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ABSTRACT

Ray tracing is becoming more widely adopted in offline rendering systems due to its 

natural support for high quality lighting. Since quality is also a concern in most real time 

systems, we believe ray tracing would be a welcome change in the real time world, but is 

avoided due to insufficient performance. Since power consumption is one of the primary 

factors limiting the increase of processor performance, it must be addressed as a foremost 

concern in any future ray tracing system designs. This will require cooperating advances 

in both algorithms and architecture. In this dissertation I study ray tracing system designs 

from a data movement perspective, targeting the various memory resources that are the 

primary consumer of power on a modern processor. The result is high performance, low 

energy ray tracing architectures.
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CHAPTER 1

INTRODUCTION

Rendering computer graphics is a computationally intensive and power consumptive 

operation. Since a very significant portion of our interaction with computers is a visual 

process, computer designers have heavily researched more efficient ways to process graphics. 

For application domains such as graphics that perform regular and specialized computations, 

and are frequently and continuously active, customized processing units can save tremen­

dous energy and improve performance greatly [24, 58, 39]. As such, almost all consumer 

computers built today, including phones, tablets, laptops, and workstations, integrate some 

form of graphics processing hardware.

Existing graphics processing units (GPUs) are designed to accelerate Z-buffer raster 

style graphics [17], a rendering technique used in almost all 3D video games and real-time 

applications today. Raster graphics takes advantage of the specialized parallel processing 

power of modern graphics hardware to deliver real-time frame rates for increasingly complex 

3D environments. Ray-tracing [103] is an alternative rendering algorithm that more natu­

rally supports highly realistic lighting simulation, and is becoming the preferred technique 

for generating high quality offline visual effects and cinematics [29]. However, current 

ray-tracing systems cannot deliver high quality rendering at the frame rates required by 

interactive or real-time applications such as video games [10]. Reaching the level of cinema- 

quality rendering in real-time will require at least an order of magnitude improvement 

in ray processing throughput. We believe this will require cooperating advances in both 

algorithmic and hardware support.

Power is becoming a primary concern of chip manufacturers, as heat dissipation limits 

the number of active transistors on high-performance chips, battery life limits usability in 

mobile devices, and power costs to run and cool machines is one of the major expenses in a 

data center [23, 87, 98]. Much of the energy consumed by a typical modern architecture is 

spent in the various memory systems, both on- and off-chip, to move data to and from the 

computational units. Fetching an operand from main memory can be both slower and three
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orders of magnitude more energy expensive than performing a floating point arithmetic 

operation [23]. In a modern midrange server system, the off-chip memory system can 

consume as much power as the chip itself [11]. Even on-chip, most of the energy for a 

ray-tracing workload running on the TRaX ray-tracing architecture [93] is spent in memory 

systems. Figure 1.1 shows that all memory systems combined consume almost 40x more 

energy than the computational execution units (XUs).

1.1 Thesis
Due to its natural support for high quality rendering, we believe ray-tracing will be the 

preferred 3D rendering technique if performance and efficiency can be drastically improved. 

Energy is a primary concern in all forms of computing, from data centers to mobile devices. 

Given that a large percentage of the energy consumed during ray-tracing is related to data 

movement to and from memory, we study ways to dramatically reduce energy consumption 

in the ray-tracing algorithm by targeting data movement at all levels of the memory 

hierarchy: data and instruction caches, register files, and DRAM. We arrive at fundamental 

design changes not only to the machine architecture, but to the ray-tracing algorithm that 

it executes. These designs greatly improve the outlook of widely adopted ray-tracing.
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Figure 1.1: Breakdown of energy consumption per frame, averaged over many path tracing 
benchmark scenes on the TRaX architecture.
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CHAPTER 2

BACKGROUND

Interactive computer graphics today is dominated by extensions to Catmull’s original 

Z-buffer rasterization algorithm [17]. The basic operation of this type of rendering is to 

project 3D primitives (usually triangles) on to the 2D screen. This 2D representation of the 

scene is then rasterized, a process that determines which pixels an object covers (Figure 2.1, 

left). Pixels are then assigned a color in a process called shading, based on which primitive 

is visible and the lighting information in the scene. This process requires maintaining the 

distance from the screen to the closest known visible primitive in a Z-buffer, sometimes 

called a depth buffer, in order to prevent occluded objects from being visible.

Highly realistic rendering requires that the shading of an object account for all light 

sources interacting with it, including light bouncing off or transmitting through other objects 

in the scene. These so-called global illumination effects include shadows, transparency, 

reflections, refractions, and indirect illumination. With a rasterization system all primitives 

in the scene are processed independently, which presents challenges for global lighting 

calculations since it is difficult to determine information about other (global) geometry 

while shading one pixel fragment. Techniques to approximate global lighting exist, but

F igure 2.1: Z-Buffer Rasterization vs. Ray Tracing.
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can have shortcomings in certain situations, and combining them in to a full system is a 

daunting task.

Ray-tracing is an alternative rendering algorithm in which the basic operation used to 

determine visibility and lighting is to simulate a path of light. For each pixel, a ray is 

generated by the camera and sent in to the scene (Figure 2.1, right). The nearest geometry 

primitive intersected by that ray is found to determine which object is visible through 

that pixel. The color of the pixel (shading) is then computed by creating new rays, either 

bouncing off the object (reflection and indirect illumination), transmitting through the 

object (transparency), or emitted from the light source (direct lighting and shadows). The 

direction and contribution of these so-called secondary rays is determined by the physical 

properties of light and materials. Secondary rays are processed through the scene in the 

same way as camera rays to determine the closest object hit, and the shading process is 

continued recursively. This process directly simulates the transport of light throughout the 

virtual scene and naturally produces photo-realistic images.

The process of determining which closest geometry primitive a ray intersects is referred 

to as traversal and intersection. In order to avoid the intractable problem of every ray 

checking for intersection with every primitive, an acceleration structure is built around the 

geometry that allows for quickly culling out large portions of the scene and finding a much 

smaller set of geometry the ray is likely to intersect. These structures are typically some 

form of hierarchical tree in which each child subtree contains a smaller, more localized 

portion of the scene.

Due to the independent nature of triangles in Z-buffer rendering, it is trivial to parallelize 

the process on many triangles simultaneously. Existing GPUs stream all geometry primi­

tives through the rasterization pipeline using wide parallelism techniques to achieve truly 

remarkable performance. Ray-tracing is also trivial to parallelize, but in a different way: 

individual rays are independent and can be processed simultaneously. Z-buffer rendering 

is generally much faster than ray-tracing for producing a passable image, partly due to 

the development of custom hardware support over multiple decades. On the other hand 

ray-tracing can provide photo-realistic images much more naturally, and has recently become 

feasible as a real-time rendering method on existing and proposed hardware.

2.1 Graphics Hardware
The basic design goal of graphics hardware is to provide massive parallel processing 

power. To achieve this, GPUs do away with features of a small set of complex cores in favor 

of a vastly greater number of cores, but of a much simpler architecture. These cores often
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run at a slower clock rate than general purpose cores, but make up for it in the parallelism 

enabled by their larger numbers. Since GPUs target a specific application domain (graph­

ics), many general purpose features are not needed, although recent generations of GPUs 

are beginning to support more general purpose programmability, particularly for massively 

parallel applications.

2 .1 .1  P a ra lle l P ro ce s s in g

Most processing workloads exhibit some form of parallelism, i.e., there are independent 

portions of work that can be performed simultaneously since they don’t affect each other. 

There are many forms of parallelism, but we will focus on two of them: data-level parallelism 

and task-level parallelism. Z-buffer rendering exhibits data parallelism because it performs 

the exact same computation on many different pieces of data (the primitives). Ray-tracing 

exhibits task parallelism since traversing a ray through the acceleration structure can require 

a different set of computations per ray (task), but rays can be processed simultaneously. 

There are multiple programming models and architectural designs to support these types 

of parallelism. Algorithms can be carefully controlled or modified to better match a 

certain parallelism model, to varying degrees of success, but there are important benefits 

and drawbacks when considering processing and programming models. Some of the basic 

architectural models for supporting parallelism include:

Single Instruction , M u ltip le  D ata  (S IM D )

This is the basic architectural model that supports data-level parallelism. A SIMD 

processor fetches and executes one atom of work (instruction) and performs that 

operation on more than one set of data operands in parallel. From a hardware 

perspective, SIMD is perhaps the simplest way to achieve parallelism since only the 

execution units and register file must be replicated. The cost of fetching and decoding 

an instruction can be amortized over the width of the data. SIMD processors have 

varying data width, typically ranging from 4 to 32. An N-wide SIMD processor 

can potentially improve performance by a factor of N, but requires high data-level 

parallelism.

Single Instruction , M u ltip le  T hread  (S IM T )

A term introduced by NVIDIA, SIMT [55] extends the SIMD execution model to 

include the construct of multiple threads. A SIMT processor manages the state of 

multiple execution threads (or tasks) simultaneously, and can select which thread(s)
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to execute on any given cycle. Usually the number of thread states is far greater than 

can be executed on a single cycle, so they are routinely context switched, or swapped 

in and out of activity. This gives the thread scheduler freedom to chose from many 

threads, improving the odds of finding one that is not stalled on any given cycle. 

Although the SIMT programming model presents all threads as independent, they 

are collected into groups called warps, which must execute in a SIMD fashion, i.e., all 

execute the same instruction simultaneously. If one of the threads branches differently 

than others in its warp, its execution lane is masked off while other threads execute 

their code path. Eventually the warp must rejoin the threads by executing the code 

path of the previously masked thread while masking the previously active threads. 

In order to support the programming model of independent threads, the hardware 

automatically performs this masking, but parallelism is lost and performance suffers 

if threads truly are independent and execute individual code paths.

M u ltip le  Instruction , M u ltip le  D ata  (M IM D )

This is the basic architectural model that supports task parallelism. MIMD processors 

provide full support for multiple individual threads. This requires replicating all 

necessary components for running a process, including instruction fetch and decoder 

hardware. The processor can simultaneously run separate subtasks of a program, or 

even completely separate programs. MIMD can easily support data-parallel workloads 

as well, but is less efficient than SIMD from an energy perspective, since there is no 

work amortization. MIMD parallelism is resource expensive, but supports a broad 

range of applications.

Single P rogram , M u ltip le  D ata  (S P M D )

SPMD is a subclass of MIMD, in which the parallel threads must be running the 

same program, but threads are allowed to diverge freely within that program. This 

enables various simplifications over full MIMD support, such as relaxed operating 

system requirements and potentially reduced instruction cache requirements. A ray 

tracer fits this category of parallelism quite well, since all threads are running the 

same program (tracing rays), but rays are independent tasks.

2 .1 .2  C o m m o d ity  G P U s  an d  C P U s

Almost all desktop GPUs on the market today are designed for Z-buffer rasterization.

In part, this means they employ some form of wide SIMD/SIMT processing [7, 55] to take
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advantage of the data-parallel nature of Z-buffer graphics. To give one example, the GeForce 

GTX 980 high-end NVIDIA GPU ships with 64 streaming multiprocessors (SM), each with 

a 32-wide SIMD execution unit, for a total of 2048 CUDA cores [70], and a tremendous 4.6 

teraflops of peak processing throughput.

Desktop CPUs are primarily multi-core MIMD designs in order to support a wide range 

of applications and multiple unrelated processes simultaneously. Individual CPU threads are 

typically significantly faster than GPU threads, but overall provide less parallel processing 

power. AMD eventually introduced SIMD extensions to the popular x86 instruction set 

called 3DNow! [6], which adds various 4-wide SIMD instructions. Similarly, Intel introduced 

its own streaming SIMD extensions (SSE) [42], and later the improved 8-wide AVX instruc­

tions [43]. This hybrid MIMD/SIMD approach results in multiple independent threads, each 

capable of vector data instruction issue. Intel’s Xeon Phi accelerator takes this approach 

to the extreme, with up to 61 MIMD cores, each with a 16-wide SIMD unit, presenting an 

intriguing middle ground for a ray-tracing platform.

Current ray-tracing systems are still at least an order of magnitude short in performance 

for rendering modest scenes at cinema quality, resolution, and frame rate. Table 2.1 

estimates the rays/second performance required for real-time movie-quality ray-tracing 

based on movie test renderings [28]. Existing consumer ray-tracing systems can achieve up 

to a few hundred million rays per second [5, 102].

2 .1 .2 .1  R a y  T ra c in g  on  C P U s

Researchers have been developing ray-tracing performance optimizations on CPUs for 

many years. Historically, the CPU made for a better target than GPUs, partly due to 

the lack of programmability of early commercial GPU hardware. In the past, the intensive 

computational power required for ray-tracing was far more than a single CPU could deliver, 

but interactivity was possible through parallelizing the workload on a large shared memory 

cluster with many CPUs [74]. Around the same time, SSE was introduced, potentially 

quadrupling the performance of individual CPU cores, but also requiring carefully mapping 

the ray-tracing algorithm to use vector data instructions.

Table 2.1: Estimated performance requirements for movie-quality ray traced images at 
30Hz.

display type pixels /  frame rays/pixel million rays/frame million rays/sec needed
HD resolution 

30” Cinema display
1920x1080
2560x1600

50 - 100 
50 - 100

104 - 208 
205-410

3.100-6,200
6.100-12,300
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Wald et al. collect rays into small groups called packets [101]. These packets of rays 

have a common origin, and hopefully similar direction, making them likely to take the same 

path through an acceleration structure, and intersect the same geometry. This coherence 

among rays in a packet exposes SIMD parallelism opportunities in the form of performing 

traversal or intersection operations on multiple (four in the case of SSE) rays simultaneously. 

Processing rays in coherent groups also has the effect of amortizing the cost of fetching scene 

data across the width of the packet, resulting in reduced memory traffic.

One of the biggest challenges of a packetized ray tracer is finding groups of rays that 

are coherent. Early systems simply used groups of primary rays through nearby pixels, 

and groups of point-light shadow rays from nearby shading points. One of the most 

important characteristics of ray-tracing is its ability to compute global illumination effects, 

which usually require intentionally incoherent (randomized) rays, making it difficult to form 

coherent packets for any groups of rays other than primary camera rays. When incoherent 

rays within a packet require different traversal paths, the packet must be broken apart 

into fewer and fewer active rays, losing the intended benefits altogether. Boulos et al. [12] 

explore improved packet assembly algorithms, finding coherence among incoherent global 

illumination rays. Boulos et al. [13] further improve upon this by dynamically restructuring 

packets on the fly, better handling extremely incoherent rays, such as those generated by 

path tracing [47].

Despite all efforts to maintain coherent ray packets, it is sometimes simply not possible. 

An alternative to processing multiple rays simultaneously is to process a single ray through 

multiple traversal or intersection steps simultaneously. Since SIMD units are typically at 

least 4-wide on CPUs, this favors wide-branching trees in the acceleration structure [27, 99]. 

A combination of ray packets and wide trees has proven to be quite advantageous, enabling 

high SIMD utilization in situations both with and without high ray coherence [8]. Utilizing 

these techniques, Intel’s Embree engine [102] can achieve an impressive hundreds of millions 

of rays per second when rendering scenes with complex geometry and shading.

2 .1 .2 .2  R a y  T ra c in g  on  G P U s

As GPUs became more programmable, their parallel compute power made them an 

obvious target for ray-tracing. Although still limited in programmability at the time, Purcell 

et al. developed the first full GPU ray tracer using the fragment shader as a programmable 

portion of the existing graphics pipeline [79]. Their system achieved performance (rays/sec) 

similar to or higher than cutting edge CPU implementations at the time [100]. GPUs would 

become more supportive of programmable workloads with the advent of CUDA [71] and
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OpenCL [96], and researchers quickly jumped on the new capabilities with packetized traver­

sal of sophisticated acceleration structures, enabling the rendering of massive models [34].

Aila et al. [4] note that most GPU ray-tracing systems were dramatically underutilizing 

the available compute resources, and carefully investigate ray traversal as it maps to GPU 

hardware. They indicate that ray packets do not perform well on extremely wide (32 in their 

case) SIMD architectures, and instead provide thoroughly investigated and highly optimized 

per-ray traversal kernels. With slight updates to take advantage of newer architectures, 

their kernels can process hundreds of millions of diffuse rays per second [5]. Still, the SIMD 

utilization (percentage of active compute units) is usually less than half [4], highlighting the 

difficulties caused by the divergent code paths among incoherent rays.

NVIDIA’s OptiX [75] is a ray-tracing engine and API that provides users the tools to 

assemble a full, custom ray tracer without worrying about the tricky details of GPU code 

optimization. OptiX provides high performance kernels including acceleration structure 

generation and traversal, which can be combined with user-defined kernels for, e.g. shading, 

by an optimizing compiler. Although flexible and programmable, OptiX is able to achieve 

performance close to the highly tuned ray tracers in [4].

2 .1 .3  R a y  T ra c in g  P ro ce s s o r s

Despite the increasing programmability of today’s GPUs, many argue that custom ray- 

tracing architectural features are needed to achieve widespread adoption, whether in the 

form of augmentations to existing GPUs or fully custom designs.

One of the early efforts to design a fully custom ray-tracing processor was SaarCOR [84, 

85], later followed by Ray Processing Unit (RPU) [106, 105]. SaarCOR and RPU are 

custom hard-coded ray-tracing processors, except RPU has a programmable shader. Both 

are implemented and demonstrated on an FPGA and require that a kd-tree be used. The 

programmable portion of the RPU is known as the Shading Processor (SP), and consists 

of four 4-way vector cores running in SIMD mode with 32 hardware threads supported on 

each of the cores. Three caches are used for shader data, kd-tree data, and geometry data. 

Cache coherence is quite good for primary rays and adequate for secondary rays. With an 

appropriately described scene (using kd-trees and triangle data encoded with unit-triangle 

transformations) the RPU can achieve impressive frame rates for the time, especially when 

extrapolated to a potential CMOS ASIC implementation [105]. The fixed-function nature 

of SaarCOR and RPU provides very high performance at a low energy cost, but limits their 

usability.
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On the opposite end of the spectrum, the Copernicus approach [31] attempts to leverage 

existing general purpose x86 cores in a many-core organization with special cache and mem­

ory interfaces, rather than developing a specialized core specifically for ray-tracing. As a 

result, the required hardware may be over-provisioned, since individual cores are not specific 

to ray-tracing, but using existing core blocks improves flexibility and saves tremendous 

design, validation, and fabrication costs. Achieving real-time rendering performance on 

Copernicus requires an envisioned tenfold improvement in software optimizations.

The Mobile Ray Tracing Processor (MRTP) [49] recognizes the multiphase nature of 

ray-tracing, and provides reconfigurability of execution resources to operate as wide SIMT 

scalar threads for portions of the algorithm with nondivergent code paths, or as a narrower 

SIMT thread width, but with each thread operating on vector data for portions of the 

algorithm with divergent code paths. Each MRTP reconfigurable stream multiprocessor 

(RSMP) can operate as 12-wide SIMT scalar threads, or 4-wide SIMT vector threads. 

Running in the appropriate configuration for each phase of the algorithm helps reduce the 

underutilization that SIMT systems can suffer due to branch divergence. This improves 

performance, and as a side-effect, reduces energy consumption due to decreased leakage 

current from inactive execution units. This reconfigurability is similar in spirit to some of 

our proposed techniques (Section 7.1.2).

Nah et al. present the Traversal and Intersection Engine (T&I) [65], a fully custom 

ray tracing processor with fixed-function hardware for an optimized traversal order and 

tree layout, as well as intersection. This is combined with programmable shader support, 

similar to RPU [106]. T&I also employs a novel ray accumulation unit which buffers rays 

that incur cache misses, helping to hide high latency memory accesses. T&I was later 

improved to be used as the GPU portion of a hybrid CPU/GPU system [64]. The primitive 

intersection procedure and acceleration structure builder is modified so that every primitive 

is enclosed with an axis-aligned bounding-box (AABB), and the existing AABB intersection 

unit required for tree traversal is reused to further cull primitive intersections. Essentially, 

this has the effect of creating shallower trees that are faster to construct.

2 .1 .4  R a y  S tre a m in g  S y stem s

Data access patterns can have a large impact on performance (see Chapters 3 and 4). 

In an effort to make the ray-tracing memory access patterns more efficient, recent work has 

proposed significantly modifying the ray-tracing algorithm. Navratil et al. [67] and Aila et 

al.[2] identify portions of the scene data called treelets, which can be grouped together and 

fill roughly the capacity of the cache. Rays are then dynamically scheduled for processing
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based on which group they are in, allowing rays that access similar regions of data to share 

the costs associated with accessing that data. This drastically improves cache hit rates, 

thus reducing the very costly off-chip memory traffic. The tradeoff is that rays must be 

buffered for delayed processing, requiring saved ray state, and complicating the algorithm. 

We use a similar technique in [50] (Section 3.2).

Gribble and Ramani [33, 82] group rays together by applying a series of filters to a large 

set of rays, placing them into categories based on certain properties, e.g., ray type (shadow 

or primary), the material hit, whether the ray is active or not, which nodes a ray has 

entered, etc. Although their goal was to improve SIMD efficiency by finding large groups 

of rays performing the same computation, it is likely the technique will also improve data 

access coherence. Furthermore, by using a flexible multiplexer-driven interconnect, data can 

be efficiently streamed between execution resources, avoiding the register file when possible 

and reducing power consumption. We use similar techniques in Section 7.1.2.

Keely [48] reexamines acceleration structure layout, and significantly reduces the numer­

ical precision required for traversal computations. Lower-precision execution units can be 

much smaller and more energy efficient, allowing for many of them to be placed in a small 

die area. Keely builds on recent treelet techniques, adding reduced-precision fixed-function 

traversal units to an existing high-end GPU, resulting in incredibly high (reduced-precision) 

operations per second, kept fed with data by an efficient data streaming model. The reported 

performance is very impressive, at greater than one billion rays per second. Reduced 

precision techniques like those used in [48] are independent of treelet/streaming techniques, 

and could be applied to to the work proposed in Chapter 3.

2.2 Threaded Ray Execution (TRaX)
TRaX is a custom ray-tracing architecture designed from the ground up [52, 93, 94]. The 

basic design philosophy behind TRaX aims to tile as many thread processors as possible 

on to the chip for massive parallel processing of independent rays. Thread processors are 

kept very simple, their small size permitting many of them in a given die area. To achieve 

this, each thread only has simple thread state, integer, issue, and control logic. Large or 

expensive resources are not replicated for each thread. These larger units— floating point 

arithmetic, instruction caches, and data caches— are shared by multiple thread processors, 

relying on the assumption that not all threads will require a shared resource at the same 

time. This assumption is supported by a SPMD parallelism model, in which threads can
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diverge independently through execution of the code, naturally requiring different resources 

at different times.

Figure 2.2 shows an example block diagram of a TRaX processor. The basic architecture 

is a collection of simple, in-order, single-issue integer thread processors (TPs) configured 

with general purpose registers and a small local memory. The generic TRaX thread 

multiprocessor (TM) aggregates a number of TPs which share more expensive resources. 

The specifics of the size, number, and configuration of the processor resources are variable.

Simtrax [38] is a cycle-accurate many-core GPU simulator supported by a powerful 

compiler toolchain and API [92]. Simtrax allows for the customization of nearly all 

components of the processor, including cache and memory capacities and banking, cache 

policies, execution unit mix and connectivity, and even the addition of custom units or 

memories. Simtrax is open source, so the overall architecture, ISA, and API are all adaptable 

as needed. We investigate a broad design space of configurations through simulation and 

attempt to find optimal designs in terms of performance per die area.

2 .2 .1  A r c h ite c tu r a l E x p lo r a t io n  P r o c e d u r e

The main architectural challenge in the design of a ray-tracing processor is to provide 

support for the many independent rays that must be computed for each frame. Our 

approach is to optimize single-ray SPMD performance. This approach can ease application

□  □ □  □

L1

I$ TPs
D$

Tl*
s

I$

□  □

XUs
□  □ □  □

TMs L2 TMs

V TMs L2 TMs

/
TMs L2 TMs

TMs L2 TMs

Figure 2.2: Baseline TRaX architecture. Left: an example configuration of a single 
Thread Multiprocessor (TM) with 32 lightweight Thread Processors (TPs) which share 
caches (instruction I$, and data D$) and execution units (XUs). Right: potential TRaX 
chip organization with multiple TMs sharing L2 caches [93].
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development by reducing the need to orchestrate coherent ray bundles and execution kernels 

compared to a SIMD/SIMT ray tracer. To evaluate our design choices, we compare our 

architecture to the best known SIMT GPU ray tracer at the time [4].

We analyze our architectural options using four standard ray-tracing benchmark scenes, 

shown in Figure 2.3, that provide a representative range of performance characteristics, 

and were also reported in [4]. Our design space exploration is based on 128x128 resolution 

images with one primary ray and one shadow ray per pixel. This choice reduces simulation 

complexity to permit analysis of an increased number of architectural options. The low 

resolution will have the effect of reducing primary ray coherence, but with the beneficial side- 

effect of steering our exploration towards a configuration that is tailored to the important 

incoherent rays. However, our final results are based on the same images, the same image 

sizes, the same mixture of rays, and the same shading computations as reported in [4]. Our 

overall figure of merit is performance per area, reported as millions of rays per second per 

square millimeter (M RPS/m m 2), and is compared with other designs for which area is 

either known or estimable.

Our overall architecture is similar to Copernicus [32] in that it consists of a MIMD 

collection of processors. However, it actually has more in common with the GT200 [69] 

GPU architecture in the sense that it consists of a number of small, optimized, in-order 

cores collected into a processing cluster that shares resources. Those processing clusters 

(Streaming Multiprocessors (SMs) for GT200, and Thread Multiprocessors (TMs) in our 

case) are then tiled on the chip with appropriate connections to chip-wide resources. The 

main difference is that our individual threads can diverge in control flow without losing 

parallelism, rather than being tied together in wide SIMT “warps,” requiring divergent 

threads to be masked and effectively stall execution.

Conference Sponza Sibenik Fairy
282k triangles 76k triangles 80k triangles 174k triangles

(a) (b) (c) (d)

F igure 2.3: Test scenes used to evaluate performance for the baseline TRaX architecture.
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The lack of synchrony between ray threads reduces resource sharing conflicts between 

the cores and reduces the area and complexity of each core. With a shared multibanked 

Icache, the cores quickly reach a point where they are each accessing a different bank, and 

shared execution unit conflicts can be similarly reduced.

In order to hide the high latency of memory operations in graphics workloads, GPUs 

maintain many threads that can potentially issue an instruction while another thread is 

stalled. This approach involves sharing a number of thread states per core, only one of which 

can attempt to issue on each cycle. Given that the largest component of TRaX ’s individual 

thread processor is its register file, adding the necessary resources for an extra thread state 

is tantamount to adding a full thread processor. Thus, in order to sustain high instruction 

issue rate, we add more full thread processors as opposed to context switching between 

thread states. While GPUs can dynamically schedule more or fewer threads based on the 

number of registers the program requires [56], the TRaX approach is to allocate a minimal 

fixed set of registers per thread. The result is a different ratio of registers to execution 

resources for the cores in our TMs compared to a typical GPU. We rely on asynchrony to 

sustain a high issue rate to our heavily shared resources, which enables simpler cores with 

reduced area over a fully provisioned processor.

Our exploration procedure first defines an unrealistic, exhaustively-provisioned SPMD 

multiprocessor as a starting point. This serves as an upper bound on raw performance, but 

requires an unreasonably large chip area. We then explore various multibanked Dcaches and 

shared Icaches using Cacti v6.5 [63] to provide area and latency estimates for the various 

configurations. Next, we consider sharing large execution units which are not heavily used, 

in order to reduce area with a minimal performance impact. Finally we explore a chip-wide 

configuration that uses shared L2 caches for a number of TMs.

To evaluate this architectural exploration, we use a simple test application written 

in C + + , compiled with our custom LLVM [19] backend. This application can be run 

as a simple ray tracer with ambient occlusion, or as a path tracer which enables more 

detailed global illumination effects using Monte-Carlo sampled Lambertian shading [89] 

which generates more incoherent rays. Our ray tracer supports fully programmable shading 

and texturing and uses a bounding volume hierarchy acceleration structure. In this work 

we use the same shading techniques as in [4], which do not include texturing.

2 .2 .1 .1  T h re a d  M u lt ip r o c e s s o r  (T M )  D es ig n

Our baseline TM configuration is designed to provide an upper bound on the thread 

issue rate. Because we have more available details of their implementation, our primary
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comparison is against the NVIDIA GTX285 [4] of the GT200 architecture family. The 

GT200 architecture operates on 32-thread SIMT “warps.”

The “SIMD efficiency” metric is defined in [4] to be the percentage of SIMD threads 

that perform computations. Note that some of these threads perform speculative branch 

decisions which may perform useless work, but this work is counted as efficient. In our 

architecture the equivalent metric is thread issue rate. This is the average number of 

independent cores that can issue an instruction on each cycle. These instructions always 

perform useful work. The goal is to have thread issue rates as high or higher than the SIMD 

efficiency reported on highly optimized SIMD code. This implies an equal or greater level 

of parallelism, but with more flexibility.

We start with 32 cores in a TM to be comparable to the 32-thread warp in a GT200 SM. 

Each core processor has 128 registers, issues in order, and employs no branch prediction. 

To discover the maximum possible performance achievable, each initial core will contain 

all of the resources that it can possibly utilize. In this configuration, the data caches are 

overly large (enough capacity to entirely fit the dataset for two of our test scenes, and still 

unrealistically large for the others), with one bank per core. There is one execution unit 

(XU) of each type available for every core. Our ray-tracing code footprint is relatively 

small, which is typical for ray tracers (ignoring custom artistic material shaders) [30, 89] 

and is similar in size to the ray tracer evaluated in [4]. Hence the Icache configurations 

are relatively small and therefore fast enough to service two requests per cycle at 1GHz 

according to Cacti v6.5 [63], so 16 instruction caches are sufficient to service the 32 cores.

This configuration provides an unrealistic best-case issue rate for a 32-core TM. Table 2.2 

shows the area of each major component in a 65nm process, and the total area for a 32-core 

TM, sharing the multibanked Dcache and the 16 single-banked Icaches. Memory area 

estimates are from Cacti v6.5*.

Memory latency is also based on Cacti v6.5: 1 cycle to L1, and 3 cycles to L2. XU 

area estimates are based on synthesized versions of the circuits using Synopsys Design- 

Ware/Design Compiler and a commercial 65nm CMOS cell library. These execution unit 

area estimates are conservative, as a custom-designed execution unit would certainly have 

smaller area. All cells are optimized by Design Compiler to run at 1GHz and multicycle 

cells are fully pipelined. The average core issue rate is 89%, meaning that an average of 28.5 

cores are able to issue on every cycle. The raw performance of this configuration is very

1We note that Cacti v6.5 has been specifically enhanced to provide more accurate size estimates than 
previous versions for relatively small caches of the type we are proposing.
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Table 2.2: Feature areas and performance for the baseline over-provisioned 1GHz 32-core 
TM configuration. In this configuration each core has a copy of every execution unit.

Unit Area Cycles Total Area
(mm2) (mm2)

4MB Dcache (32 banks) 1 33.5
4KB Icaches 0.07 1 1.12
128x32 RF 0.019 1 0.61
FP InvSqrt 0.11 16 3.61
Int Multiply 0.012 1 0.37
FP Multiply 0.01 2 0.33
FP Add/Sub 0.003 2 0.11
Int Add/Sub 0.00066 1 0.021
FP Min/Max 0.00072 1 0.023
Total 39.69

Avg thread issue MRPS/core M RPS/mm2
89% 5.6 0.14

good, but the area is huge. The next step is to reduce core resources to save area without 

sacrificing performance. With reduced area the M RPS/m m 2 increases and provides an 

opportunity to tile more TMs on a chip.

2 .2 .2  A r e a  E ffic ien t R e s o u r c e  C o n fig u ra t io n s

We now consider constraining caches and execution units to evaluate the design points 

with respect to M RPS/mm2. Cache configurations are considered before shared execution 

units, and then revisited for the final multi-TM chip configuration. All performance numbers 

in our design space exploration are averages from the four scenes in Figure 2.3.

2 .2 .2 .1  C a ch es

Our baseline architecture shares one or more instruction caches among multiple cores. 

Each of these Icaches is divided into one or more banks, and each bank has a read port 

shared between the cores. Our ~ 1000-instruction ray tracer program fits entirely into 4KB 

instruction caches and provides a 100% hit-rate while double pumped at 1 GHz.

Our data cache model provides write-around functionality to avoid dirtying the cache 

with data that will never be read. The only writes the ray tracer issues are to the write-only 

frame buffer, which is typical behavior for ray tracers. Our compiler stores all temporary 

data in registers, and does not use a call stack since all functions are inlined. BVH traversal 

is handled with a special set of stack registers designated for stack nodes. Because of the 

lack of writes to the cache, we achieve relatively high hit-rates even with small caches, as
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seen in Figure 2.4. Data cache lines are 8 4-byte words-wide (note that this is different from 

the cache line size used in Chapter 3 and beyond).

We explore L1 Dcache capacities from 2KB to 64KB and banks ranging from 1 to 

32, both in powers of 2 steps. Similarly, numbers and banks of Icaches range from 1 to 16. 

First the interaction between instruction and data caches needs to be considered. Instruction 

starvation will limit instruction issue and reduce data cache pressure. Conversely, perfect in­

struction caches will maximize data cache pressure and require larger capacity and increased 

banking. Neither end-point will be optimal in terms of M RPS/m m 2. This interdependence 

forces us to explore the entire space of data and instruction cache configurations together.

Other resources, such as the XUs, will also have an influence on cache performance, but 

the exponential size of the entire design space is intractable. Since we have yet to discover 

an accurate pruning model, we have chosen to evaluate certain resource types in order. It is 

possible that this approach misses the optimal configuration, but our results indicate that 

our solution is adequate.

After finding a “best” TM configuration, we revisit Dcaches and their behavior when 

connected to a chip-wide L2 Dcache shared among multiple TMs. For single-TM simulations 

we pick a reasonable L2 cache size of 256KB. Since only one TM is accessing the L2, this 

results in unrealistically high L2 hit-rates, and diminishes the effect that the L1 hit-rate has 

on performance. We rectify this inaccuracy in section 2.2.2.3, but for now this simplified 

processor, with caches designed to be as small as possible without having a severe impact
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Figure 2.4: L1 data cache performance for a single TM with over-provisioned execution 
units and instruction cache.
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on performance, provides a baseline for examining other resources, such as the execution 

units.

2 .2 .2 .2  S h ared  E x e c u t io n  U n its

The next step is to consider sharing lightly used and area-expensive XUs for multiple 

cores in a TM. The goal is area reduction without a commensurate decrease in performance. 

Table 2.2 shows area estimates for each of our execution units. The integer multiply, 

floating-point (FP) multiply, FP add/subtract, and FP inverse-square-root units dominate 

the others in terms of area, thus sharing these units will have the greatest effect on reducing 

total TM area. In order to maintain a reasonably sized exploration space, these are the 

only units considered as candidates for sharing. The other units are too small to have a 

significant effect on the performance-per-area metric.

We ran many thousands of simulations and varied the number of integer multiply, FP 

multiply, FP add/subtract and FP inverse-square-root units from 1 to 32 in powers of 2 

steps. Given N  shared execution units, each unit is only connected to 32/N cores in order 

to avoid complicated connection logic and area that would arise from full connectivity. 

Scheduling conflicts to shared resources are resolved in a round-robin fashion.

Figure 2.5 shows that the number of XUs can be reduced without drastically lowering 

the issue rate, and Table 2.3 shows the top four configurations that were found in this 

phase of the design exploration. All of the top configurations use the cache setup found in 

section 2.2.2.1: two instruction caches, each with 16 banks, and a 4KB L1 data cache with 

8 banks and approximately 8% of cycles as data stalls for both our core-wide and chip-wide 

simulations.
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Figure 2.5: Effect of shared execution units on issue rate shown as a percentage of total 
cycles
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Table 2.3: Optimal TM configurations in terms of M RPS/m m 2.
INT
MUL

FP
MUL

FP
ADD

FP
INV

M RPS/
core

Area 
(mm2)

M RPS/
mm2

2 8 8 1 4.2 1.62 2.6
2 4 8 1 4.1 1.58 2.6
2 4 4 1 4.0 1.57 2.6
4 8 8 1 4.2 1.65 2.6

Area is drastically reduced from the original overprovisioned baseline, but performance 

remains relatively unchanged. Table 2.4 compares raw compute and register resources for 

our TM compared to a GTX285 SM. Our design space included experiments in which 

additional thread contexts were added to the TMs, allowing context switching from a 

stalled thread. These experiments resulted in 3-4% higher issue rate, but required much 

greater register area for the additional thread contexts, so we do not include simultaneous 

multithreading in future experiments.

2 .2 .2 .3  C h ip  L ev e l O rg a n iza tio n

Given the TM configurations found in Section 2.2.2.2 that have the minimal set of 

resources required to maintain high performance, we now explore the impact of tiling many 

of these TMs on a chip. Our chip-wide design connects one or more TMs to an L2 Dcache, 

with one or more L2 caches on the chip. Up to this point, all of our simulations have been 

single-TM simulations which do not realistically model L1 to L2 memory traffic. With many 

TMs, each with an individual L1 cache and a shared L2 cache, bank conflicts will increase 

and the hit-rate will decrease. This will require a bigger, more highly banked L2 cache. 

Hit-rate in the L1 will also affect the level of traffic between the two levels of cache so we

Table 2.4: GTX285 SM vs. SPMD TM resource comparison. Area estimates are normal­
ized to our estimated XU sizes from Table 2.2, not from actual GTX285 measurements.

GTX285 
SM (8 cores)

SPMD 
TM (32 cores)

Registers 16384 4096
FPAdds 8 8
FPMuls 8 8

INTAdds 8 32
INTMuls 8 2
Spec op 2 1

Register Area (mm2) 2.43 0.61
Compute Area (mm2) 0.43 0.26
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must explore a new set of L1 and L2 cache configurations with a varying number of TMs 

connected to the L2.

Once many TMs are connected to a single L2, relatively low L1 hit-rates of 80-86% 

reported in some of the candidate configurations for a TM will likely put too much pressure 

on the L2. Figure 2.6(b) shows the total percentage of cycles stalled due to L2 bank conflicts 

for a range of L1 hit-rates. The 80-86% hit-rate, reported for some initial TM configurations, 

results in roughly one third of cycles stalling due to L2 bank conflicts. Even small changes 

in L1 hit-rate from 85% to 90% will have an effect on reducing L1 to L2 bandwidth, due 

to the high number of cores sharing an L2. We therefore explore a new set of data caches 

that result in a higher L1 hit-rate.

We assume up to four L2 caches can fit on a chip with a reasonable interface to main 

memory. Our target area is under 200mm2, so 80 TMs (2560 cores) will fit even at 2.5mm2 

each. Section 2.2.2.2 shows a TM area of 1.6mm2 is possible, and the difference provides 

room for additional exploration. The 80 TMs are evenly spread over the multiple L2 caches. 

With up to four L2 caches per chip, this results in 80, 40, 27, or 20 TMs per L2. Figure 2.6(c) 

shows the percentage of cycles stalled due to L2 bank conflicts for a varying number of TMs 

connected to each L2. Even with a 64KB L1 cache with 95% hit-rate, any more than 20 

TMs per L2 results in >10% of cycles as L2 bank conflict stalls. We therefore chose to 

arrange the proposed chip with four L2 caches serving 20 TMs each. Figure 2.2 shows how 

individual TMs of 32 threads might be tiled in conjunction with their L2 caches.
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Figure 2.6: L2 performance for 16 banks and TMs with the top configuration reported in 
Table 2.3.
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The result of the design space exploration is a set of architectural configurations that 

all fit in under 200mm2 and maintain high performance. A selection of these are shown in 

Table 2.5 and are what we use to compare to the best known GPU ray tracer of the time in 

Section 2.2.2.4. Note that the GTX285 has close to half the die area devoted to texturing 

hardware, and none of the benchmarks reported in [4] or in our own studies use image-based 

texturing. Thus it may not be fair to include texture hardware area in the M RPS/m m 2 

metric. On the other hand, the results reported for the GTX285 do use the texture memory 

to hold scene data for the ray tracer, so although it is not used for texturing, that memory 

(which is a large portion of the hardware) is participating in the benchmarks.

Optimizing power is not a primary goal of the baseline TRaX design, and we address 

power consumption by improving on the baseline architecture from Chapter 3 onward. 

Still, to ensure we are within the realm of reason, we use energy and power estimates 

from Cacti v6.5 and Synopsys DesignWare to calculate a rough estimate of our chip’s total 

power consumption in these experiments. Given the top chip configuration reported in 

Table 2.5, and activity factors reported by our simulator, we roughly estimate a chip power 

consumption of 83 watts, which we believe is in the range of power densities for commercial 

GPUs.

2 .2 .2 .4  B a se lin e  T R a X  R e su lts

To evaluate the results of our design space exploration we chose two candidate architec­

tures from the top performers: one with small area (147mm2) and the other with larger area 

(175mm2) but higher raw performance (as seen in Table 2.5). We ran detailed simulations 

of these configurations using the same three scenes as in [4] and using the same mix of 

primary and secondary rays. Due to the widely differing scenes and shading computations

Table 2.5: A selection of our top chip configurations and performance compared to an 
NVIDIA GTX285 and Copernicus. Copernicus area and performance are scaled to 65nm 
and 2.33 GHz to match the Xeon E5345, which was their starting point. Each of our SPMD 
Thread Multiprocessors (TM) has 2 integer multiply, 8 FP multiply, 8 FP add, 1 FP invsqrt 
unit, and 2 16-banked Icaches.

L1 L1 L2 L2 L1 L2 B andw idth  (G B /s ) Thread A rea M R P S /
Size Banks Size Banks H itrate H itrate L1 L2 D R A M Issue (m m 2 ) M R P S mm2

32K B 4 256K B 16 93% 75%  42 56 13 70% 147 322 2.2
32K B 4 512K B 16 93% 81%  43 57 10 71% 156 325 2.1
32K B 8 256K B 16 93% 75%  43 57 14 72% 159 330 2.1
32K B 8 512K B 16 93% 81%  43 57 10 72% 168 335 2.0
64K B 4 512K B 16 95% 79%  45 43 10 76% 175 341 1.9
G T X 2 85  (a rea  is from  65nm  G T X 2 8 0  version  for b etter  com parison ) 75% 576 111 0.2
G T X 2 85 SIM D core area on ly  —  no texture  unit (area is estimated from  d ie p h oto ) 75% ~300 111 0.37
C op ern icu s  at 22nm, 4G H z, 115 C ore2 style cores in 16 tiles 98% 240 43 0.18
C op ern icu s  at 22nm, 4G H z, w ith  their envisioned 10x SW  im provem ent 98% 240 430 1.8
C op ern icus w ith 10x SW  im provem ent, scaled to 65nm, 2.33G H z 98% 961 250 0.26
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used in [4] and [32], a direct comparison between both architectures is not feasible. We chose 

to compare against [4] because it represents the best reported performance at the time for 

a ray tracer running on a GPU, and their ray tracing application is more similar to ours. 

We do, however, give a high level indication of the range of performance for our SPMD 

architecture, GTX285 and Copernicus, in Table 2.5. In order to show a meaningful area 

comparison, we used the area of a GTX280, which uses a 65nm process, and other than clock 

frequency, is equivalent to the GTX285. Copernicus area is scaled up from 22nm to 65nm. 

Assuming that their envisioned 240mm2 chip is 15.5mm on each side, a straightforward 

scaling from 22nm to 65nm would be a factor of three increase on each side, but due to 

certain process features not scaling linearly, we use a more realistic factor of two per side, 

giving a total equivalent area of 961mm2 at 65nm. We then scaled the assumed 4GHz clock 

frequency from Govindaraju et al. down to the actual 2.33GHz of the 65nm Clovertown core 

on which their original scaling was based. The 10x scaling due to algorithmic improvements 

in the Razor software used in the Copernicus system is theoretically envisioned [32].

The final results and comparisons to GTX285 are shown in Table 2.6. It is interesting to 

note that although GTX285 and Copernicus take vastly different approaches to accelerating 

ray-tracing, when scaled for performance/area they are quite similar. It is also interesting 

to note that although our two candidate configurations perform differently in terms of raw 

performance, when scaled for M RPS/m m 2 they offer similar performance, especially for 

secondary rays.

Table 2.6: Comparing our performance on two different core configurations to the GTX285 
for three benchmark scenes [4]. Primary ray tests consisted of 1 primary and 1 shadow ray 
per pixel. Diffuse ray tests consisted of 1 primary and 32 secondary global illumination rays 
per pixel.

Conference (282k triangles) Fairy (174k triangles) Sibenik (80k triangles)
S P M D Ray SPMD SPMD SPMD SPMD SPMD SPMD

Type Issue Rate MRPS Issue Rate MRPS Issue Rate MRPS
147mm2 Primary 74% 376 70% 369 76% 274

Diffuse 53% 286 57% 330 37% 107
175mm2 Primary 77% 387 73% 421 79% 285

Diffuse 67% 355 70% 402 46% 131
S IM D Ray G T X G T X G T X G TX G T X G TX

Type SIMD eff. MRPS SIMD eff. MRPS SIMD eff. MRPS
GTX285 Primary 74% 142 76% 75 77% 117

Diffuse 46% 61 46% 41 49% 47
SPMD M R P S /m m 2 ranges from 2.56 (Conference, primary rays) to  0.73 (Sibenik, diffuse rays) for both configs
SIMD M R P S/m m 2 ranges from 0.25 (Conference, primary rays) to 0.07 (Fairy, diffuse rays)
SIMD (no texture area) M R P S /m m 2 ranges from 0.47 (Conference, primary) to  0.14 (Fairy, diffuse)
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When our raw speed is compared to the GTX285, our configurations are between 2.3x 

and 5.6x faster for primary rays (average of 3.5x for the three scenes and two SPMD 

configurations) and 2.3x to 9.8x faster for secondary rays (5.6x average). We can also see 

that our thread issue rates do not change dramatically for primary vs. secondary rays, 

especially for the larger of the two configurations. When scaled for M RPS/m m 2, our 

configurations are between 8.0x and 19.3x faster for primary rays (12.4x average), and 

8.9x to 32.3x faster for secondary rays (20x average). Even if we assume that the GTX285 

texturing unit is not participating in the ray-tracing, and thus use a 2x smaller area estimate 

for that processor, these speed-ups are still approximately 6x-10x on average.

We have developed a baseline custom ray-tracing architecture, with flexible programma­

bility and impressive performance, that we believe serves as an excellent platform for further 

development. In the following chapters, we address the more important concerns of energy 

consumption, while maintaining this baseline’s rays per second performance.



CHAPTER 3

RAY TRACING FROM A DATA 
MOVEMENT PERSPECTIVE

CPUs and GPUs for modern mobile, desktop, and server systems devote tremendous 

resources to facilitating the movement of data to and from the execution resources, and 

TRaX is no exception to this. For certain workloads, such as sorting, data movement is the 

primary goal; but for most workloads, including graphics, the task of moving data to the 

execution units is a secondary requirement of the primary task of performing mathematical 

operations on that data. Essentially, real work only happens when operator meets operand. 

Ideally the effort spent to make that meeting happen should not trump the effort spent 

on the execution itself. In a general purpose or programmable processing regime, the 

execution units are fed with operations and operands by a massive network and memory 

storage systems. Figure 3.1 shows a simplified example of such a network.

Figure 3.1: A simplified processor data movement network. Various resources to move 
data to the execution unit (XU) include an instruction cache (I$), instruction fetch/decode 
unit (IF/ID), register file (RF), L1 data cache(D$), L2 shared cache, DRAM, and Disk.
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For each atom of work (instruction), some or all of the following memory systems must 

be activated:

• Instruction  Fetch - the instruction is fetched from an instruction cache to the 

decoder/execution unit. In a general purpose processor, an instruction is typically 

a single mathematical operation, such as comparing or multiplying two numbers.

• R egister File - operands for the instruction are fetched from the register file and a 

result may be sent back to the register file.

• M ain  M em ory  H ierarchy - the register file and instruction cache are backed by the 

main memory hierarchy. In the case of overflowing, instructions, operands, or results 

are fetched from/sent to the main memory hierarchy, activating potentially all of the 

following systems:

— Cache H ierarchy - if the working set of data is too large for the register file, 

data is is transferred to and from the cache hierarchy, consisting of one or more 

levels of on-chip memory. If the data required is not found in the first level, the 

next level is searched, and so on. Typically each consecutive level of cache is 

larger, slower, and more energy consumptive than the previous. The goal of this 

hierarchy is to keep data as close to the register file and instruction fetch units 

as possible.

— D R A M  - if the data is not found in the cache hierarchy, it must be transferred 

from off-chip DRAM, which is much larger, slower, and more energy consumptive 

than the caches.

— D isk - in the event the data is not even contained in DRAM, the much slower 

disk or network storage must be accessed. This is not common in real-time 

rendering systems, and we will not focus on this interface, although it is a major 

concern in offline rendering [26].

The interfaces between these memory components can only support a certain maximum 

data transfer rate (bandwidth). If any particular memory interface cannot provide data 

as fast as the execution units require it, that interface becomes a bottleneck preventing 

execution from proceeding any faster. If this happens, although execution units may be 

available to perform work, they have no data to perform work on. Designing a high 

performance compute system involves finding the right balance of execution and data
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movement resources within the constraints of the chip, limited not only by die area, but 

also power consumption [23, 87]. Table 3.1 shows the simulated area, energy, and latency 

costs for the execution units and various data movement resources in a basic many-core 

TRaX system. We can see that the balance of resources is tipped heavily in favor of 

data movement, and this is not unique to TRaX. This balance can be tuned with both 

hardware and software techniques. Since different applications can have widely varying 

data movement requirements, we can take heavy advantage of specialization if the desired 

application domain is known ahead of time.

An application specific integrated circuit (ASIC) takes specialization to the extreme and 

can achieve vast improvements in energy efficiency over a general purpose programmable 

processor [24, 58, 39]. Instead of performing a sequence of generic single instructions at a 

time, which combined makes up a more complex programmable function, an ASIC performs 

exactly one specific function. These functions are typically much more complex than the 

computation performed by a single general purpose instruction, and the circuitry for the 

function is hard-wired on the chip. This fixed-function circuitry removes some of the data 

movement overheads discussed above. Specifically, instructions need not be fetched, and 

operands and intermediate results flow directly from one execution unit to the next, avoiding 

expensive round trips to the register file and/or data caches. These overheads can be up 

to 20 x more energy consumptive than the execution units themselves [36]. The downside 

to an ASIC is the lack of programmability. If the desired computation changes, an ASIC 

cannot adapt.

Less extreme specialization techniques can have many of the same energy saving benefits 

as an ASIC but without sacrificing as much programmability. If the application can take 

advantage of SIMD parallelism, the cost of fetching an instruction for a specific operation is 

amortized over multiple sets of parallel data operands. An N-way SIMD processor fetches 

up to N x fewer instructions to perform the same work as a scalar processor working 

on parallel data. Alternatively, very large instruction word (VLIW) architectures encode 

multiple operations into a single instruction. This makes the instructions larger, but a

Table 3.1: Resource cost breakdown for a 2560-thread TRaX processor.
Die Area (mm2) Avg. Activation Energy (nJ) Avg. Latency (ns)

Execution Units 36.7 0.004 1.35
Register Files 73.5 0.008 1

Instruction Caches 20.9 0.013 1
Data Caches 45.5 0.174 1.06

DRAM n/a 20 - 70 20 - 200
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single instruction fetched can perform a complex computation kernel that is the equivalent 

of many simpler single instructions. This requires the compiler to be able to identify these 

kernels in a programmable workload. Adding VLIW and SIMD execution to an otherwise 

general purpose processor, Hameed et al. report a tenfold reduction in the instruction fetch 

energy consumption when operating on certain workloads [36].

Even within a general purpose domain, many applications exhibit common microkernels 

of computation, such as multiply-accumulate, in which the product of two numbers must 

be added to an accumulator. This is a common operation in many algorithms, including 

computer graphics. Similar to an ASIC, the two operations can be fused into a pipeline 

and activated with a single instruction, and unlike VLIW, the instruction word size does 

not need to increase. Although the kernel is much smaller than a typical ASIC pipeline, 

it provides many of the same benefits while retaining programmability. The benefit gained 

from this type of operation fusion depends on how frequently the kernel is used. Hameed 

et al. report an extra 1.1x-to-1.9x energy reduction in the instruction fetch and register 

file energy, on top of existing VLIW and SIMD enhancements [36].

Prebaked fused operations in a general purpose architecture such as multiply-add are 

necessarily very simple in order to be broadly applicable. An application may have unique 

microkernels that a chip designer could not anticipate. CoGene [80] is a compiler system 

that automatically detects the data movement needs of kernels within a program, and 

dynamically generates “fused” operations by rerouting data through a flexible interconnect, 

given the resources available on the chip. Such a system can provide greater ASIC-like 

benefits than the simplest assumed micro kernels like multiply-add, yet avoid becoming 

overly specific to remain applicable to a wide range of applications.

As previously mentioned, if the application domain is known, further opportunities can 

be exploited. Particularly, graphics workloads consist of large amounts of 3D vector math, 

such as vector addition or dot products. Table 3.2 summarizes the potential energy savings 

for fusing various common 3D vector operations in a TRaX system. If vector operands 

were encoded with a single base register address, the instruction size would not increase. In 

Section 3.2, we explore even further specialized fused operations specifically for ray traced 

graphics.

The data cache hierarchy exists to relieve pressure on the main DRAM. The goal is to 

keep portions of main memory data as close to the execution units as possible to reduce 

the cost of data movement. If successful, the portions kept in the cache at any given time 

are the portions that will need frequent reuse during and around that time period. From a
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Table 3.2: Instruction cache and register file activation counts for various 3D vector 
operations for general purpose (GP) vs. fused pipeline units. Results are given as GP 
/  Fused. Energy Diff shows the total “Fused” energy as a percentage of “GP” . Activation 
energies are the estimates used in [51].

Instruction Cache Register File Energy Diff
add/sub 3 / 1 9 / 7 61%

mul 3 / 1 9 / 5 47%
dot 5 / 1 1 5 / 7 37%

cross 9 /  1 2 7 / 7 20%

hardware perspective, caches are typically designed to improve cache residency for a broad 

range of general applications, but even general purpose caches can see greatly increased 

effectiveness if the software utilizes cache-aware data access patterns. In some cases this is 

a simple change of stride or reordering of sequential accesses, but other cases require drastic 

algorithmic changes. In Section 3.1, we discuss how ray tracers can be modified to take 

special advantage of data access patterns.

3.1 Ray Tracer Data
In a typical ray tracer, just like any general purpose workload, instructions and operand 

data must be moved to the execution units. The operand data in a ray tracer is essentially 

the scene to be rendered, and light rays. The scene data are comprised of the geometry 

defining the shape of objects, and materials defining how light interacts with those objects. 

The geometry is typically a large mesh of triangles, but must be augmented with auxiliary 

data (an acceleration structure) that arranges the geometry in a more efficiently accessible 

way. The materials are composed of simple colors, reflection/transmission parameters, 

emission parameters, and textures. Ray data are usually programmatically generated one 

ray at a time, and fit in registers. Scene data, however, are usually very large, with no 

hope of fitting entirely in the registers or caches, so the main memory hierarchy is of key 

importance in a ray-tracing system.

All high-performance ray tracers organize the scene into an acceleration structure of 

some sort, which permits fast pruning of the set of geometry a ray is likely to intersect [44]. 

Common structures are kd-trees, bounding volume hierarchies (BVHs), oct-trees, and grids. 

BVHs are the most commonly used in high-performance ray tracers [75, 102], and we focus 

on BVHs in this work as well. A BVH is a tree structure in which each child subtree contains 

a smaller, more localized portion of the scene, plus an auxiliary volume that spatially bounds
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that portion of the scene. Determining the geometry a ray may intersect involves traversing 

this tree based on whether or not the ray intersects the bounding volume of any given node. 

The order that nodes are traversed, and thus loaded from memory, is very unpredictable, 

particularly when global illumination effects generate random and incoherent rays. This 

unpredictable memory access pattern makes it very challenging for the cache hierarchy 

to keep a working set of data near the execution units for very long. This problem is 

exacerbated when parallel execution threads traverse multiple rays simultaneously using a 

shared cache, since individual rays can take drastically different paths through the BVH.

Finding cache-friendly access patterns in BVH traversal is not a trivial task, and requires 

significant algorithmic changes as opposed to, for example, simply reordering the access 

order of a loop. Recent work has explored a variety of ways to increase data access efficiency 

in ray-tracing. These approaches typically involve grouping rays together and processing 

more than one at a time. Usually these groups are either spatially coherent rays, i.e., 

rays with a common origin and similar direction, or more directly, structurally coherent 

rays, i.e., rays known to access the same portions of the acceleration structure. Software 

approaches involve gathering rays into coherent packets to better match the SIMD execution 

model [9, 12, 34, 73]. These systems also tend to increase cache hit rates because the ray 

packets operate on similar regions of interest. Packet techniques can have limited utility 

with highly incoherent rays, since packets must be broken apart if rays within them do not 

follow the same path through the BVH.

More directly related to this work, specific approaches to more effective memory band­

width utilization can involve cache-conscious data organization [77, 20, 78, 57], and ray 

reordering [95, 13, 68, 61]. Some researchers employ image-space rather than data-space 

partitioning for rays [45, 14, 15]. Stream-based approaches to ray generation and processing 

have also been explored both in a ray-tracing context [33, 82, 97, 2, 67] and a volume- 

rendering context [22]. Although technical details are limited, at least two commercial 

hardware approaches to ray-tracing appear to use some sort of ray sorting and/or classifi­

cation [59, 90]. PowerVR [59] enqueues rays at each node in the BVH, deferring processing 

until a bundle of them are available, and using a sophisticated scheduler to decide which 

bundle to process next.

3 .1 .1  T ree le ts

We use a form of ray reordering based on recent work [67, 2], in which rays are specifically 

grouped together based on their location in the acceleration structure, allowing certain 

guarantees about data access coherence. The BVH tree is partitioned into sub-groups
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called treelets, sized to fit comfortably in either the L1 or L2 data cache. Each node in 

the BVH belongs to exactly one treelet, and treelet identification tags are stored along 

with the node ID. During traversal, when a ray crosses a treelet boundary, it is sent to a 

corresponding ray buffer, where its computation is deferred until a processor is assigned to 

that buffer. In this scheme, a processor will work for a prolonged period of time only on rays 

that traverse a single treelet. This allows that subset of BVH data (the treelet) to remain in 

the processor’s cache for a long time and drastically increase cache hit rates. This technique 

requires many rays to be in flight at once in order to fill the treelet ray buffers, as opposed 

to the typical single ray or small ray packet per core model. The state of each ray must 

be stored in global memory and passed along to other processors as needed. Ideally, this 

auxiliary ray state storage should not increase off-chip bandwidth consumption drastically, 

since reducing DRAM bandwidth is the end goal.

Both Navratil et al. [67] and Aila et al.[2] store treelet ray buffers in main memory. 

While this does generate extra DRAM traffic in the form of rays, it reduces geometry traffic 

by a greater amount. Navratil et al. report up to 32 x reduction in DRAM traffic for 

primary rays, and 60 x for shadow rays, while Aila et al. extend the work to massively 

parallel GPU architectures and report a tenfold reduction for difficult scenes rendered with 

global illumination.

3.2 Streaming Treelet Ray Tracing Architecture 
(STRaTA)

We expand on treelet techniques with hardware support for ray buffers and also take 

advantage of opportunities in the data access patterns imposed by the algorithmic changes 

for processing treelets. In contrast to previous work, we store the ray state in a buffer 

on-chip, therefore storing or retrieving rays does not affect the consumed DRAM bandwidth, 

however, the added on-chip data movement costs must still be carefully considered. We 

combine this with additional hardware specialization for reducing the instruction fetch and 

register file data movement using reconfigurable macro instruction pipelines, which are 

dynamically configured under program control (Section 7.1.2). These pipelines consist of 

execution units (XUs), multiplexers (MUXs), and latches that are shared by multiple thread 

processors. We construct two special purpose pipelines: one for bounding volume hierarchy 

box intersection and the other for triangle intersection. The essential benefit of this tactic 

is to replace a large number of conventional instructions with a single large fused box or 

triangle intersection instruction, similar to the techniques discussed earlier in this Chapter 

and in Table 3.2. The energy efficiency of these pipelines is similar to an ASIC design
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except for the relatively small energy overhead incurred by the MUXs and slightly longer 

wire lengths [58, 39, 80]. However, unlike ASICs, our pipelines are flexible, since they are 

configured under program control.

We will use TRaX as a starting point, since it has demonstrated impressive preliminary 

performance and is supported by powerful simulation and compiler toolchains [38]. These 

tools make the architecture, ISA, and API amenable to modifications as needed.

3 .2 .1  R a y  S tre a m  B u ffe rs

We adapt Aila’s approach by partitioning a special purpose ray stream memory that 

replaces some or all of the L2 data cache. This avoids auxiliary traffic by never saving ray 

state off-chip, at the cost of a lower total number of rays in flight, which are limited by the 

size of the ray stream partition. The TRaX architecture uses very simple direct-mapped 

caches, which save area and power over more complex associative caches. We assign treelets 

to be exactly the size of an L1 cache, and the BVH builder arranges the treelets into cache- 

aligned contiguous address spaces. Since the L1 only contains treelet data, this guarantees 

that while a TM is working on a specific treelet, each line in the T M ’s L1 cache will incur 

at most one miss, and will be transferred to the L1 only once.

We also modify Aila’s algorithm to differentiate triangle data from BVH data, and 

assign each to a separate type of treelet (see Figure 3.2). Note that triangle treelets are 

not technically a “tree,” but simply a collection of triangles in nearby leaf nodes. This 

ensures that any TM working on a leaf or triangle treelet is doing nothing but triangle 

intersections, allowing us to configure a specialized pipeline for triangle intersection (see 

Section 7.1.2). Similarly, when working on a nonleaf BVH treelet, the TM is computing 

only ray-box intersections, utilizing a box intersection pipeline.

The ray stream memory holds the ray buffers for every treelet. Any given ray buffer can 

potentially hold anywhere from zero rays up to the maximum number that fit in the stream 

memory, leaving no room for any of the other buffers. The capacity of each ray buffer is 

thus limited by the number of rays in every other buffer. Although the simulator models 

these dynamically-sized ray buffers as a simple collection data structure, we envision a 

hardware model in which they are implemented using a hardware managed linked-list state 

machine with a pointer to the head of each buffer stored in the SRAM. Link pointers for 

the nodes and a free list could be stored within the SRAM as well. This would occupy a 

small portion of the potential ray memory: not enough to drastically affect the total number 

of rays in flight, since it requires eight percent or less of the total capacity for our tested 

configurations. The energy cost of an address lookup for the head of the desired ray buffer,
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Figure 3.2: Treelets are arranged in to cache-sized data blocks. Primitives are stored in a 
separate type of “treelet” (red) differentiated from node treelets (blue).

plus the simple circuitry to handle the constant time push and pop operations onto the end 

of the linked list is assumed to be roughly equal to the energy cost of the tag and bank 

circuitry of the L2 cache that it is replacing.

Note that the order in which the ray data entries in these buffers are accessed within a 

TM is not important. All rays in a buffer will access the same treelet, which will eventually 

be cache-resident. Rays that exit that treelet will be transferred to a different treelet’s ray 

buffer. In this work, we employ singly linked lists which are accessed in a LIFO manner. 

This choice minimizes hardware overhead, allows a large number of these LIFO structures 

to co-exist in a single memory block, and removes the need to keep each structure in a 

contiguous address space.

The programmer fills the ray buffers with some initial rays before rendering begins, using 

provided API functions to determine maximum stream memory capacity. These initial rays 

are all added to the buffer for the top-level treelet containing the root node of the BVH. 

After the initial rays are created, new rays are added to the top treelet ray buffer, but only 

after another ray has finished processing. When a ray completes traversal, the executing 

thread may either generate a new secondary shadow ray or global illumination bounce 

ray for that path, or a new primary ray if the path is complete. Rays are removed from 

and added to the buffers in a one-to-one ratio, where secondary rays replace the ray that 

spawned them to avoid overflowing on-chip ray buffers. Managing ray generation is done 

by the programmer with the help of the API. For example, during shading (when a ray has
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completed traversal/intersection), if another ray must be generated as part of the shader, 
the programmer simply adds that ray with the same pixel ID and updated state (such as 
ray type) to the root treelet ray buffer, instead of immediately invoking a BVH traversal 
routine.

Each ray requires 48 bytes comprised of: ray origin and direction (24 bytes total), ray 
state (current BVH node index, closest hit, traversal state, ray type, etc. totaling 20 bytes), 
and a traversal stack (4 bytes, see Section 3.2.2).

3 .2 .2  T ra v e rsa l S tack
Efficient BVH traversal attempts to minimize the number of nodes traversed by finding 

the closest hit point as early as possible. If a hit point is known and it lies closer than 
the intersection with a BVH node, then the traversal can terminate early by ignoring that 
branch of the tree. To increase the chances of terminating early, most ray tracers traverse 
the closer BVH child first. Since it is nondeterministic which child was visited first, typically 
a traversal stack is used to keep track of nodes that need to be visited at each level. One can 
avoid a stack altogether by adding parent pointers to the BVH, and using a deterministic 
traversal order (such as always left first, then right), this, however, eliminates the possibility 
of traversing the closer child first and results in less efficient traversal.

Streaming approaches, such as the one used in this work, typically require additional 
memory space to store ray state. Rays are passed around from core to core via memory 
buffers. In our case, the more rays present in a buffer, the longer a TM can operate on 
that treelet, increasing the energy savings by not accessing off-chip memory during that 
computation. Storing the entire traversal stack with every ray has a very large memory 
cost, and would reduce the total number of rays in flight significantly. There have been 
a number of recent techniques to reduce or eliminate the storage size of a traversal stack, 
at the cost of extra work during traversal or extra data associated with the BVH, such as 
parent pointers [91, 53, 37].

We use a traversal technique in which parent pointers are included with the BVH, so 
full node IDs are not required for each branch decision. We do, however, need to keep track 
of which direction (left child or right child) was taken first at each node. To reduce the 
memory cost of keeping this information, we store the direction as a single bit on a stack, 
and thus a 32-entry stack fits in one integer. Furthermore, there is no need for a stack 
pointer, as it is implied that the least significant bit (LSB) is the top of the stack. Stack 
operations are simple bitwise integer manipulations: shift left one bit to push, shift right 
one bit to pop. In this scheme, after a push, either 1 is added to the stack (setting the LSB
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to 1, corresponding to left), or it is left alone (leaving the LSB as 0, corresponding to right). 
After visiting a node’s subtree, we examine the top of the stack. If the direction indicated 
on the top of the stack is equal to which side the visited child was on, then we traverse the 
other child if necessary; otherwise we are done with both children and pop the stack and 
continue moving up the tree.

3 .2 .3  R e c o n fig u ra b le  P ip e lin e s
One of the characteristics of ray-tracing is that computation can be partitioned into 

distinct phases: traversal, intersection, and shading. The traversal and intersection phases 
have a small set of specific computations that dominate time and energy consumption. If the 
available XUs in a TM could be connected so that data could flow directly through a series 
of XUs without fetching new instructions for each operation, a great deal of instruction 
fetch and register file access energy could be saved. We propose repurposing the XUs by 
temporarily reconfiguring them into a combined ray-triangle or ray-box intersection test 
unit using a series of latches and MUXs when the computation phase can make effective use 
of that functionality. The overhead for this reconfigurability (i.e. time, energy and area) 
is fairly low, as the MUXs and latches are small compared to the size of the floating-point 
XUs, which themselves occupy a small portion of the circuit area of a TM [58, 39, 81, 80].

Consider a hardware pipeline test for a ray intersection with an axis-aligned box. The 
inputs are four 3D vectors representing the two corners of the bounding box, the ray origin, 
and ray direction (12 floats total). Although the box is stored as two points, it is treated 
as three pairs of planes -  one for each dimension in 3D [91, 104]. The interval of the ray’s 
intersection distance between the near and far plane for each pair is computed, and if there 
is overlap between all three intervals, the ray hits the box, otherwise it misses. The bulk of 
this computation consists of six floating-point multiplies and six floating-point subtracts, 
followed by several comparisons to determine if the intervals overlap. Figure 3.3 shows a 
data-flow representation of ray-box intersection, which we use to determine how to connect 
the available XUs into a macroinstruction pipeline.

The baseline TRaX processor has eight floating point multiply, and eight floating point 
add/subtract units shared within a TM, which was shown to be an optimal configuration in 
terms of area and utilization for simple path tracing [52]. Our ray-box intersection pipeline 
uses six multipliers and six add/subtract units, leaving two of each for general purpose use. 
The comparison units are simple enough that adding extra ones as needed for the pipeline 
to each TM has a negligible effect on die area. The multiply and add/subtract units have 
a latency of two cycles in 65nm at 1GHz, and the comparisons have a latency of one cycle.
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Figure  3.3: Data-flow representation of ray-box intersection. The red boxes at the top 
are the inputs (3D vectors), and the red box at the bottom is the output. Edge weights 
indicate operand width.

The box-test unit can thus be fully pipelined with an initiation interval of one and a latency 
of eight cycles.

Ray-triangle intersection is typically determined based on barycentric coordinates [60], 
and is considerably more complex than ray-box intersection. We remapped the computation 
as a data-flow graph, and investigated several potential pipeline configurations. Because an 
early stage of the computation requires a high-latency divide (16 cycles), all of the options 
have prohibitively long initiation intervals, and result in poor utilization of execution units 
and low performance. An alternative technique uses Plucker coordinates to determine 
hit/miss information [88], and requires the divide at the end of the computation, but only 
if an intersection occurs. If a ray intersects a triangle, we perform the divide as a separate 
operation outside of the pipeline (Figure 3.4). Of the many possible ray-triangle intersection 
pipelines, we select one with a minimal resource requirement of four multipliers and two 
adders, which results in an initiation interval of 18, a latency of 31 cycles, and an issue 
width of two.
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Figure  3.4: Data-flow representation of ray-triangle intersection using Pliicker coordi­
nates [88]. The red boxes at the top are the inputs, and the red box at the bottom is the 
output. All edges represent scalar operands.

The final stage shades the ray without reconfiguring the TM pipeline. In our test scenes, 
Lambertian shading is a small portion of the total computation, and threads performing 
shading can take advantage of the leftover general purpose XUs without experiencing severe 
starvation. Alternatively, if shading were more computationally intensive or if the data 
footprint of the materials were large, the rays could be sent to a separate buffer or be 
processed by a pipeline configured for shading.

The programmer invokes and configures these phase-specific pipelines with simple com­
piler intrinsics provided in the API. Once a TM is configured into a specific pipeline, 
all of the TPs within operate in the same mode until reconfigured. Since the pipelines 
have many inputs, the programmer is also responsible for loading the input data (a ray 
and a triangle/box) into special input registers via the API and compiler intrinsics. This
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methodology keeps the instruction set simple and avoids any long or complex instruction 
words.

3 .2 .4  R e su lts
We use three ray-tracing benchmark scenes to evaluate the performance of our proposed 

STRaTA technique versus the TRaX baseline: Sibenik, Vegetation, and Hairball, as shown 
in Figure 3.5 (along with other benchmarks discussed later). All scenes are rendered using 
a single point-light source with simple path tracing [47], because this generates incoherent 
and widely scattered secondary rays that provide a worst-case stress test for a ray-tracing 
architecture. We use a resolution of 1024x1024, and a maximum ray-bounce depth of 
five, resulting in up to 10.5 million ray segments per frame. Vegetation and Hairball have 
extremely dense, finely detailed geometry. This presents challenges to the memory system, 
as rays must traverse a more complex BVH, and incoherent rays access large regions of 
the geometry footprint in unpredictable patterns. Sibenik is a much smaller scene with 
simpler architectural geometry, but is an enclosed scene forcing ray paths to reach maximum 
recursion depth before terminating.

We start with a baseline TRaX processor with a near-future L2 cache capacity of 4MB 
shared among the TMs on the chip (current top-end GPUs have up to 1.5MB of on-chip L2). 
The off-chip memory channels are capable of delivering a max bandwidth of 256GB/s from 
DRAM, similar to high-end GPUs of the time. Figure 3.6 shows performance in frames per 
second using this baseline configuration for a varying number of TMs. Recall that each TM 
consists of 32 thread processors, shared L1 instruction and data caches, and a set of shared 
functional units. On Hairball and Vegetation, performance quickly plateaus at 48 - 64 TMs 
for the basic non-streaming path tracer, and on Sibenik begins to level off rapidly around 
112 TMs. After these plateau points, the system is unable to utilize any more compute 
resources due to data starvation from insufficient off-chip DRAM bandwidth.

The STRaTA treelet-streaming model improves L1 hit rates significantly, but rather 
than remove the L2 cache completely, we include a small 512KB L2 cache in addition to 
the stream memory to absorb some of the remaining L1 misses. Figure 3.6 also shows 
performance for the proposed STRaTA technique with increasing numbers of TMs. Per­
formance does not differ drastically between the two techniques, and in fact, the STRaTA 
technique has higher performance once the baseline is bandwidth constrained. The baseline 
performance will always be slightly higher if neither technique is bandwidth constrained, 
since the baseline has no treelet overhead. For the remainder of our experiments, we use
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Sibenik Cathedral
80K triangles

Fairy Forest 
174K triangles

Crytek Sponza
262K triangles

Conference 
283K triangles

Buddha 
1.1M triangles

Sodahall 
2.2M triangles

Dragon 
870K triangles

Dragon Box 
870K triangles

Buddha Box 
1.1M triangles

Vegetation 
1.1M triangles

Hairball 
2.9M triangles

San Miguel 
10.5M triangles

F igure  3.5: Benchmark scenes used to evaluate performance for STRaTA and a baseline 
pathtracer.
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Sibenik — i—  Vegetation — *—  Hairball 

Performance (Frames per Second)

Number of TMs

Figure  3.6: Performance on three benchmark scenes with varying number of TMs. Each 
TM has 32 cores. Top graph shows baseline performance and bottom graph shows the 
proposed technique. Performance plateaus due to the 256GB/s bandwidth limitation.

128 TMs (4K TPs), representing a bandwidth constrained configuration with a reasonable 
number of cores for current or near-future process technology.

Figure 3.7 shows the on-chip memory access behavior for each scene. The solid lines 
show total number of L1 misses (and thus L2 cache accesses), while the dotted lines show the 
total number of accesses to the stream memory for our proposed STRaTA technique. The 
size of the L2 cache (baseline) and stream memory (STRaTA) are the same. Reducing the 
number of accesses to these relatively large on-chip memories reduces energy consumption. 
The significant increase in L1 hit rate also decreases off-chip memory bandwidth by up to 
70% on the Sibenik scene, and up to 27% on the larger scenes, which has an even more 
dramatic energy impact.

Note in Figure 3.7 that the number of L1 misses for the baseline technique increases (and 
thus L1 hit rate decreases) as the L2 capacity and frame rate increases. While this initially 
seems counterintuitive, there is a simple explanation. The L1 cache is direct mapped and 
shared by 32 threads, which leads to an increased probability of conflict misses. As the size 
of the L2 cache increases, each thread has a reduced probability of incurring a long-latency 
data return from main memory since it is more likely that the target access will be serviced 
by the L2 cache. The increased performance of each thread generates a higher L1 access
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Baseline L1 Misses 
STRaTA L1 Misses

STRaTA Stream Accesses
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Figure  3.7: Number of L1 misses (solid lines) for the baseline, and the proposed STRaTA 
technique and stream memory accesses (dashed line) on the three benchmark scenes. L1 hit 
rates range from 93% - 94% for the baseline, and 98.5% to 99% for the proposed technique.
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rate, causing more sporadic data-access patterns. The result is an increase in the number 
of L1 conflict misses. The number of stream accesses is constant with regards to the size of 
the stream memory, because it is only affected by the number of treelet boundaries that an 
average ray must cross during traversal. Since the treelet size is held constant, the stream 
access patterns are only affected by the scene. Increasing the stream size does, however, 
increase the average number of rays in each treelet buffer, which allows a TM to spend more 
time processing while the treelet’s subset of BVH data is cached in L1.

Figures 3.8 through 3.10 show the energy consumption per frame considering the L2 
cache vs. stream memory accesses and off-chip memory accesses for each scene, based on 
the energy per access estimates in Table 3.3. All energy estimates are from Cacti 6.5 [63]. 
Not surprisingly, the baseline L2 cache energy consumption increases as larger capacities not 
only cause higher L1 miss rates (Figure 3.7), but also consume more energy per access. The
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Baseline — * —  STRaTA 

Sibenik

>
<ucm>oE

1
W 1 6  -§ 1.4 
3 .  12
E 1 jB 0.8
%  0.6
cu 0.4
5 0.2 

0
2 4

L2/Stream Capacity (MB)

Figure  3.8: Effect of L2 cache size (Baseline) and stream memory size (STRaTA) on 
memory system energy for the Sibenik scene.

Baseline — * —  STRaTA

Vegetation

L2/Stream Capacity (MB)

Figure  3.9: Effect of L2 cache size (Baseline) and stream memory size (STRaTA) on 
memory system energy for the Vegetation scene.
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Baseline — * —  STRaTA

Hairball

L2/Stream Capacity (MB)

Figure  3.10: Effect of L2 cache size (Baseline) and stream memory size (STRaTA) on 
memory system energy for the Hairball scene.

Table 3.3: Estimated energy per access in nanojoules for various memories. Estimates are 
from Cacti 6.5.

L2/Stream  memories Inst. Cache Reg. File Off-Chip
512KB 1MB 2MB 4MB 8MB 16MB 4KB 128B DRAM
0.524 0.579 0.686 0.901 1.17 1.61 0.014 0.008 16.3

proposed STRaTA technique consumes significantly less energy, but follows a similar curve. 
Note that the L1 misses (L2 accesses) for the proposed STRaTA technique in Figure 3.7 
are to a fixed small, low energy 512KB L2 cache. The bulk of the energy is consumed by 
the stream memory accesses, the number of which is fixed, regardless of the stream memory 
size.

In addition to reducing memory traffic from the treelet-stream approach, we propose 
configuring the shared XUs into phase-specific pipelines to perform box and triangle in­
tersection functions. The effect of these pipelines is a reduction in instruction fetch and 
decode energy, since a single instruction is fetched for a large computation; and a reduction 
in register file accesses, since data is passed directly between pipeline stages. By engaging 
these phase-specific pipelines, we see a reduction in instruction fetch and register file energy 
of between 11% and 28%.
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The total energy used per frame for a path tracer in this TRaX-style architecture is 
a function of the size of the L2 cache or stream memory, and whether the phase-specific 
pipelines are used. If we combine the two enhancements, we see a total reduction in energy 
of the memory system (on- and off-chip memory and register file) and the instruction fetch 
of up to 38%. These reductions in energy come from relatively simple modifications to the 
basic parallel architecture with negligible overhead. They also have almost no impact on 
the frames per second performance, and actually increase the performance slightly in some 
cases. Although the functional unit energy has not changed, the significant reductions in 
energy used in the various memory systems, combined with low hardware overhead, implies 
that these techniques would be welcome additions to any hardware architecture targeting 
ray-tracing.

These results are promising, but turn out to be somewhat optimistic. We will see in 
Chapter 4 how the simple model for memory used in the TRaX simulator is masking some 
important behavior with respect to off-chip DRAM. We will rectify this simplification in 
Chapter 4, and show how to exploit more detailed knowledge of DRAM circuits in Chapter 5. 
With a more accurate DRAM model, the total energy savings is slightly less, which reinforces 
the importance of accurate memory simulations.



CHAPTER 4
DRAM

DRAM can be the primary consumer of energy in a graphics system, as well as the 
main performance bottleneck. Due to the massive size of geometry and materials in typical 
scenes, accessing DRAM is unavoidable. In Chapter 3, we discussed various techniques 
to reduce the number and frequency of DRAM accesses, primarily by increasing cache hit 
rates. While it is certainly true that reducing the number of DRAM accesses can be an 
effective means of reducing energy consumption and easing the bottleneck, a detailed look at 
the structure of DRAM circuits reveals that changing the data access patterns is an equally 
or more effective means of reducing energy costs. This is true even in cases where the raw 
data consumption increases over the baseline system. Furthermore, utilizing the maximum 
bandwidth capabilities of a DRAM system is essentially impossible for typical unmanaged 
access patterns. The more carefully we control DRAM access patterns, the more effectively 
we can utilize its capabilities.

The simulations performed in Section 3.2, and in many other works of architecture 
exploration, use a simplistic model for accessing DRAM. In the TRaX simulator, a DRAM 
access was assumed to have a fixed average latency and energy consumption. This can 
drastically misrepresent both time and energy consumption. The maximum bandwidth 
was naively limited by only allowing a certain number of accesses per cycle, ignoring 
access patterns and queueing. This would allow for any access pattern to achieve the 
maximum capable bandwidth, and would not buffer requests to accommodate bursts and 
calm periods. A simple DRAM model such as this may be sufficient for general-purpose 
or non-memory-bound application simulation, but if we are truly concerned with memory 
activity and wish to take advantage of DRAM characteristics, we must model the subtleties 
of its behavior. Modeling DRAM correctly is nontrivial, and can have very important 
implications on results.
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4.1 DRAM Behavior
DRAM is built with a fundamentally different mechanism than SRAM. SRAMs are 

optimized for speed and fabricated directly on the processor die, while DRAMs are optimized 
for data capacity, using a different fabrication process, and are typically off the main 
processor chip. DRAM uses a single capacitor for storage, and a single access transistor 
per bit. These bits are arranged in a dense 2D array structure sometimes called a “matrix” 
or “mat.” The access transistors are controlled by a “wordline,” and their outputs (the bit 
stored in the capacitor) are connected to the “bitline” (Figure 4.1).

Reading data from the cells is a complex and costly operation [46] involving:

• A ctivating  th e  w ordline - this connects the capacitor to the bitline so that its 
charge alters the voltage on the bitline.

• Sense am plifiers - since DRAMs are optimized for density, the capacitance of each 
bit is very small, unfortunately much smaller than the capacitance of the bit line [72]. 
To determine the value of the bit, special circuitry is required to detect the minute 
change in voltage created by such a small charge.

• P recharge  - in order to detect the value of the bit, the sense amplifiers require that 
the bitline rests at a certain specific voltage before connecting it to the cell’s capacitor.

F igure  4.1: A small portion of a DRAM mat. A row is read by activating its corresponding 
wordline, feeding the appropriate bits into the sense amplifiers (S.A.). In this case, the four 
sense amplifiers shown, using internal feedback, make up a small row buffer.
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Since reading the cell changes the voltage on the bitline, it must be reset (precharged) 
before every access.

•  C harge pum ps - the access transistor of a DRAM cell is an n-type metal-oxide- 
semiconductor (nMOS) transistor. Thus, reading a 1 value out of the capacitor will 
result in a lower than desirable voltage change on the bitline. Charge pumps are 
additional capacitors used to overdrive the voltage on the wordline, allowing the 
transistor to pass a strong 1. Charge pump capacitors must be recharged before 
another read can occur on that wordline.

• W riteback  - since reading a cell requires connecting its capacitor to the bitline, and 
thus altering its stored charge, the read process is destructive (the data are lost). 
The data are temporarily saved in auxiliary storage, but must be rewritten before the 
auxiliary storage is needed for saving other temporary data reads.

4 .1 .1  R ow  B u ffe r
Each of the above operations consumes energy and potentially takes considerable time. 

If the full process were required for every DRAM request, the cost would be very high. When 
the processor needs data from DRAM, it requests a single cache line at a time. Although 
typically larger than a single machine word, cache lines are still relatively small (64 bytes) 
compared to the working set of data. In reality, DRAM reads many bits in parallel (many 
more than a cache line). This massive overfetch is an attempt to amortize the significant 
read overheads across many requests. The overfetched data are stored in the previously 
mentioned auxiliary temporary storage, called the row buffer. The row buffer is made up 
of the sense amplifiers, and resides on the same memory chip. Data in the row buffer are 
called the “open row,” and if the address of a subsequent request happens to lie within the 
open row, the data are returned straight from the sense amplifiers. This is called a row 
buffer hit, and is significantly faster and less energy consumptive than opening a new row. 
Data in the row buffer will reside there until a DRAM request requires data from a different 
row. Since there is only one row buffer (per bank, see Section 4.1.2), the residing row must 
be evicted (closed) to make room for the new one.

4 .1 .2  D R A M  O rg a n iz a tio n
DRAM chips consist of multiple mats, which are then tiled on a multichip dual inline 

memory module (DIMM), and a full DRAM system consists of potentially multiple DIMMs. 
The data in such a system are organized into separate logical regions based on the type,
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layout, and number of chips and DIMMs. These regions can be identified by name in the 
address bits as follows:

• C hannel - each DIMM belongs to one channel. A channel has physical wire connec­
tions to the processor, and all channels can transfer data simultaneously.

• R ank  - each DIMM has one or more ranks. A rank is the set of chips on the DIMM 
that are activated in parallel to perform a single row read. Individual physical row 
buffers on each chip in the rank are combined to make a full logical row (typically 
4KB or 8KB total). Common DIMMs have one or two ranks.

• B ank - each rank consists of multiple banks. A bank is the set of rows within a rank 
that map to one row buffer. There can be one open row per bank.

• Row - each bank consists of multiple rows. One row at a time can be contained in 
the bank’s row buffer.

• C olum n - each row consists of multiple columns. The column bits in the address 
identify a single cache line; this is the unit of data transferred to the processor for a 
single request.

The address of a request is broken up to determine which channel, rank, bank, row, and 
column the data are stored in. Although only one cache line can be in transit per channel at 
any given time, the process of preparing a cache line for transfer can happen independently 
and simultaneously in multiple banks, to some extent (Figure 4.2). Depending on the access 
patterns of consecutive requests, many DRAM read operations may be in flight at once, 
hiding the large latency of opening a row, and allowing the channels to transfer data at 
high capacity.

Access patterns can vary widely depending on the application domain. While some 
applications will naturally produce good patterns, it is almost impossible to utilize the 
peak bandwidth capabilities of the memory channels without specifically regulating DRAM 
requests. In the worst case, an access pattern will read only a single column before requiring 
a new row. The memory controller (Section 4.2) can attempt to increase row buffer hit rates 
by enqueueing and delaying reads, then preferentially scheduling them to open rows, but 
there is a limit to its effectiveness with overly chaotic access patterns such as those found in 
ray-tracing. DRAM performance ultimately depends on the row buffer hit rate, i.e., reading 
as much data out of an open row as possible before closing it. We discuss a technique to 
help achieve this in Chapter 5.
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Figure  4.2: Simple DRAM access timing examples showing the processing of two simul­
taneous read requests (load A and B).
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4.2 DRAM Timing and the Memory Controller
The operations for reading a row of data discussed in Section 4.1 are, to some degree, 

individually controlled operations. There is no single “read” or “write” command that 
the processor can send to the DRAM devices. Each command requires a certain known 
amount of time, and the DRAM devices must obey timing constraints when performing 
certain sequences of those operations. For example, they should not attempt to perform a 
precharge command while still in the process of opening a row. Thus, in order to interface 
with DRAM, the processor must keep track of the state of the devices at all times, and 
issue commands in a meaningful order and at valid times. Figure 4.2 shows some simplified 
examples of the steps taken to process two buffered requests for data (addresses A and B), 
and the basic timing constraints for those steps. The four scenarios shown vary based on 
the addresses of the requests. For simplicity, we show just one rank, and two channels, 
banks, rows, and columns. Figure 4.2 (a) shows two accesses to the same row, (b): two 
accesses to separate channels, (c): different banks within the same channel, and (d): two 
separate rows within the same bank. The timing constraints [18] are abbreviated as follows:

• tR C D  - Row to Column Delay: the time between activating the row and data reaching 
the sense amplifiers.

• tC C D  - Column to Column Delay: the delay required between reading two columns 
from the row, limited by the rate at which the channel can transfer a column of data.

• tC A S  - Column Access Strobe: the delay between accessing a column of the open 
row and the start of transferring the data across the channel.

• tR A S  - Row Access Strobe: the delay between opening a row and the completion of 
writeback.

• tR R D  - Row to Row Delay: the delay between activating rows in separate banks.

• tR C  - Row Cycle: the delay between activating separate rows within the same bank.
Most processors dedicate considerable circuitry to the task of tracking the state of DRAM, 
and when and how to issue the necessary commands. This circuitry is called the memory 
controller.

The memory controller can also make intelligent decisions about the order in which 
memory requests are processed. They can buffer multiple pending requests in an effort to 
process them in a more efficient order, as well as to accommodate bursts of requests that
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arrive faster than serviceable. For example, if several requests reside in the buffer, some of 
them in one row, and some of them in another, the memory controller may service all of 
the requests to one row first, regardless of the order in which they arrived.

4.3 Accurate DRAM Modeling
TRaX’s naive DRAM assumptions would not capture any of the important behavior 

discussed above, and may cause egregious errors in the results. The mechanisms and 
constraints of DRAM can clearly have an effect on performance. If we are to truly study 
the effect of streaming data techniques on arguably the most important component of the 
memory hierarchy, we must model the cycle-to-cycle memory controller and DRAM chip 
state, and expose the following phenomena in a simulator:

• O pen ing /closing  rows, row buffer h its  vs. m isses - These can result in drastic 
differences in energy and delay.

• Scheduling - Reads can be serviced out of order, which results in opportunities for 
increasing row hits. This also affects on-chip cache performance.

• W rite  d ra in  m ode - Draining the write queue disables reads for a long period of 
time, introducing hiccups in DRAM access timing.

• R efresh  - Memory cells must be rewritten periodically or they lose data. This disables 
large sections of memory for a long period of time, introducing hiccups and consuming 
a large amount of energy.

• S epara te  m em ory  clock - A memory controller can make decisions in-between or 
slower than GPU/CPU cycles.

• A ddress m apping  policy - The way in which addresses are mapped to chan­
nels/banks/rows has a direct impact on how efficiently the data is accessed.

• B ackground energy - DRAM energy is not only a function of the number and 
pattern of accesses, but also of running time.

USIMM (Utah Simulated Memory Module) is a DRAM simulator with sophisticated 
modeling of timing and energy characteristics for the entire DRAM system [18], and has 
been used by a number of simulation systems as an accurate memory model [62, 66]. In 
this work, we incorporate USIMM into the TRaX simulator, and adapt it to operate with 
on-the-fly DRAM requests as they are generated, as opposed to operating on trace files.
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The result is a fully cycle accurate GPU system simulator with USIMM dynamically serving 
at the top of the memory hierarchy. We use this to further explore the problem of data 
movement in ray-tracing with a focus on the very important DRAM interface in Chapter 5.



CHAPTER 5
STREAMING THROUGH DRAM

A fair amount of recent work, including our own (see Chapter 3), aims to reduce off-chip 
data consumption, since DRAM can be the main performance bottleneck in a ray tracer and 
is a very large energy consumer (Figure 1.1, Table 3.1). Raw data consumption, however, 
does not tell the full story, since the internal structure of DRAM yields highly variable 
energy and latency characteristics depending on access patterns. A benchmark with a 
higher number of total accesses but a friendlier access pattern may outperform another 
benchmark that consumes less raw data. Essentially, DRAM efficiency comes down to row 
buffer hit rate: the higher the better.

As discussed in Chapter 4, the memory controller can attempt to increase the row buffer 
hit rate given whatever accesses the application generates, but with limited effectiveness. 
If the application consciously orders its data accesses to address the nature of DRAM, 
the memory controller can be vastly more successful in finding row buffer hits. STRaTA 
(Section 3.2) reorders memory accesses with the goal of increasing cache hit rates, but this 
also reveals a fortuitous opportunity when considering the complexities of DRAM.

To understand the key difference in DRAM access patterns between the baseline path 
tracer and STRaTA, we must examine the algorithmic source of the accesses. The baseline’s 
memory access pattern is determined by the nature of the BVH traversal algorithm. Since 
no special care is taken to govern memory access patterns, the result is chaotic accesses 
when global illumination inevitably generates many incoherent rays. Accesses that miss in 
the L1 and L2 are thus both temporally and spatially incoherent, generating continuous 
moderate pressure on all channels, banks, and rows in DRAM.

STRaTA remaps the ray-tracing algorithm to specifically target coherent L1 accesses. 
While a TM is operating on a certain treelet, all accesses will hit in the L1, except for the 
first to any given cache line. Ideally a TM will operate on the treelet for a prolonged period 
of time, generating no L2 or DRAM accesses. The accesses that do make it past the L1 occur 
right after a TM has switched to a new treelet; all threads within a TM will immediately
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begin reading cache lines for the new treelet, missing in the L1, and generating a very large 
burst of L2/DRAM accesses. While the small L2 cache in STRaTA may absorb some of 
this burst, the remainder that makes it to DRAM will have the same bursty structure, but 
will be no larger than the size of a treelet.

The optimal size of STRaTA’s treelets was determined experimentally to be as close to 
the capacity of the L1 cache as possible [50], which is 16KB. We can thus guarantee that 
the burst to load a treelet from DRAM is no larger than 16KB, however, depending on the 
BVH builder and treelet assignment algorithm, a treelet’s data may be scattered arbitrarily 
throughout memory. The only requirements of STRaTA’s (and most ray tracers’) BVH 
layout is that siblings reside next to each other in memory; we can rearrange the data at 
will so long as this restriction is met. We thus modify the BVH builder so that all nodes 
belonging to one treelet are stored in a consecutive address block. The result is that the 
large DRAM burst to load a treelet maps directly to just two rows (Figure 5.1).

Since the burst takes place over a short period of time, the memory controller’s read 
queues will fill with an abundance of same-row requests, making it trivial to schedule reads 
for row buffer hits. The memory controller’s address mapping policy places consecutive 
cache lines (columns) in the same row, and strides consecutive rows across the memory 
channels (Figure 5.1). This allows for the two rows making up a treelet to be transferred 
simultaneously from two separate channels (Figure 4.2(b)). We call this new modified 
version “STRaTA+.”

F igure  5.1: Treelets are arranged in contiguous data blocks targeted as a multiple of the 
DRAM row size. In this example treelets are constructed to be the size of two DRAM rows. 
Primitives are stored in a separate type of “treelet” differentiated from node treelets, and 
subject to the same DRAM row sizes.
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5.1 Analysis
We start with the baseline TRaX system discussed in Section 3.2.4, based on previous 

perform ance/area  explorations [52] (see Section 2.2), with 128 TMs, which results in 
4K total thread processors. To model near-future GPU DRAM capabilities, we configure 
USIMM for both the baseline and STRaTA+ to use GDDR5 with eight 64-bit channels, 
running at 2GHz (8GHz effective), for a total of 512GB/s maximum bandwidth. The GPU 
core configurations use a 1GHz clock rate.

We update the experiments performed in Section 3.2 with the improved DRAM simulator 
and with the new row-friendly data ordering for STRaTA+. We also include many more 
benchmark scenes (Figure 3.5). Since the mix of geometric complexity and data footprints 
can have a large impact on a ray tracer’s performance, it is imperative to test a wide range 
of scenes [3]. The scenes used include: architectural models (Sibenik, Crytek, Conference, 
Sodahall, San Miguel), scanned models (Buddha, Dragon), and nature/game models (Fairy, 
Vegetation, Hairball). The laser scan models are unlikely to be used alone in empty space 
in a real situation such as a movie or game, so we also include versions of them enclosed in 
a box, allowing rays to bounce around the environment.

Because STRaTA stores rays in on-chip buffers with finite capacity, rays must be gen­
erated and consumed in a one-to-one ratio (Section 3.2.1). This limits our test renderer to 
shading with nonbranching ray paths. To support more advanced shaders, the programmer 
could add more information to the per-ray state to determine the remaining rays yet to 
be generated. When one shading ray finishes, a new ray could be generated with updated 
state for the associated shading point. Increasing the data footprint of rays will reduce the 
number of them that fit in the stream memory, but our results indicate that the number 
of rays in flight could decrease by a fair amount without being detrimental to the system. 
Another option is to allow the on-chip ray buffers to overflow to main memory when full 
(for example Aila et al. store rays in main memory [2]), but this would require carefully 
regulating when and where the data is uploaded to DRAM in order to maintain the theme 
of intelligent access patterns. Since we do not focus on shading in this work, we leave this 
as a future exercise, discussed in Section 7.1.

5.2 Results
Table 5.1 shows a breakdown of various DRAM characteristics on each scene, as well 

as total running time in m s/fra m e ,  for the baseline and STRaTA+ techniques. Note 
that although STRaTA+ increases L1 hit rates, the lack of a large L2 cache can result in a 
greater number of total DRAM accesses and thus increased bandwidth consumption on some
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Table 5.1: DRAM performance characteristics for baseline vs. STRaTA+, where bold 
signifies the better performer. Read latency is given in units of GPU clock cycles. STRaTA+ 
DRAM energy is also shown as a percentage of baseline DRAM energy. For all columns 
except Row Buffer (RB) Hit Rate, lower is better.

Scene
Accesses

(M)
RB 

Hit Rate 
(%)

Baseline
Avg.

Latency
ms /  
Frame

Energy
(J)

Accesses
(M)

RB 
Hit Rate

(%)

S T R a T A +
Avg. ms /  

Latency Frame
Energy

(J)
Sibenik 39 69 39 21 1.7 15 84 31 23 0.98 (58% )
Fairy 22 62 49 12 1.1 14 83 45 16 0.77 (70% )

Crytek 59 44 60 31 3.5 52 84 35 34 2.0 (57% )
Conference 18 57 42 17 1.1 9 83 35 23 0.84 (76% )

Dragon 70 55 264 22 3.2 78 80 63 25 2.5 (78% )
Dragon Box 168 35 429 71 10.1 252 80 65 57 7.3 (72% )

Buddha 47 63 219 13 1.9 86 77 83 23 2.7 (142%)
Buddha Box 133 31 416 61 8.6 224 78 63 54 6.8 (79% )
Vegetation 148 43 346 56 8.2 160 77 53 51 5.4 (66% )

Sodahall 5 64 41 8 0.4 4.5 72 69 9 0.4 (100%)
Hairball 135 48 352 46 6.9 126 75 62 40 4.3 (62% )

San Miguel 218 27 352 108 14.8 323 60 169 94 13.7 (93% )

scenes. However, the coherent pattern of accesses generated by STRaTA+ increases the row 
buffer hit rate significantly on all scenes, and drastically on some (San Miguel, Buddha Box, 
Dragon Box). Raw bandwidth consumption, while an interesting metric, does not reveal 
other subtleties of DRAM access; the increase in row buffer hit rate reduces DRAM energy 
consumed on all but two outlier scenes (Buddha increases by 42% and Sodahall is tied), 
discussed further below.

As a secondary effect, increased row buffer hit rate can also lead to greatly reduced read 
latency, up to 85% on the Dragon Box scene. This can result in higher performance, even 
though STRaTA+ introduces some overhead in the traversal phase due to its lack of a full 
traversal stack (Section 3.2.2) and the need to detect treelet boundaries.

There are two notable outlier scenes: Buddha and Sodahall. Buddha is the only scene 
in which STRaTA+ consumes more DRAM energy than the baseline. The major reason 
for this is that Buddha requires the fewest total rays to render. The Buddha is the only 
object in the scene, so over half of the primary rays immediately hit the background and 
do not generate secondary bounces. The few rays that do hit the Buddha surface are likely 
to bounce in a direction that will also terminate in the background. Because of this, a 
disproportionate number of rays never leave the top level (root) treelet, and Buddha does
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not reach a critical mass of rays required for our ray buffers to function effectively. Hence, 
we also consider a more realistic scene by placing Buddha in a box.

When a TM switches to a treelet ray buffer, if there are not enough rays to keep all of its 
threads busy, many of the compute resources sit idle, effectively reducing parallelism. Even 
though STRaTA+ increases row buffer hit rates on Buddha, the increase in DRAM energy is 
partly background energy caused by the nearly doubled running time while threads sit idle. 
We note that DRAM energy is not only a function of the number and pattern of accesses, but 
it also has a dependency on the total running time (e.g. m s/fra m e  in Table 5.1), mostly 
due to the need for continuous refreshing of the DRAM data even when no read/write 
activity occurs, and because we use an open row memory controller policy [83] that keeps 
rows open (consuming energy) for as long as possible in order to improve row buffer hit 
rate.

Also note that the baseline has a relatively high row buffer hit rate on Buddha, so 
STRaTA+ is unable to make as large of a difference. The Dragon scene is similar to 
Buddha, but does not exhibit this problem. The baseline takes almost twice as long to 
render Dragon than Buddha, since Dragon fills a larger portion of the frame. This closes 
the gap in background energy between the two techniques. Dragon also results in more 
total rays, and has a smaller data footprint with fewer total treelets, and thus more rays on 
average in each buffer.

The other interesting outlier is Sodahall. Even though it has a large data footprint (2.2M 
triangles), it generates by far the fewest DRAM accesses. Most of the geometry is not visible 
from any one viewing angle, since it is separated into many individual rooms. The BVH 
does its job well, so only a small percentage of the total data is ever accessed. The pressure 
on DRAM is so low that background energy is the dominant factor for both STRaTA+ and 
the baseline. The viewpoint shown (Figure 3.5) has similar results to viewpoints inside the 
building.

In addition to reducing energy consumption, STRaTA+ can also increase performance 
scalability with the number of cores. Figure 5.2 shows performance for STRaTA+ with 
increasing numbers of TMs (dotted lines), compared to the baseline (solid lines) for a subset 
of benchmark scenes, and includes accurate DRAM modeling, unlike Figure 3.6. Since 
DRAM is the bottleneck in both cases, this data becomes much more revealing. Memory 
becomes a bottleneck much more quickly for the baseline than for STRaTA+, which is able 
to utilize more cores to achieve significantly higher performance. In fact, we were unable to 
find the plateau point for STRaTA+ for some scenes due to limited simulation time.
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Sibenik Baseline — ■—  Sibenik STRaTA - -
Crytek Basel i ne — I—  Crytek STRaTA - -+- -

Vegetation Baseline — * —  Vegetation STRaTA - -
Hairball Baseline — B—  Hairball STRaTA - -B- -

Number of TMs

Figure  5.2: Performance on a selection of benchmark scenes with varying number of TMs. 
Each TM has 32 cores. Performance plateaus due to DRAM over-utilization.

5.3 Conclusions
By deferring ray computations through streaming rays and by reordering the treelet 

data for DRAM awareness, we can greatly increase cache hit rates and improve the off-chip 
memory access patterns, resulting in row buffer hit rates increasing from 35% to 80% in the 
best case, DRAM energy up to 43% lower, and DRAM read latencies up to 85% faster.

More generally, we show that understanding DRAM circuits is critical to making evalu­
ations of energy and performance in memory-dominated systems. DRAM access protocols, 
and the resulting energy profiles, are complex and subtle. We show that managing DRAM 
access patterns (e.g. to optimize row buffer hit rates) can have a significantly greater 
impact on energy than simply reducing overall DRAM bandwidth consumption. These 
effects require a high-fidelity DRAM simulation, such as USIMM, that includes internal 
DRAM access modeling, and detailed modeling of the memory controller. The interaction 
between compute architectures and DRAM to reduce energy is an underexplored area, and 
we plan to continue to explore how applications like ray-tracing interact with the memory 
system. Especially interesting is the DRAM subsystem, because it is the primary consumer 
of energy in a memory-constrained application such as ray-tracing. In particular, one might 
develop a memory controller scheduler that is ray-tracing aware, and hide DRAM access 
optimizations from the programmer.



CHAPTER 6
TOOLS AND IMPLEMENTATION 

DETAILS
The primary tool used in this work is the simtrax architectural simulator and com­

piler [38]. As described in Spjut’s dissertation [92], simtrax users compile their C /C + +  
programs with our custom compiler backend, generating a TRaX assembly file that the 
simulator executes while tracking execution statistics cycle-by-cycle. In this work, we have 
made substantial upgrades to the various systems that make up simtrax.

A ssem bler
Originally, the simtrax assembler was designed to assist with hand-written assembly 
programs. These hand-written programs simply consisted of a sequence of instructions 
and labels, register renaming declarations, and comments, so the assembler did not 
need support for more advanced directives such as symbol arithmetic expressions [25], 
or even a data segment. Once a compiler was introduced using llvm [19], the assembly 
became far more complicated, and the assembler only supported a limited subset 
of valid assembly files, restricting the supported C + +  language features. In this 
work, we substantially upgrade the assembler to support the full format used by the 
compiler. This enables full C /C + +  features that were previously forbidden by the 
TRaX programming guidelines such as:

• Inheritance
• Templates
• Switch statements
• Globally-scoped objects
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ISA
The TRaX ISA was originally a fully custom simple RISC architecture. With the 
maturing of llvm, it became possible to create our own compiler backend and grow 
past writing assembly by hand. Rather than create a full backend, we merged the 
core TRaX characteristics with an ISA called Microblaze [107], since it is quite 
similar to the original TRaX design and was supported by an existing llvm backend. 
Unfortunately, the Microblaze backend support was dropped, and was quite buggy to 
begin with. For this work, we upgraded the ISA yet again to MIPS [40]. The MIPS 
llvm backend is vastly more robust and optimized, producing code up to 15% faster 
than Microblaze.

M SA
Imagination Technologies added SIMD extensions to the MIPS ISA called MSA [41]. 
We include support for these extensions in simtrax. MSA is a set of 4-wide vector 
instructions similar to SSE, and supporting it in the simulator allows for further 
investigation of competing or novel energy or performance improvement techniques. 
Particularly, packetized ray tracers very similar to those discussed in Section 2.1.2.1 
can be implemented for comparison.

Profiler
As part of the assembler upgrades mentioned previously, we provide support for the 
DWARF debugging information specification [25]. With debug symbols embedded in 
the assembly, the simulator can extract information about the source code associated 
with every instruction it executes. With this, we add a performance profiler to simtrax. 
Since the simulator has perfect execution information, the resulting profile is fully 
accurate, as opposed to most profilers, which rely on sampling techniques. An example 
of the profiler’s output is shown in Figure 6.1.

D ebugging
With the addition of debug symbols, the simulator can report far more useful in­
formation when the program it is executing crashes. Previously, if the program 
accessed an invalid memory address, for example, the simulator could only report 
which instruction attempted the bad access. Without source information, it can be 
very difficult to determine which portion of the source code is responsible for that 
instruction. With debug symbols, the simulator can report a much more helpful error
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main 100.00
| trax_m ain 100.00
| | shadeLambert 49.00
| | | BoundingV olum eH ierarchy::intersect 44.92
| | | | B o x ::in te rse c t 29.95
| | | | | Vector::vecMax 5.94
| | | | | V ec to r::opera to r*  5.48
| | | | | V ec to r::opera to r*  5.18
| | | | | Vector::vecM in 5.05
| | | | | V e c to r::o p e ra to r-  0.63
| | | | | V e c to r::o p e ra to r-  0.62
| | | | | H itR eco rd ::h it 0.30
| | | | | H itR eco rd ::h it 0.16
| | | | T r i : : i n t e r s e c t  7.15
| | | | | Cross 2.49
| | | | | Dot 1.14
| | | | | Dot 1.13
| | | | | Cross 0.65
| | | | | Dot 0.33
| | | | | Dot 0.17

F igure  6.1: Example simtrax profiler output running a basic path tracer. Numbers beside 
function names represent percentage of total execution time.

message, indicating which file and line the program crashed on. As future work, it 
would not be unreasonable to implement a full runtime debugger within the simulator, 
given that debug symbols are already fully extracted by the profiler.



CHAPTER 7
CONCLUSIONS AND FUTURE WORK

There are many avenues to explore in continuation of this work. Alternative methods 
of extracting data access coherence, aside from treelets, may prove beneficial. Acceleration 
structures not based on trees, such as regular grids, are intriguing because they are traversed 
in a deterministic order, allowing for the possibility of prefetching a stream of scene data 
without any decision making or complicated scheduling involved. This linear prefetched scan 
of the data could simply be repeated for each scan direction through the grid, performed 
on all rays traversing in that direction.

As discussed in Section 2.1.4, Keely uses reduced precision arithmetic to greatly simplify 
and speed up a BVH traversal pipeline. This should be applicable to almost any ray-tracing 
system, including STRaTA. As opposed to reconfiguring existing full precision execution 
units, STRaTA could use a smaller mix of general purpose XUs, for shading and other logic, 
and employ fixed-function traversal logic, since the circuitry is so small [48]. This would 
require reexamining the right mix of memory and compute resources to feed the compute, 
particularly since STRaTA uses a mixture that was mostly adapted from an existing baseline 
ray-tracing design.

Perhaps the largest avenue for improvement is to support more generalized shading. In 
Section 5.1, we discussed STRaTA’s limited shading capabilities. In the design of STRaTA, 
we were more concerned with traversal and intersection, since they have historically been the 
bottleneck in ray-tracing systems. Because of this, the ray-tracing benchmarks performed on 
STRaTA and the underlying TRaX architecture use relatively simple shading: Lambertian 
materials only, rendered with either primary visibility with hard shadows, or Kajiya-style 
path tracing [47]. Lambertian shading consists of a very simple calculation relative to 
traversing a ray through the full acceleration structure, and in the case of path tracing, 
also includes calculating the direction of the next global illumination reflected ray (a naive 
bidirectional reflectance distribution function (BRDF)). For the simple ray tracers executed
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on TRaX and STRaTA, we attribute only about 8% of total frame time to the shading phase 
of the algorithm [16].

7.1 Shading in STRaTA
Perhaps due to the large body of work greatly improving traversal and intersection, 

shading has recently come more under the spotlight [54, 29]. To be widely adopted, a system 
like STRaTA must support fully programmable shaders to enable more types of physical, 
as well as artistic materials. There are three problems a more advanced shader may present 
for STRaTA, which are either avoided or minimized by Lambertian path tracing:

1. Ray Buffer Overflow: rays are not always generated and consumed in a one-to-one 
ratio. Advanced shaders can create branching ray trees.

2. Shaders may require intensive computation or data fetch, warranting their own stream 
buffers and phase-specific pipelines.

3. Any state necessary to shade a ray must be saved with the ray.

7.1.1 R a y  B u ffe r O verflow
For Lambertian materials, a Kajiya path tracer casts at most two rays per shade point: 

one shadow ray, selected randomly among the light sources, and one global illumination 
ray which recursively continues the shading process. Since the shadow ray doesn’t create 
any further secondary rays, it is not considered a branch in the ray tree. More advanced 
shaders may not have this guarantee.

Consider the pseudocode for a glass material shader in Figure 7.1. This shader creates 
a branch in the ray tree, where two additional ray paths are required to shade a hit 
point (reflection ray and transmission ray). Those rays can potentially hit materials with 
branching shaders as well, and are not guaranteed to terminate like shadow rays, causing the 
ray tree to explode. Although this glass material has only a branching factor of two, other 
materials may generate an arbitrary number of branched rays. This presents a problem 
in STRaTA because the buffers that hold rays have no mechanism for handling overflow. 
The buffer is initially filled to capacity, and only when a ray finishes traversal (and is thus 
removed from the buffer), can the shader generate a single new ray to replace it. If the 
shader were to generate more than one ray at a time, the buffer would overflow.

STRaTA’s Lambertian shader currently handles this by first generating the shadow 
ray for a given shade point, and marking this ray with a single bit of state indicating
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1. //F re sn e l-S c h lic k  approxim ation
2. / /F _ r  = C o effic ien t of r e f le c te d  energy
3. / /F _ t  = C o e ffic ien t of tra n sm itte d  energy
4.
5. scen e -> in te rsec t(re flec tio n R ay )
6. scene-> in tersect(transm issionR ay)
7.
8. r e s u l t  = sh ad e (re flec tio n H it)  * F_r
9. + shade(transm issionH it) * F_t

F igure  7.1: Pseudocode for part of a glass material shader.

it is a shadow ray. When the shadow ray completes traversal, the shader is invoked 
again, recognizing it as a shadow ray, and generates the global illumination bounce ray 
for the original hit point with the appropriate state set. This works for simple Lambertian 
materials, since shadow rays are always the terminus of their path through the ray tree. It 
would not work when more advanced shaders require storing state for multiple ray subtrees 
simultaneously, as in the glass material (Figure 7.1 lines 8 - 9 ) .

The simplest way to handle ray overflow is to write any excess rays to DRAM imme­
diately as they are generated, but this would not align with STRaTA’s goal of carefully 
controlling memory access patterns. Alternatively, the on-chip ray buffer could be aug­
mented with a hardware sentinel routine that monitors its capacity, waiting for a high 
watermark. When the watermark is reached, the sentinel initiates a direct memory access 
(DMA) block transfer of many rays at once. These rays can be placed contiguously into 
one or more DRAM rows, making the write to DRAM, as well as the eventual read back, 
very efficient. The optimal size of the block transfer can be experimentally determined, and 
would likely be a multiple of the row buffer size.

As mentioned, rays will eventually need to be transferred back from DRAM to the 
on-chip buffer. The sentinel routine will also watch for a low watermark when the buffer is 
almost empty, and begin a DMA block read of rays. The proposed hardware sentinel hides 
ray spilling from the programmer, keeps the API simple, and prevents the compute cores 
from being unnecessarily involved in the transfers.

When the sentinel routine dumps to DRAM, this would necessarily stall any thread that 
needs to write rays to the buffer, introducing potentially long hiccups and energy bursts. To 
roughly analyze the effect of this, we execute a simple TRaX program that reads (or writes) 
a large block of data to consecutive addresses, using the appropriate number of threads to
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simulate the reported bandwidth of 48GB/s of STRaTA’s ray buffer memory [51]. This 
is the theoretical upper bound on the transfer rate between the ray buffer and DRAM, 
primarily limited by the need to update list pointers as the contents change. Under this 
access pattern, USIMM [18] reports an average row buffer hit rate of 99%, as expected, and 
bandwidth utilization of 47.5GB/s, very close to the target. We believe this represents a 
reasonable simulation of the conditions which a block transfer by the sentinel could achieve, 
and we can use this to estimate the impact on power draw and performance of the proposed 
modifications to the STRaTA system. Table 7.1 summarizes these results.

It is impossible to predict the mix of shaders used by any particular scene or ray tracer, 
so we cannot know how often the buffer will overflow or underflow without performing full 
tests. To more carefully control the possibility of rays thrashing in and out of DRAM, 
STRaTA’s scheduler could preferentially select rays to shade based on a known shader 
branching factor provided by the API. This would also require augmenting the design to 
buffer rays at shader points, not just treelet boundaries. This would enable the scheduler to 
generate and consume rays purely on-chip for a longer period of time, similar to Imagination 
Technologies’ PowerVR ray-tracing API [59].

7 .1 .2  S h a d in g  P ip e lin e s  a n d  S tre a m s
The original STRaTA design uses simple shading, which is handled by the leftover 

general purpose execution units after being fused into a box or triangle pipeline. The data 
footprint required for this simple shading is also unrepresentative of a real scene, including 
no textures. We use just a single hard-coded grey material for every triangle in the scene. 
As a result, the shading process in STRaTA does not disturb the caches at all. This is 
obviously unrealistic.

There are two synergistic advantages that STRaTA enables: fused function pipelines 
and cache-friendly data access. Traversal and intersection are naturally able to utilize these 
two advantages, but shading presents a separate challenge for each. First we will examine

Table 7.1: Simulated block transfer from the proposed ray buffer sentinel to DRAM. 
Results are gathered under the same simulated architecture as STRaTA [51]. 2MB 
represents half of the ray buffer capacity used in [51].

Transferred Power Transfer Transfer Row Buffer
Block Size Draw Rate Duration Hit Rate

(MB) (W) (GB/s) (ms)
2 34.5 47.5 0.04 99%
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the data coherence advantage. The bulk of data that a shader must access are typically 
textures or other data that are treated as a texture, such as bump maps or displacement 
maps. Luckily, existing graphics hardware has highly optimized custom texture support, 
including texture caches. Although little is known about their implementation, it is unlikely 
that any “treelet”-style clustering would improve their data access performance [35]. We 
will therefore assume texture data in STRaTA would be handled by such hardware. The 
remaining data associated with a shader should be relatively small, including a diffuse, 
ambient, and specular color, shader type, texture ID, etc. This data should fit within the 
16KB capacity of STRaTA’s L1 cache, requiring no thrashing for any given shader.

The other advantage of STRaTA, fused function pipelines, is made possible by the 
buffering of rays based on their category. Currently those categories are one of two: rays 
performing box intersection, or rays performing triangle intersection. With a sufficient group 
of rays ready to perform one type of action, the shared functional units can reconfigure in 
to that pipeline mode. Without a critical mass of rays, reconfiguring the pipelines for just 
one or two rays at a time would have very high overhead. In order to enable pipelines 
for shading, one might consider creating new categories of ray buffers, one for each shader 
type, e.g., Lambertian, glass, cloth, etc. After a ray has passed through the traversal and 
intersection phases, it could be placed in a new buffer for the corresponding material shader 
that was hit, and the scheduler will eventually select a thread multiprocessor (TM) to shade 
those rays.

Unlike traversal and intersection, the requirements for shading are very unpredictable, 
and can vary drastically from scene to scene. In fact, it is impossible to predict what any 
given shader may do, such as for one particular special effect for a movie [29]. Shaders are 
by nature programmable, but there are common themes throughout most shaders, such as 
a high occurrence of 3D vector operations including normalization, reciprocal, addition and 
subtraction, multiplication by a scalar, dot product, cross product, and many others. For 
example a Lambertian, glass, and metal shader all use dot product, and many of the other 
simple operations listed. We could construct full pipelines for the common shaders like 
Lambertian, but without prior knowledge of the shaders to be executed, it is impossible to 
accommodate them all. For this reason we propose creating functional unit configuration 
modes with multiple common operations. Perhaps one mode would consist of two dot 
product units and a vector addition/subtraction unit. This would tie up 6 multipliers and 
2 adders for the dot products, and 3 adders for the add/sub unit. Under the baseline TRaX 
configuration, this would leave 2 multipliers and 3 adders for general purpose use. Table 3.2
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summarizes the potential benefits for a variety of common 3D vector operations. With 
the right intelligent mixture of 3D vector operations, along with simpler multiply-add style 
fusion, advanced shaders should see significant energy reductions. Different shaders may 
be more amenable to different mixtures of units. The STRaTA system could offer multiple 
different mixtures for different purposes, avoiding becoming overly shader specific.

7 .1 .3  S to r in g  S h a d e r  S ta te
Since a single ray cast in STRaTA is a non-blocking operation that may be shared by 

multiple processors, any state associated with that ray, or any result that it may produce, 
must be stored with the ray so it can be later accessed for shading. For example, a pixel ID 
must be stored with every ray generated so that when shading is ultimately performed, the 
correct pixel value can be set. When path tracing with Lambertian materials only, the extra 
shading state that must be stored is quite simple, and consumes 48B in STRaTA [50]. This 
takes advantage of many assumptions that are built in to the algorithm, such as knowing 
that only one global illumination ray must be cast per shading point, so we don’t need to 
keep track of how many more rays must be generated. In contrast, an ambient occlusion 
shader may cast many rays per shade point [4], and we would need to store a counter with 
each ray so that we know when to stop generating them. In this particular example, the 
counter could be fairly small (just a few bits), but in general, we can not make assumptions 
about a ray’s required shading state.

Laine et al. discuss wavefront path tracing [54], which has a similar requirement that 
rays must be saved in memory instead of in registers, so that they may be passed among 
multiple processing kernels. The paper specifically addresses difficulties that arise when 
complex shaders are involved, including a 4-layer glossy car paint, noise-based procedural 
displacement maps, tinted glass, and diffuse+glossy surfaces. The total state for each ray 
path to handle complex shading of this nature is 212B, or 4.4x larger than that required 
in STRaTA.

Increasing the size of each ray results in a corresponding reduction in the number of 
them that can be stored in on-chip buffers. This reduction could potentially impact the 
performance of the STRaTA system, since a certain critical mass of rays is required to 
overcome the overheads of treelet processing. Data shows that STRaTA can tolerate a 2x 
reduction in the number of rays in flight (equivalent to a 2 x increase in ray size) with little 
impact on the energy advantage over the baseline [51]. Even a 4x reduction in active rays 
does not eliminate STRaTA’s energy advantage, and on some scenes it remains high. There
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is a performance penalty in terms of rays/second, ranging between 7% to 31%, depending 
on the scene, when the number of active rays is reduced fourfold.

Researchers have proposed hardware compression techniques to effectively increase the 
capacity or efficiency of caches [76], and memory [1, 86], which would likely prove useful 
for increasing the number of rays in flight in a STRaTA-like system. Specific context-aware 
data organization may also be effective, for example unit vectors need not consume three 
full 32-bit words [21]. A combination of ray data compression and intelligent DRAM spilling 
should allow STRaTA to handle arbitrary shading.

7.2 Conclusion
Ray-tracing has already become prevalent in offline rendering systems, due to its ease 

of use for high quality lighting simulation. We believe as processor technology continues 
to advance, if pushed in the right direction, ray-tracing will become prevalent in real-time 
systems as well. This dissertation addresses the high costs of data movement in processor 
designs, and explores techniques for reducing those costs for ray-tracing in terms of energy 
and time. For some applications, rays per second performance is the ultimate goal, so it may 
be tempting to overlook energy consumption; however, energy can be the limiting factor 
for improvements in processor performance. In the mobile domain, energy consumption is 
elevated to a primary concern, where finite battery capacity determines the usefulness of 
an energy-hungry application.

We started by designing a baseline platform called TRaX for exploring architectural 
innovations for ray-tracing. The baseline is designed for ease of use and programmability 
while achieving high performance in a small die-area budget. We then investigated the 
data movement in this ray-tracing system, and characterized the associated energy costs. 
We employ synergistic techniques that rethink the ray-tracing algorithm to reduce energy 
consumption in the instruction fetch, register file, last-level cache, and off-chip DRAM 
by reordering data accesses and rerouting compute kernel operands, without sacrificing 
performance. Next, we closely examined the nature of DRAM and the importance of 
modeling its subtle complexities in a simulator, particularly since it can be the performance 
bottleneck and largest consumer of energy. We reveal that the way in which DRAM is 
accessed can have a bigger impact on a ray-tracing system than the number of accesses. 
Finally, we exploit the behavior of DRAM by even further modifying data access patterns 
in our streaming ray tracer system. The result is a ray-tracing algorithm/architecture with
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a substantial reduction in energy consumption, and a vast improvement in performance 
scalability over basic architectures.

The STRaTA design presented demonstrates two improvements for ray-tracing that can 
be applied to throughput-oriented architectures. First, we provide a memory architec­
ture to support smart ray reordering when combined with software that implements BVH 
treelets. By deferring ray computations via streaming rays through intelligently blocked 
and reordered data, we greatly increase cache hit rates, and improve the off-chip memory 
access patterns, resulting in row buffer hit rates increasing from 35% to 80% in the best 
case, DRAM energy up to 43% lower, and DRAM read latencies up to 85% faster. Second, 
STRaTA allows shared XUs to be dynamically reconfigured into phase-specific pipelines 
to support the dominant computational kernel for a particular treelet type. When these 
phase-specific pipelines are active, they reduce instruction fetch and register usage by up 
to 28%. If we combine the treelet streaming and phase-specific pipeline enhancements, we 
see a total system-wide reduction in energy (including all caches, DRAM, register files, and 
compute) of up to 30%.

By understanding and taking advantage of DRAM behavior, we are able to much more 
effectively utilize its available bandwidth, reducing or eliminating the primary performance 
bottleneck. STRaTA is able to feed many more compute resources with data than a baseline 
system, enabling performance to better scale with the number of cores. While the baseline 
system’s performance peaks between 120 - 200 cores due to DRAM starvation, STRaTA 
continues to improve up to 320 cores and beyond, achieving up to 100% higher performance.
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