
SOME MODELS AND MEASURES FOR

LEARNING ON A BUDGET

by

Avishek Saha

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2012

Copyright c© Avishek Saha 2012

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Avishek Saha

has been approved by the following supervisory committee members:

Suresh Venkatasubramanian , Chair 4th October, 2012

Date Approved

Sanjoy Dasgupta , Member 27th October, 2012

Date Approved

Hal Daumé III , Member 16th August, 2012

Date Approved

Juliana Freire , Member 15th October, 2012

Date Approved

Ellen Riloff , Member 16th August, 2012

Date Approved

and by Alan L. Davis , Chair of

the Department of School of Computing

and by Charles A. Wight , Dean of the Graduate School.

ABSTRACT

Machine learning is the science of building predictive models from data that auto-

matically improve based on past experience. To learn these models, traditional learning

algorithms require labeled data. They also require that the entire dataset fits in the memory

of a single machine. Labeled data are available or can be acquired for small and moderately

sized datasets but curating large datasets can be prohibitively expensive. Similarly, massive

datasets are usually too huge to fit into the memory of a single machine. An alternative is

to distribute the dataset over multiple machines. Distributed learning, however, poses new

challenges as most existing machine learning techniques are inherently sequential. Addi-

tionally, these distributed approaches have to be designed keeping in mind various resource

limitations of real-world settings, prime among them being intermachine communication.

With the advent of big datasets machine learning algorithms are facing new challenges.

Their design is no longer limited to minimizing some loss function but, additionally, needs

to consider other resources that are critical when learning at scale. In this thesis, we explore

different models and measures for learning with limited resources that have a budget. What

budgetary constraints are posed by modern datasets? Can we reuse or combine existing

machine learning paradigms to address these challenges at scale? How does the cost

metrics change when we shift to distributed models for learning? These are some of the

questions that have been investigated in this thesis. The answers to these questions hold the

key to addressing some of the challenges faced when learning on massive datasets.

In the first part of this thesis, we present three different budgeted scenarios that deal

with scarcity of labeled data and limited computational resources. The goal is to leverage

transfer information from related domains to learn under budgetary constraints. Our pro-

posed techniques comprise semisupervised transfer, online transfer and active transfer. In

the second part of this thesis, we study distributed learning with limited communication.

We present initial sampling based results, as well as, propose communication protocols for

learning distributed linear classifiers.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1
1.1 Thesis Statement . 3
1.2 Organization of this Thesis . 4

2. RELEVANT WORK . 6
2.1 Transfer Learning . 6

2.1.1 Domain adaptation . 8
2.1.2 Multitask learning . 11

2.2 Budgeted Learning . 15
2.2.1 Semisupervised learning . 15
2.2.2 Online learning . 17
2.2.3 Active learning . 19

2.3 Distributed Learning . 23

PART I BUDGETED TRANSFER LEARNING . 27

3. SEMISUPERVISED TRANSFER . 28
3.1 Background . 29

3.1.1 Problem setup and notations . 29
3.1.2 EasyAdapt (EA) . 30

3.2 EA++: EA Using Unlabeled Data . 31
3.2.1 Motivation . 31
3.2.2 EA++: EASYADAPT with unlabeled data . 31
3.2.3 Implementation . 32

3.3 Generalization Bounds . 32
3.3.1 Define hypothesis classes for EA and EA++ 34
3.3.2 Relate empirical and expected error (for both source and target) 36
3.3.3 Relate source expected error and target expected error 36
3.3.4 Relate target expected error with source and target empirical errors . . 37
3.3.5 Bound the complexity of EA and EA++ hypothesis classes 38

3.4 Experiments . 40

3.4.1 Results on sentiment classification task . 40
3.4.2 Results on sequence labeling tasks . 43

3.5 Summary . 45

4. ONLINE TRANSFER . 47
4.1 Background . 49
4.2 Online Task Relationship Learning . 50

4.2.1 Alternating optimization . 52
4.2.2 Practical considerations . 55
4.2.3 Computational efficiency . 55

4.3 An Active Learning Extension . 56
4.4 Experiments . 57

4.4.1 Setup . 57
4.4.2 Task relationships learned . 57
4.4.3 Results . 58
4.4.4 Remarks . 61

4.5 Summary and Future Directions . 62

5. ACTIVE TRANSFER . 64
5.1 ALDA: Active Learning Domain Adapted . 66

5.1.1 Preliminaries . 66
5.1.2 Initializing the uncertainty sampler . 68

5.2 Leveraging Domain Divergence . 68
5.2.1 Hybrid oracle . 70

5.3 Online ALDA . 71
5.3.1 Mistake bounds . 73
5.3.2 Label complexity . 75

5.4 Experiments . 75
5.4.1 Setup . 75
5.4.2 B-ALDA results . 77
5.4.3 O-ALDA results . 79
5.4.4 Remarks . 80

5.5 Summary . 81

PART II DISTRIBUTED LEARNING . 84

6. A NEW MODEL FOR DISTRIBUTED LEARNING 85
6.1 Proposed Communication-efficient Model . 88
6.2 Two-party Protocols . 89

6.2.1 One-way communication . 89
6.2.2 Median-based two-way protocol for linear separators in R2. 93
6.2.3 Boosting-based two-way protocol for linear separators in Rd 102

6.3 Multiparty Protocols . 105
6.3.1 One-way communication . 106
6.3.2 Two-way communication . 107

6.4 Experiments . 110
6.4.1 Results for median-based protocol ITERATIVESUPPORTS 110

v

6.4.2 Results for boosting-based protocol WEIGHTEDSAMPLING 113
6.5 Summary . 119

7. CONCLUSION . 120
7.1 Summary of Contributions . 120
7.2 Future Challenges . 122

APPENDICES

A. SEMISUPERVISED TRANSFER . 124

B. DISTRIBUTED LEARNING . 131

REFERENCES . 135

DISSEMINATION OF THIS WORK . 151

vi

LIST OF FIGURES

3.1 Diagrammatic representation of feature augmentation in EA and EA++ 33

3.2 Loss functions for class +1, class −1 and their summation. 33

3.3 Test accuracy of SOURCEONLY, TARGETONLY-FULL, TARGETONLY, ALL,
EA, EA++ (with unlabeled data) for, (a) Dvd→Books (proxy A -distance=0.7616),
(b) Kitchen→Apparel (proxy A -distance=0.0459) . 42

3.4 Test accuracy of SOURCEONLY, TARGETONLY-FULL, TARGETONLY, ALL,
EA, EA++ (with unlabeled data) for, (a) PubMed-POS, (b) Treebank-Brown 44

4.1 Accuracy vs. epoch on 20newsgroups. 60

5.1 An illustration of the proposed ALDA framework. Domain adaptation can be
performed using any black-box unsupervised domain adaptation approach
(e.g., (Blitzer et al., 2006, Sugiyama et al., 2007)). The active learning block
can be any batch or online active learner. 67

5.2 An illustrative diagram showing the domain separator hypothesis wds sep-
arating source data from target data and the classifier uφ learned using the
unsupervised domain adapted source classifier. 69

6.1 3 support points chosen from UA, and the family of 0-error classifiers for A
parallel to hA. 95

6.2 Cases for either early termination, or for the direction of the normal to the
linear separator being forced counter-clockwise or clockwise. 97

6.3 Illustration of convex hull and pivoting rule. 99

6.4 Extending the basic protocol. 101

6.5 Red represents A and blue represents B. Positive and negative examples (for
all datasets) are denoted by ‘+’s and ‘◦’s, respectively. 111

6.6 Red represents A, blue represents B, green represents C and black represents
D. Positive and negative examples (for all datasets) are denoted by ‘+’s and
‘◦’s, respectively. 113

6.7 Communication cost vs size and dimensionality for Synthetic1 with two-
party protocol. 117

6.8 Communication cost vs size and dimensionality for Mushroom with two-
party protocol. 118

B.1 An example to prove the lower bound results for one-way communication
with linear separators. The figure on the left shows the distribution of the
negative points in DA for Case 1 and Case 2. The right figure zooms in on
only a small arc of the circle and shows what happens when B decides the
final classifier based on its single positive point b+ and all negative points
from DA. 132

viii

LIST OF TABLES

4.1 Description of methods being compared. 58

4.2 Task correlation of Synthetic for CMTL, OMTLLOG and OMTLVON with
epoch = 0.5 (single run with random data order). ID denotes the task ID. . . . 58

4.3 Accuracy for full training data (epoch = 0.5). 59

4.4 Number of mistakes with epoch = 0.5 for full training data. 60

4.5 Accuracy and labels queried with epoch = 0.5 for full training data with
active learning variants. 61

5.1 Proxy A -distances between some domain pairs in the sentiment data 76

5.2 Description of the methods compared . 77

5.3 Classification accuracies and number of labels requested for DVD→Books.
Results are averaged over 10 runs. Note: ID, SDA and FEDA are given
labels of all examples in the target pool. 78

5.4 Classification accuracies and number of labels requested for Kitchen→Apparel.
Results are averaged over 10 runs. Note: ID, SDA and FEDA are given
labels of all examples in the target pool. 79

5.5 AUC scores (AUC) and labels requested (Lab) for the Landmine dataset. . . 79

5.6 Classification accuracies (Acc), standard deviations (Std) and number of
labels requested for DVD→Books. Results are averaged over 20 runs (w.r.t.
different permutations of the training data). Note: ID, SDA and FEDA are
given labels of all examples in the target pool. 81

5.7 Classification accuracies (Acc), standard deviations (Std) and number of
labels requested for Kitchen→Apparel. Results are averaged over 20 runs
(w.r.t. different permutations of the training data). Note: ID, SDA and
FEDA are given labels of all examples in the target pool. 81

5.8 AUC scores (AUC), standard deviation (Std) and labels requested (Lab) for
the Landmine dataset. Results are averaged over 20 runs. 82

5.9 Number of mistakes made by ALSI and O-ALDA for Sentiment data. 82

6.1 Summary of results obtained for different hypotheses classes under an ad-
versarial model with one-way and two-way communications. All results
are for the noiseless setting. ν denotes the VC-dimension for the family of
classifiers. 88

6.2 Accuracy (Acc) and communication cost (Cost) of different methods for
two-dimensional noiseless datasets. 112

6.3 Accuracy (Acc) and communication cost (Cost) of different methods for
high-dimensional noiseless datasets. 112

6.4 Accuracy (Acc) and communication cost (Cost) of different methods for
two-dimensional noiseless datasets. 114

6.5 Mean accuracy (Acc) and communication cost (Cost) required by two-party
and four-party protocols for synthetic datasets. 116

6.6 Results for all protocols using Cancer (|D| = 683, d = 10) and Mushroom
(|D|= 8124, d = 112). The standard deviation of the accuracies over multi-
ple runs are insignificant and hence have been ignored in this table. 119

x

ACKNOWLEDGMENTS

It feels great to thank the many people whose support and constant encouragement over

the years made this thesis possible.

Foremost, I would like to thank my advisor Suresh Venkatasubramanian for the priv-

ilege, and the pleasure, of allowing me to work under him towards my PhD degree. His

immense knowledge, deep insight and supreme enthusiasm have been truly inspiring during

the course of this research work. I sincerely thank him, particularly for the freedom he gave

me and for all the faith he had in me. His enjoyable company and relentless support through

thick and thin have been an absolute honor.

I would also like to express my sincere gratitude to my committee members, Sanjoy

Dasgupta, Hal Daumé III, Juliana Freire, Ellen Riloff and fellow collaborator Jeff Phillips.

This thesis would not have materialized without their support.

There are many friends in Utah who made my PhD experience memorable and helped

me preserve my sanity during times of stress. A few of them deserve particular mention:

Piyush Rai (for countless enjoyable conversations on machine learning and (hindi) movies),

Niladrish Chatterjee (for enjoyable cooking and soccer sessions), Protonu Basu (for the

endless cups of chai), Anusua Trivedi (for the fun lady she is), Parasaran Raman (for

the much needed distractions), and John Moeller (for informative tidbits on life, maths

and otherwise). I thank all of them for making difficult times bearable and leisure times

cherishable.

I wish to thank my parents, Aveek Kumar Saha and Chandralekha Saha and my entire

extended family. Needless to say, this work would not have been completed without their

constant encouragement, love and support.

Finally, but most importantly, I feel deeply indebted to my dear wife, Namrata Dey, for

her understanding, patience and love. The past two years spent with her have been the best

times of my life. Her joyful spirit can light up the darkest of times. She is my peace in this

world of chaos. I hope she continues to encourage me in all my future endeavors.

CHAPTER 1

INTRODUCTION

“Big data” refers to datasets that are typically beyond the ability of a single (but pow-

erful) machine or a modern data management systems to store and analyze. Big data is

everywhere. Companies capture terabytes of information about customers, vendors, etc.

from transaction web logs. Millions of handheld devices act as networked sensors that

churn out a huge amount of information content. Microblogging and social networking

sites generate massive volumes of user modeled personalized feeds. Despite the advantages

of vast amounts of information that are contained in these datasets, the sheer size and

scale of these datasets pose significant challenges in automated extraction of information.

These big datasets need to be accurately captured and efficiently analyzed to mine valuable

information.

Machine learning is a branch of computer science that improves automatically by learn-

ing from past experience. For example, machines can learn to identify spam mails, can

recognize objects of interest from an image, identify probable occurrence of diseases by

analyzing patient profiles and can even learn to drive a car without manual intervention.

These algorithms specialize in finding patterns in datasets and thus, are crucial for au-

tomated analysis of massive chunks of data. Learning methods come in two flavors, (i)

supervised where the system learns from “labeled” data, and (ii) unsupervised where no

data labeling is required. Additionally, online learning algorithms learn on one data point

at a time. Usually online learning is favored for efficiency reasons. However, in many

cases, the problem settings are inherently online where new data arrives one at a time.

When learning a task, one possible approach is to design a (possibly sophisticated but

complex) model and train it on small toy datasets. However, in the presence of massive

datasets, an alternative approach that has gained much traction in recent years is to design

simple but highly scalable systems and train them on lots of training data. Indeed, the

2

advantages of huge amounts of training data are undeniable and have been highlighted

in (Halevy et al., 2009). These advantages, of learning on large quantities of data, are

conspicuous in many other fields as well, for example, information retrieval and machine

translation. Unfortunately, training data requires labels and this labeling requirement of

supervised learning is seldom met by big datasets. Curating and annotating these large

datasets demands massive amounts of human time and effort. Consider, for example, image

categorizers that require lots of manually annotated image data to learn an accurate model.

Manual tagging is costly and time consuming; but copious amounts of untagged images are

readily available from keyword based image search engines. Additionally, in many cases,

these datasets are so big that they seldom fit into the memory of a computer. This calls

for learning techniques that are allowed to either sample the data or see each data point

only once. Consider, for example, Google News which provides personalized news feed to

(millions of) subscribers. Each user/task has a small amount of data to start with but, when

taken together for all users, the total amount of data is huge. Moreover, it is infeasible to

store all news articles that interest all Google News readers and the learning algorithm is

allowed to see the data for each task only once and then make a prediction on it.

In recent years, huge increases in computing power has brought dramatic changes to

the field of machine learning. This has resulted in many new developments in machine

learning that aim to build on advances in multicore and distributed computing to tackle

challenges when learning at scale. However, traditionally the machine learning community

has assumed sequential algorithms that run on a single processor. Unfortunately, this

assumption no longer holds for big datasets. Moreover, in many cases, the data is inherently

distributed, being collected at geographically distant locations. Consider, for example, a

mobile network where sensors embedded in (millions of) individual phones collect data for

local classifiers, but each node is unable to see data collected at other nodes and hence,

needs to communicate in order to learn a global classifier. As a result, machine learning

techniques need to be designed that go beyond single-processor approaches and perform

well in a parallel setting or over a cluster of distributed machines.

This thesis is concerned with scenarios that arise when learning over big data. Learning

over large datasets differ from traditional learning settings and require different models and

measures of costs. Instead of addressing the issue of scalability of learning algorithms, in

3

this thesis, we focus on different cost metrics and learning models that seek to learn on a

budget. We believe that algorithms built on these principles and cost metrics address some

of the core issues of big data learning. Thus, our work can be seen as a stepping stone

towards designing scalable algorithms that learn under budgetary constraints. The need

for efficient data analysis on huge datasets is also drawing interest from other research

communities. In space research big telescopes generate astronomical amounts of image

data. In neuroscience a cubic millimeter of brain maps to a petabyte of data! Thus, with

the advent of big data, data analysis is undergoing a paradigm shift. When operating at

such huge scale, new cost metrics emerge that are useful for large scale learning algorithms

and reducing these cost metrics becomes a critical component in the overall performance

improvement of the learning system. We propose and develop new learning models and

measures that make learning possible and efficient when on a budget.

1.1 Thesis Statement
This thesis aims to explore some aspects of learning when on a budget. The chapters

that follow address (i) transfer learning strategies on a label budget, (ii) transfer learning

scenarios in online settings, (iii) transfer learning when labels are costly to acquire, and

(iv) distributed learning under limited or minimal communication. Specifically, we focus

on the following hypotheses:

1. strategies that leverage abundantly available unlabeled data to improve transfer learn-

ing.

2. strategies that learn transfer relationships from data rather than imposing a priori

assumptions on the model.

3. strategies that leverage transfer information to reduce label query costs in active

settings.

4. models and algorithms that seek to minimize communication when learning a global

classifier over data distributed across multiple locations.

4

1.2 Organization of this Thesis
The rest of the thesis is organized into two parts. In Part I, we present models for

transfer learning on a budget. In Part II, we study distributed models for learning classifiers

with low communication. These two parts comprise a total of six chapters. In the following,

we give an overview of each of these chapters.

Chapter 2 This chapter surveys existing literature on some areas of machine learning

relevant to this thesis. First, we provide a description of transfer learning. Next,

we present existing work on budgeted learning. We consider three types of budgetary

constraints, namely, scarcity of labels, limited availability of computational resources

and costs associated with querying labels. Thus, in this section, we describe existing

work on semisupervised learning, online learning and active learning. Thereafter, we

discuss prior work on models and methods for distributed learning.

Chapter 3 This chapter presents semisupervised approaches to transfer learning. We fo-

cus on domain adaptation, a subarea of transfer learning, and extend an existing

supervised domain adaptation algorithm (EASYADAPT) to leverage the usefulness

of unlabeled data. Our proposed algorithm is theoretically sound as shown by our

derived generalization bounds. In addition, we empirically demonstrate its superior

performance on sentiment classification and sequence labeling tasks.

Chapter 4 This chapter proposes an online algorithm for multitask learning. Most existing

work in multitask learning a priori assume some known form of task relatedness. In

this work, we show that we can instead learn the task relationships from the data.

Our formulation allows us to derive closed-form incremental update rules that are

amenable for online settings.

Chapter 5 Active learning strategies have been mostly proposed in the context of single

tasks. This chapter studies whether active learning learning techniques are useful in

transfer settings. More specifically, given a source domain (with labeled examples)

and a target domain (with unlabeled examples), can we learn a classifier in the

source and use this classifier to actively learn in the target? This work answers this

question in the affirmative and shows that active learning strategies indeed benefit

from information transferred from related domains, when available.

5

Chapter 6 Contrary to existing machine learning algorithms that assume that all of the

data is available at a single location, distributed machine learning algorithms can

learn a classifier over data that are geographically distributed over multiple locations.

One aspect of learning in a distributed fashion is to forego the need for a powerful

machine, particularly when designing computationally intensive algorithms on large

dataset, and instead learn using multiple low-end commodity hardware. The hope is

that multiple moderately powerful machines can leverage distributed processing tech-

niques to computationally outperform a single powerful machine based processing.

However, another aspect, which has been mostly unaddressed until now, is to reduce

communication between machines while carrying out distributed learning. In this

chapter, we present a new model and algorithms for distributed learning that aims

to minimize communication when learning a global classifier over data distributed

across multiple machines.

Chapter 7 Finally, this chapter concludes this thesis and provides future directions.

CHAPTER 2

RELEVANT WORK

In this chapter, we present background material that serves as a reference for the sub-

sequent chapters of this thesis. We start with transfer learning and explain key definitions

with examples. Next, we discuss learning under budgetary constraints where the budget

could be on labels or on computational resources. The three budgeted learning areas that

we highlight are semisupervised learning, online learning and active learning. Finally, we

explore the existing landscape of distributed learning.

2.1 Transfer Learning
First, we introduce some notations. Let X ⊂ Rd denote the instance space and Y

= {−1,+1} denote the label space. Let D denote a domain over some joint distribution

P(X ,Y). The marginal distributions of X and Y are denoted by P(X) and P(Y), respec-

tively and the conditional distributions are denoted by P(X |Y) and P(Y |X). In what follows,

most definitions are drawn from the excellent survey by Pan and Yang (2010) on transfer

learning. However, where appropriate, we deviate from the original definitions and make

necessary modifications.

Definition 1 (Domain Pan and Yang (2010)) A domain D is defined as the tuple {X ,P(X ,Y)},
where X represents the feature space of the set of instances X = {x1,x2, . . . ,xm} ∈X

sampled from the marginal probability distribution P(X). P(X ,Y) represents the joint

distribution over the instance and label space.

Example: Let us consider documents collected from multiple sources, namely, Wall Street

Journal (WSJ), movie reviews from IMDB (MOV), technical paper abstracts (TECH),

biomedical abstracts from PubMed (BIO). Here, the feature set (the bag of words) and

their dimensions are different. Additionally, the joint probability distributions are also

different. For example, the words “bulls” and “bears” have different meanings, frequency

7

of occurrences and labels in WSJ and MOV. Hence, WSJ, MOV, TECH and BIO are

different domains.

Definition 2 (Task Pan and Yang (2010)) Given a specific domain D = {X ,P(X ,Y)},
a task is represented by the tuple {Y , f (·)}, where Y denotes the label space and f (·)
denotes the predictive function to be learned by the task.

Note that that the goal of a predictive function is to predict the class label y given an

instance x. Hence, the predictive function f (·) is equivalent to the conditional probability

P(Y |X). In what follows, we will use the two interchangeably. Example: For WSJ the task

could be POS (part-of-speech) tagging, for MOV the task could be sentiment classification

(categorize reviews as positive or negative), for PUB the task could be drug identification

or NER (named entity recognition). Each of these tasks have a different label set. For

example, in PUB domain, the tasks NER and drug identification have different sets of

labels although the domain is the same. Hence, these are two different tasks.

Definition 3 (Transfer Learning (TL) Pan and Yang (2010)) Consider a learning task Ts

in source domain Ds and a learning task Tt in target domain Dt . The goal of transfer

learning is to learn a target function ft in the target domain with the help of the source

function fs learned in the source domain, where Ds 6= Dt and Ts 6= Ts.

Example: Use a POS tagger (source task Ts) trained on WSJ (source domain Ds) to learn

an NER (target task Tt) on PUB domain (target domain Tt).

Definition 4 (Domain Adaptation (DA)) Consider a learning task Ts in a source domain

Ds and a learning task Tt in a target domain Dt , where Ds 6= Dt but Ts = Tt . Let

Ls(∼ Ps(X ,Y)) and Lt(∼ Pt(X ,Y)) denote labeled data in source and target, respectively.

Suppose we have |Ls| = ls� |Lt | = lt (usually lt is very small or even zero). The goal of

domain adaptation is to learn a predictive function fs in source (using plenty of source

labeled data Ls and maybe some labeled data Lt from the target) such that fs reasonably

approximates ft and predicts well in the target.

According to the above definition, Ds 6=Dt implies either Xs 6=Xt or Ps(X ,Y) 6= Pt(X ,Y)

or both. In addition, Ps(X ,Y) 6= Pt(X ,Y) can be manifested either as Ps(Y |X)Ps(X) 6=

8

Pt(Y |X)Pt(X) which implies Ps(X) 6= Pt(X) (since in DA the conditional probability distri-

bution remains unchanged) or Ps(X |Y)Ps(Y) 6= Pt(X |Y)Pt(Y) which implies Ps(Y) 6= Pt(Y)

(since in DA the conditional probability distribution remains unchanged). The former is

known as covariate shift (Shimodaira, 2000) while the latter is called the class imbalance

problem (Chan and Ng, 2006). Example: An example of Xs 6=Xt is when POS taggers are

trained on English text data but need to be predicted on French text, whereas an example of

Ps(X ,Y) 6= Pt(X ,Y) is when POS tags are learned on WSJ domain and need to be predicted

for TECH domain.

Definition 5 (Multitask Learning (MTL)) Consider a learning task Ts in a source do-

main Ds and a learning task Tt in a target domain Dt , where Ds = Dt but Ts 6= Tt

(but are assumed to be related in some sense). Let Ls(∼ Ps(X ,Y)) and Lt(∼ Pt(X ,Y))

denote labeled data in source and target, respectively, such that both |Ls|= ls and |Lt |= lt

are very small. The goal of multitask learning is to simultaneously learn the predictive

functions fs and ft using the labeled data (ls+ lt) such that both fs and ft can predict well

individually on unseen test data.

Although the above definition of MTL is in context of two tasks, the more popular con-

vention is to consider multiple tasks which are related in some manner. The relations

between tasks are either assumed to be known a priori or can be learned from the data.

With reference to the above definition, Ts 6= Tt implies either Ys 6= Yt or fs 6= ft or both.

As we have already mentioned, equivalent representations of fs and ft are given by Ps(Y |X)

and Pt(Y |X). Hence, in MTL we have Ps(Y |X) 6= Pt(Y |X). Example: Given three datasets

of MOV, each of which has small amount of labeled data, the goal is to learn a sentiment

classifier on the first dataset, an NER tagger on the second dataset and a POS tagger on the

third dataset. In this case, P(X) is same for all but P(Y |X) or the predictor function varies

for each task.

2.1.1 Domain adaptation

Most existing domain adaptation techniques can be categorized as either an instance

re-weighting based approach or change of representation based approach. In addition,

domain adaptation techniques have been proposed in terms of learning the marginal or

9

conditional distributions, bayesian learning techniques and ensemble methods.

Instance re-weighted domain adaptation follows a re-weighting strategy for input data

points (i.e., the instances). This can be achieved by increasing the weights of source

instances that are close to the instances in the target domain, and decreases the weights

of source instances that are far away from the instances in the target domain. As a result,

the learner re-weights the (loss on the) instances of one domain to make it look similar to

the other domain. Other approaches include a principled method of using nonparametric

kernel density estimation (Shimodaira, 2000), transformation of the density ratio estimation

problem into a problem of predicting whether an instance is from the source domain or

from the target domain (Bickel and Scheffer, 2006, Zadrozny, 2004), transforming density

estimation into a kernel mean matching problem in a reproducing kernel Hilbert space

(Huang et al., 2007), and learning the instance ratio together with the classification model

parameters (Bickel and Scheffer, 2006). However, the class distributions may also be

different in the source and the target domains which is known as the class imbalance

problem (Chan and Ng, 2006). Class imbalance problems are usually addressed (Chawla

et al., 2002, Kubat and Matwin, 1997, Zhu, 2007) by oversampling the under-represented

classes and undersampling the over-represented classes. As a result, the resampled training

instances from the source domain have roughly the same class distribution as the data

instances from the target domain.

Another approach to domain adaptation is change of feature representations. Feature

representation based domain adaptation discovers a shared feature space either in the origi-

nal feature space (Blitzer et al., 2006, Pan et al., 2010a), or in the transformed subspace (Dai

et al., 2009, 2007a, Gupta et al., 2010, Ling et al., 2008, Long et al., 2010, Pan et al., 2010b,

Wang et al., 2009, Zhuang et al., 2011). The hope is that the source and target distributions

would be close to each other in this shared feature space. Feature correspondence, identified

by modeling the relationships between cross-domain features, are a popular approach to

discover shared features in the original feature space. On the other hand, dimensionality

reduction presents a transformed subspace obtained by extracting an underlying common

structure. Domain adaptation is caused due to differences in the joint distribution of the

source and the target. While the representation of the labels remain the same across

domains, the instances can have different feature representations. The existing feature

10

representation transfer learning methods focus on learning either the marginal distribution

or the conditional distribution for knowledge transfer. One popular technique is to assume

that under some linear transformation, the source and domain agree on a common repre-

sentation. Now the goal is to learn this linear transformation. This technique was formally

analyzed in Ben-David et al. (2006). The authors proved that the generalization bound for

domain adaptation is affected by the distance between the source and target domains. Satpal

and Sarawagi (2007) proposed a simple transformation that selects a feature subset that

minimizes an approximate distance between source and target distributions. The Structural

Correspondence Learning (SCL) algorithm by Blitzer et al. (2006), which built on key ideas

from Ando and Zhang (2005), obtained a low-rank representation amenable for domain

adaptation using unlabeled data from the target domain. The fact that the distance between

domains is indeed decreased by the low-rank representation of SCL has been empirically

shown in Ben-David et al. (2006).

Among other techniques for domain adaptation, learning the marginal distribution can

be achieved by Co-Clustering based Classification (CoCC) (Dai et al., 2007a) and Label

Propagation (Wang et al., 2009). Transfer of common association between feature clusters

and example classes, which can be regarded as learning the conditional distribution, can

be achieved by collaborative dual Probabilistic Latent Semantic Analysis (PLSA) (Zhuang

et al., 2010) and Matrix Tri-Factorization based classification (MTrick) (Zhuang et al.,

2011). Joint subspace Nonnegative Matrix Factorization (Gupta et al., 2010) is a method

for learning the marginal distribution only. It does not learn the conditional distribution

which makes it difficult to be applied to cross-domain classification tasks. The idea of

learning both the marginal and conditional distributions was pioneered in two methods on

cross domain distribution adaptation. They are kernel mapping (Zhong et al., 2009) and

dual knowledge transfer (Wang et al., 2011). Another proposed method (Dual Transfer

Learning or DTL) (Long et al., 2012)) simultaneously learns the marginal and conditional

distributions that exploits the duality between these two distributions which is a crucial step

in knowledge transfer.

Bayesian approaches proposed for domain adaptation usually constructed a prior using

labeled instances from the source domain and then estimated the model parameters for the

target domain. Li and Bilmes (2007) showed how this general prior can be instantiated

11

for generative classifiers and discriminative classifiers. A Bayesian prior for adapting a

maximum entropy capitalizer across domains was proposed in Chelba and Acero (2006).

Ensemble methods form another family of techniques for domain adaptation. A mixture

model of three components was proposed in Daumé and Marcu (2006). Of the three

components, one was shared by both the source and the target domains, one was specific

to the source, and one was specific to the target. A conditional expectation maximization

(CEM) algorithm was used to learn this three-component mixture model using labeled

data from both the source and the target. Storkey and Sugiyama (2006) considered a

more general mixture model. In their model, which was learned using the expectation

maximization (EM) algorithm, the source and the target domains shared more than one

mixture components and no labels from the target are required. A boosting based algorithm

to combine multiple weak learners so as to obtain a final domain adapted classifier was

proposed in Dai et al. (2007c).

2.1.2 Multitask learning

Existing work in Multi Task Learning (MTL) can be categorized into two broad areas,

(a) techniques that assume that the task parameters lie close to each other, and (b) tech-

niques that assume that multiple tasks share a common (possibly low dimensional) feature

space.

The notion of task parameters lying close to each other can be manifested as using either

a (i) regularized norm that brings the task parameters close, or (ii) imposing a common

prior/hyperprior on task parameters that enforces task closeness.

Regularized norm that brings the task parameters close: Evgeniou and Pontil (2004)

is the first work that generalized the notion of “regularization” from single task learning

settings to multitask learning and presented a kernel-based extension for Support Vector

Machine (SVM) based MTL. They followed the intuition of hierarchical Bayes and as-

sumed that all the weight vectors can be written as a summation of a mean weight vector

(w0) and a noise vector (vt) where the noise vectors are small when the tasks (subscripted

by t) are similar to each other. The tasks are related in a way that the true task models

are all close to some mean model w0 (which played the role of the mean of the Gaussian

used for hierarchical Bayes). The goal was to estimate all noise vectors vt as well as the

(common) w0 simultaneously. Evgeniou et al. (2005) also used regularization to extend

12

the aforementioned work in Evgeniou and Pontil (2004) to nonlinear classifiers using

kernel methods. The key observation was that the K tasks in Rd can be reduced to a

single task in RKd by choosing a suitable embedding into a common RKHS space. This

reduction allowed one to solve a multitask learning problem by running any kernel-based

single-task learning algorithm with a “multitask kernel” (defined in the aforementioned

papers). Regularization also played a role in clustering-based MTL. The Task-Clustering

(TC) algorithm (Thrun and O’Sullivan, 1996) was the first work to propose clustering of

related tasks. J. Abernethy and Vert (2006) assumed that the different tasks are in fact

clustered into different groups, and that the weight vectors of tasks within a group are

similar to each other. A key difference with Evgeniou et al. (2005), where a similar

hypothesis was studied, was that J. Abernethy and Vert (2006) did not assume that the

groups are known a priori and the goal was to both identify the clusters and to use them

for multitask learning. An important situation that motivated this hypothesis was the case

where most of the tasks are indeed related to each other, but a “few outlier tasks” are very

different, in which case it may be better to impose similarity or low-dimensional constraints

only on a subset of the tasks (thus forming a cluster) rather than to all tasks. Overall, the

formulation of J. Abernethy and Vert (2006) was not constrained to the euclidean norm

and considered arbitrary norms for penalization, thus generalizing the work of Evgeniou

et al. (2005). Some other works that also considered clustering-based multitask learning

are Kang et al. (2011), Xue et al. (2007a) and Xue et al. (2007b).

Imposing a common prior and hierarchical sharing of task parameters (Bayesian):

Hierarchical Bayesian approaches had been proposed in Bakker and Heskes (2003), Heskes

(2000). Bakker and Heskes (2003) adopted a hierarchical Bayesian approach in which

some of the model parameters are shared (the same for all tasks) and others are more

loosely connected through a joint prior distribution that can be learned from the data. They

used a mixture of Gaussians for the upper level distribution instead of a single Gaussian.

This leads to clustering the tasks, one cluster for each Gaussian in the mixture. A number of

approaches for learning multiple tasks were Bayesian, where a probability model capturing

the relations between the different tasks was estimated simultaneously with the model

parameters for each of the individual tasks. In Allenby and Rossi (1998), Arora et al. (1998)

a hierarchical Bayes model is estimated. First, it is assumed a priori that the parameters of

13

the T tasks to be learned are all sampled from an unknown Gaussian distribution. Then, an

iterative Gibbs sampling based approach is used to simultaneously estimate both the indi-

vidual functions and the parameters of the Gaussian distribution. In this model relatedness

between the tasks is captured by this Gaussian distribution: the smaller the variance of the

Gaussian the more related the tasks are. Zhang et al. (2005) proposed a unified probabilistic

framework, where the task parameters share a common structure through latent variables.

Other Bayesian based approaches include discovering latent hierarchy using Kingsman

Coalescents (Daumé III, 2009), stick breaking processes (already mentioned above) (Xue

et al., 2007a,b), and the Indian Buffet Process (IBP) (Rai and Daumé III, 2010). The IBP

model assumed that the tasks share a subspace and hierarchically modeled this assumption

using IBP to learn the multiple tasks. Semisupervised Bayesian approaches (Liu et al.,

2009) that built on Xue et al. (2007b) combined semisupervised learning with MTL with

the assumption that there exists a prior joint distribution over the parameters of the multiple

tasks. Finally, an online Bayesian method was proposed in Pillonetto et al. (2010).

When multitask learning is formulated as learning a common yet latent feature repre-

sentation, then most existing works can be divided into two categories: (i) feature learning

to discover a shared feature subset, and (ii) learning a low-dimensional linear/nonlinear

subspace.

Feature learning to discover a shared feature subset: The first paper (Argyriou et al.,

2007a) in this line of work used existing features to learn a new feature representation

by learning a K × d matrix that represented the coefficients of the learned features for

the K tasks. In addition, a 2− 1 norm had been enforced which resulted in sparsity of

feature selection. Argyriou et al. (2008), which is an extended version of Argyriou et al.

(2007a), additionally extended these results to non-linear classifiers (i.e., kernels) and also

proved theoretical convergence bounds for an alternating minimization algorithm proposed

in the shorter version. Argyriou et al. (2008) assumed that the tasks share a small subset

of features (via the feature matrix), and formulated the problem as a squared `2,1-norm

regularized nonconvex optimization problem. This was achieved by adding a mixed-norm

regularization term that favors a common sparsity profile in features shared by all tasks.

Other than (Argyriou et al., 2007a), the linear subspace assumption has also been exploited

(Rai and Daumé III, 2010) within a Bayesian setting where the authors use nonparametric

14

methods like IBP to both infer the dimensionality of the low-dimensional subspace and

additionally, enforce sparsity constraints. Argyriou et al. (2007b) used spectral techniques

to learn the low-dimensional feature space.

Learning a low-dimensional linear/nonlinear subspace: J. Abernethy and Vert (2006)

assumed an unknown low-dimensional subspace and penalized the trace norm of the weight

matrix which enforced a low-rank solution. Thus, their approach constrained the different

weight vectors to live in a low-dimensional subspace. Agarwal et al. (2010) generalized the

linear subspace assumption of the above to the assumption of a nonlinear subspace. The

key idea, which has also been exploited in standard manifold learning problems, was that

the data (and their labels) does not change arbitrarily but instead follow some well-defined

(in this case, manifold) structure. As a result, the parameters of related tasks must not vary

arbitrarily, but rather, vary smoothly as if lying on a low-dimensional manifold. Thus, the

proposed work removes linear constraints of the aforementioned papers and assumes that

the tasks instead share a nonlinear subspace. The framed optimization problem is solved

using an alternating minimization framework that learns the nonlinear subspace and task

parameters simultaneously as in Argyriou et al. (2007b)). First, all task parameters were

learned using a Single Task Learning (STL) method, and then these task parameters were

used to learn the initial task manifold. The task-manifold was then used to relearn the task

parameters using manifold regularization. Learning of manifold and task parameters was

repeated until convergence.

Modeling/Learning Task Relationships: Argyriou et al. (2007b) modeled the task re-

lationships using a function over the covariance matrix and used it to regularize the task

parameter (weight vector) matrix. This did not model the relationships but instead imposed

a structure by regularizing the covariance of the weight vector. Xue et al. (2007a,b) also

modeled task relationships. Zhang and Yeung (2010) presented a probabilistic approach

where the task relationships are not assumed a priori but instead learned from the data. On

this note, Zhang and Schneider (2010) addressed a similar setting where the probabilistic

approach was taken to simultaneously learn both task relationships as well as feature

structure with added benefits of `1 constraints that induced sparsity in the learned matrix.

Kang et al. (2011) discussed how to learn which are the relevant and related tasks for

multitask feature learning.

15

2.2 Budgeted Learning
2.2.1 Semisupervised learning

Semisupervised Learning (SSL) is a subtopic of machine learning that aims to learn

from both labeled and unlabeled data samples. However, in contrast to the transfer learning

paradigm where the labeled and unlabeled data instances are assumed to be drawn from dif-

ferent distributions, in semisupervised learning the labeled and unlabeled data are assumed

to be sampled from the same distribution. SSL approaches can be broadly categorized

as (i) generative models and hybrid models, (ii) self-training and cotraining based tech-

niques, (iii) low-density separator based approaches, and (iv) graph-based semisupervised

learning.

Generative models that use the Expectation Maximization (EM) algorithm have been

shown to perform better (Nigam et al., 2000) than their discriminative counterparts (Baluja,

1999). Discriminative models often perform better (Liang and Jordan, 2008) in terms

of classification accuracy when compared to generative models. On the contrary, gen-

erative models (Seeger, 2001) have proven useful in many machine learning algorithms

that estimate and build on the underlying unlabeled data distribution. Hybrid models

draw on the advantages of both generative and discriminative models to achieve improved

performances in semisupervised settings. Thus, Fujino et al. (2005) extend generative

mixture models using discriminative training approaches based on the maximum entropy

principle. Other similar examples include Callison-Burch et al. (2004), Miller and Uyar

(1997), Shahshahani and Landgrebe (1994).

Self training is a popular SSL method where the classifier is first trained with the

small amount of labeled data and then used to classify the unlabeled data. The most

confident unlabeled points and their predicted labels are added to the training set and

the classifier is retrained. Also known as self-teaching or bootstrapping, self-training has

been used for word sense disambiguation (Yarowsky, 1995), for identifying subjective

nouns (Riloff et al., 2003), dialogue classification (Maeireizo et al., 2004) and parsing

and machine translations (Rosenberg et al., 2005). On the other hand, cotraining (Blum

and Mitchell, 1998, Mitchell, 1999) initially divides the feature space into two subsets and

trains two separate classifiers, one each on the two subfeature sets, respectively. Thereafter,

in a manner similar to self-training, each classifier then classifies the unlabeled data and

16

instances on which both agree are the added to the training set. The classifier is then

trained with the new training data. Cotraining with EM (Co-EM) and other related methods

(Collins and Singer, 1999, Jones, 2005) for information extraction from text were based on

cotraining. A cotraining algorithm for canonical correlation analysis that needed only one

labeled point has been proposed in hua Zhou et al. (2007). The fact that cotraining also

works with a single labeled point (in the extreme case) has been theoretically justified

in Balcan and Blum (2006). A Probably Approximately Correct (PAC) style theoretical

analysis for cotraining has been provided in Dasgupta et al. (2001). Cotraining is based on

the assumptions that the features can be split into two sets, each subfeature set is sufficient

to train a good classifier, and that the two sets are conditionally independent given the

class. However, multiview models do not require the assumptions of cotraining but instead

require multiple classifiers to train on the same labeled data and make similar predictions

on the unlabeled data. Multiview learning has been applied to semisupervised regression

(Brefeld et al., 2006, Sindhwani et al., 2005) and structured output spaces (Brefeld et al.,

2005, Brefeld and Scheffer, 2006).

Another well known assumption in SSL is that the learned decision boundary passes

through low-density regions. Hence, the unlabeled data can be used to guided the linear

decision boundary away from dense regions. This forms the basis of Transductive SVMs

(TSVM) (Wang, 2007), an extension of SVMs with unlabeled data. TSVMs aim to place

the decision boundary away from the dense regions by finding a linear separator that

has maximum margin on the labeled and unlabeled data. Early algorithms (Bennett and

Demiriz, 1998, Demiriz and Bennett, 2000, Fung and Mangasarian, 2001) for SVMs did

not scale beyond a few hundred samples. SVM-light, a faster implementation that has

achieved much popularity was proposed in Joachims (1999). The TSVM training problem

has been framed as a semidefinite programming (SDP) in Bie and Cristianini (2003, 2006).

Gaussian process based semisupervised models for TSVMs have been proposed in Chu

et al. (2007b) and Lawrence and Jordan (2005).

Graph based methods for semisupervised learning have received much interest and

research contributions. Most graph-based SSL approaches can be commonly modeled as

a cost function to be optimized that contains a loss function and a regularizer. Hence, the

individual approaches differ in their choice of the loss function and the regularizer. Semisu-

17

pervised learning was posed as a graph MinCut problem in Blum and Chawla (2001). In

their approach, the positive labels acted as sources and negative labels acted as sinks and

the goal was to find a minimum set of edges necessary for flow from the sources to the

sinks. A discrete Markov Random Field based approach was attempted in Zhu et al. (2003).

But the inference problem in this case was rather difficult. A more difficult technique

that involved the computation of marginal probabilities of the discrete random field was

proposed in Getz et al. (2006). A loss function and Tikhonov regularizer based algorithm

was proposed in Belkin et al. (2004). Manifold regularization, another popular graph

regularization based semisupervised technique, was proposed in ?. Manifold regularization

was extended to kernels (Chapelle et al., 2003, Smola and Kondor, 2003) by showing that

the spectral transformation of a Laplacian results in kernels suitable for semisupervised

learning. Follow up work along these lines proposed the diffusion kernel (Kondor and

Lafferty, 2002) and the spectral graph transducer (Joachims, 2003). Additional work using

Markov random walks and density-sensitive connected graphs were explored in Szummer

and Jaakkola (2001) and Chapelle and Zien (2005), respectively.

2.2.2 Online learning

In online learning the learner predicts the label for each sample and after each prediction

the learner is presented with the true label. If the learner has made a mistake then it is

allowed to use the true label to improve its classifier. Thus, in online setting, the learner

incrementally improves its hypothesis and this continues as long as the learner receives new

samples. Examples of online learning include stock market prediction where the learner

predicts tomorrow’s value of some particular stock. The true value of the stock is known

the day after. Similarly, consider spam filtering where for each mail the inbox predicts

“spam” or “ham”. Whenever the inbox makes an incorrect prediction the user provides the

true label. In the above examples we consider the 0-1 loss. Other loss functions appropriate

in online settings are the absolute loss, the square loss, and the log loss (as discussed in

Cesa-Bianchi et al. (1997), Foster and Vohra (1993), Vovk (1990)). In online learning,

the performance of the online learner is measured by the number of mistakes made by the

learner.

The earliest known online algorithm is perceptron (Novikoff, 1962, Rosenblatt, 1958).

18

The problem of online learning and its mistake bound analysis also has its roots in the prob-

lem of predicting from expert advice which was first solved using the Weighted Majority

Algorithm (DeSantis et al., 1988, Littlestone and Warmuth, 1994, Vovk, 1990). An attribute

efficient algorithm, known as Winnow, was developed in Littlestone (1988). Winnow

algorithm had been extremely successful in practice for real-life applications. This spurred

follow-up work for noisy cases (Littlestone, 1991). Also, the winnow algorithm was further

improved in Auer and Warmuth (1998).

Some of the recent examples in the category of online algorithms include the Relaxed

Online Maximum Margin Algorithm (ROMMA) (Li and Long, 2002), the Approximate

Large Margin Algorithm (ALMA) (Gentile, 2001), the Margin Infused Relaxed Algorithm

(MIRA) (Crammer and Singer, 2003), the Naive Online Regularised-risk Minimisation

Algorithm (NORMA) (Kivinen et al., 2004), and the Passive Aggresive (PA) online al-

gorithm (Crammer et al., 2006). MIRA and PA are closely related. In fact, MIRA for

binary classification is identical to basic PA. However, MIRA was designed for separable

problems only, whereas PA applies to nonseparable problems. NORMA is based on a

stochastic gradient approach. Dredze et al. (2008) proposed a Confidence Weighted (CW)

online learning algorithm that used parameter-specific variable learning rates. This is

similar to Second Order Perceptron (SOP) (Cesa-Bianchi et al., 2005). Both the algorithms

maintained a weight vector and some statistics about previous examples. However, while

the SOP modeled certainty with feature counts, CW learning modeled uncertainty with a

Gaussian distribution.

Finally, Kalai and Vempala (2002) developed algorithms to solve online linear pro-

gramming, which is a specific type of online convex programming. These algorithms were

similar to the algorithms proposed in Singh et al. (2000) that applied gradient ascent to

repeated games. Additionally, there has been extensive work on regret in repeated games

and in the experts domain (Blackwell, 1956, Foster and Vohra, 1993).

There are several studies of online gradient descent and related update functions as pro-

posed in Cesa-Bianchi et al. (1997), Herbster and Warmuth (2001), Kivinen and Warmuth

(1997). These studies focused on prediction problems where the loss functions are convex

Bregman divergences. However, Zinkevich (2003) considered arbitrary convex functions in

problems that may or may not involve prediction. Additionally, stochastic gradient descent,

19

which is also a type of online gradient descent (proposed in Bottou and Bousquet (2008)),

has seen great success in large scale learning scenarios.

2.2.3 Active learning

Active learning is a subfield of machine learning where the learning algorithm is al-

lowed to choose the instances to be labeled. Or in other words, the learner queries the

labels of a subset of the training instance which, it thinks, are the most informative and

more beneficial to the learning process. As a result, active learning is also known by

other names such as Query Learning or Optimal Experimental Design (in the statistics

literature). For many supervised learning systems to perform well the learner must often be

trained on lots of labeled instances. However, in supervised learning tasks, such as speech

recognition and information extraction, the labeling process is difficult, time-consuming

and expensive. Active learning systems attempt to overcome the labeling bottleneck by

asking queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human

annotator). In this way, the active learner aims to achieve high accuracy using as few

labeled instances as possible, thereby minimizing the cost of obtaining labeled data. Active

learning is well-motivated in many modern machine learning problems where data may be

abundant but labels are scarce or expensive to obtain.

Existing techniques in active learning can be classified into three different types: (i)

membership query synthesis, (ii) stream-based selective sampling, and (iii) pool-based

active learning. In membership query learning, the learner may generate new unlabeled

instances from the underlying distribution of the input space and request their labels. Al-

though query synthesis fits many problem settings, it encounters a labeling problem whereby

the arbitrary instances generated de novo could be awkward to label, particularly if the

labeler (also called oracle) is a human annotator. In Lang and Baum (1992) member-

ship query learning was used with human oracles to train a neural network to classify

handwritten characters. In their experiments, many of the query images generated by the

learner contained no recognizable symbols but only artificial hybrid characters that had

no natural semantic meaning. In stream-based selective sampling (Cesa-Bianchi et al.,

2006), data points arrive in a streamed fashion sampled from the actual distribution and

the learner has to decide whether or not to query its label. This approach is also known as

20

sequential active learning. For uniform distribution over the input space, selective sampling

is similar to membership query learning. For nonuniform and (more importantly) unknown

distributions, the queries will be sensible as they come from a real underlying distribution.

In order to query an instance its informativeness measure is evaluated to make a biased

random decision such that more informative instances are more likely to be queried. Stream

based active learning bears similarity with online active learning strategies proposed in

Dasgupta et al. (2009) for perceptrons. In pool-based sampling, queries are selectively

drawn from a pool which is assumed to be static. Pool-based active learning (Lewis, 1995)

assumes that availability of a small set of labeled data and a large pool of unlabeled data.

Instances are queried in a greedy fashion, according to an informativeness measure used to

evaluate all instances in the pool. Whereas in stream-based active learning the learner scans

through the data sequentially and makes query decisions for each point in the stream, a pool

based learner evaluates and ranks the entire collection before selecting the best query.

The aforementioned types of active learning employ numerous different strategies to

estimate the informativeness of a sample. Uncertainty Sampling (Lewis, 1995) queries

those instances whose labels the learner is most uncertain about. A popular example

of an instance with the most uncertain label is the datapoint that lies to closest to the

current decision boundary. Query-by-committee (QBC) algorithm (Seung et al., 1992),

another query selection strategy, involves a committee of models that are all trained on

the current labeled set and vote on the labels of the current instances. The instance on

which the query disagrees the most is considered to be most informative sample. Muslea

et al. (2000) constructed a committee of two models by partitioning the feature space.

Query-by-boosting (Freund et al., 1997) and query-by-bagging (Abe and Mamitsuka, 1998)

employed the ensemble methods of boosting (Freund and Schapire, 1995) and bagging

(Breiman, 1996) to construct committees. Diversity among committee members has been

addressed in an ensemble-method proposed in Melville and Mooney (2004). In expected

model change, the learner selects the instances that would bring the greatest change to

the current model if the label for the selected instance was known. On the contrary,

expected error reduction measures how much the generalization error of the model is

likely to be reduced (and not how much it is likely to change) after the label of candidate

instance is queried. Generalization error can also be reduced indirectly by minimizing the

21

output variance using variance reduction strategies that sometimes might yield closed form

solutions.

Apart from traditional single task learning of linear and nonlinear classifiers, active

learning has also been extended to other machine learning problem settings. Active learning

for structured outputs (Roth and Small, 2006a,b) involve active learning strategies for pre-

diction of structured outputs. Active learning algorithms for sequence labeling tasks using

probabilistic sequence models like CRFs have been presented in Settles and Craven (2008).

Active learning for other structured output tasks have also been proposed for probabilistic

sequence models, such as Hidden Markov Models (HMMs) (Dagan and Engelson, 1995,

Scheffer et al., 2001) and probabilistic context-free grammars (Baldridge and Osborne,

2004). Many domains with incomplete feature information use active learning for feature

acquisition. Active feature learning allows the learner to request feature information but

incurs additional costs. Zheng and Padmanabhan (2002) proposed to impute the miss-

ing feature values and then acquire those values for which the model is least confident.

Incremental active feature acquisition (Melville and Mooney, 2004) acquired values for

a few salient features at a time. In an opposite scenario to active learning, known as

active class selection, a learner is allowed to query a known class label and obtaining

each instance incurs a cost. Several active class selection query algorithms have been

proposed in Lomasky et al. (2007). Most active learning strategies discussed apply to

supervised learning strategies that required labels for learning. Hofmann and Buhmann

(1998) proposed an active clustering algorithm that generated unlabeled instances that

improve clustering performance as compared to random sampling. An active variant of

constrained clustering is explored in Grira et al. (2005) where the learner is allowed to

query “must-link” and “cannot-link” constraints on similar or dissimilar images. Huang

and Mitchell (2006) proposed interactive acquisition of clustering constraints, whereas

Andrzejewski et al. (2009) addressed a similar problem for features in a topic modeling

setting. Active learning that builds on the clustering structure inherent in the data was

studied in Dasgupta and Hsu (2008).

The basic assumptions of active learning settings are too idealistic and may not hold

in many real-world settings. We describe a few directions that address practical extensions

of traditional active learning scenarios. An SVM based active learning strategy by Brinker

22

(2003) explicitly incorporated diversity among instances. Active learning usually assumes

that oracles are always correct. However, in real life, oracles can be noisy due to error in

experimental measurements or fatigue of a human annotator. Sheng et al. (2008) proposed

several heuristics that addressed oracle uncertainty. Donmez et al. (2009) allowed the anno-

tators to have different noise levels and queried only more reliable annotators in subsequent

iterations of the learning phases. Oracles with different noise can be analogously framed

as oracles with different costs. In order to minimize the overall cost of training an accurate

model simply reducing the number of labeled instances does not necessarily guarantee a

reduction in overall labeling cost. This has been addressed in Baldridge and Osborne (2004)

by prelabeling the instances in structured learning tasks like parsing. Kapoor et al. (2007)

proposed an approach that took into account the varying labeling costs while selecting

queries. Most work in active learning assumes that the object to be queried is similar to the

target labels to be learned. For example, in document classification the learner must query a

document and the oracle provides its label. Settles et al. (2008) introduced alternative forms

of query learning in the context of multiple-instance active learning. Vijayanarasimhan and

Grauman (2008, 2009) explored an approach that interleaved queries at varying levels of

granularity and cost. Raghavan et al. (2006) proposed tandem learning, an alternative query

framework that queries features and instances in tandem. Other methods that incorpo-

rated feature-based domain knowledge into supervised and semisupervised learning include

Druck et al. (2009), Haghighi and Klein (2006), Mann and McCallum (2010). Traditional

active learning has been proposed for single task learning settings. Reichart et al. (2008)

addressed a two-task active learning scenario and proposed the strategies of alternating

selection and rank combination for actively learning both tasks. Qi et al. (2008) proposed

active learning strategies for multilabel scenarios where images may receive multiple labels

from several binary classification tasks. Consider using the training set selected via active

learning for some model to be used to learn another model. Lewis and Catlett (1994)

showed that a training set constructed by an active naive Bayes learner using uncertainty

sampling can be used for decision tree classifiers. Tomanek et al. (2007) also showed that

information extraction data gathered by a MaxEnt model using QBC can be effectively

reused to train a Conditional Random Field (CRF). Hwa (2001) successfully reused natural

language parsing data selected by one type of parser to train other types of parsers. Finally,

23

in real-life scenarios active learning cannot go on forever and needs a stopping criterion.

Several methods based on the intrinsic measures of stability or self-confidence within the

learner (when active learning ceases to be useful) have been proposed in Bloodgood and

Vijay-Shanker (2009), Olsson and Tomanek (2009), Vlachos (2008).

2.3 Distributed Learning
Distributed machine learning has witnessed a recent surge in research interest. With the

success of MapReduce (Dean and Ghemawat, 2004) and more distributed models (tailored

to machine learning applications, such as, GraphLab (Low et al., 2012)) coming up, the

area of distributed learning is receiving research interest like never before. Earliest work on

distributed approaches for machine learning appeared in the mid and late nineties (Caragea

et al., 2000, Provost and Hennessy, 1996). This was followed by more work in the early half

of the last decade. The past few years have been the busiest in terms of research interests

and new contributions. However, actual interest in distributed learning predates the earliest

mentioned works but were mainly discussed in the related community of artificial intel-

ligence. At this point we note that the thrust of almost all works on distributed learning

was to minimize computation. Some of the early papers (Auer et al., 2002) do address

communication cost but none of them provide rigorous analysis or theoretical bounds.

Provost and Hennessy (1996) proposed the Distributed Rule Learning (DRL) where the

data is partitioned between K different nodes and the goal is communicate in order to learn

rules that appear satisfactory to all nodes. The authors assumed an invariant-partitioning

property which required that rules that are globally satisfied (over the entire data) also

appear satisfactory to at least one of the distributed nodes. The authors empirically jus-

tified the superior performance of DRL as compared to single node learners. Contrary

to another work (Provost et al., 1996) by the same authors, where the global classifier is

learned on expensive parallel machines, in this work the authors used a cluster of cheap

workstations to achieve their goals. Caragea et al. (2000) proposed a naive approach

for learning distributed SVMs where the nodes exchange respective support vectors and

iteratively learn new classifiers. However, their algorithm is based on recomputing the

vertices of the convex hull (of the positively and negatively labeled points on either side of

the hyperplane) which is exponential in dimension and hence, practically infeasible. Auer

24

et al. (2002) proposed a distributed model based on a single layer of parallel perceptrons

that required low computation and communication. These savings mainly resulted from

avoiding computation of high-precision analog weights of the perceptrons. A distributed

learning for probabilistic models on heterogeneous data sources was proposed in Merugu

and Ghosh (2005). The authors considered both horizontal and vertical partitioning of

data and additionally addressed privacy constraints. They proposed iterative algorithms for

model integration that built on maximum likelihood and maximum entropy. The problem

of anomaly detection in networks was addressed by Huang et al. (2006) using Principal

Component Analysis (PCA) over a distributed framework. Although their work aimed to

reduce the communication overhead, it was limited to their specific problem setting and did

not generalize to arbitrary classifiers. Their problem setup was similar to recent models of

distributed streaming (Cormode et al., 2008).

A different line of work looked at inferencing schemes for distributed learning mod-

els. Chu et al. (2007a), Kowalczyk and Vlassis (2005) proposed parallelization of EM

optimization algorithms. Newman et al. (2008) proposed two distributed Markov Chain

Monte Carlo (MCMC) sampling scheme for Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) – (i) a simpler localized Gibbs sampling, and, (ii) a more complicated hierarchical

Bayesian extension. A followup work (Asuncion et al., 2008) by the same authors proposed

an asynchronous algorithm for distributed Gibbs sampling with applications in distributed

LDA.

Distributed (or parallelized) versions of online algorithms have been addressed in Lang-

ford et al. (2009), Zinkevich et al. (2010). A lock-free, asynchronous approach to paral-

lelized stochastic gradient was discussed in Recht et al. (2011).

More recently, researchers have looked into MapReduce implementations for machine

learning algorithms. The first work to use MapReduce for machine learning was proposed

in Chu et al. (2007a). The key contribution was to show that machine learning algorithms

that fit the Statistical Query Model (Kearns, 1998) can be written in a “summation form”

that facilitates parallel implementation on MapReduce. The success of this paper formed

the basis for future development of Apache Mahout (Mahout, 2012), an open-source library

of machine learning algorithms on MapReduce. Other MapReduce based algorithms pro-

posed include parallel EM algorithms for online collaborative filtering (Das et al., 2007),

25

parallelized boosting (Palit and Reddy, 2010), MapReduce based distributed tuning of

machine learning algorithms (Ganjisaffar et al., 2011), MapReduce based k-means (Zhao

et al., 2009), distributed topic models (Newman et al., 2009), and distributed decision trees

(Ye et al., 2009), etc.

Despite the popularity and success of MapReduce as a scalable data-processing frame-

work, a number of researchers in the machine learning community consider MapReduce

to be unsuitable for machine learning applications (Low et al., 2012). The prime reasons

that have been highlighted are inefficacy of MapReduce for iterative computations (as most

machine learning algorithms proceed in iterations until convergence) and lack of support

for sparse dependencies (since many machine learning algorithms examine and update only

a small subset of the parameter variables, for example, when estimating the conditional

distribution of a random variable). Numerous alternatives have been considered, such as

Picolo (Power and Li, 2010), Dryad (Isard et al., 2007), MapReduce Online (Condie et al.,

2010), Twister (Ekanayake et al., 2010), Nexus (Hindman et al., 2009), Spark (Zaharia

et al., 2010), Surfer (Chen, Weng, He, and Yang, Chen et al.), Pearce et al. (Pearce et al.,

2010), OptiML (Chafi et al., 2011) and, more recently, GraphLab (Low et al., 2012) and

SystemML (Ghoting et al., 2011). However, all the proposed frameworks have drawbacks

of their own. While MapReduce and Dryad do not support iterative computations, their

extensions MapReduce Online, Twister, Nexus, and Spark, lack support for sparse asyn-

chronous dependencies. Picolo and Pearce et al. lack sequential consistency necessary to

ensure correctness of machine learning algorithms in distributed settings. GraphLab and

OptiML address most of the above concerns. However, none of these models address the

communication bottleneck in distributed machine learning settings.

Optimization lies at the heart of many machine learning algorithms. Hence, it is im-

perative that distributed optimization techniques need to be developed on which distributed

learning algorithms can be built. The Alternating Direction Method of Multipliers (ADMM)

is an existing framework, proposed much earlier in the 1970s, which has been shown

(Boyd et al., 2011) to be well suited for distributed convex optimization tasks. The method

combines the augmented Lagrangian method with dual-descent techniques to devise incre-

mental update rules that have convergence guarantees and are well-suited for distributed

scenarios. It can be applied to a wide variety of settings; for example, support vector

26

machines, sparse logistic regression, lasso, etc. Other distributed optimization algorithms

include distributed dual averaging (Duchi et al., 2010) and techniques proposed in Ouyang

and Gray (2011).

Online variants of distributed machine learning techniques have been addressed in

Dekel et al. (2010b). Researchers have proposed online variants of ADMM to learn ranking

functions in streamed settings (Duh et al., 2011). On the more applicative side, distributed

learning algorithms for specific problem settings have been designed for question answer-

ing (Sonntag, 2004) and natural language processing (Mann et al., 2009, McDonald et al.,

2010).

PART I

BUDGETED TRANSFER LEARNING

CHAPTER 3

SEMISUPERVISED TRANSFER

A domain adaptation approach for Natural Language Processing (NLP) tasks, termed

EASYADAPT (EA), augments the source domain feature space using features from labeled

data in target domain (Daumé III, 2007). EA is simple, easy to extend and implement as a

preprocessing step and most importantly is agnostic of the underlying classifier. However,

EA requires labeled data in both source and target, and hence applies to fully supervised

domain adaptation settings only. In this work, we propose a semisupervised approach to

leverage unlabeled data for EASYADAPT, which we call EA++, and theoretically as well

as empirically demonstrate its superior performance over EA. At this point we note that,

in this work supervised domain adaptation implies the presence of labeled data in both

source and target and unsupervised domain adaptation implies labeled data in only source.

In semisupervised domain adaptation, we also have access to both labeled and unlabeled

data in target.

As mentioned earlier, EA is remarkably general in the sense that it can be used as

a preprocessing step in conjunction with any base classifier. However, one of the prime

limitations of EA is its incapability to leverage unlabeled data. Given its simplicity and

generality, it would be interesting to extend EA to semisupervised settings. In this work,

we propose EA++, a coregularization based semisupervised extension to EA. We also

present Rademacher complexity based generalization bounds for EA and EA++. Our

generalization bounds also apply to the approach proposed in Evgeniou and Pontil (2004)

for domain adaptation setting, where we are only concerned with the error on target domain.

The closest to our work is a recent work (Chang et al., 2010) that theoretically analyzes

EASYADAPT. Their paper investigates the necessity to combine supervised and unsuper-

vised domain adaptation (which the authors refer to as labeled and unlabeled adaptation

frameworks, respectively) and analyzes the combination using mistake bounds (which

29

is limited to perceptron-based online scenarios). In addition, their work points out that

EASYADAPT is limited to only supervised domain adaptation. On the contrary, our work

extends EASYADAPT to semisupervised settings and presents generalization bound based

theoretical analysis which specifically demonstrate why EA++ is better than EA.

For example, Domain Adaptation Machine (DAM) (Duan et al., 2009) is a semisuper-

vised extension of SVMs for domain adaptation and presents extensive empirical results.

Nevertheless, in almost all of the above cases, the proposed methods either use specifics of

the datasets or are customized for some particular base classifier and hence, it is not clear

how the proposed methods can be extended to other existing classifiers.

There exists prior work on supervised domain adaptation (and multitask learning) that

can be related to EASYADAPT. An algorithm for multitask learning using shared pa-

rameters was proposed for multitask regularization (Evgeniou and Pontil, 2004) wherein

each task parameter was represented as sum of a mean parameter (that stays same for all

tasks) and its deviation from this mean. SVMs were used as the base classifiers and the

algorithm was formulated in the standard SVM dual optimization setting. Subsequently,

this framework was extended to online multidomain setting in Dredze et al. (2010). Prior

work on semisupervised approaches to domain adaptation also exists in the literature.

Extraction of specific features from the available dataset was proposed (Arnold and Cohen,

2008, Blitzer et al., 2006) to facilitate the task of domain adaptation. Co-adaptation (Tur,

2009), a combination of cotraining and domain adaptation, can also be considered as

a semisupervised approach to domain adaptation. A semisupervised EM algorithm for

domain adaptation was proposed in Dai et al. (2007b). Similar to graph based semisuper-

vised approaches, a label propagation method was proposed (Xing et al., 2007) to facilitate

domain adaptation.

3.1 Background
In this section, we introduce notations and provide a brief overview of EASYADAPT (Daumé

III, 2007).

3.1.1 Problem setup and notations

Let X ⊂ Rd denote the instance space and Y = {−1,+1} denote the label space.

Let Ds(x,y) be the source distribution and Dt(x,y) be the target distribution. We have a

30

set of source labeled examples Ls(∼ Ds(x,y)) and a set of target labeled examples Lt(∼
Dt(x,y)), where |Ls|= ls� |Lt |= lt . We also have target unlabeled data denoted by Ut(∼
Dt(x)), where |Ut |= ut . Our goal is to learn a hypothesis h : X 7→Y having low expected

error with respect to the target domain. In this work, we consider linear hypotheses only.

However, the proposed techniques extend to nonlinear hypotheses, as mentioned in Daumé

III (2007). Source and target empirical errors for hypothesis h are denoted by ε̂s(h, fs) and

ε̂t(h, ft), respectively, where fs and ft are the true source and target labeling functions.

Similarly, the corresponding expected errors are denoted by εs(h, fs) and εt(h, ft). We will

use shorthand notations of ε̂s, ε̂t , εs and εt wherever the intention is clear from context.

3.1.2 EasyAdapt (EA)

Let us denote Rd as the original space. EA operates in an augmented space denoted by

X̆ ⊂ R3d (for a single pair of source and target domain). For k domains, the augmented

space blows up to R(k+1)d . The augmented feature maps Φs,Φt : X 7→ X̆ for source

and target domains are defined as Φs(x) = 〈x, x, 0〉 and Φt(x) = 〈x, 0, x〉, where x and 0

are vectors in Rd , and 0 denotes a zero vector of dimension d. The first d-dimensional

segment corresponds to commonality between source and target, the second d-dimensional

segment corresponds to the source domain while the last segment corresponds to the target

domain. Source and target domain examples are transformed using these feature maps and

the augmented features so constructed are passed onto the underlying supervised classifier.

One of the most appealing properties of EASYADAPT is that it is agnostic of the underlying

supervised classifier being used to learn in the augmented space. Almost any standard

supervised learning approach (e.g., SVMs, perceptrons) can be used to learn a linear

hypothesis h̆ ∈ R3d in the augmented space. Let us denote h̆ = 〈gc, gs, gt〉, where each of

gc, gs, gt is of dimension d, and represent the common, source-specific and target-specific

components of h̆, respectively. During prediction on target data, the incoming target

sample x is transformed to obtain Φt(x) and h̆ is applied on this transformed sample.

This is equivalent to applying (gc + gt) on x. An intuitive insight into why this simple

algorithm works so well in practice and outperforms most state-of-the-art algorithms is

given in Daumé III (2007). Briefly, it can be thought to be simultaneously training two

hypotheses: hs = (gc + gs) for source domain and ht = (gc + gt) for target domain. The

31

commonality between the domains is represented by gc, whereas gs and gt capture the

idiosyncrasies of the source and target domain, respectively.

3.2 EA++: EA Using Unlabeled Data
As discussed in the previous section, the EASYADAPT algorithm is attractive because it

performs very well empirically and can be used in conjunction with any underlying super-

vised linear classifier. One drawback of EASYADAPT is its inability to leverage unlabeled

target data which is usually available in large quantities in most practical scenarios. In

this section, we extend EA to semisupervised settings while maintaining the desirable

classifier-agnostic property.

3.2.1 Motivation

In multiview approach to semisupervised learning (Sindhwani et al., 2005), different

hypotheses are learned using different views of the dataset. Thereafter, unlabeled data is uti-

lized to coregularize these learned hypotheses by making them agree on unlabeled samples.

In domain adaptation, the source and target data come from two different distributions.

However, if the source and target domains are reasonably close, we can employ a similar

form of regularization using unlabeled data. A prior coregularization based idea to harness

unlabeled data in domain adaptation tasks demonstrated improved empirical results (Duan

et al., 2009). However, their technique applies for the particular base classifier they consider

and hence, does not extend to other supervised classifiers.

3.2.2 EA++: EASYADAPT with unlabeled data

In our proposed semisupervised approach the source and target hypotheses are made

to agree on unlabeled data. We refer to this algorithm as EA++. Recall that EASYADAPT

learns a linear hypothesis h̆∈R3d in the augmented space. The hypothesis h̆ contains com-

mon, source-specific and target-specific subhypotheses and is expressed as h̆= 〈gc, gs, gt〉.
In original space (ref. section 3.1.2), this is equivalent to learning a source specific hypoth-

esis hs = (gc+gs) and a target specific hypothesis ht = (gc+gt).

In EA++, we want the source hypothesis hs and the target hypothesis ht to agree on the

unlabeled data. For an unlabeled target sample xi ∈Ut ⊂Rd , the goal of EA++ is to make

the predictions of hs and ht on xi, agree with each other. Formally, it aims to achieve the

32

following condition:

hs ·xi ≈ ht ·xi⇐⇒ (gc+gs) ·xi ≈ (gc+gt) ·xi

⇐⇒ (gs−gt) ·xi ≈ 0⇐⇒ 〈gc, gs, gt〉 · 〈0, xi,−xi〉 ≈ 0. (3.1)

The above expression leads to the definition of a new feature map Φu : X 7→ X̆ for

unlabeled data given by Φu(x) = 〈0, x,−x〉. Every unlabeled target sample is transformed

using the map Φu(.). The augmented feature space that results from the application of three

feature maps, namely, Φs(·), Φt(·) and Φu(·) on source labeled samples, target labeled

samples and target unlabeled samples are summarized in Figure 3.1.

As shown in Eq. 3.1, during the training phase, EA++ assigns a predicted value close

to 0 for each unlabeled sample. However, it is worth noting that during the test phase,

EA++ predicts labels from two classes: +1 and−1. This warrants further exposition of the

implementation specifics which is deferred until the next subsection.

3.2.3 Implementation

In this section, we present implementation specific details of EA++. For concreteness,

we consider SVM as the base supervised learner. However, these details hold for other

supervised linear classifiers. In the dual form of SVM optimization function, the labels

are multiplied with features. Since, we want the predicted labels for unlabeled data to be 0

(according to Eq. 3.1), multiplication by zero will make the unlabeled samples ineffective

in the dual form of the cost function. To avoid this, we create as many copies of Φu(x)

as there are labels and assign each label to one copy of Φu(x). For the case of binary

classification we create two copies of every augmented unlabeled sample and assign +1

label to one copy and −1 to the other. The learner attempts to balance the loss of the two

copies, and tries to make the prediction on unlabeled sample equal to 0. Figure 3.2 shows

the curves of the hinge loss for class +1, class −1 and their summation. The effective loss

for each unlabeled sample is similar to the sum of losses for +1 and −1 classes (shown in

Figure 3.2c).

3.3 Generalization Bounds
In this section, we present Rademacher complexity based generalization bounds for

EA and EA++. First, we define hypothesis classes for EA and EA++ using an alternate

33

EA++

EA

SRC SRC

TGTTGT

0

0

d d d

un

n

m

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

−uTGT0 uTGT

Figure 3.1. Diagrammatic representation of feature augmentation in EA and EA++
L
o
ss

L
o
ss

L
o
ss

(a)

(b)

(c)

Figure 3.2. Loss functions for class +1, class −1 and their summation.

formulation. Second, we present a theorem (Theorem 3.3.1) which relates empirical and

expected error for the general case and hence, applies to both the source and target domains.

Third, we prove Theorem 3.3.2 which relates the expected target error to the expected

source error. Fourth, we present Theorem 3.3.3 which combines Theorem 3.3.1 and

Theorem 3.3.2 so as to relate the expected target error to empirical errors in source and

target (which is the main goal of the generalization bounds presented in this work). Finally,

34

all that remains is to bound the Rademacher complexity of the various hypothesis classes.

3.3.1 Define hypothesis classes for EA and EA++

Our goal now is to define the hypothesis classes for EA and EA++ so as to make the

theoretical analysis feasible. Both EA and EA++ train hypotheses in the augmented space

X̆ ⊂ R3d . The augmented hypothesis h̆ is trained using data from both domains, and

the three subhypotheses (gc + gs + gt) of d-dimension are treated in a different manner

for source and target data. We use an alternate formulation of the hypothesis classes and

work in the original space X ⊂ Rd . As discussed briefly in section 3.1.2, EA can be

thought to be simultaneously training two hypotheses hs = (gc + gs) and ht = (gc + gt)

for source and target domains, respectively. We consider the case when the underlying

supervised classifier in augmented space uses a square L2-norm regularizer of the form

||h̆||2 (as used in SVM). This is equivalent to imposing the regularizer (||gc||2+ ||gs||2+
||gt||2) = (||gc||2 + ||hs− gc||2 + ||ht− gc||2). Differentiating this regularizer w.r.t. gc
gives gc = (hs+ht)/3 at the minimum, and the regularizer reduces to 1

3(||hs||2+ ||ht||2+
||hs−ht||2). Thus, EA can be thought to be minimizing the sum of empirical source error

on hs, empirical target error on ht and this regularizer. The cost function QEA(h1,h2)

can now be written as:

αε̂s(h1)+(1−α)ε̂t(h2)+λ1||h1||2+λ2||h2||2+λ ||h1−h2||2

and (hs,ht) = argmin
h1,h2

QEA (3.2)

The EA algorithm minimizes this cost function over h1 and h2 jointly to obtain hs and

ht. The EA++ algorithm uses target unlabeled data, and encourages hs and ht to agree

on unlabeled samples (Eq. 3.1). This can be thought of as having an additional regularizer

of the form ∑i∈Ut (hs(xi)− ht(xi))
2 in the cost function. The cost function for EA++

(denoted as Q++(h1,h2)) can then be written as:

αε̂s(h1)+(1−α)ε̂t(h2)+λ1||h1||2+λ2||h2||2+λ ||h1−h2||2

+λu ∑
i∈Ut

(h1(xi)−h2(xi))
2 (3.3)

Both EA and EA++ give equal weights to source and target empirical errors, so α turns out

to be 0.5. We use hyperparameters λ1, λ2, λ , and λu in the cost functions to make them

35

more general. However, as explained earlier, EA implicitly sets all these hyperparameters

(λ1, λ2, λ) to the same value (which will be 0.5(1
3)=

1
6 in our case, since the weights in the

entire cost function are multiplied by α = 0.5). The hyperparameter for unlabeled data (λu)

is 0.5 in EA++. We assume that the loss L(y,h.x) is bounded by 1 for the zero hypothesis

h = 0. This is true for many popular loss functions including square loss and hinge

loss when y ∈ {−1,+1}. One possible way (Rosenberg and Bartlett, 2007) of defining

the hypotheses classes is to substitute trivial hypotheses h1 = h2 = 0 in both the cost

functions which makes all regularizers and coregularizers equal to zero and thus, bounds

the cost functions QEA and Q++. This gives us QEA(0,0) ≤ 1 and Q++(0,0) ≤ 1

since ε̂s(0), ε̂t(0) ≤ 1. Without loss of generality, we also assume that final source and

target hypotheses can only reduce the cost function as compared to the zero hypotheses.

Hence, the final hypothesis pair (hs,ht) that minimizes the cost functions is contained in

the following paired hypothesis classes for EA and EA++,

H := {(h1,h2) : λ1||h1||2+λ2||h2||2+λ ||h1−h2||2 ≤ 1}

H++ := {(h1,h2) : λ1||h1||2+λ2||h2||2+λ ||h1−h2||2

+λu ∑
i∈Ut

(h1(xi)−h2(xi))
2 ≤ 1}

(3.4)

The source hypothesis class for EA is the set of all h1 such that the pair (h1,h2) is in H .

Similarly, the target hypothesis class for EA is the set of all h2 such that the pair (h1,h2)

is in H . Consequently, the source and target hypothesis classes for EA can be defined as:

J s
EA := {h1 : X 7→ R,(h1,h2) ∈H } and

J t
EA := {h2 : X 7→ R,(h1,h2) ∈H } (3.5)

Similarly, the source and target hypothesis classes for EA++ are defined as:

J s
++ := {h1 : X 7→ R,(h1,h2) ∈H++} and

J t
++ := {h2 : X 7→ R,(h1,h2) ∈H++} (3.6)

Furthermore, we assume that our hypothesis class is comprised of real-valued functions

over an RKHS with reproducing kernel k(·, ·),k :X ×X 7→ R. Let us define the kernel

36

matrix and partition it corresponding to source labeled, target labeled and target unlabeled

data as shown below:

K =

 As×s Cs×t Ds×u
C′t×s Bt×t Et×u
D′u×s E′u×t Fu×u

 , (3.7)

where ‘s’, ‘t’ and ‘u’ indicate terms corresponding to source labeled, target labeled and

target unlabeled, respectively.

3.3.2 Relate empirical and expected error (for both source and target)

Having defined the hypothesis classes, we now proceed to obtain generalization bounds

for EA and EA++. We have the following standard generalization bound based on the

Rademacher complexity of a hypothesis class (Rosenberg and Bartlett, 2007).

Theorem 3.3.1 Suppose the uniform Lipschitz condition holds for L : Y 2 → [0,1], i.e.,

|L(ŷ1,y)−L(ŷ2,y)| ≤M|ŷ1− ŷ2|, where y, ŷ1, ŷ2 ∈Y and ŷ1 6= ŷ2. Then for any δ ∈ (0,1)
and for m samples (X1,Y1),(X2,Y2), . . . ,(Xm,Ym) drawn i.i.d. from distribution D , we

have with probability at least (1−δ) over random draws of samples,

ε(f)≤ ε̂(f)+2MR̂m(F)+
1√
m
(2+3

√
ln(2/δ)/2).

where f ∈ F is the class of functions mapping X 7→ Y , and R̂m(F) is the empirical

Rademacher complexity of F defined as R̂m(F) := Eσ [sup f∈F | 2m ∑
m
i=1 σih2(xi)|].

If we can bound the complexity of hypothesis classes J s
EA and J t

EA, we will have a

uniform convergence bound on the difference of expected and empirical errors (|εt(h)−
ε̂t(h)| and |εs(h)− ε̂s(h)|) using Theorem 3.3.1. However, in domain adaptation setting we

are also interested in the bounds that relate expected target error to total empirical error on

source and target samples. The following sections aim to achieve this goal.

3.3.3 Relate source expected error and target expected error

The following theorem provides a bound on the difference of expected target error

and expected source error. The bound is in terms of ηs := εs(fs, ft), νs := εs(h∗t , ft)

and νt := εt(h∗t , ft), where fs and ft are the source and target labeling functions, and h∗t
is the optimal target hypothesis in target hypothesis class. It also uses dH ∆H (Ds,Dt)−

37

distance (Blitzer et al., 2007a), which is defined as suph1,h2∈H 2|εs(h1,h2)−εt(h1,h2)|.
The dH ∆H −distance measures the distance between two distribution using a hypothe-

sis class-specific distance measure. If the two domains are close to each other, ηs and

dH ∆H (Ds,Dt) are expected to be small. On the contrary, if the domains are far apart,

these terms will be big and the use of extra source samples may not help in learning a better

target hypothesis. These two terms also represent the notion of adaptability in our case.

Theorem 3.3.2 Suppose the loss function is M-Lipschitz as defined in Theorem 3.3.1, and

obeys triangle inequality. For any two source and target hypotheses hs,ht (which belong

to different hypotheses classes), we have

εt(ht , ft)− εs(hs, fs)≤M||ht −hs||Es
[√

k(x,x)
]
+

1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

where Ht is the target hypothesis class, and k(·, ·) is the reproducing kernel for the RKHS.

ηs, νs, and νt are defined as above.

Proof. Please see Appendix A.1.

3.3.4 Relate target expected error with source and target empirical errors

EA and EA++ learn source and target hypotheses jointly. So the empirical error in one

domain is expected to have its effect on the generalization error in the other domain. In this

section, we aim to bound the target expected error in terms of source and target empirical

errors. The following theorem achieves this goal.

Theorem 3.3.3 Under the assumptions and definitions used in Theorem 3.3.1 and Theo-
rem 3.3.2, with probability at least 1−δ we have

εt(ht , ft)≤
1
2
(ε̂s(hs, fs)+ ε̂t(ht , ft))+

1
2
(2MR̂m(Hs)+2MR̂m(Ht))

+
1
2

(
1√
ls
+

1√
lt

)
(2+3

√
ln(2/δ)/2)

+
1
2

M||ht −hs||Es

[√
k(x,x)

]
+

1
4

dHt ∆Ht (Ds,Dt)+
1
2
(ηs +νs +νt)

for any hs and ht . Hs and Ht are the source hypothesis class and the target hypothesis

class, respectively.

38

Proof. We first use Theorem 3.3.1 to bound (εt(ht)− ε̂t(ht)) and (εs(hs)− ε̂s(hs)). The

above theorem directly follows by combining these two bounds and Theorem 3.3.2.

This bound provides a better understanding of how the target expected error is governed

by both source and target empirical errors, and hypotheses class complexities. This behav-

ior is expected since both EA and EA++ learn source and target hypotheses jointly. We also

note that the bound in Theorem 3.3.3 depends on ||hs−ht ||, which apparently might give

an impression that the best possible thing to do is to make source and target hypotheses

equal. However, due to joint learning of source and target hypotheses (by optimizing the

cost function of Eq. 3.2), making the source and target hypotheses close will increase

the source empirical error, thus loosening the bound of Theorem 3.3.3. Noticing that

||hs−ht ||2 ≤ 1
λ

for both EA and EA++, the bound can be made independent of ||hs−ht ||
although with a sacrifice on the tightness. We note that Theorem 3.3.1 can also be used

to bound the target generalization error of EA and EA++ in terms of only target empirical

error. However, if the number of labeled target samples is extremely low, this bound can

be loose due to inverse dependency on number of target samples. Theorem 3.3.3 bounds

the target expected error using the averages of empirical errors, Rademacher complexities,

and sample dependent terms. If the domains are reasonably close and the number of

labeled source samples is much higher than target samples, this can provide a tighter bound

compared to Theorem 3.3.1.

Finally, we need the Rademacher complexities of source and target hypothesis classes

(for both EA and EA++) to be able to use Theorem 3.3.3, which are provided in the next

sections.

3.3.5 Bound the complexity of EA and EA++ hypothesis classes

The following two theorems bound the Rademacher complexity of the target hypothesis

classes for EA and EA++, respectively.

Theorem 3.3.4 For the hypothesis class J t
EA defined in Eq. 3.5 we have, 1

4√2

2Ct
EA
lt
≤

R̂m(J t
EA)≤

2Ct
EA
lt

where, R̂m(J t
EA) = Eσ suph2∈J t

EA
|∑i σih2(x)|, and

39

(Ct
EA)

2 =

(
1

λ2+
(

1
λ1

+ 1
λ

)−1

)
tr(B)

and B is the kernel submatrix defined as in Eq. 3.7.

Proof. Please see Appendix A.2.

The complexity of target class decreases with an increase in the values of hyperparam-

eters. It decreases more rapidly with change in λ2 compared to λ and λ1, which is also

expected since λ2 is the hyperparameter directly influencing the target hypothesis. The

kernel block submatrix corresponding to source samples does not appear in the bound.

This result in conjunction with Theorem 3.3.1 gives a bound on the target generalization

error.

To be able to use the bound of Theorem 3.3.3, we need the Rademacher complexity of

the source hypothesis class. Due to the symmetry of paired hypothesis class (Eq. 3.4) in h1
and h2 up to scalar parameters, the complexity of source hypothesis class can be similarly

bounded by 1
4√2

2Cs
EA

ls
≤ R̂m(J s

EA)≤
2Cs

EA
ls

, where (Cs
EA)

2 =

(
1

λ1+

(
1

λ2
+ 1

λ

)−1

)
tr(A),

and A is the kernel block submatrix corresponding to source samples.

Theorem 3.3.5 For the hypothesis class J t
++ defined in Eq. 3.6 we have, 1

4√2

2Ct
++
lt
≤

R̂m(J t
++)≤ 2Ct

++
lt

where, R̂m(J t
++) = Eσ suph2∈J t

++
|∑i σih2(x)| and

(Ct
++)2 =

(
1

λ2+
(

1
λ1

+ 1
λ

)−1

)
tr(B)−λu

(
λ1

λλ1+λλ2+λ1λ2

)2
tr
(

E(I + kF)−1E′
)

where k = λu(λ1+λ2)
λλ1+λλ2+λ1λ2

.

Proof. Please see Appendix A.3.

The second term in (Ct
++)2 is always positive since the trace of a positive definite

matrix is positive. So, the unlabeled data results in a reduction of complexity over the

labeled data case (Theorem 3.3.4). The trace term in the reduction can also be written as

∑i ||Ei||2(I+kF)−1 , where Ei is the i’th column of matrix E and || · ||2Z is the norm induced

40

by a positive definite matrix Z. Since Ei is the vector representing the inner product of i’th

target sample with all unlabeled samples, this means that the reduction in complexity is

proportional to the similarity between target unlabeled samples and target labeled samples.

This result in conjunction with Theorem 3.3.1 gives a bound on the target generalization

error in terms of target empirical error.

To be able to use the bound of Theorem 3.3.3, we need the Rademacher complexity of

source hypothesis class too. Again, as in case of EA, using the symmetry of paired hypoth-

esis class H++ (Eq. 3.4) in h1 and h2 up to scalar parameters, the complexity of source

hypothesis class can be similarly bounded by 1
4√2

2Cs
++
ls
≤ R̂m(J s

++) ≤ 2Cs
++
ls

, where

(Cs
++)2 =

(
1

λ1+

(
1

λ2
+ 1

λ

)−1

)
tr(A)−λu

(
λ2

λλ1+λλ2+λ1λ2

)2
tr
(

D(I + kF)−1D′
)

,

and k is defined similarly as in Theorem 3.3.5. The trace term can again be interpreted as

before, which implies that the reduction in source class complexity is proportional to the

similarity between source labeled samples and target unlabeled samples.

3.4 Experiments
3.4.1 Results on sentiment classification task

We follow experimental setups similar to Daumé III (2007) but report our empirical re-

sults for the task of sentiment classification using the SENTIMENT data provided by Blitzer

et al. (2007b). The task of sentiment classification is a binary classification task which

corresponds to classifying a review as positive or negative for user reviews of eight product

types (apparel, books, DVD, electronics, kitchen, music, video, and other) collected from

Amazon.com. We quantify the domain divergences in terms of the A -distance (Ben-David

et al., 2006) which is computed (Rai et al., 2010) from finite samples of source and target

domain using the proxy A -distance (Ben-David et al., 2006). For our experiments, we

consider the following domain-pairs: (a) Dvd→Books (proxy A -distance=0.7616) and,

(b) Kitchen→Apparel (proxy A -distance=0.0459). As in Daumé III (2007), we use an

averaged perceptron classifier from the Megam framework (implementation due to Daumé

III (2004)) for all the aforementioned tasks. The training sample size varies from 1k to

16k. In all cases, the amount of unlabeled target data is equal to the total amount of labeled

source and target data.

41

We compare the empirical performance of EA++ with the following baselines, namely,

(a) SOURCEONLY (classifier trained on source labeled samples), (b) TARGETONLY-FULL

(classifier trained on the same number of target labeled samples as the number of source

labeled samples in SOURCEONLY), (c) TARGETONLY (classifier trained on small amount

of target labeled samples, roughly one-tenth of the amount of source labeled samples in

SOURCEONLY), (d) ALL (classifier trained on combined labeled samples of SOURCEONLY

and TARGETONLY), (e) EA (classifier trained in augmented feature space on the same

input training set as ALL), (f) EA++ (classifier trained in augmented feature space on the

same input training set as EA and an equal amount of unlabeled target data). All these

approaches were tested on the entire amount of available target test data.

Figure 3.3 presents the learning curves for (a) SOURCEONLY, (b) TARGETONLY-

FULL, (c) TARGETONLY, (d) ALL, (e) EA, and (f) EA++ (EA with unlabeled data). The

x-axis represents the number of training samples on which the predictor has been trained.

At this point, we note that the number of training samples vary depending on the particular

approach being used. For SOURCEONLY, TARGETONLY-FULL and TARGETONLY, it

is just the corresponding number of labeled source or target samples, respectively. For

ALL and EA, it is the summation of labeled source and target samples. For EA++, the

x-value plotted denotes the amount of unlabeled target data used (in addition to an equal

amount of source+target labeled data, as in ALL or EA). We plot this number for EA++,

just to compare its improvement over EA when using an additional (and equal) amount

of unlabeled target data. This accounts for the different x values plotted for the different

curves. In all cases, the y-axis denotes the error rate.

As can be seen, for both the cases, EA++ outperforms EASYADAPT. For Dvd→Books,

the domains are far apart as denoted by a high proxy A -distance. Hence, TARGETONLY-

FULL achieves the best performance and EA++ almost catches up for large amounts of

training data. For different number of sample points, EA++ gives relative improvements in

the range of 4.36%−9.14%, as compared to EA. The domains KITCHEN and APPAREL

can be considered to be reasonably close due to their low domain divergence. Hence,

this domain pair is more amenable for domain adaptation as is demonstrated by the fact

that the other approaches (SOURCEONLY, TARGETONLY, ALL) perform better or at least

as good as TARGETONLY-FULL. However, as earlier, EA++ once again outperforms all

42

0.2

0.3

2000 5000 8000 11000

e
rr

o
r

ra
te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(a)

0.2

0.3

0.4

1000 2500 4000 6500

e
rr

o
r

ra
te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(b)

Figure 3.3. Test accuracy of SOURCEONLY, TARGETONLY-FULL, TARGETONLY, ALL,
EA, EA++ (with unlabeled data) for, (a) Dvd→Books (proxy A -distance=0.7616), (b)
Kitchen→Apparel (proxy A -distance=0.0459)

43

these approaches including TARGETONLY-FULL. Due to the closeness of the two domains,

additional unlabeled data in EA++ helps it in outperforming TARGETONLY-FULL. At

this point, we also note that EA performs poorly for some cases, which corroborates

with prior experimental results (Daumé III, 2007). For this dataset, EA++ yields relative

improvements in the range of 14.08%− 39.29% over EA for different number of sample

points experimented with. Similar trends were observed for other tasks and datasets (refer

to Figure 3 of Daumé III et al. (2010)).

3.4.2 Results on sequence labeling tasks

In this section, we demonstrate the empirical performance of EA++ on some additional

tasks and datasets. We use the same tasks and datasets as in Daumé III (2007) and perform

two sequence labelling tasks (a) named-entity-recognition (NER), and (b) part-of-speech-

tagging (POS) on (a) PubMed-POS, and (b) Treebank-Brown.

• PubMed-POS. Introduced by Blitzer et al. (2006), this dataset consists of two domains.

The WSJ portion of the Penn Treebank serves as the source domain and the PubMed

abstracts serve as the target domain. The task is to perform part-of-speech tagging

on unlabeled PubMed abstracts with a classifier trained on labeled WSJ and PubMed

data (see Figure 3.4(a)).

• Treebank-Brown. Treebank-Chunk data consists of the following domains: the stan-

dard WSJ domain (the same data as for CoNLL 2000), the ATIS switchboard do-

main and the Brown corpus. The Brown corpus consists of data combined from six

subdomains. Treebank-Chunk is a shallow parsing task based on the data from the

Penn Treebank. Treebank-Brown is identical to the Treebank-Chunk task. However,

in Treebank-Brown we consider all of the Brown corpus to be a single domain (see

Figure 3.4(b)).

All datasets use roughly the same feature set which are lexical information (words, stems,

capitalization, prefixes and suffixes), membership on gazetteers, etc. As earlier, we use an

averaged perceptron classifier from the Megam framework (implementation due to (Daumé

III, 2004)) for all the aforementioned tasks. The training sample size varies from 1k to 16k

and in all cases the amount of unlabeled target data was the same as total amount of labeled

source+target data.

44

0.1

0.2

0.3

0.4

0.5

4000 8000 12000 16000

e
rr

o
r

ra
te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(a)

0.1

0.2

0.3

0.4

0.5

4000 8000 12000 16000

e
rr

o
r

ra
te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(b)

Figure 3.4. Test accuracy of SOURCEONLY, TARGETONLY-FULL, TARGETONLY, ALL,
EA, EA++ (with unlabeled data) for, (a) PubMed-POS, (b) Treebank-Brown

45

As earlier, we compare the empirical performance of EA++ with other aforementioned

baselines. Figure 3.4(a) presents the learning curves for (a) SOURCEONLY, (b) TARGE-

TONLY-FULL, (c) TARGETONLY, (d) ALL, (e) EA, and (f) EA++ (EA with unlabeled

data). The x-axis represents the number of training samples on which the predictor has

been trained. As mentioned earlier, this number varies for the different approaches. The

y-axis denotes the error rate due to each setting. As can be seen, the labeled and unlabeled

case start together, but with increase in number of samples their gap increases with the

unlabeled case resulting in much lower error as compared to the labeled case. Similar

trends were observed in other data sets as can be seen in Figure 3.4(b). It should be noted

that EA performs worse than all other approaches for Treebank-Brown, which is a result

consistent with the findings in Daumé III (2007). As noted in Daumé III (2007), these are

mostly the tasks in which SOURCEONLY outperforms TARGETONLY, which implies that

source and target domains may not be that different. Due to similarity of the domains,

large amount of source data outperforms a small amount of target data and blowing-up the

feature space may not help much. EA++ still manages to outperform all other approaches

(except TARGETONLY-FULL in a few cases) due to the large amount of unlabeled data

used in it.

3.5 Summary
We proposed a semisupervised extension to an existing domain adaptation technique

(EA). Our approach, EA++, leveraged unlabeled data to improve the performance of EA.

With this extension, EA++ applies to both fully supervised and semisupervised domain

adaptation settings. We have formulated EA and EA++ in terms of coregularization, an

idea that originated in the context of multiview learning (Rosenberg and Bartlett, 2007,

Sindhwani and Rosenberg, 2008). Our proposed formulation also bears resemblance to ex-

isting work (Blum and Mitchell, 1998) in multiview semisupervised (SSL) literature which

has been studied extensively in Balcan and Blum (2005, 2010), Sridharan and Kakade

(2008). The difference being, while in multiview SSL one would try to make the different

hypotheses learned from different views agree on unlabeled data, in semisupervised domain

adaptation the aim is to make the different hypotheses learned from different distributions

agree on unlabeled data. Using our formulation, we have presented theoretical analysis

46

of the superior performance of EA++ as compared to EA. Our empirical results further

confirm the theoretical findings. EA++ can also be extended to the multiple source settings.

CHAPTER 4

ONLINE TRANSFER

In the realm of transfer learning, multitask learning (Caruana, 1997, Heskes, 2000)

refers to the setting when the learner has access to data from multiple related learning tasks.

The goal is to jointly learn the related tasks so as to improve generalization across all tasks.

This is especially important when there is a scarcity of labeled data for one or more tasks.

In this work, we consider an online multitask learning setting with linear classifiers. In our

setting, the learner receives examples from K different tasks (in an interleaved fashion),

and learns the K weight vectors as well as a K×K task-relatedness matrix, simultaneously.

A precise characterization of task relatedness is of extreme importance as it facilitates

sharing of relevant information across the multiple related tasks. In the batch setting, one

can enforce task relatedness via structural assumptions on the weight vectors of the tasks;

for example, a shared prior distribution (Heskes, 2000), cluster assumption (Xue et al.,

2007b), subspace assumption (Evgeniou et al., 2005, Rai and Daumé III, 2010), task hierar-

chies (Daumé III, 2009), adopting a Gaussian process framework (Bonilla et al., 2007), and

so on. An alternative (Cavallanti et al., 2008) is to explicitly encode the task relationships in

a matrix which is assumed to be known beforehand. However, an a priori assumption on the

nature or extent of relatedness can often be restrictive. Furthermore, in the online setting,

intertask relatedness could potentially vary over time making it even more difficult to be

elicited. A favorable choice is to learn the task relationships automatically from the data.

However, in a truly online setting where the weight vectors are constantly changing with

each incoming example, even this can be quite difficult to achieve (as we discuss later in

section 4.2.2). Therefore, we need to devise ways for online learning of task relationships,

adaptively from the data.

In this work, we propose a framework which allows simultaneous learning of the weight

vectors of multiple tasks as well as the task relationship matrix in an online setting. In

48

particular, the problem of online learning the task relationship matrix can be framed (Tsuda

et al., 2005) as a Bregman divergence minimization problem for positive definite matrices

(which is true since the task relationship matrix is defined as a task covariance matrix in

Eq. (4.5); also, see Eq. (6) of Zhang and Yeung (2010)). One of the implicit reasons to learn

the task relationship matrix, is to employ intertask similarity to quantify the informativeness

of an incoming sample that belongs to a particular task. In subsequent sections, we show

how the learned task-relationship matrix can be exploited to select the most informative

examples in an online multitask active learning scenario.

Our work assumes the setup of Abernethy et al. (2007), Cavallanti et al. (2008) where

instances (for different tasks) arrive one-at-a-time, and the sequence of examples and the

corresponding task index (the task which an incoming example belongs to) is chosen

adversarially. In the next section, we briefly describe this setting referring to the prior

work that assumes a fixed task relationship matrix. Thereafter, we present our proposed

approaches for online multitask learning with adaptive task relationships.

Multitask learning has received considerable attention in machine learning literature.

Most of the existing work primarily differ in their assumptions of task relatedness. In this

section, we refer to a small subset of the existing literature that relates to online multitask

learning.

The online multitask learning problem was first addressed in Dekel et al. (2006). The

authors assume a very general setting where the tasks were related by a global loss function

and the goal was to reduce the cumulative loss (for all tasks involved) over rounds of the

online algorithm. The hope was that the nature of the global loss function would dictate the

error correction mechanism of the algorithm and a family of algorithms was proposed for

a wide variety of loss functions. We contend that while combining losses via global loss

functions is a good way to formulate cost function, it does not leverage the task relationship

information from the available data.

On a similar but somewhat different note, Abernethy et al. (2007) and Agarwal et al.

(2008) consider an alternate formulation of online multitask learning under the traditional

expert advice model. In their regret-minimization framework, the notion of task relatedness

was captured in terms of experts with the hope that experts which perform well on one task

should also do well on other related tasks. The goal was to find a small subset of experts

49

which perform well throughout the learning process. This, in a way, is analogous to finding

a low-dimensional common representation for the multiple related tasks (Evgeniou et al.,

2005, Rai and Daumé III, 2010). Our setting, on the other hand, is conceptually simpler

and much easier to implement in practice. Another work (Lugosi et al., 2009) along similar

lines extended the notion of experts to the set of decisions the forecaster is allowed to

take. As earlier, the idea is to impose task relatedness by constraining the different tasks to

choose their decision from a small subset.

Apart from minimizing the cumulative loss and regrets, reducing mistake bounds for

the online multitask learning has been considered in Cavallanti et al. (2008). Our work is

based on this setting and we will discuss it in detail in section 4.1. However, we note that in

contrast to our approach, Cavallanti et al. (2008) assumes a fixed task relationship matrix.

4.1 Background
We start with the perceptron based online multitask learning setting described in Cav-

allanti et al. (2008), henceforth referred to as CMTL. In their setting, the learner proceeds

in rounds by observing a sequence of examples, each belonging to some task from a

predefined set of K tasks. The goal of the learner is to learn K perceptron weight vec-

tors, one for each task. In round t, the learner receives a pair (xt , it), where xt ∈ Rd

is the example and it ∈ {1, . . . ,K} is the corresponding task-id. The learner outputs a

binary prediction ŷt ∈ {−1,1} and then receives the true label yt ∈ {−1,1} for this ex-

ample. The observed task sequence is adversarial. We follow the notation of (Caval-

lanti et al., 2008) and represent the incoming example at round t as a compound vector

φt = (0, . . . ,0,xit ,0, . . . ,0) ∈ RKd . Similarly, the weights of K perceptrons are stored in a

compound weight vector wT
s =(wT

1,s, . . . ,w
T
K,s)∈R

Kd , where w j,s ∈Rd ∀ j∈{1, . . . ,K},
and s denotes the number of updates so far.

In CMTL’s proposed multitask perceptron, the K weight vectors are updated simultane-

ously using rules that are derived from a predefined (fixed) task relationship matrix which

they call the interaction matrix (defined below). We note that in this work we use the

terms “task relationship matrix” and “interaction matrix” interchangeably. The entries of

the interaction matrix define the learning rates (γ) to be used in the updates rules for each

of the K perceptron weights. Using the following fixed task interaction matrix,

50

A−1 =
1

K +1

2 1 . . . 1
1 2 . . . 1
.
1 1 . . . 2

the update rules become:

ws = ws−1+ yt(A⊗ Id)
−1

φt (4.1)

where ⊗ denotes the Kd×Kd Kronecker product defined as:

A⊗ Id =

 a11Id . . . a1KId
.

aK1Id . . . aKKId

For individual tasks j, Eq. (4.1) reduces to:

w j,s = w j,s−1+ ytA−1
j,it

xt (4.2)

From the above K ×K interaction matrix (A−1), it follows that for j = it ,γ = 2
K+1,

whereas for tasks j 6= it , γ = 1
K+1, where γ is the learning rate of the weight vectors.

This update scheme is reasonable since it basically does a fixed, constant update for the

current task it but at the same time also does “half-updates” for the remaining K−1 tasks,

since they are expected to be related to the current task.

Following Cesa-Bianchi and Lugosi (2006), the CMTL algorithm can be seen as opti-

mizing the following regularized loss function:

argmin
w∈RKd

[
1
2

wT (A⊗ Id)w+
t
∑
1

lt(w)
]

(4.3)

where lt(w) = [1− ytwT φt]+ denotes the hinge loss of the weight vector w at time t. The

Kd×Kd matrix (A⊗ Id) in the first term above coregularizes the compound weight vector

w so as to bring the individual task weight vectors closer to each other. When A is the

K×K identity matrix, CMTL degenerates to K Independent Perceptron Learning (IPL).

4.2 Online Task Relationship Learning
The CMTL approach assumes a fixed task interaction matrix which seems restrictive in

many respects. First, one does not usually know the task relationships a priori. Second, the

fixed task interaction matrix of CMTL assumes that all the tasks are positively correlated,

which can again be an unreasonable assumption for many real-world multitask datasets that

51

may consist of unrelated, or possibly even noisy or negatively correlated tasks. Therefore,

a fixed interaction matrix may not always be the right choice since it may vary over time,

especially, with an adversary. At this point, we note that the CMTL can conceivably

accommodate negative correlation between tasks by hand-specifying negative weights in

the task interaction matrix. However, this constitutes a priori assumptions on task relations,

whereas the main thesis of our work is to learn these relationships from the data.

In this work, we propose to learn the task interaction matrix adaptively from the data,

thereby letting the data itself dictate what the task relationships should look like instead

of fixing them a priori. Since the success of learning the K perceptron weight vectors

hinges crucially on the task interaction matrix, the hope is that an adaptively learned task

interaction matrix would lead to improved estimates of the weight vectors of all the tasks.

Following Crammer et al. (2006), we formulate our goal as an optimization problem

in the online learning setting, as shown below. Formally, at round t + 1, we solve the

following:

argmin
w∈RKd ,A�0

[
Dw(w||ws)+DA(A||As)+

t
∑
1

lt(w)
]

(4.4)

where wt and At are the weight vector and the interaction matrix at the previous round t, and

Dw(.||.) and DA(.||.)) denote Bregman divergences. The above cost function is inspired

by the classical cost function formulations of online algorithms where the update of the

weight vector balances between “conservativeness” and “correctiveness” (Cesa-Bianchi

and Lugosi, 2006). It is easy to see that if we use the Mahalanobis divergence for Dw(.||.),
Eq. (4.4) reduces to the CMTL objective function of Eq. (4.3) (modulo the extra DA(.||.)
term). However, our setting is different as follows: (1) the matrix A is no longer a fixed

matrix, and (2) we add a matrix regularization penalty (discussed later) over A such that

it stays close to the previous estimate of the interaction matrix akin to a conservative

update strategy (recall that we have an online setting). Our proposed formulation yields

the following objective function to be solved at each round of online learning:

argmin
w∈RKd ,A�0

[
1
2

wT A⊗w+DA(A||At)+
t
∑
1

lt(w)
]

(4.5)

where A⊗ = A⊗ Id . The optimization problem in Eq. (4.5) is defined jointly over both w

52

and A. It can be solved in an alternating fashion by solving for w given A, and then solving

for A given w.

Our objective function is generic and the DA(.||.) term allows substituting any suitable

divergence defined over positive definite matrices. We first define the general form of

matrix divergence between two positive definite matrices:

Dφ (X ,Y) = φ(X)−φ(Y)+ tr((X−Y) f (Y)T)

where X ,Y are n× n matrices and f (Y) = ∇Y φ(Y). In addition, φ : Sn→ R is a strictly

convex, differentiable functions and tr denotes the matrix trace.

In this work, we consider the following matrix divergences by substituting the appro-

priate function for φ , as shown below:

1. LogDet divergence: When φ(X) = φLD(X) = − log |X |, we obtain the LogDet

divergence between two positive definite matrices X and Y defined as: DφLD
(X ,Y)=

tr(XY−1)− log |XY−1|−n.

2. von-Neumann divergence: When φ(X)= φV N(X)= tr(X logX−X), we obtain the

von-Neumann divergence between two positive definite matrices X and Y defined as:

DφV N
(X ,Y) = tr(X logX−Y logY −X +Y).

We show that the aforementioned divergence functions permit online update schemes for

our task interaction matrix A. Furthermore, these divergence functions also ensure that our

updates for A preserve (Kulis et al., 2009, Tsuda et al., 2005) positive definiteness and unit

trace.

4.2.1 Alternating optimization

We adopt an alternating optimization scheme to solve for w and A. We undergo a

small change in notation and note that w and A are updated only when a prediction mistake

occurs. We denote the update index by s and the rounds of the online algorithm by t,(s≤ t).

Fixing A to As−1, it is easy to see that our updates for w are exactly of the same form as

the CMTL update rule defined in Eq. (4.2):

ws = ws−1+ yt(As−1⊗ Id)
−1

φt

w j,s = w j,s−1+ ytA−1
s−1,(j,it)

xt (4.6)

53

where A−1
s−1,(j,it)

denotes the inverse of the (j, it)th element of As−1. Having solved

for ws, we treat it as fixed and solve for A. We consider both the matrix divergences

mentioned earlier and derive the general expression for the update rules. We use the fact

that wT
s (A⊗ Id)ws = tr(WsAWT

s), where Ws is a d×K matrix obtained by column-wise

reshaping the Kd× 1 vector ws. The K columns of Ws represent weight vectors of the K

tasks. With ws (and thus Ws) fixed, our objective function reduces to:

argmin
A�0

[
1
2

tr(Ws−1AWT
s−1)+DA(A||As−1)

]
(4.7)

For both the cases, following (Tsuda et al., 2005), the update rule can be written as:

As = arg min
A�0

[
Dφ (A,As−1)+η

1
2

tr(Ws−1AWT
s−1)

]
(4.8)

which has the solution:

As = f−1
(

f (As−1)−η sym
(
∇A

1
2

tr(Ws−1AWT
s−1)

))
(4.9)

where f (A) = ∇Aφ(A), f−1 is the inverse function of f , sym(X) = (X +XT)/2 and η

is the learning rate of the interaction matrix A. Next, we consider the specific cases when

φ = φLD (LogDet divergence) and φ = φV N (von-Neumann divergence).

LogDet divergence: For the LogDet matrix divergence, f (A) = ∇AφLD(A) = −A−1

and f−1(B) =−B−1, which reduces Eq. (4.9) to the following update rule:

As =
(

A−1
s−1+η sym(WT

s−1Ws−1)
)−1

(4.10)

It is easy to see that the above update equation maintains the positive definiteness of As.

We refer to the LogDet matrix divergence based online algorithm for A as OMTLLOG.

von-Neumann divergence: For the von-Neumann matrix divergence, f (A)=∇AφV N(A)=

log(A) and f−1(B) = exp(B), for which the update rule of Eq. (4.9) reduces to:

As = exp
(

logAs−1−η sym(WT
s−1Ws−1)

)
(4.11)

where exp and log are matrix exponential and matrix logarithm, respectively. Since As−1
is real symmetric, logAs−1 is also real symmetric. Hence, the term(

logAs−1−η sym(WT
s−1Ws−1)

)
in Eq. (4.11) is a symmetric matrix and the “exp” operation maps this back into a symmetric

positive definite matrix. Thus, the above update equation maintains the symmetric positive

54

definiteness of As. We refer to the algorithm based on this online update rule for A as

OMTLVON.

It can be seen that the very nature of the derived equations (Eq. (4.6), Eq. (4.10) and

Eq. (4.11)) suggests an online learning setting such that both w and A can be updated in an

incremental fashion (refer to Algorithm 1).

In addition to the LogDet and von-Neumann divergences based update rules for A, we

also propose using the covariance of task weight vectors as an alternate strategy. The intu-

ition for a covariance-based update scheme stems from the observation that the covariance

of task weight vectors is a natural way to estimate the intertask relationships. In fact, most

of the literature on Gaussian Process based multitask learning (Bonilla et al., 2007, Daumé

III, 2009) assume a Gaussian Process prior on the space of functions being learned and use

the Gaussian Process covariance function to model task relatedness. This motivates us to

use the task covariance matrix to model intertask relationships and we use a task covariance

based update in our online multitask scenario. We refer to it as OMTLCOV which has the

following update rule:

As = cov(Ws−1) (4.12)

where “cov” denotes a standard covariance operation over a matrix.

Finally, we consider a recent work (Zhang and Yeung, 2010) which showed that in the

batch setting, the optimal task relationship matrix can be expressed as A =
(W TW)

1
2

tr((W TW)
1
2)

where W is a d ×K matrix whose K columns consist of the weight vectors of each of

the K tasks. Note that the batch approach first estimates all K weight vectors, before

computing A, and the process is repeated in an alternating fashion until convergence. In

contrast, the online setting updates the weight vector of one task at a time and has to update

A immediately after that. We nevertheless compare with this approach by updating A

everytime the weight vector of some task gets updated. We call it BATCHOPT and treat

it as one of our baselines. BATCHOPT uses the following update rule:

As =
(WT

s−1Ws−1)
1
2

tr((WT
s−1Ws−1)

1
2)

(4.13)

55

Algorithm 1 Online Task Relationship Learning
1: Input: Examples from K tasks, Number of rounds
2: Output: w and a positive definite K×K matrix A, learned after T rounds;
3: Initialization: A = 1

K × Id ; w0 = 0;
4: for t = 1 to T do
5: receive the pair (xt , it), xt ∈ Rd ;
6: construct φt ∈ RKd from xt ;
7: predict label ŷt = SGN(wT

s−1φt) ∈ {−1,+1};
8: receive true label yt ∈ {−1,+1};
9: if (yt 6= ŷt) then

10: /* update ws and As */
11: for j = 1 to K do
12: w j,s = w j,s−1+ ytA−1

s−1,(j,it)
xt ;

13: end for
14: if t ≥ epoch then
15: update As [Eq. (4.10) – Eq. (4.13)];
16: end if
17: s← s+1;
18: end if
19: end for

4.2.2 Practical considerations

During the initial few rounds, the weight vectors w are not well formed and since the

updates of A depend on w, poor initial estimates of w may lead to poor estimates of A,

which in turn could worsen the estimates of weights w as they depend on A. To account for

this, we wait for a number of rounds (a priming duration which we also refer to as epoch)

before turning on the updates for A, and until then update the weight vectors w as if we

were learning K independent perceptrons (i.e., by using A = 1
K × Id initially). Once the

priming duration is over, we turn on the updates of A. We follow the same guideline for our

approaches as well as the other baselines that use a task relationship matrix. Our procedure

is summarized in Algorithm 1.

4.2.3 Computational efficiency

CMTL updates only weight vectors, whereas BATCHOPT, OMTLCOV, OMTLLOG and

OMTLVON additionally update task interaction matrices as well. Hence, CMTL is always

faster as compared to the other approaches.

BATCHOPT computes matrix multiplications (O(K3)), whereas OMTLCOV computes

56

matrix covariances (O(K2)). Our approaches, OMTLLOG and OMTLVON, use operations

such as inverse, exponentiation and logarithms of K×K matrices which can be expensive,

especially when the number of tasks K is large. However, these operations can be expedited

using Singular Value Decomposition (SVD) routines for the matrix A, i.e., A = V DV T

where D is a diagonal matrix consisting of the singular values. Then these operations boil

down to computing the same for the diagonal matrices which have O(K) complexity. For

example, the matrix exponentiation can be done as exp(A) =V exp(D)V T . The SVD step

can be performed using efficient eigen-decomposition algorithms such as the randomized

SVD algorithm (Liberty et al., 2007).

4.3 An Active Learning Extension
Active Learning in a multitask setting (batch/online) is considered a difficult problem

and little prior work exists in this realm. What complicates active learning in a multitask

setting is that one needs to evaluate the informativeness of an example across several tasks

before deciding whether or not to query its label.

In this work, we show that our online multitask learning framework can be easily

extended to an active learning setting that takes into account the task relatedness. A

naı̈ve active learning strategy in an online setting is to use the margin biased randomized

sampling (Cesa-Bianchi et al., 2006) for active learning. More specifically, the approach

proposed in Cesa-Bianchi et al. (2006) uses a sampling probability term p = b/(b+ |rit |)
to decide whether to query the label of an incoming example belonging to the task it , where

rit is the signed margin of this example on the hypothesis being learned. The parameter

b is set to a fixed value and dictates the level of aggressiveness of the sampling process.

However, this approach does not exploit the task relatedness in the presence of multiple

tasks.

We propose to use the task relationship matrix A of pairwise task similarity coefficients

to set the sampling parameter b. For an incoming example belonging to the task it , we

set b = ∑ j |Ait , j| which is nothing but the sum of the absolute values of the itht row (or

column) of the matrix A. Thus b denotes the sum of similarities of task it with all other

tasks. It is easy to see that the expression for b would take a large value (meaning more

aggressive sampling) if the tasks are highly correlated, whereas b will have a small value

57

(moderately aggressive sampling) if the tasks are not that highly related.

4.4 Experiments
In this section, we evaluate our online task relationship learning approaches by com-

paring them against a number of baselines, and on several datasets. The results have been

averaged over 20 runs for random permutations of the training data order and standard

deviations are also reported.

4.4.1 Setup

In this section, we describe the datasets used and the methods compared.

4.4.1.1 Datasets. We report our results on one synthetic (Synthetic), and three real

world (20newsgroups, Sentiment and Spam) datasets. Synthetic is an artificial dataset

which has been generated as follows. First, we construct three weight vectors w1, w2,

w3 ∈ R10 with w1 = −w2, and w3 being uncorrelated with the other two. Then we

generate three binary classification datasets, each consisting of a sample of 100 data points.

Each dataset comprises a learning task. We mix these three datasets with examples in

random task order and split the data into 200 training examples and 100 test examples.

20newsgroups, constructed as in Raina et al. (2006) contains a total of 11269 training

and 7505 test examples for 10 tasks. Sentiment dataset (Blitzer et al., 2007b) consists

of user reviews of 8 classification tasks on 8 data types (apparel, books, DVD, electronics,

kitchen, music, video, and other) from Amazon.com. Each sentiment classification task is

a binary classification which corresponds to classifying a review as positive or negative.

Spam (Crammer et al., 2009) consists of 3000 test and 4000 training examples constructed

from email messages of 3 different users (each user is a task).

4.4.1.2 Methods. We compare prediction accuracy, number of mistakes and (for the

active learning variants) number of labels queried for STL, IPL, CMTL (Cavallanti et al.,

2008), BATCHOPT, OMTLCOV, OMTLLOG, OMTLVON (summarized in Table 4.1).

4.4.2 Task relationships learned

To demonstrate that our proposed algorithms can discover the task relationships reli-

ably, we experiment with Synthetic which has known task relationships. Table 4.2 shows

the task (weight vector) correlation matrices learned by CMTL, OMTLLOG and OMTLVON

58

Table 4.1. Description of methods being compared.
Method Description

STL pooling based single task perceptron
IPL K independent perceptrons (CMTL with identity interaction matrix)

CMTL online perceptron (Cavallanti et al., 2008) with fixed interaction matrix
BATCHOPT online multitask perceptron with batch optimal update
OMTLCOV online multitask perceptron with covariance based update
OMTLLOG online multitask perceptron with LogDet divergence based update
OMTLVON online multitask perceptron with von-Neumann divergence based update

Table 4.2. Task correlation of Synthetic for CMTL, OMTLLOG and OMTLVON with epoch
= 0.5 (single run with random data order). ID denotes the task ID.

Method ID 1 2 3
1 1.0000 -0.2030 0.5217

CMTL 2 -0.2030 1.0000 0.1371
3 0.5217 0.1371 1.0000
1 1.0000 -0.9059 0.0003

OMTLLOG 2 -0.9059 1.0000 0.1225
3 0.0003 0.1225 1.0000
1 1.0000 -0.8171 0.0322

OMTLVON 2 -0.8171 1.0000 0.1295
3 0.0322 0.1295 1.0000

on Synthetic which consists of 3 tasks. As can be seen, both OMTLLOG and OMTLVON are

able to capture the negative correlations between w1 and w2, and the uncorrelatedness of

w3 with the other two weight vectors. On the other hand, since the approach of Cavallanti

et al. (2008) is biased towards enforcing positive correlations, it falsely concludes a signif-

icant correlation of w3 with w1 and w2. At the same time, for CMTL, w1 and w2 appear

less negatively correlated than they actually are. We also note that the task correlations

learned by OMTLCOV and BATCHOPT were off from the truth by a reasonable amount.

4.4.3 Results

We now report accuracy, number of mistakes and labels queried with active learning.

4.4.3.1 Accuracy. We report the prediction accuracies of our update rules for the

datasets 20newsgroups, Sentiment and Spam. As discussed earlier (refer to section 4.2.2),

the various update schemes need to decide when to start updating the task relationship

matrix A. It is not advisable to update A until the weight vectors are well-formed. As

59

mentioned earlier in section 4.2.2, we wait until a duration called the priming phase (de-

noted by epoch), which is decided based on the fraction of datapoints we want to see in

the stream, before turning on the update for A. During this phase, A is set to an identity

matrix (i.e., independent tasks). Once we get past the epoch point, we switch to the

incremental updates of A. Table 4.3 presents the results on 20newsgroups, Sentiment and

Spam data for epoch = 0.5. OMTLLOG performs the best for 20newsgroups and Sentiment

and OMTLCOV is the best for Spam. In addition, OMTLVON outperforms the baseline

accuracy for all the datasets.

Figure 4.1 demonstrates the variation in prediction accuracy with increase in epoch

values. As can be seen, an increase in epoch value leads to a gradual improvement in

prediction accuracy. However, we cannot have a very high value of epoch, that will amount

to waiting too long, leading to learning K independent perceptrons for most of the duration.

This might not be able to completely utilize the relatedness among the tasks in the weight

update equations. This fact is reflected for 20newsgroups around epoch = 0.8, after which

the accuracies of OMTLCOV and OMTLLOG drop down to that of the IPL accuracy. For

Sentiment and Spam, this inflection point was observed around epoch = 0.7 and epoch

= 0.8, respectively.

4.4.3.2 Number of mistakes. We present the number of mistakes of all algorithms

in Table 4.4 for epoch = 0.5. Except for Spam, OMTLLOG has the lowest number of

mistakes and OMTLCOV and OMTLLOG convincingly outperform CMTL. These empirical

results imply that the theoretical mistake bounds of the proposed update rules should be

better than CMTL. However, the data-dependent adaptive nature of the interaction matrix

Table 4.3. Accuracy for full training data (epoch = 0.5).
Method Accuracy (Standard Deviation)

20newsgroups Sentiment Spam
STL 56.94(±3.32) 66.31(±2.14) 76.45(±1.56)
IPL 75.20(±2.35) 67.24(±1.40) 91.02(±0.77)

CMTL 73.14(±2.35) 67.38(±1.82) 90.17(±0.66)
BATCHOPT 75.78(±2.22) 67.59(±1.40) 91.10(±0.80)
OMTLCOV 80.84(±0.70) 70.49(±0.53) 92.17(±0.52)
OMTLLOG 81.83(±0.46) 73.49(±0.53) 91.35(±1.12)
OMTLVON 76.51(±1.54) 67.60(±0.83) 91.05(±1.05)

60

 65

 70

 75

 80

 85

 90

 95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u

ra
c
y

Epoch

IPL
CAV
OPT
COV
LOG
VON

Figure 4.1. Accuracy vs. epoch on 20newsgroups.

Table 4.4. Number of mistakes with epoch = 0.5 for full training data.
Method Number of mistakes

20newsgroups Sentiment Spam
STL 4818 25273 742
IPL 3002 24317 348

CMTL 3246 24212 389
BATCHOPT 3008 24371 347
OMTLCOV 2696 22980 337
OMTLLOG 2674 22023 347
OMTLVON 3105 24474 380

renders the theoretical analysis difficult and we defer it to future work.

4.4.3.3 With active learning. The accuracy and number of labels queried of our

active learning variants for all the approaches are shown in Table 4.5. The left half of

the table presents prediction accuracies and the right half compares the number of labels

requested. As mentioned in section 4.3, we use the task interaction matrix to set the

sampling parameter for the active learning variants of OMTLCOV, OMTLVON, OMTL-

LOG, whereas the baselines use a fixed label sampling parameter as in Cesa-Bianchi et al.

(2006). When compared to Table 4.3, it can be seen that the accuracies are similar for

61

Table 4.5. Accuracy and labels queried with epoch = 0.5 for full training data with active
learning variants.

Method Accuracy (Standard Deviation)
Labels requested (% reduction)

20newsgroups Sentiment Spam
STL 57.87(±2.18) 67.67(±2.63) 76.82(±1.90)

7334 (35%) 44224 (39.6%) 1827 (39.1%)
IPL 75.28(±1.92) 68.80(±1.06) 90.98(±0.52)

7265 (35.5%) 44437 (39.3%) 1917 (36.1%)
CMTL 73.79(±2.52) 68.17(±1.42) 89.96(±0.75)

10171 (9.75%) 63810 (12.84%) 2276 (24.13%)
BATCHOPT 74.42(±2.18) 68.18(±1.82) 90.93(±0.59)

6956 (38.3%) 52577 (28.18%) 1898 (36.73%)
OMTLCOV 79.78(±0.46) 71.33(±0.68) 90.72(±0.87)

4784 (57.55%) 42112 (42.48%) 1347 (55.1%)
OMTLLOG 80.50(±0.53) 71.16(±0.60) 90.32(±0.85)

5966 (47.06%) 24162 (67%) 1288 (57.06%)
OMTLVON 75.53(±2.99) 67.63(±2.23) 89.14(±1.66)

6336 (43.75%) 54854 (25.07%) 1583 (47.23%)

passive and active versions of all the approaches compared. However, the number of labels

requested in all the active cases are substantially lower than the corresponding passive

versions. Moreover, for both 20newsgroups and Sentiment, the number of labels queried

by OMTLCOV and OMTLLOG are substantially lower than that of CMTL. Thus, the active

learning variants result in a substantial reduction in the number of labels queried without

noticeable degradation in prediction accuracy.

4.4.4 Remarks

For all cases, the proposed update rules of OMTLCOV and OMTLLOG outperform all

other approaches compared and are substantially better than the fixed interaction matrix

based CMTL. All active learning variants reduce the number of labels queried with the

reduction for the proposed update rules being substantial (∼ (42%−58%) for OMTLCOV

and ∼ (47%−67%) for OMTLLOG). This confirms that the use of an adaptive interaction

matrix benefits the multitask learning process in the online setting and is also an useful

tool to devise active learning strategies. It is worth noting that BATCHOPT, while optimal

in the batch setting, does not give the best results in the online setting and in most cases

performs barely better than IPL. Thus, the poor performance of both CMTL and BATCHOPT

62

highlights the need to devise adaptive multitask relationship learning strategies for the

online setting.

Figure 4.1 emphasizes the importance of choosing a good value for epoch which varies

based on the dataset. One straightforward approach would be to compute the variance of

the different weight vectors and wait until the variance has settled for all. However, it is

difficult to know when the variance has settled down and requires nonparametric statistical

tests which are computationally prohibitive and do not fit into the computationally efficient

paradigm of online learning. Our work resorts to threshold based decisions but a favorable

choice would be to learn the epoch value from the data.

We experimented with multiple passes over data where we use IPL in pass 1 and then

switch to the respective update rules for all subsequent passes. At the end of each pass,

the interaction matrix (to be used in the following pass) is updated based on the weight

vectors learnt in that pass. We noticed that the multipass results do not improve much over

the single pass results. Also, the time required for the multiple passes is substantially more

than that required by the single pass approaches.

The von-Neumann update rule is numerically unstable and we compute matrix expo-

nential using spectral decomposition, as suggested in Tsuda et al. (2005). However, the

spectral decomposition based technique is also sometimes unstable which results in poor

performance and high variance, as demonstrated in our results. We did not experiment with

Schur decomposition based matrix exponential which might yield better results.

4.5 Summary and Future Directions
We have explored an online setting for learning task relationships. Our proposed ap-

proach constructs an adaptive interaction matrix which quantifies the relatedness among

the multiple tasks and also uses this matrix to update the related tasks. We have presented

simple update rules based on different Bregman divergence measures and showed how the

task interaction matrix can be used to select the label sampling parameter in an online active

learning setting, given multiple related learning tasks.

An alternate active learning scenario is to perceive labels for all examples, but the task

or domain information is revealed only for some of the examples. Our proposed framework

can be extended for such scenarios by simultaneously doing online active learning on (x, it)

and ([x,y], it) pairs for the multidomain and multitask cases, respectively. Note that the

63

multidomain case does not require the labels y to distinguish between domains since the

assumption is that p(x) is different for different domains. However, the multitask case

requires the labels since p(x) stays the same for all tasks but p(x,y) changes.

Our work highlights the challenges posed by the joint learning of task weight vectors

and the task relationship matrix in the online setting; the major hurdle being the decision on

how long to wait until the individual weight vectors of all the tasks are stable enough to be

used for computing the task interaction matrix. Our work proposed predefined wait periods

that seem to work well in practice. However, it is imperative that we clearly understand

what factors determine the confidence of weight vectors and whether it is possible to learn

the switch over point from the data. As already mentioned, use of nonparametric statistical

tests seems to be an overkill and is fundamentally against the computationally efficient

nature of online learning. At present, we do not have a good answer to this question which

provides an interesting direction for future work.

Our empirical results demonstrate fewer number of mistakes (and improved label com-

plexities for the active learning extension) when compared to other baselines. However,

it is not theoretically apparent whether our proposed approach would yield better mistake

bounds than the CMTL approach. What complicates the analysis is that our task interaction

matrix is adaptive, unlike that of Cavallanti et al. (2008) which assumes a fixed interaction

matrix. We believe this to be an interesting direction for future work.

CHAPTER 5

ACTIVE TRANSFER

Active learning in a domain adaptation setting has received little attention so far and, to

the best of our knowledge, there exists no prior work that presents a principled framework

to harness domain adaptation for active learning. One interesting setting was proposed

in Chan and Ng (2007) where the authors apply active learning for word sense disambigua-

tion in a domain adaptation setting. In addition, they also improve vanilla active learning

when combined with domain adaptation. However, their approach does not use the notions

of domain separator and hybrid oracle. Moreover, unlike our approach, their method only

works in a batch setting.

Active learning in an online setting has been discussed in Dasgupta et al. (2009) and Cesa-

Bianchi et al. (2006). The work of Dasgupta et al. (2009) assumes input data points

uniformly distributed over the surface of an unit sphere. However, we cannot make such

distributional assumptions for domain adaptation. As mentioned earlier, Cesa-Bianchi et al.

(2006) provide worst-case analysis which is independent of any input data distribution.

However, none of these explicitly consider the case of domain adaptation. Nonetheless, the

framework of Cesa-Bianchi et al. (2006) folds nicely into our proposed Active Learning

Domain Adaptation (ALDA) framework. Monteleoni and Kääriäinen (2007) present exten-

sive empirical results to compare the performance of the two aforementioned approaches.

However, all these settings are different from ours in that these works consider only active

learning in an online setting without leveraging interdomain information.

A combination of transfer learning with active learning has been presented in (Shi et al.,

2008). One drawback of their approach is the requirement of an initial pool of labeled target

domain data which helps train the in-domain classifier. Without this in-domain classifier,

no transfer learning is possible in their setting.

We consider the supervised domain adaptation setting (Jiang, 2008) where we have

a large amount of labeled data from some source domain, a large amount of unlabeled

65

data from a target domain, and additionally, a small budget for acquiring labels in the

target domain. As earlier, we once again note that supervised domain adaptation contains

labeled data in both source and target, whereas unsupervised domain adaptation contains

labeled data only in source, and semisupervised domain adaptation contains labeled data in

source and both labeled and unlabeled data in target. We show how, apart from leveraging

information in the usual domain adaptation sense, the information from the source domain

is further leveraged to selectively query for labels in the target domain (instead of choosing

them randomly, as is the common practice). We achieve this by first training the best possi-

ble classifier in the source without using target labels, for instance, either by simply training

a supervised classifier on the source labeled data, or by using some unsupervised adaptation

technique using the unlabeled target data as well. Then, we use this learned hypothesis in

various ways to leverage the source domain information when we are additionally given

some fixed budget for acquiring some extra labeled target data (i.e., the active learning

setting (Settles, 2009)).

Our proposed framework is based on three key components. The first component is

unsupervised domain adaptation (i.e., without target labeled data). The goal of this step is

to suitably adapt the source data representation such that it makes the marginal distributions

of both source and target distributions look similar. This enables training any traditional

supervised classifier for the target domain using the adapted representation of the source

data. The second and the third components improve this classifier even further by using

active learning to selectively acquire the labels of target examples, given a budget on the

target labels. Moreover, these components leverage the source domain information as well.

Specifically, the second step employs a domain separator hypothesis that rules out querying

labels of those target examples that appear “similar” to examples from the source domain.

The domain separator hypothesis is a classifier that distinguishes between source and target

domain examples and is learned using only unlabeled examples from the two domains. The

third component is a hybrid oracle which consists of two oracles: one that provides labels

for free but is imperfect (there could be noise), and one expensive (but “perfect”) oracle

used in the standard active learning settings. The source classifier acts as the free oracle

which, although not perfect, can provide correct labels for most of the examples queried

(essentially, the ones that appear “source” like).

66

The proposed ALDA framework is sufficiently general to allow varied choices of do-

main adaptation and active learning modules. In addition, ALDA applies to both batch

(section 5.1) as well as online settings (section 5.3). In this work, we present empirical

results (section 5.4) for specific choices of the domain adaptation and the active learning

schemes. For both batch and online settings, we empirically demonstrate that the proposed

approach leads to significant improvement in prediction accuracies for a given target label

budget when compared to other baselines. Moreover, for the online setting, apart from

showing empirically better performance, we also show that our approach results in smaller

mistake bounds under suitable notions of domain separation. We provide intuitive argu-

ments for smaller label complexity in the target domain when compared to the standard

active learning where we do not have access to data from a related distribution.

5.1 ALDA: Active Learning Domain Adapted
In this section, we propose a principled approach towards active learning in a target

domain by leveraging information from a related source domain. In our setting, we are

given a small budget for acquiring labels in a target domain, which makes it imperative

to use active learning in the target domain. However, our goal is to additionally leverage

the domain relatedness by exploiting whatever information we might already have from

the source domain. At a high level, our proposed approach aims to answer the following

questions:

1. given source information, which samples in the target are the most informative (in

an active sense)?

2. among the informative target samples, can we use source information to infer labels

of a few informative target samples, such that the actual number of target labels

queried (from an oracle) is reduced even further?

In the following, we provide answers to the above questions. We begin by introducing

some notations and presenting an overview of the ALDA framework.

5.1.1 Preliminaries

Let X ⊂ Rd denote the instance space and Y = {−1,+1} denote the label space.

Let Ds(x,y) and Dt(x,y) be the joint source and target distributions, respectively. We have

67

a set of source labeled examples Ls(∼ Ds(x,y)) and a set of source unlabeled examples

Us(∼ Ds(x)). Additionally, we also have a set of target unlabeled instances Ut(∼ Dt(x)),

from which we actively acquire labels. Furthermore, wsrc denotes a classifier learned from

the source labeled data and wds denotes the domain separator hypothesis. Finally, let φ

represent an unsupervised domain adaptation algorithm that outputs a classifier uφ . Note

that learning uφ does not require labeled target examples.

Figure 5.1 shows our basic setup for ALDA. The Active Learning (AL) module is

a combination of the submodules Uncertainty Sampler (US) (that is initialized using the

uφ classifier from the unsupervised domain adaptation phase) and Domain Separator (DS)

(that uses the wds classifier). In addition, the setup employs a hybrid oracle which is a

combination of a free oracle O f and an expensive oracle Oc. The free oracle O f is nothing

but the classifier (wsrc) learned using the source labeled samples Ls. At each step, the

learner actively selects an informative target sample and gets it labeled by an appropriate

oracle. This continues in an iterative (for the batch setting) or online fashion until some

Costly
Oracle Oe

Free Oracle
Of wsrc

LearnerHybrid
Oracle

φ: Domain Adaptation

uφ

wds

Active Learning

Learn classifier
on source

labeled data

(in target)

Source

Target

Figure 5.1. An illustration of the proposed ALDA framework. Domain adaptation can be
performed using any black-box unsupervised domain adaptation approach (e.g., (Blitzer
et al., 2006, Sugiyama et al., 2007)). The active learning block can be any batch or online
active learner.

68

stopping criterion is met (say, for example, reached prescribed accuracy or exhausted label

budget). Next we describe each of these individual modules in more detail.

5.1.2 Initializing the uncertainty sampler

The first phase of ALDA learns an unsupervised domain adapted classifier uφ which

uses labeled source data, and unlabeled source and target data. Note that this phase does

not use any labeled target data, hence the name, unsupervised. There are a number of ways

to learn the classifier uφ . In this work, we take the approach (Sugiyama et al., 2007) that

is based on estimating the importance ratio between the source and the target distribution,

without actually estimating these distributions. The source domain examples, with their

corresponding importance weights, can then be used to train any classifier which is now

readily adapted for the target domain (of course, this can potentially still be improved,

given extra labeled target data). Note that the unsupervised domain adaptation step can

be performed in a number of other ways as well; for example, Kernel Mean Matching

(KMM) can be performed by matching the source and target distributions in some Re-

producing Kernel Hilbert Space (RKHS) and computing the importance weights of source

domain examples (Huang et al., 2007). Another approach (especially for NLP problems),

could be to use Structural Correspondence Learning (SCL) to identify invariant (“pivot”)

features between source and target, and use these features for unsupervised domain adap-

tation (Blitzer et al., 2006). The unsupervised domain adapted classifier uφ serves as the

initializing classifier for the subsequent active learning phase of our approach.

5.2 Leveraging Domain Divergence
It turns out that, in addition to using the source domain information to initialize our

active learner in the target domain, we can further leverage the domain relatedness infor-

mation to improve the active learning phase in the target.

In this section, we propose the domain separator that further leverages the relatedness

of source and target domains while performing active learning in the target. Assuming the

source and target domains to be related, our proposed technique exploits this relatedness

to, upfront, rule out acquiring labels of those target domain examples that “appear” to be

close to the source domain.

As an example, Figure 5.2 shows a typical domain separator hypothesis (denoted by

69

wds) that separates the SOURCE and TARGET examples. We note that similar source and

target examples are expected to have the same labels since only the marginal distribution of

examples changes between the source and target examples (i.e., Ds(x) 6= Dt(x)), whereas

the conditional distribution of labels (given the examples) stays the same (i.e., Ds(y|x) =
Dt(y|x)). Observe that if the source and target distributions are far apart, then the two

domains can be perfectly classified by this separator. However, if the domains are similar,

it is expected that there will be a reasonable overlap and therefore, some of the target (or

source) domain examples might lie on the source (or target) side (encircled instances in

Figure 5.2) and hence, will be misclassified by the domain separator hypothesis. Acquiring

labels for such target domain examples (that lie on the source side) is not really needed

since the initial hypothesis (refer uφ in Figure 5.1) of ALDA would already have taken into

account such examples. Therefore, such target examples can be effectively ignored from

being queried. Thus, the domain separator hypothesis, which can be learned using only

source and target unlabeled examples, provides a novel way of performing active sampling

in domain adaptation settings.

The domain separator hypothesis avoids querying the labels of all those target examples

that lie on the source side of the domain separator and hence, are misclassified by it. This

wds

uφ

S+ S+

S+

S+

S+

S+
S+

Source

Target

T+

T+

T+

S−

S−

S−

S−

S−

T−T−
T−

T−
T−

T−

T−

T−

T+

S−

S−

T+

T+

Figure 5.2. An illustrative diagram showing the domain separator hypothesis wds sepa-
rating source data from target data and the classifier uφ learned using the unsupervised
domain adapted source classifier.

70

number, in turn, depends on the domain divergence between the source and target domains.

For reasonably similar domain pairs, the domain divergence is expected to be small which

implies that a large number of target examples lies on the source side. We can formalize

the label complexity reduction due to the domain separator hypothesis. As earlier, let Ds

and Dt denote the source and target joint distributions, and let pDs(x) and pDt (x) be

probabilities of an instance x belonging to the source and the target, respectively, in the

unlabeled pool used to train the domain separator hypothesis. Let ∆ denote the Mahalanobis

distance between the source and target distributions. The Bayes error rate (Tumer and

Ghosh, 1996) of the domain separator hypothesis is: Ebayes ≤
2pDs(x)pDt (x)

1+pDs(x)pDt (x)∆
. Thus,

the label complexity reduction due to the domain separator hypothesis is proportional to

the number of target examples misclassified by the domain separator hypothesis. This is

again, proportional to the Bayes error rate which in turn, is inversely related to the distance

between the two domains.

5.2.1 Hybrid oracle

ALDA additionally exploits the source domain information by using the source learned

hypothesis (see, wsrc in HYBRID of Figure 5.1) as an oracle that provides labels for free.

We denote this oracle by O f . Accordingly with the covariate shift assumption in domain

adaptation, only the marginal distribution changes across domains whereas the conditional

distribution remains fixed. If some target example appears to be close to the source domain

then it is reasonable to assume that the prediction of the source classifer (which depends on

the source conditional distribution) on that target sample should be close to the prediction

of a good target classifier on that target sample. This explains the use of the source learned

classifier as a free oracle for the target domain examples. Moreover, as in the standard

active learning setting, we also have an expensive oracle Oc. This leads to a hybrid

setting which utilizes one of these two oracles for each actively sampled target example.

The hybrid oracle starts with a domain adapted source initialized classifier (uφ in US of

Figure 5.1) and uses the domain separator hypothesis (wds in DS of Figure 5.1) to assess

which of the uncertain target examples lie on the source side and, for all such examples,

it queries the labels from the free oracle O f . For the remaining uncertain examples that

lie on the target side, the hybrid approach queries the expensive oracle Oc. Although the

71

oracle O f is not perfect, the hope is that it can still provide correct labels for most of the

target examples.

Algorithm 2 presents the final algorithm that combines all aforementioned schemes.

This algorithm operates in a batch setting and we call it B-ALDA (for Batch-ALDA). As

mentioned earlier (ref. section 5.1.2), the importance ratio in line two of Algorithm 2 can

be obtained by the techniques SCL (Blitzer et al., 2006), KMM (Huang et al., 2007), etc.

5.3 Online ALDA

In B-ALDA, the active learning module, at each iteration, chooses the data point that

lies closest to the decision boundary. However, this approach is prohibitively slow for large

or even moderately sized datasets. Hence, we propose Online ALDA (O-ALDA) which

performs active learning in an online fashion and for each example decides whether or not

to query its label. As in standard active learning, this query decision must be biased by the

informativeness of the example.

To extend ALDA to the online setting, we adopt the label query strategy proposed

in (Cesa-Bianchi et al., 2006). However, we note that our framework is sufficiently general

Algorithm 2 B-ALDA

1: Input: Ls = {xs,y}; Us; Ut ; maxCost (label budget K and/or desired accuracy ε);
2: Output: v (target classifier);
3: cost := 0;
4: S := L̃s (importance weighted Ls learned using Ls,Us and Ut);
5: uΦ := learn a domain adapted source classifier using S;
6: wds := learn a classifier using the data {Us,+1} and {Ut ,−1};
7: wsrc := learn a domain adapted source classifier using Ls;
8: while (cost < maxCost) do
9: x̄t := US(uΦ,Ut); /* choose most informative target point */

10: ŷds := DS(wds, x̄t); /* compute source resemblance */
11: if (ŷds ==+1) then
12: yt = O f (wsrc, x̄t); /* query the free oracle */
13: else if (ŷds ==−1) then
14: yt = Oc(x̄t); /* query the costly oracle */
15: cost← cost + 1;
16: end if
17: S = S∪{x̄t ,yt};
18: retrain uΦ using S;
19: end while

72

and allows integration with other active online sampling strategies. The sampling scheme

in (Cesa-Bianchi et al., 2006) proceeds in rounds and at round i queries the label of the

example xi with probability b
b+|ri| , where |ri| is the confidence (in terms of margin) of

the current weight vector on xi. Parameter b quantifies how aggressively the labels are

being queried. A large value of b implies that, in expectation, a large number of labels

will be queried (aggressive sampling), whereas a small value would lead to a small number

of examples being queried (conservative sampling). For each label queried, the algorithm

updates the current weight vector if the label was predicted incorrectly. It is easy to see that

the total number of labels queried by this algorithm is ∑
T
i=1E[

b
b+|ri|], where T is the total

number of rounds. At this point we note that the preprocessing stage of O-ALDA assumes

the existence of some (maybe a small amount) of target unlabeled data that can be utilized

to construct the common representation. The online active learning in the target starts after

this preprocessing phase when O-ALDA selectively queries the labels of the target data

points that arrive in some random order.

Algorithm 3 presents the online variant of ALDA which we refer to as O-ALDA (for

Online-ALDA). As shown in Theorem 5.3.1, our proposed O-ALDA yields provable guar-

antees on mistake bounds and label complexity.

Theorem 5.3.1 Let S = ((x1,y1), . . . ,(xT ,yT)) ∈ (R×{−1,+1})T be any sequence of

examples and U PT the (random) set of update trials for the algorithm (i.e., the set of

trials i≤ T such that ŷi 6= yi and Zi = 1). Let v0 be the weight vector with which the base

target classifier is initialized and ri be the margin of O-ALDA on example xi. Then the

expected number of mistakes made by the algorithm is upper bounded by

inf
γ>0

inf
v∗∈RD

(
(2b+1)

2b
E
[

∑
i∈U PT

1
γ

Dγ (v∗;(x̂i,yi))
]
+

(2b+1)2

8b
||v∗− v0||2

γ2

)

The expected number of labels queried by the algorithm is equal to ∑
T
i=1E[

b
b+|ri|].

In the above theorem, γ refers to some margin greater than zero such that the cumulative

hinge loss of the optimal target hypothesis v∗ on S is given by ∑
T
1 Dγ (v∗;(xi,yi)), where

Dγ (v∗;(xi,yi)) = max{0,γ− yiv∗T xi} is the hinge-loss on example i. In next section, we

discuss the above theorem and provide a proof sketch for the mistake bound and the label

complexity of O-ALDA. In addition, we discuss the conditions on v0 that lead to improved

73

Algorithm 3 O-ALDA

1: Input: b > 0; Ls = {xs,y}; Us; Ut ; maxCost (label budget K/desired accuracy ε);
2: Output: v (target classifier);
3: cost := 0;
4: uΦ := learn a domain adapted source classifier using Ls,Us and Ut ;
5: wds := learn a classifier using the data {Us,+1} and {Ut ,−1};
6: wsrc := learn a domain adapted source classifier using Ls;
7: while ((i <= T) & (cost < maxCost)) do
8: ri := US(uΦ,xi

t); /* compute margin of ith target point */
9: ŷi

ds := DS(wds,x
i
t); /* compute source resemblance */

10: sample Zi ∼ Bernoulli(b
b+|ri|);

11: if (Zi == 1) then
12: if (ŷi

ds ==+1) then
13: yi

t = O f (wsrc,xi
t); /* query the free oracle */

14: else if (ŷi
ds ==−1) then

15: yi
t = Oc(xi

t); /* query the costly oracle */
16: cost← cost + 1;
17: end if
18: if (yi

t 6= uT
Φ

xi
t) then

19: update uΦ using online update rule (such, as perceptron);
20: end if
21: end if
22: end while

mistake bounds in domain adaptation settings as compared to the case where there is no

access to data from a related source domain.

5.3.1 Mistake bounds

Our basic algorithm ALDA is similar to the streamed active learning of Cesa-Bianchi

et al. (2006) and our theoretical analysis follows suit. We use Theorem 1 of Cesa-Bianchi

et al. (2006) and claim that a sensible initialization (whenever such information is available)

leads to tighter mistake bounds and label complexity in the target domain. For complete-

ness, we repeat Theorem 1 from Cesa-Bianchi et al. (2006) applicable to Active Learning

Zero Initialized (ALZI).

Theorem 5.3.2 (Cesa-Bianchi et al., 2006, Theorem 1) Let S and U PT be defined as

earlier. Then the expected number of mistakes made by the algorithm is upper bounded by

74

inf
γ>0

inf
v∗∈RD

(
(2b+1)

2b
E
[

∑
t∈U PT

1
γ

Dγ (v∗;(x̂t ,yt))
]
+

(2b+1)2

8b
||v∗||2

γ2

)
(5.1)

The expected number of labels queried by the algorithm is equal to ∑
T
t=1E[

b
b+|rt |].

In the above theorem, γ refers to some margin greater than zero such that the cumulative

hinge loss of the optimal target hypothesis v∗ on S is given by ∑
T
1 Dγ (v∗;(xt ,yt)), where

Dγ (v∗;(xt ,yt)) = max{0,γ− ytv∗T xt} is the hinge-loss on example t.

In the ALZI setting, the learner starts with a zero initialized hypothesis. However in

ALDA, as depicted in Figure 5.1, we start with a nonzero hypothesis (uda) in the TARGET.

The following theorem (applicable to ALDA) shows that the mistake bound and label

complexity of ALDA is better than ALZI.

Theorem 5.3.3 Let S, U PT and v0 be defined as earlier, and r′t be the margin of ALDA

on example xt . Then the expected number of mistakes made by the algorithm is upper

bounded by

inf
γ>0

inf
v∗∈RD

(
(2b+1)

2b
E
[

∑
t∈U PT

1
γ

Dγ (v∗;(x̂t ,yt))
]
+

(2b+1)2

8b
||v∗− v0||2

γ2

)
(5.2)

The expected number of labels queried by the algorithm is equal to ∑
T
t=1E[

b
b+|r′t |

].

Proof. Proceeding in a manner similar to the proof of Theorem 1 of Cesa-Bianchi et al.

(2006), it can be seen that almost all terms in the final expression for the mistake bound

cancel out by the telescopic argument. The term that remains is ||v∗ − v0||2. The proof

follows.

It is easy to see that Theorem 5.2 reduces to Theorem 5.1 if we set v0 = 0. We note

that, the first term in the mistake bounds of Theorem 5.1 and Theorem 5.2 is the cumulative

hinge loss of the optimal target classifier. This term will be the same irrespective of the ini-

tialization used. So the difference in the mistake bounds of Theorem 5.1 and Theorem 5.2

is due to the second term, which in our case is smaller provided θ ≤ cos−1
(
||v0||
2||v∗||

)
,

where θ is the angle between the initializing hypothesis v0 and the target hypothesis v∗.
Without loss of generality, assuming the norm of v0 and v∗ stays fixed (which is true since

both the initial and the optimal hypotheses remain unchanged during learning in target

75

domain), as the value of θ decreases, it causes ||v∗− v0||2 to decrease, leading to reduced

mistake bounds in our case (Theorem 5.2). Thus, in our framework, θ incorporates the

notion of the domain separation that influences the mistake bounds. For small values of θ ,

the source and target domains have high proximity such that the initial target hypothesis v0
lies reasonably close to the optimal target hypothesis v∗. As a result, in such cases, ALDA

is expected to make a smaller number of mistakes to get to the optimal hypothesis.

5.3.2 Label complexity

ALDA is initialized with a nonzero hypothesis v0 = uda learned using data from a

related source domain. Hence, the sequence of hypotheses ALDA produces, will in expec-

tation, have higher confidences margins |r′t | as compared that of ALZI which is based on

a zero initialized hypothesis v0 = 0. Therefore, at each step the sampling probability of

ALDA given by b
b+|r′t |

will also be smaller, which will lead to a smaller number of queried

labels since it is nothing but ∑
T
t=1E[

b
b+|r′t |

].

Now, we present an intuitive argument for the lower label complexity of O-ALDA

as compared to single task online active settings. O-ALDA is initialized with a nonzero

hypothesis v0 =wsrc learned using data from a related source domain. Hence, the sequence

of hypotheses O-ALDA produces, will in expectation, have higher confidences margins |r̄i|
as compared to some zero initialized hypothesis. Therefore, at each step the sampling

probability of O-ALDA given by b
b+|r̄i| will also be smaller, which will lead to a smaller

number of queried labels since it is nothing but ∑
T
i=1E[

b
b+|r̄i|].

5.4 Experiments
In this section, we demonstrate the empirical performance of our algorithms and com-

pare them with a number of baselines.

5.4.1 Setup

In this section we describe our datasets and the methods compared.

5.4.1.1 Datasets. We present results for Sentiment and Landmine datasets. The

Sentiment dataset consists of user reviews of eight product types (apparel, books, DVD,

electronics, kitchen, music, video, and other) from Amazon.com. The sentiment classifica-

76

tion task for this dataset is binary classification which corresponds to classifying a review as

positive or negative. The dataset consists of several domain pairs with varying A -distances,

akin to a sense described in Ben-David et al. (2006). Table 5.1 shows some of the domain

pairs used in our experiments and their corresponding domain divergences in terms of the

A -distance (Ben-David et al., 2006).

To compute the A -distance from finite samples of source and target domain, we use a

surrogate to the true A -distance (the proxy A -distance) in a manner similar to Ben-David

et al. (2006). First, we train a linear classifier to separate the SOURCE domain from the TAR-

GET domain using only unlabeled examples from both. The average per-instance hinge-loss

of this classifier subtracted from 1 serves as our estimate of the proxy A -distance. A

score of 1 means perfectly separable distributions, whereas a score of 0 means that the

two distributions are essentially the same. The amount of useful information that can be

leveraged from the other domain would depend on how similar the two domains are. To this

end, we therefore choose two datasets from the sentiment data: one with a domain-pair that

is reasonably close (Kitchen→Apparel), and another with a domain-pair that is reasonably

far apart (DVD→Books).

Our second dataset (Landmine) is the real landmine detection data (Xue et al., 2007b)

which consists of 29 datasets. The datasets 1 to 10 are collected at foliated regions, whereas

the datasets 20 to 24 are collected from bare earth or desert regions. We combined datasets

1−5 as our source domain and treat dataset 24 as the target domain.

5.4.1.2 Methods. Table 5.2 summarizes the methods used with a brief description

of each. Among the first three (ID, SDA, FEDA), FEDA (Daumé III, 2007) is a state-

of-the-art supervised domain adaptation method but assumes passively acquired labels.

The first three methods (ID, SDA, FEDA) acquire labels passively. The last five (ALZI,

Table 5.1. Proxy A -distances between some domain pairs in the sentiment data
Source Target A -distance

DVD (D) BOOKS (B) 0.7616
DVD (D) MUSIC (M) 0.7314

BOOKS (B) APPAREL (A) 0.5970
DVD (D) APPAREL (A) 0.5778

ELECTRONICS (E) APPAREL (A) 0.1717
KITCHEN (K) APPAREL (A) 0.0459

77

Table 5.2. Description of the methods compared
Method Summary Active ?

ID In-domain data No
SDA Unsupervised domain adaptation followed by No

passively chosen labeled target data
FEDA Frustratingly easy domain adaptation (Daumé III, 2007) No
ALZI Active learning zero initialized Yes
ALRI Active learning random initialized (with fixed label budget) Yes
ALSI Active learning source (hypothesis) initialized Yes

B-ALDA Batch active learning domain adapted Yes
O-ALDA Online active learning domain adapted Yes

ALRI, ALSI, B-ALDA and O-ALDA) methods in Table 5.2 acquire labels in an active

fashion. As the description denotes, ALZI and ALRI start active learning in TARGET with

a zero initialized and randomly initialized hypothesis, respectively. It is also important to

distinguish between ALSI and ALDA (which jointly denotes both B-ALDA and O-ALDA).

While both are products of our proposed ALDA framework, ALSI uses an unmodified

source classifier learned only from SOURCE labeled data as the initializer, whereas ALDA

(i.e., both B-ALDA and O-ALDA) uses an unsupervised domain-adaptation technique (i.e.,

without using labeled target data) to learn the initializer.

In our experiments, we use the instance reweighting approach (Sugiyama et al., 2007)

to construct the unsupervised domain adaptated classifier uφ . However, we note that this

step can also be performed using any other unsupervised domain adaptation technique

such as Structural Correspondence Learning (SCL) (Blitzer et al., 2006) and Kernel Mean

Matching (KMM) (Huang et al., 2007).

We compare all the approaches based on classification accuracies achieved for a fixed

unlabeled pool of target examples with varying label budgets. For B-ALDA, we use a

margin based classifier (SVM), whereas for O-ALDA we use vanilla perceptron as the base

classifier. All online experiments have been averaged over multiple runs with respect to

random data order permutations.

5.4.2 B-ALDA results

We present results for B-ALDA using a fixed target unlabeled pool and varying target

label budgets. Since, domain adaptation is required only when there are small amounts of

78

labeled data in the target, we limit our target label budget to values that are much smaller

than the size of the unlabeled target data pool. In addition, due to long running times of our

batch ALDA (owing to repeated retraining), we report results on relatively smaller target

pool sizes. The B-ALDA results are presented for a unlabeled target pool size of 2500 data

points.

5.4.2.1 Sentiment classification. Table 5.3 and Table 5.4 present the results for the

domain pairs DVD→Books and Kitchen→Apparel. For these domain pairs, both ALSI

and B-ALDA substantially outperform all other baselines. For the distant source-target

pair (DVD→Books), ALSI performs very well for a small number of target labels (say,

100 and 200). As the number of target labels increases, B-ALDA consistently improves

with increasing number of target labels and finally outperforms ALSI. When the source-

target pairs are reasonably close (Kitchen→Apparel), both ALSI and B-ALDA have similar

prediction accuracies which are in turn are much higher that the baseline accuracies.

5.4.2.2 Landmine detection. The Landmine dataset has a high class imbalance

(only about 5% positive examples), so we report Area Under Curve (AUC) scores instead

of accuracies. We compare our algorithms with other baselines in terms of the AUC score

on the entire pool of target data (the pool size was 300; rest of the examples in dataset 24

were treated as test data). As shown in Table 5.5, our approaches perform better than the

other baselines with the domain separator based B-ALDA doing the best (in terms of AUC

scores).

Table 5.3. Classification accuracies and number of labels requested for DVD→Books.
Results are averaged over 10 runs. Note: ID, SDA and FEDA are given labels of all
examples in the target pool.

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc
ID 50.83 57.86 62.42 55.69 62.68

SDA 62.18 62.78 55.75 52.45 50.49
FEDA 63.92 64.27 64.88 65.94 66.19
ALZI 54.40 54.36 54.33 54.33 54.33
ALRI 54.99 59.42 61.28 65.81 65.52
ALSI 63.75 66.26 68.73 63.10 62.08

B-ALDA 63.40 65.17 67.84 68.61 68.51
Acc: Accuracy

79

Table 5.4. Classification accuracies and number of labels requested for Kitchen→Apparel.
Results are averaged over 10 runs. Note: ID, SDA and FEDA are given labels of all
examples in the target pool.

Met- Target Label Budget
hod 100 200 300 400 500

Acc Acc Acc Acc Acc
ID 48.40 43.44 44.92 48.40 49.77

SDA 52.78 55.41 57.37 53.60 46.37
FEDA 70.47 69.97 70.06 71.83 69.96
ALZI 54.56 54.50 54.44 54.44 54.44
ALRI 64.97 66.86 69.01 70.40 71.06
ALSI 74.91 70.58 72.97 72.34 72.29

B-ALDA 71.30 70.90 71.19 71.73 73.07
Acc: Accuracy

Table 5.5. AUC scores (AUC) and labels requested (Lab) for the Landmine dataset.
Method Target Budget (300)

AUC
ID 0.59

SDA 0.60
FEDA 0.56
ALZI 0.59
ALRI 0.53
ALSI 0.63

B-ALDA 0.65

We do not report any label complexity result for B-ALDA as the nature of the algorithm

is such that it iterates until the entire label budget is exhausted. Hence, in all the results

presented above in Table 5.3, Table 5.4 and Table 5.5, the number of labels used is equal to

the target label budget provided.

5.4.3 O-ALDA results

One of the goals to propose an online variant for ALDA is to make the proposed

approach scale efficiently for larger target pool sizes because batch mode ALDA requires

repeated retraining. On the other hand, an online active learner is an efficient alternative

because it allows incremental update of the learner for each new selected data point. In

this section, we present results for O-ALDA and demonstrate the scalability of the ALDA

80

framework to larger target pool sizes. The results for O-ALDA use the entire target unla-

beled pool (∼ 7000 for Sentiment data). As a result, the label budget allocated is also much

larger as compared to B-ALDA. We note that ID and SDA and FEDA have been made

online by the use of the perceptron classifier. In addition, the same online active strategy

as O-ALDA has been used for ALZI, ALRI and ALSI.

5.4.3.1 Sentiment classification. The results are shown in Table 5.6 and Table 5.7.

As the results indicate, on both datasets, our approaches (ALSI and ALDA) perform consis-

tently better than the baseline approaches (Table 5.2) which also include one of the state-of-

the-art supervised domain adaptation algorithms (FEDA). We note that ALDA outperforms

ALSI for Kitchen→Apparel as compared to DVD→Books. When the domains are far

(DVD→Books), the performance of ALDA depends on the underlying domain adaptation

technique. However, when the domains are close (Kitchen→Apparel), ALDA performs

better than ALSI. This behavior suggests that the performance gains achieved by these

variants are significant when the source and target domains are reasonably close.

5.4.3.2 Landmine detection. Similar to B-ALDA results, in this case also we used

the entire pool of 300 target data points. The rest of the examples in dataset 24 were treated

as test data. As earlier, our approaches perform better than the other baselines with the

domain separator based O-ALDA demonstrating a slightly better AUC score and slightly

lesser label complexity as compared to online ALSI. Table 5.8 presents the AUC scores

and the label complexities of the various methods.

5.4.4 Remarks

For all datasets considered, both batch and online versions of ALDA demonstrate sub-

stantial improvement of prediction accuracy for Sentiment data (∼ (0.4%−5.09%)). This

improvement is particularly high when the domains are reasonably similar (for example,

Kitchen→Apparel in Table 5.4 and Table 5.7). In addition, the Landmine data reports AUC

scores, not accuracies, and 1% increase in AUC score implies substantial improvement.

For Sentiment and Landmine datasets, both ALSI and ALDA (i.e., B-ALDA and O-

ALDA) demonstrate improvement in prediction accuracy for a fixed label budget when

compared to other baselines. Apart from the results for DVD→Books in the batch setting

(Table 5.3), the prediction accuracies obtained by ALSI and ALDA in all other cases are

comparable. However, to get a better sense of the robustness of these two approaches,

81

Table 5.6. Classification accuracies (Acc), standard deviations (Std) and number of
labels requested for DVD→Books. Results are averaged over 20 runs (w.r.t. different
permutations of the training data). Note: ID, SDA and FEDA are given labels of all
examples in the target pool.

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)
ID 65.94(±3.40) 66.66(±3.01) 67.00(±2.40) 65.72(±3.98) 66.25(±3.18)

SDA 66.17(±2.57) 66.45(±2.88) 65.31(±3.13) 66.33(±3.51) 66.22(±3.05)
FEDA 67.31(±3.36) 68.47(±3.15) 68.37(±2.72) 66.95(3.11) 67.13(±3.16)
ALZI 66.24(±3.16) 66.72(±3.30) 63.97(±4.82) 66.28(±3.61) 66.36(±2.82)
ALRI 51.79(±4.36) 53.12(±4.65) 55.01(±4.20) 57.56(±4.18) 58.57(±2.44)
ALSI 68.22(±2.17) 69.65(±1.20) 69.95(±1.55) 70.54(±1.42) 70.97(±0.97)

O-ALDA 67.64(±2.35) 68.89(±1.37) 69.49(±1.63) 70.55(1.15) 70.65(±0.94)

Table 5.7. Classification accuracies (Acc), standard deviations (Std) and number of labels
requested for Kitchen→Apparel. Results are averaged over 20 runs (w.r.t. different
permutations of the training data). Note: ID, SDA and FEDA are given labels of all
examples in the target pool.

Met- Target Label Budget
hod 1000 2000 3000 4000 5000

Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std) Acc(±Std)
ID 69.64(±3.14) 69.61(±3.17) 69.36(±3.14) 69.77(±3.58) 70.77(±3.05)

SDA 69.70(±2.57) 70.48(±3.42) 70.29(±2.56) 70.86(±3.16) 70.71(±3.65)
FEDA 70.05(±2.47) 69.34(±3.50) 71.22(±3.00) 71.67(±2.59) 70.80(±3.89)
ALZI 70.09(±3.74) 69.96(±3.27) 68.6 (±3.94) 70.06(±2.84) 69.75(±3.26)
ALRI 52.13(±5.44) 56.83(±5.36) 58.09(±4.09) 59.82(±4.16) 62.03(±2.52)
ALSI 73.82(±1.47) 74.45(±1.27) 75.11(±0.98) 75.35(±1.30) 75.58(±0.85)

O-ALDA 73.93(±1.84) 74.18(±1.85) 75.13(±1.18) 75.88(±1.32) 75.58(±0.97)

we compare the number of mistakes made by the online variants of these two approaches

during the training phase. Table 5.9 presents the results for Sentiment data. As can be

seen, in almost all case the number of mistakes made by O-ALDA is much less (almost

half in many cases) than online ALSI. Hence, irrespective of the nearness or farness of the

source-target domain pairs, ALDA is a better choice compared to ALSI.

5.5 Summary
In this work, we have considered a domain adaptation setting, and presented a frame-

work that helps leverage interdomain information transfer while performing active learning

82

Table 5.8. AUC scores (AUC), standard deviation (Std) and labels requested (Lab) for the
Landmine dataset. Results are averaged over 20 runs.

Method Target Budget (300)
AUC±Std (Lab)

ID 0.57±0.03 (-)
SDA 0.60±0.02 (-)
FEDA 0.52±0.04 (-)
ALZI 0.61±0.02 (284)
ALRI 0.56±0.05 (229)
ALSI 0.65±0.02 (244)

O-ALDA 0.67±0.03 (241)

Table 5.9. Number of mistakes made by ALSI and O-ALDA for Sentiment data.
Target Label Budget

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Number of Mistakes

Method DVD→Books Kitchen→Apparel
ALSI 369 739 1117 1460 1816 245 532 810 1097 1088

O-ALDA 384 741 1000 1012 1004 232 478 549 551 556

in the target. Both the batch and online versions of the proposed ALDA empirically demon-

strate the benefits of domain transfer for active learning.

At present, ALDA is oblivious to the feature set used and as such, does not depend on

domain knowledge and feature selection. It takes all features into consideration. Nonethe-

less, it is possible that in the feature space not all features contribute equally while transfer-

ring information from source to target and without a priori information about the source and

target domains, it is difficult to assess which features might maximally benefit the transfer

of parameters from source to target. However, if prior domain knowledge about the target

is available from related source domains, then one can potentially leverage active learning

to selectively choose only those features that transfer maximum information between the

two domains.

An alternative approach to leverage feature information for ALDA is to perform ac-

tive learning on features. There exists work in active learning that queries labels for

features (Druck et al., 2009) and, in some cases, queries labels for both instances and

features in tandem (Raghavan et al., 2006). We note that this is different from the above

83

where active learning can essentially be used as a tool for feature selection. In this case,

active strategies query labels that exploit both instance and feature informativeness (for

e.g., in NLP, consider querying labels for rare words which serve as informative features in

the target domain). It would be interesting to extend the proposed ALDA to perform active

domain transfer by querying labels of both instances and features.

PART II

DISTRIBUTED LEARNING

CHAPTER 6

A NEW MODEL FOR DISTRIBUTED LEARNING

Distributed learning (Bekkerman et al., 2011) is the study of machine learning on data

distributed across multiple locations. Examples of this setting include data gathered from

sensor networks, or from data centers located across the world, or even from different

cores on a multicore architecture. In all cases, the challenge lies in solving learning prob-

lems with minimal communication overhead between nodes; learning algorithms cannot

afford to ship all data to a central server, and must use limited communication efficiently

to perform the desired tasks. In this chapter, we introduce a framework for studying

distributed classification that treats internode communication as a limited resource, and

present a number of algorithms for this problem that uses internode interaction to reduce

communication. Our main technique is the use of carefully chosen data and classifier

descriptors that convey the most useful information about one node to another; in that

respect, our work makes use of (in spirit) the active learning paradigm (Settles, 2009).

For distributed classification, the dominant strategy (Lazarevic and Obradovic, 2001,

Mann et al., 2009, McDonald et al., 2010, Predd et al., 2006) is to design local classifiers

that work well on individual nodes. These classifiers are then communicated to a central

server, and then aggregation strategies like voting, averaging, or even boosting are used to

compute a global classifier. These approaches, while designed to improve communication,

do not study communication as a resource to be used sparingly, and ignore the fact that

interactions between nodes might reduce communication even further by allowing them to

learn from each others’ data.

Existing work in distributed learning mainly focuses on either inferring an accurate

global classifier from multiple distributed subclassifiers learned individually (at respective

nodes) or on improving the efficiency of the overall learning protocol. The first line of work

consists of techniques like parameter mixing (Mann et al., 2009, McDonald et al., 2010)

86

or averaging (Collins, 2002) and classifier voting (Bauer and Kohavi, 1999). Parameter

mixing (or averaging (Collins, 2002)), which has been primarily proposed for maximum

entropy (MaxEnt) models (Mann et al., 2009) and structured perceptrons (Collins, 2002,

McDonald et al., 2010), have shown to admit convergence results but lack any bounds on

the communication. Indeed, parameter-mixing for structured perceptrons uses an iterative

strategy that require a large amount of communication. Additionally, we have shown that if

the different classifiers are only allowed to train on mutually exclusive data subsets then

there exists specific examples (under the adversarial model) where voting will always

yield suboptimal results. We have presented such examples in section 6.4. Thus, these

approaches do admit convergence results but lack any bounds on the communication. The

goal of the second line of work is to make distributed algorithms scale to large datasets.

Many of these works (Chu et al., 2007a, Teo et al., 2010) focus on MapReduce. Zinke-

vich et al. (2010) proposed a MapReduce based improved parallel stochastic gradient

descent and more recently Servedio and Long (2011) improved the time complexity of

γ-margin parallel algorithms from Ω(1/γ2) to O(1/γ). Dekel et al. (2010b) averaged

over minibatches of accumulated gradients to improve regret bounds for distributed online

settings. Duchi et al. (2010) and Agarwal and Duchi (2011) considered optimization in

distributed settings but their convergence analysis applied to specific cases of subgradient

and stochastic gradient descent algorithms.

Surprisingly, communication in learning has not been studied directly as a resource

to be used sparingly. As we show in this chapter, intelligent interaction between nodes,

communicating key data subsets not just its classification, can greatly reduce the necessary

communication over existing approaches. On large distributed systems, communication has

become a major bottleneck for many real-world problems; it accounts for a large percentage

of total energy costs, and is the main reason that MapReduce algorithms are designed to

minimize rounds (of communication). This strongly motivates the need to incorporate the

study of this aspect of an algorithm directly, as presented and modeled in this chapter.

Independently of this work, research by Balcan et al. (2012) study a very similar model.

They also consider adversarially distributed data among k parties and attempt to learn on

the adversarially distributed data while minimizing the total communication between the

parties. Similar to this work, the work of Balcan et al. (2012) presents both agnostic and

87

nonagnostic results for generic settings, and shows improvements over sampling bounds

in several specific settings including the d-dimensional linear classifier problem we con-

sider here (also drawing inspiration from boosting). In addition, their work provides total

communication bounds for decision lists and for proper and nonproper learning of parity

functions. They also extend the model so as to preserve differential and distributional

privacy while conserving total communication, as a resource, during the learning process.

Our overall contribution, in this work, is to model communication minimization (in

distributed classification) as an active probing problem. We start in section 6.2.1.2 by

showing that, within our proposed framework, the one-way communication problem can be

solved trivially under i.i.d. assumptions (ref. section 6.2.1.2). Hence, in this work, most of

our effort is focused on adversarial distributions. In all subsequent cases, we first help build

intuition by discussing a two-party protocol and thereafter extend the two-party results to

the k-party case. In section 6.2.1.3 we show that, for one-way communication, it is possible

to learn optimal global classifiers exactly (i.e., with 0-error) for thresholds (in R1), intervals

(in R1) and axis-aligned rectangles (in Rd) with only a constant amount of communication.

For the case of linear separators, we prove an Ω(1/ε) lower bound (ref. Appendix B.1).

Thereafter in section 6.2.2, we present our two-way, two-party communication protocol

ITERATIVESUPPORT which learns an ε-error classifier (under adversarial distributions)

using only O(log1/ε) communication – an exponential improvement over the one-way

case! A O(d2 log1/ε) protocol based on multiplicative-weight-update for learning in

arbitrary dimension follows. Next, in section 6.3, we use the results of section 6.2.2 to

obtain an O(k2 log1/ε) bound for k-parties using two-way communication in 2-dimensions

and O(kd2 log1/ε) bound using a boosting-based algorithm in higher dimensions. In

section 6.4, we present empirical results that demonstrate the correctness and convergence

of the linear separator algorithms and also compare its performance with a few other

baselines.

Table 6.1 summarizes the results obtained with references to appropriate sections of

this chapter. All our results pertain to the noiseless setting which assumes the existence

of a classifier that perfectly separates the data. Finally, for cases when it is difficult to a

priori ascertain the presence of noise, we present one-way communication lower bounds

for learning in our model (ref. Appendix B.2).

88

Table 6.1. Summary of results obtained for different hypotheses classes under an adver-
sarial model with one-way and two-way communications. All results are for the noiseless
setting. ν denotes the VC-dimension for the family of classifiers.

Hypothesis Dimen- Error Communication Complexity Reference
Class sions Two-party k-party

One-way protocols
generic d ε O(ν/ε logν/ε) O(k(ν/ε) logν/ε) Th 6.2.2 & 6.3.1

thresholds 1 0 2 2k Lem 6.2.1 & 6.3.2
aa-rectangles d 0 4d 4dk Th 6.2.3 & 6.3.2
hyperplanes d ε Ω(1/ε) Ω(k/ε) Th 6.2.4 & 6.2.5

Two-way protocols
hyperplanes 2 ε O(log1/ε) O(k2 log1/ε) Th 6.2.6 & 6.3.5
hyperplanes d ε O(d2 log1/ε) O(kd2 log1/ε) Th 6.2.7 & 6.3.7

6.1 Proposed Communication-efficient Model
There are many aspects to formalizing the problem of learning classifiers with limited

communication, including discussion of the data sources (i.i.d. or adversarial), data quality

(noiseless or noisy), communication models (one-way, two-way or k-way) and classifier

models (linear, nonlinear, mixtures). In this work, we focus on a simple core model

that illustrates both the challenges and the benefits of focusing on the communication

bottleneck.

In our model, we first consider one-way and two-way communication between two

parties Alice (say, A) and Bob (say, B) that receive noiseless data sets DA and DB that result

from partitioning a larger data set D = DA ∪DB. Thereafter, we consider one-way and

two-way communication between k parties P1,P2, . . . ,Pk that receive noiseless data sets

D1,D2, . . . ,Dk partitioned from D =
⋃k

i=1 Di. In either case, the partitioning may be done

randomly, but might also be adversarial: indeed, a number of recent discussions (Cesa-

Bianchi et al., 2009, Dekel et al., 2010a, Hsu and Langford, 2011, Laskov and Lippmann,

2010) highlight the need to consider adversarial data in learning scenarios.

In our model, the nodes learn together (via communication), a classifier hk (hAB for

two nodes A and B) from a family of classifiers such as linear classifiers. Let h∗ denote

the optimal classifier that can be learned on D. Let ED(h) denote the number of points

misclassified by some classifier h on D. We say that hk has ε-approximation error (ε-error

for short) on D if

89

ED(hk)−ED(h∗)≤ ε|D|

The goal is for hk to have at most ε-error (0 < ε < 1) while minimizing internode commu-

nication.

In our proposed model, we phrase the learning task in terms of training error, rather

than generalization. This is motivated by numerous results that indicate that low train-

ing error combined with limits on the hypothesis class used lead to good generalization

bounds (Kearns and Vazirani, 1994).

We assume that there are k parties P1,P2, . . .Pk. Each party Pi possesses a dataset

Di that no other party has access to, and each Di may have both positive and negative

examples. The goal is to classify the full dataset D = ∪iDi correctly. We assume that there

exists a perfect classifier h∗ from a family of classifiers H with associated range space

(D,H) and bounded VC-dimension ν . We are willing to allow ε-classification error on D

so that up to ε|D| points in total are misclassified.

Each word of data (e.g., a single point or vector in Rd counts as O(d) words) passed

between any pair of parties is counted towards the total communication; this measure in

words allows us to examine the cost of extending to d-dimensions, and allows us to consider

communication in forms other than example points, but does not hinder us with precision

issues required when counting bits. For instance, a protocol that broadcasts a message of

M words (say M/d points in Rd) from one node to the other k− 1 players costs O(kM)

communication. The goal is to design a protocol with as little communication as possible.

We assume an adversarial model of data distribution; in this setting we prepare for the

worst, and allow some adversary to determine which player gets which subset of D.

6.2 Two-party Protocols
6.2.1 One-way communication

6.2.1.1 Sampling bounds. Given D and a family of classifiers with bounded VC-

dimension ν , a random sample from D of size

sε,ν = O(min{(ν/ε) log(ν/ε),ν/ε
2}) (6.1)

has at most ε-classification error on D with constant probability, as long as there exists a

perfect classifier. Throughout this paper we will assume that a perfect classifier exists. This

90

constant probability of success can be amplified to 1−δ with an extra O(log(1/δ)) factor

of samples.

6.2.1.2 Random partitioning. We first consider the case when the data is parti-

tioned randomly among nodes. Specifically, each node i can view its data Di as being drawn

from the same distribution D ⊂ Rd . That is, all datasets Di are identically distributed.

We can now apply learning theory results for any family of classifiers H with bounded

VC-dimension ν . Any classifier hS ∈H which perfectly separates a random sample S of

sε,ν = O(min{(ν/ε) log(ν/ε),ν/ε2}) samples from D has at most, ε-classification error

on D with constant probability (Anthony and Bartlett, 2009). Thus, each Di can be viewed

as such a sample S and if Di is large enough, with no communication a node can return a

classifier with small error as long as there exists a perfect classifier. Throughout this work

we will assume that a perfect classifier exists.

Theorem 6.2.1 Let {D1, . . . ,Dk} randomly partition D ⊂ Rd. In the noiseless setting a

node i can produce a classifier from (Rd ,H) (with VC-dimension ν) with at most ε-error

for ε = O((ν/|Di|) log(ν |Di|)), with constant probability.

This constant probability of success can be amplified to 1−δ with an extra O(log(1/δ))

factor of samples.

A similar result (with slightly worse dependence on the Di) can be obtained for the

noisy setting. These results indicate that the k-party (and hence also two-party) setting

is trivial to solve if we assume random partitioning of D. Thus, for the remainder of the

chapter we focus on protocols for adversarially partitioned data.

6.2.1.3 Adversarial partitioning. We now turn to data adversarially partitioned

between two nodes A and B, as disjoint sets DA and DB, respectively. For the hypothesis

classes discussed in this section, one-way protocols where only A sends data to B suffices

for B to learn an ε-error classifier. Consider first a generic setting, with D⊂Rd and family

of hypothesis H ⊂ 2D so (Rd ,H) has VC-dimension ν .

Theorem 6.2.2 Assume there exists a 0-error classifier h∗ ∈ H on D where (D,H) has

VC-dimension ν . Then A sending sε = O((ν/ε) log(ν/ε)) words (SA ⊂ DA) to B allows

B to, with constant probability, produce an ε-error classifier h ∈H.

91

Proof. The classifier returned by B will have 0 error on DB∪SA; thus it only has error on

DA. Since SA is an ε-net of DA with constant probability, then it has at most ε-error on

DA and hence, at most ε-error on DA∪DB = D.

A similar result with sε = O(ν/ε2) applies to the noisy setting. An important technical

contribution of this work is to show that in many cases we can improve upon these general

results.

6.2.1.4 Results for basic geometric hypotheses families. Here, we present com-

munication bounds for the class simple geometric families.

First we describe how to find a threshold t ∈ T ⊂R such that all points p∈D with p < t

are positive and with p > t are negative. A sends to B a set SA consisting of two points in

DA: its largest positive point p+ and its smallest negative point p−. Then B returns a

0-error classifier on DB∪SA.

Lemma 6.2.1 In O(1) words one-way communication we can find a 0-error classifier in

(D,T).

Proof. The optimal classifier t ∈ T must lie in the range [p+, p−] otherwise, it would mis-

classify some point in DA, breaking our noiseless assumption. Then any 0-error classifier

on DB within this range has 0 error on D.

We can now apply Lemma 6.2.1 to get stronger bounds. In particular, this generalizes to

the family I of intervals in R1. First A finds hA, its optimal classifier for DA. This interval

has two end points each of which lies in between a pair of a positive and a negative point

(if there are no negative or no positive points, A returns the empty set). These two pairs of

points form a set SA that A sends to B. B now returns the classifier that optimally separates

DB∪SA, and if SA is empty then the interval classifier is as small as possible.

Lemma 6.2.2 In O(1) words one-way communication we can find a 0-error classifier h ∈
I.

Proof. When SA is nonempty, this encodes two versions of Lemma 6.2.1. Assume without

loss of generality that the positive points are contained in an interval with negative points

lying outside the interval. Then we can pick any positive point p from either set DA or DB
and consider the points greater than p in the first instance of Lemma 6.2.1 and points less

92

than p in the second instance. Invoking Lemma 6.2.1 proves this case. When SA is empty,

and a perfect classifier exists, then the minimal separating interval on DB will not violate

any points in SA, and will have no error.

We now consider finding a 0-error classifier from the family Rd of all axis-aligned

rectangles in Rd . An axis-aligned rectangle R ∈ Rd can be defined by d-values in Rd , a

minimum and maximum value along each coordinate axis. Given a data set P, the minimum

axis-aligned rectangle for P is the smallest axis-aligned rectangle that contains all of P;

that is, it has the smallest maximum coordinate possible along each coordinate axis and the

largest minimum coordinate possible along each coordinate axis. These 2d terms can be

optimized independently as long as P is nonempty.

For a dataset DA we can define two minimum axis-align rectangles, R+A and R−A defined

on the positive and negative points, respectively. If the positive or negative point set is

empty, then each coordinate minimum and maximum is set to a special character /0. Two

such rectangles can be defined for DB and D = DA∪B in the same way.

Theorem 6.2.3 A one-way protocol where A sends R+A and R−A to B is sufficient to find a

0-error classifier hAB ∈Rd in the noiseless setting. It requires O(d) words of communica-

tion.

Proof. The key observation is that the minimum axis-aligned rectangle that contains R+A
and R+B is precisely R+A∪B (and symmetrically for negative points). Since the minimum

and maximum for each coordinate axis is set independently, then we can optimize each

using that value from R+A and R+B . Thus, B can compute this using points from DB and

R+A .

First, consider the case where positive points are inside the classifier and negative points

are outside. Since there exists a 0-error classifier h∗, then R+A∪B must be contained in

that classifier, since no smaller classifier can contain all positive points. It follows by our

assumption that h∗ and thus also R+A∪B, contains no negative points and can be returned

as our 0-error classifier hAB. B can determine if positive or negative points are inside by

which of R+A∪B and R−A∪B is smaller. If R+A or R−A is /0, then R+A∪B = R+B or R−A∪B = R−B ,

respectively.

93

6.2.1.5 An Ω(1/ε) lower bound for linear separators in R2. The positive results

from simpler geometric concepts do not extend to hyperplanes. We prove the following

lower bound in Appendix B.1.

Theorem 6.2.4 Using only one-way communication from A to B, it requires Ω(1/ε) words

of communication to find an ε-error linear classifier in R2.

Note that due to Theorem 6.2.1, this is tight up to a log(1/ε) factor for one-way

communication.

We can extend this lower bound to the k-node one-way model of computation where

we assume each node Pi can only send data to Pi+1. In this case, we give node A’s input to

P1, and node B’s input to node Pk, and nodes Pi for i ∈ [2,k−1] have no data. Then each

node Pi is forced to send the Ω(1/ε) communication that A wants to send to B along the

chain.

Theorem 6.2.5 Using only one-way communication among k-players in a chaining model,

it requires Ω(k/ε) words of communication to find an ε-error linear classifier in R2.

6.2.2 Median-based two-way protocol for linear separators in R2.

In this section, we present a two-party algorithm that uses two-way communication

to learn an ε-optimal combined classifier hAB. We prove an O(log(1/ε)) bound on the

communication required.

6.2.2.1 Algorithm. For ease of exposition, we first provide an overview of the algo-

rithm. Thereafter we discuss the details and provide proofs to bound the communication.

Our algorithm proceeds in rounds. In each round both nodes send a constant number

of points to the other. The goal is to limit the number of rounds to O(log(1/ε)), resulting

in a total communication complexity of O(log(1/ε)). At the end of O(log(1/ε)) rounds of

communication, the algorithm yields a combined classifier hAB that has ε error on D.

In order to bound the number of rounds, each node must maintain information about

which points the other node might be classifying correctly, or not, at any stage of the

algorithm. Specifically, suppose node A is sent a classifier hB from node B (learned on DB
and hence has zero error on DB) and this classifier misclassifies some points in DA. We

denote these points as the Set of Disagreement (SOD) where SOD ⊆ DA. The remaining

94

points in DA can be divided into the Set of Total Agreement (SOTA), which are the points

on which classifiers from A and B will continue to agree on in the future, and the Set of

Luck (SOL), which are points on which the two nodes currently agree, but might disagree

later on. The set of disagreement and the set of luck together form the Set of Uncertainty

SOU = SOD∪SOL, representing all points that may or may not be classified incorrectly by

B in the future.

Our goal will be to show that the SOU decreases in cardinality by a constant factor in

each round. Achieving this will guarantee that at the end of log(1/ε) rounds, the size of

the SOU will be at most an ε-fraction of the total input. Since |SOU| ≥ |SOD|, we obtain

the desired ε-error classifier.

The simplest strategy would be for each node to build a max-margin classifier on all

points it has seen thus far, and send the support points for this classifier to the other node.

While this simple protocol might converge quickly in practice (we actually compare against

it in section 6.4, it is called MAXMARG, and it often does), in principle this protocol may

take a linear number of rounds to converge. Thus, our algorithm will choose non-max-

margin support vectors, but we will show that by sending these points we can achieve

provable error and communication trade-off bounds.

Let P+A and P−A denote polytopes that contain positive and negative points in DA,

respectively. Let C+A and C−A denote the convex hulls formed by the positive and neg-

ative SOTA in DA after the ith round, respectively. In general, when sets have a + or

− superscript it will denote the restriction of that set to only positive or negative points,

respectively. Often to simplify messy, but usually straightforward, technical details we will

drop the superscript and refer to either or both sets simultaneously. We denote the region

of uncertainty UA as PA \CA, and note UA = UA∩DA.

In each round A will send to B a set SA⊂DA; these points imply a max-margin classifier

hA on SA that has 0 error on DA; see Figure 6.1. Then B will either terminate with an

ε-error classifier hB, or symmetrically return a set of points SB ⊂ DB. This process is

summarized in Algorithm 4.

Two aspects remain: determining if a player may exit the protocol with a ε-error

classifier (early termination), and computing the support points in the function SUPPORT.

Note that in Algorithm 4, under certain early-termination conditions, player B may

95

CA
UA

pl

pr
vr

vl

v

Figure 6.1. 3 support points chosen from UA, and the family of 0-error classifiers for A
parallel to hA.

Algorithm 4 ITERATIVESUPPORTS

Input: DA and DB
Output: hAB (classifier with ε-error on DA∪DB)
SA := SUPPORT(DA); send SA to B;
while (1) do

——— B’s move ———
compute error (err) using hA (from SA) on DB;
if(err ≤ ε|DB|) then exit;
DB = DB∪SA; SB := SUPPORT(DB); send SB to A;
——— A’s move ———
compute error (err) using hB (from SB) on DA;
if(err ≤ ε|DA|) then exit;
DA = DA∪SB; SA := SUPPORT(DA); send SA to B;

end while

terminate the protocol and return a valid classifier, even if hA has more than ε error on DB.

Any classifier that is parallel to hA and is shifted less than the margin of the max-margin

classifier also has 0 error on DA. Thus, if any such classifier has at most ε-error on DB,

player B can terminate the algorithm and return that classifier.

This early-termination observation is important because it allows B to send to A infor-

mation regarding a 0-error classifier, with respect to hA, and the points SA that define it.

If B cannot terminate, then either some point in DB must be completely misclassified by

all separators within the margin, or some negative point in DB and some positive point in

DB must both be in the margin and cannot be separated; see Figure 6.2. Either scenario

implies that any ε-error classifier on DB must rotate in some direction (either clockwise

96

or counter-clockwise) relative to hA. This is important because it informs A that all points

on ∂PA (the boundary of PA) in the clockwise (resp. counter-clockwise) direction from

SA will never be misclassified by B if hB rotates in the counterclockwise (resp. clockwise)

direction from hA, increasing the SOTA, and decreasing the SOU. This logic is formalized

in Lemma 6.2.3.

If the set SA always has half of UA on either side, then this process will terminate in,

at most, O(log(1/ε)) rounds. However, it may have no points on one side, and always be

forced to rotate towards the other side. Thus, the set SA is chosen judiciously to ensure that

|UA| decreases by at least half each round.

What remains to describe is how A chooses a set SA, i.e., how to implement the

subroutine SUPPORT in Algorithm 4. If the set SA always has half of UA on either side,

then this process will terminate in, at most O(log(1/ε)) rounds, via the consequences of

no early-termination. However, if no points are on one side of SA, and B’s response always

forces hA to rotate towards the other side, then this cannot be assured. Thus, the set SA
should be chosen judiciously to ensure that |UA| decreases by at least half each round.

We present two methods to choose SA. This first does not have the half-on-either-side

guarantee, but is a very simple heuristic, and which we show in section 6.4 often works

quite well, even in higher dimensions. The second, is only slightly more complicated and

is designed precisely to have this half-on-either-side guarantee. Both methods start by

computing the region of uncertainty UA and the set of its points DA which lie in that region

UA.

The first is called MAXMARG, and simply chooses the max-margin support points as

SA. These points may include points sent over in previous iterations from B to A.

The second is called MEDIAN, and is summarized in Algorithm 5 (shown from A’s

perspective). It projects all of UA onto ∂PA (the boundary of PA); this creates a weight

for each edge of ∂PA, defined by the number of points projected onto it. Then MEDIAN

chooses the weighted median edge E. Finally, the orientation of hA is set parallel to edge

E, and the corresponding support vectors are constructed.

6.2.2.2 Analysis of ITERATIVESUPPORTS. Now, we formally prove the number

of rounds required by ITERATIVESUPPORTS to converge.

To simplify the exposition of the protocol, we start with a special case, where player

97

early termination counter-clockwise clockwise

P−
A

P+
A

hA

P−
B

P+
B hB

Figure 6.2. Cases for either early termination, or for the direction of the normal to the
linear separator being forced counter-clockwise or clockwise.

Algorithm 5 SUPPORT implemented as MEDIAN

1: Input: D = DA∪{SB}
2: Output: SA (a set of support points)
3: project points in UA onto ∂PA;
4: E := weighted median edge of ∂PA;
5: hA := classifier on D parallel to edge E;
6: SA := support points of hA;

A must, through interaction with B, teach B parameters of classifier that has at most ε

error on D−A , as well as some (but not all) negative examples in DB. This case captures

the bulk of the technical development of the overall protocol. In section 6.2.2.3 we will

then describe how to extend the protocol to (a) ensure at most ε error on both positive and

negative examples in DA, and (b) be symmetric: have at most ε error on DA∪DB.

We will describe the protocol from the point of view of player A. Each round of

communication will start with A computing a classifier from its current state, and sending

support points for this classifier to B. B then performs some computation, and either

terminates returning an ε-error classifier, or returns a single bit of information to A. A

updates its internal state, completing the round.

At any stage, A maintains an interval of directions (vl ,vr) ⊂ S1 where by convention,

we go clockwise from vl to vr. This interval represents A’s current bound on the possible

directions normal to an ε-optimal classifier based on all conversation with B up to this

point. A also maintains CA (recall that CA is the convex hull of the SOTA) as well as

the set of points UA that form the SOU. By Lemma 6.2.4, we know that PA = CA∪UA,

and therefore, there exist a pair of points {pl , pr} on PA whose supporting line segment

98

separates CA and UA. A maintains this pair as well; in fact, vl and vr represent outward

normals to PA at pl and pr.

(1) A’s move: A projects all points in UA onto the boundary of PA, denoted ∂PA, (the

projection is orthogonal to the edge through {pl , pr}). Each edge in ∂PA is weighted by

how many points are projected to it (with boundary points being assigned arbitrarily to one

of the two incident edges). We select the two points on the boundary of edge e, which is

the weighted median, and place these points in a set S. The normal direction to e is v, and

the extreme positive point in DA along direction −v is also placed in S. Now the classifier

hA is the max-margin separator of S, has 0 error on DA, and is parallel to e. Then A sends

(vl ,vr,v,S) to B.

(2) B’s move: B receives (vl ,vr,v,S) from A. It then determines whether there exists a

classifier hB with normal v within the margin defined by S that correctly classifies all but

an ε-fraction of points in B. If so, B sends (hB,0) to A and terminates, returning hB.

Suppose that such a classifier does not exist. Then by Lemma 6.2.3, any 0-error

classifier for DB must have a normal either in the interval (vl ,v) or (v,vr). If the former, B

returns (+1) to A, else it returns (−1).

(3) A’s update: If A receives (h,0) from B, the protocol has terminated, returning h. If

A receives (+1), it then updates its interval of directions to be (vl ,v) and sets the support

pair separating CA and UA to (pl , p). Similarly, if it receives (−1), it updates the interval

of directions to (v,vr) and sets the support pair to (p, pr). In both cases, it adds p to CA,

updating CA accordingly.

In this section we provide structural results about CA and prove Lemma 6.2.3 and

Lemma 6.2.4. The first challenge is to reason about the set of total agreement – what

points can not be misclassified. Then we can argue that SOTA = CA ∩DA. We use two

technical tools, the convex hull and a pivoting argument. Let W =
⋃

i Si be the union of all

Si sent in round i from A to B.

• Convex Hull. Let K− = C(W−) be the convex hull of all the negative points sent by

the protocol so far. No negative points p ∈ P−A can be misclassified if p ∈K−. So,

K−∩P−A ⊂ C−A . The same rule holds for positive points.

• Pivoting. Consider any point q∈P−A . If any edge from q to any point p∈K+ intersects

K−, then q cannot be misclassified – otherwise a classifier which was correct on p

99

(and incorrect on q) would have to be incorrect on some negative point in K−. This

identifies another part of P−A as being in CA, intuitively the region “behind” K−.

Note that the early-termination rotation argument, along with this pivoting rule, each

round excludes from U all points on one of two sides of the support points in S.

These rules have been explained in Figure 6.3. We now have the tools to prove the two key

structural lemmas needed for our protocol.

Lemma 6.2.3 Consider when B does not terminate. If B returns (+1), then A can update

its range to (vl ,v). If B returns (−1), then A can update its range to (v,vr).

Proof. When B can not produce an ε-error separator parallel to hA and within the margin

provided by S, that implies for any such classifier some points from DB must be misclas-

sified. Furthermore, B can present points Y ⊂ DB that along with S violate any classifier

orthogonal to v. Let y,s ∈Y ∪S be a negative and positive point, respectively, one of which

any classifier orthogonal to v will misclassify. Then any linear separator classifying s and

y correctly must intersect the edge between s and y, and thus, must rotate from direction

v clockwise or counter-clockwise. This excludes directions in either (vl ,v) or (v,vr) and

allows B to return (+1) or (−1), accordingly.

Lemma 6.2.4 After A has updated its state (step (3)), then UA is convex.

C−
A

C+
A

convex
hull
rule

pivoting
rule

Figure 6.3. Illustration of convex hull and pivoting rule.

100

Proof. First consider the two negative points {pl , pr}. Using the convex hull rule, the edge

e12 between them is in CA; and because the points {pl , pr} are defined as the extremal

points for the range (vl ,vr) under the pivoting rule, everything “behind” them in PA is also

in CA. Thus, CA is partitioned from UA by the line passing through the edge e12, implying

that UA is convex.

6.2.2.3 Extending the basic protocol. The simplified protocol above captures the

spirit of A’s perspective of the algorithm on its negative points; but to show it converges,

we need to extend these techniques to also handle positive points and to make it symmetric

from B’s perspective.

In each round of the basic protocol U−A reduces in cardinality by at least half. We now

describe how to modify the protocol so that the entire set UA = U−A ∪U+
A is reduced in

cardinality by half. Recall that in step (1) of the basic protocol, A projects all points in U−A
to the boundary of P−A and determines an edge of the boundary that splits the set in half. In

addition, now we project all points in U+
A to the boundary of P+A as well. We can consider

the normal direction of each edge in ∂P−A ∩U
− or in ∂P+A ∩U

+ and map it to a point on

S1.

We can now scan both sets of normal directions on S1 simultaneously by interleaving

the order of directions from ∂P−A ∩U
− with the antipodal directions from ∂P+A ∩U

+.

We again find the weighted median direction, corresponding to an edge, now among all

negative and positive directions. The set SA now consists of the two points defining the

median edge as well as the point incident upon the two edges with normal directions on

either side of the antipodal direction of the median edge.

As before, this splits the regions of uncertainty into two convex regions on each poly-

tope. The bit returned by B will guarantee that one region on each polytope will be

eliminated, and by the above construction, this guarantees that we reduce the size of UA by

a factor of two in each round. This has been explained in Figure 6.4.

Lemma 6.2.5 Over the course of a single round, the size of UA decreases by at least half.

The basic protocol and its extension described above only reduce the SOU for A. Since

B decides termination, it is possible that the error of the resulting classifier on B never

reduces sufficiently. While we could run protocols in parallel for A and B, this could result

101

v+
1

v+
2

v+
3

v+
4

v+
5

v−1

v−2

v−3

v−4

v+
5

v+
4

v+
3

v+
2

v+
1

v−1

v−2

v−3

v−4

S1

Figure 6.4. Extending the basic protocol.

in classifiers hA and hB that do not have ε-error on the entire data set DA∪DB.

The solution is for B to send more information back to A. Consider step (2) of the

basic protocol. B receives a support set SA from A, as well as the set of directions vl ,v,vr

and determines which of the intervals (vl ,v) and (v,vr) the direction of a 0-error classifier

hB on DB must lie in. Now instead of merely sending back a bit, B also sends back a

support set SB corresponding to hB, as well as its own directions (v′l ,v
′
r,v
′). A now uses

the support set SB to update its own SOTA and SOU, completing the round. Notice that

now, B’s transmission to A in step (2) of the protocol is identical to A’s transmission that

initiates step (2)! Thus, all future separators proposed by A or B must correctly classify the

same set of points in the full protocol transcript.

6.2.2.4 Complexity analysis.

Theorem 6.2.6 The 2-player two-way protocol for linear separators always terminates in,

at most, O(log(1/ε)) rounds, using at most, O(log(1/ε)) words of communication.

Proof. By Lemma 6.2.5 we know that each round shrinks the region of uncertainty SOU

by half of its current size for both A and B; and we keep doing this until |UA| ≤ ε|DA| or

|UB| ≤ ε|DB|, then the early-termination condition must be reached. This can be achieved

in O(log(1/ε)) rounds.

102

6.2.3 Boosting-based two-way protocol for linear separators in Rd .

In this section we consider a randomized protocol, summarized in Algorithm 6, called

WEIGHTEDSAMPLING. The Multiplicative Weight Update (MWU) routine is provided in

Algorithm 7. In each round, A sends a classifier hA to B and B responds back with a set

of points RB, constructed by sampling from a weighting on its points. After T rounds (for

T = O(log(1/ε))), we will show that by voting on the result from the set of T classifiers

hA will misclassify at most ε|DB| points from DB while being perfect on DA, and hence

ε|DB|< ε|DB∪DA|= ε|D|, yielding a ε-optimal classifier as desired.

RB can construct its points in two ways: a random sample and a deterministic sam-

ple. We will focus on the randomized version since it is more practical, although it has

slightly worse bounds in the two-party case. Then we will also mention and analyze the

deterministic version.

Algorithm 6 WEIGHTEDSAMPLING

Input: DA,DB, parameters: 0 < ε < 1
Output: hAB (classifier with ε-error on DA∪DB)
Init: RB = {}; w0

i = 1 ∀xi ∈ DB;
for t = 1 . . . T = 5log2(1/ε) do

——— A’s move ———
DA = DA∪RB;
ht

A := Learn(DA);
send ht

A to B;
——— B’s move ———
RB := MWU (DB, ht

A, 0.75, 0.2);
send RB to A;

end for
hAB =Majority(h1

A,h
2
A, . . . ,h

T
A);

Algorithm 7 MWU (DB, ht
A, ρ , c)

1: Input: ht
A,DB, parameters: 0 < ρ < 1, 0 < c < 1

2: Output: RB (a set of sc,d points)
3: for all (xi ∈ DB) do
4: if(ht

A(xi) 6= yi) then wt+1
i = wt

i(1+ρ);

5: if(ht
A(xi) == yi) then wt+1

i = wt
i ;

6: end for
7: randomly sample RB from DB (according to wt+1);

103

It remains to describe how B’s points are weighted and updated, which dictates how B

constructs the sample sent to A. Initially, they are all given a weight w1 = 1. Then the

reweighting strategy (described in Algorithm 7) is an instance of the multiplicative weight

update framework; with each new classifier hA from A, party B increases all weights of

misclassified points by a (1 + ρ) factor, and does not change the weight for correctly

classified points. We will show ρ = 0.75 is sufficient. Intuitively, this ensures that con-

sistently misclassified points eventually get weighted high enough that they are very likely

to be chosen as examples to be communicated in future rounds. The deterministic variant

simply replaces Line 7 of Algorithm 7 with the weighted variant (Matousek, 1991) of the

deterministic construction of RB (Chazelle, 2000); see details below.

Note that this is roughly similar in spirit to the heuristic protocol (Daumé III et al.,

2012) that exchanged support points and was called ITERATIVESUPPORTS, which we will

experimentally compare against. However, the protocol proposed here is less rigid, and as

we will demonstrate next, this allows for a much less nuanced analysis.

Our analysis is based on the multiplicative weight update framework (and closely re-

sembles boosting). First, we state a key structural lemma. Thereafter, we use this lemma

to prove our main result.

A random sample Sε of size sε,d = O(min{(d/ε) log(d/ε),d/ε2}) drawn over the

entire dataset D ⊂ Rd is sufficient to learn a linear classifier with ε-classification error on

all of D with constant probability. This is based on sampling bounds mentioned earlier

(see 6.1). There exist deterministic constructions for these samples Sε still of size sε,ν

(Chazelle, 2000); although they provide at most ε-classification error with probability

1, they, in general, run in time exponential in ν . Note that the VC-dimension of linear

classifiers in Rd is O(d), and these results still hold when the points are weighted and

the sample is drawn (respectively constructed (Matousek, 1991)) and error measured with

respect to this weighting distribution. Thus B could send sε,d points to A, and we would

be done; but this is too expensive. We restate this result with a constant c, so that at most a

c fraction of the weights of points are misclassified (later we show that c = 0.2 is sufficient

with our framework). Specifically, setting ε = c and rephrasing the above results yields the

following lemma.

Lemma 6.2.6 Let B have a weighted set of points DB with weight function w : DB→R+.

104

For any constant c > 0, party B can send a set Sc,d of size O(d) (where the constant

depends on c) such that any linear classifier that correctly classifies all points in Sc,d will

misclassify points in DB with a total weight at most c∑x∈DB
w(x). The set Sc,d can be

constructed deterministically, or a weighted random sample from (DB,w) succeeds with

constant probability.

We first state the bound using the deterministic construction of the set Sc,d , and then

extend it to the more practical (from a runtime perspective) random sampling result, but

with a slightly worse communication bound.

Theorem 6.2.7 The deterministic version of two-party two-way protocol WEIGHTEDSAM-

PLING for linear separators in Rd misclassifies at most, ε|D| points after T = O(log(1/ε))

rounds using O(d2 log(1/ε)) words of communication.

Proof. At the start of each round t, let φt be the potential function given by the sum of

weights of all points in that round. Initially, φ1 = ∑xi∈DB
wi = n since by definition, for

each point xi ∈ DB we have wi = 1.

Then, in each round, A constructs a classifier ht
A at B to correctly classify the set of

points that accounts for at least 1− c fraction of the total weight by Lemma 6.2.6. All

other misclassified points are upweighted by (1+ ρ). Hence, for round (t + 1) we have

φ t+1 ≤ φ t ((1− c)+ c(1+ρ)) = φ t (1+ cρ) = n(1+ cρ)t .

Let us consider the weight of the points in the set S ⊂ DB that have been misclassified

by a majority of the T classifiers (after the protocol ends). This implies every point in S has

been misclassified at least T/2 number of times and at most, T number of times. So the

minimum weight of points in S is (1+ρ)T/2 and the maximum weight is (1+ρ)T .

Let ni be the number of points in S that has weight (1+ρ)i, where i ∈ [T/2,T]. The

potential function value of S after T rounds is φT
S = ∑

T
i=T/2 ni(1+ρ)i. Our claim is that

∑
T
i=1 ni = |S| ≤ εn. Each of these at most |S| points have a weight of at least (1+ρ)T/2.

Hence we have

φ
T
S =

T
∑

i=T/2
ni(1+ρ)i ≥ (1+ρ)T/2

T
∑

i=T/2
ni = (1+ρ)T/2|S|.

Relating these two inequalities we obtain the following,

105

|S|(1+ρ)T/2 ≤ φ
T
S ≤ φ

T = n(1+ cρ)T .

Hence, (using T = 5log2(1/ε))

|S| ≤ n

(
(1+ cρ)

(1+ρ)1/2

)T
= n

(
(1+ cρ)

(1+ρ)1/2

)5log2(1/ε)

= n(1/ε)
5log2

(
(1+cρ)

(1+ρ)1/2

)
.

Setting c = 0.2 and ρ = 0.75 we get 5 log2
(
(1+ cρ)/(1+ρ)1/2

)
) < −1 and thus,

|S| < n(1/ε)−1 < εn, as desired since ε < 1. Thus each round uses O(d) points, each

requiring d words of communication, yielding a total communication of O(d2 log(1/ε)).

In order to use random sampling (as suggested in Algorithm 7), we need to address

the probability of failure of our protocol. That is, more specifically the set Sc,d in Lemma

6.2.6 is of size O(d log(1/δ ′)) and a linear classifier that has no error on Sc,d misclassifies

points in DB with weight at most c∑x∈DB
w(x), with probability at least 1−δ ′.

However, we would like this probability of failure to be a constant δ over the entire

course of the protocol. To guarantee this, we need the c-misclassification property to

hold in each of T rounds. Setting δ ′ = δ/T , and applying the union bound implies

that then, the probability of failure at any point in the protocol is at most ∑
T
i=1 δ ′ =

∑
T
i=1 δ/T = δ . This increases the communication cost of each round to O(d2 log(1/δ ′))=

O(d2 log(log(1/ε)/δ)) = O(d2 loglog(1/ε)) words, with a constant δ probability of fail-

ure. Hence, using random sampling as described in WEIGHTEDSAMPLING requires a total

of O(d2 log(1/ε) log log(1/ε)) words of communication. We formalize below.

Theorem 6.2.8 The randomized two-party two-way protocol WEIGHTEDSAMPLING for

linear separators in Rd misclassifies at most ε|D| points, with constant probability, after

T = O(log(1/ε)) rounds using O(d2 log(1/ε) log log(1/ε)) words of communication.

6.3 Multiparty Protocols
In the noiseless setting, extending from a two-party protocol to a k-party (where data

is distributed to k disjoint nodes) can be achieved by allowing an additional factor k or k2

communication, depending on the hypothesis class.

106

6.3.1 One-way communication

For k-players one-way protocols predetermine an ordering among players P1 < P2 <

.. . < Pk, and all communication goes from Pi to Pi+1 for i ∈ [1,k− 1]. In this section,

we show that for k-players, ε-error classifiers can be achieved even with this restricted

communication pattern. All discussed protocols can also be transformed into hierarchical

one-way protocols that may have certain advantages in latency, or where all nodes just send

information one-way to a predetermined coordinator node.

6.3.1.1 Sampling results for k-players. In sampling-based protocols, along the

chain of players, player Pi maintains a random sample Ri of size O((ν/ε) log(ν/ε)) from⋃i
j=1 Di and the total size mi = ∑

i
j=1 |Di|. This can be easily achieved with reservoir

sampling (Vitter, 1985). The final player Pk computes and returns a 0-error classifier on

Rk−1∪Dk.

Theorem 6.3.1 Consider any family of hypothesis (Rd ,A) that has VC-dimension ν . Then

there exists a one-way k-player protocol using O(k(ν/ε) log(ν/ε)) total words of commu-

nication that achieves ε-error, with constant probability.

Proof. The final set Rk−1 is an ε-net, so any 0-error classifier on Rk−1, is an ε-error classi-

fier on
⋃k−1

j=1 Di. So, since the total number of points misclassified is at most ∑
k−1
j=1 ε|D j| ≤

ε|D|, this achieves the proper error bound. The communication cost follows by definition

of the protocol.

6.3.1.2 0-Error protocols for k-players. Any 0-error one-way protocol extends

directly from 2-player to k-players. This requires that each player can send exactly the

subset of the family of classifiers that permit 0 error to the next player in the sequence.

This chain of players only refines this subset, so by our noiseless assumption that there

exists some 0-error classifier, the final player can produce a classifier that has 0-error on all

data.

Theorem 6.3.2 In the noiseless setting, any one-way two-player 0-error protocol of com-

munication complexity C extended to a one-way k-player 0-error protocol with O(Ck)

words of communication.

This implies that k-players can execute a one-way 0-error protocol for axis-aligned rectan-

gles with O(dk) communication. Classifiers from the families of thresholds and intervals

107

follow as special case.

6.3.2 Two-way communication

When not restricted to one-way protocols, we assume all players take turns talking to

each other in some preconceived or centrally organized fashion. This fits within standard

techniques of organizing communication among many nodes that prevents transmission

interference.

6.3.2.1 Improved random sampling for k-players. Our first contribution is an

improved two-way k-player sampling-based protocol using two-way communication and

the sampling result in (6.1). We designate party P1 as a coordinator. P1 gathers the size of

each player’s dataset Di, simulates sampling from each player completely at random, and

then reports back to each player the number of samples to be drawn by it, in O(k) com-

munication. Then, each other party Pi selects sε,ν |Di|/|D| random points (in expectation),

and sends them to the coordinator. The union of this set satisfies the conditions of the result

from (6.1) over D = ∪iDi and yields the following result.

Theorem 6.3.3 For any hypothesis family with VC-dimension ν for points in Rd, there ex-

ists a two-way k-player protocol using O(kd +d min{(ν/ε) log(ν/ε),ν/ε2}) total words

of communication that achieves ε-classification error, with constant probability.

Using two-way communication, this type of result can be made even more general.

Consider the case where each Pi’s dataset arrives in a continuous stream; this is known as a

distributed data stream (Cormode et al., 2008). Then applying the results of Cormode et al.

(2010), we can continually maintain a sufficient random sample at the coordinator of size

sε (using a generalization of reservoir sampling) communicating O((k + sε,ν)d log |D|)
words.

Theorem 6.3.4 Let each of k parties have a stream of data points Di, where D = ∪iDi.

For any hypothesis family with VC-dimension ν for points in Rd, there exists a two-way

k-player protocol using O((k+min{(ν/ε) log(ν/ε),ν/ε2}) d log |D|) total words of com-

munication that maintains ε-classification error, with constant probability.

108

6.3.2.2 An O(k log1/ε) median based algorithm for linear separators in R2. Next

we consider linear separators in R2. We proceed in a series of epochs. In each epoch, each

player takes one turn as coordinator. On its turn as coordinator, player Pi plays one round

of the 2-player protocol with each other player. That is, it sends out its proposed support

points, and each other player responds with either early termination or an alternative set of

support points, including at least one that “violates” the family of linear separators proposed

by the coordinator. The protocol terminates if all noncoordinators agree to terminate early

and their proposed family of linear separators all intersect. Note that even if all other

players may want to terminate early, they might not agree on a single linear separator along

the proposed direction; but by replying with a modified set of support points, they will

designate a range, and the manner in which these ranges fail to intersect will indicate to the

coordinator a “direction” to turn.

Theorem 6.3.5 In the noiseless setting, k-parties can find an ε-error classifier over halfs-

paces in R2 in O(k2 log(1/ε)) communication.

Proof. Each epoch requires O(k2) communication; each of k players uses a turn to com-

municate a constant number of bits with each of k other players. We now just need to argue

that the algorithm must terminate in, at most, O(log(1/ε)) epochs.

We do so by showing that each player decreases its region of uncertainty by at least

half for each turn it spends as coordinator, or it succeeds in finding a global separating

half space and terminates. If any noncoordinator does not terminate early, it rules out at

least half of the coordinator’s points in the region of uncertainty since by Lemma 6.2.5,

the coordinator’s broadcasted support points represent the median of its uncertain points.

If all noncoordinators agree on the proposed direction, and return a range of offsets that

intersect, then the coordinator terminates the algorithm and can declare victory, since the

sum of all error must be at most ∑i ε|Di| ≤ ε|D| in that range.

The difficult part is when all noncoordinators individually want to terminate early, but

the range of acceptable offsets along the proposed normal direction of the linear separator

do not globally intersect. This corresponds to the right-most picture in Figure 6.2 where

the direction is forced clockwise or counter-clockwise because a negative point from one

noncoordinator is “above” the positive point from a separate noncoordinator. The combi-

109

nation of these points thus allow the coordinator to prune half of its region of uncertainty

just as if a single noncoordinator did not terminate early.

6.3.2.3 An O(kd log1/ε) boosting based algorithm for linear separators in Rd .

In section 6.3.2.1 we described a simple protocol (Theorem 6.3.3) to learn a classifier with

ε-error jointly among k parties using O(kd + d min{ν/ε log(ν/ε),ν/ε2}) words of total

communication. We now combine this with the two-party protocol from section 6.2.3 to

obtain a k-player protocol for learning a joint classifier with error ε .

We fix an arbitrary node (say P1) as the coordinator for the k-player protocol of Theo-

rem 6.3.3. Then P1 runs a version of the two-player protocol (from section 6.2.3) from A’s

perspective and where players P2, . . . ,Pk serve jointly as the second player B. To do so, we

follow the distributed sampling approach outlined in Theorem 6.3.3. Specifically, we fix a

parameter c (set c= 0.2). Each other node reports the total weight w(Di) of their data to P1,

who then reports back to each node what fraction of the total data w(Di)/w(D) they own.

Then each player sends the coordinator a random sample of size sc,dw(Di)/w(D). Recall

that we require sc,d = O(d log log(1/ε)) in this case to account for probability of failure

over all rounds. The union of these sets at P1 satisfies the sampling condition in Lemma

6.2.6 for ∪k
i=2Di. P1 computes a classifier on the union of its data and this joint sample and

all previous joint samples, and sends the resulting classifier back to all the nodes. Sending

this classifier to each party requires O(kd) words of communication. The process repeats

for T = log2(1/ε) rounds.

Theorem 6.3.6 The randomized k-party protocol for ε-error linear separators in Rd ter-

minates in T = O(log(1/ε)) rounds using O((kd + d2 loglog(1/ε)) log(1/ε)) words of

communication, and has a constant probability of failure.

The random sampling algorithm required a sample of size O(d log log(1/ε)). However,

we can achieve a different communication trade-off using the deterministic construction

where, in each round, each party Pi communicates a deterministically constructed set Sc,i
of size O(d). The coordinator P1 computes a classifier that correctly classifies points from

all of these sets having at most cw(Di) weight of points misclassified in each Di. The error

is at most cw(Di) on each dataset Di and so the error on all sets is at most c∑
k
i=2 w(Di) =

cw(D). Again using T = O(log(1/ε)) rounds, we can achieve the following result.

110

Theorem 6.3.7 The deterministic k-party protocol for ε-error linear separators in Rd

terminates in T = O(log(1/ε)) rounds using O(kd2 log(1/ε)) words of communication.

6.4 Experiments
In this section, we present results to empirically demonstrate the correctness and con-

vergence of ITERATIVESUPPORTS and WEIGHTEDSAMPLING. For ITERATIVESUPPORTS,

we first show results using the subroutines MEDIAN and SUPPORT. However, as noted

earlier, MEDIAN does not apply in higher dimensional settings. So when presenting results

for WEIGHTEDSAMPLING, we compare MWU with SUPPORT only.

Each example point incurs a cost of d + 1 (d words to describe its position in Rd

and 1 word to describe its sign). Similarly, each linear classifier requires d + 1 words of

communication (d words to describe its direction and 1 word to describe its offset).

6.4.1 Results for median-based protocol ITERATIVESUPPORTS

In this case, we present on synthetic datasets only.

For the two-party results, we empirically compare the following methods:

• NAIVE: a naive approach that sends all points in A to B and then learns at B,

• VOTING: a simple voting strategy that uses the majority voting rule to combine the

predictions of hA and hB on D = DA ∪DB; ties are broken by choosing the label

whose prediction has higher confidence,

• RANDEMP: A sends a random sample (an ε-net SA of size (d/ε) log(d/ε)) of DA to

B and B learns on DB∪SA,

• MAXMARG: ITERATIVESUPPORTS that selects informative points heuristically (ref.

to section 6.2.2), and

• MEDIAN: ITERATIVESUPPORTS that selects informative points with convergence

guarantees (ref. to section 6.2.2).

SVM (based on libSVM (Chang and Lin, 2011)) was used as the underlying classifier for

all aforementioned approaches. In all cases, the errors are reported on the dataset D with

an ε value of 0.05 (where applicable).

111

The above methods have been evaluated on three synthetically generated datasets (Data1,

Data2, Data3). For all datasets, both A and B contain 500 data points each (250 positive

and 250 negative). Figure 6.5 pictorially depicts the data.

Table 6.2 compares the accuracies and communication costs of the aforementioned

methods for the dataset in 2-dimensions. For all datasets, MAXMARG and MEDIAN

required the least amount of communication to learn an optimal classifier. For cases when

it is easy to separate the positive from the negative samples (e.g., Data1 and Data2), MAX-

MARG converges faster than MEDIAN. However, Data3 show that there exists difficult

datasets where MEDIAN requires less communication than MAXMARG. This reinforces

(a) Data1 (b) Data2

(c) Data3

Figure 6.5. Red represents A and blue represents B. Positive and negative examples (for
all datasets) are denoted by ‘+’s and ‘◦’s, respectively.

112

our theoretical convergence claims for MEDIAN that hold for any input dataset. Data3

in Table 6.2 shows that there exists cases when both VOTING and RANDEMP perform

worse than MEDIAN and with a much higher communication overhead; for Data3, VOTING

performs as bad as random guessing. Finally, neither VOTING nor MAXMARG provide any

provable error guarantees.

Table 6.3 presents results for Data1, Data2, Data3 extended to dimension = 10. As

can be seen, our proposed heuristic MAXMARG outperforms all other baselines in terms

communication cost while having comparable accuracies.

The aforementioned methods have been appropriately modified for the multiparty sce-

nario. For NAIVE, VOTING and RANDEMP, a node is fixed as the coordinator and the

remaining (k− 1) nodes send their information to the coordinator node which aggregates

all the received information. For MAXMARG and MEDIAN, in each epoch, one of the

k-players takes a turn to act as the coordinator and updates its state by receiving information

from each of the remaining (k− 1) nodes. We experiment with a k value of 4 (i.e., four

nodes A,B,C,D). As earlier, for all datasets, each of A,B,C,D contain 500 examples (250

positive and 250 negative). The datasets are shown in Figure 6.6.

Table 6.2. Accuracy (Acc) and communication cost (Cost) of different methods for
two-dimensional noiseless datasets.

Method Data1 Data2 Data3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 500 100% 500 100% 500
VOTING 100% 500 100% 500 50% 500

RANDEMP 100% 65 100% 65 99.62% 65
MAXMARG 100% 4 100% 4 100% 12

MEDIAN 100% 6 100% 6 100% 10

Table 6.3. Accuracy (Acc) and communication cost (Cost) of different methods for
high-dimensional noiseless datasets.

Method Data1 Data2 Data3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 500 100% 500 100% 500
VOTING 100% 500 100% 500 81.8% 500

RANDEMP 100% 100 100% 100 99.1% 100
MAXMARG 100% 4 100% 4 98.27% 40

113

(a) Data1 (b) Data2

(c) Data3

Figure 6.6. Red represents A, blue represents B, green represents C and black represents D.
Positive and negative examples (for all datasets) are denoted by ‘+’s and ‘◦’s, respectively.

As shown in Table 6.4, for the k-party case, ITERATIVESUPPORTS substantially out-

performs the baselines on all datasets. As earlier, for the difficult dataset Data3, MEDIAN

incurs less communication cost as compared to MAXMARG. We observed that for Data1

and Data2, both MAXMARG and MEDIAN require the same number of iterations to con-

verge. However, the cost for MEDIAN is higher due to its quadratic dependency on k.

6.4.2 Results for boosting-based protocol WEIGHTEDSAMPLING

In this section we compare WEIGHTEDSAMPLING with the following baselines for

2-party and k-party protocols.

114

• NAIVE: sends all data from (k− 1) nodes to a coordinator node and then learns at

the coordinator.

• VOTING: trains classifiers at each individual node and sends over the (k−1) classi-

fiers to a coordinator node. For any datapoint, the coordinator node predicts the label

by taking a vote over all k classifiers.

• RAND: each of the (k−1) nodes sends a random sample of size sε,d to a coordinator

node and then a classifier is learned at the coordinator node using all of its own data

and the samples received.

• RANDEMP: cheaper version of RAND that uses a random sample of size 9d from

each party each round; this value was chosen to make this baseline technique as

favorable as possible.

• MAXMARG: ITERATIVESUPPORTS that selects informative points heuristically (Daumé

III et al., 2012). We do not compare with MEDIAN (Daumé III et al., 2012) as it is

not applicable beyond two dimensions.

• MWU: WEIGHTEDSAMPLING that randomly samples points based on the distribu-

tion of the weights and runs for 5 log(1/ε) number of rounds (ref. section 6.2.3).

• MWUEMP: a cheaper version of MWU which is terminated early if the training error

has reached ε|D|.

For all these methods, SVM (from libSVM (Chang and Lin, 2011) library), with a linear

kernel, was used as the underlying classifier. We report training accuracy and communica-

tion cost. The training accuracy is computed over the combined dataset D with an ε value of

0.05 (where applicable). The communication cost (in words) of all methods are reported as

Table 6.4. Accuracy (Acc) and communication cost (Cost) of different methods for
two-dimensional noiseless datasets.

Method Data1 Data2 Data3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 1500 100% 1500 100% 1500
VOTING 98.75% 1500 100% 1500 50% 1500

RANDEMP 100% 195 100% 195 99.76% 195
MAXMARG 97.61% 14 100% 2 97.38% 38

MEDIAN 99.0% 36 100% 6 98.75% 29

115

ratios with reference to MWUEMP as the base method. All numbers reported are averaged

over 10 runs of the experiments; standard deviations are reported where appropriate. For

MWU and MWUEMP, we use ρ = 0.75.

Note that given our cost computation, for some datasets the cost of RAND, RANDEMP

and MWU can exceed the cost of NAIVE (see, for example, Cancer).

Six datasets, three each for two-party and four-party case, have been generated synthet-

ically from a mixture of Gaussians. Each Gaussian has been carefully seeded to generate

different data partitions. For Synthetic1, Synthetic2, Synthetic4, Synthetic5, each node

contains 5000 data points (2500 positive and 2500 negative), whereas for Synthetic3 and

Synthetic6, each node contains 8500 data points (4250 positive and 4250 negative) and all

of these datapoints lie in 50 dimensions. Additionally, we investigate the performance of

our protocols on real-world datasets. We use Cancer and Mushroom from the LibSVM data

repository (Chang and Lin, 2011) as these datasets are linearly or almost linearly separable.

This shows that although our protocols were designed for noiseless data they work well on

noisy datasets, too. However, when applied on noisy data, we do not guarantee the accuracy

bounds that were claimed for noiseless datasets.

In Tables 6.5-6.6, we highlight (in bold) the protocol that performs the best. By best

we mean that the method has the cheapest communication cost as well an accuracy that is

more than (1− ε) times the optimal, i.e., 95% for ε = 0.05. As will be frequently seen for

VOTING, the communication cost is the cheapest but the accuracy is far from the desired

ε-error specified, and in such circumstances we do not deem VOTING as the best method.

Table 6.5 compares the performance metrics of the aforementioned protocols for two-

parties. As can be seen, VOTING performs the best for Synthetic1 and RANDEMP performs

the best for Synthetic2. For Synthetic3, MWUEMP requires the least amount of communi-

cation to learn an ε-optimal distributed classifier. Note that, for Synthetic2 and Synthetic3,

both VOTING and MAXMARG fail to produce an ε-optimal (ε = 0.05) classifier. MAX-

MARG exhibits this behavior despite incurring a communication cost that is as high as

NAIVE (i.e., the accumulated cost of the support points become the same as the cost of

NAIVE, at which point we stop the algorithm).

In Table 6.5, most of the two-party results carry over to the multiparty case. VOTING

is the best for Synthetic4, whereas MWUEMP is the best for Synthetic5 and Synthetic6. As

116

Table 6.5. Mean accuracy (Acc) and communication cost (Cost) required by two-party and
four-party protocols for synthetic datasets.

Synthetic1 Synthetic2 Synthetic3
Acc Cost Acc Cost Acc Cost

two-party
NAIVE 99.23 (0.0) 49.0 97.91 (0.0) 6.18 97.39 (0.0) 19.1

VOTING 95.00 (0.0) 0.01 60.64 (0.0) 0.01 74.55 (0.0) 0.01
RAND 99.02 (0.0) 29.4 97.72 (0.0) 3.71 97.16 (0.0) 6.74

RANDEMP 96.64 (0.1) 4.41 95.13 (0.1) 0.56 96.03 (0.1) 1.01
MAXMARG 96.39 (0.0) 4.26 93.76 (0.0) 6.18 73.62 (0.0) 19.1

MWU 98.66 (0.1) 49.5 97.59 (0.1) 6.24 97.11 (0.1) 11.3
MWUEMP 95.00 (0.0) 1.00 95.17 (0.1) 1.00 95.25 (0.2) 1.00

four-party
NAIVE 99.26 (0.0) 100 97.97 (0.0) 12.7 97.47 (0.0) 54.8

VOTING 95.00 (0.0) 0.01 65.83 (0.0) 0.01 75.52 (0.0) 0.01
RAND 99.18 (0.0) 60.0 97.83 (0.0) 7.63 97.39 (0.0) 19.4

RANDEMP 97.33 (0.1) 9.00 96.61 (0.1) 1.15 96.67 (0.1) 2.90
MAXMARG 95.95 (0.0) 0.82 93.94 (0.0) 15.2 75.05 (0.0) 80.2

MWU 98.03 (0.2) 34.8 97.30 (0.1) 4.45 96.87 (0.1) 11.2
MWUEMP 95.11 (0.3) 1.00 95.11 (0.2) 1.00 95.45 (0.2) 1.00

earlier, both VOTING and MAXMARG do not yield 0.05-optimal classifiers for Synthetic5

and Synthetic6.

Figure 6.7 (for two-party using Synthetic1) shows the communication costs (in log-

scale) with variations in the number of data points per node and the dimension of the data.

Note that we do not report the numbers for MAXMARG since MAXMARG takes a long

time to finish. However, for Synthetic1 the numbers for MAXMARG are similar to those

of RANDEMP and so their traces are similar. Note that in Figure 6.7, the cost of NAIVE

increases as the number of dimensions increase. This is because the cost is multiplied by a

factor of (d +1), when expressed in words.

Table 6.6 presents results for two- and four-party protocols using real-world datasets.

Other than the two-party case for Mushroom, VOTING performs best in all other cases.

However, note that VOTING does not yield a 0.05-optimal distributed classifier for Mush-

room using two-party protocol.

The results for communication cost (in log-scale) versus data size and communication

cost (in log-scale) versus dimensionality are provided in Figure 6.8 for two-party protocol

using the Mushroom dataset. MWUEMP (denoted by the black line) is comparable to

117

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of points

C
o
s
t
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Naive

Voting

Rand

RandEmp

Mwu

MwuEmp

(a) Communication cost vs size

0 5 10 15 20 25 30 35 40 45 50

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of dimensions

C
o
s
t
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Naive

Voting

Rand

RandEmp

Mwu

MwuEmp

(b) Communication cost vs dimension

Figure 6.7. Communication cost vs size and dimensionality for Synthetic1 with two-party
protocol.

118

0 1000 2000 3000 4000 5000 6000 7000 8000

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of points

C
o
s
t
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Naive

Voting

Rand

RandEmp

MaxMarg

Mwu

MwuEmp

(a) Communication cost vs size

0 20 40 60 80 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Number of dimensions

C
o
s
t
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Naive

Voting

Rand

RandEmp

MaxMarg

Mwu

MwuEmp

(b) Communication cost vs dimension

Figure 6.8. Communication cost vs size and dimensionality for Mushroom with two-party
protocol.

119

Table 6.6. Results for all protocols using Cancer (|D| = 683, d = 10) and Mushroom
(|D| = 8124, d = 112). The standard deviation of the accuracies over multiple runs are
insignificant and hence have been ignored in this table.

Cancer Mushroom Cancer Mushroom
Acc Cost Acc Cost Acc Cost Acc Cost

two-party four-party
NAIVE 97.07 3.34 100.00 20.01 97.07 1.00 100.00 28.61

VOTING 97.36 0.01 88.38 0.00 97.36 0.03 95.67 0.01
RAND 97.16 4.52 100.00 36.97 97.19 12.81 100.00 105.70

RANDEMP 96.90 0.88 100.00 4.97 96.99 2.50 99.99 14.20
MAXMARG 96.78 0.22 100.00 1.11 96.78 0.56 100.00 2.34

MWU 97.36 49.51 100.00 24.88 97.00 48.46 100.00 24.65
MWUEMP 96.87 1.00 99.73 1.00 96.97 1.00 98.86 1.00

MAXMARG and cheaper than all other baselines (except VOTING).

The goal of our experiments was to show that our protocols perform well, particularly

on difficult or adversarially partitioned datasets. For easy datasets, any baseline technique

can perform well. Indeed, VOTING performs the best on Synthetic1 and Synthetic4 and

RANDEMP performs better than others on Synthetic2. For the remaining three cases on

synthetic datasets, MWUEMP outperforms the other baselines. On real world data, VOTING

usually performs well. However, as we have seen, for some datasets VOTING and MAX-

MARG fail to yield an ε-optimal classifier. In particular for Mushroom, using the two-party

protocol, the accuracy achieved by VOTING is far from ε-optimal. These results show that

there exists scenarios where VOTING and MAXMARG perform particularly worse and thus,

are not safe strategies.

6.5 Summary
This chapter introduced the problem of learning classifiers across distributed data where

the communication between datasets is the bottleneck to be optimized. This model focus

on real-world communication bottlenecks is increasingly prevalent for massive distributed

datasets. Several very general solutions were identified within this framework and intro-

duced new techniques which provided provable exponential improvement by harnessing

two-way communication. Additionally, this chapter also proposed a simple and efficient

MWU-based protocol that learned an ε-optimal distributed classifier for hyperplanes in

arbitrary dimensions. The protocol gracefully extended to k-players.

CHAPTER 7

CONCLUSION

Machine learning algorithms have witnessed great success over the past few decades.

There has been substantial research contributions in different subareas and machine learn-

ing is being applied in a wide range of real-world applications. However, with increasing

amounts of data at our disposal, machine learning algorithms face new challenges. The

primary question is whether one should prefer simple algorithms trained on lots of data

over more complicated models. Moreover, these big amounts of data are mostly unlabeled

and labeling them is a challenging task. Thus, learning over large datasets that impose

inherent constraints (such as, few labeled instances, labeling costs or lack of computational

resources) poses several interesting research questions.

This thesis has focused on learning on a budget but with small or moderate amounts

of data. The methods introduced in this thesis aim to reduce the overall cost by allowing

the learner to transfer knowledge from related problem domains or settings. In addition,

the thesis also proposes distributed strategies that are on a low communication budget.

Such problem settings are a good starting point to address bigger challenges on large scale

datasets. In this chapter, we summarize the contributions of this thesis, and discuss future

research directions that are primarily aimed towards learning on big datasets.

7.1 Summary of Contributions
• Semisupervised transfer learning. We proposed a new semisupervised technique for

domain adaptation, a subarea of transfer learning. Existing domain adaptation tech-

niques were mostly supervised in the sense that these algorithms assume the exis-

tence of labeled data in both the source domain and the target domain. However,

these supervised domain adaptation algorithms are wasteful as they fail to leverage

unlabeled data, present in abundance, in both source and target domains. In this work,

we presented a coregularization based approach to semisupervised domain adapta-

121

tion. Our proposed approach (EASYADAPT++) built on the notion of augmented

space (introduced in EASYADAPT (Daumé III, 2007)) and exploited unlabeled data in

target domain to further enable the transfer of information from source to target. This

semisupervised approach to domain adaptation is extremely simple to implement and

can be applied as a preprocessing step to any supervised learner. Our theoretical

analysis (in terms of Rademacher complexity) of EASYADAPT and EASYADAPT++

showed that the hypothesis class of EASYADAPT++ has lower complexity (com-

pared to EASYADAPT) and hence, resulted in tighter generalization bounds. Exper-

imental results on sentiment analysis tasks reinforced our theoretical findings and

demonstrated the efficacy of the proposed semisupervised method when compared

to (supervised) EASYADAPT as well as a few other baseline approaches.

• Online transfer learning. We proposed an Online MultiTask Learning (OMTL) frame-

work which simultaneously learned the task weight vectors as well as the task re-

latedness adaptively from the data. Our contribution is in contrast with prior work

on online multitask learning which assumed fixed task relatedness, a priori. Further-

more, whereas prior work in such settings assume only positively correlated tasks,

our framework can capture negative correlations as well. Our proposed framework

learns the task relationship matrix by framing the objective function as a Bregman

divergence minimization problem for positive definite matrices. Subsequently, we

exploited this adaptively learned task-relationship matrix to select the most informa-

tive samples in an online multitask active learning setting. Experimental results on a

number of real-world datasets and comparisons with numerous baselines established

the usefulness of our proposed framework.

• Active transfer learning. In this work, we harness the synergy between two important

learning paradigms, namely, active learning and domain adaptation. We showed

how active learning in a target domain can leverage information from a different but

related source domain. Our proposed framework, Active Learning Domain Adapted

(ALDA), used source domain knowledge to transfer information that facilitates active

learning in the target domain. We proposed two variants of ALDA, namely, a batch

B-ALDA and an online O-ALDA. Empirical comparisons with numerous baselines

on real-world datasets showed the utility of transfer of information in active learning

122

settings.

• Communication-efficient distributed learning. We considered the problem of learning

classifiers for labeled data that has been distributed across several nodes. Our goal

was to find a single classifier, with small approximation error, across all datasets

while minimizing the communication between nodes. This setting modeled real-

world communication bottlenecks in the processing of massive distributed datasets.

We proposed several very general sampling-based solutions as well as some two-

way protocols which have a provable exponential speed-up over any one-way pro-

tocol. We focused on core problems for noiseless data distributed across two or

more nodes. The techniques we introduced are reminiscent of active learning, but

rather than actively probing labels, nodes actively communicate with each other -

each node simultaneously learning the important data from another node. In ad-

dition, we presented a two-party multiplicative-weight-update based protocol that

used O(d2 log1/ε) words of communication to classify distributed data in arbitrary

dimension d, ε-optimally. This readily extended to classification over k nodes with

O(kd2 log1/ε) words of communication. Our multiplicative-weight-update proto-

cols were simple to implement and were considerably more efficient than baselines

compared with, as demonstrated by our empirical results.

7.2 Future Challenges
During the work of this thesis, we came across several interesting questions that could

possibly culminate into full blown problems of their own. Of particular interests were

questions that relate, and in some cases extend, our existing approaches to large-scale

settings. Additionally, our proposed distributed model, despite being a good starting point

for theoretical study lacks several aspects that make it infeasible in real-world scenarios.

In the following, we highlight a few specific questions (related to the aforementioned

directions) that we think could lead to fruitful research contributions in the future.

• Large-scale transfer learning. People have proposed multitask algorithms (Chapelle

et al., 2010) that scale with the number of datapoints. However, consider a scenario

of personalized search that has billions of users. Here each user is a task and each

task has a few labeled points to start with. In our proposed OMTL, the task rela-

123

tionship matrix is quadratic in number of tasks which makes the approach practically

infeasible since matrix operations (such as, matrix inverse, matrix logarithm) on such

large matrices are computationally expensive. This calls for lightweight approaches

to learn tasks relationships on web-scale data. Can we propose efficient multitask

learning algorithms that scale with the number of tasks? Also, can this be done in an

online fashion?

• Lower bounds on two-way communication for our distributed model. A new model

for distributed learning has been proposed in Chapter 6. We show lower bounds

for one-way communication and demonstrate exponential improvement with two-

way communication. However, we do not know whether the bound obtained using

two-way protocols is tight. Can we come up with constant lower-bounds on the

communication cost of two-way protocols?

• Real-life aspects of our distributed model. In our proposed distributed model, our aim

was to minimize the amount of communication (or the number of words exchanged).

For example, the players in our setting communicate by exchanging data points

as well as classifiers. However, exchanging data points can raise privacy issues.

Consider a hospital network that aims to build a global classifier over its patient data.

In this case, it is imperative that hospitals refrain from exchanging data points. Can

we learn distributed models efficiently under privacy constraints? Again, consider

a case where the nodes of a distributed system are physically separated by large

geographical distances. It may not always be feasible for the nodes that are separated

by huge distances to communicate small amounts, or probably any amount, of infor-

mation. This is because the information so communicated may be attenuated while

traveling for large distances over lossy channels or may get corrupted. Moreover, this

information while traveling long distances gets exposed over greater time durations

to attacks by malicious adversaries. So, a more realistic scenario could be that

each node communicates with its local neighborhood. How can we learn distributed

classifiers under this more realistic model of communication?

APPENDIX A

SEMISUPERVISED TRANSFER

In the following, we provide proofs for Theorem 4.2, Theorem 4.4 and Theorem 4.5.

Note that the derivations and proofs make use of the kernel submatrices A,B,C,D,E,F (as

defined in Eq. 4.6 of the original paper).

A.1 Proof of Theorem 3.3.2
Proof. Let h∗s and h∗t be the optimal source and target hypotheses in Hs and Ht , respec-

tively. Using triangle inequality for the loss function, we have

εt(ht , ft)≤ εt(ht ,h
∗
t)+ εt(h

∗
t , ft).

We use the notion of dH ∆H -distance in the next step, which is defined in Blitzer

et al. (2007a) as

sup
h1,h2∈H

2|εs(h1,h2)− εt(h1,h2)|

This gives us

εt(ht , ft)≤ εs(ht ,h
∗
t)+

1
2

dHt∆Ht (Ds,Dt)+ εt(h
∗
t , ft).

We make use of triangle inequality again to get

εt(ht , ft)≤ εs(ht , fs)+ εs(fs, ft)+ εs(h∗t , ft)+
1
2

dHt∆Ht (Ds,Dt)+ εt(h
∗
t , ft).

We denote ηs := εs(fs, ft), νs := εs(h∗t , ft), and νt := εt(h∗t , ft). Subtracting εs(hs, fs)

from both sides, we get

125

εt(ht , ft)− εs(hs, fs)≤ (εs(ht , fs)− εs(hs, fs))+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

≤MEs[ht(x)−hs(x)]+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

(using M-Lipschitz property of loss function)

= MEs[〈ht ,k(x, ·)〉−〈hs,k(x, ·)〉]+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

(using the reproducing kernel property)

= MEs[〈ht −hs,k(x, ·)〉]+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

≤M||ht −hs||Es[||k(x, ·)||]+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt

= M||ht −hs||Es[
√

k(x,x)]+
1
2

dHt∆Ht (Ds,Dt)+ηs+νs+νt .

(Note: Some of the steps involving reduction to the term Es
[√

k(x,x)
]

are similar

to (Mansour et al., 2009).)

A.2 Proof of Theorem 3.3.4: Complexity for EA
In this section, we bound the complexity of target hypothesis class J t

EA for EA. The

base hypothesis class H in Eq. 4.3 (of the original paper) is symmetric in source and target

hypotheses. So the complexity of source class J s
EA can be obtained by replacing adequate

terms. We are interested in the complexity of the target hypothesis class J t
EA which is

defined as J t
EA :=

{
h2 : X 7→ R, (h1,h2) ∈H

}
, where h1 is not fixed a priori.

The Rademacher complexity of J t
EA is defined as

R̂n(J t
EA) = Eσ

 sup
(h1,h2)∈H

∣∣∣∣∣∣ 2lt
lt
∑

i=1
σih2(xi)

∣∣∣∣∣∣
 (A.1)

The basic framework of proof is similar to the proof of the main theorem of (Rosenberg

and Bartlett, 2007). The hypothesis class considered in their work is different than ours.

They find the complexity of average hypothesis class (i.e., x 7→ (h1(x)+h2(x))/2), while

we are interested in class J t
EA, as defined above. We also note that h2 ∈J t

EA =⇒
−h2 ∈J t

EA since (h1,h2) ∈H =⇒ (−h1,−h2) ∈H . This means that we can remove

the absolute value sign from Eq. A.1. Since, ∀i,h2(xi) = 〈k(xi, ·),h2〉, we can restrict the

126

supremum to h1 and h2 that are in the span of all samples and also in H . The restricted

condition on (h1,h2) then becomes{
(hα ,h

β
) : λ1α

′Kα +λ2β
′Kβ +λ (α−β)′K(α−β)≤ 1

}
=
{
(hα ,h

β
) : (α ′β ′)M(α ′β ′)′ ≤ 1

}
where

M =

(
(λ1+λ)K −λK
−λK (λ2+λ)K

)
,

and K is the kernel matrix for source labeled and target labeled samples. Using the

reproducing kernel property, we get

R̂n(J t
EA) =

2
lt

Eσ sup
α,β∈Rls+lt

{
σ
′(C′B)β : (α ′β ′)M(α ′β ′)′ ≤ 1

}
.

For a symmetric positive definite matrix M, it can be shown that

sup
(α,β):(α ′ β ′)M(α ′ β ′)′≤1

x′β = ||(M/M11)
−1/2x||= ||(M−1)1/2

22 x||, (A.2)

and the maxima occurs at α = −M−1
11 M12β . M/M11 is the Schur complement of block

M11 of matrix M (i.e., M/M11 = M22−M21M−1
11 M12).

The matrix M may not always be full rank, however, it can be noted that if β is in the

null space of K, (C′ B)β will be zero. So, we can project β onto the column space of K (or

row space due to K being a symmetric matrix) to get βpr and the term (C′ B)βpr is equal

to (C′ B)β . Specifically, βpr can be thought as computed by the operation UUT
prβ , where

U is the full eigenvector matrix and Upr is the eigenvector matrix consisting of only the

vectors having nonzero eigenvalues. So, the sup is restricted to the projected αpr and βpr,

and the expression for Rademacher complexity can be rewritten as

R̂n(J t
EA) =

2
lt

Eσ sup
αpr,βpr∈ColSpace{K}

{
σ
′(C′ B)βpr : (α ′prβ

′
pr)M(α ′prβ

′
pr)
′ ≤ 1

}
.

We proceed in a manner similar to that used in (Rosenberg and Bartlett, 2007) and

diagonalize the kernel matrix K to get orthonormal bases U corresponding to the nonzero

eigenvalues (K =U ′ΛU). Λ is a diagonal matrix of size r× r, containing just the nonzero

127

eigenvalues and r is the rank of matrix K. Since αpr and βpr are in the span of column

space of K, there exist as and b such that

αpr =Ua and βpr =Ub

The expression for complexity now becomes,

R̂n(J t
EA) =

2
lt

Eσ sup
{

σ
′Wb : (a′ b′)P(a′ b′)′ ≤ 1

}
where W = (C′ B)U and

P =

(
(λ1+λ)Λ −λΛ

−λΛ (λ2+λ)Λ

)
Using Eq. A.2, the supremum can be evaluated as

R̂n(J t
EA) =

2
lt

Eσ ||(P−1/2)22W ′σ ||.

We now make use of Kahane-Khintchine inequality (Latala and Oleszkiewicz, 1994) which

is stated in the following lemma.

Lemma A.2.1 For any vectors a1,a2, . . . ,an and independent Rademacher random vari-

ables σ1,σ2, . . . ,σn, we have

1√
2

E
∥∥∥σ

n
i=1σiai

∥∥∥2 ≤
(

E
∥∥∥σ

n
i=1σiai

∥∥∥)2 ≤ E
∥∥∥σ

n
i=1σiai

∥∥∥2

Proof. Using the above inequality we get a lower and upper bound on the complexity as

2Ct
EA

21/4lt
≤ R̂n(J t

EA)≤
2Ct

EA
lt

, (A.3)

where (
Ct

EA

)2
= Eσ ||(P−1)1/2

22 W ′σ ||2

= Eσ

(
σ
′W (P−1)22W ′σ

)
= Eσ tr{σσ

′W (P−1)22W ′}

= tr{W (P−1)22W ′}.

(A.4)

128

The above expression can be written in terms of the original kernel submatrices by doing

algebraic manipulations on the eigenbases using similar steps as in (Rosenberg and Bartlett,

2007). We finally get the result(
Ct

EA

)2
=

1
λ2

(
1

1+ 1
λ2
λ1

+
λ2
λ

.

)
tr(B).

Plugging it into Eq. A.3 gives the desired bounds on the Rademacher complexity of the EA

target hypothesis class.

A.3 Proof of Theorem 3.3.5: Complexity for EA++
Proof. In this section, we bound the complexity of the target hypothesis class J s

++ for

EA++. The base hypothesis class H++ in Eq. 4.3 (of the original paper) in source and

target hypotheses. So the complexity of source class J s
++ can be obtained by replacing

adequate terms. We are interested in the complexity of the hypothesis class J t
++ which

is defined as J t
++ :=

{
h2 : X 7→ R, (h1,h2) ∈H++

}
, where h1 is not fixed a priori.

The Rademacher complexity of J t
++ is defined as

R̂n(J t
++) = Eσ

 sup
(h1,h2)∈H++

∣∣∣∣∣∣ 2lt
lt
∑

i=1
σih2(xi)

∣∣∣∣∣∣
 (A.5)

We proceed similar to the complexity proof of EA given in previous section. Note that

h2 ∈J t
++ =⇒ −h2 ∈J t

++ since (h1,h2) ∈H++ =⇒ (−h1,−h2) ∈H++. This

means that we can remove the absolute value sign from Eq. A.5. Since, ∀i,h2(xi) =

〈k(xi, ·),h2〉, we can restrict the supremum to h1 and h2 that are in the span of all samples

and also in H++. The restricted condition on (h1,h2) then becomes{
(hα ,h

β
) : λ1α

′Kα +λ2β
′Kβ +λ (α−β)′K(α−β)+λu(α−β)′M(α−β)≤ 1

}
=
{
(hα ,h

β
) : (α ′β ′)N(α ′β ′)′ ≤ 1

}
where

M =

 D
E
F

(D′ E′ F ′
)
,

N =

(
(λ1+λ)K −λK
−λK (λ2+λ)K

)
+λu

(
M −M
−M M

)
,

129

and K is the kernel matrix for source labeled, target labeled and target unlabeled sam-

ples. Using the reproducing kernel property, we get

R̂n(J t
++) =

2
lt

Eσ sup
(α,β)∈Rls+lt+lu

{
σ
′(C′ B E)β : (α ′β ′)N(α ′β ′)′ ≤ 1

}
.

Using Eq. A.2, the supremum in the above equation becomes ||(N−1)1/2
22 (C′ B E)′σ ||.

If the matrix N is not full rank, we can project β and α onto the column space of

K without changing the supremum (as it is done in the previous proof). So, the sup is

restricted to the projected αpr and βpr, and the expression for Rademacher complexity

can be rewritten as

R̂n(J t
++) =

2
lt

Eσ sup
αpr,βpr∈ColSpace{K}

{
σ
′(C′ B E)βpr : (α ′prβ

′
pr)N(α ′prβ

′
pr)
′ ≤ 1

}
.

We proceed in a manner similar to the previous proof and diagonalize the kernel matrix

K to get orthonormal bases U corresponding the nonzero eigenvalues (K =U ′ΛU). Λ is a

diagonal matrix of size r× r, containing just the nonzero eigenvalues and r is the rank of

matrix K. Since αpr and βpr are in the span of column space of K, there exist as and b

such that αpr =Ua, βpr =Ub.

The expression for complexity now becomes,

R̂n(J t
++) =

2
lt

Eσ sup
{

σ
′Wb : (a′ b′)P(a′ b′)′ ≤ 1

}
where W = (C′ B E)U and

P =

(
(λ1+λ)Λ −λΛ

−λΛ (λ2+λ)Λ

)
+λu

(
V ′ 0
0 V ′

)(
M −M
−M M

)(
V 0
0 V

)

The solution to the above maximization problem is given by ||(P−1)1/2
22 W ′σ ||. Using

Kahane-Khintchine inequality and taking similar steps as in Eq. A.4, we get the following

result:

2Ct
++

21/4lt
≤ R̂n(J t

++)≤
2Ct

++
lt

, (A.6)

where
(

Ct
++

)2
= tr{W (P−1)22W ′}.

130

Let T be the first term in the above expression for P. The second term can be written as

RR′ where

R =

(
V ′ 0
0 V ′

)

D
E
F
D
E
F

Using the matrix inversion lemma, we have (T + λuRR′)−1 = T−1− λuT−1R(I +

λuR′T−1R)−1R′T−1. The term tr{W (T−1)22W ′} evaluates to the same expression as

the complexity of EA in previous proof. The second term can also be reduced in terms

of original kernel submatrices by performing algebraic manipulations on eigenbases using

similar steps as used in (Rosenberg and Bartlett, 2007). We finally get the result

(
Ct
++

)2
=

(
1

λ2+
(

1
λ1

+ 1
λ

)−1

)
tr(B)−λu

(
λ1

λλ1+λλ2+λ1λ2

)2
tr
(

E(I + kF)−1E′
)
,

where k =
λu(λ1+λ2)

λλ1+λλ2+λ1λ2
. Plugging it into Eq. A.6 gives the desired bounds on the

Rademacher complexity of EA++ target hypothesis class.

APPENDIX B

DISTRIBUTED LEARNING

In all cases below we reduce to the indexing problem (Kushilevitz and Nisan, 1997):

Let A have n bits either 0 or 1, and B has an index i ∈ [n]. It requires Ω(n) one-way

communication from A to B for B to determine if A’s ith bit is 0 or 1, even allowing a 1/3

probability of failure under randomized algorithms.

B.1 Lower Bounds for One-Way Linear Separators
Theorem B.1.1 Using only one-way communication from A to B, it requires Ω(1/ε) com-

munication to find an ε-error linear classifier in R2.

Proof. We consider linear separators in R2 and suppose that points in DA and DB are

distributed (almost) on the perimeter of a circle. This generalizes to higher dimensional

settings by restricting points to lie on a 2-dimensional linear subspace. Figure B.1 shows

a typical example where DA has exactly 1/ε negative points around a circle (each lies

almost on the circle). These points form 1/2ε pairs of points, each close enough to each

other and to the circle that they only effect points within the pair. Each pair can have two

configurations:

• Case 1. left point just inside the circle and right point just outside the circle (red disks)

• Case 2. right point just inside the circle and left point just outside the circle (red boxes)

DB has only one positive point b+ (blue plus) that interacts with exactly one pair of

points from DA, but B does not know which pair to interact with ahead of time. The positive

point b+ is placed close to the arc of the circle with equal arc length to the negative points

from DA on either sides such that it is just inside the circle.

132

h2 h1

- negative points in DA (Case 1)
- negative points in DA (Case 2)
- positive point (b+) in DB

Figure B.1. An example to prove the lower bound results for one-way communication with
linear separators. The figure on the left shows the distribution of the negative points in DA
for Case 1 and Case 2. The right figure zooms in on only a small arc of the circle and shows
what happens when B decides the final classifier based on its single positive point b+ and
all negative points from DA.

Claim B.1.1 Let Z j be a pair of points in DA and let x j be the position of b+ (with respect

to Z j), as shown in Figure B.1. If DB has a point b+ at x j, then A needs to send at least

one bit of information about Z j to B, for B to learn the perfect classifier.

Proof. Suppose A sends no information to B. In order to learn an optimal classifier, B makes

the classifier tangent to the circle, but offset to just include its point b+. However, the point

b+ is so positioned that it always forces the classifier learned by B to misclassify either the

left negative point in DA (classifier h1 in Figure B.1, if Case 1) or the right negative point

in DA (classifier h2 in Figure B.1, if Case 2), whichever point is just outside the circle. B

can guess Case 1 and angle the classifier to the left point, or guess Case 2 and angle the

classifier to the right point. But in either case, without any information from A, it will be

wrong half the time. However, if A sends a single bit of information denoting whether some

negative point pair belongs to Case 1 or Case 2, then B can use this information to learn a

perfect separator with zero error.

If we increase the number of points to n, by putting εn identical points at each point in

133

the construction then such misclassified points cause an ε error.

We also note that, each pair of points are independent of the others and a classifier

learned for any one negative point pair (in DA) works for other negative point pairs.

In the above case, A has 1/2ε point pairs that are all negative. Each pair is far enough

away from all other pairs so as not to affect each other. B has 1 positive point placed (as

shown on the right of Figure B.1) for some point pair, not known to A. To reduce this

problem to indexing, we let each of A’s point pairs correspond to one bit which is 0 (if

Case 1) or 1 (if Case 2). B needs to determine if the ith bit (corresponding to the negative

point pair in DA, which b+ needs to deal with) is 0 or 1. This requires Ω(1/ε) one-way

communication from A to B, proving the lemma.

B.2 Lower Bounds for One-Way Noise Detection
Although in the noiseless nonagnostic setting we can guarantee finding optimal sep-

arators with one-way communication, under the assumption they exist, we cannot detect

definitively if they do exist. For intervals, the difficult case is when A has only negative

points, and for axis-aligned rectangles the difficult case is more general.

Lemma B.2.1 It requires Ω(|DA|) one-way communication from A to B to determine if

there exists a perfect classifier h ∈ I.

Proof. Consider the case where A has n/2 points and they are all negative. All of its points

have values in [2n] and are even. B has 2 positive points and n/2− 2 negative, its points

have values in [2n+1] and are all odd. Its two positive points are consecutive odd points,

say, 2i− 1 and 2i+ 1. If A has a point at index 2i, then there is no perfect classifier, if it

does not, then there is.

This is precisely the indexing problem with A’s points corresponding to a 1 if they exist

for index 2i and to a 0 if they do not, and for B’s index i corresponding to the value i

for which it has positive points at 2i− 1 and 2i+ 1. Thus, it requires Ω(|DA|) one-way

communication, proving the lemma.

Lemma B.2.2 It requires Ω(|DA|) one-way communication from A to B to determine if

there exists a perfect classifier h ∈ R2, even if A and B have positive and negative points.

134

Proof. Let A and B both have a positive point at (2n,0) and a negative point at (0,2n).

A also has a set of n/2− 2 negative points at locations (2i,2i) for some distinct values of

i ∈ [n]. B has a (variable) positive point at some location (2i−1,2i+1) for i ∈ [n]. There

exists a perfect classifier h ∈ R2 if, and only if, A has no point at (2i,2i) where i is the

index of B’s variable point.

Again, this is precisely the indexing problem. A’s points along the diagonal correspond

to n bits being 1 if a point exists, and 0 if not, for each index i. B’s index corresponds to the

value i of its variable point. Thus, it requires Ω(|DA|) one-way communication, proving

the lemma.

REFERENCES

ABE, N. AND MAMITSUKA, H. 1998. Query learning strategies using boosting and
bagging. In ICML’98. San Francisco, USA.

ABERNETHY, J., BARTLETT, P., AND RAKHLIN, A. 2007. Multitask learning with expert
advice. In COLT’07. San Diego, USA.

AGARWAL, A. AND DUCHI, J. 2011. Distributed delayed stochastic optimization. In
NIPS’11. Granada, Spain.

AGARWAL, A., GERBER, S., AND DAUMÉ III, H. 2010. Learning multiple tasks using
manifold regularization. In NIPS’10. Vancouver, Canada.

AGARWAL, A., RAKHLIN, A., AND BARTLETT, P. 2008. Matrix regularization techniques
for online multitask learning. Technical report, EECS Department, University of California,
Berkeley.

ALLENBY, G. M. AND ROSSI, P. E. 1998. Marketing models of consumer heterogeneity.
Journal of Econometrics 89, 1-2, 57–78.

ANDO, R. K. AND ZHANG, T. 2005. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research 6, 1817–1853.

ANDRZEJEWSKI, D., ZHU, X., AND CRAVEN, M. 2009. Incorporating domain knowledge
into topic modeling via dirichlet forest priors. In ICML’09. Montreal, Canada.

ANTHONY, M. AND BARTLETT, P. L. 2009. Neural Network Learning: Theoretical
Foundations 1st Ed. Cambridge University Press, New York, USA.

ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. 2007a. Multi-task feature learning. In
NIPS’07. Vancouver, Canada.

ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. 2008. Convex multi-task feature
learning. Machine Learning 73, 3, 243–272.

ARGYRIOU, A., MICCHELLI, C. A., PONTIL, M., AND YING, Y. 2007b. A spectral
regularization framework for multi-task structure learning. In NIPS’07. Vancouver, Canada.

ARNOLD, A. AND COHEN, W. W. 2008. Intra-document structural frequency features for
semi-supervised domain adaptation. In CIKM’08. Napa Valley, USA.

ARORA, N., ALLENBY, G. M., AND GINTER, J. L. 1998. A hierarchical bayes model of
primary and secondary demand. Marketing Science 17, 29–44.

ASUNCION, A., SMYTH, P., AND WELLING, M. 2008. Asynchronous distributed learning
of topic models. In NIPS’08. Vancouver, Canada.

136

AUER, P., BURGSTEINER, H., AND MAASS, W. 2002. Reducing communication for
distributed learning in neural networks. In ICANN ’02. London, UK.

AUER, P. AND WARMUTH, M. K. 1998. Tracking the best disjunction. Machine Learn-
ing 32, 2, 127–150.

BAKKER, B. AND HESKES, T. 2003. Task clustering and gating for bayesian multitask
learning. Journal of Machine Learning Research 4, 83–99.

BALCAN, M.-F. AND BLUM, A. 2005. A PAC-style model for learning from labeled and
unlabeled data. In COLT’05. Bertinoro, Italy.

BALCAN, M.-F. AND BLUM, A. 2006. An Augmented PAC Model for Semi-Supervised
Learning. MIT Press, Chapter 22, 397–420.

BALCAN, M.-F. AND BLUM, A. 2010. A discriminative model for semi-supervised
learning. Journal of the ACM 57, 3.

BALCAN, M.-F., BLUM, A., FINE, S., AND MANSOUR, Y. 2012. Distributed learning,
communication complexity and privacy. In COLT’12. Edinburgh, Scotland.

BALDRIDGE, J. AND OSBORNE, M. 2004. Active Learning and the Total Cost of Annota-
tion. In EMNLP’04. Barcelona, Spain.

BALUJA, S. 1999. Probabilistic modeling for face orientation discrimination: Learning
from labeled and unlabeled data. In NIPS’99. Vancouver, Canada.

BAUER, E. AND KOHAVI, R. 1999. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning 36, 1-2.

BEKKERMAN, R., BILENKO, M., AND LANGFORD, J. 2011. Scaling up Machine Learn-
ing: Parallel and Distributed Approaches. Cambridge University Press, New York, USA.

BELKIN, M., MATVEEVA, I., AND NIYOGI, P. 2004. Regularization and semi-supervised
learning on large graphs. In COLT’04. Banff, Canada.

BEN-DAVID, S., BLITZER, J., CRAMMER, K., AND PEREIRA, F. 2006. Analysis of
representations for domain adaptation. In NIPS’06. Vancouver, Canada.

BENNETT, K. P. AND DEMIRIZ, A. 1998. Semi-supervised support vector machines. In
NIPS’98. Vancouver, Canada.

BICKEL, S. AND SCHEFFER, T. 2006. Dirichlet-enhanced spam filtering based on biased
samples. In NIPS’06. Vancouver, Canada.

BIE, T. D. AND CRISTIANINI, N. 2003. Convex methods for transduction. In NIPS’03.
Vancouver, Canada.

BIE, T. D. AND CRISTIANINI, N. 2006. Semi-supervised learning using semi-definite
programming. Cambridge-Massachussets: MIT Press.

BLACKWELL, D. 1956. An analog of the minmax theorem for vector payoffs. Pacific
Journal of Mathematics 1, 1–8.

137

BLEI, D. M., NG, A. Y., AND JORDAN, M. I. 2003. Latent dirichlet allocation. Journal
of Machine Learning Research 3, 993–1022.

BLITZER, J., CRAMMER, K., KULESZA, A., PEREIRA, F., AND WORTMAN, J. 2007a. In
NIPS’07. Vancouver, Canada.

BLITZER, J., DREDZE, M., AND PEREIRA, F. 2007b. Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In ACL’07. Prague,
Czech Republic.

BLITZER, J., MCDONALD, R., AND PEREIRA, F. 2006. Domain adaptation with structural
correspondence learning. In EMNLP’06. Sydney, Australia.

BLOODGOOD, M. AND VIJAY-SHANKER, K. 2009. A method for stopping active learning
based on stabilizing predictions and the need for user-adjustable stopping. In CoNLL’09.
Boulder, USA.

BLUM, A. AND CHAWLA, S. 2001. Learning from labeled and unlabeled data using graph
mincuts. In ICML’01. San Francisco, USA.

BLUM, A. AND MITCHELL, T. 1998. Combining labeled and unlabeled data with co-
training. In COLT’98. Madison, USA.

BONILLA, E. V., CHAI, K. M. A., AND WILLIAMS, C. K. I. 2007. Multi-task gaussian
process prediction. In NIPS’07. Vancouver, Canada.

BOTTOU, L. AND BOUSQUET, O. 2008. The tradeoffs of large scale learning. In NIPS’08.
Vancouver, Canada.

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN, J. 2011. Distributed
Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers.
Now Publishers.

BREFELD, U., BÜSCHER, C., AND SCHEFFER, T. 2005. Multi-view discriminative
sequential learning. In ECML’05. Berlin, Germany.

BREFELD, U., GÄRTNER, T., SCHEFFER, T., AND WROBEL, S. 2006. Efficient co-
regularised least squares regression. In ICML’06. Pittsburgh, USA.

BREFELD, U. AND SCHEFFER, T. 2006. Semi-supervised learning for structured output
variables. In ICML’06. Pittsburgh, USA.

BREIMAN, L. 1996. Bagging predictors. Machine Learning 24, 2, 123–140.

BRINKER, K. 2003. Incorporating diversity in active learning with support vector ma-
chines. In ICML’03. Washington, USA.

CALLISON-BURCH, C., TALBOT, D., AND OSBORNE, M. 2004. Statistical machine
translation with word- and sentence-aligned parallel corpora. In ACL ’04. Barcelona, Spain.

CARAGEA, D., SILVESCU, A., AND HONAVAR, V. 2000. Incremental and distributed
learning with support vector machines. In NCAI’00. Austin, USA.

138

CARUANA, R. 1997. Multitask learning. Machine Learning 28, 1.

CAVALLANTI, G., CESA-BIANCHI, N., AND GENTILE, C. 2008. Linear algorithms for
online multitask classification. In COLT’08. Helsinki, Finland.

CESA-BIANCHI, N., CONCONI, A., AND GENTILE, C. 2005. A second-order perceptron
algorithm. SIAM Journal of Computing 34, 3, 640–668.

CESA-BIANCHI, N., FREUND, Y., HAUSSLER, D., HELMBOLD, D. P., SCHAPIRE, R. E.,
AND WARMUTH, M. K. 1997. How to use expert advice. J. ACM 44, 3, 427–485.

CESA-BIANCHI, N., GENTILE, C., AND ORABONA, F. 2009. Robust bounds for classifi-
cation via selective sampling. In ICML’09. Montreal, Canada.

CESA-BIANCHI, N., GENTILE, C., AND ZANIBONI, L. 2006. Worst-case analysis of
selective sampling for linear classification. Journal of Machine Learning Research 7.

CESA-BIANCHI, N. AND LUGOSI, G. 2006. Prediction, Learning, and Games. Cam-
bridge University Press, New York, USA.

CHAFI, H., SUJEETH, A. K., BROWN, K. J., LEE, H., ATREYA, A. R., AND OLUKOTUN,
K. 2011. A domain-specific approach to heterogeneous parallelism. In PPoPP ’11. San
Antonio, USA.

CHAN, Y. S. AND NG, H. T. 2006. Estimating class priors in domain adaptation for word
sense disambiguation. In ACL’06. Sydney, Australia.

CHAN, Y. S. AND NG, H. T. 2007. Domain adaptation with active learning for word sense
disambiguation. In ACL’07. Prague, Czech Republic.

CHANG, C.-C. AND LIN, C.-J. 2011. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology 2, 3.

CHANG, M.-W., CONNOR, M., AND ROTH, D. 2010. The necessity of combining
adaptation methods. In EMNLP’10. Cambridge, MA.

CHAPELLE, O., SHIVASWAMY, P., VADREVU, S., WEINBERGER, K., ZHANG, Y., AND
TSENG, B. 2010. Multi-task learning for boosting with application to web search ranking.
In KDD’10. Washington, USA.

CHAPELLE, O., WESTON, J., AND SCHÖLKOPF, B. 2003. Cluster Kernels for Semi-
Supervised Learning. In NIPS’02. Cambridge, USA.

CHAPELLE, O. AND ZIEN, A. 2005. Semi–supervised classification by low density
separation. In AISTATS’05. Barbados.

CHAWLA, N., BOWYER, K., HALL, L., AND KEGELMEYER, W. 2002. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357.

CHAZELLE, B. 2000. The Discrepancy Method. Cambridge.

CHELBA, C. AND ACERO, A. 2006. Adaptation of maximum entropy capitalizer: Little
data can help a lot. Computer Speech & Language 20, 4, 382–399.

139

CHEN, R., WENG, X., HE, B., AND YANG, M. Large graph processing in the cloud. In
SIGMOD’10. Indianapolis, USA.

CHU, C.-T., KIM, S. K., LIN, Y.-A., YU, Y., BRADSKI, G., NG, A. Y., AND OLUKOTUN,
K. 2007a. Map-reduce for machine learning on multicore. In NIPS’07. Vancouver, Canada.

CHU, W., SINDHWANI, V., GHAHRAMANI, Z., AND KEERTHI, S. S. 2007b. Relational
learning with gaussian processes. In NIPS’07. Vancouver, Canada.

COLLINS, M. 2002. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In EMNLP’02. Stroudsburg, USA.

COLLINS, M. AND SINGER, Y. 1999. Unsupervised models for named entity classification.
In In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora. 100–110.

CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M., ELMELEEGY, K., AND
SEARS, R. 2010. Mapreduce online. In NSDI’10. Berkeley, USA.

CORMODE, G., MUTHUKRISHNAN, S., AND YI, K. 2008. Algorithms for distributed
functional monitoring. In SODA’08. San Francisco, USA.

CORMODE, G., MUTHUKRISHNAN, S., YI, K., AND ZHANG, Q. 2010. Optimal sampling
from distributed streams. In PODS’10. Indianapolis, USA.

CRAMMER, K., DEKEL, O., KESHET, J., SHALEV-SHWARTZ, S., AND SINGER, Y. 2006.
Online passive-aggressive algorithms. Journal of Machine Learning Research 7, 551–585.

CRAMMER, K., KULESZA, A., AND DREDZE, M. 2009. Adaptive regularization of weight
vectors. In NIPS’09. Vancouver, Canada.

CRAMMER, K. AND SINGER, Y. 2003. A new family of online algorithms for category
ranking. Journal of Machine Learning Research 3, 1025–1058.

DAGAN, I. AND ENGELSON, S. P. 1995. Committee-based sampling for training proba-
bilistic classifiers. In ICML’95. Tahoe City, USA.

DAI, W., JIN, O., XUE, G.-R., YANG, Q., AND YU, Y. 2009. Eigentransfer: A unified
framework for transfer learning. In ICML’09. Montreal, Canada.

DAI, W., XUE, G.-R., YANG, Q., AND YU, Y. 2007a. Co-clustering based classification
for out-of-domain documents. In KDD’07. San Jose, USA.

DAI, W., XUE, G.-R., YANG, Q., AND YU, Y. 2007b. Transferring Naive Bayes classifiers
for text classification. In AAAI’07. Vancouver, Canada.

DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. 2007c. Boosting for transfer learning. In
ICML’07. Corvallis, USA.

DAS, A. S., DATAR, M., GARG, A., AND RAJARAM, S. 2007. Google news personaliza-
tion: Scalable online collaborative filtering. In WWW’07. Banff, Canada.

140

DASGUPTA, S. AND HSU, D. 2008. Hierarchical sampling for active learning. In
ICML’08. Helsinki, Finland.

DASGUPTA, S., KALAI, A. T., AND MONTELEONI, C. 2009. Analysis of perceptron-
based active learning. Journal of Machine Learning Research 10, 281–299.

DASGUPTA, S., LITTMAN, M. L., AND MCALLESTER, D. A. 2001. Pac generalization
bounds for co-training. In NIPS’01. Vancouver, Canada.

DAUMÉ, III, H. AND MARCU, D. 2006. Domain adaptation for statistical classifiers.
Journal of Artificial Intelligence Research 26, 1, 101–126.

DAUMÉ III, H. 2004. Notes on CG and LM-BFGS optimization of logistic regression.

DAUMÉ III, H. 2007. Frustratingly easy domain adaptation. In ACL’07. Prague, Czech
Republic.

DAUMÉ III, H. 2009. Bayesian multitask learning with latent hierarchies. In UAI’09.
Montreal, Canada.

DAUMÉ III, H., KUMAR, A., AND SAHA, A. 2010. Frustratingly easy semi-supervised
domain adaptation. In ACL 2010 Workshop on Domain Adaptation for NLP (DANLP).
Uppsala, Sweden.

DAUMÉ III, H., PHILLIPS, J., SAHA, A., AND VENKATASUBRAMANIAN, S. 2012.
Protocols for learning classifiers on distributed data. In AISTATS’12. La Palma, Canary
Islands.

DEAN, J. AND GHEMAWAT, S. 2004. Mapreduce: Simplified data processing on large
clusters. In OSDI’04. San Francisco, USA.

DEKEL, O., GENTILE, C., AND SRIDHARAN, K. 2010a. Robust selective sampling from
single and multiple teachers. In COLT’10. Haifa, Israel.

DEKEL, O., GILAD-BACHRACH, R., SHAMIR, O., AND XIAO, L. 2010b. Optimal
distributed online prediction using mini-batches. arXiv:1012.1367.

DEKEL, O., LONG, P. M., AND SINGER, Y. 2006. Online multitask learning. In COLT’06.
Pittsburgh, USA.

DEMIRIZ, A. AND BENNETT, K. P. 2000. Optimization Approaches to Semi-Supervised
Learning. Boston: Kluwer Academic Publishers.

DESANTIS, A., MARKOWSKY, G., AND WEGMAN, M. N. 1988. Learning probabilistic
prediction functions. In COLT’88. Cambridge, USA.

DONMEZ, P., CARBONELL, J. G., AND SCHNEIDER, J. 2009. Efficiently learning the
accuracy of labeling sources for selective sampling. In KDD’09. Paris, France.

DREDZE, M., CRAMMER, K., AND PEREIRA, F. 2008. Confidence-weighted linear
classification. In ICML’08. Helsinki, Finland.

141

DREDZE, M., KULESZA, A., AND CRAMMER, K. 2010. Multi-domain learning by
confidence-weighted parameter combination. Machine Learning 79, 1-2, 123–149.

DRUCK, G., SETTLES, B., AND MCCALLUM, A. 2009. Active learning by labeling
features. In EMNLP’09. Singapore.

DUAN, L., TSANG, I. W., XU, D., AND CHUA, T.-S. 2009. Domain adaptation from
multiple sources via auxiliary classifiers. In ICML’09. Montreal, Canada.

DUCHI, J., AGARWAL, A., AND WAINWRIGHT, M. 2010. Distributed dual averaging in
networks. In NIPS’10. Vancouver, Canada.

DUH, K., SUZUKI, J., AND NAGATA, M. 2011. Distributed learning-to-rank on streaming
data using alternating direction method of multipliers. In NIPS BigLearn Workshop.

EKANAYAKE, J., LI, H., ZHANG, B., GUNARATHNE, T., BAE, S.-H., QIU, J., AND FOX,
G. 2010. Twister: A runtime for iterative mapreduce. In HPDC’10. Chicago, USA.

EVGENIOU, T., MICCHELLI, C. A., AND PONTIL, M. 2005. Learning multiple tasks with
kernel methods. Journal of Machine Learning Research 6, 615–637.

EVGENIOU, T. AND PONTIL, M. 2004. Regularized multitask learning. In KDD’04.
Seattle, USA.

FOSTER, D. P. AND VOHRA, R. V. 1993. A randomization rule for selecting forecasts.
Operations Research 41, 4, 704–709.

FREUND, Y. AND SCHAPIRE, R. E. 1995. A decision-theoretic generalization of on-line
learning and an application to boosting. In EuroCOLT’95. Barcelona, Spain.

FREUND, Y., SEUNG, H. S., SHAMIR, E., AND TISHBY, N. 1997. Selective sampling
using the query by committee algorithm. Machine Learning 28, 2-3, 133–168.

FUJINO, A., UEDA, N., AND SAITO, K. 2005. A hybrid generative/discriminative ap-
proach to semi-supervised classifier design. In AAAI’05. Pittsburgh, USA.

FUNG, G. AND MANGASARIAN, O. L. 2001. Semi-supervised support vector machines
for unlabeled data classification. Optimization Methods and Software 15, 29–44.

GANJISAFFAR, Y., DEBEAUVAIS, T., JAVANMARDI, S., CARUANA, R., AND LOPES,
C. V. 2011. Distributed tuning of machine learning algorithms using mapreduce clusters. In
Proceedings of the Third Workshop on Large Scale Data Mining: Theory and Applications.
LDMTA ’11. San Diego, California.

GENTILE, C. 2001. A new approximate maximal margin classification algorithm. Journal
of Machine Learning Research 2, 213–242.

GETZ, G., SHENTAL, N., AND DOMANY, E. 2006. Semi-supervised learning – a statistical
physics approach. CoRR abs/cs/0604011.

GHOTING, A., KRISHNAMURTHY, R., PEDNAULT, E., REINWALD, B., SINDHWANI, V.,
TATIKONDA, S., TIAN, Y., AND VAITHYANATHAN, S. 2011. SystemML: Declarative
machine learning on mapreduce. In ICDE’11. Bellevue, USA.

142

GRIRA, N., CRUCIANU, M., AND BOUJEMAA, N. 2005. Active semi-supervised fuzzy
clustering for image database categorization. In Proceedings of the 7th ACM SIGMM
international workshop on Multimedia information retrieval. MIR’05. Hilton, Singapore.

GUPTA, S. K., PHUNG, D., ADAMS, B., TRAN, T., AND VENKATESH, S. 2010. Non-
negative shared subspace learning and its application to social media retrieval. In KDD’10.
Washington, USA.

HAGHIGHI, A. AND KLEIN, D. 2006. Prototype-driven learning for sequence models. In
HLT-NAACL’06. New York, USA.

HALEVY, A. Y., NORVIG, P., AND PEREIRA, F. 2009. The unreasonable effectiveness of
data. IEEE Intelligent Systems 24, 2, 8–12.

HERBSTER, M. AND WARMUTH, M. K. 2001. Tracking the best linear predictor. Journal
of Machine Learning Research 1, 281–309.

HESKES, T. 2000. Empirical bayes for learning to learn. In ICML’00. San Francisco, USA.

HINDMAN, B., KONWINSKI, A., ZAHARIA, M., AND STOICA, I. 2009. A common
substrate for cluster computing. In HotCloud’09. San Diego, USA.

HOFMANN, T. AND BUHMANN, J. M. 1998. Active data clustering. In NIPS’97. Denver,
USA.

HSU, D. AND LANGFORD, J. 2011. The end of the beginning of active learning. http:
//hunch.net/?p=1800.

HUA ZHOU, Z., CHUAN ZHAN, D., AND YANG, Q. 2007. Semi-supervised learning with
very few labeled training examples. In AAAI’07. Vancouver, Canada.

HUANG, J., SMOLA, A. J., GRETTON, A., BORGWARDT, K. M., AND SCHÖLKOPF, B.
2007. Correcting sample selection bias by unlabeled data. In NIPS’07. Vancouver, Canada,
601–608.

HUANG, L., JORDAN, M. I., JOSEPH, A., GAROFALAKIS, M., AND TAFT, N. 2006.
In-network pca and anomaly detection. In NIPS’06. Vancouver, Canada.

HUANG, Y. AND MITCHELL, T. M. 2006. Text clustering with extended user feedback. In
SIGIR’06. Seattle, USA.

HWA, R. 2001. On minimizing training corpus for parser acquisition. In Proceedings of
the 2001 workshop on Computational Natural Language Learning - Volume 7. ConLL’01.
Toulouse, France.

ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY, D. 2007. Dryad:
Distributed data-parallel programs from sequential building blocks. In EuroSys’07. Lisbon,
Portugal.

J. ABERNETHY, F. BACH, T. E. AND VERT, J.-P. 2006. Low-rank matrix factorization
with attributes. Technical Report.

JIANG, J. 2008. A literature survey on domain adaptation of statistical classifiers.

http://hunch.net/?p=1800
http://hunch.net/?p=1800

143

JOACHIMS, T. 1999. Transductive inference for text classification using support vector
machines. In ICML’99. Bled, Slovenia.

JOACHIMS, T. 2003. Transductive learning via spectral graph partitioning. In ICML’03.
Washington, USA.

JONES, R. 2005. Learning to extract entities from labeled and unlabeled text. PhD
Dissertation, Carnegie Mellon University.

KALAI, A. AND VEMPALA, S. 2002. Geometric algorithms for online optimization. In
Journal of Computer and System Sciences. 26–40.

KANG, Z., GRAUMAN, K., AND SHA, F. 2011. Learning with whom to share in multi-task
feature learning. In ICML’11. Bellevue, USA.

KAPOOR, A., HORVITZ, E., AND BASU, S. 2007. Selective supervision: Guiding
supervised learning with decision-theoretic active learning. In IJCAI’07. Hyderabad, India.

KEARNS, M. 1998. Efficient noise-tolerant learning from statistical queries. Journal of
ACM 45, 6, 983–1006.

KEARNS, M. AND VAZIRANI, U. 1994. An introduction to computational learning theory.
MIT Press, Cambridge, USA.

KIVINEN, J., SMOLA, A. J., AND WILLIAMSON, R. C. 2004. Online learning with
kernels. IEEE Transactions on Signal Processing 52, 8, 2165–2176.

KIVINEN, J. AND WARMUTH, M. K. 1997. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation 132, 1, 1–63.

KONDOR, R. I. AND LAFFERTY, J. D. 2002. Diffusion kernels on graphs and other discrete
input spaces. In ICML’02. Sydney, Australia.

KOWALCZYK, W. AND VLASSIS, N. 2005. Newscast EM. In NIPS’05. Vancouver,
Canada.

KUBAT, M. AND MATWIN, S. 1997. Addressing the curse of imbalanced training sets:
One-sided selection. In ICML’97. Nashville, USA.

KULIS, B., SUSTIK, M. A., AND DHILLON, I. S. 2009. Low-rank kernel learning with
bregman matrix divergences. Journal of Machine Learning Research 10.

KUSHILEVITZ, E. AND NISAN, N. 1997. Communication Complexity. Cambridge Uni-
versity Press.

LANG, K. J. AND BAUM, E. B. 1992. Query learning can work poorly when a human
oracle is used. In IJCNN’92. Beijing, China.

LANGFORD, J., SMOLA, E. J., AND ZINKEVICH, M. 2009. Slow learners are fast. In
NIPS’09. Vancouver, Canada.

LASKOV, P. AND LIPPMANN, R. 2010. Machine learning in adversarial environments.
Machine Learning 81, 2.

144

LATALA, R. AND OLESZKIEWICZ, K. 1994. On the best constant in the Khinchin-Kahane
inequality. Studia Mathematica 109, 101–104.

LAWRENCE, N. D. AND JORDAN, M. I. 2005. Semi-supervised learning via gaussian
processes. In NIPS’05. Vancouver, Canada.

LAZAREVIC, A. AND OBRADOVIC, Z. 2001. The distributed boosting algorithm. In
KDD’01. San Francisco, USA.

LEWIS, D. D. 1995. A sequential algorithm for training text classifiers: Corrigendum and
additional data. SIGIR Forum 29, 2, 13–19.

LEWIS, D. D. AND CATLETT, J. 1994. Heterogeneous uncertainty sampling for supervised
learning. In ICML’94. New Brunswick, US.

LI, X. AND BILMES, J. 2007. A bayesian divergence prior for classifier adaptation. In
AISTATS’07. San Juan, USA.

LI, Y. AND LONG, P. M. 2002. The relaxed online maximum margin algorithm. Machine
Learning 46, 1-3, 361–387.

LIANG, P. AND JORDAN, M. I. 2008. An asymptotic analysis of generative, discriminative,
and pseudolikelihood estimators. In ICML’08. Helsinki, Finland.

LIBERTY, E., WOOLFE, F., MARTINSSON, P.-G., ROKHLIN, V., AND TYGERT, M. 2007.
Randomized algorithms for the low-rank approximation of matrices. PNAS 104, 51.

LING, X., DAI, W., XUE, G.-R., YANG, Q., AND YU, Y. 2008. Spectral domain-transfer
learning. In KDD’08. Las Vegas, USA.

LITTLESTONE, N. 1988. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2, 4, 285–318.

LITTLESTONE, N. 1991. Redundant noisy attributes, attribute errors, and linear-threshold
learning using winnow. In COLT’91. Santa Cruz, US.

LITTLESTONE, N. AND WARMUTH, M. K. 1994. The weighted majority algorithm.
Information and Computation 108, 2, 212–261.

LIU, Q., LIAO, X., CARIN, H. L., STACK, J. R., AND CARIN, L. 2009. Semisupervised
multitask learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 6,
1074–1086.

LOMASKY, R., BRODLEY, C. E., AERNECKE, M., WALT, D., AND FRIEDL, M. 2007.
Active class selection. In ECML’07. Warsaw, Poland.

LONG, M., CHENG, W., JIN, X., WANG, J., AND SHEN, D. 2010. Transfer learning via
cluster correspondence inference. In ICDM’10. Sydney, Australia.

LONG, M., WANG, J., DING, G., CHENG, W., ZHANG, X., AND WANG, W. 2012. Dual
transfer learning. In SDM’12. Anaheim, USA.

145

LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D., GUESTRIN, C., AND HELLER-
STEIN, J. M. 2012. Distributed graphlab: A framework for machine learning in the cloud.
CoRR abs/1204.6078.

LUGOSI, G., PAPASPILIOPOULOS, O., AND STOLTZ, G. 2009. Online multi-task learning
with hard constraints. In COLT’09. Montreal, Canada.

MAEIREIZO, B., LITMAN, D., AND HWA, R. 2004. Co-training for predicting emotions
with spoken dialogue data. In Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions. ACLdemo ’04. Barcelona, Spain.

MAHOUT. 2012. Apache mahout: Scalable machine-learning and data-mining library.
http://mahout.apache.org.

MANN, G., MCDONALD, R., MOHRI, M., SILBERMAN, N., AND WALKER, D. 2009.
Efficient large-scale distributed training of conditional maximum entropy models. In
NIPS’09. Vancouver, Canada.

MANN, G. S. AND MCCALLUM, A. 2010. Generalized expectation criteria for semi-
supervised learning with weakly labeled data. Journal of Machine Learning Research 11,
955–984.

MANSOUR, Y., MOHRI, M., AND ROSTAMIZADEH, A. 2009. Domain adaptation: Learn-
ing bounds and algorithms. In COLT’09. Montreal, Canada.

MATOUSEK, J. 1991. Approximations and optimal geometric divide-and-conquer. In
STOC’91. New Orleans, USA.

MCDONALD, R., HALL, K., AND MANN, G. 2010. Distributed training strategies for the
structured perceptron. In NAACL HLT’10. Los Angeles, California.

MELVILLE, P. AND MOONEY, R. J. 2004. Diverse ensembles for active learning. In
ICML’04. Banff, Canada.

MERUGU, S. AND GHOSH, J. 2005. A distributed learning framework for heterogeneous
data sources. In KDD’05. Chicago, USA.

MILLER, D. J. AND UYAR, H. S. 1997. A Mixture of Experts Classifier with Learning
Based on Both Labeled and unlabeled data. NIPS’97.

MITCHELL, T. M. 1999. The role of unlabeled data in supervised learning. In Proceedings
of the Sixth International Colloquium on Cognitive Science. San Sebastian, Spain.

MONTELEONI, C. AND KÄÄRIÄINEN, M. 2007. Practical online active learning for clas-
sification. In IEEE CVPR Workshop on Online Learning for Classification. Minneapolis,
USA.

MUSLEA, I., MINTON, S., AND KNOBLOCK, C. A. 2000. Selective sampling with
redundant views. In AAAI. Austin, USA, 621–626.

NEWMAN, D., ASUNCION, A., SMYTH, P., AND WELLING, M. 2008. Distributed
inference for latent dirichlet allocation. In NIPS’08. Vancouver, Canada.

146

NEWMAN, D., ASUNCION, A., SMYTH, P., AND WELLING, M. 2009. Distributed
algorithms for topic models. Journal of Machine Learning Research 10, 1801–1828.

NIGAM, K., MCCALLUM, A. K., THRUN, S., AND MITCHELL, T. 2000. Text classifica-
tion from labeled and unlabeled documents using EM. Machine Learning 39, 2-3, 103–134.

NOVIKOFF, A. 1962. On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata. Vol. 12. New York, USA.

OLSSON, F. AND TOMANEK, K. 2009. An intrinsic stopping criterion for committee-based
active learning. In CoNLL’09. Boulder, USA.

OUYANG, H. AND GRAY, A. G. 2011. Data-distributed weighted majority and online
mirror descent. CoRR abs/1105.2274.

PALIT, I. AND REDDY, C. K. 2010. Parallelized boosting with map-reduce. In Proceedings
of the 2010 IEEE International Conference on Data Mining Workshops. ICDMW ’10.

PAN, S. J., NI, X., TAO SUN, J., YANG, Q., AND CHEN, Z. 2010a. Cross-domain
sentiment classification via spectral feature alignment. In WWW’10. Raleigh, USA.

PAN, S. J., TSANG, I. W., KWOK, J. T., AND YANG, Q. 2010b. Domain adaptation via
transfer component analysis. IEEE Transactions on Neural Networks PP, 99, 1–12.

PAN, S. J. AND YANG, Q. 2010. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering 22, 10, 1345–1359.

PEARCE, R., GOKHALE, M., AND AMATO, N. M. 2010. Multithreaded asynchronous
graph traversal for in-memory and semi-external memory. In SC’10. New Orleans, USA.

PILLONETTO, G., DINUZZO, F., AND DE NICOLAO, G. 2010. Bayesian online multitask
learning of gaussian processes. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32, 2, 193–205.

POWER, R. AND LI, J. 2010. Piccolo: Building fast, distributed programs with partitioned
tables. In OSDI’10. Vancouver, Canada.

PREDD, J. B., KULKARNI, S. R., AND POOR, H. V. 2006. Distributed learning in wireless
sensor networks. IEEE Signal Processing Magazine.

PROVOST, F. J., ARONIS, J., AND FISHER, H. 1996. Scaling up inductive learning with
massive parallelism. In Machine Learning. 33–46.

PROVOST, F. J. AND HENNESSY, D. N. 1996. Scaling up: Distributed machine learning
with cooperation. In AAAI’96. Portland, USA.

QI, G.-J., HUA, X.-S., RUI, Y., TANG, J., AND ZHANG, H.-J. 2008. Two-dimensional
active learning for image classification. In CVPR. Anchorage, USA.

RAGHAVAN, H., MADANI, O., AND JONES, R. 2006. Active learning with feedback on
features and instances. Journal of Machine Learning Research 7, 1655–1686.

147

RAI, P. AND DAUMÉ III, H. 2010. Infinite predictor subspace models for multitask
learning. In AISTATS’10. Sardinia, Italy.

RAI, P., SAHA, A., DAUMÉ III, H., AND VENKATASUBRAMANIAN, S. 2010. Domain
adaptation meets active learning. In NAACL 2010 Workshop on Active Learning for NLP
(ALNLP). Los Angeles, USA.

RAINA, R., NG, A. Y., AND KOLLER, D. 2006. Constructing informative priors using
transfer learning. In ICML’06. Pittsburgh, USA.

RECHT, B., RE, C., WRIGHT, S. J., AND NIU, F. 2011. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In NIPS’11. Granada, Spain.

REICHART, R., TOMANEK, K., HAHN, U., AND RAPPOPORT, A. 2008. Multi-task active
learning for linguistic annotations. In ACL’08. Columbus, USA.

RILOFF, E., WIEBE, J., AND WILSON, T. 2003. Learning subjective nouns using extrac-
tion pattern bootstrapping. In CONLL’03. Edmonton, Canada.

ROSENBERG, C., HEBERT, M., AND SCHNEIDERMAN, H. 2005. Semi-supervised self-
training of object detection models. In WACV-MOTION’05. Washington, USA.

ROSENBERG, D. S. AND BARTLETT, P. L. 2007. The Rademacher complexity of co-
regularized kernel classes. In AISTATS’07. San Juan, USA.

ROSENBLATT, F. 1958. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65, 6, 386–408.

ROTH, D. AND SMALL, K. 2006a. Active learning with perceptron for structured output.
In ICML Workshop on Learning in Structured Output Spaces. Pittsburgh, USA.

ROTH, D. AND SMALL, K. 2006b. Margin-based active learning for structured output
spaces. In ECML’06. Berlin, Germany.

SATPAL, S. AND SARAWAGI, S. 2007. Domain adaptation of conditional probability
models via feature subsetting. In PKDD’07. Warsaw, Poland.

SCHEFFER, T., DECOMAIN, C., AND WROBEL, S. 2001. Active hidden markov models
for information extraction. In IDA’01. Cascais, Portugal.

SEEGER, M. 2001. Learning with labeled and unlabeled data. In Technical Report.

SERVEDIO, R. A. AND LONG, P. 2011. Algorithms and hardness results for parallel large
margin learning. In NIPS’11. Granada, Spain.

SETTLES, B. 2009. Active learning literature survey. In Computer Sciences Technical
Report 1648. University of Wisconsin-Madison.

SETTLES, B. AND CRAVEN, M. 2008. An analysis of active learning strategies for
sequence labeling tasks. In EMNLP’08. Honolulu, USA.

SETTLES, B., CRAVEN, M., AND RAY, S. 2008. Multiple-instance active learning. In
NIPS’08. Vancouver, Canada.

148

SEUNG, H. S., OPPER, M., AND SOMPOLINSKY, H. 1992. Query by committee. In
COLT’92. Pittsburgh, USA.

SHAHSHAHANI, B. AND LANDGREBE, D. 1994. The effect of unlabeled samples in
reducing the small sample size problem and mitigating the hughes phenomenon. IEEE
Transactions on Geoscience and Remote Sensing 32, 5, 1087 –1095.

SHENG, V. S., PROVOST, F., AND IPEIROTIS, P. G. 2008. Get another label? improving
data quality and data mining using multiple, noisy labelers. In KDD’08. Las Vegas, USA.

SHI, X., FAN, W., AND REN, J. 2008. Actively transfer domain knowledge. In
ECML/PKDD’08. Antwerp, Belgium.

SHIMODAIRA, H. 2000. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference 90, 2, 227–244.

SINDHWANI, V., NIYOGI, P., AND BELKIN, M. 2005. A co-regularization approach
to semi-supervised learning with multiple views. In ICML Workshop on Learning with
Multiple Views. Bonn, Germany.

SINDHWANI, V. AND ROSENBERG, D. S. 2008. An RKHS for multi-view learning and
manifold co-regularization. In ICML’08. Helsinki, Finland.

SINGH, S. P., KEARNS, M. J., AND MANSOUR, Y. 2000. Nash convergence of gradient
dynamics in general-sum games. In UAI’00. Stanford, USA.

SMOLA, A. J. AND KONDOR, R. I. 2003. Kernels and regularization on graphs. In
COLT’03. Washington, USA.

SONNTAG, D. 2004. Distributed nlp and machine learning for question answering grid. In
Proceedings of the workshop on Semantic Intelligent Middleware for the Web and the Grid
at ECAI. Valencia, Spain.

SRIDHARAN, K. AND KAKADE, S. M. 2008. An information theoretic framework for
multi-view learning. In COLT’08. Helsinki, Finland.

STORKEY, A. J. AND SUGIYAMA, M. 2006. Mixture regression for covariate shift. In
NIPS’06. Vancouver, Canada.

SUGIYAMA, M., NAKAJIMA, S., KASHIMA, H., VON BÜNAU, P., AND KAWANABE, M.
2007. Direct importance estimation with model selection and its application to covariate
shift adaptation. In NIPS’07. Vancouver, Canada.

SZUMMER, M. AND JAAKKOLA, T. 2001. Partially labeled classification with markov
random walks. In NIPS ’01. MIT Press, Cambridge, MA.

TEO, C. H., VISHWANTHAN, S., SMOLA, A. J., AND LE, Q. V. 2010. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research 11, 311–365.

THRUN, S. AND O’SULLIVAN, J. 1996. Discovering structure in multiple learning tasks:
The tc algorithm. In ICML’96. Bari, Italy, 489–497.

149

TOMANEK, K., WERMTER, J., AND HAHN, U. 2007. An approach to text corpus
construction which cuts annotation costs and maintains reusability of annotated data. In
EMNLP/CoNLL’07. 486–495.

TSUDA, K., RÄTSCH, G., AND WARMUTH, M. K. 2005. Matrix exponentiated gradient
updates for on-line learning and bregman projections. Journal of Machine Learning
Research 6, 995–1018.

TUMER, K. AND GHOSH, J. 1996. Estimating the bayes error rate through classifier
combining. In ICPR’96. Vienna, Austria.

TUR, G. 2009. Co-adaptation: Adaptive co-training for semi-supervised learning. In
ICASSP’09. Taipei, Taiwan.

VIJAYANARASIMHAN, S. AND GRAUMAN, K. 2008. Multi-level active prediction of
useful image annotations for recognition. In NIPS’08. Vancouver, Canada.

VIJAYANARASIMHAN, S. AND GRAUMAN, K. 2009. What’s it going to cost you?:
Predicting effort vs. informativeness for multi-label image annotations. In CVPR’09.

VITTER, J. S. 1985. Random sampling with a reservoir. ACM Transactions on Mathemat-
ical Software 11, 37–57.

VLACHOS, A. 2008. A stopping criterion for active learning. Computer Speech and
Language 22, 3, 295–312.

VOVK, V. G. 1990. Aggregating strategies. In COLT’90. Rochester, USA.

WANG, H., HUANG, H., NIE, F., AND DING, C. 2011. Cross-language web page
classification via dual knowledge transfer using nonnegative matrix tri-factorization. In
SIGIR’11. Beijing, China.

WANG, J. 2007. On transductive support vector machines. In Prediction and Discovery.
American Mathematical Society.

WANG, Z., SONG, Y., AND ZHANG, C. 2009. Knowledge transfer on hybrid graph. In
IJCAI’09. Pasadena, USA.

XING, D., DAI, W., XUE, G.-R., AND YU, Y. 2007. Bridged refinement for transfer
learning. In PKDD’07. Warsaw, Poland.

XUE, Y., DUNSON, D., AND CARIN, L. 2007a. The matrix stick-breaking process for
flexible multi-task learning. In ICML’07. New York, USA.

XUE, Y., LIAO, X., CARIN, L., AND KRISHNAPURAM, B. 2007b. Multi-task learning
for classification with dirichlet process priors. Journal of Machine Learning Research 8,
35–63.

YAROWSKY, D. 1995. Unsupervised word sense disambiguation rivaling supervised meth-
ods. In ACL’95. Cambridge, Massachusetts.

YE, J., CHOW, J.-H., CHEN, J., AND ZHENG, Z. 2009. Stochastic gradient boosted
distributed decision trees. In CIKM’09. Hong Kong.

150

ZADROZNY, B. 2004. Learning and evaluating classifiers under sample selection bias. In
ICML’04. Banff, Canada.

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I.
2010. Spark: Cluster computing with working sets. In HotCloud’10. Boston, USA.

ZHANG, J., GHAHRAMANI, Z., AND YANG, Y. 2005. Learning multiple related tasks
using latent independent component analysis. In NIPS’05. Vancouver, Canada.

ZHANG, Y. AND SCHNEIDER, J. 2010. Learning multiple tasks with a sparse matrix-
normal penalty. In NIPS’10. Vancouver, Canada.

ZHANG, Y. AND YEUNG, D.-Y. 2010. A convex formulation for learning task relationships
in multi-task learning. In UAI’10. Catalina, USA.

ZHAO, W., MA, H., AND HE, Q. 2009. Parallel k-means clustering based on mapreduce.
In Cloud Computing’09. Beijing, China.

ZHENG, Z. AND PADMANABHAN, B. 2002. On active learning for data acquisition. In
ICDM’02. Washington, USA.

ZHONG, E., FAN, W., PENG, J., ZHANG, K., REN, J., TURAGA, D., AND VERSCHEURE,
O. 2009. Cross domain distribution adaptation via kernel mapping. In KDD’09. Paris,
France.

ZHU, J. 2007. Active learning for word sense disambiguation with methods for addressing
the class imbalance problem. In ACL’07. Prague, Czech Republic.

ZHU, X., LAFFERTY, J., AND GHAHRAMANI, Z. 2003. Semi-supervised learning: From
gaussian fields to gaussian processes. Tech. rep., School of CS, CMU.

ZHUANG, F., LUO, P., SHEN, Z., HE, Q., XIONG, Y., SHI, Z., AND XIONG, H. 2010.
Collaborative dual-plsa: Mining distinction and commonality across multiple domains for
text classification. In CIKM’10. Toronto, Canada.

ZHUANG, F., LUO, P., XIONG, H., HE, Q., XIONG, Y., AND SHI, Z. 2011. Exploiting
associations between word clusters and document classes for cross-domain text categoriza-
tion. Journal Statistical Analysis and Data Mining 4, 1, 100–114.

ZINKEVICH, M. 2003. Online convex programming and generalized infinitesimal gradient
ascent. In ICML’03. Washington, USA.

ZINKEVICH, M., WEIMER, M., SMOLA, A. J., AND LI, L. 2010. Parallelized stochastic
gradient descent. In NIPS’10. Vancouver, Canada.

DISSEMINATION OF THIS WORK

• Co-regularization Based Semi-supervised Domain Adaptation.

Hal Daumé III, Abhishek Kumar, Avishek Saha.

In Proceedings of Advances of Neural Processing Systems (NIPS), December 2010.

• Online Learning of Multiple Tasks and Their Relationships.

Avishek Saha, Piyush Rai, Hal Daumé III, Suresh Venkatasubramanian.

In Proceedings of Artificial Intelligence and Statistics (AISTATS), April 2011.

• Active Supervised Domain Adaptation.

Avishek Saha, Piyush Rai, Hal Daumé III, Suresh Venkatasubramanian, Scott L. DuVall.

In Proceedings of European Conference on Machine Learning (ECML), September 2011.

• Protocols for Learning Classifiers on Distributed Data.

Hal Daumé III, Jeff M. Phillips, Avishek Saha, Suresh Venkatasubramanian.

In Proceedings of Artificial Intelligence and Statistics (AISTATS), April 2012.

• Efficient Protocols for Distributed Classification and Optimization.

Hal Daumé III, Jeff M. Phillips, Avishek Saha, Suresh Venkatasubramanian.

In Algorithmic Learning Theory (ALT), October 2012.

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgments
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Thesis Statement
	Organization of this Thesis

	=10000=10000=0Relevant Work
	-22pt
	Transfer Learning
	Domain adaptation
	Multitask learning

	Budgeted Learning
	Semisupervised learning
	Online learning
	Active learning

	Distributed Learning

	=10000=10000=0Budgeted Transfer Learning
	=10000=10000=0Semisupervised Transfer
	-22pt
	Background
	Problem setup and notations
	EasyAdapt (EA)

	EA++: EA Using Unlabeled Data
	Motivation
	EA++: EasyAdapt with unlabeled data
	Implementation

	Generalization Bounds
	Define hypothesis classes for EA and EA++
	Relate empirical and expected error (for both source and target)
	Relate source expected error and target expected error
	Relate target expected error with source and target empirical errors
	Bound the complexity of EA and EA++ hypothesis classes

	Experiments
	Results on sentiment classification task
	Results on sequence labeling tasks

	Summary

	=10000=10000=0Online Transfer
	-22pt
	Background
	Online Task Relationship Learning
	Alternating optimization
	Practical considerations
	Computational efficiency

	An Active Learning Extension
	Experiments
	Setup
	Datasets.
	Methods.

	Task relationships learned
	Results
	Accuracy.
	Number of mistakes.
	With active learning.

	Remarks

	Summary and Future Directions

	=10000=10000=0Active transfer
	-22pt
	Alda: Active Learning Domain Adapted
	Preliminaries
	Initializing the uncertainty sampler

	Leveraging Domain Divergence
	Hybrid oracle

	Online Alda
	Mistake bounds
	Label complexity

	Experiments
	Setup
	Datasets.
	Methods.

	B-Alda results
	Sentiment classification.
	Landmine detection.

	O-Alda results
	Sentiment classification.
	Landmine detection.

	Remarks

	Summary

	=10000=10000=0Distributed Learning
	=10000=10000=0A New Model for Distributed Learning
	-22pt
	Proposed Communication-efficient Model
	Two-party Protocols
	One-way communication
	Sampling bounds.
	Random partitioning.
	Adversarial partitioning.
	Results for basic geometric hypotheses families.
	An (1/) lower bound for linear separators in R2.

	Median-based two-way protocol for linear separators in R2.
	Algorithm.
	Analysis of IterativeSupports.
	Extending the basic protocol.
	Complexity analysis.

	Boosting-based two-way protocol for linear separators in Rd.

	Multiparty Protocols
	One-way communication
	Sampling results for k-players.
	0-Error protocols for k-players.

	Two-way communication
	Improved random sampling for k-players.
	An O(klog1/) median based algorithm for linear separators in R2.
	An O(kdlog1/) boosting based algorithm for linear separators in Rd.

	Experiments
	Results for median-based protocol IterativeSupports
	Results for boosting-based protocol WeightedSampling

	Summary

	=10000=10000=0Conclusion
	-22pt
	Summary of Contributions
	Future Challenges

	APPENDICES

	=10000=10000=0Semisupervised Transfer
	-22pt
	=10000=10000=0Distributed learning

	-22pt
	REFERENCES
	DISSEMINATION OF THIS WORK

