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In this paper the three-dimensional random-field Ising model is studied at both zero temperature and positive 
temperature. Critical exponents are extracted at zero temperature by finite size scaling analysis of large dis­
continuities in the bond energy. The heat capacity exponent a  is found to be near zero. The ground states are 
determined for a range of external field and disorder strength near the zero temperature critical point and the 
scaling of ground state tilings of the field-disorder plane is discussed. At positive temperature the specific heat 
and the susceptibility are obtained using the Wang-Landau algorithm. It is found that sharp peaks are present 
in these physical quantities for some realizations of systems sized 163 and larger. These shaip peaks result from 
flipping large domains and correspond to large discontinuities in ground state bond energies. Finally, zero 
temperature and positive temperature spin configurations near the critical line are found to be highly correlated 
suggesting a strong version o f the zero temperature fixed point hypothesis.
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I. INTRODUCTION

The random-field Ising model (RF1M) is among the sim­
plest nontrivial spin models with quenched disorder. It has 
been intensively studied theoretically, experimentally, and in 
computer simulations during the last thirty years but is still 
not well understood. Following the seminal discussion of 
Imry and Ma1 it has been proved that the RF1M has an or­
dered phase at low temperature and weak disorder when the 
dimension is greater than two.2” 4 It is generally believed that 
the transition from the ordered phase to the disordered phase 
of the RF1M is continuous and is controlled by a zero tem­
perature fixed point.5” 7 Since random field fluctuations domi­
nate over thermal fluctuations at the transition, the hyperscal­
ing relation is modified as ( d - 0 ) v = 2 - a ,  where 0 is the 
violation of the hyperscaling exponent.5-6

The phase diagram of the RF1M is sketched in Fig. 1. 
Phase transitions can occur from the ferromagnetic phase (F) 
to the paramagnetic phase (P) at either zero temperature as a 
function of disorder strength A at A=AC, or as a function of 
temperature T  if disorder is fixed at A0 < A C. According to 
the zero temperature fixed point hypothesis, the zero tem­
perature transition and the positive temperature transitions 
belong to the same universality class. In this paper we use 
numerical methods to study both kinds of transitions and 
connections between them. One of our primary results is 
that, for each realization of disorder, there is a strong corre­
lation between ground state configurations near Ac and ther­
mal states near Tc for A0 <  Ac.

Currently, there is no controlled renormalization group 
analysis of the RF1M phase transition and Monte Carlo simu­
lations of the RF1M at positive temperature9” 12 are limited to 
small systems because of very long equilibration times.5-6 

According to the zero temperature fixed point hypothesis, 
many properties of the RF1M phase transition, including the 
values of critical exponents, can be determined by studying

the RF1M at zero temperature. The ground state of the RF1M 
can be found in polynomial time13 by efficient combinatorial 
algorithms so that zero temperature simulations are much 
faster and allow for much larger system sizes than positive 
temperature simulations. Critical exponents have been ob­
tained from zero temperature studies14” 16 that are mostly 
consistent with the scaling theories,5” 7 series methods, 17 and 
real space renormalization group approaches. 18” 20

Much work has been done in determining the critical ex­
ponents, and the values of many exponents are well estab­
lished. However, the value of the heat capacity exponent a  is 
still controversial. A recent zero temperature study by Hart­
mann and Young14 found a  =  -0.6 for the three-dimensional 
Gaussian RF1M. The modified hyperscaling relation, how­
ever, predicts that a = 2 - ( d - 0 ) v ^ O ,  given the well-accepted 
values 0=1.5 and =  1.1 — 1.4. Therefore the quite negative

A

FIG. 1. Phase diagram of the RFIM. We study two types of 
phase transitions going from the ferromagnetic phase (F) to the 
paramagnetic phase (P): The zero temperature transition (open ar­
row) occurs at 7 = 0  and A =A C. and positive temperature transitions 
(solid arrow) occur at a fix disorder A =A 0< A C and T >0 .
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value found in Ref. 14 is inconsistent with the modified hy­
perscaling relation. Some older work at zero temperature21 

and Monte Carlo simulations12 also found a  quite negative. 
On the other hand, Middleton and Fisher15 also studied the 
three-dimensional Gaussian RFIM at T= 0 and found a  =  
- 0 .1 , in agreement with the modified hyperscaling relation.

Dukovski and Machta16 studied the ground states of the 
RFIM in the presence of an external field H. They located a 
“finite size critical point” for each realization of disorder, 
identified as the point of degeneracy of three ground states in 
the the H -A plane with the largest discontinuity in magneti­
zation. They extracted critical exponents via finite size scal­
ing of the discontinuities at that point. The reason to focus on 
the finite size critical point was that this point can be re­
garded as the most singular point on the H -A plane, and 
working at this point may reduce the influence of the regular 
part of the physical quantities. The value of the heat capacity 
exponent they found was a  =  0 , however, their results were 
less accurate than those of Refs. 14 and 15 because of the 
large amount of computational work needed to locate the 
finite size critical point.

The work reported in this paper combines both zero tem­
perature and positive temperature studies. The zero tempera­
ture studies extend the work of Ref. 16 in two directions. 
First, for each realization of disorder we study points along 
the H = 0 line with large discontinuities in bond energy or 
magnetization to determine the critical exponents. Finding 
discontinuities along the H =0 line requires much less com­
putational work than finding the finite size critical point 
while still adhering to the idea introduced in Ref. 16 of ex­
tracting critical exponents from the large discontinuities in 
each realization of disorder. We also find ground state spin 
configurations near these large discontinuities and compare 
them to thermal states near positive temperature critical 
points. Second, we study the full set of ground states of the 
RFIM in the critical region of the H -A plane and discuss the 
properties of the resulting ground state tilings of this plane. 
The RFIM has been used to study avalanches, 22” 26 in which 
sweeping over a range of external field H  is essential. Al­
though studies of avalanches usually use some out-of­
equilibrium dynamics rather than ground states, it has been 
observed that the nonequilibrium dynamics is closely related 
to the equilibrium properties, 23-24'26 and therefore the de­
scription of the full set of ground states in a region of the 
H -A plane is also helpful to understand avalanches.

Since conventional Monte Carlo methods are not efficient 
for the study of the RFIM, we apply the Wang-Landau 
algorithm27-28 to the RFIM, which enables us to obtain the 
specific heat and the susceptibility over a broad range of 
temperature with a system size up to 323. We find that some 
realizations display sharp peaks in the specific heat and sus­
ceptibility. Inspired by the zero temperature fixed point hy­
pothesis, we relate these sharp peaks to the large discontinui­
ties at zero temperature. We further study the thermal states 
(average spin configurations) near the transition using the 
Metropolis algorithm and compare them to the ground states 
near the zero temperature transition. Some of this work has 
been previously announced in Ref. 29.

In this paper we consider the three-dimensional RFIM 
with Gaussian random fields described by the Hamiltonian,

H  =  -  2  SjSj -  A 2  h jS i -  # 2  S j- (1)
<!,/} i i

where H  is the uniform external field, ( i j )  indicates a sum 
over all nearest-neighbor sites i and j  on a simple cubic 
lattice of linear size L  with periodic boundary conditions. 
The random fields h, are Gaussian random variables with a 
mean zero and standard deviation of one and the strength of 
disorder is A. The normalized fields {//,-} define a realization 
of disorder and, for a given realization of disorder we ex­
plore spin configurations and physical properties as a func­
tion of H , T, and A. Some of the physical quantities of in­
terest include the magnetization in, defined as follows:

m = ~pi 'Esh (2)
L i

and the bond energy e ,

c = - 7 i l sisr  (3)
L (i.j)

In the next section we discuss the scaling properties of 
large discontinuities in the bond energy at zero temperature 
and use numerical results for these discontinuities to extract 
critical exponents and the critical disorder strength. In Sec.
Ill we obtain ground state portraits for the RFIM and discuss 
their scaling properties. Section IV presents results of posi­
tive temperature simulations and, in Sec. V, we discuss cor­
relations between ground states and thermal states. The paper 
closes with a summary and discussion.

II. CRITICAL EXPONENTS AT ZERO TEMPERATURE

At zero temperature, the problem of finding the ground 
state of the RFIM can be mapped to the m a x - f l o w  problem 
in graph theory, which is solvable in polynomial time. 13 We 
use a modified version of the push-relabel algorithm39 to 
calculate the ground states.30-31

In this section we let the external field H = 0. From Fig. 1 
one can see that the zero temperature phase transition is ob­
tained by varying A. The energy H  at 7=0 plays the role of 
the free energy and thus W ~ [A -A C[2'"'1'. The bond energy 
has stronger singularity, which is e ~  |A—At,|1"'1'. For details 
see Ref. 14. The specific heat at T= 0 can thus be defined

where e is the bond energy defined in Eq. (3) and the square 
brackets denote averaging over disorder realizations. At zero 
temperature, for each realization of normalized random fields 
the bond energy changes discontinuously as a function of the 
strength of disorder A. An example of a single realization is 
shown in Fig. 2 and illustrates the point that the sizes of the 
discontinuities vary widely. In Refs. 14 and 15 all bond en­
ergy jumps are included in the calculation of the specific heat 
exponent. However, small jumps are presumably part of the 
analytic background rather than the singular behavior. The 
smallest bond energy jump, for example, is four for all sys-
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FIG. 2. Bond energy as a function of disorder strength A for a 
single realization of disorder (seed 1003). Numbers 1 and 2 indicate 
the two biggest jum ps in the bond energy.

tem sizes. We therefore analyze large jumps in the bond en­
ergy to focus on the critical singularity. From a sample of 
N(L)  disorder realizations of systems of size L, let [ S e J  be 
the average over the N(L) largest bond energy jumps and let 
[A J be the average of the disorder strength at these jumps. 
Each realization of disorder typically contributes one bond 
energy jump and one disorder strength to these averages 
though some realizations contribute nothing and some sev­
eral values. Table I for shows our data for [<5eJ, [A J, and 
N(L).

Figure 3 shows the specific heat decomposed into two 
components, component (a) is due to the largest N(L) jumps 
while component (b) arises from all other jumps. Although 
for a single realization <5? is a steplike function as A, [Se] is 
a smooth function due to averaging over realizations. One 
can see that the large jumps make a significant contribution 
to the full specific heat and we will use this component to 
extract critical exponents. The finite size scaling of the spe­
cific heat is expected to obey

C ~  L a/rC [ ( A - A c)L l/l'\. (5)

Though the two components of the specific heat shown in 
Fig. 3 obviously behave differently from one another, our 
primary assumption is that the finite-size scaling of the full

TABLE I. Data from ground state simulations for the average 
largest jump, and the average and standard deviation of the disorder 
strength at the largest jumps, over N(L)  realizations, as a function of 
system size L.

L N{L) O i l [(A, - [ A j])2]1/2 [A ,]

32 13008 0.1208(4) 0.0904(5) 2.4915(10)
48 7549 0.0857(5) 0.0666(6) 2.4326(10)
64 5237 0.0675(5) 0.0524(5) 2.4017(10)
96 2115 0.0480(6) 0.0385(7) 2.3709(10)

2.0

1.5

O 1.0

0.5

0.0

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
A

FIG. 3. Two components of the specific heat, (a) The contribu­
tion to the specific heat from the largest N(L)  bond energy jumps, 
where ML) is the number of disorder realizations for each system 
size L. (b) The contribution from all other bond energy jumps.

specific heat also applies to the component of the specific 
heat from the largest bond energy jumps. Indeed we believe 
that the large jumps provide better data to obtain critical 
exponents from small systems than the full specific heat be­
cause this component is undiluted by the analytic back­
ground. We discuss more detailed scaling assumptions about 
large jumps later in this section. Note that the peak height for 
component (a) barely changes with the system size suggest­
ing that the specific heat exponent a  is near zero.

Integrating Eq. (5) as applied to the component from the 
largest discontinuities, we obtain a finite size scaling ansatz 
for the large jumps,

[& J  ~  Ln ~a)' \  (6)

where a  is the specific heat exponent and v  is the correlation 
length exponent. Table I gives the average size of the large 
bond energy jumps as a function of system size L. A fit of the 
form given in Eq. (6 ) yields (l-a )/i'= 0 .842± 0 .003  with 
goodness of fit parameter 2  =  0.7 [Q =  T { d l 2 , x 2l2)  with d  
the number of degrees of freedom and F the incomplete 
gamma function].

The displacement of the average position of the large 
jumps from the infinite volume limit and the standard devia­
tion of the positions of the large jumps are each measures of 
the width of the critical region and, following Refs. 32-34, 
we assume that they satisfy the finite size scaling relations,

[A,] -  Af ~  LTlh', (7)

and

V[(A, -  [A,])2] ~  r ll‘\  (8 )

where v  is the correlation length exponent and Af is the 
infinite size critical disorder strength. Table I gives the stan­
dard deviation of the position of the largest jump and a fit to 
Eq. (8 ) yields 1 /y=0.79±0.01 with <2 =  0.4. Finally, Table I 
gives [A J and, using the previously obtained value, l / v
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TABLE II. Critical exponents extracted from the largest kN(L) 
jumps, where N(L)  is the number of realizations for system size L. 
Errors are purely statistical.

k (1 -  a ) / v \ t v K

1 0.841(4) 0.79(1) 2.282(2)
2 0.842(4) 0.80(1) 2.282(2)
3 0.844(3) 0.81(1) 2.283(1)

= 0.79 a fit to Eq. (7) yields Ae=2.280±0.003 with 0  =  0.2.
The second and third largest jumps also presumably re­

flect the critical singularity. We repeated the foregoing cal­
culations for the largest kN(L)  jumps, where our data allow 
us to go up to k=  3. The results are listed in Table II. We 
arrive at the following best estimates of the critical exponent 
and the infinite volume critical disorder,

: 0.842 ± 0.004, v=  1.25 ± 0.02,

Ae = 2.282 ±0.002, a = -  0.05 ± 0.02, (9)

where the error bars include statistical errors from all three k  
values.

Our values of the (1 - a ) l v  and A c are consistent with 
some previous calculations and a  is found to be near zero, 
which is in agreement with Ref. 15. But the value of v  we 
have calculated is smaller than recent results quoted in Refs. 
14 and 15. In Table III our calculated values of the exponents 
are listed in comparison with some recent work. Our values 
of (1 - a ) / v  and I I  v  gives ( 2 - a ) / v ~  1.64. Applying the 
modified hyperscaling relation and the inequality 05?d/2  
- ( 3 ! v  (Refs. 6  and 8 ), one has /3/ v ^ 0 . 14, which is incon­
sistent with other work. We believe that our value of (1 
- a ) l v  is more reliable than our value of I I  v. The fit for I I  v 
starts from size L = 32 and would be quite poor if the L=  16 
data were included suggesting significant finite size correc­
tion. On the other hand, if the /. = 16 data were included, the 
fit would still be good for ( 1  - a ) / v  and there would be no 
change in the resulting value.

Next we take a closer look at the finite size scaling prop­
erties of the distribution of discontinuities in the bond en­
ergy. Bond energy jumps result from flipping domains. Con­
sidering N (L ) (N >  1) realizations with system size L, we 
assume that there is a renormalization group transformation 
mapping them to N (L ')  realizations with system size L ' , and 
the flipped domains are transformed such that the average 
bond energy jump [<5e>] and the average disorder where 
jumps occur [A] conform to the already known scaling rela­
tions, Eqs. (6 ) and (7). In order to exclude small jump that do 
not scale properly, we introduce a lower cutoff <5enun for 
bond energy jumps, which should scale the same way as
[<S?L

Se„ ■ L (10)

The total number of bond energy jumps larger than the 
scaled lower cutoff is independent of the system size, since 
the jumps in systems with different sizes are connected by 
the renormalization group transformation. Defining scaled 
variables u= SeL M1^a)/>' and u = (A -A c)L~"lh', the number of 
jumps occurring in a small neighborhood of («,u) should 
also be invariant for different system sizes. It then follows 
that the probability P (8 e ,A )  of having a bond energy jump 
with size Se, S e>  (Se^n, and position A is proportional to a 
given normalized probability distribution function P (u ,v ) ,

P(Se, A) * P (S e L (l~a)l,',{A -  A c)L lh'). (11) 

The normalization of P{ S e , A)  then gives

P (Se ,A )  = L {2- a)h'P(8eL{l- a)h',(A -  A e)L 1'*). (12)

Letting a= SemioL {1~"a)/>' and integrating gives the scaling of 
the specific heat due to big jumps Ch,

Ci, SeP(Se,A)dSe  ~  L a/"C((A -  A c)L lh',a),
J  Se ■

(13)

where C ( v , a ) = f au P (u ,v )d u  is some scaling function. By 
integrating Eq. (12) over Se we derive the probability distri­
bution of the disorder strength where big bond energy jumps 
occur,

TABLE III. A summary of recent estimates of At„ v, (1 - « ) / v and a , either calculated by ground state 
(GS) or Monte Carlo (MC) simulations.

Reference K V (1 - a ) / v a Method

This work 2.282(2) 1.25(2) 0.842(4) -0 .05  (2) GS
16 2.29(2) 1.1(1) 0.80(3) 0.12 GS
14 2.28(1) 1.36(1) 1.20 -0 .63  (7) GS
15 2.270(4) 1.37(9) 0.82(2)3“ -0 .12  (12) GS
33 2.26(1) 1.22(6) GS
34 2.29(4) 1.19(8) MC
21 2.37(5) 1.0(1) 1.55 -0 .55  (20) MC

“This value was calculated from scaling of the bond energy. They found (1 -  a)I  v=0.1A{2) by relating it to
the fractal dimension of the surface of spin clusters.
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TABLE IV. Number of bond energy jum ps larger than the sealed 
lower cutoff iS tw . The cutoff satisfies that a=SeminL {,~n}lr is a 
constant.

L = 1 6 L= 3 2

OOII-J T
tII-J L= 9 6

a = 0 . 0 5 6 9 .3 (1 ) 7 5 .1 (1 )

£/ =  0.1 2 9 .0 3 (6 ) 3 0 .8 9 (6 )

f /= 0 .6 3 .1 6 (1 ) 3 .0 4 (1 ) 3 .0 1 (1 ) 2 .9 9 (2 ) 3 .0 0 (3 )

a= 1 1 .5 8 5 (5 ) 1 .5 3 3 (7 ) 1 .5 3 (1 ) 1 .5 2 (1 ) 1 .5 4 (2 )

P,A A ) = L [h'Q(( A - A  C) L U'\, a ) . ( 1 4 )

where Q(v ,a) = f aP(u,v)du.  We then recover the scaling of 
the average disorder strength given in Eq. (7) The setup of a 
scaled lower cutoff should be equivalent to picking the kN(L)  
largest jumps for each size L , where k is some fixed number, 
because the total number of jumps is invariant under the 
renormalization group transformation. We test this hypoth­
esis by fixing the constant a= SemiXlL {i~~")h’ and count how 
many jumps larger than the lower cutoff there are for each 
system size. The result is listed in Table IV. One can see that 
if the scaled lower cutoff is not too small, the number of 
bond energy jumps larger than the cutoff goes to a constant 
independent of the system size L.

Figure 4 illustrates the data collapse of the specific heat 
predicted by Eq. (13) for system sizes 323, 483, 643, and 963.
In a conventional data collapse the scaling function C(.r) 
behaves like .t- " as .r— but in Fig. 4 the tail of the curve 
decays faster than a power law. The main plot in Fig. 4 has 
the bond energy jump cutoff set as a= 1. Table
IV shows that for a=  1 only a few largest jumps per realiza­
tion contribute to Cb and, since these jumps are concentrated 
near- the critical point, we do not expect Cb~  (A -A c)-n\ 
However, the tail should approach if the number of

i | i | | i | i | i | i | i | i | .

L

•  3 2  1 S '

°  4 8  i  i  
. 6 4  i  ^  0 *

n  9 6  s  0.5

s  *
2  on-

K  L  

i  « • 3 2  

• \  -  1 6  .

/  \  '
« S u  -

. . y  .................. ..

1  »
I

/  '
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( A - A c ) L 1fo
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1—1—I—'—I—*—I—*—I—*—I—»—I—»—I—»—T
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1/u
( A - A ) L

FIG. 4. Data collapse of the specific heat. The cutoff is a 
= ''= \ .0. System sizes range from 163 to 963. The inset
shows data collapse of the specific heat for system size 163 and 323, 
and the cutoff is & mLrX tl“" |/r=0.1.

jumps included is increased, or equivalently, a is reduced. 
The inset in Fig. 4 shows Q, with a smaller cutoff, a 
= &>minL(l“")/,'=0.1. With this cutoff data is available for 163 
and 323 systems only. The inset illustrates that, as the cutoff 
is lowered, the tail of the scaling function expands and pre­
sumably approaches the asymptotic x~" shape.

ITT. GROUND STATES PICTURES AND SCALING 
RELATIONS

The tiling of the H -A plane by ground states is the subject 
of this section. To study this tiling, we find all ground states 
within a certain range of disorder A and external field H  in 
the critical region. Since the Hamiltonian of the RFIM is 
linear with respect to the external field H  and the strength of 
disorder A, each spin configuration is represented by a plane 
in the H -A - H  coordinate system. Ground states are spin con­
figurations that are locally lowest and the set of all ground 
states form a convex surface in this coordinate system. Spin 
configurations are ground states within regions of H  and A 
bounded by neighboring ground state planes so that a given 
spin configuration is the ground state within a polygonal re­
gion. At boundaries of these polygons, and intersection 
points of boundaries, ground states are degenerate. We are 
particularly interested in the degenerate points that are com­
mon points of three ground states. We call these “triple 
points.”

The structure of the ground state energy surface can be 
visualized by projecting it onto the H -A plane where it be­
comes a tiling of the plane by polygons. The computational 
method for finding this tiling is closely related to the method 
developed in Ref. 16. In that work, the first order line, which 
is a set of boundaries that separates the two ordered phases 
with positive and negative magnetization, respectively, was 
followed and the “finite-size critical point” was identified by 
finding the triple point having the largest discontinuity in 
magnetization. The finite-size critical point was regarded as 
the most singular point, and critical exponents were extracted 
via finite-size scaling of magnetization and bond energy dis­
continuities at the point. In this paper we use a method simi­
lar- to the techniques used in Refs. 35 and 16 to map out all 
the ground states for any given realizations within a certain 
region on the H -A plane near the finite-size critical point.

Our algorithm performs a breadth-first search of ground 
states. The starting point of the search is the finite-size criti­
cal point located by the algorithm of Ref. 16. For each point, 
where more than two ground states are degenerate, we al­
ready have the ground states around the point and the coex­
istence lines separating them (one locates the point by find­
ing ground states around it). We then follow the lines and 
search for the next adjacent degenerate point using the fol­
lowing method. Starting from the given degenerate point /?, 
we extend the coexistence line separating ground states P  ( 
and P 2 with some preselected step size until we meet a point 
q() on which the ground state Q0 is different from both P h 
and P 2. The actual adjacent degenerate point is typically 
passed over, because of the fixed step size is too large. We 
then locate the intersection point of P 2, and Q0 and name 
it ( ] |  on which the ground state is Q\.  If (]i=(]o then is

064418-5



YONG WU AND JONATHAN MACHTA PHYSICAL REVIEW B 74. 064418 (2006)
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FIG. 5. Ground states of a given realization (seed 1003) with 
system size 323 in the H-A plane, (a) All the ground states of a 
single realization with L = 32. The lines are coexistence lines of two 
ground states. The thickness of a line is proportional to the magne­
tization jump across the line, (b) The same realization as in (a), but 
only coexistence lines with bond energy jumps Se>  0.03 are 
shown. Numbers 1 and 2 correspond to the two largest jumps 
shown in Fig. 2. The inset in (b) is a blow up of the region around 
the triple point identified as the finite size critical point and also 
showing the triple points immediately above and below it.

obviously the point we want. Otherwise we find the intersec­
tion point of P h P 2, and Q ) and name it q2- The process can 
be repeated and the sequence {q,,} will eventually converge 
to the adjacent degenerate point due to the convexity of the 
ground state surface. The process of finding adjacent degen­
erate points is iterated recursively until it reaches the outside 
of the predefined region, or it finds a point that has already 
been visited. By connecting degenerate points with straight 
lines, all ground states within the region are identified.

Using the method described above, a ground state picture 
on the H -A plane of a particular 323 realization (seed 1003) 
was computed and is shown in Fig. 5(a). Coexistence lines 
are drawn with thickness reflecting the jump in magnetiza­
tion to visualize the size of discontinuity. Most of degenerate 
points are intersection points of four ground states, as illus­
trated in Fig. 6 (b). The four ground states differ by the ori-

FIG. 6. (a) Three states are degenerate at a triple point. The “+ ” 
and ” sign are used to indicate the direction of spins in a domain. 
The spins in the domain are all pointing up (denoted as “ + + ”) or 
all down (“ — ”) in the ground states below the triple point, while 
the domain breaks up (“+ —”) in the ground state on top of the 
triple point, (b) Four states separated by two intersecting straight 
lines. The four states differ from each other in two separate 
domains.

entation of two separate domains, which are typically small, 
as is the discontinuity in physical quantities between them. 
More interesting are triple points where three ground states 
are degenerate. Here a single coexistence line bifurcates into 
two lines in a ¥  shape, as illustrated in Fig. 6 (b). The state 
on the top of the ¥  results from the breakup of a relatively 
large domain while this domain flips as a whole across the 
vertical line of the Y. A triple point has some characteristics 
of a thermal first order transition where two ordered state 
coexist with a disordered state.

There are several thousand lines in the ground state pic­
ture in Fig. 5(a), but most of these lines have small jumps in 
bond energy and magnetization. We believe that only rela­
tively large jumps contribute to the singularity and, to em­
phasize these jumps, we simplify the picture by removing the 
lines representing small jumps. In Fig. 5(b) is the same pic­
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ture as Fig. 5(a) but a large number of lines with small bond 
energy jumps (<5?<0.03) have been eliminated. This simpli­
fied picture reveals a treelike structure built from triple 
points. The first order line separating the two ordered states 
is the trunk of the tree, which bifurcates at the finite size 
critical point (defined below) into two main branches located 
at the center of the picture. Above the finite size critical point 
the ground states are disordered. The points labeled 1 and 2 
correspond to the large jumps with the same labels in Fig. 2. 
The inset in Fig. 5(b) shows the details of the finite size 
critical point and two other triple points immediately above 
and below it. In this paper the finite size critical point is 
identified as the degenerate point that maximizes the discon­
tinuity in the bond energy, measured by Se* = (\e+- e 0\ + \e_ 
- ? 0 |) /2 , where e+, e__ are the bond energies of the two or­
dered states, and e0 is the bond energy of the disordered 
state, respectively.

We propose that the critical region of the ground state 
picture can be rescaled in such a way that pictures for vari­
ous system sizes are statistically indistinguishable from one 
another. The required scaling involves the width of the pic­
tured region WH in the H  direction, height W& in the A di­
rection, and lower cutoff for coexistence lines retained 
in the picture. The scaling of should follow Eq. (10). 
The picture will include a scale invariant part of the critical 
region if W& scales as A - A c,

WA~  ZT (15)

The scaling of WH is expected to be the same as the scaling 
of the external field H, which has been given by Bray and 
Moore in their scaling theory of the RFIM (Ref. 7),

(16)

In Fig. 9 the parameters of the pictures are scaled such 
that J nL(1- “)/", WAL lh\  and WHLa - a- f5)h’ are all held con­
stant. Although different realizations have quite different 
ground state patterns there is no apparent way to distinguish 
between different system sizes.

In order to test the scaling of the ground state pictures 
more quantitatively we measure \\dH/dA\],  the average of 
the absolute value of the inverse slope of coexistence lines 
near criticality (except for the first order line) as a function of 
system size. The result is shown in Fig. 7. We measure the 
inverse slope of coexistence lines rather than the slope itself, 
because in some realizations the slope is very large, and thus 
the average of clA/dH is not well behaved. The slope of the 
best-fit line is -0.79±0.04. From Eqs. (15) and (16) we ex­
pect [ \d H /d A \ ] ~ T h e  measured value -0.79±0.04 
is close to (a+f.3 - 1 ) / v, if (1 - a ) / i ’~0.84 as we have cal­
culated in Sec. II and /3~0 as generally accepted.

We then measure the strength of the external field at the 
finite size critical point [ |//t,|], which should have the same 
scaling as WH, and show the result in Fig. 8 . The slope of the 
best-fit line is -1.60±0.06, which is again consistent with the 
expected value of (a + (3-2)1 v, if /3~0, and our measured 
values of exponents (1 - a ) / i>~0.84, and 1 / 1>~0 .8  are used.

FIG. 7. Scaling of the average inverse slope of coexistence lines 
near the finite size critical point (except for the first-order line). The 
slope of the best-fit line is -0 .79  ±0.04. which is in agreement with 
the predicted value (a+/3-  1)/v.

TV. POSITIVE TEMPERATURE RESULTS

We have studied the RFIM at fixed disorder strength of 
A0<  A c and zero external field for all T >  0 using the Wang- 
Landau algorithm.28 The Wang-Landau algorithm is a flat 
histogram Monte Carlo method that also automatically deter­
mines the density of states g(E). Thermodynamic quantities 
related to energy, such as the specific heat, can then be de­
rived from the density of states at all temperatures. In order 
to get the magnetization or susceptibility, we collected joint 
magnetization and energy statistics. The algorithm smooths 
the energy landscape and improves on the performance of 
the conventional Metropolis algorithm. Using the method we 
can determine the specific heat and susceptibility over a 
broad temperature range for systems up to size 323. After we 
obtain the density of states, we use the Metropolis algorithm 
to obtain average spin configurations for selected tempera­
tures.

FIG. 8. Scaling of the average strength of the extenal field at the 
finite size critical point. The slope of the best-fit line is -1 .60±0.06. 
which is in agreement with the predicted value ( a + f i - 2)1 v.
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FIG. 9. Ground state pictures for different system sizes plotted 
with scaled coordinates and lower bound for bond energy jumps. 
Each figure shows the scaled ground state picture for a single 
realization.

Our first observation is that for some large enough sys­
tems (s=163) and strong enough disorder, the specific heat 
and the susceptibility display one or more sharp peaks, as 
illustrated in Fig. 10. For a given realization, the sharp peaks 
in the specific heat and the susceptibility occur at the same 
temperatures. The sharp-peaked transitions have some first- 
order-like properties. For example, the energy probability 
density p(E)=e~~£ITg ( E ) /Z  displays double peaks, and the 
Binder cumulant B(T) = 1 -(m 4)/3(m 2) is negative at the 
temperature of the sharp peaks. The angular bracket stands 
for a thermal average. The double peaked energy distribution 
and negative Binder cumulant are shown for a 163 system 
(seed 1013) in Fig. 11. These first-order-like features result 
from the coexistence of two states that differ by flipping a 
large domain as we will see more clearly later. Preliminary 
statistics from a small sample of realizations suggest that the 
fraction of realizations showing sharp peaks increases with 
the system size and the strength of disorder, as shown in 
Table V. The number of realizations simulated for 323 sys­
tems was limited by available computer resources. Here we 
call a transition “sharp” if the sampling probability has two 
peaks at the transition temperature.

The sharp peaks occur at different temperatures with dif­
ferent height for different realizations, and they are smoothed 
out by an average over realizations. We show in Fig. 12 the 
average specific heat for all of the 163 systems we have 
simulated at A0 =2.0. Though there are 21 sharp-peaked re­
alizations out of a total of 96 simulated (see Table V), the
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FIG. 10. The specific heat C and the susceptibility x  o f four 
realizations of the RFIM. The sharp peaks in the specific heat and 
the susceptibility o f a given realization occur at the same 
temperatures.

average specific heat is a smooth curve. The difference be­
tween the average specific heat and that of individual real­
izations shows that there is no self-averaging close to the 
critical point at positive temperature, similar to what we have 
already seen at zero temperature. The lack of self-averaging 
near the transition has also been observed in the bimodal 
distribution RFIM (Ref. 36).

V. RELATION BETWEEN GROUND STATES 
AND THERMAL STATES

The zero temperature fixed point picture of the RFIM 
phase transition predicts that the behavior in the critical re-
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FIG. 11. The first-order-like properties o f shaip peaks, (a) shows 
the double-peaked sampling probability p(E) at the sharp peak for 
the system in Fig. 10(a). (b) shows the Binder cumulant if as a 
function of temperature for the same system, which becomes nega­
tive at the shaip-peaked transition.

gion at positive temperature is determined by the competi­
tion between couplings and random fields with thermal fluc­
tuations serving only to renormalize the strength of these 
quantities. The results presented in this section suggest that a 
strong version of the zero temperature scenario holds for 
individual realizations of normalized random fields. We will 
show that the sharp peaks in the thermodynamic quantities 
can be matched one to one with the large jumps at zero 
temperature. Furthermore, the spin configurations on either 
side of the sharp peaks can be mapped onto the ground states 
on either side of the corresponding large jumps. Similar' cor­
relations between ground states and thermal states were 
found in one dimension.37-38

We illustrate the above statement for one 323 realization ( 
A0=2.0, seed 1003) whose specific heat and susceptibility 
are shown in Figs. 10(g) and 10(h), respectively. There are

TABLE V. Number of realizations that have a double-peaked 
energy probability densities at their specific heat peaks (N dp). and 
total number of realizations simulated (Nlol) as a function of disor­
der strength A0 and system size L.

L A0 N dp Nt„t N,ip/ N lol

8 1.5 0 256 0%
8 2.0 0 64 0%
16 1.5 6 96 6.25%
16 2.0 21 96 21.8%
32 1.5 3 9 33.3%
32 2.0 6 9 66.6%

1.6

-  ■■■■“ ? -------- 1--------- .--------- 1--------- .--------- j--------- .--------- j--------- .---------

0 2 4 6 8 10
T

FIG. 12. The average specific heat of 96 realizations of size 163 
and disorder A()=2.0. Although some of these realizations have 
shaip peaks, the averaged specific heat is smooth.

two major peaks in the specific heat and the susceptibility, 
and each of them are related to the two major jumps in the 
bond energy and the magnetization at zero temperature, as 
shown in Figs. 2 and 5(b) (labeled as 1 and 2).

The connection between the zero temperature transitions 
and positive temperature transitions is confirmed by the cor­
relation between the average spin configurations near the 
positive temperature transition and the ground states near- the 
zero temperature transition. For a single realization of ran­
dom fields, we obtain the thermally averaged spin configu­
ration at a given temperature near the peaks using the fol­
lowing method. We use the ground state as the initial spin 
configuration. The spin configuration is then updated using 
the Wang-Landau algorithm, in which the already obtained 
density of states is used without modification. This way we 
can quickly get close to the average energy at the given 
temperature. We use a configuration with the correct energy, 
as the initial condition for a Metropolis ran to collect statis­
tics for spin configurations.

Figures 13(d)—13(f) show one plane through the system 
with A0=2.0 and at temperatures just before peak 1 (T  
= 2.2), just after peak 1 (7 = 2.5), and just after peak 2 (T  
= 2.8), respectively. The difference between the states shows 
that the sharp peak corresponds to flipping a relatively large 
domain. It is evident that these three states are strongly cor­
related with the ground state spin configuration before the 
jump 1 (A = 2.36), just after jump 1 (A = 2.41), and just after 
jump 2 (A = 2.54), as shown in Figs. 13(a)-13(c), respec­
tively. [The labels of jumps and peaks are given in Figs. 2, 
5(b), and 10(g)],

Some correlation between ground states and thermal 
states persists to much smaller values of A0 in a regime 
where the thermodynamic properties no longer display sharp 
peaks. Figures 13(g)—13(i) show the same realization of dis­
order and the same plane through the system but with A0 

= 0.5. Here the specific heat has a rounded peak at T  
=4.375. Figures 13(g)—13(i) correspond to temperatures 4.0, 
4.3, and 4.45, respectively. Although there is considerable 
thermal “blurring” in these pictures, evidence of the ground 
states is unmistakable.
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FIG. 13. Spin configurations near the critical points at zero tem­
perature and finite temperatures for a single realization of normal­
ized random fields. Each panel is the same plane of a 323 realization 
with black representing spin down; white, spin up; and shades of 
gray, the thermally averaged spin state. From left to right in the top 
two rows, panels are at A (D  before, between, and after jumps 
(peaks) 1 and 2 in Fig. 5(b) [Fig. 10(g)], Specifically, panels (a), (b). 
and (e) are ground states at A=2.36. 2.41. and 2.54. respectively. 
Panels (d). (e). and (f) are at A=2.0 and 1=2:2. 2.5. and 2.8. re­
spectively. Panels (g). (h). and (i) are at A=0.5 and temperatures 
4.0. 4.3. and 4.45. near the peak in the specific heat at r=4.375.

A quantitative characterization of the correlation between 
ground states and thermal states can be obtained from the 
correlation measure.

•7(A) = [sgn«s,-|A,0)<s,-|A0,7O)]. (17)

where the square brackets are an average over realizations of 
disorder and (s ,|A ,r) is the thermal average of the spin at 
the /th site at disorder A and temperature T  or, if T= 0, it is 
the ground state spin value. For each realization, the tem­
perature r < = r max+0.1 where r max is the temperature of the 
maximum of the specific heat. Thus, for each realization, we 
pick a thermal state just above the transition temperature. 
Figure 14 shows q vs A for sizes 163 and 323 and A0=1.5, 
with 96 realizations for size 163 and 9 for size 323. A peak in 
the correlation occurs at A =  2.65 where q ^  0.75. The value, 
A =  2.65, is about 0.15 larger than the average A at the larg­
est discontinuity in the bond energy for system size 323. The 
inset in Fig. 14 shows the average correlation between ther­
mal states of one realization and ground states of another for 
size 163, which is nearly zero as expected. A second mea­
sure, q is obtained by choosing the value A* in Eq. (17) for 
each around state realization to sive the larsest correlation to

FIG. 14. Disorder averaged correlation q of a thermal state just 
above the transition temperature at A0=1.5 to ground states at dis­
order strength A for the same realization of random fields. Solid 
squares for size 163 and open circles for size 323. Only a few error 
bars are drawn to make the figure easier to read. The inset shows 
the correlation of thermal states with ground states of a different 
random field realization.

the thermal state at f" and then averaging over realizations. 
We find that for size 323, ^  =0.80±0.06 for A0=1.5 and q 
=0.85±0.05 for A0=2.0. Together, these results provide a 
quantitative confirmation that the thermal states at tempera­
tures slightly above the thermal critical point are strongly 
correlated with the ground states at disorder strength slightly 
higher than the zero temperature critical point.

The correlation between thermal states and ground states 
near the transition is consistent with, but not predicted by the 
zero temperature fixed point hypothesis.40 This hypothesis 
predicts that the renormalization group flow is to a zero tem­
perature fixed point so that the zero temperature and positive 
temperature transitions are in the same universality class. 
However, it does not predict anything about the spin configu­
rations along the critical line for individual realizations of 
disorder. If the correlation of spin configurations along the 
critical line that we observe for small systems persists to 
large systems, it will support the following strong version of 
the zero temperature fixed point scenario: for a given real­
ization of normalized random fields, the sequence of states 
near the zero temperature critical point obtained by varying 
A for T=Q can be mapped onto the sequence of thermal 
states near the critical point obtained by varying T for fixed 
values of A0, A0<  Ac.

VI. SUMMARY

In this paper we have numerically studied the RFIM at 
zero temperature and positive temperature. At zero tempera­
ture we have extracted critical exponents from the finite-size 
scaling of the several largest jumps in the bond energy. Our 
measured value of exponents (except v) are mostly consis­
tent with previous values but have better accuracy. We have 
found that the heat capacity exponent a  is near zero. We
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have also portrayed all ground states within a small critical 
region on the H-A plane for up to 323 systems. The ground 
state pictures shows a treelike structure if small jumps are 
removed. Although the ground state pictures are not self­
averaging, they satisfy statistical scaling relations. That is, 
within a scaled region in the H-A plane, with the scaled 
lower limit of bond energy jumps chosen, the ground state 
pictures of different system sizes are statistically similar.

We have used the Wang-Landau algorithm to study the 
RFIM at positive temperature. This algorithm enabled us to 
obtain the density of states and to derive the specific heat and 
susceptibility over a broad range of temperatures for systems 
up to size 323. We have observed that for some disorder 
realizations the transition is characterized by sharp peaks in 
the specific heat and the susceptibility. The sharp-peaked 
transition has some first-order-like features and the fraction 
of realizations that have sharp peaks increases as the system

size or the strength of disorder increases. The sharp peaks in 
the thermodynamic functions result from flipping a large do­
main and are related to large jumps in bond energy and mag­
netization at zero temperature. More specifically, the thermal 
average spin configurations near the finite temperature tran­
sition are correlated to the ground states near some corre­
sponding large jump at zero temperature. This phenomenon 
suggests a strong version of the zero temperature fixed point 
scenario. It remains to be seen whether the correlation be­
tween critical ground states and thermal states persists to 
large systems.
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