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We present a new BRDF model that attempts to combine the advantages of 
the various empirical models currently in use. In particular, it has intuitive pa
rameters, is anisotropic, energy-conserving, reciprocal, has an appropriate non
Lambertian diffuse term, and is well-suited for use in a Monte Carlo framework. 

1 Introduction 

Physically-based rendering systems describe reflection behavior using the bidirectional 
reflectance distribution function (BRDF) [3]. At a given point on a surface the BRDF 
is a function of two directions, one toward the light and one toward the viewer. The 
characteristics of the BRDF will determine what "type" of material the viewer thinks 
the displayed object is composed of, so the choice of BRDF model and its parameters 
is important. 

We would like to have a BRDF model that works for "common" surfaces such as 
metal and plastic, and has the following characteristics: 

I. Plausible: as defined by Lewis [6], this refers to the BRDF obeying energy con
servation and reciprocity. 

2. Anisotropy: the material should model simple anisotropy such as seen on brushed 
metals. 

3. Intuitive parameters: for material such as plastics there should be parameters 
such as Rd for the substrate and Rs for the normal specular reflectance as well as 
two roughness parameters nu and nv' 

4. Fresnel behavior: specularity should increase as the incident angle goes down. 
5. Non-Lambertian diffuse term: The material should allow for a diffuse term, 

but the component should be non-Lamberti an to assure energy conservation in 
the presence of Fresnel behavior. 

6. Monte Carlo friendliness: there should be some reasonable probability den
sity function that allows straightforward Monte Carlo sample generation for the 
BRDF. 

Neumann et aI's metallic model [7] captures items 1,3,4, and 6. Schlick's model [9] 
captures items. Ward's model [11] captures items 2, and 3. It only violates item 1 for 
energy conservation at grazing angles. It also approximates Monte Carlo friendliness 
by giving a sample generation method but does not specify what the underlying density 
function is, so unbiased sampling is not feasible. Lafortune's model [5] captures some 
of these items, but it is not really intended for use with hand-set parameters. 

Our goal is to find a BRDF with all the properties outlined. Our basic strategy is 
to make a Fresnel-weighted Phong-style cosine lobe model that is anisotropic. This 
strategy borrows pieces from Ward's model [11] and from Neumann and Neumann's 
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Fig. 1. Geometry of reflection. Note that kl' k2, and h share a plane, which usually does not 
include n. 
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Ph(h) 
p(k) 
F( cos 8) 

scalar (dot) product of vectors a and b 
normaized vector to light 
normaized vector to viewer 
surface normal to macroscopic surface 
BRDF 
normalized half-vector between kl and k2 
probability density function for half-vector 
probability density function for reflection sampling rays 
Fresnel reflectance for incident angle 8 

Table 1. Important terms used in the paper 

model [7]. In addition, we add some correction terms that are crucial to keep the di
rectional hemispherical reflection near the desired level. For the diffuse term we use 
the basic method of Shirley et al. [10] to allow the diffuse-specular tradeoff to conserve 
energy. 

We decompose the BRDF into a specular component and a diffuse component. Ac
cordingly, we write our BRDF as the classical sum of two parts: 

(1) 

where the first term accounts for the specular reflection and will be presented in the next 
section. While it is possible to use the Lambertian BRDF as diffuse term Pd(k1 , k 2 ) in 
our model, we will discuss a better solution in section 3. We discuss how to implement 
the model in Section 4. Readers who just want to implement the model should skip to 
that section. 

2 Anisotropic specular BRDF 

Several shapes for the specular lobe have been proposed with Phong power-of-cosine 
lobe being the most popular. This is primarily due to its simplicity. The original form 
of the Phong shader [8J has several problems which triggered the development of more 
physically plausible Phong-style BRDFs [4,6,7]. We will also use a Phong-style spec
ular lobe in our model but will make this lobe anisotropic and incorporate Fresnel be-
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havior while attempting to preserve the simplicity of the initial model and physical 
plausibility achieved earlier for the Phong BRDF by other researchers. 

As our starting point we will choose recent result of Neumann and Neumann [7) 
who improved energy conservation properties of Phong model and made the BRDF 
well-suited for importance sampling in a Monte Carlo framework. Their main result in 
our notation is: 

(2) 

where n is Phong exponent, rl is the unit vector in the direction of mirror reflection 
of vector kl around the surface normal, c is a normalization constant and F( cos e) is 
the Fresnel fraction. Several choices of argument e are discussed by the authors. The 
division by max( (nk1 ), (nk2)) "pumps up" the total hemispherical reflectance R(k) of 
the surface and in the limit n -+ = (Phong representation of a perfect mirror) gives 
R(k) = 1 for any k not exactly at grazing incidence. While there are several ways to 
achieve this behavior, this particular form preserves reciprocity and avoids the diver
gence near the grazing angle frequently observed for other simple models. 

To extend this model to anisotropic surfaces we use an approach similar to Ward's [11 J 

who made the parameters of his gaussian lobe model depend on the azimuthal angle of 
the unit half vector with respect to a system of coordinates attached to the surface. In
stead of single Phong parameter n in Equation 2 we introduce two parameters nu and 
llu and write the exponent as nu cos2 ¢ + nv sin2 ¢ where ¢ is the azimuthal angle of 
half-vector h. To get better intuition about the model and, more importantly, to allow 
more efficient importance sampling of the specular loot: in a way discussed below, we 
also replace the Phong cosine (rlk2) by (nh), a transformation originally proposed by 
Blinn [1]. Our BRDF is now 

(3) 

Although our model is mostly empirical, to proceed further it is useful to interpret 
certain pmts of Equation 3 in terms of physics-based microfacet models [2). These 
models treat a surface as a collection of small mirror-like facets. Reflection from these 
facets is is governed by Fresnel laws. At a high level, a BRDF obtained with such 
models have the form 

(4) 

where Ph(h) is the microfacet probability density function, F is the Fresnel fraction 
and V is is the microfacet visibility function which gives the probability for a given 
microfacet to be visible from both directions kl and k2 and accounts for most of the 
complexity of a given microfacet model. Visibility function is also responsible for 
ensuring the energy conservation. We will not attempt to find a direct analog of this 
complicated Vis function in our empirical model and will be simply concerned with 
providing the means to conserve energy. However, other terms of Equation 4 do have 
direct counterparts in Equation 3. For example, it is immediately clear that the appro
priate choice for the argument of the Fresnel fraction F is (hk). Note that throughout 
the paper we will drop the subscript of vector k if either kl or k2 can be used. We will 
also introduce notation 

Ph(h) = J(nu + ;;(nv + 1) (nh)TIu cos2 ¢+TIv sin
2 

<1>, (5) 
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where the normalization constant is chosen so that Pc h) is a true probability density 
function (integrates to one over the hemisphere of possible h directions). Energy con
servation requirement can be written as 

(6) 

for any k 1 . Division by max((nk1 ), (nk2)) in our model will be cancelled (or replaced 
by a number less than I) by (nk2) factor and we obtain the condition 

(7) 

The assumption of mirror reflection from microfacets gives an important relationship 
between differential solid andles in the space of reflected rays and the h-space of mi
crofacet normal directions [2]: 

(8) 

Using this formula and the fact that F ::; 1 we obtain 

(9) 

The integration is now done over a complex subregion of h-space. However, being 
conservative, we can extend the integral over the whole hemisphere of directions. This 
formula shows that if we divide our BRDF by 4(kh) and set c' = 1 we will guarantee 
that our model will conserve energy since PrJh) integrates to one over the hemisphere. 
Putting all this together, we arrive at the final form of our anisotropic specular BRDF: 

In our implementation we use Schlick's approximation to Fresnel fraction [9]: 

(11 ) 

where Rs is material's reflectance for the normal incidence. 
As a visualization of the energy normalization of the model, we rendered a variety 

of spheres with different parameters shown in Figure 2. The spheres are in a "furnace" 
with radiance one in all directions. Perfectly reflecting spheres, regardless of BRDF, 
would also be white. Essentially it is a visualization of the directional hemispherical 
reflectance (directional albedo) for a variety of input angles. 

The specular BRDF 10 described in this section is useful for representing metallic 
surfaces where the diffuse component of reflection is very small. Figure 3 shows a set of 
golden spheres on a texture-mapped Lambertian plane. As the values of parameters nu 
and nv change, the appearence of the spheres shift from rough metal to almost perfect 
min"Or, and from highly anisotropic to the more familiar phong-like behavior. 
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11,.= 10000 

11,.= 1000 

11 ,.= 100 

nu = 100 nu= 1000 nu= 10000 

Fig. 2. Spheres in aft/mace. As the exponents get larger, less energy is "lost". For the center of 
the darkest sphere, nu = nv = 10, the luminance is about 68% of the background luminance. 
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11 ,, = 10000 

11,,= 1000 

11 1,= 100 

11,,= 10 

Fig.3. Metallic spheres/or various exponents, 
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3 Diffuse term 

It is possible to use a Lambertian BRDF together with our specular term in a way this 
is done for most models [9, 11]. However, we derive a simple angle-dependent form 
of the diffuse component accounts for the fact that the amount of energy available for 
diffuse scattering varies due to the dependence of specular term's total reflectance on 
the incident angle. In particular, diffuse color of a surface di sappears near the grazing 
angle because the total specular reflectance is close to one in this case. This well-known 
effect cannot be reproduced with a Lambertian diffuse term and is therefore missed by 
most reflection models. Another, perhaps more important, limitation of the Lambertian 
diffuse term is that it must be set to zero to ensure energy conservation in the presence 
of a Fresnel-weighted term. 

Shirley et al. [10] proposed a simple form of a non-Lambertian diffuse BRDF which 
takes this issue into account while preserving overall energy conservation and reci
procity. We use this result in the following form : 

(12) 

where R(k) is the total hemispherical reflectance of the specular term as defined by 
equation 6, 0 < Rd < 1 is the diffuse albedo of the surface and c is a normalization 
constant computed such that for Rd = 1 the total incident and reflected energies are the 
same. 

For this form to be directly used in our model, we need a closed-form expression for 
R(k). Unfortunately, specular BRDF (Equation 10) does not allow for the analytical 
integration of Equation 6. It is possible, however, to find an approximation to R(k) 
which will be sufficient for our purposes. To ensure overall energy conservation we 
will be looking for a simple function r(k) which is bounded by R(k) from below, i.e. 
R(k) S; r(k) for any k. First of all, we will ignore the loss of energy by the specular 
component due to the specular lobe going below horizon. This effect is hard to account 
for for an arbitrary n and it becomes negligible for large n, so we will approximate 
R(k) as 1 in the absence of Fresnel effects (Rs = 1 in Equation 11). This allows us to 
write 

r f(k1 , k2)(k2n)F((kh))dwk2 S; Jk 2 

Rs + (1- Rs) r f(k1 , k2 )(k2n)(l- (kh))5dwk2, Jk 2 

(13) 

where f(k1 , k2 ) is the part of the specular BRDF without the Fresnel fraction and our 
approximation says that ik2 f(k1 , k2)(k2n)dwk2 = 1. For a given incident vector kl 
scalar product (kh) is minimal if h lies in the plane of incidence and bisects the angle 
between kl and a vector in uv coordinate plane farthest from k1 . In this case 

( ) . _ /I - Jl - (kln)2 
kh mom - V 2' (14) 

and we can choose r(k) = Rs + (1 - Rs)(1 - (kh)min)5. We will further simplify 
this expression by replacing (kh)min with approximation (kh)min > (kn)/2. Our 
approximate hemispherical reflectance becomes 

r(k) = Rs + (1 - Rs)(1 - (kn)/2)5 . (15) 
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Fig. 4. Half of a diffusely illuminated sphere with R" = 0.05 and Rd = 1. The lowest values 
are near the edge of the sphere and are approximately 74% of the background. 

We can now substitute this as R(k) into Equation 12 and perform integration to obtain 
the normalization constant c. The diffuse term becomes 

(16) 

Note that our diffuse BRDF does not depend on nu and nv, so we can judge the quality 
of approximations we made in its derivation by looking at a single image on Figure 2 
created in a setting identical to the "furnace" of Figure 4. For large n there is little 
loss of energy by the specular term, so any darkening of the sphere is due to the diffuse 
component. 

A set of polished red spheres with different phong exponents nu, nv is shown in 
Figure 5. For all spheres Rs is set to 0.05 across the visible spectrum which is a typ
ical value for plastics. In addition to anisotropic highlights and blurred reflections we 
can observe strengthening of the specular reflection near the silhouette of the sphere 
along with simultaneous decrease in the intensity of the red color. This effect is more 
prominent in Figure 6 where three different views of the same scene are shown. 

4 Implementing the model 

Recall the BRDF is a combination of diffuse and specular components: 

(17) 

The diffuse component is given in Equation 16. The specular component is given in 
Equation 10. It is not necessary to call trigonometric functions to compute the exponent, 
so the specular BRDF is: 

In a Monte Carlo setting we are interested in the following problem: given k 1 , generate 
samples of k2 with a distribution which shape is similar to the cosine weighted BRDF. 
The key part of our thinking on this is inspired by discussion by Zimmerman [121 and 
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Fig. 5. Diffuse spheres for various exponents. 

Fig. 6. Three views for nu = n v = 400 and a red substrate. 
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Fig.7. A closeup of the model implemented in a path tracer with 9, 26, and 100 samples. 

Fig. 8. An image with a Lamertian sphere (left) and a sphere with nu = nv = 5. 
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by Lafortune [4] who point out that greatly undersampling a large value of the integrand 
is a serious enor while greatly oversampling a small value is acceptable in practice. The 
reader can verify that the densities suggested below have this property. 

We can just use the probability density function Ph (h) of Equation 5 to generate a 
random h. However, to evaluate the rendering equation we need both a reflected vector 
k2 and a probability density function p(k2). It is important to note that if you generate 
h according to Ph(h) and then transform to the resulting k2 : 

(19) 

the density of the resulting k2 is not Ph (k2). This is because of the difference in mea
sures in hand V2 space described in Equation 8. So the actual density p(k2) is: 

(20) 

Note that it is possible to generate an h vector whose conesponding vector k2 will 
point inside the surface, i.e. (k2n) < O. The weight of such a sample should be set to 
zero. This situation cOlTesponds to the specular lobe going below the horizon and is the 
main source of energy loss in the model. Clearly, this problem becomes progressively 
less severe as n u , nu become larger. 

The only thing left now is to describe how to generate h vectors with pdf of Equa
tion 5. We will start by generating h with its spherical angles in the range (e, ¢) E 
[0, il x [0, il. Note that this is only the first quadrant of the hemisphere. Given two 
random numbers (6,6) uniformly distributed in [0, ll, we can choose 

¢ = arctan (Jnu + 1 tan ('iT6)) , 
nv + 1 2 

(21) 

and then use this value of ¢ to obtain e according to 

(22) 

To sample the entire hemisphere, the standard manipUlation where 6 is mapped to 
one of four possible functions depending one whether it is in [0, 0.25), [0.25,0.5), 
[0.5,0.75), or [0.75, 1.0). For example for 6 E [0.25,0.5), find ¢(1 - 4(0.5 - 6)) via 
Equation 21, and then "flip" it about the ¢ = 'iT /2 axis. This ensures full coverage and 
stratification. 

For the diffuse term it would be possible to do importance sample with a density 
close to cosine-weighted BRDF 16 in a way similar to that described by Shirley et 
al [10], but we use a simpler approach and generate samples according to cosine distri
bution. This is sufficiently close to the complete diffuse BRDF to substantially reduce 
variance of the Monte Carlo estimation. 

An example of the model in a full scene inspired by Lafortune [5] is shown in 
Figure 8. Note the specular effects on the horizon of the right sphere which implements 
the model of this paper, and the absence of these effects on the left sphere which is 
Lambertian. 
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