The re­
sults for the ranking algorithm described in Sec­
tion 3,4 are shown in the Productivity (Prd) and 
Popularity&Productivity (Pop&Prd) columns, For 
the states, countries, and singers categories, we ran­
domly selected 5 different initial seeds and then av­
eraged the results, For the fish  category we ran each 
algorithm using just the seed “salm on”,

The popularity-based metrics produced good ac­
curacies on the sta tes , countries, and singers cate­
gories under all 3 scoring functions, For fish, KPP 
performed better than the others,

The O ut-degree (outD ) scoring function, which 
uses only Productivity information, obtained the 
best results across all 4 categories, OutD achieved 
100% accuracy for the first 50 states and fish, 100% 
accuracy for the top 150 countries, and 97% accu­
racy for the top 50 singers, The three scoring met­
rics that use both popularity and productivity also 
performed well, but productivity information by it­
self seems to perform better in some cases,

It can be difficult to compare the results of differ­
ent semantic class learners because there is no stan­
dard set of benchmark categories, so researchers re­
port results for different classes, For the state and 
country categories, however, we can compare our 
results with that of other web-based semantic class 
learners such as Pasca (Pa§ca, 2007a) and the Know- 
ItAll system (Etzioni et al,, 2005), For the U,S, 
states category, our system achieved 100% recall 
and 100% precision for the first 50 items generated, 
and KnowltAll performed similarly achieving 98% 
recall with 100% precision, Pasca did not evaluate 
his system on states,

For the countries category, our system achieved 
100% precision for the first 150 generated instances 
(77% recall), (Pa§ca, 2007a) reports results of 100% 
precision for the first 25 instances generated, and 
82% precision for the first 150 instances gener­
ated, The KnowItAll system (Etzioni et al,, 2005) 
achieved 97% precision with 58% recall, and 79% 
precision with 87% recall,5 To the best of our 
knowledge, other researchers have not reported re­
sults for the singer and fish categories,

5(Etzioni et al,, 2005) do not report exactly how many coun­
tries were in their gold standard,

Iterations

Figure 3: Learning curve for Placido Domingo

Figure 3 shows the learning curve for both al­
gorithms using their best scoring functions on the 
singer category with Placido Dom ingo  as the initial 
seed, In total, 400 candidate words were generated, 
The Out-degree scoring function ranked the candi­
dates well, Figure 3 also includes a vertical line 
indicating where the candidate list was cut (at 180 
instances) based on the zero productivity cutoff,

One observation is that the rankings do a good 
job of identifying borderline cases, which typically 
are ranked just below most correct instances but just 
above the obviously bad entries, For example, for 
states, the 50 U,S, states are ranked first, followed 
by 14 more entries (in order):

Russia, Ukraine, Uzbekistan, Azerbaijan, 
Moldova, Tajikistan, Armenia, Chicago, 
Boston, Atlanta, Detroit, Philadelphia, Tampa, 
Moldavia

The first 7 entries are all former states of the So­
viet Union, In retrospect, we realized that we 
should have searched for “U,S, states” instead of just 
“states”, This example illustrates the power of the 
doubly-anchored hyponym pattern to correctly iden­
tify our intended semantic class by disambiguating 
our class name based on the seed class member,

The algorithms also seem to be robust with re­
spect to initial seed choice, For the states, coun­
tries , and singers categories, we ran experiments 
with 5 different initial seeds, which were randomly 
selected, The 5 country seeds represented a diverse 
set of nations, some of which are rarely mentioned in 
the news: B razil, France, G uinea-Bissau , U ganda ,



and Zim babwe. All of these seeds obtained > 92% 
recall with >  90% precision.

4.3 Error Analysis

We examined the incorrect instances produced by 
our algorithms and found that most of them fell into 
five categories.

Type 1 errors were caused by incorrect proper 
name extraction. For example, in the sentence 
“states such as G eorgia and English speaking coun­
tries like C anada ...”, “E nglish” was extracted as 
a state. These errors resulted from complex noun 
phrases and conjunctions, as well as unusual syn­
tactic constructions. An NP chunker might prevent 
some of these cases, but we suspect that many of 
them would have been misparsed regardless.

Type 2 errors were caused by instances that for­
merly belonged to the semantic class (e.g., Serbia- 
Montenegro and C zechoslovakia  are no longer coun­
tries). In this error type, we also include border­
line cases that could arguably belong to the semantic 
class (e.g., Wales as a country).

Type 3 errors were spelling variants (e.g., Kyrgys- 
tan vs. Kyrgyzhstan) and name variants (e.g., Bey- 
once vs. Beyonce K now les). Officially, every entity 
has one official spelling and one complete name, but 
in practice there are often variations that may occur 
nearly as frequently as the official name. For exam­
ple, it is most common to refer to the singer Beyonce  
by just her first name.

Type 4 errors were caused by sentences that were 
just flat out wrong in their factual assertions. For ex­
ample, some sentences referred to “North A m erica” 
as a country.

Type 5 errors were caused by broken expressions 
found in the retrieved snippets (e.g. M ichi -gan). 
These errors may be fixable by cleaning up the web 
pages or applying heuristics to prevent or recognize 
partial words.

It is worth noting that incorrect instances of Types
2 and 3 may not be problematic to encounter in a 
dictionary or ontology. Name variants and former 
class members may in fact be useful to have.

5 Conclusions

Combining hyponym patterns with pattern linkage 
graphs is an effective way to produce a highly ac­

curate semantic class learner that requires truly min­
imal supervision: just the class name and one class 
member as a seed. Our results consistently produced 
high accuracy and for the states and countries cate­
gories produced very high recall.

The singers and fish  categories, which are much 
larger open classes, also achieved high accuracy and 
generated many instances, but the resulting lists are 
far from complete. Even on the web, the doubly- 
anchored hyponym pattern eventually ran out of 
steam and could not produce more instances. How­
ever, all of our experiments were conducted using 
just a single hyponym pattern. Other researchers 
have successfully used sets of hyponym patterns 
(e.g., (Hearst, 1992; Etzioni et al., 2005; Pa§ca, 
2004)), and multiple patterns could be used with 
our algorithms as well. Incorporating additional hy- 
ponym patterns will almost certainly improve cover­
age, and could potentially improve the quality of the 
graphs as well.

Our popularity-based algorithm was very effec­
tive and is practical to use. Our best-performing al­
gorithm, however, was the 2-step process that be­
gins with an exhaustive search (reckless bootstrap­
ping) and then ranks the candidates using the Out- 
degree scoring function, which represents produc­
tivity. The first step is expensive, however, because 
it exhaustively applies the pattern to the web until 
no more extractions are found. In our evaluation, we 
ran this process on a single PC and it usually finished 
overnight, and we were able to learn a substantial 
number of new class instances. If more hyponym 
patterns are used, then this could get considerably 
more expensive, but the process could be easily par­
allelized to perform queries across a cluster of ma­
chines. With access to a cluster of ordinary PCs, 
this technique could be used to automatically create 
extremely large, high-quality semantic lexicons, for 
virtually any categories, without external training re­
sources.
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