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This report develops two generalizations of the standard Linear 
Predictive Coding (LPC) implementation of a narrow band speech com­
pression system. The purpose of each method is to improve the speech 
quality that is available from a standard LPC system. Attention is 
focused primarily upon the pitch excited system and therefore, the 
improvements considered focus upon the improved estimation of the 
reflection coefficients and the pitch period. Specifically, a para­
meter filtering algorithm is developed for dynamically smoothing the 
reflection coefficients to both increase naturalness in synthetic 
speech as well as eliminate the possibility of synthesis filter insta­
bilities. Secondly, a new method for calculating the k-parameters of 
an LPC inverse filtering algorithm is developed, STREAK. New values 
for each k-parameter are calculated at each sample point directly 
using the lattice formulation of the inverse filter model. It is 
shown this technique can be used to improve a pitch detection scheme 
based upon the autocorrelation of inverse filter output sequence.
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This report is concerned with methods for improving narrow band 
synthesis speech quality generated by an LPC analysis synthesis system. 
As such it is assumed that the reader is familiar with the basic theory 
behind Linear Predictive Coding applied to speech. There are numerous 
references available which describe the techniques, advantages, and 
disadvantages of LPC, [l] [2] [3]. The intent of this report is to 
introduce and develop two new methods for improving speech quality by 
enlarging or replacing parts of so-called standard approaches. There­
fore, only a brief description of LPC will be presented so as to provide 
a foundation to which these new techniques can be referenced .
Needless to say, there are many ways for improving speech quality. This 
report will primarily focus its attention on two major areas: one, 
improved estimation of reflection coefficients and two, improved estima­
tion of pitch. Other methods for improvements such as parameter quanti­
zations, and coding [4], fixed point implementation [5], and mode of 
transmission [6] ,although extremely important, will not be addressed.

Following a brief description of LPC are the reports in three 
major parts. Part one describes the various procedures which comprise 
the complete analysis-synthesis system. Part two describes a technique 
for the improved estimation of reflection coefficients using a minimum 
variance a priori least squares estimator. Part three describes a new 
method for calculating the reflection coefficients or k-parameters 
associated with the lattice form of the inverse filter and shows how 
this procedure for inverse filtering can be used for improved pitch

INTRODUCTION



tracking estimates.

Narrow Band Speech Compression 
Digital speech transmission using conventional pulse code modula­

tion requires channel bandwidths on the order of 60,000 bits per second. 
In order to reduce this rate to what might be called a narrow band 
speech compression system (typically 4000 bps or less) it is necessary 
to parameterize the speech waveform into a smaller (typically 13 to 20) 
set of slowly varying parameters. Estimates of these parameters are 
computed at some prescribed analysis rate, typically from 40 to 200 times 
per second. The parameters are then quantized, encoded and sent to the 
synthesizer across a transmission channel at a prescribed rate. Here 
they are decoded and supplied to a synthesizer algorithm which generates 
a synthesis speech waveform which hopefully sounds like the original in 
some acceptable manner. Thus, if the speech waveform were characterized 
by say 13 parameters, which could be coded to an average of 5 bits each 
and updated and sent every 200 ms, one would have a speech compression 
system requiring 3250 bps. The major components of such a system con­
sist of an analyzer, a coder, a decoder, and a synthesizer. The stan­
dard parameters estimated in the analyzer consist of the signal energy, 
the voiced-unvoiced decision, the pitch period, and the set of vocal 
track descriptors. The vocal track is assumed to be accurately modeled 
by a digital filter defined as a ratio of polynomials. If the filter is 
assumed to have only poles, then linear predictive coding can be used to 
estimate the filter parameters, as well as determine energy, pitch and 
voicing.
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Speech Analysis Using Linear Prediction
A linear prediction analysis of speech assumes that the n speech

sample, sn can be predicted approximately by a linear combination of
the preceding p samples. Thus its approximation is given by

t P
s = I  a. s - n 1 n-i

where {a^,i=l,2,..p} is the set of real constants called predictor 
coefficients which are to be estimated. Values for these coefficients 
are found by minimizing the sum of the squares of the prediction error 
sequence, en where

P
e = s„ - s = s - Y a- s . n n n n £  1 n-i

Thus values for the predictor coefficients are determined using a
least squares estimator having as a loss function to be minimized

P
E = I e^ = I ( s 'I  a -s -)2“ n L v n .L, 1 n-i' n i=l

Note, as shown in Chapter II, this loss function E can be expanded to 
include a priori information leading to a smoother minimum variance 
estimate.

There are two basic approaches to linear prediction analysis. 
They vary according to the range of n used in defining the loss
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function E, and the definition of the signal sn in that range. When 
using the covariance method the signal is defined over a finite range 
-p<n<N-l and minimizing E leads to the set of normal equations [7]

J ^ i  *ij -*j,o 3=1 >2....p

where

a N _<p - - _ v s • s .= I n-i n-j
n=l

The coefficient matrix ] is positive definite covariance 
matrix and the system of equations can be efficiently solved using a 
triangularization method sometimes called the Cholesky decomposition 
[8] (See Chapter II). When using the autocorrelation method,the signal 
sn is multiplied by a window of length N such that sn=0 for n<0 and 
n>N-l. The range of n is assumed infinite and minimization of E leads 
to the normal equations [7]

X  ai r i H  r  rj 3=1 >2.... p

where
N-l

r. = Y s s .i Ln n n+i n=0

The coefficient matrix [ R ^ ^ ]  is a positive definite Toeplitz 
matrix and the system of equations can be efficiently solved using 
Levinson's recursion [9].



Itakura [10] initially showed that a linear prediction analysis 
can be formulated in terms of another equivalent set of parameters 
{k^i=l,2,..p} called PARCOR, or reflection coefficients. It had been 
shown that these k-parameters are well suited as transmission para­
meters for a narrow band speech compression systems since they exhibit 
superior quantization properties [4], [10] and stability of the syn­
thesis filter is guaranteed if |k^|<l [ll].

Using the linear prediction model provides an effective method 
for detecting the pitch period. If the all-pole model defined by lin­
ear prediction accurately represents the vocal tract transfer function, 
and the radiation and glottal volume flow effects, then the output of 
the inverse filter, that is, the error signa^e^, should resemble an 
impulse like driving function having a period equal to the pitch for 
voiced speech. Absence of periodicity would imply unvoiced speech.
Two approaches to pitch detection using inverse filtering are addressed 
in this report. The first concerns the standard block analysis 
approach, SIFT [12] and is described in Chapter I. The second uses a 
point by point analysis, STREAK and is described in Chapter III.

The energy needed to appropriately scale the synthesized output
waveform can be obtained from the coefficient matrix (either <(>„ n or

N-l 2 u’u
Tq), or by using the energy of the error signal itself, £ e .

n=0 n* \
Methods for Improving Speech Quality

/
Considerable effort is currently being devoted to methods for 

improving the quality of synthesized speech generated from a narrow 
band compression system. Already noted are the studies in parameter
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quantization, fixed point implementation and improved modes of trans­
mission. Other techniques exist such as more elaborate vocal tract 
models, and analysis [13], [14] as well as voice excited and error 
excited synthesizers [15]. However, implementing such techniques as 
these introduces the added drawbacks of increase complexity and computa­
tion and increased channel bandwidth. If the compression system is 
expected to operate in real time then complexity and computation must be 
minimized and if the bandwidth is to be constrained at a rate less than 
4000 bps then the more elaborate excitation sequences must be simplified 
to a unit impulse driven sequence. In order to conform to these con­
straints of minimizing both computation rate and channel bandwidth, the 
techniques discussed in this report focus primarily upon the improved 
estimation of reflection coefficients and the pitch period using 
methods which are uncomplicated enough not to prohibit real time 
implementation or narrow band transmission.

6



General Data Flow
A diagram showing the various stages in the entire system is 

shown in Figure 1.1. The original analog speech waveform is first low 
pass filtered by an anti-aliasing filter having cutoff frequency f , 
sampled at a rate f , and quantized to q bits per sample. The digitized 
waveform is then stored on magnetic tape or disk.

The analysis portion of the system consists of three parts: (1) 
the data control routine for determining how the data is analyzed and 
transmitted to the synthesizer; (2) the actual analysis routines for 
estimating the vocal tract parameters: reflection coefficients, pitch, 
voicing and energy; and (3) the coding routines for optimally quantizing 
the analysis parameters for channel transmission.

The coded parameters are transmitted through the channel at a con­
stant rate called the channel frame rate.

The synthesis portion of the system consists of two parts: (1) 
a routine for decoding the transmitted parameters; and (2) the synthesis 
routine for recursively generating synthetic speech. These samples are 
also stored on magnetic tape or disk.

A synthesized analog waveform is obtained from the D to A conversion 
of the processed samples which has been low pass filtered by an anti­
imaging filter having cutoff frequency f .

I. DESCRIPTION OF THE ANALYSIS - SYNTHESIS SYSTEM

7



Data Management (The Data Control Routine)

The approach taken for analyzing the incoming speech waveform is 

to separate it into possibly overlapping data sections called analysis 

frames, and extract a set of analysis parameters from each frame. At 

the completion of each analysis, the frame is shifted down the time 

line by loading new samples into the front end and dropping old samples 

off the back end. Thus one can view this approach as extracting the 

analysis parameters from that portion of the waveform which lies under 

a sliding analysis window.

Advancing the Analysis Frame

The approach used is to advance the analysis frame "pitch syn- 

chrounously". Specifically the analysis frame is shifted by an amount 

equal to the last estimated pitch period. This policy is followed 

except when the pitch period becomes less than a preset minimum jump 

distance for which the frame is then shifted a multiple of that pitch 

period. For example, if the minimum jump distance is 5 ms. and the 

pitch period is 4 ms., the frame is then advanced by 8 ms.

Size of the Analysis Frame

The size of the analysis frame is dictated by the amount of data 

needed to extract estimates of the pitch and reflection coefficients 

accurately. The analysis frame size for estimating pitch is set at 

40 ms. whereas the frame size for estimating the reflection coeffic­

ients is set at 16 ms when using the covariance method and at 32 ms 

when using the autocorrelation method. Thus the overall analysis

8
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frame size is set at 40 ms. with either the middle 16 ms or 32 ms used 

for reflection coefficient estimation.

Time Intervals Between Analyses

There are two different analysis frame rates used in the analysis. 

For coefficient estimation the frame rate is pitch synchronous as 

described above. As is described in Chapter II, this higher rate is 

necessary for smoothing the reflection coefficients.

However, the analysis portion of the system does no smoothing on 

the pitch estimates and therefore they need only be calculated as often 

as is dictated by the channel frame rate. That is, new estimates of 

pitch and voicing are needed only as often as they must be transmitted 

to the synthesizer. (Typically the channel frame rate is set at 50 

frames/second or less.) Thus the pitch extraction analysis rate is 

set up to be multiple-pitch synchronous. A new pitch estimate is com­

puted when the analysis frame has been shifted in time to a point 

required for a new pitch estimate to be transmitted to the synthesizer. 

For example, if the channel frame rate is set at 50 frames per second, 

then new pitch estimates are required every 20 ms. If the previous 

pitch period was found to be 5 ms. then the next pitch estimate will be 

computed after four shifts of the analysis frame.

In summary, a data control routine specifies the length of the 

analysis frame and determines how it is shifted down the time line and 

which analysis parameters are to be computed at each shift. The analy­

sis is pitch synchronous. New reflection coefficients are computed 

and smoothed at each shift. The reflection coefficients which are

10



transmitted to the synthesizer consist of these values present at the 

points required for channel transmission. Thus if the channel frame 

rate is less than the pitch rate, the transmitted reflection coeffici­

ents represent a down-sampled version of the coefficients being esti­

mated. Pitch and voicing are computed and transmitted at multiple 

shifts as dictated by the channel frame rate frequency. The length 

of each shift is set equal to the last pitch period estimated.

Reflection Coefficient Estimation and Smoothing 

A diagram showing the various parts of the coefficient estimation 

routine is given in Figure 1.2. Except for the smoothing algorithm 

which is appended at the end, the operations are similar if not identi­

cal to standard methods for estimating reflection coefficients. The 

routine can be used to estimate reflection coefficients using either 

the covariance [1], (Atal) method or the autocorrelation [2] (Markel, 

Itakura) method, which method is used depends, of course, upon the form 

of the linear system of equation which is to be solved.

Coefficient Analysis Frame Length '

The overall analysis frame size specified by the data control 

routine is considerably larger (typically 40 ms.) than the coefficient 

analysis frame size to be used for estimating the reflection coeffici­

ents, (either 16 or 32 ms). Thus the first step in this routine is to 

extract a subset of length N from the center of the analysis frame.

This subset, the coefficient analysis frame, is used to compute an 

energy term and reflection coefficients.

11



REFLECTION COEFFICIENT 
ESTIMATION



Energy Calculation and Silence Detection 

The zeroeth correlation term,
N 2 N_1 2„ = 7 s or rn = T s 1.1Y0,0 S  n 0 n’ n=l n=0

is initially computed and from it is computed the energy estimate,

{ ^ v - Y  °r  r i “ ( t - ) ’5 r - 2

R1 is then compared against a threshold value, THRES, to determine if 

the waveform to be analyzed represents a silent region. For 12-bit 

samples, values of R1 less than a THRES equal to 12 imply the analysi 

frame represents silence and the routine is exited.



Matrix Loading (Covariance Method)

The linear system of equations to be used for estimating the 

reflection coefficients was developed in Reference [7].

The linear system is given by:

*11 *12 ’ " ' *l,p al l,o

*2,1 *22 • * * *2,p ?2 = <t> 9 2,0

(f) -« d) « • • • 6 P,1 P»2 vp,p aL p  _

.............................
n

o
• 

(X 
*©■

1
1.3

N
WHERE d>. . = 7 S S .

IJ n=l 11-1 n_J

and a^, i = 1 , 2 , . . , p = Maximum Likelihood or the
Classical estimate of the pre­
dictor coefficients

Initially 4> - i = o, 1, . . . , p ,  are computed and from these values 0,1,
the remaining elements of the matrix are found using the standard 

method:

2 2 
(j) . . - (j) . n . .. + s • . - sM . ■ 
Yi,i i-l, 1-1 - i + l  N+l-i

*i+l,i *i,i-l + S-1 s-i+l ' sN-i sN-i+l i = 1 ,2 ,...p-1

*i,i+l *i+l,i

Matrix Loading (Autocorrelation Method)

The linear system of equations used to estimate the reflection 

coefficients for the autocorrelation method is given by [7]
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WHERE

r = I 
n i=0

N-l-i
s.s.,1 l+n

a^, i=l,2,...,p= Maximum likelihood or the classical estimate of the 

predictor coefficients.
I

s , n=0,1,...N-l= windowed speech sampled (usually using a Hamming

type window). Makhoul [3] and Markel [2] have shown that preemphasizing 

the input speech improves the synthesis speech quality. With that imple­

mentation, the samples used to form r are given by 
t

s = (s -c*s ,)*W n n n-1 n

WHERE s^ = speech samples

W^ = window samples

c = preemphasis coefficient, which is sampling frequency 
dependent. See Markel [2].

An efficient method for calculating the short term reflection coeffici­

ents r has been developed by both Blankenship [16] and Pfiefer [17].



Coefficient Solution from Linear Equations 

The maximum likelihood, unweighted least squares estimate of the 

reflection coefficients is obtained from the linear system of equa­

tions using the Cholesky decomposition method [8] (Mitsui). In ma­

trix notation let equation 1.3 or 1.4 be represented as:

T TH Ha = H y 1.5

as can be shown
HTH = LDU 

TL = U , D = diagonal matrix 1.6

where L is a nonsingular triangular matrix obtained from the Cholesky 

decomposition. Substituting gives:

LDUa = HTy 1.7

or U*ML ' ^  :'8

Ua = *ML 1.9

WHERE k ^  = p x l vector of maximum likelihood reflection coefficients. 

The k ^  parameters represent those reflection coefficients obtained 

using the classical unweighted least squares solution. They can now be 

smoothed using some method such as the a priori least smoothing tech­

nique. If no smoothing is to be used, the analysis except for stabil­

ity checks and the error energy calculation, has been completed.

Reflection Coefficient Smoothing 

This portion of the algorithm represents a primary contribution 

to this report and is discussed in considerable detail in the next 

chapter.
, 16



Error Energy Calculation 

A term which is used as part of a secondary criterion for the 

voiced-unvoiced decision is the energy of the prediction error sequence. 

Define the error sequence as

3 = s - ) a. s i n n 1 n-1i=l

Then it can be shown that 

N 2 E
EV = I en = +0 n " I an n (Covariance) 

n=l n ,u i=l 1 1>u

1.10

1.11

or
N ? EEV = y e = r. - ) a. r. 

n=l n 0 i=l 1 1
(Autocorrelation)

From this energy term is computed a ratio term which is used as a sec­

ondary voiced-unvoiced decision criterion (Atal [1]). Define

,2
RATIO = 0,0

EV 1.12

Then assuming 14-bit speech samples, for RATIO less than 0.7 x 10 the 

analysis frame is defined to be unvoiced.

Stability Check 

The reflection coefficients are checked for stability before 

exiting the routine. Any reflection coefficient having a magnitude 

greater than or equal to 1 is redefined to have a magnitude of 0.97. 

Using the autocorrelation method guarantees stability assuming floating 

point implementation [11].
17
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PITCH AND VOICING DETECTION 

Figure 1.3



as its short term autocorrelation. Where sn equals the down-sampled 

windowed speech samples. Chapter III discusses a method for generating

The W(n) sequence is searched between the limits of four and forty 

for its maximum value. The index M having the largest value after 

interpolation defines the pitch period estimate. The magnitude of

The correlation detector will have a magnitude between zero and 

one. If the correlation detector has a value greater than or equal to

0.3, the analysis frame is initially defined to be voiced speech. If 

the value of RATIO is defined in the previous section is also greater 

than the threshold value 0.7 x 10^, then the analysis frame remains 

defined as voiced. If RATIO is less than 0.7 x 10^ the voicing deci-

A diagram showing the various parts of the synthesizer is shown in 

Figure 1.4. The decoded channel parameters consisting of p reflection 

coefficients, pitch, voicing and energy are received and used for up-
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There are two sets of channel parameters available to the syn­

thesizer at any one time, a left set and a right set. Each set cor­

responds to successive left and right analyses separated by the multiple 

of the pitch period estimated in the left analysis. The synthesizer 

will generate the same number of pitch periods as the analysis was 

shifted down before performing the right analysis. To insure that 

the first set of parameters used by the synthesizer are always synchro­

nized properly with the left analysis set, the left set pitch period is 

repeated for each synthesis until a new channel parameter set is 

received. Stated another way, the synthesis is always advanced by the 

same amount as the analysis is advanced.

Even though this approach prevents the pitch from being interpo­

lated, the reflection coefficients and energy are interpolated prior to 

each new pitch period interval.

In summary, the pitch is not interpolated and the left set pitch 

period is repeated until a new channel parameter set arrives. The 

reflection coefficients and energy are linearly interpolated using the 

left and right channel sets as end points, with the first interpolated 

set equaling the left set. New interpolated values are used at the 

beginning of each pitch period. Since the analysis is advanced at the 

same rate, this method insures that the first set of parameters used 

for synthesis corresponds (except for quantization error) to the left 

analysis set. Finally, after that multiple of pitch periods have been 

advanced such that a new set of channel parameters can be used, the

Parameter Updating and Interpolation

22



right set becomes the left set and the channel set becomes the right 

set.

Conversion to Predictor Coefficients 

Synthesis is performed using the transversal filter configuration:
 ̂ P
Sn = J i  ai V i  + s *en n = 1,2,.. .M 1.16

WHP-RF s = synthesized speech

e _Jl for n=l, 0 n^l, voiced 
n random numbers, unvoiced

g = gain term 

M = pitch period

Therefore, since reflection coefficients were transmitted, a set of 

predictor coefficients must be obtained. Using the standard mapping 

from reflections to predictors Atal [1], a set of predictor coefficients 

are obtained for each interpolated set of reflection coefficients.

Gain Calculation and Speech Synthesis 

A value for the gain term, g is estimated to insure that the 

energy of the synthesized speech signal equals the energy calculated 

from the original waveform. The method used is that proposed by Atal 

[1]. This method requires considerably more computation than simply 

using the square root of the energy of the error signal. However, it 

has been determined that using the latter method can cause amplitude 

modulation of the synthesized waveform, whereas, if gain is found by 

matching energies, this modulation does not occur.

23



Speech is synthesized using the recursion defined in equation 1.16. 

The resulting samples are then stored on magnetic tape or disk for 

subsequent conversion to an audio waveform by D to A conversion. A 

detailed study of synthesis using fixed point arithmetic has been 

developed by Markel and Gray [4].

Channel Parameter Coding and Decoding 

This study did not consider new methods for optimally quantizing 

the channel parameters. Procedures were written to quantize the chan­

nel parameters based upon studies of Makhoul and Viswanathan [4] and 

Markel [2]. The reflection coefficients, k^ were coded by linearly 

quantizing the log area functions g^ derived from the reflection coef­

ficients, where
1+k.

g = log ----i---
1 1-k.i

the pitch and energy were logarithmically quantized.

24



II. SMOOTHING REFLECTION COEFFICIENTS

USING AN A PRIORI LEAST SQUARES ESTIMATOR 

Introduction

This chapter discusses how the a priori least squares algorithm 

can be used to obtain a smoothed, minimum variance estimate of the 

reflection coefficients. As will be shown, smoothing results from the 

fact that each coefficient is filtered by a time-varying, first order, 

recursive low pass filter with filter coefficients defined by the 

least squares algorithm. Values for the coefficients are dynamically 

updated based upon the short-term characteristics of the speech wave­

form itself. As a result of this approach to smoothing, the filtering 

action is adaptive: heavy smoothing during stationary portions of the 

waveform, and light or negligible smoothing during nonstationary, 

transition portions. Secondly, the smoothing is efficient: since it is 

accomplished using a set of first order filters, the additional compu­

tation required does not become so excessive as to prevent real-time 

implementation.

The chapter has three main sections; the general development of 

the Minimum Variance A Priori least squares estimate, the simplifica­

tion of the algorithm to scalar equations using the Gram-Schmidt ortho- 

ganalization, and the implementation and results of the algorithm.

The Minimum Variance A Priori Least Squares Estimate

The problem of estimating successive sets of reflection

25



coefficients from successive sets of analysis frames can be viewed in

general terms as the estimation of one random process, (the reflection

coefficients) from observations of a different but related process,

(the speech waveform itself). For each analysis frame one extracts

a set of speech samples, s^ and constructs a data vector y^ and a

measurement matrix H . Using this information an estimate k of then 6 n
random process kn is calculated. The dynamic model relating y^ to k^

is given by

y = H B k + e II.1'n n n n n

where yn is an N><1 vector of speech samples, and B^H is an Nxp matrix

constructed according to the linear predictive coding model, (see Ref.

[7] for a discussion of H and next section for a discussion of B ).n n'
The vector en represents the modeling or prediction error. The vector

kn represents the set of p reflection coefficients to be estimated 
tilduring the n analysis frame.

The minimum variance a priori least squares estimate k of kn is
thfound by minimizing the loss function, Ln of the n analysis frame

L = (y - H B k )T R"1 (y - H B k ) + (k - k )T M'1 (k - k ) II.2 n ^ n  n n n J n 7n n n n n n J  ̂n n

where
TR = E (e e }, the NxN positive definite covariance matrix of e n n n ’ ^ n

TM = E{ ( k  - Tc)(k - F ) } ,  the pxp positive definite matrix of 
n n n n the a priori covariance of k .

The estimate, k^ is found by minimizing Ln with respect to kn and

26



ii.s given by (see Ref. [7] for detailed development)

" T T -1 -1 -1 T T  -1 -1 —k = (B H R H B + M i) i (B H 1 R 1 y + M k ) II.3n v n n n  n n  n  ̂ v n n  n 7n n n

The covariance, Pn of k^ is given by

P = Cov (k ) = E{(k - k )(k - k )T } = (BT HT R 1 H B + M "1)"1 II.4 n v n' v n n^v n n^ v n n n n n  n J

An equivalent expression for k^ is given by

k = Tc + P HT R"1 (y - H B k ) II.5n n n n n v/n n n n^

The vector Tc represents the a priori estimate °f kn - As such it 

represents the best estimate of kn prior to knowledge of y . For this 

analysis, it is assumed that the reflection coefficients k^ obey the

following relationship

k ,, = k + w II.6n+1 n n

where E{w } = 0n

E{w w . } = Q 6 . II.8n 3 n n,j

Thus the expected value of k^ before knowledge of y^ denoted

k = E {k I y,, y_, ..., y ,} II.9n n 1 'n-1

is given by k^ = k  ̂ 11.10
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with covariance, given by

M = E{(k - k )(k - k )T ) n v n n J v n n

= E{(k -,+w - k ,) (k , + w  - k , )^} v n-1 n n-lyv n-1 n n -1

Pn-1 + Qn 11.11

Thus the expected variance of kn equals the variance of k ^ p l u s  the

variance of the difference between k and k .n n-1

Note that this definition of M allows the estimate of k ton n
adjust dynamically to the changes in the speech waveform itself. For 

stationary sections of speech where kn ~ k ^ p  Qn = 0 and ~ Pr ^

whereas for transition regions where k^ differs appreciably from k^

the variance on k will equal the variance of k , (the best estimate n M n -1 v
prior to measurement) plus the variance of the change from k^  ̂ to

k . Thus the degree to which you believe in k as an estimate of k n 6 1 n n
is directly affected by how things have changed from the previous 

frame, namely the covariance Q^.

The expressions given in equations II.3 through 11.11 are matrix 

equations and as such their implementation would be computationally 

prohibative without further reduction. The next section describes how 

these equations can be reduced to p sets of scalar equations.

Simplification of the Algorithm to Scalar Equations Using the Gram-
Schmidt Orthoganalization
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The a priori estimator equations, II.3 through II.5 can be ■

reduced to p-sets of scalar equations by taking advantage of two facts.

First, since as Mitsui [8] has pointed out, the reflection coefficients

represent the weights of an orthoganal basis set, which add up to form

the predicted speech wave, they are independent of each other. Thus

the covariance matrices M^ and are diagonal. Second, by using the
TCholesky decomposition the Gram matrix, H H can be diagonalized. 

Specifically, we have from the Cholesky decomposition that

H H = LDU 1.5

and
T-1B = U

Thus the a priori estimate, equation II.3 can be diagonalized as fol­

lows: given

~ T T -1 -1 -1 T T -1 —k = (B H R H B + M ) (B H R y + M k ) n v n n n  n n  n  ̂ v n n n 7n n n II.3

let R = r I n n

M = diag r m ^ l  n 6 L n J

T T -1 1 - 1  -1then B1 H1 R X H B = - L 1 L D U U = - D  n n n n n r  n r n 11.12

where D = diag [ d ^ ]  n 6 n

thus k =(- D + M "1)"1 (—  B HT y + M _1 k ) n '■r n n J r n n 7n n n n n
11.13

or k = (- + D"1 M '1)"1 (- D'1 B HT y + D_1 M _1 Y  ) 11.14 n r n n ^ r n n n  n n n n  n n
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-1 T - I Tbut D B H y = S H y = k.„ , Least squares classical 11.15n n n ^ n 'n *ML' estimate

thus -[i I+ (M D ^ 1 [1 F  ] 11.16
n n

The matrix product will be diagonal, equaling

MnDn = diag dnX^  11,17
Thus equation 11.16 and therefore equation II.3 reduces down to p-sets

of scalar equations given by 

,(i) d(i)m _ n n

k*-1^  ----- ----- kĵ - + ------ r s r s---  n  18n m l  (iJ jCiJ n
dn1 + n n 1 + ------------

r rn n
i_l,2,... ,p

In addition k ^  = k ^ j  i=l,2,...,p 11.10

Thus the a priori estimator reduces to p-sets of first order recursive 

filters on the reflection coefficients.

,(i) -
k = ----+ ------------------- r-r- k (l? 11.20

n n

ri d (1) 
where ^— -—  i=l,2,...,p.

n

Starting with equation II.5 an equivalent expression for k^ can be 

derived as
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The covariance, of k^ can likewise be diagonalized as follows:

T T -1 -1 -1 1 -1 -1P = (B H 1 R 1 H B + M ) = (- D + M ) n ^ n n n  n n  n vr n  n 11.21

or for each coefficient

(i) = crrvCi) _ v(i)^2i =
m

p —  - E { ( k ^  - k ^ ) " }  = n£AV  (1 + — — ) i=l»2,
n

»P

11.22

Thus equation 11.20 can be expressed in terms of p ^ ^  as

^C1) = £d) + Pn___n_ Cl) _ kd), i=1 2 T,n n-1 r l*ML n-lJ i-M,---,Pn
11.23

Using equation 11.11 each diagonal element of the covariance, on k 

is given by

m W  = E{ (k*-1  ̂ - k ^ b 2} = E(Ck^J - k^1])2} + E{(wW )2} H.24 n v n n J v n-1 n - V  v n J

or n 11.25

Implementation and Results 

The a priori least squares estimate is obtained from the follow 

ing five step process.



Ste£

1 Compute the maximum likelihood estimate, 1^^ 
and diagonal elements, d^^ of Dn

Estimate the elements of the covariance matrix,

ir ' = p' + cr n rn-l ti

Estimate the covariance on the modeling error, r .

m 1̂
r rrm +■ -l-V, - f (i) f 1 (i) CO 11Compute the covariance of p v J of k , p = ---------

n n n (i),(i)nr vd 1 + n n
r n

A (il5 Compute the final estimate, k^ J

= i(ii + — s—  ( 4 1) - k ( i )n n-1 r ML n-1n

The covariance r^ of the modeling error, is approximated by 

computing the residual

- H„ Bn “w /  %  - Hn Bn H i ’ H '26

or EV
" *0,0“. V l , ° a i °r r° "-^i riai H -27’ i=l ’ i=l

EV
and setting Tn = W ~  11.28

where N = Coefficient analysis window size

The covariance defining expected variance on the difference in
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reflection coefficients is approximated as

%  = E (kn ■ kn-l)2 = f^MLl ' kML| /  II-29'n 'n-1

The initial values for starting the algorithm are defined to be

i ™  = 0

moi5 =

Pitch Synchronous Analysis

To insure that the a priori estimate 1c of the reflection coef­

ficients represents a reasonable estimate of k^ prior to using the data 

vector y , the coefficient analysis is done pitch synchronously, rather 

than at the slower rate defined by the channel frame rate. By shorten­

ing the distance between successive updates, the variance Mn of 

(kn - k ) decreases during stationary speech segments thus increasing 

the amount of smoothing.

This analysis approach is similar to that used in providing the 

down-sampled speech to the pitch detection system. That is, the coef­

ficients are estimated at the high, pitch synchronous rate, smoothed, 

then down-sampled for channel transmission. The primary difference 

between the two down-sampling methods is that the smoothing filter 

applied to the coefficients must be time-varying. During stationary 

segments of speech, the filter has a narrow pass band with its P°le 

near the unit circle, while during transition regions, the filter 

essentially locks onto the input, mainly k ^ ,  with its pole near the 

origin.
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The results of using smoothing are best demonstrated by listening 

to processed speech using smoothed reflection coefficients. Informal 

listening tests indicate that smoothing improves speech quality in terms 

of (1) reducing the number of instabilities when using the covariance

i method and thereby reducing the number of annoying non-speech like pops

resulting from hard limiting the coefficient values back to 0.97; (2) 

reducing the roughness on sustained vowel regions induced by slow update 

rate, (3) eliminating the warbling induced by step discontinuities in 

the spectrum, and (4) less degrading of speech quality as the analysis 

window size is narrowed.

Figures II.1 and II.2 show the result of the adaptive smoothing 

applied to the k^ and k ^  reflection coefficients. The successive 

phonemes /el/, /i/, /al/, /oU/, /u/, were digitized at 6.4 kHz and 

processed using a tenth order filter using the covariance method. The 
time histories of both coefficients with and without smoothing is 

displayed, with the darker curve corresponding to the smoothed estimate.

Results
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with and without adaptive smoothing 

Figure II.l

i* a .3 »«eica

with and without adaptive smoothing 

Figure II.2



As has been shown, when the reflection coefficients are estimated 

using the a priori algorithm, smoothing results from the fact that 

each coefficient is filtered by a time-varying, first order, recursive 

low-pass filter. Values for the coefficients are dynamically updated 

based upon the short-term characteristics of the speech waveform 

itself. There are two major advantages to smoothing in this manner:

(1) the filtering is adaptive, heavy smoothing during stationary portions 

of the waveform, and light or negligible smoothing during non-stationary, 

transition portions; and (2) the smoothing algorithm is efficient, 

requiring only first order filters and therefore, can possibly be 

implemented in real time.

SUMMARY AND CONCLUSIONS
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III. STREAK: A Simplified Technique for Recursively 

Estimating Autocorrelation k-Parameters

Introduction

A Simplified Technique for Recursively Estimating Autocorrelation 

k-parameters (hereafter called STREAK), defines a method for calculating 

the k-parameters associated with the lattice form of the inverse filter 

model used in the linear prediction analysis. This method differs from 

standard LPC approaches in two major respects: one, the k-parameters 

are estimated directly from the lattice model; and two, new estimates 

are calculated for each A-D sample. This chapter describes how 

these coefficients are calculated, how they may be used in an analysis- 

synthesis system, and how this technique could be used to improve the 

quality of a pitch extraction routine based upon the autocorrelation of 

the inverse filter output sequence.

The standard approach in linear prediction is to estimate one set 

of M coefficients from a block of N data points, [l], [2], [3]. Values 

for these coefficients are calculated so as to minimize the sum of the 

squares of the prediction error sequence. As such, the least squares 

curve fit is applied uniformly over the entire block of N samples.

This paper introduces a new concept in inverse filtering. Rather than 

estimating one set of parameters for a window of N samples, a new least 

squares estimate of each parameter is calculated at each point. The 

analysis is based upon the lattice form [2] of the inverse filter. Val­

ues for the k-parameters are obtained directly in terms of the forward
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The method is called a Simplified Technique for Recursively 

Estimating Autocorrelation k-parameters, or STREAK since: (1) only 

scalar equations are involved in the analysis, thus reducing the com­

plexity of implementation; (2) successive k-parameter estimates are 

recursively estimated from preceding values; and (3) like the standard 

autocorrelation approach, these k-parameter estimates are bounded in 

magnitude by one.

The chapter is divided into two parts: a development of estimating 

k-parameters directly from the lattice form of the inverse filter, and a 

comparison of the inverse filter output using STREAK versus the output 

using the standard autocorrelation method.

The Lattice Formulation for Inverse Filtering 

Itakura and Saito [10] developed a formulation for linear predic­

tion analysis using a lattice form for the inverse filter. A block dia­

gram of their PARCOR analyzer is shown in Figure III.1.

and backward prediction error sequences.

s (n) eM (">

Lattice Form Inverse Filter 
Figure III.l
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Both forward e* (n) and backward em prediction error sequences 

for this filter are defined as

+ m
(n) = J o  a,n>1 S<n'i) 111-1

m+1
_ M  = mel (n) = I bm,i I n -2

i=l

The z-transforms for these prediction error sequences are

defined as

em Cn) ^  um (z) = \  Cz) S (z) III.4

where
m

\  &  \ l n ai,m Z_1 ■ m -5i=0

m+1
Bm W  = I bi,m z I H -61=1 ’

and S(z) is the z transform of the input signal, s(n).

It can be shown [19] that these filter polynomials, Am (z) and 

B^ (z) satisfy the following recursive relation

V i  w  ■ \  ^ B.  W I n -7

z V l  = B™ (ZJ - Hn \  V  n i -8

thwhere km is the m k parameter.

Using equations III.7 and III.8 the forward and backward prediction
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error sequences satisfy

e (n) = e (n) - k e (n), en (n) = s(n) III.9m+1 K J m ' m m v ’ 0 v K J

em+l n̂+1  ̂ = em ^  ' km em ^  ’ e0 ^  = s n̂_1  ̂ III. 10

The analysis procedure consists of estimating km basect on e* (n) and 

em ^  ^ e n  advancing to the next stage of the filter using equations

III.9 and III.10.

From the analysis, estimates of the M reflection coefficients 

k^ m=0, 1, ..., M-l and the final prediction errors e^ (n) and ê j (n) 

are obtained.

Estimating (Block Analysis Method)

The standard procedure for estimating k^ was to assume that the

input waveform s(n) was stationary over an interval of N samples and

estimate k based on the short-term autocorrelation of e+ (n) with m m  ̂1
em (n) [2], [19]. Using this approach each km was calculated as 

N + - •7 e (n) e (n)
L, m v J m v J

k = - E i -----------------------------
m N ^ 2 N - 2 1/2

[ I ein W  I em (n) ] 
n=l n=l

For comparison purposes this approach will be defined as the block 

analysis method since one set of k-parameters are estimated for a block 

of N sample points.

The next section develops a method for estimating new values for
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the k-parameters at each sample, n.

Estimating k Single Sample Analysis Method, STREAK 

An estimate of each k-parameter at each sample point can be 

obtained by calculating that value for estimating km such that the sum 

of the squares of e*+  ̂ (n) and em+  ̂ (n+1) is minimized for each n.

That is, referring to Figure III.1, a logical criterion for estima­

tion is that the energies at the next stage of the filter should be

minimized. Thus, a value for k is calculated to minimizem

[eI+i (n)]2 * [v i  (n*1)]2-
thTherefore, define the loss function, Lm at the m stage of the

filter as

Lm = [em+l f")]2 + [ e m+l m -12

Lm is to be minimized with respect to km> Substituting the 

expressions for e*+  ̂ (n) and em+  ̂ (n+1) from equations 111.9 and 111.10 

gives

L = [e* (n) - k e (n)]2 + [e (n) - k e* (n)]2 III. 13m m m m  ' m m m  JJ

Lm is minimized by equating to zero the derivative of Lm with respect

to km and solving for k^. Thus

3- ^ = 0 = -2 [e*  (n) - 1^ em (n )]em (n) - 2 [V  (n) - ^  e* (n )]e*  (n) 
m

III.14

or

2 e* (n) em (n)m ' mk_ (n) = — ---------------- n2 m=0, 1, ..., M-l H I . 15
m [ e m ( n ) ] Z *  [ e m ( n ) ] 2
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Equation III.15 along with the updating equations III.9 and III.10 

define the complete analysis procedure.

As each new sample, s(n) enters the inverse filter, new values for

using equations III.9 and III.10. The analysis then advances to the 

next section of the filter and everything repeats.

Examining the analysis equations shows that the total number of 

arithmetic operations for each sample consists of five multiples, 

three adds, and one divide per section, times M sections. M+1 storage 

locations are required for the e* (n) and e^ (n) arrays and M locations 

for the (n) array.

The Relation Between the k-parameters and the Forward and Backward 

Prediction Error Sequences

Fran equations III.9, III.10 and III.15 a recursion relating the 

nf̂ 1 k-parameter to the m+lst forward and backward prediction error can 

be obtained which is identical to that using the block analysis method. 

Thus substituting the expression for ^  (n) given in equation 11.15 

into the forward and backward prediction error sequences, equations 

III.9 and III.10 gives

each k-parameter are estimated. Thus, from e^ (n) and e^ (n), k^ (n) 

is formed using equation III.15. Next e^ (n) and e^ (n+1) are computed

III.16

III.17
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Simplifying gives

+  + (em Cn))2 - ( e ~  Cn))2 
e.„ (n) = em Cn) - E ---- j---- 2----

(em (n)) + (em (n»
"m+1 III.18

but

1-** (n) 1
2em W  e; (n) 

Cn» 2 +

(em to)2 

2

em (n» 2

III.19

III.20

(em (n))2 ' era ( " » 2

(em (n):)Z + (em (n:i)2
III.21

thus

em+l Cn) -  em t o  Cl - ^  („))' 111.22

III.23

Equation III.22 shows that the energy of the forward prediction 

error, (e* (n))^ will be a monotonically decreasing function of m.

Note also that if

then

\\ M l  - 1

and

em+l M  * em+l t"*11 ’ 0
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For this situation, e* (n) and em (n) are predicted exactly from 

em (n) and e* (n) respectively and thus the prediction errors e*+1 (n)

and (n+1) must be zero.

Likewise if -

K  w  " 0

then em+1 (n) = em (nj

V l  (n+1) = em

Speech Synthesis Using STREAK 

The original waveform s^ = e* (n) can be reconstructed from the k-

parameters, km (n), m=0, 1, ... M-l, and the final forward prediction 

error, e^(n). The synthesis equations are determined by expressing 

em ^  eclua't:ion H I -9 in terms of (n), em (n) and km (n). The

resulting synthesis filter (commonly called the two multiply lattice 

filter [20]) is defined as

M  ' C l  (n’ * \  (n) em(n’ H I -24

em+l (n+1) = em W  - K  W  em n I -25

m = M-1, ... 0. 

with e^ (n) given and (n) = s^.

Note that since STREAK calculates new values for k-parameters at 

each sample point, n, the synthesis filter can also be updated for each 

new sample. Thus the filter characteristics can vary at the sampling
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rate. This approach represents a somewhat radical departure from the 

standard procedure of supplying the synthesizer with just one set per 

pitch period or per anlaysis frame. To do this of course demands that 

new k-parameters be transmitted at the sampling rate thus requiring an 

enormous channel bandwidth. However, preliminary experiments show that 

a pitch excited synthesizer updated continuously with k-parameters 

estimated at the sampling rate, generates synthetic speech having a 

more natural quality than that obtained using standard block analysis- 

synthesis methods such as described in Section I. Currently methods 

are being investigated for reducing the bandwidth but retaining this 

quality.
A Geometrical Interpretation of 

From the fact that

a2 + b2 < 2ab III.26

it can be seen that

|k | < 1 III.271 m 1 —

Geometrically by defining two lines and extending from the ori­

gin having coordinates [e* (n), em (n)] and [em (n), e* (n)] respec­

tively, it is shown that km equals the cosine of the angle between 
and (see Figure III.2). Thus, by definition

_ £1 ’ l2cos 0 - t „ i-i. -i- ' III.28
but

*1 l2

£l * £? = 2 00 em (n)“m w  em w  III.29
and

III.30
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Geometrical Interpretation of km 

Figure III.2

Thus, k = cos 0 ’ m
It should also be noted that Minus the projection of onto

defines a vector having coordinates [e^+-̂ (n), em+  ̂ (n+1)]. It

is, of course, the length of this vector which is minimized, by defin­

ing k^ as cos 9.

Using STREAK for Pitch Detection 

A well-established technique for pitch detection consists of per­

forming an autocorrelation on the error signal obtained from the 

inverse filter output [7], [12], [18]. The idea behind this method is 

that if the all-pole model accurately represents the vocal tract trans­

fer function and the radiation and glottal volume flow effects, then 

the output of the inverse filter should resemble an impulse-like driv­

ing function having a period equal to the pitch for voiced speech. The 

autocorrelation of this error sequence should therefore exhibit a large
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spike located at a distance from the origin equal to the pitch period. 

This method, however, will occasionally fail, generating a dominant 

peak at a distance other than the true pitch period. In these cases, 

the inverse filter has not done an adequate job of removing everything. 

Or, stated another way, the curve fit was insufficient.

A  solution to this problem is to generate the error sequence using 

STREAK rather than from conventional block analysis methods. This 

approach results in a superior least squares curve fit since the fit is 

applied on a sample by sample basis rather than over an entire block of 

N samples.

To illustrate the improvement in inverse filtering using STREAK 

over the block analysis method, the next section compares the forward 

prediction error sequences for various phonemes using the two methods.

Comparison of Inverse Filter Outputs

The forward prediction error sequence using the block analysis 

method was generated using twelve k-parameters estimated from a 20 ms 

Hamming window. The window was advanced in 20 ms steps. The sampling 

rate was 8k Hz. The data was not preemphasized. Twelve k-parameters 

were also used in generating the error sequence using the STREAK algo­

rithm.

For each comparison three figures are presented: the original 

waveform, the error sequence using the block analysis, and the error 

sequence using STREAK. In Figure III.3 the entire work "oak" as 

spoken by a low-pitched male in the context "Oak is strong . . . "  

is displayed in Figure III.3 (c), along with the prediction error
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RE C O R D  4 - 1300 SAMP LE S

(B)

9 0 0 0 E + 2  2 199E+3
R E C O R D  4 - 1300 SAMPLES

(C)

Comparison of Inverse Filter Outputs for the Word "Oak". (A) Block 

Analysis Error Sequence, (B) STREAK Error Sequence, (C) Original

Fiqure 111.3
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(c)

Comparison of Inverse Filter Outputs for the Nasal /n/ in "Friends" 

(A) Block Analysis Error Sequence, (B) STREAK Error Sequence, (C) 

Original

Figure 111.4
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(c)

Comparison of Inverse Filter Outputs for the Voiced Stop /b/

Followed by the Semivowel /r/ in "Break". (A) Block Analysis

Error Sequence, (B) STREAK error sequence, (C) Original

Figure II1.5
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using the block analysis method in Figure III.3 (A) and using STREAK 

in Figure III.3 (B) . Note that the error sequence using STREAK 

exhibits a considerably flatter spectral character than the block anal­

ysis error sequence.

In Figure III.4 (C) the nasal /n/ from the word "friends" spoken 

in the context "Thieves who rob friends deserve jail" is displayed. 

Figure III.4 (A) displays the block analysis error sequence and Figure

III.4 (B) displays the error sequence using STREAK. Note the absence 

of periodicity at the trailing end of the nasal in Figure III.4 (A), 

whereas with STREAK, the pitch period is clearly evident.

Finally, Figure III.5 (C) displays the voiced stop /b/ followed 

by the semivowel /r/ in the work "break" spoken in the context "Don't 

break the glass". Again, Figure III.5 (A) displays the prediction 

error using block analysis and Figure III.5 (B) using STREAK. Examin­

ing the error waveform during both the /b/ and /r/ sections shows again 

that STREAK produces a spectrally flatter error sequence, with the 

fundamental more clearly evident.

These three examples were taken from a large group of sentences 

spoken by both male and female speakers. For every sentence analyzed, 

the two error sequences exhibited the same general characteristics 

with the STREAK algorithm always producing the superior curve fit.

Implementing STREAK into a Pitch Tracking Algorithm 

In Chapter I a pitch detection method was described in which a 

new sequence was formed by prefiltering and down-sampling the original 

speech waveform. (See Figure 1.3). The pitch period was estimated by
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autocorrelating the error sequence generated from the smoothed down­

sampled waveform, and locating the distance of the largest positive 

peak. STREAK can be incorporated into this algorithm by simply 

replacing that procedure for estimating of the inverse filter and error 

sequence generation using the block analysis method, with the error 

sequence generator using STREAK. All other procedures are left 

unchanged. An example comparing the results of the two methods is 

shown in Figure III.6 through III.10. Figure III.6 shows the smoothed, 

down-sampled waveform from which the pitch estimate is to be determined. 

This speech sample is from the phoneme /o/ in "four". It was obtained 

by low pass filtering an 8 kHz sampled waveform at 750 Hz and down­

sampling by four. Thus, the eighty samples represent a 40 ms window.

The error sequence using the block analysis approach is shown in Figure 

III.7. This sequence was generated by a four pole inverse filter using 

predictor coefficients estimated from the eighty sample window. Figure

III.8 shows the error sequence generated by STREAK from the same data 

using a fourth order filter. Figures III.9 and III.10 show the auto­

correlations of each of these error sequences. Note that a pitch 

doubling error results when the block analysis is used but that the 

correct pitch period of 25 will be chosen when the STREAK analysis is 

used.
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Smoothed Down-Sampled Waveform 
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Autocorrelation of Block Analysis 

Error Sequence 

Figure 111.9

I UNO 4 MMEI

Autocorrelation of STREAK Analysis 

Error Sequence 

Figure III. 10
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A technique for recursively estimating the k-parameters of the

Linear Predictive Coding inverse filter has been developed. The

k-parameters are estimated directly from the lattice form of the

inverse filter. The criterion for estimation was that a value for

k^ be calculated so as to minimize the sum of the squares of the 
stm + 1 forward and backward prediction error sequences. New estimates 

of each k-parameter of calculated at each sample point.

It was shown that the least squares curve fit using this method 

was superior to that using the block analysis method and therefore 

that this method may improve pitch detection schemes based upon the 

autocorrelation of the inverse filter output.

SUMMARY AND CONCLUSIONS
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